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Abstract

In this thesis, we first develop an efficient automated classification algorithm

for sleep stages identification. Polysomnography recordings (PSGs) from twenty

subjects were used in this study and features were extracted from the time–frequency

representation of the electroencephalography (EEG) signal. The classification of the

extracted features was done using random forest classifier. The performance of the

new approach is tested by evaluating the accuracy of each sleep stages and total

accuracy. The results shows improvement in all five sleep stages compared to previous

works.

Then, we present a simulation decision algorithm for switching between sleep

interventions. This method improves the percentage of average amount of sleep in

each stage. The results shows that sleep efficiency can be maximized by switching

between intervention chains.
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Chapter 1

Sleep Stages Classification

Sleep is a natural part of every person’s life. One-third of every individual’s

life is spent in the sleeping state. Many restorative functions of body including

physical recreation and immune functions as well as mental restoration, memory

consolidation, mood and behavior are dependent on a healthy sleep. Deprivation of

sleep can lead to rising risk of serious health problems such as heart diseases, obesity,

diabetes and weakness of immunity system. Sleep is non-homogeneous process and

has an internal cyclical structure. Each cycle consists of different sleep stages.

Rechtschaffen and Kales (R-K) introduce sleep stages based on visual observations

of the patterns and signals of electroencephalography (EEG), Electrooculography

(EOG), and Electromyography (EMG). This standard method of sleep evaluation

is called polysomnography (PSG). Based on R-K sleeping criteria, sleep stages are

defined as: awake, rapid eye movement (REM) and non-rapid eye movement (NREM)

which includes stages 1, 2, 3 and 4 [15]. Sleep stages 3 and 4 are often combined

together and considered as the deep sleep stage. Transitions between these stages

occur in stochastic directions and at unpredictable moments. Based on this, sleep

has been modeled as a semi-Markov stochastic process [20].

Due to the complicated system of PSG recordings which is costly, time consuming

and uncomfortable for the patient, automatic sleep scoring system could be very
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helpful. Several automatic sleep staging studies have been published in the literature

which used the public dataset which is available online (physionet online dataset)

[1, 3, 4, 9]. Other studies apply different datasets. Some of them use smaller datasets

(less than 10 subjects) [6,10,14,18]. Datasets with more subjects have been applied by

different studies [5,11,12,19]. Most of previous works use multiple channels including

EEG channels, EOG and EMG channels [3, 13, 14, 19, 21]. However, there are a few

works which consider only one EEG channel for prediction [1, 4, 5, 9–12]. Several

methods in the literature have been conducted to extract features from channels

including: discrete wavelet transform (DWT) [13,14,21]; fast fourier transform (FFT)

[9,14,21] ; Welch method [7]; continuous wavelet transform (CWT) [5]; time-frequency

image (TFI) [1]. Based on these methods, several features can be extracted which

their numbers differs in different studies. Some researches use few features in order to

train their algorithm (less than 30 features) [1,3–5,9,11,13,21]. There are other studies

which extract too many features for their classification algorithm. For instance, Ozsen

et al.(2013) extract 57 features from EEG, EMG, left and right EOG signals. These

features are mainly statistical features of signal (mean, standard deviation, skewness,

kurthosis, etc) as well as power features of sub-bands. Gunes et al.(2010) extract

258 features by applying Welch method for EEG and chin EMG signals. They use

statistical measures including minimum value, maximum value, standard deviation,

and mean value belonging to each feature in sleep stage dataset in order to decrease

to eight features for EEG and chin EMG signals. Different algorithms have been

applied to classify sleep stages. Artificial neural network (ANN) algorithm have

been applied by several studies [4, 9, 13, 14, 18, 19]. Zoubek et al. [21] apply three

different classifiers including two bayes rule-based classifiers (parametric and non-

parametric ones) as well as multi-layer perceptron (MLP). Doroshenkov et al.(2007)

use the classification approach based on hidden Markov model (HMM). Gunes et

al.(2009) use C4.5 decision tree to classify sleep stages. Fraiwan et al.(2012) apply

Random forest (RF) as a classifier. Bajaj and Pachori(2013) use the multiclass least

squares support vector machines (MC-LS-SVM) with the radial basis function (RBF),
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Mexican hat wavelet, and Morlet wavelet kernel functions to classify sleep stages of

EEG signals.

