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Abstract 

Antimony (Sb) is a toxin that can be found in high concentrations in the soil due to 

anthropogenic sources. Antimony exists in soil as Sb(V) in the monovalent antimonate 

hydroxyanion. The adsorption mechanisms of Sb(V) are not well-characterized. The objective of 

this study was to further elucidate Sb(V) adsorption mechanisms by examining the impact of 

adsorption on surface charging characteristics of gibbsite, goethite, birnessite, and kaolinite. Also 

examined was Sb(V), SO4 [sulfate], and PO4 [phosphate] adsorption by birnessite. 

Electrophoretic mobility and potentiometric titrations were employed to examine the ζ-potential 

and net proton surface charge density as a function of pH and ionic strength, and in the presence 

or absence of adsorbed Sb(V), phosphate, or sulfate. Competitive batch adsorption studies were 

performed to examine Sb(V), SO4, and PO4 adsorption as a function of pH, ionic strength, and 

competitive environment. Results suggest that Sb(V) participates in inner-sphere adsorption by 

gibbsite, goethite, and kaolinite in acidic conditions, PO4 participates in inner-sphere adsorption 

by gibbsite, goethite and kaolinite in the pH range  studied, and that SO4 participates in inner- 

and outer-sphere adsorption by gibbsite, goethite, and kaolinite with the former mechanisms 

becoming more important in acidic conditions.  Adsorption of Sb(V) and PO4 by birnessite had 

little impact on the surface charge characteristics indicating outer-sphere adsorption. Batch 

adsorption edge studies showed Sb(V) and PO4 retention to be dependent on pH and ionic 

strength, supporting electrostatic adsorption mechanisms. Batch adsorption studies showed SO4 

was not adsorbed by birnessite in the pH 3 to 11 range. The adsorption data was modeled using 

FITEQL 4.0 and the diffuse layer model (DLM). The DLM adequately described Sb(V) and PO4 

adsorption by birnessite using electrostatic surface complexes. 
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CHAPTER I 

INTRODUCTION 

Antimony (Sb) is a potentially toxic metal with no known biological function (Filella et 

al., 2002; Shtangeeva et al., 2011). The concentration of Sb in uncontaminated soil is generally 

less than 10 mg kg
-1 

(Johnson, et al., 2005; Kabata-Pendias et al., 1984; Filella et al., 2002) with 

a median concentration of 1 mg kg 
-1

 (Arai, 2010). Elevated soil concentrations of Sb, up to and 

in excess of 5000 mg kg
-1 

(Arai, 2010), are a result of anthropogenic activities such as mining 

and smelting. Antimony is also elevated in road side soils due to its use in brake pads, and in 

shooting range soils where it is a component in lead bullets (Tschan et al., 2010; Filella et al., 

2002). Antimony is of concern to regulatory agencies, and it has been identified as a priority 

pollutant by the US EPA and the European Union (USEPA, 2006; Council of European Union, 

1998).  

Antimony may exist in several oxidation states (-III, 0, III V). In soil, Sb principally 

exists as Sb(V) in oxic conditions, and in soil solutions the hydroxyanion Sb(OH)6
-
  dominates 

(Okkenhaug, et al., 2011; Bencze, 1994). The aqueous speciation of Sb(V) is controlled by the 

hydrolysis reaction:  

                                            Sb(OH)5
0
 + H2O  ⇄ Sb(OH)6

–
 + H

+     
                                            [1] 

(pKa = 2.84 at 25°C) (Accornero et al., 2008; Zakaznova-Herzog et al., 2006). Additional 

aqueous speciation reactions, such as ion pairing with metal cations, or complexation by 

dissolved soil organic matter, has not been well-characterized.  The fate and behavior of metal 

contaminants in natural systems is regulated by precipitation and adsorption mechanisms. 
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Proposed mechanisms of retention for Sb(OH)6
-
 include mineral precipitation, ligand exchange, 

and anion exchange. 

Anion and ligand exchange reactions are those that occur on mineral surfaces that 

develop positive surface charge through isomorphic substitution or the protonation of surface 

hydroxyl groups. Non-specific (outer-sphere) surface complexation results from electrostatic 

interactions and occurs when an anion is unable to displace surface H2O or OH
-
, and at least one 

molecule of water remains between a positive charge surface site and the adsorbed anionic 

species.  Conversely, specific (inner-sphere) surface complexation results in bonds with covalent 

character and occur when a ligand is able to displace surface H2O or OH
-
, and no water 

molecules remain between the ligand and the surface coordinating metal ion (Essington, 2003; 

Karamalidis, 2010).  Non-specific, anion exchange reactions at surface hydroxyl functional 

groups can be described by: 

                                           ≡SOH2
+
―A

-
 + B

-
 = ≡SOH2 

+
―B

-
 + A

- 
                                             [2] 

where , A
-
 and B

-
 are exchangeable anions and ≡S is a surface-exposed metal. Specific, ligand 

exchange reactions can be described by: 

                                           ≡SOH° + L
l-
 + H

+
 = ≡SL

1-l
 + H2O                                                     [3] 

where, L is a ligand with l- charge. 

Generally, ligands that participate in outer-sphere complexation are strong acid anions, 

whose pKa values are negative (e.g. HSO4
-
, NO3

-
, and Cl

-
), while ligands that participate in 

inner-sphere complexation are weak acid anions, whose pKa values lie between 0 and 14 (e.g. 

AsO4 and PO4) (Essington, 2003).   
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The fate and behavior of contaminants in the environment is strongly influenced by 

surface reactive mineral phases in soil. Metal oxide (Al, Fe, Mn) surfaces consist of variable 

charge (amphoteric) hydroxyl groups; these exhibit increasing negative charge with increasing 

pH and increasing positive charge with decreasing pH (Kampf et al, 2012). The metal oxide 

minerals have important environmental implications because they are able to adsorb metal and 

ligand ions from soil solution (Dixon et al., 2002; Kampf et al, 2012).   Toxic metals that are 

specifically adsorbed are not likely to become phytoavailable, bioaccessible, or mobile.  

Numerous surface-reactive minerals exist in soil. Gibbsite is present in all soil, and is particularly 

ubiquitous in highly weathered soils, weathered volcanic ash, and moderately acidic soils (e.g., 

Oxisols, Andisols, and Ultisols). Goethite is also widespread in nature, occurring in almost every 

soil type and climatic region (Schwertmann et al., 2000).  Birnessite is a hydrous manganese 

oxide and a common form of mineralized manganese in redoximorphic soil (McKenzie, 1971).  

Kaolinite is possibly the most ubiquitous non-swelling aluminosilicate mineral in soil (Dixon, 

1989).  All these minerals are responsible for ligand retention in soil; thus they are important 

regulators of contaminant transport.  

The adsorption of Sb(V) by metal oxide and aluminosilicate minerals has received 

limited attention. However, studies suggest that adsorption proceeds through an inner-sphere 

mechanism (Eq. [3]), particularly in acidic environments. Adsorption studies on Al and Fe 

(oxy)hydroxides show that the greatest retention of Sb(V) occurs when solution pH is less than 5, 

with retention decreasing with increasing pH (Rakshit et al., 2011; Leuz et al., 2006; Tighe et al., 

2005).  Similarly, McComb et al (2007) showed increasing inner-sphere retention of Sb(V) by 

goethite with decreasing pH  using Attenuated Total Reflectance-Infrared (ATR-IR) 

spectroscopy.  Ambe et al. (1986) showed strong adsorption of Sb(V) on hematite below pH 7, 
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with the percentage of adsorbed Sb(V) decreasing rapidly with increasing pH above pH 7.  

Scheinost et al. (2006) showed inner-sphere retention of Sb(V) using Extended X-ray Adsorption 

Fine Structure (EXAFS) spectroscopy on shooting range soils.  Ilgen et al. (2012) showed Sb(V) 

participating in inner-sphere mechanism on gibbsite and kaolinite using EXAFS spectroscopy.  

Xi et al. (2009) showed Sb(V) retention by kaolinite was greatest at pH 3.6, and decreased with 

increasing pH.  Wang et al. (2012) showed Sb(V) adsorption by magnetite was unaffected by 

ionic strength, and decreased with increasing pH suggesting inner-sphere adsorption 

mechanisms.   

The adsorption of phosphate and sulfate by metal oxide and aluminosilicate minerals has 

been well characterized. In a comprehensive study by Goldberg (1984) phosphate was shown to 

participate in specific adsorption by various Al and Fe oxide minerals as a function of pH. 

Balistrieri et al. (1990) showed phosphate adsorption by iron oxide and manganese oxide to 

increase with decreasing pH.  Su and Harsh (1993) examined phosphate and sulfate adsorption 

mechanisms by amorphous aluminosilicates using electrophoretic mobility studies and suggested 

phosphate was participating in specific adsorption while sulfate was participating in nonspecific 

adsorption. He et al. (1997) examined phosphate and sulfate adsorption as a function of pH and 

ionic strength and concluded that phosphate participates in inner-sphere adsorption while sulfate 

participates in outer-sphere adsorption mechanisms on kaolinite and γ-Al2O3. Juang et al. (2002) 

examined sulfate adsorption by goethite using electrophoretic mobility and concluded that 

sulfate participated in an outer-sphere adsorption mechanism. Tripathy et al. (2001) found sulfate 

to participate in outer-sphere adsorption on hydrous manganese oxide in the pH 2.5 to 9 range.   

Phosphate and sulfate adsorption mechanisms on metal oxides and aluminosilicates are 

well established, the former participates in specific adsorption mechanisms while the latter 
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predominantly participates in nonspecific adsorption. Antimony(V) adsorption studies by metal 

oxides and aluminosilicates are limited. Even though literature is beginning to illuminate how 

Sb(V) is retained,  further evidence is needed to establish a comprehensive understanding of 

antimony’s interactions with common soil constituents.  Further, elucidating the retention 

mechanisms for Sb(V) by metal oxides will allow for  informed predictions about  transport and 

bioavailability, and aid in the promulgation of regulations, in-situ remediation strategies, and 

environmental management programs (Erdemoglu, 2006; Tserenpil et al., 2011; Arai, 2010).   

In this study, the influence of Sb(OH)6
-
, H2PO4

-
/HPO4

2-
, and SO4

2-
 adsorption on the 

surface charge properties of gibbsite, goethite, birnessite, and kaolinite as a function of pH and 

ionic environment were examined using electrophoretic mobility and potentiometric titration 

studies.  These studies provide the evidence to identify ligand adsorption mechanisms. The 

adsorption of Sb(OH)6
-, H2PO4

-
/HPO4

2-
, and SO4

2-
, by birnessite was also examined using batch 

adsorption studies as a function of pH, ionic strength, and competitive ligand environment. The 

competitive effects of phosphate and sulfate on antimony adsorption lend further evidence for 

prediction of antimony behavior in the presence of competing ligands (Essington, 2011).  
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CHAPTER II 

ELECTROSTATIC PROPERTIES OF VARIABLE CHARGE MINERALS AS 

INFLUENCED BY ADSORPTION OF INORGANIC LIGANDS 

Antimony (Sb) is a potentially toxic metal with no known biological function (Filella et 

al., 2002; Shtangeeva et al., 2011). The concentration of Sb in uncontaminated soil is generally 

less than 10 mg kg
-1 

(Johnson, et al., 2005; Kabata-Pendias et al., 1984; Filella et al., 2002) with 

a median concentration of 1 mg kg 
-1

 (Arai, 2010). Elevated soil concentrations of Sb, up to and 

in excess of 5000 mg kg
-1 

(Arai, 2010), are a result of anthropogenic activities such as mining 

and smelting. Antimony is also elevated in road side soils due to its use in brake pads, and in 

shooting ranges where it is a component in lead bullets (Tschan et al., 2010; Filella et al., 2002). 

Antimony is of concern to regulatory agencies, and it has been identified as a priority pollutant 

by the US EPA and the European Union (USEPA, 2006; Council of European Union, 1998).  

Antimony may exist in several oxidation states (-III, 0, III V). In soil, Sb principally 

exists as Sb(V) in oxic conditions, and in soil solutions the hydroxyanion Sb(OH)6
-
  dominates 

(Okkenhaug, et al., 2011; Bencze, 1994). The aqueous speciation of Sb(V) is controlled by the 

hydrolysis reaction:  

                                            Sb(OH)5
0
 + H2O  ⇄ Sb(OH)6

–
 + H

+     
                                            [4] 

(pKa = 2.84 at 25°C) (Accornero et al., 2008; Zakaznova-Herzog et al., 2006). Additional 

aqueous speciation reactions, such as ion pairing with metal cations, or complexation by 

dissolved soil organic matter, has not been well-characterized.   

