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Abstract

This Master of Science thesis reviews previous research, proposes a method and

demonstrates proof-of-concept software for the automated matching of pollen grain

images to satisfy degree requirements at the University of Tennessee. An ideal image

segmentation algorithm and shape representation data structure is selected, along

with a multi-phase shape matching system. The system is shown to be invariant

to synthetic image translation, rotation, and to a lesser extent global contrast and

intensity changes. The proof-of-concept software is used to demonstrate how pollen

grains can be matched to images of other pollen grains, stored in a database, that

share similar features with up to a 75% accuracy rate.
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Chapter 1

Introduction

In the study of computer science, the field of computer vision holds great potential

for improving society and making utilization of man-hours far more efficient. Since

the dawn of human creativity, painters have recorded the fruits of their imagination

and the world around them with images long before ideas were conveyed with writing,

such as the cave painting in Figure 1.1. As the skills and tools of artists advanced,

some specialized in recording images of events, places or people. While the paintings

of artists allow the creative mind, the human element, to have free reign, the craft

was not without shortcomings. One such painting by a skilled, specialized artist can

be seen in Figure 1.2. Average men could not hope to capture moments in their lives

beyond that which they could retain in their own thoughts without the services of a

skilled artist and allotting a generous amount of time to properly capture imagery.

Events that unfolded quickly had to be recorded from the artist’s memory or from

the sometimes vague description of others. The greatest strength of an artist is

that of being able to improve a scene, to add and remove whatever his creative

eye desires. Unfortunately, this also meant that the artist could not capture many

precise details objectively, when necessary. A breakthrough came with the invention

of photography and subsequent improvements to film and cameras. An early example

of photography can be seen in Figure 1.3. Soon, capturing images of events and people

1



Figure 1.1: An ancient cave painting from South Africa, photographed by Valroe
(2008)

Figure 1.2: A portrait of former US President Andrew Jackson created with modern
painting techniques by a professional artist, Thomas Sully (1824)

2



Figure 1.3: A primitive photograph of former US President Andrew Jackson by
Edward Anthony (1845)

became quick, objective and drastically cheaper. Techniques soon developed to edit,

enhance and restore images on film and entire new directions for photography opened

up. While these techniques offered many ways to alter images to one’s liking, the

procedures were often slow and expensive to perform with traditional photography.

The next revolution in regards to imaging came with the application of computing

towards image processing. Traditional photographs could be digitized or captured

directly with digital cameras. Digitized images could then be shared or altered using

computers and related media.

1.1 Digital Image Processing

According to Gonzalez and Woods (2007), the application of computing towards

altering, editing or otherwise enhancing digital images is known as digital image

processing. Digitized traditional images that were distorted, noisy, or otherwise

lacking in a particular quality can many times be restored or enhanced using digital

image processing techniques. In addition, many effects that do not occur naturally

3



could be added to images and entirely new scenery can be created by blending layers

of images together.

An important image enhancement effect is image sharpening. According to

Gonzalez and Woods (2007), this procedure highlights areas of significant change,

like the edges of objects in an image, and makes such areas more prominent. The

related field of edge detection extracts these edges into an edge map, which can be

linked together to form the outlines of objects in a rough-sketch of a scene. This

process is known generically as image segmentation, as there are many approaches to

extracting the significant objects in a scene from a digital image. It is often the first

step in an important area of research known as image classification.

1.2 Image Classification

Image classification is a field that attempts to automatically determine the content

of a given digital image, according to Gonzalez and Woods (2007), a process that

may or may not involve a human observer. This field has numerous applications,

even as a filtering step to remove significant numbers of images from consideration

prior to a final judgment being given by a human operator. Humans are very good

at finding visual patterns and classifying images, but lack the ability to examine

hundreds of images quickly. In medical imaging, image classification can be used to

detect possible tumors and alert a medical professional that he / she needs to pay

close attention to a particular set of images. This reduces the workload on staff and

allows for a priority ranking of large sets of images. In fingerprint recognition, images

of fingerprints taken from a crime scene can be compared to thousands of fingerprints

in law enforcement databases to determine a list of candidates to be examined by

a fingerprint expert. There are countless other applications for image classification

in which untold batches of images can automatically be analyzed using computer

algorithms, monumental tasks for humans given the sheer volume of data in many

cases.
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1.3 Pollen Classification

Fortunately, many of the image classification applications share common implemen-

tations, at least at particular phases. For example, the same image segmentation

technique can be used to extract significant objects from photos to be used by a

variety of different classification techniques. With the goal in mind of creating a

generic image classification system that can be used for a variety of different tasks,

one must focus on a particular group of images to evaluate the result of careful

selection, implementation and refinement of different components of such an image

classification system. In that respect, one turns to pollen grain image classification

to find such a challenge. Today, pollen grains from prepared microscope slides are

classified and counted by hand in laboratories across the world. If one could develop

computer vision software that could aid researchers in this endeavor, resources could

be freed and allocated to other tasks.

From a practical standpoint, pollen grains are a good choice for evaluating the

effectiveness of a generic image classification system as there is abundant literature

available with well prepared and classified pollen grains imaged under a microscope.

As described in Section 4.2, these pollen grains fall into distinct morphological groups

with identifying features that can be segmented and used to distinguish one from

another. In the following chapters, one will describe how one arrived at the selection

of the different components to be used by the image classification system, the theory

and implementation of the image classification system and the experimental results of

its components and as a whole to achieve a 75% accuracy rate for matching a pollen

grain with another member of its morphological group and an 85% success rate at

ranking a member of the same species in the top 3 results.
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Chapter 2

Background

2.1 Chapter Overview

A review of research literature in the fields of image segmentation, representation

and classification is presented in this chapter. In each section, the purpose and ideal

traits for each component of the classification system are outlined. Section 2.2 outlines

various methods to segment an image into component shapes that capture significant

features in an image. Section 2.3 shows methods that researchers have employed to

represent images / shapes for analysis, classification and storage. The process by

which the approaches implemented in the proof-of-concept demonstration software

described in Chapter 3 is documented.

2.2 Image Segmentation

2.2.1 Objectives of Segmentation

The first step in the image classification problem decomposes the image into a subset

of smaller, isolated subimages of features (objects) present in the original image. Note

that due to the conceptually recursive nature of the approach to segmentation, one

uses the terms image and subimage interchangeably. The subimages can be further
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Figure 2.1: Pollen grain cluttered with debris as viewed under a microscope. Prepared
and imaged by Caffrey (2010)

decomposed into subimages under certain conditions. There are two main reasons

that one would ideally first decompose a larger image into several smaller subimages.

First, one wishes to remove the background of an image from consideration. Second,

one desires that the internal features of objects present in the target image be isolated

into independently stored subimages.

One defines the background of an image as the superfluous imagery that surrounds

target objects (or features). In the case of a subimage, the background is its parent

image. The background of an image might contain objects that are not part of the

target, noise, redundant information (in the case of subimages), white space or other

unneeded information. If background imagery is not properly separated from the

target’s imagery, then it can have a negative impact on the classifier as it will be

incorporated as noise in the classification process and distort the potential accuracy

of the classifier. For example, one would wish to only consider a pollen grain in a

microscope slide (circled in red in Figure 2.1 ) and discard debris that might surround

the pollen grain in a given sample that was not fully cleansed prior to imaging (debris

surrounding the red circle in Figure 2.1). Features inside a subimage (segment) can

be thought of as distinguishing, observable characteristics present inside an image.

These features, for example, could be pores on the surface of a pollen grain that

might be a distinguishing feature of that particular species and differentiate it from
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(a) Pollen 1 (b) Pollen 2 (c) Pollen 3

Figure 2.2: Various pollen grains collected and imaged by Willard et al. (2004)

non-pollen grains or those of the same genus, such as the rough ridges on the surface

of Figure 2.2(a) or the large pore in Figure 2.2(c). With the internal subimages

isolated, they can be compared to other images independently. This approach is

similar to the classical divide-and-conquer strategy that is applied to many problems

in computation in that one decomposes a larger problem into smaller, easier to solve,

subproblems. Another inherent advantage of segmenting images into independent

subimages is the ability to identify a target amongst several other objects in different

contexts or backgrounds. An example of this would be finding a specific species

of pollen in a microscope slide that contains multiple pollen species and debris.

Successive steps rely upon the successful decomposition of the original image’s objects

into independent subimages; therefore, the selection of an algorithm to perform this

segmentation is critical to the success of the overall classification objectives. Ideally,

one wants the segmentation algorithm to produce closed shapes that fully encapsulate

the significant features in a given image. One defines a closed shape as the imagery of

a significant feature that resides inside a continuous, closed curve (contour) boundary

that separates the shape from its background or other shapes that may surround

it or encapsulate it. In Figure 2.3 examples are provided of closed shapes of the

image Figure 2.2(a), with Figure 2.3(a) being a significant feature’s imagery (the

complete pollen grain) encapsulated by a red closed contour with a white background.

Figure 2.3(b) is a closed shape / significant feature within the shape outlined in
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(a) Pollen feature as a closed
contour

(b) Pollen body as a closed contour

Figure 2.3: Pollen grain features outlined in red

Figure 2.3(a) (which is also its background) enclosed in a red closed contour. If the

segmentation process did not result in closed shapes, there would be ambiguity as

to which edges constitute independent features. In turn, these closed shapes contain

inside them other closed shapes that recursively capture observable features subject to

a stopping criterion typically based on a minimum surface area in pixels for a shape.

Segmentation is a subject of ongoing research in the field of computer vision, as it

is the first step in a multitude of image processing tasks. As such, there are a wide

variety of methods available to implement the segmentation step. In the following

paragraphs, previous works are explored in the field of image segmentation, their

strengths and weaknesses are discussed, and a method is selected that is judged most

applicable to the present application.

2.2.2 Edge Detection

In order to segment an object, one must be able to determine the locations of the

edges of an object in an image’s border. Ziou and Tabbone (1998) define an edge,

in the context of image processing, as points where significant intensity (gray-level)

changes occur. Typically, this edge is a change in depth of the surface of an object,

an object eclipsing another object, discontinuity, shadow or the outline of an object
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against its background. Most edge detectors, algorithms that produce edge maps

of an input image, operate on the same general principle. They attempt to exploit

changes in intensity across the image to detect the boundary (or edges) of a feature.

Ziou and Tabbone (1998) state that two general classes of edge detectors exist, a

priori and non a priori. Non a priori edge detectors are generic and are invariant

to the type of image presented. A priori detectors contain optimizations specific to

a particular class of images. Custom tailoring edge detectors to a specific class of

images can result in a more effective edge detector, but it is ad-hoc and not easily

portable to images that are not similar to the ones it was written to process. Since

the goal is to create a generic image classification method, only non a priori edge

detectors are considered, but one acknowledges that it is possible to make a modular

system, to accept a priori edge detectors at this step, if the system is to be adapted

to a more specific group of images in the future.

A closely related image enhancement task is image sharpening, which seeks to

emphasize the boundaries of an image. Gonzalez and Woods (2007) liken image

sharpening to spatial differentiation, as one is highlighting areas of discontinuities

(high degree of intensity change) and deemphasizing areas with a slowly changing

intensity level. As such, the gradient (direction of the greatest increase in intensity

or first order derivative) and Laplacian (second order derivative) can both be used.

Gonzalez and Woods (2007) show that approximations of these first and second order

sets of derivatives can be calculated over a digital image by making use of image

masks. In Equation 2.1 and Equation 2.2, the approximation formulas for the 2-

dimensional discrete Sobel and Laplacian operators are shown, both derived in the

literature by Gonzalez and Woods (2007).

∆fx =
1

2
∗ f(x+ 1, y) + f(x− 1, y) (2.1a)

∆fy =
1

2
∗ f(x, y + 1) + f(x, y − 1) (2.1b)
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(a) 8-Pixel Neighbor-
hood

(b) 8-pixel Mask

Figure 2.4: Image mask and pixel neighborhood visualizations, target pixel at the
center

∆2f = f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)− 4 ∗ f(x, y) (2.2)

According to Gonzalez and Woods (2007), the direct processing of pixels inside an

image is said to occur in the spatial domain. The location of each pixel is referenced by

its discrete position in a matrix form of the image, analogous to Cartesian coordinates.

This form is quite intuitive as it is close to how humans find locations on maps and

spatial representations can quantize components perceived in human vision, such as

hue, saturation and intensity. Gonzalez and Woods (2007) demonstrate that masks

(Figure 2.4(b)) are small (in relation to the overall size of the given digital image)

square matrices that contain weights for a pixel neighborhood (Figure 2.4(a)) in the

image around a pixel. Typically, this mask will be centered about a target pixel, and

the intensity values of surrounding pixels will be multiplied by the weight of the cell in

the mask’s matrix that overlays it. The sum of said products then creates a new value

for the target pixel (Equation 2.3). This operation is performed for the remaining

pixels in the image, with a special case for border regions. Prior to applying the

edge detector, an image smoothing operation is typically performed. As indicated

by Gonzalez and Woods (2007), smoothing can reduce discontinuities in edges and

reduce the impact of noise.

C22 =
3∑
i=1

3∑
j=1

AijBij (2.3)

11



Gonzalez and Woods (2007) state that first order derivative masks typically produce

fewer thick edges and second order masks typically are much more sensitive and

produce more frequent, thinner edges. Two classic edge detection techniques using

masks derived from first and second order derivatives are the Sobel and Laplacian

edge detectors. In Figure 2.5 the original pollen grain is shown, along with the pollen

grains edge maps generated with the masks for the Sobel and Laplacian filters. In

Figure 2.5(b) and Figure 2.5(c), one can see that the first order Sobel filter produces

much thicker lines than that of the Laplacian filter. The lines in the Laplacian filter

are so fine that there is a significant drop in connectivity between then. This leads

to another problem, the fact that the edge detectors are not forming closed shapes.

Some detected edges are simply line segments or even dots. Partitioning important

features into isolated subimages is critical for the intended approach to classification.

These simple, low-level filters / edge detectors are not suitable for fully isolating the

closed features one intends to use to classify the images, in part due to their bottom-

up nature. A new linking or boundary tracing stage must be added after an edge

detector has completed its operations. This additional stage adds extra complexity,

degrades performance and according to Kass et al. (1988), may reduce the accuracy

of the classifier because mistakes (improper line detection) are difficult to detect and

correct at low-levels and tend to have great ramifications as they propagate to new

stages later in the classification process.