Finally, after feature extraction and applying the appropriate classification

algorithm, different accuracy ranges have been reported in the literature. Many

researchers report only the total accuracy without going to the details of each sleep

stages. Other studies combine some sleep stages together and obtain the accuracy.

There are few researches which obtain the accuracy of each sleep stages. However,

they report the low accuracy for the sleep stage one.

The purpose of this present study is to develop an automatic sleep staging system

based on single-channel EEG for patient convenience. In this study, the dataset is

acquired from physionet online dataset which consists of two EEG channels (Fpz-Cz

and Pz-Oz), EOG and EMG. Each channel is divided to 10-second epochs. Seven

different features are extracted from time-frequency domain of signal. The number of

features used in this study is smaller than that of previous works. The novel method

of structuring of features is proposed in this research which considers the history-

dependent feature of sleep epochs. By using this method of structuring dataset and

RF as a classifier, we succeed to obtain the higher classification accuracy for total

accuracy as well as accuracy of each sleep stages (specially stage 1).

1.1 Methods

In order to classify sleep stages automatically, we need an efficient signal processing

technique to extract features. First, the PSG recordings are obtained from physionet

online dataset. In addition to two EEG channels (Fpz-Cz and Pz-Oz), EOG and

EMG channels are selected for feature extraction. By applying the signal processing

method, the features are extracted. Finally, they have been used as input variables

for the classification algorithm.
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1.1.1 Signal Processing

Wavelet transform (WT) is a powerful technique in signal processing for solving

various real-life problems. This method analyzes non-stationary signals which

frequency responses varies in time in both time and frequency . Wavelet is a small

wave which its energy is concentrated in time to analyze EEG signal as a non-

stationary signal. Wavelet analysis measures the frequency similarity between the

signal and the original wavelet(mother wavelet). In WT, computations are done for

different frequency components (scale) by shifting the time window until the wavelet

reaches at the end of the signal.WT has a precise time resolution at high frequencies

and good frequency resolution at low frequencies. With this feature, WT helps the

analysis of non-stationary signals.

The continuous wavelet transform (CWT) of a signal, x(t), is defined as follows,

CWT (a, b) =

∫ ∞
−∞

x(t)
1√
|a|
ψ(

(t− b)
a

)dt. (1.1)

The coefficients of CWT are computed within this formula by the integral of the

original signal which is multiplied by a mother wavelet. The scaling parameter (a) is

related to frequency. High scales correspond to low frequencies which give information

of the entire signal whereas low scales (high frequencies) give detailed information in

the signal. The parameter b corresponds to the location of time window which is

shifted over the length of the signal. In fact, CWT measures the similarity of the

frequency in the original signal and the mother wavelet. The CWT has a weak point

for calculating coefficients at each scale. Because it requires expensive computational

task as the matter of redundancy. The Discrete Wavelet Transform (DWT)solves this

problem by operating filtering tasks.In this procedure, the signal is passed through a

half band low pass filter which results removing some samples from signal. Therefore,

the scales and time window shifts are chosen based on powers of two (dyadic). The

DWT is defined as,

4



DWT (j, k) =
1√
|2j|

∫ ∞
−∞

x(t)ψ(
(t− 2jk)

2j
)dt, (1.2)

where a and b in the CWT are replaced by 2j and 2jk, respectively. At every level

of the DWT, the signal is passed through a low pass (LP) and high pass (HP) filters

which results in half number of samples and half the frequency. The outputs of LP

and HP at each level i are called approximation (Ai) and detail (Di) coefficients ,

respectively. Figure 1.1 shows the wavelet decomposition of a signal through 3 levels

of filtering. In this figure, the coefficients A1, D1, A2, D2, A3 and D3 are the DWT

coefficients.

Figure 1.1: Sub-band filtering of DWT implementation

In this figure, the discrete x(n) signal crosses has the sampling rate of (100Hz)

which passes iteratively through HP to generate detail coefficients (Di[n]) and crosses

through LP to obtain approximation coefficients (Ai[n]). In analysis of EEG signals,

the number of levels of decomposition is chosen based on the sampling rate of

the original signal and the range of frequency components which are desired to be

extracted from the signal. Since the range of the useful frequency information of EEG

signals falls between 0 − 60 Hz, usually decomposition level is set at five. Selecting

inappropriate number of decomposition levels causes loss of desired information. The

five level of DWT decomposition of EEG data (100 Hz) is given in Figure 2. It can

be seen that the components A5 decomposition is within the delta range (0− 3 Hz),

D5 decomposition is within the theta range (3 − 6 Hz), D4 decomposition is within
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the alpha range (6− 12 Hz) , D3 decomposition is within the beta range (12− 25 Hz)

and D2 decomposition is within the gamma range (25− 50 Hz). Therefore, in order

to extract the meaningful features from the EEG signal, D2 − D5 detail sub-bands

and A5 approximation band are used in this study. Several successful studies related

to EEG choose Daubechies wavelet as an appropriate wavelet as well as level four and

level five of this function is preferred. In this paper, db5 is selected as the mother

wavelet for DWT decomposition (Figure 1.2).