The fate and behavior of metal contaminants in natural systems is regulated by 

precipitation and adsorption mechanisms. Proposed mechanisms of retention for Sb(OH)6
-
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include mineral precipitation, ligand exchange, and anion exchange.  Precipitation of Sb(V) 

minerals such as Pb[Sb(OH)6]2  or Ca[Sb(OH)6]2 have been proposed. However, these 

precipitates are unstable compared to adsorbed forms of Sb(V) and there is no evidence of 

precipitation in soils, even in high contaminated environments (Johnson et al., 2005).   

Anion and ligand exchange reactions are those that occur on mineral surfaces that 

develop positive surface charge through isomorphic substitution or the protonation of surface 

hydroxyl groups. Non-specific (outer-sphere) surface complexation results from electrostatic 

interactions and occurs when an anion is unable to displace surface H2O or OH
-
, and at least one 

molecule of water remains between a positive charge surface site and the adsorbed anionic 

species.  Conversely, specific (inner-sphere) surface complexation results in bonds with covalent 

character and occur when a ligand is able to displace surface H2O or OH
-
, and no water 

molecules remain between the ligand and the surface coordinating metal ion (Essington, 2003; 

Journey, 2008; Karamalidis, 2010).  Non-specific, anion exchange reactions  at surface hydroxyl 

functional groups can be described by: 

                                           ≡SOH2
+
―A

-
 + B

-
 = ≡SOH2 

+
―B

-
 + A

- 
                                             [5] 

where , A
-
 and B

-
 are exchangeable anions and ≡S is a surface-exposed metal. Specific, ligand 

exchange reactions can be described by: 

                                           ≡SOH° + L
l-
 + H

+
 = ≡SL

1-l
 + H2O                                                     [6] 

where, L is a ligand with l- charge. 

Generally, ligands that participate in outer-sphere complexation are strong acid anions, 

whose pKa values are negative (e.g. HSO4
-
, NO3

-
, and Cl

-
) while ligands that participate in inner-

sphere complexation are weak acid anions, whose pKa values lie between 0 and 14 (e.g. AsO4, 
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and PO4) (Essington, 2003; Anderson, 2006).  Adsorption mechanisms of phosphate and sulfate 

have been well established. Phosphate participates in specific adsorption on hydrous metal 

oxides and aluminosilicates; conversely, sulfate has been shown to participate in predominantly 

nonspecific adsorption on hydrous oxides and aluminosilicates (Ali et al., 1996; Goldberg, 1984; 

He et al, 1997; Anderson, 2006; Violante et al., 2002; Balistrieri, 1999; Su, 1993; Tripathy et al., 

2001; Juang et al., 2002).  Recent literature suggests that Sb(V) may participate in specific 

adsorption with gibbsite, goethite, manganite, and kaolinite (Rakshit, et al., 2011; Martinez-

Llado et al., 2008; Wang et al. 2012; IIgen et al., 2012). 

Metal oxides and layer silicates are two major soil constituents that bear reactive surface 

functional groups.  Oxides of aluminum, iron, and manganese have variable charge surfaces.  

Kaolinite also bears variable charge functional groups. Gibbsite, Al(OH)3, is an aluminum 

hydroxide that is ubiquitous in soil, particularly in highly weathered soils, weathered volcanic 

ash, and moderately acidic soils (e.g., Oxisols, Andisols, and Ultisols). Gibbsite consists of 

stacked dioctahedral sheets of Al(OH)3 that are held together by hydrogen bonds.  Surface 

hydroxyls on the planar surface and half of the hydroxyls on the edge surface are doubly-

coordinated by two Al
3+

 atoms and bear neutral charge.  Conversely, half of the hydroxyls on the 

sheet edges are singly-coordinated with one Al
3+

 atom and are not charge-satisfied.  These edge 

hydroxyls will be predominantly undercoordinated (≡Al─OH
-0.5

) when the solution pH > pHPZC. 

As solution pH decreases, the extent of undercoordinated surface hydroxyls will decrease in 

relation to the extent of protonated hydroxyls (≡Al─OH2
+0.5

).  The pHPZC is the pH at which the 

surface bears neutral net charge, meaning the proportion of undercoordinated surface hydroxyls 

and protonated surface hydroxyls is equal.  
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Goethite is a hydrous iron oxide that is widespread in nature, occurring in almost every 

soil type and climatic region (Schwertmann et al., 2000).  Goethite consists of chains of edge-

sharing Fe
III

 octahedral that are bound to adjacent chains by hydrogen bonding and sharing 

polyhedron corners. The surface charge of goethite is primarily independent of structural charge, 

unless significant isomorphic substitution is occurring for Fe
III 

for a lower valency cation. 

Doubly-coordinated hydroxyls are charge satisfied (≡Fe2─OH
0
). Singly- coordinated and triply-

coordinated hydroxyls are primarily negatively charged when pH > pHPZC  (≡Fe─OH
-0.5

, 

≡Fe3─O
-0.5

), and primarily positive charged when pH < pHPZC (≡Fe─OH2
+0.5

, ≡Fe3─OH
+0.5

).   

 Birnessite, MnO2, is a hydrous manganese oxide and common form of mineralized 

manganese in redoximorphic soil (McKenzie, 1971).  Birnessite, a phyllomanganate, consists of 

layer structures of edge linked Mn octahedral that are connected to adjacent layers by water and 

exchangeable cations. Birnessite has permanent structural charge from vacancies in the layer 

structure or from the substitution of Mn
III

 for Mn
IV

.  This structural charge is satisfied by 

exchangeable cations. Considered inert is the doubly coordinated hydroxyl ≡Mn
III

2─OH
0
, which 

is charge satisfied. Negative variable surface charge arises from the singly-coordinated and 

doubly-coordinated hydroxyls (≡Mn
IV
─OH

-1.33
, ≡Mn

IV
─OH

-0.33
, ≡Mn2

III
─O

-0.5
, and ≡Mn

IV
2─O

-

0.33
). In strongly acidic environments ≡Mn

IV
2─OH2

+0.67 
and ≡Mn

IV
─OH2

+0.67
 may exist.  The 

undercoordinated surface hydroxyls lend to predominantly negative surface charge when pH > 

pHPZC.   

Kaolinite, Al2Si2O5(OH)4, is possibly the most ubiquitous non-swelling aluminosilicate 

mineral in soil (Dixon, 1989).  Kaolinite consists of 1:1 layered ratio of tetrahedral and 

octahedral sheets that are held together with hydrogen bonding. The hydrogen bonded interlayer 

lends much stability to the mineral. The protonation and deprotonation of ≡Si─OH and ≡Al─OH 



10 

 

groups, along with minor amounts of Al
3+

 for Si
4+

 isomorphic substitution, creates surface 

charge.  Singly-coordinated edge hydroxyls will have predominantly negative charge when pH > 

pHPZC (≡Al─OH
-0.5 

and
 
≡Si─O

-
) and predominately positive charge when pH < pHPZC 

(≡Al─OH
+0.5

) (Jiang et al., 2009). Doubly coordinated ≡Al2─OH
0
 and ≡Si2─O

0
 are considered to 

be inert, along with the    
     

    surface group. 

Charge on a mineral has influence beyond its surface into the bulk solution.  This region 

between the mineral surface and the bulk solution is called the solid-solution interface, and 

consists of various layers of charge density (Essington, 2003).  The total net surface charge on a 

particle (σp) is: 

                                                                                                         [7] 

where σs is the permanent structural charge, σH is the proton surface charge resulting from the 

specific adsorption of proton and hydroxyl ions, σis  is the inner-sphere charge resulting from 

specific ion adsorption, σos is the outer-sphere charge resulting from non-specific ion adsorption, 

and σd is the counterion diffuse swarm charge that exactly balances σp (Goldberg et al., 2010). 

Ligands that participate in adsorption in the σis plane will affect surface charging characteristics  

that are measureable by electrokinetic and potentiometric analysis.  Conversely, ions that 

participate in adsorption in the σos plane will affect these methods of analysis.  

Ligand adsorption mechanisms, outer- vs. inner-sphere complexation, may be directly 

determined through electrokinetic experiments, and indirectly by potentiometric titrations. 

Electrokinetic experiments measure the electric double layer potential at the shear plane between 

the solid and the bulk solution.  This electric potential is known as the zeta potential (ζ).  The ζ-

potential is assumed to be approximate to the diffuse double layer potential (Goldberg et al., 
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2012). To measure the ζ-potential, the movement of a suspended charged particle is tracked 

under an applied electric field. The mobility of the particle is measured as electrophoretic 

mobility, which is related to ζ by the Smoluchowski equation (Hunter, 1989): 

                                                         
  

 
                                                                        [8] 

where µE is the electrophoretic mobility (microns sec
-1

 per volt cm
-1

), ε is the dielectric constant 

of solution, ζ is the zeta potential (mV), and  η is the viscosity of the suspending liquid (poises). 

The electrophoretic mobility of a particle within an indifferent electrolyte will reflect the surface 

charge created by proton adsorption and desorption on mineral surface functional groups.  When 

a ligand other than the indifferent electrolyte is present, electrophoretic mobility will reflect the 

adsorption mechanism. Adsorption of a ligand in the σis plane will decrease µE, while adsorption 

of a ligand in the σos plane will not affect µE, relative to the indifferent electrolyte.  The 

electrophoretic mobility may be used to predict adsorption mechanisms because the influence a 

ligand adsorbed in the σis plane affects the intrinsic surface charge of a mineral. Conversely, a 

ligand adsorbed in the σos plane is relatively mobile. The electrophoretic mobility of a particle is 

also influenced by ionic strength. Increased concentrations of electrolyte in the σd plane tend to 

shield the particle charge, decreasing the extent of charge influence in the solid-solution interface 

and decrease the response within an electric field (Yu, 1997).  

Potentiometric titrations may be employed to indirectly characterize ligand adsorption 

mechanisms. Potentiometric titrations measure variation in σH, as a function of pH, by 

quantifying protonation and deprotonation reactions on surface functional groups. Variations in 

σH are determined by measuring proton concentration without the solid (blank) and measuring 

proton concentration when the solid is present, the difference is considered adsorbed proton per 
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mass of solid, in mmolc kg
-1

. To accurately relate blank [H
+
] to suspension [H

+
], a standard curve 

must be developed to relate the total proton hydrogen concentration (TOTH) to pH: 

                                             TOTH = [H
+
] ‒ [OH

‒
] = ƒ(10

-pH 
-10

-(14-pH)
)                                      [9] 

where [H
+
] is the free proton and [OH

‒
] is the free hydroxide concentrations. The concentration 

of adsorbed proton is computed by subtracting the blank from the titration data: 

                              

  
S

BAh
m

V
ccQ   ]OH[]H[

                                           [10] 

where  Qh is adsorbed proton in mmolc kg
-1

, cA is the concentration of strong acid added to the 

suspension, cB is the concentration of strong base added, V is the suspension volume in L, and mS 

is the mass of solid in kg. When a ligand is present (in addition to the background electrolyte), 

proton adsorption will reflect the ligand adsorption mechanism. Adsorption of a ligand in the σis 

plane will increase Qh in response to the addition of intrinsic negative surface charge, while 

adsorption of a ligand in the σos plane will not have an effect on Qh.  Potentiometric titrations are 

used to indirectly measure adsorption because the initial protonation status of surface functional 

groups is unknown (Sposito, 2004), only changes in Qh are quantified. Nonspecific adsorption of 

a ligand, occurring in the σos plane will not influence the σH plane, and will not cause a shift in 

Qh. Conversely, specific adsorption of a ligand in the σis plane will displace water and hydroxyl 

ions on surface functional groups influencing the σH plane. Further, the influence a negatively 

charged ligand extends into the solid-solution interface, from its point of adsorption, requiring 

additional protons to satisfy the charge, thus increasing Qh (Sposito,1989).  

 Electrophoretic mobility and potentiometric titrations provide the evidence necessary to 

identify ligand adsorption mechanisms. In addition to variations in µE and Qh, points of zero 
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charge (pHPZC) and common intersection points (CIP) of potentiometric titration curves obtained 

under differing ionic strength conditions also indicate surface charging characteristics. When the 

electrophoretic mobility of a particle is zero, this is the point of zero charge: the pH at which the 

concentrations of negative and positive functional groups on a mineral surface are equal 

(Goldberg, 2012).  When determined by electrophoretic mobility, the point of zero charge is 

known as the isoelectric point (Appel et al., 2003; Sposito, 1989).  Ligand adsorption occurring 

in the σis plane will decrease the number of positive surface sites, shifting the pHPZC to lower 

values (Goldberg and Kabenji, 2010).  In a potentiometric titration, a common intersection point 

will occur when proton adsorption curves of varying ionic strength cross at a common pH.  

When the electrolytes are indifferent, the CIP is point of zero salt effect (pHPZSE) and is equal to 

the pHPZC (Avena et al., 1998; Appel et al., 2003). However, when the specific adsorption of a 

ligand occurs, the point of zero salt effect is not equal to the pHPZC (Sposito, 2004).  