2.2.3 Explicit Active Contour Models

To solve the problem of segmenting an image into a set of meaningful objects

without the addition of a costly new linking stage (when the system has no a priori

knowledge), higher level active contour models were developed, which are commonly

referred to as probabilistic snakes, in their explicit form. According to Kass et al.

(1988), active contour models solve the problem of generating closed shapes by

reformulating the image segmentation problem as an energy-minimization function
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(a) Original pollen grain from
Figure 2.2(a)

(b) Edge map of Figure 2.5(a)
with Sobel Filter

(c) Edge map of Figure 2.5(a)
with Laplacian Filter (darkened
for clarity)

Figure 2.5: Segmentation of a pollen grain with two traditional edge detectors

and evolving a curve to fit the boundary of objects in an iterative manner. When

visualized, the curve converging to the outline of an object in the image can appear

to slither due to iteration towards its local minima. The snake does not attempt to

capture the outline of objects on its own. An explicit contour model, which usually

takes the form of a spline (piecewise-polynomial function) can be produced by higher-

level processes to ensure that the curve evolves towards its local minimum. Higher-

level processes can also be used to determine starting points for the snake, after which

the snake can fit itself to to the nearest salient curve.

The energy-minimization function presented by Kass et al. (1988) of an explicit

active contour model parameterized by v(s) = (x(s), y(s)) in Equation 2.4 takes into

account the internal energy of the spline, the image forces acting upon the snake and

the forces of external constraints. Piecewise smoothness is insured by the internal

forces of the spine. The forces behind the image serve to attract the snake towards

the salient features inside the image and the constraint forces place the snake near

the targeted local minimum. The source of the forces can be input manually or be

derived from higher-level processes without user intervention. The fact that a variety

of functions can be used to determine these forces lends a high degree of variation

amongst different approaches that can be used, a number of which were demonstrated
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by Kass et al. (1988).

Esnake =

∫ 1

0

(Einternal(v(s)) + Eimage(v(s)) + Econstraint(v(s)))ds (2.4)

Snakes provide a mathematically sound and elegant method to both determine and

represent the contour of an object in an image. They unify the detection of various

features in an object that had in the past relied on separate filters or algorithms

to detect and connect into closed contours. Since the problem is reformulated as

an energy-minimization problem, previous work in the field of optimization can be

applied to the task of image segmentation. Perhaps most importantly, snakes allow

higher-level interpretations to influence the capturing of low-level features, something

that is absent in classical edge detectors. But, snakes are not the proverbial silver

bullet of image segmentation. According to Weeratunga and Kamath (2004), while

the parametric form of a snake is highly effective at handling discontinuities and

noise in an image, it has severe limitations in regards to its adaptability of changes

in topology. This shortcoming is exacerbated under several special cases and can be

a severe handicap.

2.2.4 Implicit Active Contour Models

An alternative to active contours is to use implicit level-set approaches rather than

an explicit parameterization of the boundary of an object, as with snakes. According

to Guichard et al. (2000), level-sets are areas in an image with similar intensity, as

defined in Equation 2.5. To illustrate the concept of a level-set and its relationship

to the contour (boundary) around a region in an image, view the image as a surface

in 3D residing above a select 2D planar region representing the domain of the image,

as shown in Figure 2.6. As defined by Weeratunga and Kamath (2004), a level-set,

parameterized by an image pixel value c >= 0, is the set of points (x, y) in the

image domain for which the image’s intensity function f(x, y) equals c (Equation

2.5). Various level-lines (the active contours) are shown projected down to the 2D
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Figure 2.6: Select 2-dimensional Level-lines of the same color as their level-sets
in the 3-dimensional terrain shown. Image generated using code based on Matlab
documentation by MathWorks (2011)

plane in Figure 2.6. The select intersections of level-set slicing planes of the terrain

pictured are colored to match the level-lines plotted on the base plane.

{(x, y) ⊆ f : f(x, y) = c} (2.5)

Guichard et al. (2000) demonstrate via the superposition principle that superposed

level-sets are sufficient to reconstruct the original image. An example of select level-

sets in a 2D pollen-grain image can be observed in Figure 2.7 in which the same

number represents the same level-set. A brute force, yet highly intuitive, approach

to capturing level-sets is to use thresholding, as described by Gonzalez and Woods

(2007), in which one captures pixels of a certain intensity by applying minimum and

maximum bounds to the intensity function and discarding pixels that do not map to

values within that range. The result is a binary mask of the same size as the original

image with 1 representing pixels in that range and a 0 representing all other values. A

visualization of such a mask can be seen in Figure 2.8. This map can be used with a

logical AND operation to determine pixels within the level-set. This naive approach is
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Figure 2.7: Highlighted level-sets of the pollen grain in Figure 2.2(a)

Figure 2.8: Pixel intensity thresholding of the pollen grain in Figure 2.2(a) and the
resulting level-set

not only computationally expensive, but also requires the setting of image dependent

parameters (such as thresholds as the intensity histogram of two images can be quite

different). Due to these drawbacks, this straightforward approach is not satisfactory.

A method described by Weeratunga and Kamath (2004) known as implicit active

contour models, based on level-set methods originally proposed by Sethian and Osher

(1987), offers improved performance over the naive approach. The snakes and implicit

active contour models share significant common ground, as both attempt to minimize

the energy associated with driving a line to the outline of a given object in an image.
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Figure 2.9: A pollen grain with varying fine focus, collected and images by Willard
et al. (2004)

The advantage of an implicit level-set approach is that changes in the topography are

handled automatically by the algorithm. This avoids pitfalls present with the explicit

approach. Any object with peaks and valleys of significant height / depth inherently

display sizable changes in topography. Since the objects being photographed under a

microscope are not flat, this topological change is noticeable, especially if one was to

use the fine-adjustment focus dial on a microscope to view different portions of the

pollen grain, as shown in Figure 2.9. According to Weeratunga and Kamath (2004), a

drawback to the implicit approach is that it loses some of its robustness in dealing with

discontinuities in the outline of an object in an image that might result from noise,

angle, vantage point or other conditions. Improvements of the level-set approach over

traditional edge detectors were noted in a survey paper by Weeratunga and Kamath

(2004) in which they compared the approach with traditional edge detectors on a

set of pollen grain images. They found that the implicit active contour approach,

while computationally more expensive (despite the traditional approaches requiring

an extra smoothing operation prior to segmentation), provided the closed contours
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needed to, without ambiguity, discern the proper outlines of objects such as pollen

grains.

2.2.5 Fast Level-Line Transform

The performance issues encountered with the implicit active contour approach

(Section 2.2.4) were addressed by Monasse and Guichard (2000) with the introduction

of a new algorithm known as the Fast Level-Line Transform (FLLT). The primary

speed gains arise from exploiting the tree-like structure of the interior of level-

contours. Two complementary trees of upper (Equation 2.6a) and lower (Equation

2.6b level-sets are constructed via a region growing algorithm. The two level-sets are

specific cases of generic level-sets defined in Equation 2.5. The interiors of shapes in

each tree likely contain holes, which are actually shapes in the complementary tree

that belong to the other level-set. The trees are merged when shapes corresponding

to holes are moved from one tree to the other, resulting in a single tree-of-shapes with

a hierarchy based on the geometric inclusion of its component shapes.

Let f be an image, cl, cu ∈ R be intensity bins where cl <= cu and (X, Y ) are

points in f . Their lu is an upper level-set, and ll is a lower level-set when:

lu = f(X, Y ) >= cu (2.6a)

ll = f(X, Y ) <= cl (2.6b)

2.2.6 Conclusion

It is with implicit active contours determined by the FLLT method that one arrives

at a suitable segmentation procedure from which to proceed with the classification

problem. To summarize, pollen grains, as well as practical real-world objects, are

three-dimensional objects. As such, their images exhibit significant changes due to
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topographic variation, focus and perspective. The benefits of active contour models

over traditional edge detectors mainly stem from the fact that they allow one to

generate unambiguous sets of closed shapes without an additional linking stage.

The clear separation of objects by closed contours enables one to consider shapes,

during a classification procedure independently of other shapes, producing a divide

and conquer approach to classification. This also enables the searching for candidate

segments of multiple target segments in parallel.

2.3 Shape Representation and Description

2.3.1 Objectives of Shape Representation

A standardized method of representing, describing and structuring the segmented

features of an image is necessary for storing and analyzing shapes. A number of such

methods have been proposed to represent and describe shapes, each with their own

strengths and weaknesses. The desirable traits of a shape representation, methods

used to represent and describe shapes from previous research, and a robust way to

structure the shape representations are described in this section.

According to Gonzalez and Woods (2007), shape representation falls into two

broad categories. One attempts to represent a shape based on characteristics of the

region of pixels inside a shape, another seeks to represent it based on its boundary.

Zhang and Lu (2002) note that region based approaches contain more information,

as the entire shape’s surface is stored and utilized in the comparison. Contour based

approaches utilize only information in the boundary of the shape, but benefit from

increased simplicity and performance. The representation itself does not necessarily

equate to a descriptor, which contains the data employed by a classifier. A descriptor

follows a representation. An example by Gonzalez and Woods (2007) states that a

shape can be represented by its boundary and described by features of that boundary,

such as the distance of that boundary from the shape’s centroid at various angles.

19



For any practical application of an image classification system, storage and

performance should be considered highly relevant. The minimization of storage space

is highly desirable, as a database of images (and any associated metadata) can grow

quite large as one inserts more content, especially if the image is broken down into

sets of subimages. If the data structure stores shape representations in such a way

that the individual segments can fully reconstruct the image, then there will be no

need to store redundant information, such as the original image or data present in

other shapes.

The way that shapes are geometrically included within each other in an object can

prove useful in the classification process. For example, Pan (2007) showed that metrics

based on differences between a shape and a shape immediately inside it (child) can

be useful in quickly removing significantly different shapes from consideration during

shape comparison. A data structure that captures this hierarchy and allows a quick

traversal of a shapes ”lineage” has potential speed benefits during the classification

phase. An effective data structure to represent shapes is not enough to optimize a

collection of shapes. Consideration must be given as to how an individual shape is

described such that it is in a form already useful to the classifier.

In most cases, two images taken separately of the same object will not be exactly

the same. Changes in the object’s location (different background), rotation, position

(within the image), scale and lighting typically occur between image samplings. For

example, given two microscope slides of a core sample containing related pollen

grains, the differences in the imagery is quite drastic due to differing origins, separate

preparations, different microscope lighting and magnification. Depending on the

location from which the pollen was gathered, different debris (plant, animal and

inorganic matter) will be present and the preparation process cannot reasonably

remove all of such debris prior to imaging. The pollen grain can be located at any

position or any rotation on the slide. In Figure 2.10, related pollen grains are shown in

two different samples. The grain in Figure 2.10(a) is significantly more magnified than

the one in Figure 2.10(b), leading to a change in scale. Their rotations about their
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centers and locations on the slide are significantly different, the superfluous debris

surrounding them have changed, and the lighting differs. Individual transformations

of a pollen grain image are shown in Figure 2.11. For the classification system to

match the two pollen grains in Figure 2.10, it requires a descriptor that is invariant

to translation, rotation, scale, background and global contrast and intensity changes,

as comparing the pixels of their segments directly will not produce meaningful results,

in part due to these differences.

2.3.2 Image Registration

A naive approach to image classification is to directly compare a pair of images using

a similarity measure. This is ineffective because the similarity measures are not able

to compensate for all of the transformations described in Figure 2.11. These problems

are typically mitigated by attempting to place the images into a common coordinate

system via an image registration process. Brown (1992) described selection of a

classification process as deciding on a feature space, similarity measure, search space,

and search strategy . These different components each have different approaches that

can be utilized, leading to a large variety of techniques.

Each of these categories is individually examined to better understand how to

construct a good classifier from the different components. Brown (1992) defines a

vector or object in a feature space as the information extracted from an image that

will be used in the comparison. An example is a vector of coordinates representing

the border of a subimage in the original image. The search space is defined as the set

of transformation methods employed to align the two images. The search strategy

is the procedure employed to determine which transformation from the search space

should be employed to arrive at the proper alignment, and the similarity measure is

the comparison technique used to compare to registered images and generate a value,

typically between 0 and 1, that states how similar the algorithm determined the two

shapes to be.
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(a) A pollen grain amongst debris in a microscope slide

(b) Similar pollen grain in another sample

Figure 2.10: Related pollen grains in two contexts (differing samples) collected and
imaged by Caffrey(2010)
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(a) Original pollen grain from
Figure 2.2(a)

(b) Figure 2.11(a) rotated (c) Figure 2.11(a) with a global
contrast change

(d) Figure 2.11(a)
scaled

Figure 2.11: A pollen grain with various transformations applied

According to Brown (1992) there are typically three types of problems associated

with aligning a pair of images taken under different conditions. One is a misalignment,

typically caused by a different position from which the images were taken. Typically,

this misalignment is solved by a transformation of the image in the spatial domain.

Care must be taken to select the proper transformation, as a poorly chosen

transformation can further distort the image and lead to information loss, such

as the mapping problem of many affine transformations of images described by

Gonzalez and Woods (2007). Poorly chosen transformations can also increase the

misalignment present, making the problem worse. Next, there is the problem of

correcting differences caused by the conditions under which the images were acquired.

This might include noise, superfluous imagery or differences in lighting. Finally, the

object being observed might have moved between the photographs being taken, or

new objects may be present (such as different pollen grains present in a microscope

slide). The last two types cause the images to be different. Registration cannot solve

23



the problem directly, and one must find workarounds as the image can no longer be

transformed into something almost identical to the original image.

Use of a similarity measure, such as cosine similarity (Equation 2.7), on a perfectly

registered pair of images can be quite effective. However, as Brown (1992) mentioned

in her survey paper on image registration methods, many images cannot be globally

transformed perfectly due to the removal, addition or changes to features in the image

that might have occurred between imaging. For example, consider the two microscope

slides consisting of related pollen grains from different samples in Figure 2.10. It is

not, in general, possible to find an affine transformation that precisely maps one

grain to the other. While image registration techniques have their place, such as

landscape identification or pictures of single objects that are taken in a somewhat

uniform way, it seems that their added complexity and uncertain reliability preclude

this as a satisfactory approach. Let θ be the angle formed between the two attribute

vectors Vcandidate and Vtarget.