Figure 1.2: Sub-band decomposition of DWT implementation

1.1.2 Features

In this section, the features of signals are obtained based on the coefficients which

are the results of DWT implementation. These coefficients are computed for every

sample of the original signal x(n). The coefficients of D1, D2, D3, D4, D5 and A5 are

related to noisy, gamma, beta, alpha, theta and delta sub-bands, respectively.

Let Xn
i , i = 1, 2, ..., 6, be the vector of coefficients of relative sub-bands of the nth

epoch in a signal channel, where, Dn
ij and An

5j, i = 1, 2, ..., 5, j = 1, 2, ..., N are the
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coefficients of sample j in epoch n.

Xn
1 = (Dn

11, D
n
12, · · · , Dn

1N) (1.3)

Xn
2 = (Dn

21, D
n
22, · · · , Dn

2N) (1.4)

Xn
3 = (Dn

31, D
n
32, · · · , Dn

3N) (1.5)

Xn
4 = (Dn

41, D
n
42, · · · , Dn

4N) (1.6)

Xn
5 = (Dn

51, D
n
52, · · · , Dn

5N) (1.7)

Xn
6 = (An

51, A
n
52, · · · , An

5N) (1.8)

Each channel is divided to t-second epochs where the number of samples in these

epochs depends on the sampling rate of signal. For instance, the 10-second epoch

with sampling rate of 100 Hz has 10× 100 = 1000 samples.

In order to distinguish between different sub-bands, we need to quantify them as

features. The wave energy vector of sub-band i of epoch n (En
i ) is defined as the

summation squared signal components,

En
i = Xn

i (Xn
i )T . (1.9)

After computing the energy of six sub-bands in each N -second epoch, we define

total energy of nth epoch (T n) which is the summation of these six energy sub-bands,

T n = Σ6
i=1E

n
i . (1.10)

Another feature which is used in this study is the entropy (ξ). Entropy measures

relative randomness of variables. In computer-brain systems, it is used to show the

the level of chaos of the system [16]. In terms of sub-bands of EEG signal, it is defined

as the following,

ξn = −Σ6
i=1p

n
i log pni , (1.11)

where pni is defined as the relative energy of sub-bands,

7



pni =
En

i

T n
, (1.12)

Shanon entropy is another concept in signal processing. In the following expression

s is the signal sub-band and si is the ith component of this sub-band,

E1(s) = −ΣN
i=1s

2
i log s2i , (1.13)

We used some statistical features as well:

• Variance, minimum, maximum, median, range, skewness, kurtosis of signal’s

points (7 features)

• Standard deviation and mean of signal components for each sub-band (12

features)

The method used in this thesis which leads to higher accuracy compared to

previous works is coming from the idea that sleep is a stochastic process (semi-Markov

process) and the history of data leads to strong supporting information to train the

dataset. Our history-dependent model is defined by combining the preceding epoch

of each t-second epoch as another feature and repeat this process iteratively to obtain

the optimum number of previous epochs which leads to higher accuracy.

In order to evaluate the transition between epochs, we consider the succeeding

epochs as well as the preceding epochs. We report our results with and without these

neighboring features.

1.2 Computational Results

In this section, we implement a classification algorithm with the available public

dataset at Physionet. Then we run our algorithm with all possible combinations of

parameters to present a comprehensive experimental design.

8



1.2.1 Classification Method

The dataset which is used in this study includes signals from EEG (Fpz-Cz and

Pz-Oz channels), horizontal EOG, submental chin EMG and an event marker. This

dataset consists of PSG recordings of 20 healthy subjects from the study of age effects

on sleep.

According to National Institute of Neurological Disorders and Stroke, a normal

person spends 50% of the whole night sleep in stage 2, 20% in stage REM and the

remaining 30% in other sleep stages [8]. Therefore, the distribution of the number

of the epochs is not uniform among sleep stages (classes) in any PSG recordings.