Adsorption of phosphate by goethite and aluminum oxides has been shown to decrease 

electrophoretic mobility supporting inner-sphere complexation mechanisms (Antelo et al., 2005; 

Del Nero et al., 2010; Arai et al., 2001; Celi et al., 2000). Goldberg (2010) showed phosphate 

and sulfate adsorption by gibbsite to shift pHPZC to lower values, and decrease electrophoretic 

mobility throughout the pH range examined.  Juang (2002) found sulfate adsorption by goethite 

to decrease electrophoretic mobility, but not shift the pHPZC. Su and Harsh (1993) examined 

phosphate and sulfate adsorption mechanisms by amorphous aluminosilicates using 

electrophoretic mobility studies and suggested that phosphate was participating in specific 

adsorption while sulfate was participating in nonspecific adsorption.  

The influence of Sb(OH)6
-
  adsorption on the gibbsite, goethite, birnessite, and kaolinite 

surface charge properties as a function of pH and ionic environment were examined using 
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electrophoretic mobility studies and potentiometric titrations. Similarly, the impact of PO4 and 

SO4 adsorption of the surface charge of these solids was examined. The adsorption 

characteristics of PO4 and SO4 are well-established, and their impact on electrophoretic mobility 

and proton adsorption is also well-known (Anderson, 2006; Essington, 2003; He et al, 1997; 

Juang et al., 2002). 

MATERIALS AND METHODS 

Preparation of Solids 

All chemicals used in the preparation and pretreatment of the solids were reagent-grade 

or better. Gibbsite (Al(OH)3), alumina hydrate SF-4, was obtained from Alcan Chemicals 

(Beachwood, OH).  The gibbsite was pretreated according to Sarkar et al. (1999). Briefly, 30-g 

of gibbsite was placed in a 250-ml centrifuge bottle, with 150-ml of 10 mM NaOH. The bottle 

was vortexed and then placed on the platform shaker for 30 min to remove poorly crystalline 

Al(OH)3. The gibbsite is then repeatedly washed with Type-1 (18-MΩ) water, and centrifuged 

until a supernatant of pH 7 was obtained.  The solid was the stored in 1 mM KNO3 suspension at 

ambient temperature (20-22  C).   

Goethite (FeOOH) was synthesized using the method of Schwertmann et al. (2000).  A 

1.0 M Fe(NO3)3 solution  was created by dissolving anhydrous (Fe(NO3)3)  in Type-1 water. A 

100-mL volume of 1.0 M Fe(NO3)3 solution was placed in a 2-L polyethylene flask. A 180-mL 

volume of 5 M  OH was rapidly added with vigorous stirring, yielding a red-brown precipitate.  

The solution was then quickly diluted to a 2-L volume using Type-1 water to quench the 

reaction. The flask was sealed and placed in a  0   C oven for  0 h. The precipitate was then 

washed and centrifuged with 1 mM HCl until pH 5, then with 1 mM KNO3 until all traces of 
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chloride ion were removed (determined by a silver nitrate test).  The solid was the stored in 1 

mM KNO3 suspension at ambient temperature (20-22  C).  

Birnessite (MnO2) was synthesized using the method of Cole et al. (1947) as modified by 

McKenzie (1971). A 1.0 M KMnO4 solution was created with solid KMnO4. The solution was 

brought to a boil. To this was slowly added 165-mL of 12.1 M HCl. The suspension was boiled 

for an additional 10 min following the HCl addition. The resulting precipitate was washed and 

centrifuged with 1 mM HCl until pH 5 was obtained. The resulting solid was then washed and 

centrifuged with 1 mM KNO3 until all traces of chloride ion were removed as determined by a 

silver nitrate test.  The solid was then stored in 1 mM KNO3 suspension at ambient temperature 

(20-22  C).  

Kaolinite (Al2Si2O5(OH)4), KGa-1B, was obtained from the Clay Minerals Society (West 

Lafayette, IN).   The kaolinite was treated according to the procedure of Mattigod et al. (1985). 

The kaolinite was suspended in Type-1 water and dispersed in a blender for 20 min.  The pH of 

the suspension was adjusted to 9.5 using 100 mM NaOH, and the <20 µm fraction was collected 

by Stokes’ Law. The <20 µm kaolinite suspension was placed in 250-ml centrifuge bottles.  The 

solid was then centrifuge-washed ten times with Type-1 water to remove excess salts.  The solid 

was the stored in 1 mM KNO3 suspension at ambient temperature (20-22  C).  

The solids were characterized using x-ray diffraction. Gibbsite and kaolinite were found 

to be without detectable impurities (Figs.1and 2). Goethite and birnessite (Fig.3 and 4) were 

found to be poorly-crystalline.  Surface area measurements were performed using the BET N2 

adsorption isotherm method and a SA 3100 Surface Area Analyzer (Beckman Coulter, Brea, 

CA).  The specific surface area of the mineral precipitates is presented in Table 1.  
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Preparation of Solutions 

 All swamping electrolytes were prepared using CO2-free Type 1 water.  Both 10 mM and 

100 mM KNO3 solutions were prepared using solid potassium nitrate; 10 mM KSb(OH)6 was 

prepared using solid hexahydroxoantimonate; 10 mM K2SO4 was prepared using solid potassium 

sulfate; 1 mM and 10 mM KH2PO4 were prepared using solid potassium phosphate. Adjustments 

of pH were made using either 10 mM, 100 mM, 500 mM, or 1 M KOH or HNO3. All reagents 

were analytical grade or better. 

Electrokinetic Mobility 

Surface charging characteristics of gibbsite, goethite, birnessite, and kaolinite in various 

swamping electrolytes was determined by microelectrophoresis using Zeta-Meter System 4.0 

(Zeta Meter, Staunton, VA). The suspensions for testing were prepared in 50-ml polypropylene 

tubes. After a volume of mineral suspension (gibbsite, goethite, birnessite or kaolinite) was 

placed in the tubes, they were placed in a N2-filled glove box to ensure a CO2-free environment. 

A volume of a swamping electrolyte was added to each tube to yield a solid-to-solution ratio of 

0.2 g L
‒1

 for gibbsite and kaolinite, and 0.15 g L
-1

 for goethite and birnessite. The suspension pH 

was adjusted in each tube individually with HNO3 or KOH in order to achieve a pH range 

between 3.5 and 10.  The tubes were removed from the glove box and shaken for 24 h to reach 

equilibrium at ambient temperature (20  C to 22  C). The tubes were placed back into the CO2-

free, N2 environment for pH determinations using a calibrated (pH 4, 7, and 10 buffers) 

combination pH electrode.  Suspensions were then manually loaded into a GT-2 electrophoresis 

cell according to the Zeta-Meter 4.0 operating instructions. A minimum of 10 particles were 

tracked across a single scale of division for each suspension. An average ζ-potential (mV) 
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reading was recorded for each suspension. The Zeta-Meter 4.0 unit automatically calculated the 

zeta potential in millivolts for aqueous systems using the Smoluchowski equation Eq. [8].  Zeta 

potential was then plotted as a function of pH. The impact of antimonate, sulfate, and phosphate 

on ζ-potential was determined by varying the swamping background electrolyte compositions to 

include KSb(OH)6, K2SO4, and KH2PO4. The swamping electrolytes used are as follows:  10 mM 

KNO3; 100 mM KNO3;10 mM KSb(OH)6; 10 mM K2SO4 ; 10 mM KH2PO4 ; 10 mM KNO3 with 

10 mM KSb(OH)6; 10 mM KNO3 with 10 mM K2SO4; 10 mM KNO3 with 10 mM KH2PO4; 100 

mM KNO3 with 10 mM KSb(OH)6; 100 mM  KNO3 with 10 mM K2SO4; and 100 mM  KNO3 

with 10 mM KH2PO4. 

Potentiometric Titrations 

The surface charging characteristics of gibbsite, goethite, birnessite, and kaolinite were 

determined via potentiometric titrations. The titrations were conducted using a batch method in 

50-ml polypropylene tubes. After a volume of mineral suspension (gibbsite, goethite, birnessite 

or kaolinite) was placed in the tubes, they were moved into a N2-filled glove box to ensure a 

CO2-free environment. A volume of a swamping electrolyte was added to each tube to yield a 

solid-to-solution ratio of 10 g L
‒1

 for gibbsite and kaolinite, and 5 g L
-1

 for goethite and 

birnessite. The suspension pH was adjusted in each tube individually with HNO3 or KOH in 

order to achieve a pH range between 3.5 and 10. Blank tubes were prepared without solid under 

otherwise identical conditions. All tubes were capped, removed from the glove box, and placed 

on a platform shaker for a 2 h equilibration at ambient temperature (20  C to 22  C). The solid and 

solution phases were then separated by centrifugation and the tubes were placed back into the 

CO2-free, N2 environment for pH determinations.  Mineral and blank pH was determined using a 

calibrated (pH 4, 7, and 10 buffers) combination pH electrode. 
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The impact of antimonate, sulfate, and phosphate on proton adsorption was determined 

by varying the swamping background electrolyte compositions to include KSb(OH)6, K2SO4, and 

KH2PO4. The swamping electrolytes used were identical to the electrophoretic mobility studies 

with the addition of: 10 mM KNO3 with 1 mM KH2PO4; and 100 mM KNO3 with 1 mM 

KH2PO4.  All potentiometric titrations were performed as described above.  

Analysis of Potentiometric Titration Results 

CoStat 6.0 software (Monterey, CA) was used for analysis of titration data. A standard 

curve was developed to relate the pH of the blanks to the total hydrogen concentrations Eq. [9]. 

The concentration of adsorbed proton (Qh) was computed by subtracting the fitted blank from the 

titration data Eq. [10].   Adsorbed proton was plotted as a function of pH.  Titration curves of 

gibbsite and goethite were shifted to match zero proton adsorption to pHPZC found in 

electrophoretic mobility studies. Birnessite titrations were not adjusted, as birnessite gave no 

pHPZC, and kaolinite titrations did not require shifting, the IEP was equivalent to the pHPZC given 

by potentiometric titrations. 

RESULTS AND DISCUSSION 

Gibbsite 

 Electrophoretic mobility studies reveal a pHPZC of 10.5 for gibbsite in indifferent 

electrolyte (KNO3) (Fig. 5). This finding is slightly higher than reported values in Karamalidis 

and Dzombak (2011) (Table 1). Below the pHPZC, gibbsite mobility is decreased with 100 mM 

KNO3 compared to 10 mM KNO3 due to the screening effect of counterions (Adekola et al., 

2011). Conversely, potentiometric titrations of gibbsite in 10 mM KNO3 and 100 mM KNO3 

show only a negligible influence of ionic strength on Qh (Fig. 6). Jodin et al. (2005) and 
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Rosenqvist et al. (2002) found large variations in Qh for gibbsite as a function of ionic strength. 

However, Adekola et al. (2011) and Yang et al. (2007) found only small differences in Qh as a 

function of ionic strength.  

In the presence of both NO3 and SO4, the IEP of gibbsite is similar to that determined in 

the presence of NO3 alone. However, the ζ-potential of gibbsite shifts to lower values as pH 

decreases below approximately 10, relative to the NO3 systems. In the presence of SO4 only, the 

pHPZC shifts to the  .  to 9.  range (Fig. 5). This may be due to colloid instability when the ζ-

potential is less than ± 10 mV (Zeta-Meter 4.0). Little variation exists is the ζ-potentials between 

the 10 mM KNO3 + 10 mM K2SO4 and 100 mM KNO3 + 10 mM K2SO4 systems throughout the 

pH range studied. The influence of sulfate on Qh supports the µe findings (Fig. 6). At pH values 

greater than 7, Qh is not affect by the background electrolyte. However, at pH values less than 7, 

the Qh of the SO4 systems is greater than that of the NO3 systems. This indicates that sulfate is 

participating in predominantly outer-sphere adsorption in pH > 7 systems and that increasing 

inner-sphere adsorption occurs with decreasing pH below 7 (resulting in greater proton 

adsorption).  This is consistent with literature, which indicates the inner-sphere complexation of 

SO4 by gibbsite in acidic systems (Goldberg, 2010; Essington, 2011).  

 The ζ-potential of gibbsite under the influence of phosphate (PO4) is decreased 

throughout the entire pH range studies relative to the NO3 systems. Further, PO4 adsorption 

shifted the pHPZC from 10.5 to 4.8 (Fig.  ). Above pH 4.8, ζ-potential of phosphate with 100 mM 

KNO3 is less negative than phosphate and phosphate with 10 mM KNO3 due to counterion 

shielding (Yu, 1997). The influence of phosphate on Qh supports the µe findings (Fig. 8). The 

increased proton adsorption throughout the entire pH range studied, relative to the NO3 systems, 
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indicates that phosphate is mainly participating in inner-sphere adsorption mechanisms, a finding 

that is consistent with the literature (Goldberg, 2010; Essington, 2011).  