R =
Vtarget · Vcandidate
‖Vtarget‖‖Vcandidate‖

= cos θ (2.7)

Once specific objects are segmented from an image, the approach becomes more

attractive. One can use certain image registration methods to compare the subobjects

individually once the added clutter has been removed. Most image registration

approaches would be computationally expensive and thus not advisable for an initial

search step. Finally, by limiting our search space to portions of the subimages, such

as the boundary, one can further reduce the computational overhead and the space

required to store alternative representations of the objects.

2.3.3 Edge Maps

Another way to represent an image in the spatial domain is by means of its significant

edges. Monasse and Guichard (2000) state that typically the image will be smoothed,

and then a traditional edge detector will be applied. The resulting edge map is
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a sketch of the significant detected edges of an image. Methodologies have been

developed to extract and represent the segmented shapes. One such approach is

the 2.1-d sketch described by Nitzberg and Mumford (1990). In this representation,

the linked edges define regions that occupy a layer in an image (usually sorted from

the background to the foreground). This form might capture information about

which objects are nearest the imaging device; it also creates distinct subimages in the

original images by the defined regions in the interiors of boundaries. The advantage

of providing the objects in order from background to foreground is not relevant to the

objective of this classification system, as a microscope has a very shallow depth of

field, and any object significantly nearer or further than the object(s) focused upon

will be too out-of-focus to process. The method presented in the original paper also

does not seem to consider features within subimages that might be at the same depth

as the original object, such as distinctive marks on a surface; therefore, it is unable

to capture a shape inclusion hierarchy.

Overall, the use of edge maps generated by traditional edge detectors (Figure

2.5(b) and Figure 2.5(c)) to create representations of an object has several disad-

vantages. The primary problem is the implementation of a reliable method to link

edges into region boundaries. The edges are ambiguous with respect to the geometric

shape inclusion hierarchy, as they are not closed. Thus separating interior shapes

from enclosing parent shapes becomes difficult and classification metrics based on the

relationship between shapes and their immediate enclosing shape become unreliable.

Since the edge map does not naturally decompose into clearly defined subobjects

(which then become subproblems in the classifier), one also lacks the ability to apply

divide-and-conquer techniques to the same degree as other methods. An edge linker

can make a pass over an edge map to generate closed contours, but having these two

steps operate independently can propagate misdetection or mislinking errors to later

stages. One is therefore unable to use higher-level processes (such as the linker) to

impact the edge detection process.
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2.3.4 Fourier Transformations

According to Gonzalez and Woods (2007), an image (or subimage) can be represented

in the frequency domain as opposed to the spatial domain discussed in the section

above. In the frequency domain, an image is represented by its Fourier transform and

returned to its spatial representation by an inverse Fourier transform. Gonzalez and

Woods (2007) state that a Fourier series is a decomposition of a periodic function into

a weighted sum of sines and/or cosines of differing frequencies. In the case of digital

images (finite and typically, non-periodic), a discretized equivalent formulation of the

integral of weighted sines and cosines is used (Equation 2.8). Gonzalez and Woods

(2007) then show how the resulting Fourier transform F can be extracted into its

magnitude | F | (Equation 2.9) and its phase φ (Equation 2.10) components.

In Figure 2.12(b), a visualization of the magnitude of the Fourier transform

of Figure 2.11(d) is provided. Gonzalez and Woods (2007) state that the pixel

at the center of Figure 2.12(b) is the average intensity of the pixels in Figure

2.11(d). As one follows the pixels outwards from the center, the lower frequencies

represent areas of consistent intensity in Figure 2.12(b), such as featureless areas

on the surface or background, and the higher frequencies represent areas of rapid

change, like the edges of features in the image or noise. A rotation of the original

image will also rotate the Fourier transform, as depicted by Gonzalez and Woods

(2007). Once an image is transformed into its equivalent signal space representation,

it is operated upon in a global fashion (excluding, for the moment block methods

such as JPEG as described in its technical recommendation to the International

Telecommunication Union). According to Gonzalez and Woods (2007), several

efficient image enhancement techniques (like blurring and sharpening) make use of

these properties by manipulating the values over the transform using a filter, then

using the Fourier inverse function to restore it to the spatial domain, with results

similar to the spatial sharpening filters in Figure 2.2.2.
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(a) Scaled (aspect ratio altered)
pollen grain in Figure 2.2(a)

(b) Visualization of the magnitude
of a Fourier transform of the pollen
grain in Figure 2.12(a)

Figure 2.12: Visualization of the magnitude of the Fourier Transform of a pollen grain

Let f be an image of mxn pixels and F be its Fourier transform as defined by its

real (R) and imaginary (I) components. F can also be expressed in polar coordinates,

defined as follows:

F (u, v) =
1

mn

m−1∑
i=0

n−1∑
j=0

f(i, j)e−2π
√
−1(ui/m+vj/n) (2.8)

F 2 = (R2 + I2)2 (2.9)

φ = arctan
I

R
(2.10)

Using a Fourier transform directly to compare shapes is equivalent to directly

comparing images in the spatial domain (without registration) and does not produce

a meaningful result in this application due to a lack of similarity measures that

can compensate for the affine transformations described in Section 2.3.1. However,

approaches using a 1-D Fourier transform (Equation 2.11) of a descriptor of a shape’s

border signature were shown by Zhang and Lu (2002) to be effective at matching

shapes and more robust to noise that might be present in the boundary when

compared to descriptors in the spatial domain.
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According to Gonzalez and Woods (2007), a border’s signature is a one dimen-

sional representation of a shape’s boundary. By reducing dimensions, a descriptor

becomes less complex, and a similarity measure requires less computation. Conversely,

some information is lost, but the task of devising a descriptor that is invariant to the

properties outlined in Section 2.3.1 becomes simpler. Many ways exist to derive a

Fourier descriptor from the border of a shape. A survey paper by Zhang and Lu

(2002) outlines and compares several such methods.

Zhang and Lu (2002) describe four different methods for representing a descriptor

based on the Fourier Transform of the border of a shape. All start with a spatial

descriptor of the boundary, known as a shape signature, that is transformed into

the frequency domain via a 1-D discrete Fourier transform (Equation 2.11). For

comparison purposes, the number of points sampled from the border must be

consistent across all shape signatures, regardless of their size. A filtering or sampling

method is used to reduce the number of samples down to a fixed number. Let f be

a vector of values of length n and let F be its Fourier transform

Fi =
1

n

n−1∑
j=0

fj(e
−2
√
−1πi
n )j (2.11)

The first signature described by Zhang and Lu (2002) is the complex coordinate

function, the set of mean-centered complex coordinates of the boundary (Equation

2.13a). The second is the centroid distance function (Equation 2.13d), the normalized

distance of points on the boundary from the centroid of the shape (Figure 2.13) by

the Pythagorean theorem (Equation 2.14). The centroid has coordinate (0, 0) once

the coordinates of the boundary are mean-centered. Mean-centering (Equation 2.12)

is necessary to preserve translation invariance. Third is the curvature function, the

derivative of the boundary’s angles as defined by a sliding window (Equation 2.13b).

Finally, there is the normalized cumulative angular function, a measure of the bend

of an angle from a fixed reference point on the boundary to the other points along the

boundary (Equation 2.13c). In a survey of shape signatures, Zhang and Lu (2002)
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demonstrated that centroid distance is the best approach to use for generic shape

classification. The following paragraphs demonstrate that a scaled centroid distance

description of the boundary preserves significant local and global features of a shape

while maintaining the invariances described in Section 2.3.1. Let xi and yi be the

coordinates of point pi along the boundary B of Shape S, N be the number of points

P in the boundary, V be the shape signature of B, and let k be the length of a sliding

window

(xmc, ymc) ≡ (xi − X̄, yi − Ȳ ) (2.12)

CF (pi) ≡ arctan(
yi − y(i− k)

xi − x(i− k)
)

AF (pi) ≡ (CF (pi)− CF (pi−1)) mod 2π

vi ≡ xmc +
√
−1ymc, or (2.13a)

vi ≡ CF (pi)− CF (pi−1), or (2.13b)

vi ≡ AF (i
N

2π
)− i, or (2.13c)

vi ≡
ri
α

, where α =
1

n

√√√√ n∑
i=1

r2i (2.13d)

ri =
√
x2mci + y2mci (2.14)

In Figure 2.14(a), a shape’s boundary is presented with the centroid and two

radii labeled. Figure 2.14(b) is the same shape that has been rotated, magnified

(scaled) and slightly transposed. With the magnification, the pixel length of the

radii are increased consistently (no change to aspect ratio). By normalizing the

radii with the norm of the vector of radii (Equation 2.13d) for each shape, the

descriptors become invariant to scale. Mean-centering (Equation 2.12) the points
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Figure 2.13: Shape from 2.3(a) with centroid and sample radii marked

on the boundary places the center of the shape at coordinate (0, 0) and places the

shape in a new basis with the centroid as the origin, making the descriptor invariant

to translation. Contrast information is not present as one only uses the distance

from the points of the boundary to the center of the shape; therefore, the normalized

vector of radii is invariant to contrast changes, as long as the segmentation process

that determined the boundary is invariant to contrast. Finally one discards the phase

of the Fourier transform by considering only its magnitude, eliminating the presence

of angular information and making it invariant to rotation. Once computed, the

Fourier descriptor of a shape can be stored in a shape node for quick comparison to

other shapes during a search phase using a similarity measure.

2.3.5 Shape Contexts

Belongie et al. (2002) developed a procedure to store shape contexts and use them

to compare two shapes. Their approach is to create a circular set of pie shaped

bins radiating out from the center of the image. Randomly chosen points along the

border are stored in these bins, and the bins are adjusted to be similar to one another

(similar to image registration) with a similarity metric applied to the shapes. While

their approach showed promise, initially, the literature is vague about how one can

account for its stated inherent rotation invariance. However, it can be noted that by
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(a) The border of a shape (b) Figure 2.14(a) with rotation, scale and
position changes

Figure 2.14: The boundary of a shape with centroid and two radii labeled

using the silhouette of the shape, one can add information to the system that can be

used to better match shapes without adding too much computational complexity.

2.3.6 Global Descriptors

According to Zhang and Lu (2002), global shape descriptors make use of metrics

associated with the silhouette of a shape. A metric is typically a real-number that

describes a certain aspect of the silhouette, such as area or eccentricity. Metrics of

the same silhouette are then placed together in a vector and used as a descriptor.

Since the vector is one dimension, it is easy to store and compare against the global

descriptors of another shape.

Monasse and Guichard (2000) suggested that relationships between shapes and

their interior shapes could be used as metrics for a global descriptor. Pan (2007)

successfully used a number of these metrics to return unranked candidate shapes to

be considered by another phase of an image classifier. One can devise metrics with

invariance to scale, contrast and rotation. For example, the area ratio of a shape
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and its interior shape should be relatively similar regardless of scale since this is self-

normalizing and no information about rotation or intensity is contained within the

metric.

One could generate a ranked list of images using a similarity measure based on

the differences between global descriptors of two shapes, but too much information

is lost to accurately classify on this alone. Zhang and Lu (2002) showed that

global descriptors can only eliminate shapes from consideration that are significantly

different from one another, but that they could be used as a quick step to eliminate

drastically different shapes from consideration. From an applied standpoint, with

the global descriptor referencing its shape, one can execute a single SQL query on a

database and return a set of candidate shapes with shapes significantly different from

the target shape absent.

2.3.7 Level-Lines and tree-of-shapes

The FLLT Algorithm described in Section 2.2.5 addressed not only the performance

issues of implicit active contours, but also created a way of representing the shapes.

The shapes are the connected components of level-sets extracted from an image into

a tree-like data structure called a tree-of-shapes (TOS) as depicted in Figure 2.15.

Shapes in the TOS are organized by their geometric inclusion in an image and are

separated from the shapes above and below them in the tree by their level-curve

boundaries. Ballester et al. (2003) demonstrate that a tree-of-shapes is sufficient to

reconstruct the original image using the shape segments in the tree. The tree-of-

shapes also preserves the parent / child relationship between shapes and subshapes,

making it trivial to traverse the lineage of a shape to derive metrics based on their

relationships, as described in Section 2.3.6. In addition, tree-like data structures are

well studied and known in the field of computer science. Storage in many database

systems and file systems is implemented using tree-structured data, so the FLLT /

TOS algorithm can match the requirements of these systems.
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(a) FLLT Segmentation of the pollen grain in Figure
2.2(a) with closed shapes labeled

(b) Tree-of-shapes of the shapes in Figure 2.15(a)

Figure 2.15: Tree-of-shapes decomposition of a pollen grain
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2.3.8 Conclusion

One can chose to compare metrics associated with images, attempt a comparison on

the subimage as a whole or in part, or a combination thereof. With the observations

of Section 2.3 in mind, it becomes clear that a two-stage method is required for

computationally efficient image classification. The collection of template images

(preclassified reference images) in the database is expected to be quite large, so image

registration, or similarly demanding comparison technique, on the entire set of image

and subimages becomes impractical. By limiting the feature space to a small set of

quantized metrics, the majority of significantly different templates can potentially be

excluded from consideration in any given search. Metrics based on global descriptors

(Section 2.3.6) and relationships between shapes (parent) and their interior shapes

(children) are ideal for this first stage as they contain small, fixed length values that

can quickly be indexed and queried by database software. To derive these metrics,

especially those relying on descriptors based on the relationship of parent and child

shapes, the tree-of-shapes described in Section 2.3.7 is the ideal way to represent the

image to allow for quick traversal of shape lineage. With the metrics stored together

with the shape, one can execute a single SQL query in a database management system

to efficiently implement the first phase.