We have more epochs which classified as sleep stage 2 than other sleep stages. In

addition, we consider 10 minutes before the person falls sleep and 10 minutes after

the person becomes awake for each PSG recording. This consideration enables us

to test the transition between awake stage when the person is totally conscious and

non-awake sleep stages.

Many classifiers were used in the literature for the process of feature classification.

However, random forest classifier used in this work which has the better performance

compared to other algorithms [17]. Random forest classifier is an ensemble classifier

using many decision tree models [2].

Random forest classifier consists of many tree predictors (the number of trees

which is used in this study is 500) which created by selection of random samples with

replacement of the training set. At each node of these tree classifiers, random number

of features are selected (in this study five features) to build subsequent nodes and

leafs. The same process is repeated until all trees is constructed. The majority votes

from out put of these trees determines the classification output. The whole algorithm

is coded in R.
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1.2.2 Experimental Design

To obtain the optimum result, we need to test the combination of three variables

including: number of levels of dependency (d), channels (Fpz-Cz (C1), Pz-Oz (C2) ,

EOG (C3) and EMG (C4)) and epoch length. All the experiments are done for each

combination of three variables which are: preceding dependency levels (p),succeeding

dependency levels (s), epoch length (t) and channel combination (c). The values of

these variable are shown in table 1.1.

Table 1.1: Variables

Parameter Levels Values

p 2 0, 2
s 2 0, 2
t 8 1, 2, 3, 5, 6, 10, 15, 30
c 15 all combinations of 4 channels

To compare our work with other studies, we test our algorithm on only the first

channel with 30-second epochs with and without dependencies of previous epochs.

Since we have imbalance dataset with different number of epochs in each classes,

it is probable our algorithm ignores the class with the least epochs (class of sleep

stage one). In order to avoid skewed results, we used balanced random forest by

down-sampling the majority classes. In other words, for each tree in random forest

classifier, we consider the class with the least number of epochs (sleep stage one) and

decrease the number of epochs in other classes by sampling with replacement to have

the same classes in number of epochs.

To implement the down-sampling method for random forest algorithm, we create

many forests with limited number of trees. In each forest we sample the same amount

of sleep stage 1 epochs for other sleep stages with replacement. Therefore, we will

have balanced dataset for each forest (table 1.2). After training every forest, we

combine them to have one balanced training model for testing.
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Table 1.2: Balancing dataset using downsampling

Number of epochs stage 1 stage 2 stage 3 stage R stage W

Unbalanced dataset 2749 15110 4856 6905 4783
Balanced dataset 2749 2749 2749 2749 2749

1.2.3 Evaluation

In order to asses the predictive ability of our algorithm, we need to test it on set

of of data set not used in training. K-fold cross validation technique is a common

way to measure how accurately a predictive model will behave in future. Based on

our data set, we have recordings of 20 subjects with two subsequent nights (except

one subject with one night recording). Therefore, we can use 20-fold cross validation

which each fold consists of combination of two nights recordings of each subject for

testing and all other recordings for training.

The measures we use in this study are sensitivity, precision, F1-score, per-stage

accuracy and overall accuracy. F1-score is the harmonic mean of sensitivity and

precision. precision is the fraction of retrieved instances that are relevant. Sensitivity

is the fraction of instances that are retrieved.

1.2.4 Results

In this study, the DWT method has been applied for obtaining the coefficients of

each sub-bands. Then, features of epochs are extracted based on these coefficients.

The data from Physionet dataset which has four channels is divided to epochs with

appropriate length. Then, DWT is implemented to these epochs in order to extract

the coefficients. After obtaining the vector of features which has seven elements

with the results of DWT implementation, the combination of channels with different

dependency levels is tested for every epoch with specific length.
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We evaluate the performance of our model using 20-fold cross validation with and

without neighboring epochs for the first channel(Fpz-Cz). The following tables shows

the results of running 20-fold cross validation with two parameters sets:

1. p = 2,s = 2, t = 30 and c = 1.

2. p = 0,s = 0, t = 30 and c = 1.

The results of implementing 20-fold cross validation for the these parameters sets

(Number of forests:25, Number of trees:20) are shown in tables 1.3 through 1.8. In

addition, the details of implementing 20-fold cross validation is depicted in table 1.9

for each fold.