 The ζ-potential of gibbsite under the influence of antimonate (Sb(OH)6) is decreased 

throughout the entire pH range studied relative to the NO3 systems (Fig 9).  Similar to PO4, the ζ-

potential of Sb(OH)6 with 100 mM KNO3 is less negative compared to the lower ionic strength 

systems. However, unlike the ζ-potentials of gibbsite with PO4, the presence of Sb(OH)6 does not 

increase the ζ-potentials to positive values with decreasing pH (no pHPZC). Indeed, the ζ-

potentials tend to become even more negative in strongly acidic systems.  The potentiometric 

titration results support those of the electrophoretic mobility studies, showing an increase in Qh 

throughout the entire pH range (Fig. 10). These results suggest Sb(OH)6 is participating in 

specific adsorption on the gibbsite surface, similar to PO4.  

 Goethite 

Electrophoretic mobility studies reveal a pHPZC of 9.8 for goethite in indifferent 

electrolyte (KNO3) (Fig. 11). This finding is within the reported values of Kosmulski (2009) 

(Table 1). Below the pHPZC, goethite mobility is decreased in 100 mM KNO3 compared to that in 

10 mM KNO3 due to counterion shielding. The potentiometric titration results show that Qh is 

influenced by ionic strength (10 mM KNO3 and 100 mM KNO3) (Fig. 12). The Qh results are 

consistent with those of other studies (Shuai et al., 2009; Boily et al., 2001).   

The ζ-potential of goethite in the presence of sulfate (SO4) alone is generally negative for 

all pH values studied. This is also the case for the 10 mM KNO3 + 10 mM K2SO4 systems (Fig. 

11). However, the ζ-potential of goethite with 100 mM KNO3 and 10 mM K2SO4  shifts from 

negative to positive values as pH decreases below 9.3 (Fig.11). The pHPZC is similar to that 
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observed in the NO3 systems. The influence of sulfate on Qh is similar to that observed for the 

NO3 systems (Fig.12). However, when NO3 and SO4 are present in combination, there is an 

upward shift in Qh at pH values less than 7. The results from electrophoretic mobility and 

potentiometric titration studies suggest that sulfate adsorption by goethite is primarily outer-

sphere in alkaline systems, with increasing inner-sphere character in neutral to acidic systems.  

Juang et al.(2002) suggested that sulfate adsorption to goethite was electrostatic, but the bonding 

was strong enough to decrease particle mobility. However, numerous other studies have clearly 

established this inner-sphere complexation of sulfate by goethite in acidic systems. Using Fourier 

Transformed Infrared (FTIR) spectroscopy, Hug (1997) confirmed the monondentate 

complexation of SO4 by goethite in pH 3 and 5 suspensions. Similarly, Peak et al. (1999) showed 

that SO4 was retained by outer-sphere mechanisms by goethite in pH > 6 systems, and by inner- 

and outer-sphere adsorption mechanisms in pH < 6 suspensions. Rietra et al. (1999) successfully 

modeled the adsorption edge of SO4 by goethite by considering only inner-sphere complexation.  

 The ζ-potential of goethite under the influence of phosphate (PO4) is negative throughout 

the entire pH range studied, becoming less negative with decreasing pH (Fig. 13). Due to the 

large variability in the data, the ζ-potentials are not influenced by ionic strength, although the 

100 mM KNO3 + 10 mM PO4 system tends to generate more positive ζ-potential values than the 

10 mM PO4 and 10 mM KNO3 + 10 mM PO4 systems consistent with the shielding effect. The 

influence of phosphate on Qh (Fig. 14) is highly variable, relative to the NO3 systems. Proton 

adsorption on goethite under the influence of phosphate is not strongly influenced by ionic 

strength.  The electrophoretic mobility studies suggest the specific adsorption of phosphate; 

however, proton adsorption results are inconclusive. Li et al. (2000) suggested that the surface 

precipitation of phosphate on goethite may contribute more acidic functional groups to the 



22 

 

goethite surface via proton adsorption.  They also reported that the ζ-potentials of goethite were 

similar in the presence of absence of PO4 when up to 3 mmol g
-1

 phosphate was present in 

solution.  With higher PO4 loadings, the ζ-potentials were similar to that found for strengite. The 

maximum phosphate in solution for the potentiometric titrations was 2 mmol g
-1

,
 
and 66 mmol g

-

1
 for electrophoretic mobility.  Analysis of stability indices of iron phosphate in the presence of 

goethite using Visual MINTEQ 3.0 shows that both the ζ-potential and Qh solutions are 

supersaturated with respect to FePO4•2H2O(s) when pH < 5.5. The phosphate precipitation may 

impact the Qh and ζ-potential results. 

The ζ-potential of goethite with adsorbed Sb(OH)6 is negative throughout the entire pH 

range studied (Fig. 15).  The influence of Sb(OH)6 adsorption on Qh (Fig. 16) is inconsistent with 

the ζ-potential findings. Above pH 8, Qh is greater than that in the NO3 systems. However, below 

pH 9, Qh is erratic. The proton adsorption curve of Sb(OH)6 with 10 mM  and 100 mM KNO3 are 

similar to that of the indifferent electrolyte when pH < 7. When Sb(OH)6 alone is the swamping 

electrolyte, Qh is positive when pH > 4.5,  then decreases precipitously when pH < 4.5.  The Qh 

curves of Sb(OH)6  adsorption by goethite do not provide a clear picture of adsorption 

mechanisms. Further, they do not support the ζ-potential results.  Electrophoretic mobility 

studies suggest Sb(OH)6  is participating in specific adsorption at the goethite surface. This is 

supported by Essington (2011) who reported Sb(OH)6  adsorption by goethite occurs through 

ligand exchange at all pH values, and McComb et al. (2007) who found the specific adsorption 

of Sb(OH)6  on iron oxides to increase with decreasing pH using ATR-IR spectroscopy 
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Birnessite 

Electrophoretic mobility studies reveal no pHPZC by birnessite in indifferent electrolyte 

(KNO3) within the pH range studied (Fig. 17).  This finding is consistent with reported pHPZC 

values from  osmulski (2009), which range between 1.8 and 2.8 (Table 1). The ζ-potentials for 

the 100 mM KNO3 system are less negative than those of the 10 mM KNO3 system due to 

counterion shielding effect. The ζ-potential values for the NO3 suspensions are relatively 

constant as a function of pH, averaging -28 mV in 10 mM KNO3 and -21 mV in 100 mM KNO3. 

Further, potentiometric titrations of birnessite show less negative Qh values in 10 mM KNO3 

compared to 100 mM KNO3 (Fig. 18). Extrapolation of Qh data indicates a pHPZC of 

approximately 3 for birnessite. 

The ζ-potential of birnessite in all SO4 systems is negative at all pH values (Fig. 19). The 

ζ-potentials of the 10 mM SO4 and 10 mM KNO3 + 10 mM SO4 are similar and do not vary 

consistently with pH. The average ζ-potential of 10 mM SO4 is -30 mV, while that of 10 mM 

KNO3 + 10 mM SO4 is -29 mV. These average values are similar to that of the 10 mM KNO3 

suspensions (-28 mV). The ζ-potentials of birnessite in 100 mM KNO3 + 10 mM SO4 averages  -

17 mV, which is less negative than the 100 mM KNO3 suspension (-21 mV). Similar to the ζ-

potential findings, SO4 did not influence Qh relative to the NO3 systems (Fig. 18). These results 

suggest SO4 is participating in outer-sphere adsorption at the birnessite surface.  

 The ζ-potential of birnessite, under the influence of phosphate (PO4), is negative 

throughout the pH range studies (Fig. 20). The ζ-potentials in the 10 mM PO4 and the 10 mM 

KNO3 + 10 mM PO4 are similar, with the former averaging -32mV and the later -29 mV. The ζ-

potentials of birnessite with 100 mM KNO3 + 10 mM PO4 are more positive than the 10 mM PO4 
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and the 10 mM KNO3 + 10 mM PO4 suspensions, averaging -20 mV (Fig. 20). The ζ-potentials 

for the PO4 suspensions are similar to those of the SO4 suspensions. The Qh results indicate PO4 

is not impacting the intrinsic surface charge of birnessite, as the Qh data for these systems are 

similar to those with NO3 alone (Fig. 21). Electrophoretic mobility and potentiometric titration 

results suggest phosphate is participating in outer-sphere adsorption at the birnessite surface.  

The ζ-potential of birnessite under the influence of Sb(OH)6 is negative throughout the 

pH range studied (Fig. 22). The ζ-potential of birnessite when Sb(OH)6  is the swamping 

electrolyte is generally invariant with pH, averaging -34 mV. The ζ-potentials of birnessite 

suspensions with 10 mM Sb(OH)6 + 100 mM KNO3 are more positive (averaging -21 mV) 

compared to 10 mM Sb(OH)6 + 10 mM KNO3 (averaging -30 mV). The influence of Sb(OH)6  

on Qh as a function of pH (Fig. 23) are also similar to the 10 mM and 100 mM KNO3 

suspensions. The electrophoretic mobility and potentiometric titration results suggest that 

Sb(OH)6 may participate in outer-sphere adsorption mechanisms at the birnessite surface.   

Kaolinite 

 Electrophoretic mobility studies reveal a pHPZC 4.5 for kaolinite in 10 mM KNO3  and 6.5 

in 100 mM KNO3 (Fig. 24).  The pHPZC of kaolinite in 10 mM KNO3 is consistent with reported 

values in Kosmulski (2009) (Table 1). Variations in pHPZC as a function of ionic strength have 

been reported in the literature (Chassange et al., 2009; Kosmulski and Dahlsten, 2006) who 

concluded that ζ-potentials of kaolinite are ionic strength and salt specific. Kosmulski (2012) 

states that the inert character of 1 to 1 indifferent electrolytes with respect to metal oxides is well 

documented, and the effect of the nature and concentration of electrolyte on the pHPZC is 

insignificant, however due to literature discrepancies of reported pHPZC values of variable charge 
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minerals (other than metal oxides), the assumption of indifference by 1-1 electrolytes by these 

minerals may not be correct. Therefore, specific interactions of K
+
 with kaolinite may explain the 

increase in pHPZC with increasing K
+
 concentration.  Potentiometric titrations of kaolinite in 10 

mM KNO3 and 100 mM KNO3 are similar throughout pH range studied (Fig. 25) a result of the 

low surface reactivity of kaolinite, similar to that of gibbsite.  

The ζ-potential of kaolinite under the influence of SO4 is negative throughout the pH 

range studied (Fig. 26). Further, the ζ-potential values for the SO4 suspensions deviate (become 

more negative) from the values in the NO3 suspensions as pH decreases below approximately 7.  

The influence of SO4 on Qh is consistent with the ζ-potential findings (Fig. 25). The Qh values 

increase in the presence of SO4, relative to NO3, as solution pH decreases below approximately 

5. These results suggest that SO4 is participating in predominantly outer-sphere adsorption in pH 

> 7 suspensions due to lack of influence on Qh and ζ-potential measurements relative to the NO3 

suspensions. The retention of SO4 in pH < 7 suspensions appears to have greater inner-sphere 

character, as indicated by an upward shift in Qh and a downward shift in the ζ-potentials, relative 

to the NO3 systems. This is consistent with Essington (2011) who found sulfate adsorption by 

kaolinite to be hysteretic at low pH, but inconsistent with He et al. (1997) who proposed sulfate 

adsorption by kaolinite to be primarily outer-sphere. 

 The ζ-potential of kaolinite, under the influence of PO4 is negative throughout the pH 

range studied (Fig. 2 ). The ζ-potentials of 10 mM PO4 suspensions (with and without 10 mM 

KNO3) are similar, and that of the 100 mM KNO3 + 10 mM PO4 is more positive. The ζ-

potentials of all PO4 systems are more negative than the NO3 systems. These results suggest PO4 

is participating in inner-sphere adsorption surface complexation, which is consistent with 

Essington (2011), as well as He et al. (1997). The influence of PO4 on Qh does not appear to 
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suggest inner-sphere complexation (Fig. 28). Proton adsorption results for kaolinite under the 

influence of PO4 generally do not differ from the NO3 suspensions. These finding may be a result 

of the low surface reactivity of kaolinite.  