The 2nd phase, involving a similarity measure, is significantly more computa-

tionally demanding and is thus performed on the smaller subset of candidate images

retrieved in the 1st phase. Fourier descriptors using centroid distance were determined

in Section 2.3.4 to be an ideal way to determine shape similarity as they produced good

results in the survey conducted by Zhang and Lu (2002). The Fourier descriptors can

be represented as a finite set of real values that can be retrieved from the database and

compared relatively quickly using cosine similarity (Equation 2.7). Cosine similarity

was chosen due to the successes the measure has garnered in the field of data mining

when comparing two vectors (in our case, the two Fourier descriptors), as described

by Tan et al. (2005).
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Once the cosine similarity is computed, a ranked list of candidate shapes to the

target shape can be developed. If the similarity measure is high (approaching one),

one can be reasonably assured that a proper match has been found; however, if the

highest number is rather low, the shape might be unknown or the image classification

system might have failed to find a result due to unforeseen shortcomings of the

algorithm or the poor quality of the original images.
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Chapter 3

Methodology

3.1 Chapter Overview

This chapter documents the methodology used to implement the image segmentation

proof-of-concept software demonstrated in Chapter 4. The methodology was selected

after the review of various image segmentation and representation methodologies

discussed in Chapter 2. Section 3.2 provides details of the concepts used in the

approaches selected from Chapter 2. The basic steps of the Fast Level-Line Transform

algorithm as well as the classification system are presented in Section 3.3. Finally,

details of the implementation of the proof of concept software, the Shape and Image

Database (SID), are given in Section 3.4.

3.1.1 Problem Statement

One seeks to automatically classify an object in a target image by comparing it to

objects in a database representing a set of template images and producing a list of

candidate images found likely to be most similar to the target image, and ranked by

a similarity measure.
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3.1.2 Summary of Procedure

Database Template Images

1. Segment the given template image to isolate objects of interest

2. Organize the segmented objects into a tree-of-shapes (TOS) based on their

hierarchical inclusion within other objects in the original image

3. Calculate relevant TOS metrics and boundary descriptors for each shape,

storing them in their respective node in the TOS

4. Upload the shapes to a database

5. Analyze the TOS metrics for each class of images to determine the normalized

range of each metric

Target Image Classification

1. Segment the given target image to isolate objects of interest

2. Organize the segmented objects into a tree-of-shapes (TOS) based on their

hierarchical inclusion within other objects in the original image

3. Calculate relevant TOS metrics and boundary descriptors for each shape,

storing them in their respective node in the TOS

4. Phase 1 Comparison: Query the database to retrieve candidate shapes that are

within the ranges determined above

5. Phase 2 Comparison: Compare each candidate shape to the target shape using

a similarity measure on their boundary descriptors

6. Sort the results by the generated similarity value and display the ranked list
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The process begins with the segmentation of a given image into its component

objects (shapes) using the FLLT method proposed by Monasse and Guichard (2000).

Initially, the FLLT produces two complementary trees-of-shapes, one of upper

level-sets and another of lower level-sets based on the pixel intensity of connected

components in the image, as described in Section 2.2.5. The FLLT algorithm then

merges the two trees into a single tree-of-shapes whose hierarchy reflects the geometric

inclusion of the shapes, as shown in Section 2.3.7. Global descriptors (Section 2.3.6)

of the shapes and their relationship to their enclosing parent shape are then used to

quickly generate a set of matching stored image segments. This step can be performed

using a single SQL query on indexed fields to achieve high performance. The Fourier

descriptors of the candidate shapes’ boundaries (Section 2.3.4) are then compared to

those of the target image segment (object) to generate a final, ranked list of images.

3.2 Foundations

3.2.1 Level-Sets

The segmentation step creates subimages (subproblems) from the initial image using

the Fast Level-Line Transform (FLLT) algorithm by Monasse and Guichard (2000)

first discussed in Section 2.2.5. The algorithm uses a divide-and-conquer approach

that uses level-set representations (Section 2.2.4) of regions in the image with the goal

of capturing significant features (Section 2.2.1) as shapes separated from enclosed

(child) and enclosing (parent) shapes by the level-curves of their boundaries.

As noted in Section 2.2.5, the FLLT algorithm by Monasse and Guichard (2000)

iteratively assigns connected pixels to regions in an image that are either part of

an upper level-set (Equation 2.6a) or lower-level set (Equation 2.6b) based on their

intensity (gray level) during a process called region growing. Essentially, areas of

significantly similar intensity are represented by the level-sets of their intensities.
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(a) 4-pixel neighborhood (b) 8-pixel neighborhood

Figure 3.1: Two common definitions of a pixel neighborhood

According to Gonzalez and Woods (2007), connected pixels are sets of pixels in

an image such that one can travel from any point to another within the set solely

by visiting neighboring pixels that are also in the set. A pixel’s neighborhood is

typically defined by either 4-pixel or 8-pixel connectivity, as shown in Figure 3.1.

The neighborhood definition differs between level-sets to resolve certain issues with

the FLLT algorithm, as described in Section 3.3.1. Upper and lower level-sets are

specific cases of generic level-sets (Equation 2.5). Three important properties of the

level-sets in Equations 2.6 are that they are nested, that the upper-level sets are

decreasing, and that the lower-level sets are increasing (ordered by set inclusion).

As mentioned in Section 2.2.4, the level-sets in an image can produce the original

image via superposition. These two properties form a foundation of the tree-of-shapes

representation method described in Section 3.2.2.

While the method in which FLLT determines level-sets is shown by Monasse and

Guichard (2000) and Guichard et al. (2000) to be resistant to global contrast changes,

localized contrast changes cause significant issues with the determination of actual

level-sets. That is, if the contrast change is random across the image, then the problem

of segmentation becomes more complex. Non-global contrast change is not considered

to be an issue in this classification system as a microscope slide image is assumed to

have consistent lighting. In other circumstances, localized contrast changes might
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be the result of noise or equipment malfunction. With level-sets in mind, one uses

representations of pixel regions formed by them to segment an image.

3.2.2 Tree-of-Shapes

The FLLT, as described in Section 2.2.5, places connected pixels in either upper or

lower level-sets. By utilizing the connected and nested / ordered properties of upper

and lower level-sets, the FLLT represents them in two complementary tree-like data

structures (one for upper, another for lower). By this methodology, the algorithm

places the shapes as nodes in the tree-of-shapes based on their intensity, therefore their

placement in the tree might not be very intuitive to the casual observer, which tends

to lend a geometric interpretation to inclusion. In general, neither tree is sufficient

to account for all of the shapes in the original image separately. Shapes present in

the original image maybe absent in one tree, and thus becomes evident during TOS

construction. To resolve issues of lack of geometric inclusion and separate trees, the

upper and lower level-set trees are merged at a later step into a single tree-of-shapes

using the level-lines of their boundaries to determine their placement.

Monasse and Guichard (2000) showed that level-lines form the boundaries of these

level-sets. They can be defined as a set of Jordan curves, as visualized by the red,

closed contours of Figure 2.3(b) and Figure 2.3(a). As described by Hales (2007),

the Jordan Curve Theorem has an additional descriptor concept, that of interior or

exterior positioning. This descriptor, using the boundary of the connected node /

shape, allows one a point-of-reference is used to define a shape.

A shape is a node in the tree-of-shapes, it is a set of connected pixels completely

enclosed by a level line in an image. Each shape, with the exception of the root image,

has an enclosing level-line / Jordan curve that separates it from its parent (as shown

by the red line separating region 1 from region 0 in Figure 2.7). The root node is

the original image, whose boundary is that of the image itself (as depicted by 0 in

Figure 2.7). Disconnected level-sets can exist, as in a case where a significant number
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of pixels that belong to different level-sets separates two regions; this causes them to

become different shapes. Disconnected level-sets of similar intensity can be observed

in Figure 2.7 where the same label number represents the shapes of similar level-sets

that are disconnected. While a shape is enclosed entirely in its Jordan curve, it might

contain holes. A hole is a child shape of a shape in the merged tree-of-shapes, and the

boundaries of the holes are the Jordan curves of the child shapes. Prior to merging,

these holes belong to different level-set trees; thus, they will not become child nodes

until they are merged. For example, regions 2, 3 and 4 are holes or children of region

1 in Figure 2.7.

A parent shape in the merged tree is defined by Monasse and Guichard (2000) as

the smallest shape that contains a given shape (see the boundary between regions 2

and 3 in Figure 2.15(b)). No child is allowed to have more than one parent, as that

would also indicate that two unrelated level-sets are occupying the same space. To

better understand the tree structure, see Figure 2.15 for a sample tree and the shapes

it represents. All nodes of non-solid shapes will have children, except for the leaf

nodes (regions 3, 4, 6 - 11 in Figure 2.15(b)) that form the smallest allowed closed

contour, which is defined by a minimum surface area threshold. A child shape, being

completely enclosed by its parent, has a smaller area than its parent. Therefore,

the surface areas of the shapes are monotone decreasing as one descends the tree-

of-shapes. The TOS therefore represents a partial order defined by the area of each

shape. With these foundations laid, one describes an algorithm to construct the

tree-of-shapes.

3.3 Algorithm

3.3.1 Fast Level-Line Transform (FLLT)

To construct the tree-of-shapes as outlined by Monasse and Guichard (2000), one

needs to uncover the regions belonging to the various level-sets in an image. Two
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trees are constructed, one of upper level-sets and another of lower-level sets. Once

their construction is complete, they are merged by reconciling holes present in one

tree with the shapes in the other. The first task is the determination of the level-sets.

Monasse and Guichard (2000) utilize a region-growing approach in the FLLT

algorithm to grow the level-sets via their connected components. A labeled example

of level-sets determined by this method can be observed in Figure 2.15(a). From an

initial, unvisited, local intensity extremum (maximum for upper level-sets, minimum

for lower level-sets) as determined by a line-sweep of the given image, one creates a

new object. The object contains three sets of pixels: candidate pixels, region pixels

and neighborhood pixels. The type of each pixel is determined by the reference

intensity (initially, the local extrema). The pixel having the local extremum’s value

is added to the candidate set. The pixels in the neighborhood around the candidate

set are then determined (Step 1).

As mentioned in Section 3.2.1) and described by Gonzalez and Woods (2007),

connected pixel neighborhoods are typically defined as either the 4-pixels (3.1(a))

bordering the center square pixel’s sides or as 8-pixels (3.1(b)), including four pixels

about the center diagonally. The definition of the connected neighborhood of pixels

depends on whether an upper or lower level-set tree is being formed. Monasse and

Guichard (2000) show, by counter-examples, that the Jordan Theorem does not hold

for upper level-sets if one uses an 8-pixel neighborhood definition for both, and that

tree construction for interior regions fails when using a 4-pixel neighborhood definition

for both. The solution is to use a 4-pixel definition for one tree and a 8-pixel definition

for the other.

Neighbors of the candidate pixels are added to the neighbor set. For the lower

level-sets (this is similar for upper level-sets, replacing ”minimum” with ”maximum”),

one determines the minimum intensity value in the neighborhood pixel set, adds any

candidate pixels to the region set, and flags any pixels in the region pixel set as

having been visited (Step 2). One then compares this intensity value to the reference

intensity. Three cases exist:
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1. If the minimum of the neighbors is greater than the initial local minimum, then

this is likely a border, and one should determine if it is an exterior boundary

of the region by checking to see if it contains the top, bottom, left or right

most pixel of said region. If it does not contain one of those pixels, then it is

a hole, and one retains a reference pixel of this hole for later use and adds the

neighbors to the candidate set. Finally, one sets the reference intensity (former

local minimum) to the minimum of this neighborhood and repeats Step 2.

2. If the reference intensity is equal in value to that of the neighborhood’s

minimum, add the neighbors to the candidate set and goto Step 2.

3. If the value is less than the reference intensity, set the intensity of all of the

pixels in the region to the value of the local minimum and start the pixel scan

anew at Step 1.

After a shape is determined, the holes inside its region must be examined, as

they too will contain level-sets. Holes are in fact other level-sets that will form the

children of the shape that contains them in the finished tree. One starts with the

hole reference pixel, mentioned above, and finds its location in the complementary

tree. Monasse and Guichard (2000) uses the following situation to illustrate how to

discover the equivalent shape. Consider a hole reference pixel h in an upper level-set

Lu whose constant range is Cu. Then, by the resulting complementary trees of the

FLLT algorithm, this pixel h must belong to a lower level-set Ll where Cl is less than

Cu. The shape that resides in said hole is discovered by first finding the smallest shape

in the complementary tree that contains pixel h and following its lineage up through

the tree (for the shapes containing h) until the intensity of the shape is greater than

or equal to Cu. Monasse and Guichard (2000) outline the following procedure for

determining the smallest shape containing pixel h (or any given pixel) by examining

the possible scenarios for the shape containing it. First, the pixel might not be in

a bounded level-set in either tree, and therefore no shape contains it. Second, the

pixel could belong to a bounded level-set in one tree, but not the other, so it belongs
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to the one that is bounded. Finally, if both are bounded, then it is assigned to the

level-set that resides in the interior of its complementary tree. The reciprocal form

of this procedure to fill a hole in a lower level-set follows a similar procedure. This

matching of holes to shapes in the complementary tree leads to the merging of the

two trees into a single tree-of-shapes.

As Monasse and Guichard (2000) describe in the original paper, the trivial case

for merging the trees is one in which a tree has no holes; therefore, the hole-less

tree is the merged tree-of-shapes, with the addition of the original image as the root

node. If holes exist in both trees, then shapes from one tree must be moved to the

complementary tree such that the holes in one are filled. The filled tree becomes the

merged tree-of-shapes. For a situation where hole H1 is in shape S1, one determines

if any of the children of S1 has a hole containing H1. If so, the hole is accounted for

in the original level-set. If not, the shape in the complementary tree corresponds to

H1, and all of its child shapes, are placed in the tree as a child of S1.

Monasse and Guichard (2000)’s FLLT algorithm’s output is a tree-of-shapes with

each node representing a level-set’s region ordered in such a way that each child is

completely contained inside its parent. With this tree, any pixel selected from the

image can be mapped to the smallest shape in the tree containing it. The runtime

complexity of the algorithm is based on the number of pixels in the original image, N .

The sweep of the algorithm visits each non-flagged pixel once, which is O(N) time.