1.2.5 Outlier Detection

The results shows that the accuracy of each sleep stages is dependent on the

dataset. We have a wide range of accuracy(especially for sleep stage 1)for some

datasets. For instance, patients 11 and 17 lead to accuracy of 0.94 and 0.37 for sleep

stage 1 (table 1.9). In fact, outliers play an important role in prediction. In order

to recognize outliers, random forests algorithm uses proximity matrix. To construct

this matrix, the algorithm puts all the data ( both training and out of bag(OOB))

down to each tree. If two cases fall in the same terminal node, the related element

of proximity matrix increases by one. After all, algorithm normalizes this matrix by

dividing by number of trees. In other words, the (i, j) element of proximity matrix

is the fraction of trees which the corresponding elements of i and j fall in the same

node.

After generating proximity matrix, we can compute the outlier measure. Outliers

are cases which their proximities to all other cases are relatively small and should be

removed from the data.
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Table 1.3: Raw Confusion Matrix for the first parameter set

stage 1 stage 2 stage 3 stage R stage W

stage 1 1834 301 36 383 250

stage 2 1502 12925 1227 1555 590

stage 3 14 270 5117 8 294

stage R 1334 850 39 5306 188

stage W 1132 124 112 140 3657

Table 1.4: Normalized Confusion Matrix for the first parameter set

stage 1 stage 2 stage 3 stage R stage W

stage 1 0.65 0.11 0.01 0.14 0.09

stage 2 0.08 0.73 0.07 0.09 0.03

stage 3 0.00 0.05 0.90 0.00 0.05

stage R 0.17 0.11 0.01 0.69 0.02

stage W 0.22 0.02 0.02 0.03 0.71

Table 1.5: Evaluation for the first parameter set

Precision Sensitivity F1score Total accuracy

mean min mean min mean min

Current 0.69 0.32 0.73 0.65 0.70 0.43 0.74

Table 1.6: Raw Confusion Matrix for the second parameter set

stage 1 stage 2 stage 3 stage R stage W

stage 1 1486 307 31 597 383

stage 2 1690 12768 1178 1535 628

stage 3 20 282 5010 12 379

stage R 1826 816 55 4728 292

stage W 1134 214 136 164 3517
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Table 1.7: Normalized Confusion Matrix for the second parameter set

stage 1 stage 2 stage 3 stage R stage W

stage 1 0.53 0.11 0.01 0.21 0.14

stage 2 0.09 0.72 0.07 0.09 0.04

stage 3 0.00 0.05 0.88 0.00 0.07

stage R 0.24 0.11 0.01 0.61 0.04

stage W 0.22 0.04 0.03 0.03 0.68

Table 1.8: Evaluation for the second parameter set

Precision Sensitivity F1score Total accuracy

mean min mean min mean min

Current 0.65 0.24 0.68 0.53 0.65 0.33 0.70
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Table 1.9: 20-fold cross validation result for the first parameter sets

type S 1 S 2 S 3 S R S W S T

1 Sensitivity 0.45 0.85 0.97 0.90 0.61 0.84

2 Sensitivity 0.79 0.88 0.95 0.92 0.32 0.84

3 Sensitivity 0.60 0.82 0.95 0.93 0.62 0.82

4 Sensitivity 0.73 0.75 0.87 0.66 0.65 0.73

5 Sensitivity 0.74 0.71 0.91 0.73 0.65 0.73

6 Sensitivity 0.64 0.89 0.96 0.86 0.48 0.81

7 Sensitivity 0.83 0.89 0.98 0.86 0.49 0.85

8 Sensitivity 0.82 0.74 0.95 0.58 0.93 0.79

9 Sensitivity 0.42 0.50 0.91 0.23 0.73 0.60

10 Sensitivity 0.54 0.78 0.89 0.58 0.78 0.73

11 Sensitivity 0.94 0.60 0.81 0.79 0.46 0.66

12 Sensitivity 0.52 0.20 0.38 0.57 0.82 0.34

13 Sensitivity 0.57 0.78 1.00 0.89 0.33 0.74

14 Sensitivity 0.64 0.59 0.67 0.85 0.62 0.67

15 Sensitivity 0.53 0.87 0.97 0.82 0.94 0.88

16 Sensitivity 0.60 0.76 0.93 0.23 0.49 0.62

17 Sensitivity 0.37 0.71 0.98 0.27 0.80 0.70

18 Sensitivity 0.52 0.55 0.85 0.84 0.86 0.70

19 Sensitivity 0.61 0.84 0.88 0.76 0.87 0.81

20 Sensitivity 0.54 0.71 0.96 0.78 0.47 0.72
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The average proximity is defined as the measure from case n in class jto the

remaining of training data in the same class as [2]:

P (n) = Σcl(k)=jprox
2(n, k). (1.14)

The raw outlier measure for case n is defined as:

O(n) = nsample/P (n). (1.15)

This measure will be small if the average proximity is large. Therefore, the outlier

measure and similarity of data points have the reverse relations.