 The ζ-potential of kaolinite suspensions with Sb(OH)6 show a clear deviation from that 

with NO3 (Fig. 29). The strongly alkaline conditions, the ζ-potential of  Sb(OH)6 suspensions is 

similar to that of the NO3 suspensions; however with decreasing pH the ζ-potentials of the Sb 

systems do not increase. Similar to SO4 and PO4, the ζ-potential of Sb(OH)6 suspensions with 

100 mM KNO3 is less negative compared to Sb(OH)6 alone and Sb(OH)6 with 10 mM KNO3 as a 

result of counterion shielding.  The potentiometric titration results indicate that Sb(OH)6 

adsorption is generating negative surface charge, particularly as pH decreases below 

approximately 7 (Fig. 30). These results suggest Sb(OH)6 adsorption by kaolinite displays inner-

sphere complexation character, particularly in acidic pH environments.  

SUMMARY 

 The impact of NO3, Sb(OH)6, SO4, and PO4 on surface charging characteristics of 

variable-charge minerals were examined using electrophoretic mobility and proton adsorption 

analyses. Antimony (V) was found to participate in inner-sphere surface complexation reactions 

on gibbsite, goethite, and kaolinite. Adsorption Sb(OH)6 by birnessite, however, did not impact 

the surface charging relative to an indifferent electrolyte. The ζ-potential and Qh data suggest that 

SO4 participated in both inner- and outer-sphere complexation on gibbsite, goethite, and kaolinite 

with the former mechanism becoming important in acidic suspensions. Adsorption of SO4 by 

birnessite was outer-sphere at all pH values. The adsorption of PO4 by gibbsite, goethite, and 

kaolinite displayed strong inner-sphere character throughout the pH range studied. Phosphate 
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adsorption by birnessite, however, had little impact on surface charging characteristics compared 

to the indifferent electrolyte, indicating that PO4 retention by birnessite proceeds through an 

outer-sphere mechanism. Elucidating the retention mechanisms of Sb(V), a toxic substance, by 

common soil components lends important information concerning mobility and bioaccessibility. 

Given its ability to adsorb specifically to gibbsite, goethite, and kaolinite, Sb(V) could 

potentially be immobilized in the soil with the use of soil amendments and other remediation 

strategies involving these minerals, particularly in acidic environments.  
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CHAPTER III 

COMPETITIVE ADSORPTION OF INORGANIC LIGANDS ONTO BIRNESSITE: 

EFFECTS OF PH AND IONIC STRENGTH 

Antimony (Sb) is a metalloid that is toxic to most living organisms and has no known 

biological function (Filella et al., 2002; Shtangeeva et al., 2011). The concentration of Sb in 

uncontaminated soil is generally less than 10 mg kg
-1

 with a median concentration of 1 mg kg
-1 

(Bowen ,1979; Johnson, et al., 2005; Kabata-Pendias et al., 1984; Filella et al., 2002a). 

Antimony is used in a number of industrial applications. It is a component in flame retardants, 

semiconductors, brake pads, and it is used as a metal hardening agent. Elevated soil 

concentrations of Sb are generally a result of anthropogenic activities such as mining and 

smelter, along road side soils due to its prevalence in brake pads, and in shooting range soils 

were it is a component of lead ammunition (Tschan et al., 2010; Filella et al., 2002).  The 

concentration of Sb in contaminated soil has been reported as high as 5000 mg kg
-1

. It is 

estimated that Sb release into the environment has increased at least 10-fold in recent decades 

(Shtangeeva et al., 2011). Antimony contamination is of concern to regulatory agencies and has 

been identified as a priority pollutant by the US EPA and the European Union, which have set 

drinking water guidelines at   and 10 μg L
−1

 (USEPA, 2006; Council of European Union, 1998).  

Antimony is a group 15 element on the Periodic Table of Elements.  It may exist in 

several oxidation states (-III, 0, III, V). In nature, Sb principally exists as Sb(V) in oxic  (O2 

present) and Sb(III) in anoxic (O2 absent) environments. In the 3-11 pH range, Sb(III) exists as 

Sb(OH)3
0
,while Sb(V) exists as Sb(OH)6

-
 (Guo et al., 2009; Filella et al., 2002). In soil solutions, 

the Sb(OH)6
-
  species is more common than the Sb(OH)3

0
 species, although the latter is shown to 

be more toxic to living organisms and is known to prompt chronic health problems (Okkenhaug, 
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et al., 2011; Bencze, 1994). The aqueous speciation of Sb(V)  is controlled by the hydrolysis 

reaction:  

                                             Sb(OH)5
0
 + H2O  ⇄ Sb(OH)6

–
 + H

+
               

                                                
[11] 

(pKa=2.84 at 25°C) (Accornero et al., 2008; Zakaznova-Herzog et al., 2006). Therefore, at pH 

values above 2.84 the hydroxyanion Sb(OH)6
–
 predominates in soil solution. Additional aqueous 

speciation reactions such as ion pairing with metal cations, or complexation by dissolved soil 

organic matter, has not been well-characterized.   

There is growing concern in the environmental fate, behavior and bioaccessibility of Sb 

due to the increased anthropogenic input into the soil environment (Filella et al.,2002; Filella et 

al., 2003; Leuz et al, 2006; Lintschinger et al., 1998). Due to the anionic behavior of the 

predominant Sb(V) redox state (Sb(OH)6
-
), Sb may not be strongly retained by soil.  Proposed 

mechanisms of retention for Sb(OH)6
- 
include mineral precipitation, ligand exchange and anion 

exchange.  Precipitation of minerals such as Pb[Sb(OH)6]2  or Ca[Sb(OH)6]2 are possible for 

Sb(V). However, these precipitates are unstable in soil compared to adsorbed forms of Sb(V) 

(Johnson et al., 2004).   Further, there is no evidence of precipitation in soil affected by elevated 

Sb levels (Johnson et al., 2004).   

Anion and ligand exchange are adsorption reactions that occur on mineral surfaces that 

have developed positive surface charge through isomorphic substitution or the protonation of 

surface hydroxyl groups (Essington, 2003; Yu, 1997).  Anions and ligands in solution are able to 

adsorb to surface sites through a combination of both specific and non-specific mechanisms.  

Non-specific (outer-sphere) exchange reactions occur when an anion is unable to displace 

surface H2O and at least one molecule of water remains between surface site and the anionic 
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species.  These anions are exchangeable and are held at the surface by electrostatic interactions. 

Specific (inner-sphere) complexes are formed when a ligand is able to displace surface H2O and 

no water molecules remain between the ligand and the surface metal ion (Essington, 2003; 

Karamalidis, 2010).  These surface complexes display considerable stability due to the covalent 

bonding character of the ligand-metal surface bond. Specific, inner-sphere exchange reactions 

can be described through the following ligand exchange: 

                                        ≡SOH° + L
l-
 + H

+
 = ≡SL

1-l
 + H2O                                                      [12] 

Non-specific, outer-sphere exchange reactions can be described as anion exchange: 

                                        ≡SOH2
+
―A

-
 + B

-
 = ≡SOH2 

+
―B

-
 + A

-  
                                             [13] 

where ≡S is a surface-exposed metal, L is a ligand with l- charge, and A
-
 and B

-
 are 

exchangeable anions. Anion exchange is sensitive to the ionic strength of the soil solution. Thus, 

anion exchange is influenced by the presence of exchangeable anions, like NO3
-
 and Cl

-
. 

Conversely, the adsorption of ligands retained by inner-sphere mechanism is generally not 

influenced by ionic strength (Zhang, et al. 1996; Zhang, et al. 2009).   

Metal oxides (Al, Fe, Mn) are variable charge soil minerals that exhibit increasing 

negative charge with increasing pH and increasing positive charge with decreasing pH (Kampf et 

al., 2012). They have important environmental implications because they have high capacity to 

adsorb both metals and ligands from soil solution (Dixon et al., 2002; Kampf et al., 2012). 

Hydrous manganese (Mn) oxides are surface-reactive and an important sink for metals 

and ligands. Manganese oxides are most commonly found in soils formed from mafic and 

ultramafic metamorphic and igneous rocks. Although found in soils of different ages and from 

different parent materials, hydrous Mn oxides tend to occur in seasonally wet and imperfectly 
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drained soils (Essington, 2003; Dixon et al. 2002; Post, 1999). Hydrous manganese oxides, 

ranging from black to brown in color, exist ubiquitously as fine-grained coatings on surfaces of 

soils and sediments in low concentrations. Hydrous Mn oxides have both permanent negative 

structural charge and pH dependent surface charge (Essington, 2003).  Because they have net 

negative surface charge when the pH is greater than 2, they are important adsorbents of metal 

ions, even when present in low concentrations (Dixon et al. 2002; McKenzie, 1989; Negra et al. 

2005; Tan et al.2008). Weakly hydrolyzable cations (i.e. Pb, Cu, Mn, Co, Zn, Zi, Ni) and ligands 

derived from weak acids (i.e. molybdate, phosphate, selenite) have been found to strongly adsorb 

to Mn oxides, generally in excess of surface charge (Dixon et al., 2002; McKenzie, 1989). 

Birnessite (MnO2) is a common Mn oxide (Essington, 2003; Wei et al., 2010). It is a 

phyllomanganate existing as layered sheets of edge-linked Mn
4+

O6 octahedra with substantial 

isomorphic substitution by Mn
3+

 and numerous cation vacancies; both of which lend a permanent 

negative structural charge that is satisfied by an interlayer of hydrated exchangeable cations 

(Dixon et al., 2002; Essington, 2003; Sposito, 2008, Wei et al., 2010).  

Adsorption of Sb(V) by metal oxides has recently received considerable attention.  

Adsorption studies on Al and Fe (oxy)hydroxides show that the greatest retention of Sb(V) 

occurs when the pH of the system is less than 5, with retention decreasing with increasing pH 

(Rakshit et al., 2011; Leuz et al., 2006; Tighe et al., 2005). Similarly, McComb et al. (2007), 

showed increasing inner-sphere retention of Sb(V) with decreasing pH  via ATR-IR 

spectroscopy on goethite.  Ambe et al. (1986) showed strong adsorption of Sb(V) on hematite 

below pH 7, with the percentage adsorbed decreasing rapidly above pH 7.  Scheinost et al. 

(2006) showed inner-sphere retention of Sb(V) via EXAFS spectroscopy on shooting range soils. 

Rakshit et al. (2011) showed Sb(V) adsorbed strongly to gibbsite, possibly via inner-sphere 
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adsorption mechanism with the highest adsorption occurring at pH values less than 4.  Ilgen 

(2012) showed that Sb(V) participated in inner-sphere surface complexation on gibbsite and 

kaolinite using EXAFS spectroscopy.  Xi et al. (2009) suggested that Sb(V) may form inner-

sphere complexes at low pH on kaolinite surface, and mainly outer-sphere complexes at high pH. 

Wang et al. (2012) showed inner-sphere adsorption of Sb(V) on synthetic manganite.  Despite 

the growing knowledge of Sb(V) behavior relative to soil minerals, there is a general dearth of 

knowledge relative to Sb(V) adsorption by manganese oxides. Conversely, SO4 is known to 

participate in both inner- and outer-sphere adsorption by metal oxides and PO4 is known to 

participate in primarily inner-sphere adsorption by metal oxides, including manganese oxides 

(Ali et al., 1996; Goldberg, 1984; He et al., 1997; Violante et al., 2002; Su, 1993; Juang et al., 

2002; Saeki, 1995; Tripathy et al., 2001; Balistrieri et al., 1990). 

To aid in the description of chemical and electrostatic ion retention, surface complexation 

models (SCM) are commonly employed. SCMs are used to describe adsorption phenomena 

using an equilibrium approach (Goldberg, 1992). They are based on a balance of surface charge 

expression. They contain columbic correction factors to account for the effect of surface charge 

on surface complexation, and explicitly define equilibrium constant expressions for surface 

complexes. The diffuse layer model (DLM), proposed by Stumm et al. (1970), is a simple 

surface complexation model frequently used to describe the oxide mineral-aqueous solution 

interface. Adsorption is based on electrostatic mechanisms, which is consistent with the zeta-

potential and proton adsorption findings for Sb(V) retention in Chapter II.  
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The model does not consider surface complexes with ions in the background electrolyte, 

and the relationship between surface charge and surface potential is given by the following 

equation: 

   
  

 
      {       ∑   [   (

      

  
)   ] }

   
                             [14] 

where σd is expressed in C m
-2

 (Coulombs per square meter), S is specific surface area (m
2
 g

-1
), a 

is the concentration of solid in aqueous suspension, F is the Faraday constant (C mol
-1

), ψd is the 

diffuse layer potential in volts, ε0 is the permittivity of vacuum, D is the dielectric constant of 

bulk water, R is the gas constant (J K
-1

 mol
-1

) T is temperature (K), sgn is the signum function: 

sgn ψd = 1 if ψd > 0 and sgn ψd = -1 if ψd < 0, and ci and zi are the concentration and charge of 

solutions species i. The application of the DLM requires knowledge of surface parameters of the 

adsorbent and formation constants for all aqueous species and surface protonation reactions. To 

apply the DLM to adsorption data, general surface complexation reactions and reactions 

describing intrinsic equilibrium constants must be defined.   