The neighborhood that must be analyzed for each pixel is at most 8 pixels in size

and in the worst case, (N − C) pixels are neighbors of the level-set of pixel size C,

which is of O(N) runtime. To sort the gray-level of neighbors, a sorting algorithm of

O(N ∗ LG(N)) can be utilized. Determining if a reference pixel to a hole is required

can be done by following the border of a line, which can be done in linear time. The

algorithm’s runtime is therefore O(N ∗LG(N)). This is clearly superior to using the

brute force approach to finding level-sets, as if each level-set is a different intensity,

which requires O(N2) time.
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3.3.2 Classification Phase 1

Pan (2007) utilizes a two phase shape classification system to arrive at a final,

ranked list of candidate images during a classification procedure with a given target

image. The benefits of this approach are obvious from a performance and accuracy

standpoint. Performance is improved by filtering significantly different shapes in

an initial step and preventing the comparison of said shapes in the next phase, as

different information about the shape will be utilized in the two phases. Significantly

different shapes are discarded from further consideration in the first phase using a set

of floating point metrics that can be compared in linear time without the need for a

similarity measure. To improve upon previous work by Pan (2007), several metrics

that were susceptible to scale were removed, such as the level of a node in the tree

of shapes and the total number of descendants of a shape, which are impacted at the

bottom of the tree by a minimum surface area threshold that prevents these small

shapes from being considered. The system also now discards shapes whose parents

and and children are not sufficiently similar to the target shape’s relatives. In the

next phase, a more performance intensive comparison of the shape’s boundary is used

along with a similarity measure to generate a ranked list of candidate shapes from

the (typically much) smaller batch of candidate shapes generated during Phase 1.

The Phase 1 metrics are determined after the merger of the two trees and are stored

in their respective nodes such that they do not have to be recomputed during the

classification phase. Each shape has corresponding values for these metrics. Target

shape metrics are queried against a relational database table containing preclassified

shapes in a single SQL query. If properly indexed and implemented, this single query

comparing floating point metric values between a target shape and preclassified shapes

in a database can be quite efficient. One metric (Equation 3.4) was used from Pan

(2007)’s work; each is invariant to global contrast changes, position, rotation and

scale. Additional metrics, that of interior versus exterior intensity ratios (3.1) and
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the surface pixel area ratio of parent to child shape, were devised for this endeavor

and retain the same invariance to said transformations / conditions.

Equation 3.1 is a metric that measures the change in intensity of a given level-

set from its parent. The invariance to global contrast change is achieved by the

aggregating factor of the intensity of the level-set in the enclosing level-set. The metric

lacks any information regarding object position, orientation, or scale; therefore, it is

invariant to rotation, position and scale. This will help filter objects that are not

similar in terms of their intensity changes with their parents. An example would be

comparing a target pollen grain that contains pores darker than the pollen grain’s

body versus a pollen grain that contains pores lighter than the pollen grain’s body.

Those not containing light pores would be excluded. Let St be an unknown target

shape, Sp be the set of preclassified shapes, Sc be a set of candidate shapes with

Sc ⊆ Sp, Mi ∈ Q be the metric of a given shape Si and Cj,Ck ∈ R with Cj < Ck.

The intensity metric is defined as follows:

Mintensity(Si) = Intensity(Si)/(Intensity(Si−1) + C) (3.1)

Equation 3.2 is a metric that records the cumulative surface area of direct children of

a shape, normalized by its overall area. Since our segmentation algorithm is invariant

to global contrast changes, such a change should not impact the number of direct

children that a shape might contain. The metric stores no information about the

position or orientation of the shape or the children, so it is invariant to rotation.

Scale becomes an issue with this metric if one forms it on a shape near the base of a

tree, as the algorithm prevents children below a certain pixel surface area threshold

from being included in the tree. One can use slack to account for slight variations.

This will help filter objects that do not contain a certain number of interior features.

An example would be comparing a target pollen grain that contains a number of

pores (which are segmented as child shapes) versus a pollen grain that contains no

pores with a smooth surface. The smooth pollen grains would be excluded. Let Sj
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be the jth child shapes of shape Si. The cumulative child surface area ratio metric is

defined as follows:

Mccsar(Si) =
n∑
j=0

Child.Area(Sj)/Area(Si) (3.2)

Equation 3.3 measures the surface area ratio of a child relative to (divided by) its

parent. The division by the parent’s area acts as a aggregating factor that reduces

the impact of scale upon the image. The metric contains no information regarding

position or intensity (other than the fact the child is inside the parent); therefore, it

is invariant to rotation and global contrast change. An example would be comparing

a target pollen grain with a large pore (child shape) with a pollen grain with a

small pore, the pollen grains containing small pores could be excluded as they do

not occupy a sizable percentage of the pollen grain’s surface area. The relative area

metric is defined as follows:

Marea(Si) = PixelCount(Si)/P ixelCount(Si+1) (3.3)

Equation 3.4 provides a metric of boundary length, this is basically how large the

boundary of a shape is, aggregated by the shape’s area. Since it contains no intensity

or position information, it is invariant to rotation and global contrast changes. The

aggregation of the length of the boundary by its surface area reduces the impact of

scale changes for any shape that is reasonably large, measured by number of enclosed

pixels (which is guaranteed by minimum surface areas). An example of how this

metric could be employed would be in elongated shapes when comparing them to

round shapes. This is similar to Equation 3.3, but it does not include information

about the parent shape. The boundary to area metric is defined as follows:

Mbs(Si) = BoundaryLength(Si)
2/P ixelCount(Si) (3.4)
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As briefly mentioned above, there will be very slight differences in how the image is

segmented when an image of the same object is sampled at a different time under

different conditions. This is mostly due to differences in noise between the two images,

or global differences in the sampling caused by translation, rotation or scaling. While

the segmentation process is invariant to contrast, rotation and (mostly) scale, such

alterations can introduce noise or mapping issues that will cause slight variations on

the segmentation process. In the case of scale, the leaves of a tree may be eliminated

due to minimum surface area thresholds. This only impacts shapes near the bottom of

a tree, which can be compensated for by not including leaves or shapes close to them

in the search, save for special cases. The metrics therefore require a small amount

of slack to be added to their comparisons to account for this slight, unavoidable

variation. This slack is determined by the constants in Formula 3.5 - 3.8, with Formula

3.9 defining the final set of candidate shapes from the set of preclassified shapes.

Let M(St, Sp) be the metrics resulting from Equations 3.1, 3.2, 3.3 and 3.4 for

Shape collection Si between target shape St and preclassified shape Sp. Let C1 and

C2 be constants where C1 < 1 < C2. The Phase 1 search selections shapes Sp in

collection Si that satisfy the following constraints:

Sintensity(St, Si) = Sp ⊆ Si |M(St)C1 <= M(Sp) <= M(St)C2 (3.5)

Sccsar(St, Si) = Sp ⊆ Si |M(St)C1 <= M(Sp) <= M(St)C2 (3.6)

Sarea(St, Si) = Sp ⊆ Si |M(St)C1 <= M(Sp) <= M(St)C2 (3.7)

Sbs(St, Si) = Sp ⊆ Si |M(St)C1 <= M(Sp) <= M(St)C2 (3.8)

The set of candidate shapes that satisfy Equations 3.5, 3.6, 3.7 and 3.8 is given by:

Sc = Sintensity ∩ Scssar ∩ Sarea ∩ Sbs (3.9)
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By providing slack to the candidate criteria, the set is likely to contain the matching

shape as the metrics are (almost) invariant to global contrast and intensity, rotation

and scale changes. The problem is that a sizable number of shapes that do not

match the target shape are also returned, as a significant amount of information

is lost when limiting the comparison to these metrics. The metrics are determined

during the construction of the tree-of-shapes and stored in their respective nodes,

requiring O(N) operations for N shapes. Searching the database to determine Sc,

the set of candidate shapes takes at most O(N) where N is the number of shapes in

the preclassified shape database. With a database that indexes the shapes by their

metrics, the performance approaches O(LG(N)) time by exploiting the sorted tree

structure of the database index. At the conclusion of Phase 1, a set of candidate

shapes, Sc, has been determined, that, in practice, is significantly smaller than the

collection of preclassified shapes.

3.3.3 Classification Phase 2

The final phase of the classification procedure involves an intensive analysis of

the boundary of the shape. With the inclusion of Phase 1, this procedure is

only performed on a limited number of candidate shapes, with shapes drastically

different (measured using the metrics defined above) removed from consideration.

A transformed representation of the structure of the border is used to determine

the similarity between two boundaries. The boundary is represented in the frequency

domain rather than the spatial domain. From this representation, one can remove the

phase by considering only the magnitude of the Fourier transform to obtain rotation

invariance and use cosine similarity to generate the ranked list.

One first creates a vector of values that represent the details of the border, which

is currently stored as a vector of coordinates of the original image, in marching

order, inside the node of the tree-of-shapes that represents that shape thanks to

the FLLT algorithm. The alternative representation is based on centroid distance
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descriptors described by Zhang and Lu (2002). It can be pre-computed when each

shape is stored in the database. The border cannot be used directly, as a direct

comparison of the borders of the target and candidates would not be invariant to

scale or rotation. Invariance to global contrast changes is already accounted for as

the border comparison will not utilize any intensity information for its comparison.

As originally shown in Section 2.3.4, to begin the construction of this new

representation, one first determines the center of the shape by mean-centering the

points of the border (Formula 2.12), after which the coordinate (0, 0) is the center of

the shape (see C in Figure 2.13). For each point along the boundary, the radius in

pixels (see r1 and r2 in Figure 2.13) is computed and stored in a vector of the same

size as the number of points in the boundary array using Equation 2.14. To make

the system invariant to scale, the radius values are normalized by their combined

magnitude or l2 norm (Formula 2.13d). A cubic spline filter is used to sample a fixed

number of points. As described by Zhang and Lu (2002), the reduction is necessary

to utilize a consistent number of sample points for all shapes, regardless of size of the

boundary, as a normalization procedure, for noise reduction (smoothing), and to set

the number of sample points to a power of two (required by fast Fourier transform,

or FFT). The equation for cosine similarity requires the lengths of the two vectors

(candidate and target) to be the same.

This vector of normalized radii is transformed into the signal space using the

magnitude of the one-dimensional discrete Fourier transformation (DFT) as stated by

Gonzalez and Woods (2007) in Formula 2.11. The FFT is used for performance. The

phase is not used. This eliminates all dependence on rotation, making the resulting

Fourier descriptor (FD) invariant to rotation. After this operation, a fixed length

vector containing a descriptor of the boundary that is invariant to global contrast,

rotation and scale changes has been obtained and can be stored with its node in the

tree-of-shapes for expedited comparison during classification Phase 2.

During classification Phase 2, the Fourier descriptor of the target shape is

computed and compared using cosine similarity with the candidate shapes’ Fourier
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descriptors. The cosine similarity results in a R value (Formula 2.7) for each candidate

shape which will then be stored in a vector alongside a reference to the candidate

shape. This R value is squared, to gain a certain degree of separation in the values,

producing the R2 value. The list is then sorted, with the highest R2 value signifying

the most similar boundary, and displayed to the user.

3.4 Implementation

3.4.1 Overview

The proof-of-concept for the system described above is called the Shape and Image

Database (SID). SID consists of a command-line C++ application used to segment

and construct the tree-of-shapes (as well as associated metrics and descriptors), a

MySQL database to store and retrieve the segmented objects along with their metrics,

and a Java Swing desktop application to provide a graphical user interface (GUI) to

explore the segmented images and view the classification results. The development

and target platform is the Linux operating system, but the code can easily be

recompiled for other operating systems as the libraries and applications are cross-

platform. SID can make use of a client-server model: the database and segmentation

application can be housed on a central server, and the graphical client, utilized by end-

users, can reside on remote machines, as long as the server and the remote machines

can communicate via a wired or wireless network, or any other type of communication

channel.

3.4.2 Segmentation Application

The C++ segmentation application utilizes the Megawave Library, an open-source

image processing library from The Center for Mathematical Studies and their

Applications (CMLA). A module for this library, originally created by Monasse

and Guichard (2000) and extended by Pan (2007) implements the FLLT algorithm.
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Significant revisions were made to the library and module to improve stability,

robustness, introduce features and facilitate integration into the SID system. Cimg,

an open-source image processing library hosted on SourceForge.net, is used to handle

basic reading, writing and other operations upon images of various file formats

(typically, PNG). The open-source Alglib library by S. Bochkanov is used for the

cubic spline interpolation of the boundary of shapes. The open-source FFTW library

by M. Frigo is used to compute the Fourier transform of vectors of data. C++ was

the language of choice due to the availability of these libraries, speed, popularity, and

the author’s familiarity with the language. It should be noted that all descriptors

and metrics are computed and stored in the database during the construction of the

tree-of-shapes for each image as described in Chapter 3.

3.4.3 Database

MySQL serves as the information storage and retrieval system for SID. A relational

database management system (RDMS) such as MySQL has an appealing feature set

including quick and efficient storage and retrieval of information and APIs for Java

and C++ to access the data programmatically. By utilizing a database rather than

operating directly on files, the C++ and Java applications remain reasonably platform

independent, the amount of new code is reduced (code complexity is transferred to

the database vendor), and the design allows for rapid indexing of stored information

for quick retrieval using SQL commands. MySQL was chosen since it is comparable to

commercial database software and is free. To port SID to another database vendor,

the C++ and Java database interaction sections would require reimplementation

using the new database vendor’s API.

3.4.4 Graphical Shape Explorer

Java is used to implement the graphical front-end for SID (Figure 3.2) to display

the results of segmentation and to view the results of comparisons between shapes.
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Figure 3.2: Screenshot of SID’s shape explorer GUI

Java was chosen due to the author’s familiarity with developing GUI applications in

the language and its cross-platform capabilities. LITUTK, a general purpose Java

Swing library by The Laboratory for Information Technology at The University of

Tennessee, was used to provide basic functionality for the GUI (such as a desktop,

wrappers for the downloading of files, and resizing of images). The viewer is client-

side; therefore, the intense computational demands required by the segmentation

and comparison application are removed. Therefore, there is no need to have the

application execute natively on the platform and the platform invariant Java VM

can be utilized to provide a consistent GUI across any platform. More importantly,

Java Swing is often used in Rapid Application Development (RAD) methodologies for

GUI related tasks to reduce the amount of time required to develop the application.