In this study, we use oulier detection in random forest to improve the whole data

set. We first run the random forest algorithm with activated proximity measure for

every recording of our dataset( Each night of sleep for each patient). We test different

values for the outlier measure (5,6,..,10). It seems that the algorithm performs better

(better accuracy) when we remove the cases with outlier measure greater than six.

Therefore, we keep all cases which have the outlier measure less than six in all

recordings. Then we repeat the 20-fold cross validation with the new training dataset.

Tables 1.10,1.11 and 1.12 show the result for the first parameter sets(p = 2,s = 2,

t = 30 and c = 1). The results of implementing outlier detection for the second

parameters sets (p = 0,s = 0, t = 30 and c = 1)are reported in tables 1.13, 1.14 and

1.15.

Table 1.10: Raw Confusion Matrix

stage 1 stage 2 stage 3 stage R stage W

stage 1 1524 268 26 602 384

stage 2 1933 12742 921 1522 681

stage 3 24 401 4823 9 446

stage R 1917 787 41 4677 295

stage W 1243 211 111 158 3442
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Table 1.11: Normalized Confusion Matrix

stage 1 stage 2 stage 3 stage R stage W

stage 1 0.54 0.10 0.01 0.21 0.14

stage 2 0.11 0.72 0.05 0.09 0.04

stage 3 0.00 0.07 0.85 0.00 0.08

stage R 0.25 0.10 0.01 0.61 0.04

stage W 0.24 0.04 0.02 0.03 0.67

Table 1.12: Evaluation

Precision Sensitivity F1score Total accuracy

mean min mean min mean min

Current 0.65 0.23 0.68 0.54 0.65 0.32 0.69

Table 1.13: Raw Confusion Matrix

stage 1 stage 2 stage 3 stage R stage W

stage 1 1918 268 31 352 235

stage 2 1754 12951 975 1516 603

stage 3 15 361 4957 9 361

stage R 1463 853 23 5203 175

stage W 1269 112 86 120 3578

Table 1.14: Normalized Confusion Matrix

stage 1 stage 2 stage 3 stage R stage W

stage 1 0.68 0.10 0.01 0.13 0.08

stage 2 0.10 0.73 0.05 0.09 0.03

stage 3 0.00 0.06 0.87 0.00 0.06

stage R 0.19 0.11 0.00 0.67 0.02

stage W 0.25 0.02 0.02 0.02 0.69
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Table 1.15: Evaluation

Precision Sensitivity F1score Total accuracy

mean min mean min mean min

Current 0.69 0.30 0.73 0.67 0.69 0.42 0.73

1.2.6 Conclusion

In this chapter, we developed a predictive model for automatic sleep stages

classification. To the best of our knowledge, this model achieved the best performance

for sleep stage 1 (65%) using a single channel of EEG. In addition the number of

features for training this model is less than similar studies. Therefore, we can use

only one channel to predict sleep stages which is more convenient and applicable for

the patient.
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Chapter 2

Switching between Sleep

Interventions

In this chapter, the goal is to promote the quality of whole night sleep using non-

pharmacological interventions such as white noise, soft music and temperature. Smart

home technologies can be beneficial for monitoring health changes and for providing

interventions to sustain or improve human health. Yang and Hursch [20] argue that

the Markov chain model cannot satisfy all modeling requirements of sleep stages.

They maintain that if the sleep sojourn times follow an exponential distribution then

the continuous time Markov process will be the appropriate model. They also assume

non-homogeneity since it is well known that the pattern of sleep changes over the

course of the night in normal young adults.