The object of this study was to examine noncompetitive adsorption of Sb(V), SO4, and 

PO4 by birnessite as a function of pH and ionic strength.  Direct competitive adsorption of Sb(V), 

SO4, and PO4 studies were performed, as well as indirect competitive adsorption of Sb(V) and 

SO4, and Sb(V) and PO4. The competitive effects of phosphate and sulfate on antimony 

adsorption will lend further evidence for prediction of Sb(V) behavior in the presence of 

common soil ligands.  
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MATERIALS AND METHODS 

Preparation of Solutions 

 All solutions were prepared using CO2-free Type I water.  The 10 mM and 100 mM 

KNO3 background electrolytes were prepared using solid potassium nitrate, 10 mM KSb(OH)6
-
 

was prepared using solid hexahydroxoantimonate, 10 mM K2SO4 was prepared using solid 

potassium sulfate, and 10 mM KH2PO4 was prepared using solid potassium phosphate. 

Adjustments to solution pH were made with HCl or HNO3. All solids, acids, and bases used were 

analytical grade or better.  

Preparation of Solid 

Birnessite (MnO2) was synthesized using the method of Cole et al. (1947) as modified by 

McKenzie (1971). A 1.0 M KMnO4 solution was created with 395.075-g of solid KMnO4 and 

2.5-L Type-I water. The solution was brought to a boil. To this was added, slowly over the 

course of 15 minutes, 165-mL of 12.1 M HCl. The suspension was boiled for an additional 10 

min following the HCl addition. The resulting precipitate was washed by centrifuge washing 

with 0.001M HCl until pH 5, and then with 1mM KNO3 until all traces of chloride ion were 

removed (determined by a silver nitrate test).  The solid was suspended in 1mM KNO3, and 

stored at ambient temperature.  The solid was characterized using x-ray diffraction and found to 

be birnessite (Fig. 4). Surface area measurements were performed using the BET N2 adsorption 

isotherm method and a SA 3100 Surface Area Analyzer (Beckman Coulter, Brea, CA).   The 

specific surface area of birnessite is 46.30 m
2
 g

-1
. 
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Antimony (V) Adsorption on Birnessite 

Batch adsorption studies were performed to quantify the adsorption of Sb(V) on 

birnessite as a function of pH and ionic strength. All studies were performed in duplicate, with a 

blank (no solid) for each pH increment.  Birnessite suspensions of 5 g L
-1

 were created in 50-mL 

polypropylene tubes with 0.125-g solid and 25-mL of either 10 mM or 100 mM KNO3. 

Birnessite suspensions were prepared in an N2-filled glove box to insure a CO2-free environment.  

To achieve a pH range between 3.5 and 10, each tube was individually adjusted with HNO3 or 

KOH. The tubes were then hand shaken, and allowed to stabilize for 30 min before volumes of 

ligand were added. Adsorption edge studies were performed in three competitive environments 

as described below. 

Noncompetitive Adsorption 

Noncompetitive adsorption studies were performed first by equilibrating solutions of 

either Sb(OH)6, SO4 or PO4 with the birnessite suspensions. Here, volumes of 10mM KSb(OH)6, 

10mM K2SO4 or 10mM KH2PO4 were added to each tube of suspended birnessite, to yield an 

initial concentration of 80 µmol L
-1

 of ligand. The tubes were then shaken on a platform shaker 

for 24 h at ambient temperature (20  C to 22  C). Following equilibration, the tubes were placed 

back into the CO2-free, N2 environment for pH determinations using a calibrated (pH 4, 7, and 

10 buffers) combination pH electrode. The supernatant was removed from the tubes and filtered 

through a 0.20-µm nylon syringe filter (Restek, China) and analyzed by ICP-AES (Spectro, 

Mahwah, NJ) for total Sb, S, or P.   
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Direct Competition 

Direct competition adsorption studies were performed by introducing birnessite 

suspensions to solutions containing Sb(V) and SO4 or Sb(V) and PO4. In these systems, an initial 

concentration of 80 µmol L
-1

 of each ligand was added to each tube of suspended birnessite, 

simultaneously, followed by a 24 h equilibration.at ambient temperature (20  C to 22  C). 

Following equilibration, the tubes were placed back into the CO2-free, N2 environment for pH 

determinations using a calibrated (pH 4, 7, and 10 buffers) combination pH electrode. The 

supernatant was removed from the tubes and filtered through a 0.20-µm nylon syringe filter and 

analyzed by ICP-AES for total Sb, S, or P. 

Indirect Competition 

Indirect competition adsorption studies were performed by first equilibrating 80 µmol L
-1

 

of Sb(V) solution with suspended birnessite for a 24 h period. Next, 80 µmol L
-1

 of either SO4 or 

PO4 was added to each tube, and the systems were equilibrated for an additional 24 h period at 

ambient temperature (20  C to 22  C).  Following equilibration, the tubes were placed back into 

the CO2-free, N2 environment for pH determinations using a calibrated (pH 4, 7, and 10 buffers) 

combination pH electrode.  The supernatant was removed from the tubes and filtered through a 

0.20-µm nylon syringe filter and analyzed by ICP-AES for total Sb, S, or P.  

Indirect competition adsorption studies with preadsorbed SO4 or PO4 were similarly 

performed.  In these systems, 80 µmol L
-1

 of either SO4 or PO4 solutions were equilibrated with 

suspended birnessite for a 24 h period. Next, 80 µmol L
-1

 of Sb(V) was added to each tube, and 

the systems were equilibrated for an additional 24 h period at ambient temperature (20  C to 

22  C).  Following equilibration, the tubes were placed back into the CO2-free, N2 environment 
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for pH determinations using a calibrated (pH 4, 7, and 10 buffers) combination pH electrode.  

The supernatant was removed from the tubes and filtered through a 0.20-µm nylon syringe filter 

and analyzed by ICP-AES for total Sb, S, or P.  

Adsorption Data Analysis  

Initial concentrations of adsorbed ligand (Cin, μmol L
-1

) were determined through 

analysis of the blank systems. Equilibrium concentrations of adsorbed ligand (Ceq, mol L
-1

) were 

determined though analysis of adsorption suspensions at equilibrium.  The concentration of 

adsorbed ligand (q, μmol kg
-1

) was determined by difference: 

                                                               
 (       )

  
                                                                 [15] 

where V is the volume of solution (0.025 L) and ms is the mass of solid (1.25 x 10
-4 

kg).  

Adsorption edge (q vs pH) plots were constructed for all systems. 

Surface Complexation Modeling 

FITEQL 4.0 software (Herbelin and Westall, 1999) was used to optimize the adsorption 

constants for ligand retention using the DLM.  FITEQL employs a nonlinear least squares 

method to determine intrinsic equilibrium constants from experimental data. The model requires 

values for surface parameters of the adsorbent (Table 2), and formation constants for aqueous 

species and surface protonation reactions (Table 3).   

The application of the DLM to antimonate and phosphate adsorption requires the 

definitions of the following surface complexation reactions  

                                                  ≡MnOH
0
 + H

+
 → ≡MnOH2

+ 
                                                    [16]
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                                                  ≡MnOH
0
 → ≡MnO

-
 + H

+
                                                         [17] 

                                                  ≡MnOH
0
 + H

+
 + Sb(OH)6

- 
→ ≡MnOH2

+
-Sb(OH)6

-
                  [18] 

                                                  ≡MnOH
0
 +2H

+
 + PO4

3-
 → ≡MnOH2

+
-HPO4

2-
                          [19] 

                                                  ≡MnOH
0
 +3H

+
 + PO4

3-
 → ≡MnOH2

+
-H2PO4

-
                          [20] 

The intrinsic equilibrium constants for these reactions are defined by the following equations: 
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where R is the molar gas constant, T is the absolute temperature, and square brackets indicate 

concentrations (mol kg
-1

), and parentheses indicates activities.   

The general mass balance expression for the reactive surface functional group is: 

ST = [≡MnOH
0
] + [≡MnOH2

+
] + [≡MnO

-
] + [≡MnOH2

+
-Sb(OH)6

-
] + [≡MnOH2

+
-HPO4

2-
] + 

[≡MnOH2
+
-H2PO4

-
]                  [26] 
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The charge balance expression for the surface is: 

σd =  [≡MnOH2
+
] - [≡MnO

-
] - [≡MnOH2

+
-HPO4

2-
]          [27] 

These reactions, the adsorption edge data, and the data from Table 2 and Table 3 allowed 

FITEQL to optimize intrinsic equilibrium constants for specific adsorption of Sb(OH)6 and PO4 

by birnessite. A goodness-of-fit parameter is calculated by FITEQL, and indicates the overall 

variance associated with the model prediction. The parameter is the weighed sums of squares of 

residuals divided by the degrees of freedom (WSOS/DF). In general, values less than 20 indicate 

the model adequately describes the experimentally-determined data.  

RESULTS AND DISCUSSION 

Noncompetitive Adsorption 

Antimonate adsorption by birnessite in 10 mM KNO3 (Fig. 31) and 100 mM KNO3 (Fig. 

32) increases with decreasing pH. Adsorption is at a maximum at pH values below 4 in 10 mM 

KNO3 and below pH 6 in 100 mM KNO3.  FITEQL optimized equilibrium constants are found in 

Table 4. This adsorption data are well-described by surface speciation results from the DLM 

(Table 5), which assumes all adsorption is electrostatic. Increased Sb(OH)6 retention with 

decreasing pH, suggest adsorption is dependent upon surface charge. This mechanistic 

interpretation is also in agreement with the ζ-potential and proton adsorption studies presented in 

Chapter II (Fig. 22 and 23).  

The adsorption of SO4 by birnessite in 10 mM KNO3 (Fig. 31) and 100 mM KNO3 (Fig. 

32) is less than 5 percent of the amount added throughout the entire pH range studied, regardless 
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of ionic strength. This is in agreement with surface charge studies of Chapter II which show 

adsorption of SO4 to have no influence on ζ-potential and proton adsorption studies.  

The adsorption of PO4 by birnessite is electrostatic, as indicated by the ζ-potential and 

proton adsorption findings in Chapter II (Fig. 20 and 21), and could be predicted using the DLM 

(Table 4). Phosphate adsorption is similar to that of Sb(OH)6, showing increasing adsorption 

with decreasing pH in both ionic strengths (Fig. 31 and 32). Adsorption maximum occurred at 

pH 3 (88% of what was added) in 10 mM KNO3 and pH 4 (99% of what was added) in 100 mM 

KNO3. This data is well-described by surface speciation results from the DLM (Table 5). 

Phosphate adsorption by birnessite is less than antimonate in acidic media and in 10 mM KNO3. 

Overall, PO4 retention is greater in 100 mM KNO3 than 10 mM KNO3.  

Competitive Adsorption 

 Competitive adsorption between SO4 and Sb(OH)6 in 10 mM KNO3 shows Sb(OH)6 

retention is not influenced by SO4, in any competitive environment, throughout the pH range 

studied (Fig. 33). Similarly, competition between SO4 and Sb(OH)6 in 100 mM KNO3 shows 

Sb(OH)6 is not influenced by SO4 throughout the entire pH range and regardless of competitive 

environment (Fig.34).  Adsorption of SO4 in both 10 mM KNO3 and 100 mM KNO3 is minimal 

(Fig. 33 and 34), and this is the reason there was no impact on Sb(V) retention. 

 Direct competition between SO4 and Sb(OH)6 in 10 mM KNO3 (Fig. 35) was well-

described by the DLM (Table 4 and 5). However, in the 100 mM KNO3 system (Fig. 36), the 

DLM poorly described the experimentally-determined adsorption above pH 8, lending to a high 

WSOS/DF value (Table 5).  Maximum Sb(OH)6 retention occurred at pH 4 ( 99%) in 10 mM 
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KNO3  and pH 4.6 (99%) in 100 mM KNO3. Sulfate adsorption was not considered in the model, 

as adsorption was minimal (Fig. 35 and 36).   

 Indirect competition (preadsorbed Sb(OH)6 followed by the addition of SO4) between 

SO4 and Sb(OH)6 in 10 mM KNO3 (Fig. 37) was well-described by the DLM (Table 4 and 5). 

However, in the 100 mM KNO3 system (Fig. 38), the DLM poorly described the experimentally-

determined adsorption above pH 8, lending to a high WSOS/DF value (Table 5).  Maximum 

Sb(OH)6 retention occurred at pH 3.3 ( 98%) in 10 mM KNO3  and pH 4.6 (99%) in 100 mM 

KNO3. Sulfate adsorption was not considered in the model, as adsorption was minimal (Fig. 37 

and 38).  Similar results were found in the 10 mM KNO3 and 100 mM KNO3 systems when SO4 

was preadsorbed to birnessite, and Sb(OH)6 was added after equilibration (Fig. 39 and 40). The 

DLM model well-described both ionic strength systems (Table 5), and maximum retention of 

Sb(OH)6 occurred at pH 3.6 ( 98%) in 10 mM KNO3  and pH 5 (99%) in 100 mM KNO3. Sulfate 

adsorption was not considered in the model, as adsorption was minimal.  