Cosine similarity is performed on the descriptors by this application after retrieving

the candidate images.
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Chapter 4

Experiment and Results

4.1 Chapter Overview

The goal of this experiment is to explore design options and provide recommendations

for an object recognition system. Objects are defined as regions in images identified

by their boundaries and interiors, including objects contained within these interiors

(Section 2.2). They can be represented as nodes in a tree arranged by their geometric

inclusion (Section 2.3.7). The regions and the trees are determined using the FLLT

algorithm on the raw images (Section 3.3).

Object identification is attempted by comparing the features (metrics) of a target

object to those of previously identified objects stored in a database. A two-phase

process is developed to exploit the indexing capabilities of modern databases. The

first phase is performed as an SQL query on the database. The results are references

to candidate objects that have indexed features that are real-valued that are between

a set of specified upper and lower bounds (Section 3.3.2). The features are indexed by

the database to provide a logarithmic bound on complexity, or retrieval time, for each

search. This first phase is intended to exclude the majority of significantly dissimilar

objects in the database from further consideration.
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The second phase is more computationally demanding (Section 3.3.3). It compares

each candidate object returned during the first phase to the target object (object to be

identified). A comparison of one or more features can be used, and each comparison

yields a non-negative real number. A larger returned value implies the target and

candidate objects are more similar than the target and candidate objects that produce

smaller values, with respect to that specific feature. Computed similarity values

using different features of a candidate object can be combined using, for example, a

weighted linear combination. The resulting combined similarity measure can then be

used as sorting criteria for candidate objects by quantitatively determined similarity

to the target object, producing a ranked list of similar candidates. The second phase

requires a linear search, or evaluation of candidates, unless a similarity measure can

be precomputed, indexed, or bounded in a manner that excludes some candidates

from further consideration.

A design is explained and evaluated in this report that utilizes the features in

the list below for phase one. These attributes are selected in a manner that allows

them to be reasonably invariant to image scaling, translation, rotation and global

contrast and intensity changes (invariance is approximate because of discretization

effects). Surface area change ratio was omitted since the evaluation considers only

the smallest shape that completely captures the pollen-grain, therefore the surface

area ratio is undefined.

� Cumulative child surface area ratio

� Exterior / interior intensity change ratio

� Boundary / surface area ratio

� Average scaled radii length

The features selected for use by the second phase are the shape of the object’s

boundary and the texture of the interior of the object. The boundary feature

descriptor approach is fully implemented and evaluated in software. The texture
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region feature approach is provided as a point of reference for future improvements.

Both boundary and texture features should be implemented in a manner that causes

the computed similarity measures to be invariant to scaling, translation, rotation,

global contrast and intensity changes, as in phase one; otherwise, the flexibility added

by incorporating this requirement into previous stages is lost. There are many possible

design choices for the algorithms and data structures to be used for boundary and

texture similarity. Sections 4.5 and 4.6 provide results and discussion of experiments

that were performed in order to make informed choices for parameters to the image

classification system.

As a preliminary test, this software is used to process a database consisting

of images of pollen grains from different species that correspond to the pollen

morphological groups in the list below. Each image is transformed to produce five

different images, corresponding to a random scaling, translation, rotation, contrast

or intensity change. This results in a set of 120 images from the original 24 (not

including the original images). If the features and boundary similarity measures are

invariant to these transformations, then a search for matches to each image in the

database should yield four matching candidates (not including a self-match), and the

similarity measures for each pair of transformed images arising from the common

ancestor should all be equal (or nearly so, because of pixelation and non-one-to-one

mapping as described by Gonzalez and Woods (2007)) and larger relative to that

of any other candidate for that target object. The results of this test, where the

selected objects are the entire pollen grains in the image, are presented and discussed

in Section 4.7.

� inaperturate

� monoletes

� periporates

� triletes
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Section 4.8 documents the experimental design and results for a large evaluation of

the implemented design. Pollen images representative of the pollen morphological

groups of the list above are selected to form a database of 24 images. Each group is

represented by 3 pollen species, and there are two different images of pollen grains for

each species. The objective of the design is to develop software capable of classifying

pollen grain images into the correct pollen morphological group. A classification to the

species level is highly desirable, but is considered a separate problem as morphology

does not necessarily follow modern taxonomic hierarchy. Since SID is designed to be

used by a knowledgeable specialist, identification may be accomplished by at least

ranking a specimen of the correct group within the top ranked K (displayed) matching

candidates to a target object.

Section 3.4 describes the Shape and Image Database (SID) software and ancillary

software required to evaluate the two phase process, where only a boundary similarity

measure is used in the 2nd phase is given. The implemented design does not limit

the users to selection of a top-level object in the tree of shapes description of an

image. Any object may be utilized, within the limitations imposed upon the smallest

objects (in number of enclosed pixels) by image resolution. Thus, a user may select

image features (objects) that are likely to uniquely identify a pollen grain and search

for matching objects from the reference collection. This process is illustrated using

examples in Section 4.4.

It is recognized that use of only the boundary of objects in the second phase is an

extreme limitation. It can be expected that information derived from the interior of a

target object will provide significant improvements. Section 5.1.4 develops a method

for extraction of a feature vector that is invariant to the required transformations and

represent information about the texture of an object’s interior. It is believed that

this can provide a basis for future work and continued improvement of the Shape and

Image Database.
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4.2 Test Data Set

4.2.1 Morphological Groups

Pollen grain images, collected and imaged by Willard et al. (2004) for an atlas of

pollen species in Florida, were used in the experiment to determine the accuracy

and performance of the design options for the proof-of-concept software. The

collection was selected due to their well-prepared and well-photographed imagery of

individual pollen grains. The paper also classified the pollen into groups with distinct

physiological features. Six pollen grains from four morphological groups were selected

for a total of 24 images. The morphological groups include inaperturate, monoletes,

periporates and triletes. Kapp et al. (2000) describe inaperturates (Figure 4.1(a)) as

a pollen grain lacking apertures, monoletes (Figure 4.1(b)) as having a long single

”scar” on their surface, periporates (Figure 4.1(c)) as having many evenly distributed

pores and triletes (Figure 4.1(d)) as having a tri-radiate ”scar” on the surface.

4.2.2 Affine Transformations

An objective of the this image classification system is invariance to global changes

in intensity, contrast, scale, rotation and translation, as described in Section 2.3.1.

The different pollen grains in Figure 4.1 obviously experience such variations between

images, but since they are different pollen grains, the problem becomes more complex.

To test that the system’s invariances hold under the standard affine transformations,

each pollen grain from each of the groups in Figure 4.1 has random degrees of each of

the affine transformations applied artificially using the image processing capabilities

of PerlMagick (Figure 4.2).
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(a) Inaperturate (b) Monolete

(c) Periporate (d) Trilete

Figure 4.1: Sample pollen grains from each morpholical group used in the experiment.
Pollen grains collected and imaged by Willard et al. (2004)
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(a) Original Pteris vittata (b) Pteris vittata with a random
global contrast change

(c) Pteris vittata with a random
global intensity change

(d) Pteris vittata with a random
rotational change

(e) Pteris vittata
with a random scale
change

(f) Pteris vittata with a random
translation change

Figure 4.2: Pteris vittata with random affine transformations applied using
ImageMagick Studio’s PerlMagick. Pollen grains collected and imaged by Willard
et al. (2004)
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4.3 Segmentation

4.3.1 Methodology

As described in Section 2.2.1, image segmentation is the first step in this image classi-

fication procedure. A successful decomposition of an image into objects of significance

is vital for the proceeding steps of the classifier. The procedure encompasses both

the discovery of level-sets that form the objects and the construction of the tree-of-

shapes, as conducted by the FLLT Algorithm (Section 3.3.1). A visual inspection

and discussion of the results of the segmentation process are given below.

4.3.2 Results and Discussion

The segmentation procedure correctly captured the outer boundary of all pollen-

grains in the images, save for two. In the two failed cases, the pollen grain was

situated too close to the image frame and thus did not form a tree structure with

the pollen grain’s outline in the image as the parent shape, as shown in Figure 4.3.

This effect was successfully corrected by placing the pollen grain image in a larger

frame such that the border of the pollen grain does not approach the boundary

of the image. In several morphological groups, the FLLT segmentation procedure

successfully captured significant features of the pollen grains (Figure 4.4). These

significant features include identifying features for particular morphological groups.

A trilete’s scar was captured as an object in the tree of shapes in Figure 4.4(d).

Individual barbs of a periporate were captured as independent objects on the surface

of the pollen grain in Figure 4.4(c). The smooth surface texture of an inaperature

was captured in Figure 4.4(b). Finally, the distinguishing scar of a monolete was

isolated as shown in Figure 4.4(a). The individual barbs and surface features of the

periporates and scars of monoletes were typically captured. In certain cases, the edges

of the boundaries of significant features were distorted due to the depth of field blur

incurred by the microscope, thus possibly causing classification problems later on due

61



(a) The majority of the pollen
grain’s boundary captured by the
FLLT

(b) A portion of the pollen grain
in Figure 4.3(a) that failed to be
included

(c) Complete pollen grain captured
after reframing

Figure 4.3: A ”shattering” effect of a pollen grain’s FLLT segmentation when situated
near the image’s boundary. Pollen grains collected and imaged by Willard et al. (2004)
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(a) The distinguishing scar of a
monolete captured by the FLLT

(b) The smooth surface of a inaper-
ature captured by the FLLT

(c) A spike on the surface of a
periporate captured by the FLLT

(d) The distinguishing tri-radiate
scar of a trilete captured by the
FLLT

Figure 4.4: Capturing of significant features as independent objects in pollen grains
using the FLLT. Pollen grains collected and imaged by Willard et al. (2004)
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(a) Partial capturing of a distin-
guishing tri-radiate scar of a trilete
by the FLLT

(b) Partial capturing of a distin-
guishing tri-radiate scar of a trilete
by the FLLT

Figure 4.5: Failure of the FLLT to capture a significant pollen grain feature as a
single object. Pollen grains collected and imaged by Willard et al. (2004)

to the distinguishing features being in independent objects, causing distortions of

descriptors and metrics. Blurred boundaries between the surface of the pollen grain

and a significant feature on that surface can impact the isolation of said significant

features into the same region in the tree-of-shapes, as shown in Figure 4.5. The same

distortions of insignificant areas being in focus and significant features being out-of-

focus also caused the FLLT to capture insignificant crescent shaped regions (Figure

4.6) or superfluous areas between features of interest (Figure 4.7) at the expense of

fully capturing distinguishing features such as the triangular slit adjacent to the red

contour in Figure 4.7. The boundary of the pollen grain itself can contain significant

information. A ”spiky” boundary might indicate a periporate or a smooth boundary

might indicate an inaperature. If the microscope image has this outer boundary

out of focus, a spiky boundary can appear smooth and vice-versa (if certain surface

features brought into focus are rough), as shown in Figure 4.8. This observation can

be quantized by using the DC component of the Fourier transform of the boundary’s

centroid distance as described in Section 2.3.4. The DC component is the first element

of the Fourier transform and in the context of a centroid distance descriptor, it is the

average distance of the normalized (scale invariant) radii from the center of a shape to

64



Figure 4.6: Superfluous crescent segmentation of a pollen grain region by the FLLT.
Pollen grain collected and imaged by Willard et al. (2004)

Figure 4.7: Superfluous interior segmentation of a pollen grain by the FLLT. Pollen
grains collected and imaged by Willard et al. (2004)
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points along its border. Elementary geometry states that the average radii of a circle

is longer than that of other shapes of the same boundary length due to a circle having

a larger surface area than shapes of equivalent boundary size. It stands to reason that

smoother, circular shapes will have larger DC components than other, spiky shapes.

The experiment reflects this intuition as the DC components of the triletes segmented

with spiky boundaries (Figure 4.8(c) and Figure 4.8(d)) are roughly 30% lower than

the smooth trilete boundaries (Figure 4.8(a) and Figure 4.8(d)). The human observer,

without the aid of a red outline of the contour, would likely consider the shapes of

Figure 4.8 as having the same boundary as the human eye and mind can better

interpret the outline of a shape that might be somewhat out of focus.

4.4 Internal Object Exploration

4.4.1 Overview

An important benefit of tree-of-shape segmentation is the isolation of distinguishing

features into subobjects that can be compared individually to each other. The

subobjects can include the ”spiky” edges of a periporate, the tri-scar of the triletes

or the single scar of the monoletes. These comparisons can be used by themselves to

discover objects with similar internal features or they can be used in conjunction with

other metrics to measure similarity of the overall shape. In this section, one shows

these features captured and compared by the proof-of-concept software.

4.4.2 Results and Discussion

As demonstrated in Section 4.3, a number of distinguishing features were captured.

For periporates, the rough surface features that distinguish them are of the most

interest. The spines captured on the surface of a periporate are shown in Figure

4.9, with a red outline of that feature against the original image. The three spines

were among the top matches for one another with an R2 value of around .7. These
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(a) Boundary of a trilete captured
as smooth (DC 9.061)

(b) Boundary of a trilete captured
as smooth (DC 10.092)

(c) Boundary of a trilete captured
as spiky (DC 6.726)

(d) Boundary of a trilete captured
as spiky (DC 7.777)

Figure 4.8: Boundaries of pollen grains changing with differing focus depth when
segmented using the FLLT. Pollen grains collected and imaged by Willard et al.
(2004)
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Figure 4.9: Capturing of a spine on the surface of a periporate by the FLLT. Pollen
grains collected and imaged by Willard et al. (2004)

surface features were identified in both members of the same species of periporate,

with equivalent features, among the top matches, shown in Figure 4.10. Monoletes

have a distinguishing, single, long scar that is typically visible on their surfaces, as

noted in Section 4.2. This feature was captured in some images, as shown in Section

4.3. In Figure 4.11, the scar is matched to its equivalent scar in another monolete

with an R2 value over .8, among the top matches. Another top match arose as a

trilete, which has a scar similar to that of a monolete to the human observer due to

the position in which it was photographed. Triletes have a distinguishing, tri-radiate

scar that is typically visible on their surfaces, as noted in Section 4.2. Unfortunately,

for the majority of the cases, the scar failed to be captured in its entirety due to other

surface features incorporating the tri-radiate scar, as shown in Section 4.3. However,
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Figure 4.10: Successful matching of periporate surface features using the image
classification system. Pollen grains collected and imaged by Willard et al. (2004)

the triangular outer shape of several pollen grains in this group was useful in aiding

in the classification of triletes, as demonstrated in Section 4.8. Periporates, having

a smooth surface, lack distinguishing features that can be captured as subojects.