2.1 Problem Description

The non-homogeneous semi-Markov process is a stochastic process where the

probability of going to state j after remaining in state i for Yn ≤ y amount of time is

P (Xn+1 = j, Yn+1 ≤ y|Xn = i, Yn, Xn−1, Yn−1, ..., X1, Y1, X0) = pijHij(x), (2.1)
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where Y0 is defined as 0, and it is assumed that the subject begins in the awake state,

i.e., X0 = 0. The transition probability from state i to state j at time t is defined as

P (Xn+1 = j|Xn = i,Xn−1, ..., X1, X0) = pij, (2.2)

and

P (Yn+1 ≤ y|Yn, Yn−1, ..., Y1) = Hij(x), (2.3)

is the distribution function of the sleep sojourn time at state i before transition

to state j. We can estimate the transition probabilities by introducing the following

integer-valued stochastic processes:

Ni(t)= the total number of transitions out of state i before time t,

Nij(t)= the number of transitions from state i to state j before time t,

and the transition probability will be computed as:

Pij(t) = Nij(t)/Ni(t), (2.4)

In order to estimate the distribution function of the sleep sojourn time, we

fit various distributions to the data and finding the one that fits the best to all

sojourn times. The results show that log-normal distribution can estimate better the

distribution of all sojourn times (lower AIC compared to Gamma, Weibull, Normal).

Since these estimators are for a homogeneous process, Yang and Hursch then

empirically separate the night’s sleep into disjoint hour-long intervals. In this study,

we estimate Transition probability matrix of 24 recordings during the first hour of

sleep for each subject (Table 2.1).
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Table 2.1: Transition probabilities between sleep stages

States stage 1 stage 2 stage 3 stage R stage W

stage 1 0.00 0.72 0.01 0.00 0.27

stage 2 0.18 0.00 0.69 0.05 0.08

stage 3 0.08 0.90 0.00 0 0.03

stage R 0.34 0.33 0.00 0.00 0.33

stage W 0.94 0.03 0.03 0.00 0.00

We simulate the process to obtain the average amount of time spent in each state

(Table 2.2).

Table 2.2: Average percentage of time spent in each state

Chain stage 1 stage 2 stage 3 stage R stage W

Normal 0.14 0.50 0.28 0.01 0.07

2.2 Switching Between Two Chains With Simula-

tion

Environment, daily experience, diet, etc. can affect the sleep pattern. These

changes in subject’s environment (temperature, soft music,...) are called interventions

which produce another chain with different transition probabilities between sleep

stages.

The objective is to match the sojourn time percentages of normal sleep every night

by adjusting between interventions. Each intervention may result in a different sleep

experience. We consider two separate chains with different transition probability

matrices, corresponding to two interventions (Figure 2.1).
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Figure 2.1: Average percentage of time spent in each state

The algorithm of switching between these two chains is described as the algorithm

1 and has been coded in R.

Algorithm 1 Switching Between Two Chains

1: Start from state 1 in chain 1

2: Determine which state the process will transition to next

3: Spend random lognormal amount of time accordingly

4: Make a decision whether to remain in chain 1 or switch to chain 2

5: Compute the expected amount of time in states of each chain by simulation

6: Compute the distance of each chain from the normal chain, namely d1 and d2

7: if d1 ≥ d2 then

8: Go to chain 2

9: else

10: Remain in chain 1

11: end if

12: until the time horizon fulfilled

13: goto top.

Figure 2.2 shows the schematic process of this algorithm for two chains with two

states.
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Figure 2.2: Switching between two chains with two states

Suppose we have two chains with different transition probabilities between states.

After running simulation model, the average amount of sojourn time is obtained. For

making improvement of switching between these two chains, we run the algorithm

and the results are shown in table 2.3.

Table 2.3: Result of switching between two chains with five states

Chains stage 1 stage 2 stage 3 stage R stage W

Normal 0.14 0.50 0.28 0.01 0.07

Chain 1 0.19 0.47 0.28 0.01 0.05

Chain 2 0.12 0.56 0.27 0.01 0.04

Resulting chain 0.16 0.51 0.27 0.01 0.05

The average number of switches between two chains in 100 iterations is three with

the following specifications:

• distance(chain1, Normal)= 0.004

• distance(chain2, Normal)= 0.005

• distance(resulting chain, Normal)= 0.001
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As the result shows, we can optimize the sleep pattern by switching between these

two different chains.

2.3 Conclusion

In this chapter, we developed a simulation model for making decision of sleep MDP

to minimize the difference of patient’s sleep pattern with a normal one by switching

between interventions. Therefore, we can maximize the sleep efficiency by switching

between intervention chains.
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