 Competitive adsorption between PO4 and Sb(OH)6 in 10 mM KNO3 shows phosphate has 

little impact on antimonate adsorption throughout the entire pH range (Fig. 41).  Similar results 

were found in 100 mM KNO3 (Fig. 42); antimonate adsorption is not influenced by phosphate in 

any competitive environment. Antimonate adsorption is influenced by the ionic strength. Direct 

competition between PO4 and Sb(OH)6 in 10 mM KNO3 shows Sb(OH)6 retention to be greater 

than PO4 throughout the pH range studied (Fig. 43), this was well described by the DLM (Table 

5).  Noncompetitive Sb(OH)6 adsorption in 10 mM KNO3 reached a maximum of 96% at pH 3 

(Fig.31).  When in competition with PO4, maximum Sb(OH)6 adsorption decreased slightly to 

94% at pH 3 (Fig. 43).  Noncompetitive phosphate adsorption in 10 mM KNO3 reached a 

maximum of 88% at pH 3 (Fig.31).  When in competition with Sb(OH)6 maximum PO4 
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adsorption decreased to 58% at pH 3 (Fig. 43).  In 100 mM KNO3, Sb(OH)6 adsorption is greater 

than PO4 in acidic conditions (Fig. 44), and was not well-described by the DLM (Table 5). 

Noncompetitive Sb(OH)6 adsorption in 100 mM KNO3 reached a maximum of 100% below pH 5 

(Fig. 32).  When in competition with PO4 maximum adsorption was not affected (Fig. 44).  

Noncompetitive phosphate adsorption in 100 mM KNO3 reached a maximum of 94% at pH 4 

(Fig.32).  When in competition with Sb(OH)6 maximum adsorption decreased to 85% at pH 3 

(Fig. 43). 

Indirect competition (preadsorbed Sb(OH)6 followed by the addition of PO4) between 

PO4 and Sb(OH)6 in 10 mM KNO3 (Fig. 45) was well-described by the DLM (Table 5). 

Antimonate reaches maximum adsorption (97%) at pH 3, and PO4 reaches maximum adsorption 

(68%) at pH 3.  In 100 mM KNO3 (Fig. 46), indirect competition between Sb(OH)6 and PO4 was 

similar to the direct competition results and was well-described by the DLM (Table 5). 

Antimonate adsorption was not influenced by the presence of PO4, while PO4 adsorption was 

decreased in the presence of Sb(OH)6. For the indirect competition between PO4 and Sb(OH)6  in 

10 mM KNO3with preadsorbed PO4, the maximum Sb(OH)6 retention was  95% and that of PO4 

was 71% at pH 3 (Fig. 47). The DLM did not adequately describe the experimentally-determined 

data (Table 5). The DLM poorly described the data in the 100 mM KNO3 system (Table 5), 

where maximum Sb(OH)6 adsorption reached 98% and maximum PO4 adsorption was 90% at 

pH 4 (Fig. 48). 

The impact of these ligands on birnessite surface charge (Chapter II) coupled with the 

ability of the DLM to describe the adsorption data suggest that the Sb(OH)6 and PO4 retention 

mechanisms are electrostatic. When the adsorption mechanism is electrostatic, increased 

background electrolyte concentration tends to decrease overall adsorption, due to competition 
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between the background electrolyte and the ligand, known as classical ionic strength effect 

(Lutzenkirchen, 1997). Ligand (Sb(OH)6 and PO4) adsorption by birnessite is affected by 

changes in ionic strength; however, the affect is not that of the classical ionic strength effect, but 

a promotive effect. In all studies, the adsorption of ligand (Sb(OH)6 or PO4) by birnessite was 

greater in 100 mM KNO3 than 10 mM KNO3 which may accounted for by the promotive effect 

from increased background electrolyte concentration. Tao (2004) suggested that increasing the 

ionic strength increases the shielding of the charged surface, thus reducing the repulsion or 

attraction between ions and charged surfaces. Although Tao (2004) experimentally illustrated 

this promotive effect using cations, the same theory may be used to explain the increase in 

Sb(OH)6 and PO4 adsorption with increasing ionic strength. Further, Saeki (1995) found an 

increase in selenite (SeO3
2-

) adsorption by manganese oxide with increasing sodium 

concentration. 

SUMMARY 

The adsorption of inorganic ligands (Sb(V), SO4, PO4) by birnessite (MnO2) was 

examined as a function of pH, ionic strength, and competitive environment using batch 

adsorption edge studies. Results show Sb(V) adsorption to be dependent on solution pH, and 

ionic strength, and relatively independent of competitive environment.  Retention of Sb(V) 

increased with decreasing pH, and was greatest in 100 mM KNO3 systems.  Phosphate adsorption 

by birnessite was shown to increase with decreasing pH, increase with increasing background 

electrolyte concentration, and decrease when in competition with Sb(OH)6.  These results are 

indicative of electrostatic adsorption, and were successfully modeling using the diffuse layer 

model. The adsorption of SO4 by birnessite was minimal, with adsorption never exceeding 10% 

of the amount added in the pH 3.5 to 10 range. In all competitive environments, PO4 adsorption 
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was greatest in 100 mM KNO3 and was most affect by the presence of Sb(OH)6 in 10 mM KNO3. 

Antimonate was most affected by the presence of PO4 in direct competition and when PO4 was 

preadsorbed by birnessite, although maximum Sb(OH)6 retention was never below 95% of what 

was added to the systems. Overall, Sb(OH)6 retention by birnessite was greater than PO4.  This 

study provides information for the prediction of Sb(V) transport in soil systems. These findings 

are supported by Saeki (1995) and Balistieri et al. (1990), who found PO4 retention on Mn oxides 

to increase with decreasing pH.  Zhang et al. (2009) found SO4 adsorption by Fe-Mn oxide to 

have no impact on As(III) adsorption, and Tripathy et al. (2001) found SO4 to have little impact 

on surface charging of amorphous Mn oxides relative to the indifferent background electrolyte, 

and concluded adsorption above the point of zero charge was highly unlikely. Yao et al. (1996) 

successfully modeled PO4 adsorption by δ-MnO2 using outer-sphere surface complexes (e.g., Eq. 

[19] and [20]) with the triple layer model and found similar log K values, they also concluded the 

adsorption of SO4 is not important in pH range 2-8.5.  
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CHAPTER IV 

CONCLUSIONS 

Antimony (Sb) is a toxin that can be found in high concentrations in the soil due to 

anthropogenic input from sources such as mining, and smelting. Elevated soil concentrations, up 

to and in excess of 5000 mg kg
-1

, are also the results of Sb deposition from weathering of lead 

bullets, and wearing of automobile brake pads. Antimony contamination is of concern to both 

American and European regulatory agencies, yet knowledge of Sb behavior in soil is limited.  In 

oxic and suboxic soil systems, pentavalent antimony (Sb(V)) is predicted to dominate.  In a soil 

system above pH 2.85 antimonate (Sb(OH)6
-
) is the predominant species. Antimonate can 

participate in ligand exchange, anion exchange, and precipitation. However, it has been 

suggested that antimonate precipitates are unstable relative to adsorbed forms of Sb(V). 

Exchange mechanisms (ligand, anion) are those that occur on mineral surfaces bearing positive 

charge.  In soil, metal oxides and layer silicates are two major components that bear reactive 

surface functional groups, and thus participate in ligand and anion exchange reactions.  Ions that 

participate in anion exchange are electrostatically and weakly bonded to surface functional 

groups. Species that participate in ligand exchange are strongly bound to surface functional 

groups, with bonding mechanisms that have covalent character.  A species that participates in the 

latter is less mobile in soils, while the former is more mobile.  Establishing ligand retention for a 

potentially toxic contaminant, such as Sb(V), allows for accurate prediction of mobility and 

bioaccessibility. Antimony has recently received considerable attention; however, there is still a 

dearth of knowledge regarding its adsorption behavior in soils.  

The objective of this study was to further elucidate Sb(V) adsorption mechanisms by 

examining the influence of adsorption on the surface charging characteristics of gibbsite, 



46 

 

goethite, birnessite, and kaolinite.  To characterize surface charging characteristics in the 

presence or absence of Sb(V), SO4, and PO4 (two common soil ligands) electrophoretic mobility 

and potentiometric titrations were performed as a function of pH, and background electrolyte 

concentration (ionic strength). This study also aimed to characterized adsorption of Sb(V), SO4, 

and PO4 by birnessite as a function of pH, background electrolyte concentration, and competitive 

environment.  Examining Sb(V) adsorption in the presence of potentially competing soil ligands 

(SO4 or PO4) assists in understanding antimony behavior in complex soil systems.  

To directly characterize the influence of ligand adsorption on surface charge, 

electrophoretic mobility studies were used. Electrophoretic mobility directly characterizes 

variations in the net particle charge on a mineral surface, and is expressed as the ζ-potential 

(mV).  To indirectly characterize the influence of ligand adsorption on surface charge, 

potentiometric titrations studies were performed. Potentiometric titrations, as proton adsorption 

curves, were used to characterize the adsorption or desorption of surface protons, expressed by 

Qh (mmolc kg
-1

).  Ligand exchange (specific retention) decreases the electrophoretic mobility, 

and causes an upward shift in proton adsorption.  Anion exchange (non-specific adsorption) has 

less influence on the net particle charge, thus variations in ζ-potentials and Qh are less apparent.  

To quantitatively examine Sb(V), SO4, and PO4 adsorption  by birnessite, a common Mn 

oxide, batch competitive adsorption studies were perform, and the subsequent data was modeled 

using the diffuse layer model (DLM) with FITEQL 4.0.  The adsorption edge studies were 

performed in varying competitive environments and ionic strengths throughout the pH 3.5 to 10 

range. 

The electrokinetic and proton adsorption results suggest that Sb(V) participates in inner-

sphere adsorption by gibbsite, goethite, and kaolinite under acidic conditions. Also, PO4 
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participates in inner-sphere adsorption by gibbsite, goethite and kaolinite at all pH values 

studied, and SO4 participates predominantly in outer-sphere adsorption by gibbsite, goethite, and 

kaolinite, with inner-sphere retention becoming important in acidic conditions.  Adsorption of 

Sb(V), PO4, and SO4 by birnessite had little impact on the surface charge characteristics, 

indicating that the retention of ligand occurred through outer-sphere adsorption.  

The adsorption of Sb(V) and PO4by birnessite was pH and ionic strength dependent and 

was modeled using FITEQL 4.0 and the diffuse layer model (DLM). The DLM adequately 

described Sb(V) and PO4 surface complexation using electrostatic surface complexes. The 

adsorption  of Sb(V) and PO4 by birnessite increased with decreasing pH and increased with 

increasing background electrolyte concentration.  Generally, Sb(V) and PO4 reached maximum 

adsorption at pH values less than 4.  Sulfate was not adsorbed by birnessite in all systems 

studied. Antimonate adsorption was not influenced by PO4; however, PO4 retention was reduced 

in the presence of Sb(OH)6.  

 This study aimed to elucidate adsorption and adsorption mechanisms of Sb(V), PO4, and 

SO4 by four variable charge minerals.  The knowledge that Sb(V) is adsorbed by inner-sphere 

surface complexation mechanisms to gibbsite, goethite, and kaolinite in acidic environments 

lends valuable information for evaluating Sb(V) bioavailability in soil systems, and may give rise 

to effective remediation protocol of the toxic contaminant.   
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APPENDIX 
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Table 1. Mineral specific surface area obtained from BET N2 adsorption (Beckman Coulter, 

Brea, CA), and the observed ranges of point of zero charge (pHPZC) and isoelectric point (IEP) of 

minerals used in this study (Kosmulski, 2009).  

 

ᵃ Values obtained from Karamalidis and Dzombak (2010) 

 

 

 

 

 

 

 

 

 

 

 

Mineral, Formula Surface Area m
2
 g

-1
pHPZC/ IEP

Gibbsite, Al(OH)3 5.82 7.8-10.4ᵃ

Goethite, FeOOH 34.25 6.7-10.2

Birnessite, δ-MnO2 46.3 1.8-2.8

Kaolinite, Al2Si2O5(OH)4 13.08 2.9-5.0
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Table 2. Diffuse layer model parameters used to develop chemical models of Sb(OH)6 and PO4 

adsorption by birnessite.  