However, the texture of the region captured can be used to provide descriptors for a

region-based classifier, as described in Section 5.1.

4.5 Phase 1 Descriptors

4.5.1 Methodology

There are a number of different metrics available that can be quickly used to omit

significantly different shapes from consideration, as described in Section 3.3.2. In this

portion of the experiment, possible constraint values to use in Phase 1 are evaluated.

By limiting the values to a certain +/- percentage difference from the target value

being classified, one can eliminate significantly different shapes from consideration. If

the constraints are too loose, then a large number of non-matching shapes will result

and be considered in Phase 2, thus decreasing performance. If the constraints are too

tight, then potentially matching shapes will be excluded from consideration in Phase

2.
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(a) A scar captured in a monolete (b) A scar matched in a monolete

(c) Incorrect match with a
monolete-like scar in a Trilete

Figure 4.11: Successful matching of monolete surface features using the image
classification system. Pollen grains collected and imaged by Willard et al. (2004)

70



To determine ranges for each constraint, one first normalizes and mean-centers

the values of the raw TOS metrics. Since the TOS metric values will be determined

by a +/- percentage of the target’s metrics, the data can be best visualized after

normalization and as a distance from the mean (which is zero after mean-centering).

While the raw values for each morphological group can be orders of magnitude

different from each other, one still needs common constraints for Phase 1. The

common ranges are the +/- percentages of a target’s metrics discussed above, where

the raw number is multiplied by fixed percentages to yield an acceptable range of

values of the candidate shapes to be returned. The experiment in this chapter makes

use of the top-most shape of the pollen grain in the tree-of-shapes (the immediate child

of the original image), therefore the area ratio metric is excluded from consideration

and the evaluation of its worthiness is left to future work.

4.5.2 Results and Discussion

Boundary Size Ratio

As shown in Figure 4.12, the boundary size ratio values for each group fluctuate

between -0.2 and 0.65. All of the morphological groups are below 0.4, save for

periporates. A few of which have pronounced spiky edges significantly different from

the other members of the same morphological group, which cause smaller relative

surface areas for the size of their boundary. This is due to it being further from a

circle, which calculus states has the most surface area for the smallest boundary size.

The sizable difference between the maximum ratio and the minimum ratio in most

groups is accounted for by the focus of the boundary segmenting the edge as spiky in

some cases rather than smooth, as demonstrated in Section 4.3. An additional 20%

of slack is added to account for any additional noise or variation in segmentation,

therefore one considers a range of -0.25 to 0.8 about the average value or from .25 to

1.3 if shifted into the positive range. To reach the maximum value from the minimum

value and vice versa, the constraint percentage will be +/- 5.2x the original value.
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Figure 4.12: Value range for each morphological group’s boundary size ratio Phase 1
metric (normalized, mean-centered)

Cumulative Child Area Ratio

As shown in Figure 4.13, the cumulative child area ratio value fluctuates between 0.2

and -0.2. An additional 20% of slack is added to account for any additional noise or

variation in segmentation, therefore one considers a range of -0.25 to 0.25 about the

average value, 0.25 to 0.75 in the positive range. The resulting constraint will be +/-

3x the original value.

Average Boundary Radii (DC)

As shown in Figure 4.14, the cumulative child area ratio value fluctuates between 0.1

and -0.1. There is a sizable difference between the minimum and maximum values

in the triletes that is not as pronounced in the other morphological groups. This

is due to the focus level on the boundary of the shape, producing a spiky edge on

an otherwise smooth edge during segmentation, as demonstrated in Section 4.3. An

additional 20% of slack is added to account for any additional noise or variation

in segmentation, therefore one considers a range of -0.12 to 0.12 about the average
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Figure 4.13: Value range for each morphological group’s cumulative child area ratio
Phase 1 metric (normalized, mean-centered)

value, 0.12 to 0.36 in the positive range. The resulting constraint will be +/- 3x the

original value.

Intensity Ratio

As shown in Figure 4.15, the cumulative child area ratio value fluctuates between

-0.05 and 0.1. The minimum values and maximum values are closely aligned with

one another, as is expected since all images are against a white background with only

the highest level shape considered. In tests with different backgrounds, this metric

will likely not be useful for the top-most shape of a pollen-grain as it only provides

useful information in a consistent manner for shapes in the interior of pollen grains

(since it relies on intensity differences between the interior and exterior portions of a

shape’s boundary). Further research is necessary to determine the impact of different

backgrounds and the use of this metric on top-level shapes as well as the effectiveness

of it on interior shapes. An additional 20% of slack is added to account for any

additional noise or variation in segmentation, therefore one considers a range of -0.06
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Figure 4.14: Value range for each morphological group’s average boundary radii (DC)
Phase 1 metric (normalized, mean-centered)

to 0.12 about the average value, 0.06 to 0.24 in the positive range. The resulting

constraint will be +/- 4x the original value.

4.6 Phase 2 Descriptors

4.6.1 Methodology

The Phase 2 descriptors are derived using the Fourier transform of the centroid

distance boundary signature, as described in Section 2.3.3. The interpretation of

the values of this vector can be based on observations of the Fourier transforms of

other signals, as described by Gonzalez and Woods (2007). The first element is the

DC component, which for a centroid distance signature of the boundary represents

the normalized average length of the radii. The DC component, being a single real-

valued general descriptor of the boundary of the shape, is considered as a metric in

Phase 1. As noted in sections above, calculus teaches us that for shapes with the

same boundary length, this value is maximized as the shape approaches a perfect
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Figure 4.15: Value range for each morphological group’s intensity ratio Phase 1 metric
(normalized, mean-centered)

circle. The second-half of the values of the fast Fourier transform are a mirror image

of the first-half; thus, they can be excluded.

The lower elements (frequencies) represent areas of no change or slow change in

the radii, while the higher elements represent areas of rapid change in the radii. There

is the possibility of localized improper segmentation, producing a boundary that can

contain noise. As visualized in Figure 4.8, this noise can take the form of a highly

irregular boundary. By dropping some of these higher dimensions from the Fourier

descriptor, performance can be improved (less data to process by the classifier) and

noise can be reduced. This is, in effect, a low-pass filter that will result in the

smoothing of the boundary, as described by Gonzalez and Woods (2007).

There also remains the question of the minimum number of sample points along

the border that are required to gain an accurate picture of the shape of the boundary.

The sampling serves to place the descriptor into a fixed number of points, since the

boundaries vary in length, for future comparison by the classifier, which requires

vectors of the same length. In addition, the overall shape of the boundary needs to

be preserved, while reducing dimensions, thus decreasing computational complexity.
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This portion of the experiment attempts to determine an optimal number of sample

points of the boundary’s radii and the optimal number of dimensions to keep from

the FFT of the sampled radii vector. To explore this, many combinations of sample

size and Fourier descriptor dimension lengths were evaluated.

4.6.2 Results and Discussion

Sample Points

To evaluate the number of sample points that should be used to generate the Fourier

descriptor, the 24 test images were evaluated using powers of 2 from 8 to 512 for

the number of sample points. A number larger than 512 was not considered given

the size (in pixels) of the images in the test set. The first 1/4th of the vector was

retained, which is a common low-pass filtering technique in the frequency domain to

smooth a signal. The number retained is few enough to prevent noise from having a

significant impact and enough to ensure that an accurate description of the boundary

is preserved. The results in Figure 4.16 show that 256 sample points appear to be

ideal, as the accuracy decreases after that number as redundant noise is compounded.

Further examination of images of different sizes is required to determine if this number

remains optimal for significantly larger images than those in the test set, as the

sparsity of the sampling will increase as an image grows in size. If one visualizes the

results of the sampling upon the boundary, one sees that the edges of shapes become

significantly different from the original shape as one samples fewer points using cubic

spline interpolation. One must balance computational performance (fewer dimensions

that require an FFT) with retaining as much useful boundary information as possible

to create an accurate representation of the boundary in a lower dimensional space. As

depicted in Figure 4.18, one can see that the features of the original boundary remain

preserved at around the same number of 256 sample points shown to be effective at

providing an accurate description of the boundary.
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Figure 4.16: Accuracy evaluation results of varying the number of boundary sample
points (1/4 of dimensions kept)
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Figure 4.17: The boundary of a shape after normalizing its radii and mean-centering
(centroid as the origin)
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(b) 8 sample points
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(c) 16 sample points
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(d) 32 sample points
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(e) 64 sample points
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(f) 128 sample points
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(g) 256 sample points
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Figure 4.18: Results of a cubic spline sampling of the boundary in Figure 4.17 with
varying sample sizes
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Dimensionality Reduction

Having determined a satisfactory sample size, one begins to examine how many

dimensions one should keep from the Fourier descriptor. To do this, the same set of

test images was used with a 256 point sample size, and all possible reduced dimensions

for multiples of 2 from 2 to 128 dimensions were kept. As stated above, the higher

frequencies likely represent noise from improper segmentation due to blurring or other

distortions, with lower frequencies capturing the areas of slow change and points along

the spikes of a pollen grain (if present). As shown in Figure 4.19, after around the

32nd dimension, the benefits of adding higher frequencies vanishes and somewhat

further beyond, the average accuracy begins to decline due to the noise incurred by

inclusion of higher frequencies. By lowering the dimensions kept to 32, one can not

only reduce the impact of this noise, but also improves the performance as the vectors

being compared are significantly smaller. The effectiveness is expected to remain if

the number of sample points is increased, although, further experimentation would

be necessary verify this. To visualize the effects of Fourier descriptor dimensionality

reduction, a boundary was plotted in Figure 4.20 with various numbers of dimensions

retained. As one can see, the low-pass filter smooths the edges of the sampled

boundary as one decreases the number of higher dimensions retained. With 128-

dimensions retained, one can see that the boundary resembles the original (including

much of the noise) image in Figure 4.17. As one decreases the dimensions retained,

one can see that the shape is smoothed to the point that it becomes a circle when

only the DC component is used. The dimensionality retention determined above, 32,

visually appears to capture the overall shape without significant amounts of noise.
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from a boundary’s Fourier descriptor (256 sample points)
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(a) 2 dimensions
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(b) 4 dimensions
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(c) 8 dimensions
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(d) 16 dimensions
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(e) 32 dimensions
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(f) 64 dimensions
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Figure 4.20: Results of a 256-point cubic spline sampling of the boundary in Figure
4.17 with various Fourier descriptor dimensions retained
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4.7 Affine Transformation Invariance

4.7.1 Methodology

The first test of the performance of the image classification proof-of-concept software

will be to determine if the centroid distance Fourier descriptors of Phase 2 are

invariant to the affine transformations described in Section 2.3.1. Each pollen grain

in the set is transformed using each type (scale, rotation, translation, global contrast

and intensity change) by a Perl script with PerlMagick’s image processing library.

This results in 144 pictures (counting the original) from the original 24. If the

system is invariant to these changes, then each of the related images will have a

R2 similarity value greater than .95 (approaching 1) with the original image, and

other images will rank significantly less. Since the transformations are artificial,

significant noise is introduced if the data is interpolated / extrapolated for non-one-

to-one mappings, which is most prominent with scaling. Experimental verification of

Phase 1 descriptors are not considered and will be evaluated in detail in future work,

as the constraints determined in Section 4.5 are considered sufficiently generous.

4.7.2 Results and Discussion

Summary

A summary of the accuracy for the centroid distance Fourier descriptors amongst

the different categories of transformations is shown in Figure 4.21, with each bar

representing a transformation and its height showing how many have R2 similarity

values approaching 1 with their original image. In general, image transformations

that resulted in a one-to-one mapping of the original image to the transformation

produced results consistent with the system being invariant to the transformations

mentioned above. Once interpolation / extrapolation of non-one-to-one mappings

took effect in select transformations, the performance suffers, due to the noise incurred

by the interpolated / extrapolated data causing the FLLT to segment the (sometimes
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Figure 4.21: Percentage of transformed images that (near) perfectly match (R2 greater
than .95) their original images using centroid distance Fourier descriptors

blurred) boundaries differently. Separation between transformations of the original

pollen grain and different pollen grains was significant, with no image derived from a

different pollen grain achieving an R2 value of greater than .95. Pollen grain image

transforms of different images are nearly always lower in R2 value than those of

the same pollen grain image (with the possible exception of rotation transforms),

typically in the lower .8 range or lower. Details of the results from the experiment

are in Appendix B.

Rotation

The centroid distance boundary Fourier descriptors of the shape proved to be

completely invariant to rotation with all rotated images approaching an R2 value of

near 1. This transformation had perfect one-to-one mapping and no interpolation or

extrapolation when only random rotations of multiples of 90 °are considered. Gonzalez

83



(a) Boundary of an periporate (DC
4.283)

(b) Boundary of the same peripo-
rate with global intensity change
(DC 5.78)

Figure 4.22: Intensity changes causing FLLT segmentation differences. Pollen grains
collected and imaged by Willard et al. (2004)

and Woods (2007) demonstrate that other artificial rotations do not result in one-to-

one mappings, and the frame of the image itself must be altered to accommodate the

image’s new dimensions.

Global Intensity

Images with global intensity changes achieved an R2 value approaching 1 about 68%

of the time. This drop in accuracy is caused by the blurred regions close to the

original boundary becoming significantly different from the border and/or boundary,

thus being included in a differing region during the segmentation process. In the case

of increasing intensity, the blurred areas near the boundaries become more intense

(thus more like the background) more quickly than the object (being dark and thus

lower in intensity value) after increasing overall intensity by a scalar percentage, as

shown in Figure 4.22.