 
           

a
Goldberg et al. (2012) 

 

 

 

 

 

 

 

 

 

 

 

Property Birnessite

Surface area, m
2
 g

-1
46.3

Site density, nm
-2 a

6.2

Total surface sites ( x 10
-4

 mol L
-1

) 4.77

Suspension density, g L
-1

5
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Table 3. Formation constants for aqueous species and surface complexation (protonation) 

reactions used to model Sb(OH)6, and PO4 adsorption by birnessite in 10 mM KNO3 and 100 

mM KNO3. 

 
Values obtained from Martell et al. (2004) unless noted otherwise, and modified for    

ionic strength using Davies equation. 
         a

 Accornero et al. (2008) 
         b

 Sahai and Sverjensky (1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reactions log K

H2O → H
+
 +OH

-
-14.00

Sb(OH)5 +H2O → Sb(OH)6
- 
+ H

+ 2.85
a

PO4
3-

 + H
+
 → HPO4

2-
12.35

PO4
3-

 + 2H
+
 → H2PO4

-
19.55

≡MnOH
0
 → ≡MnO

-
 + H

+ _
7.36

b

≡MnOH
0 

+ H
+
 → ≡MnOH

2+ 
0.16

b
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Table 4. Birnessite surface complexation reactions and associated FITEQL-optimized intrinsic 

equilibrium constants (log K values) in 10 mM KNO3 and 100 mM KNO3.  

 

 

 

 

 

Reaction 10 mM  KNO3 100 mM  KNO3

No Competition

≡MnOH
1/3-

 + H
+
 + Sb(OH)6

-
→ ≡MnOH2

2/3+
̶ Sb(OH)6

-
6.19 9.73

≡MnOH
1/3-

 + 2H
+
 + PO4

3-
→ ≡MnOH2

+2/3
̶ HPO4

2-
20.75 22.24

≡MnOH
1/3-

 + 3H
+
 + PO4

3-
→ ≡MnOH2

2/3+
 ̶ H2PO4

-
25.00 28.26

Direct Competition SO4

≡MnOH
1/3-

 + H
+
 + Sb(OH)6

-
→ ≡MnOH2

2/3+
̶ Sb(OH)6

-
7.99 9.11

Preadsorbed Sb(OH)6, SO4 added

≡MnOH
1/3-

 + H
+
 + Sb(OH)6

-
→ ≡MnOH2

2/3+
̶ Sb(OH)6

-
9.46 9.53

Preadsorbed SO4, Sb(OH)6 added

≡MnOH
1/3-

 + H
+
 + Sb(OH)6

-
→ ≡MnOH2

2/3+
̶ Sb(OH)6

-
8.60 9.49

Direct Competition PO4

≡MnOH
1/3-

 + H
+
 + Sb(OH)6

-
→ ≡MnOH2

2/3+
̶ Sb(OH)6

-
8.04 9.42

≡MnOH
1/3-

 + 2H
+
 + PO4

3-
→ ≡MnOH2

+2/3
̶ HPO4

2-
19.90 21.37

≡MnOH
1/3-

 + 3H
+
 + PO4

3-
→ ≡MnOH2

2/3+
 ̶ H2PO4

-
26.01 27.20

Preadsorbed Sb(OH)6, PO4 added

≡MnOH
1/3-

 + H
+
 + Sb(OH)6

-
→ ≡MnOH2

2/3+
̶ Sb(OH)6

-
8.59 9.60

≡MnOH
1/3-

 + 2H
+
 + PO4

3-
→ ≡MnOH2

+2/3
̶ HPO4

2-
20.47 21.33

≡MnOH
1/3-

 + 3H
+
 + PO4

3-
→ ≡MnOH2

2/3+
 ̶ H2PO4

-
25.72 27.41

Preadsorbed PO4, Sb(OH)6 added

≡MnOH
1/3-

 + H
+
 + Sb(OH)6

-
→ ≡MnOH2

2/3+
̶ Sb(OH)6

-
8.44 9.59

≡MnOH
1/3-

 + 2H
+
 + PO4

3-
→ ≡MnOH2

+2/3
̶ HPO4

2-
20.26 21.41

≡MnOH
1/3-

 + 3H
+
 + PO4

3-
→ ≡MnOH2

2/3+
 ̶ H2PO4

-
26.53 27.77

log K 
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Table 5. Goodness-of-fit parameters (WSOS/DF) for ligand adsorption to birnessite. 

 

 

 

Competitive Environment 10 mM  KNO3 100 mM  KNO3

No Competition 10.83 18.79

Sb(OH)6 and SO4 Direct Competition 12.79 45.51

Preadsorbed Sb(OH)6, SO4 added 6.93 39.18

Preadsorbed SO4, Sb(OH)6 added 7.11 13.84

Sb(OH)6 and PO4 Direct Competition 10.72 20.11

Preadsorbed Sb(OH)6, PO4 added 14.2 14.67

Preadsorbed PO4, Sb(OH)6 added 25.55 16.86

WSOS/DF
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Figure 1. X-ray diffraction profile (powder mount) of alumina-hydrate SF-4 (gibbsite). The 

vertical lines are the gibbsite diffraction pattern Joint Committee Powder Diffraction Standards 

(JCPDS) file # 29-41. 
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Figure 2. X-ray diffraction profile (powder mount) of kaolinite (KGa-lB). The vertical lines are 

the kaolinite diffraction pattern Joint Committee Powder Diffraction Standards (JCPDS) file 

#29-1488). 
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Figure 3. X-ray diffraction profile (powder mount) of the solid precipitated using the procedure 

of  Schwertmann et al. (2000). The vertical lines are the goethite diffraction pattern Joint 

Committee Powder Diffraction Standards (JCPDS) file # 29-713. 



57 

 

 

Figure 4. X-ray diffraction profile (powder mount) of the MnO2 prepared using the procedure of 

Cole et al. (1947) and McKenzie (1971). The vertical lines are the birnessite diffraction pattern 

Joint Committee Powder Diffraction Standards (JCPDS) file # 23-1046. 
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Figure 5. The influence of nitrate (NO3) and sulfate (SO4) on the ζ-potential (mV) of gibbsite as 

a function of pH, and counterion type and concentration (ionic strength). 
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Figure 6.  The influence of nitrate (NO3) and sulfate (SO4) on proton adsorption (Qh, mmolc kg
-1

) 

by gibbsite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 7. The influence of nitrate (NO3) and phosphate (PO4) on the ζ-potential (mV) of gibbsite 

as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 8.  The influence of nitrate (NO3) and phosphate (PO4) on proton adsorption (Qh, mmolc 

kg
-1

) by gibbsite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 9. The influence of nitrate (NO3) and antimonate (Sb(OH)6) on the ζ-potential (mV) of 

gibbsite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 10.  The influence of nitrate (NO3) and antimonate (Sb(OH)6)on proton adsorption (Qh, 

mmolc kg
-1

) by gibbsite as a function of pH, and counterion type and concentration (ionic 

strength). 
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Figure 11. The influence of nitrate (NO3) and sulfate (SO4) on the ζ-potential (mV) of goethite as 

a function of pH, and counterion type and concentration (ionic strength). 
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Figure 12.  The influence of nitrate (NO3) and sulfate (SO4) on proton adsorption (Qh, mmolc kg
-

1
) by goethite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 13. The influence of nitrate (NO3) and phosphate (PO4) on the ζ-potential (mV) of 

goethite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 14.  The influence of nitrate (NO3) and phosphate (PO4) on proton adsorption (Qh, mmolc 

kg
-1

) by goethite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 15. The influence of nitrate (NO3) and antimonate (Sb(OH)6) on the ζ-potential (mV) of 

goethite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 16.  The influence of nitrate (NO3) and antimonate (Sb(OH)6) on proton adsorption (Qh, 

mmolc kg
-1

) by goethite as a function of pH, and counterion type and concentration (ionic 

strength). 
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Figure 17. The influence of nitrate (NO3) on the ζ-potential (mV) of birnessite as a function of 

pH and counterion concentration (ionic strength). 
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Figure 18.  The influence of nitrate (NO3) and sulfate (SO4) on proton adsorption (Qh, mmolc kg
-

1
) by birnessite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 19. The influence of nitrate (NO3) and sulfate (SO4) on the ζ-potential (mV) of birnessite 

as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 20. The influence of nitrate (NO3) and phosphate (PO4) on the ζ-potential (mV) of 

birnessite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 21.  The influence of nitrate (NO3) and phosphate (PO4) on proton adsorption (Qh, mmolc 

kg
-1

) by birnessite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 22. The influence of nitrate (NO3) and antimonate (Sb(OH)6) on the ζ-potential (mV) of 

birnessite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 23.  The influence of nitrate (NO3) and antimonate (Sb(OH)6) on proton adsorption (Qh, 

mmolc kg
-1

) by birnessite as a function of pH, and counterion type and concentration (ionic 

strength). 
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Figure 24. The influence of nitrate (NO3) on the ζ-potential (mV) of kaolinite as a function of 

pH, and concentration (ionic strength). 
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Figure 25.  The influence of nitrate (NO3) and sulfate (SO4) on proton adsorption (Qh, mmolc kg
-

1
) by kaolinite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 26. The influence of nitrate (NO3) and sulfate (SO4) on the ζ-potential (mV) of kaolinite 

as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 27. The influence of nitrate (NO3) and phosphate (PO4) on the ζ-potential (mV) of 

kaolinite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 28.  The influence of nitrate (NO3) and phosphate (PO4) on proton adsorption (Qh, mmolc 

kg
-1

) by kaolinite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 29. The influence of nitrate (NO3) and antimonate (Sb(OH)6) on the ζ-potential (mV) of 

kaolinite as a function of pH, and counterion type and concentration (ionic strength). 
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Figure 30.  The influence of nitrate (NO3) and antimonate (Sb(OH)6) on proton adsorption (Qh, 

mmolc kg
-1

) by kaolinite as a function of pH, and counterion type and concentration (ionic 

strength). 
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Figure 31. The adsorption of antimonate (Sb(V)), sulfate (SO4), and phosphate (PO4) by 

birnessite in 10 mM KNO3 as a function of pH. The solid lines represent the diffuse layer model 

description of the adsorption data.  
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Figure 32. The adsorption of antimonate (Sb(V)), sulfate (SO4), and phosphate (PO4) by 

birnessite in 100 mM KNO3 as a function of pH. The solid lines represent the diffuse layer model 

description of the adsorption data. 
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Figure 33. The influence of sulfate (SO4) on the adsorption of antimonate (Sb(V)) by birnessite 

in 10 mM KNO3 as a function of pH and order of ligand addition.  

 

 

 

 

 

 

 

 

 

 



87 

 

 

Figure 34. The influence of sulfate (SO4) on the adsorption of antimonate (Sb(V)) by birnessite 

in 100 mM KNO3 as a function of pH and order of ligand addition.  
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Figure 35. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

sulfate (SO4) by birnessite under direct competition in 10 mM KNO3 as a function of pH. The 

solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 36. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

sulfate (SO4) by birnessite under direct competition in 100 mM KNO3 as a function of pH. The 

solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 37. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

sulfate (SO4) by birnessite under indirect competition in 10 mM KNO3 as a function of pH. The 

solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 38. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

sulfate (SO4) by birnessite under indirect competition in 100 mM KNO3 as a function of pH. The 

solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 39. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

sulfate (SO4) by birnessite under indirect competition in 10 mM KNO3 as a function of pH. The 

solid lines represent the diffuse layer model description of the adsorption data. 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 

 

 

Figure 40. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

sulfate (SO4) by birnessite under indirect competition in 100 mM KNO3 as a function of pH. The 

solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 41. The influence of phosphate (PO4) on the adsorption of antimonate (Sb(V)) in 10 mM 

KNO3 as a function of pH and order of ligand addition.  
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Figure 42. The influence of phosphate (PO4) on the adsorption of antimonate (Sb(V)) in 100 mM 

KNO3 as a function of pH and order of ligand addition.  
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Figure 43. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

phosphate (PO4) by birnessite under direct competition in 10 mM KNO3 as a function of pH. The 

solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 44. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

phosphate (PO4) by birnessite under direct competition in 100 mM KNO3 as a function of pH. 

The solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 45. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

phosphate (PO4) by birnessite under indirect competition in 10 mM KNO3 as a function of pH. 

The solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 46. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

phosphate (PO4) by birnessite under indirect competition in 100 mM KNO3 as a function of pH. 

The solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 47. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

phosphate (PO4) by birnessite under indirect competition in 10 mM KNO3 as a function of pH.  

The solid lines represent the diffuse layer model description of the adsorption data. 
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Figure 48. The predicted and experimentally-determined adsorption of antimonate (Sb(V))  and 

phosphate (PO4) by birnessite under indirect competition in 100 mM KNO3 as a function of pH. 

The solid lines represent the diffuse layer model description of the adsorption data. 
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