Global Contrast

Images with global contrast changes achieved an R2 similarity value close to 1 with

their original image about 92% of the time. Significant changes in contrast coupled

with boundaries not in perfect focus caused the FLLT algorithm to determine different
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Figure 4.23: Pollen grain in Figure 4.22(a) with a global contrast change (DC 4.493)
causing differences in FLLT segmentation

borders by inclusion / exclusion of pixels near the transitional border region of some,

as shown in Figure 4.23.

Translation

The centroid distance boundary Fourier descriptors of the shape proved to be invariant

to rotation with all translated images approaching an R2 value of near 1. The

translation technique used resulted in a one-to-one mapping and did not involve

any interpolation. In translation techniques involving non-one-to-one mappings (and

thus extrapolation or interpolation), the accuracy decreased drastically to between

40% to 60%. Images taken in the system should be expected to behave more like the

former rather than the artificially processed images with the use of optics or physical

positioning over digital transformations that tend to incur interpolation.

Scaling

Scaling affine transformations achieved a 25% accuracy rate for R2 matches near unity.

The interpolation / extrapolation effects of non-one-to-one mappings impact scaling

greatly, causing the boundaries to become deformed when compared to their original

images (Figure 4.24). Typically, the R2 values are higher than those of unrelated

images, but fall short of approaching an R2 value of 1. For example, the scaled pollen

grain in Figure 4.24 has an R2 value of 0.9, and thus was excluded from consideration.
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Figure 4.24: Scaling of the pollen grain in Figure 4.22(a) (DC 4.438) causing
differences in FLLT segmentation

4.7.3 Conclusion

From the results, it becomes evident that spatial interpolation has a significant

adverse impact on the FLLT segmentation of an image and, by extension, the

classifiers that make use of descriptors derived from the boundaries of the segmented

objects. Image transformations with one-to-one mappings and no interpolation

did not segment differently, achieving R2 values approaching 1 with the original

image. Image transformations with limited non-one-to-one mappings, such as

sinusoidal contrast changes and scalar intensity changes (more so, due to higher

intensity values being multiplied by the scalar), experienced limited differences in

segmentation. Transformations with significant spatial interpolation, such as scaling,

suffered the most and were segmented significantly differently in many cases. Further

experimentation is needed to verify that the issues of differing segmentation arise

when one uses a more advanced (fair) intensity altering transform rather than scalar

multiplication.

4.8 Morphological group classification

4.8.1 Methodology

The group classification test will determine if the image classification system is capable

of classifying a pollen grain into its proper morphological group using both Phase 1
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and Phase 2 classification. The constraints determined in Section 4.5 will be used for

the TOS metrics in Phase 1 and a sample size of 256 with 32 dimensions retained

will be used in Phase 2, per the experimental results in Section 4.6. Only the cosine

similarity measure of the FD descriptors is considered with Phase 1 being used entirely

to determine candidate shapes, future work will determine an optimal weighing of a

similarity measure generated by comparing TOS metrics and the similarity measure

of the Fourier descriptor. Each pollen grain image will be used as a target image to

compute the R2 values resulting from the classification procedure for all images and

all shapes. Only the smallest shape that captures the overall pollen grain is used for

each target, but it is compared to all of the shapes / child shapes. A pair of different

pollen grains from the same species is present within each morphological group, as

described in Section 4.2.

4.8.2 Results and Discussion

Summary

A member of the same morphological group was the top matched shape in 18/24

instances by R2 value. A trained human observer is easily able to determine the

correct morphological group match based on the top 3 results as a member of the

proper group is present in the top 3 results of each comparison. In 19/24 cases, the

majority of the top 3 matches were of the same morphological group. In 20/24 cases,

the pair image of a pollen grain of the same species as the target is in the top 3, with

8/24 instances of the same species being the top match.

Monoletes

Pairs of the same species are the top match of each other in all but one case. The

monoletes correctly matched to other members of its own morphological group in

5/6 of the test cases. In the one case where the top match was not of the same

morphological group, inaperturate grains occupied the majority of the top 3 positions
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in the ranking. In that case, the edges of the target monolete pollen grain were

quite smoothed compared to the other pollen grain images due to the level of focus.

This likely impacted the ability of the Fourier descriptor to properly identify the

shape’s outer morphological structure as the smooth exterior was quite similar to

its top matches from the inaperturate group. The blurring effect on segmentation is

examined in Section 4.3.

Trilete

In each trilete image, the matching species pair is in the top 3 results by R2 value.

In 4/6 of the cases, the top match is a member of the same morphological group. In

5/6 cases, the majority of the top 3 matches are in the same morphological group.

The species pair that failed to have a member of the same morphological group as its

top result was drastically different from other species pairs of the same morphological

group to the casual human observer and they could be mistaken for Monoletes and

Inapertures, as the classifier matched them. The differences between Acrostichum

danaeifolium and the other triletes can be observed in Appendix A.

Inaperturate

A member of the same species is in the top 3 results of 5/6 of the inaperturate test

cases. A member of the same morphological group is the top match in 3/6 of the

cases with the majority of the top 3 matches being from the proper morphological

group in 3/6 cases. In each of the failing cases, the inaperturates were mismatched

to monoporates, which are visually similar to inaperturates, as seen in Appendix A.

The single failing case of the monoletes mismatched to the inaperturate group, further

indicating similarity between the two groups.
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4.8.3 Periporate

Periporates did the best of all morphological groups, with members of the same

morphological group occupying the top R2 value in each test case. In addition, the

top 3 matches in all cases were of the proper morphological group. The pairing image

of the same species appeared in the top 3 results of the periporate test cases 5/6 of

the time. The pollen grains in this group contain many spikes and barbs along their

surfaces, as such their outer borders share a similar pattern with one another.

4.9 Conclusion

In this chapter, the strengths and weaknesses of the FLLT segmentation of pollen

grains were demonstrated and analyzed. Tree-of-shape Phase 1 metrics were evaluated

to determine optimal constraints with an emphasis on preventing members of the

proper morphological groups from being excluded from consideration. Future work

will focus on striking a balance between this rather conservative approach and more

aggressive settings to eliminate more significantly different candidate shapes from

consideration. Sample size and dimensionality retention parameters for centroid

distance Fourier descriptors were evaluated and determined to be mostly invariant

to affine transformations that did not involve significant spatial interpolation. Pollen

morphological group matching using Phase 1 and Phase 2 classification was evaluated

and found to be considerably accurate when one considers the information available

to the classifier. In Chapter 5, methods are proposed to further refine and improve

the implemented image classification system.
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Chapter 5

Conclusion

5.1 Future Work

5.1.1 Distinguishing Feature Capture

The first challenge is improving upon the capture of distinguishing features as shapes.

If a technique could be developed to merge geometrically adjacent shapes that form

a region of significance as one shape, then that shape could then become a valuable

descriptor of a given object in an image. For example, the triletes described by Kapp

et al. (2000) have a distinguishing three-pointed scar on their surface. The image

segmentation program currently captures such features as multiple shapes, as can

be observed in Figure 5.1. However, a step to perform ”shape linking” resembles

an approach that implicit active contour models had hoped to avoid, edge linking

(Section 2.3.3). A better approach would be to make the algorithm less sensitive to

subtle changes in intensity or to implement a heuristic to predict adjacent shapes that

should be merged during tree-of-shapes construction.
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Figure 5.1: A trilete’s distinguishing feature fragmented in capturing. Pollen grain
imaged by Willard et al. (2004)

Figure 5.2: Periporate’s repetitive distinguishing features. Pollen grain imaged by
Willard et al. (2004)

5.1.2 Repetitive Internal Feature Descriptor

Another method may prove useful in identifying shapes with repetitive features, such

as the spikes in Figure 5.2. A system to discover repetitive features that are the

descendants of a larger shape could be developed to store, as metrics, their numbers

and boundary descriptors. Such descriptors could be stored in the parent node to be

quickly analyzed during an image search.

5.1.3 Subtree Comparison

A drawback of the image classifier created by Pan (2007) is that the user is required

to select a shape in a given target image to compare to the candidate shape collection.

The Shape Explorer tool allows one to use SID to select individual component shapes

for comparison and view the results of the classification procedure on those shapes.
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SID was not deeply impacted by this same limitation as the images examined had

only one object present in the image against a white background, so only the child

of the parent image was automatically selected for comparison. As one attempts to

expand this system to include multiple independent objects in the same image, this

limitation will become evident in SID as well. This shortcoming can be addressed by

utilizing a multilevel analysis of the tree-of-shapes. Shapes from the root down of the

target image can be compared to ”generations” of shapes in the image database in

a recursive comparison of subtrees. For example, given a global candidate match in

Phase 1, the children of both the target and the candidate will be recursively traversed

and compared to one another with the similarity of the subtrees used in the final R2

similarity measure. For objects that contain subobjects, this procedure becomes a

region-based method, but for relatively smooth objects without subobjects, region

descriptors that make use of the texture within the object are required.

5.1.4 Region Descriptors

As stated in Section 2.3, region descriptors hold the potential to describe the internal

features of shapes, even those that do not contain subobjects. The texture of the

shape’s interior can be analyzed to generate a region descriptor that can be utilized

by a classifier to generate a similarity measure. A method has been devised that would

allow the sampling of the intensity of the internal structures of the shape in a manner

than is invariant to scale, rotation, translation, global contrast and intensity changes.

The shape is mean-centered to position the centroid of the shape at coordinate point

(0,0), which eliminates variance to translation. The intensity values of the shape

are normalized to reduce global intensity change variance. From the centroid, one

then takes a fixed number of equally spaced pixel neighborhood intensity samples,

as shown in Figure 5.3. By equally spacing the neighborhoods of sample points

based on the radii length, one eliminates scale variance. One then filters the sampled

pixel neighborhood with, for example, a median filter, to reduce the number of data
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Figure 5.3: Shape outline with radii in red and sample neighborhoods in blue

points and to reduce noise (a smoothing of the interior of the shape). The value(s)

resulting from this filter are then placed in a vector. This process would be repeated

for a fixed number of radii of equal angle from one another across the surface of the

shape. The attribute vector is then transformed into the frequency domain by a FFT.

Dimensions are reduced (the number of which to reduce requires experimentation to

determine) to reduce the impact of noise and to improve computational performance,

as with the Fourier boundary descriptors in Section 2.3.4. Only the magnitude of the

resulting frequency vector is kept to remove rotation variance. The resulting vector

is then compared using cosine similarity to the region descriptor of other shapes

generated using the same method, in a manner similar to Phase 2 of SID (Section

3.3.3). This additional phase should greatly aid with the classification of shapes that

have generally smooth surfaces, like inaperturates, as well as providing additional

information to the classifiers of other shapes.

5.1.5 Phase 1 Descriptors

The Phase 1 classification remains somewhat unexplored and much room for

improvement exists. A detailed exploration of the metrics by a Principle Component

Analysis (PCA) could offer insight into which metrics are useful and suggest which

ones can be discarded to remove noise and improve performance. A deeper analysis

could produce a weighting scheme to be used in conjunction with a similarity measure

in Phase 2 to allow metrics that more distinctively capture shape information to be
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weighted more heavily than those with lesser capabilities. Different metrics can also

be introduced that help to describe the shape and not add too much computational

complexity to the phase one comparison.

5.2 Closing Remarks

Pollen images were matched to members of their morphological group 75% of the

time, with a member of the proper morphological group present in the top 3 results

by R2 value in every experiment. Two or more out of the top three results of each

test image belonged to the proper morphological group 80% of the experiments

conducted with the pairing image of the same species appearing in the top three

results 85% of the time. The goal of achieving image invariance to rotation,

translation, global contrast and intensity changes was shown by experiment to be at

least partially successful. Further evaluation of scale changes with images captured

using optical magnification rather than digital image pixel interpolation is required

to fully verify scale invariance, but current experimental evidence shows promise,

and the techniques used are theoretically invariant to scale. Various parameters for

the classifier were evaluated with the results of their impact upon the accuracy of

classification demonstrated. With the ideas outlined in Section 5.1, it is possible for

this classification system to significantly improve.
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Appendix A

Pollen Image Test Set

A.1 Overview

The following images were used in the classification experiment discussed in Chapter

4. All pollen grains were collected and imaged by Willard et al. (2004). They

are divided into their morphological groups. The images with artificial affine

transformations applied are images from the same data set that were transformed

using ImageMagick Studio’s PerlMagick to add translation, rotation, scale and global

contrast and intensity changes; they can be found in Section 4.1.
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(a) pistia stratiotes (b) pistia stratiotes (c) rhynchospora colorata

(d) rhynchospora colorata (e) schoenoplectus taber-
aemontani

(f) schoenoplectus taber-
aemontani

Figure A.1: Inaperturate pollen grains used in this experiment
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(a) blechnum serrulatum (b) blechnum serrulatum (c) phlebodium aureum

(d) phlebodium aureum (e) thelypteris kunthii (f) thelypteris kunthii

Figure A.2: Monolete pollen grains used in this experiment
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(a) ipomoea pes-caprae (b) ipomoea pes-caprae (c) polygonum
densiflorum

(d) polygonum
densiflorum

(e) polygonum
hydropiperoides

(f) polygonum
hydropiperoides

Figure A.3: Periporate pollen grains used in this experiment
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(a) acrostichum
danaeifolium1

(b) acrostichum
danaeifolium1

(c) pteris longifolia

(d) pteris longifolia (e) pteris vittata (f) pteris vittata

Figure A.4: Trilete pollen grains used in this experiment
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Appendix B

Affine Transform Results

B.1 Overview

This appendix contains the top 10 matches in a comparison of each original image to

the other images in the affine transform test set using their centroid distance Fourier

descriptors. Translation, rotation and, to a lesser extent, global contrast and intensity

transformed images typically score close to 1 (exact match) with their original image.

Images with changes in scale tend to score significantly less. Transforms of different

images typically score significantly less than either. A full analysis of the results listed

in this appendix is provided in Section 4.7.
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B.2 Results

B.2.1 Acrostichum danaeifolium1

Transform Type Species Image R2 Value

contrast Acrostichum danaeifolium1 1.0000

translation Acrostichum danaeifolium1 1.0000

rotation Acrostichum danaeifolium1 0.9999

scale Acrostichum danaeifolium1 0.8237

scale Acrostichum danaeifolium2 0.7366

intensity Acrostichum danaeifolium2 0.7277

translation Acrostichum danaeifolium2 0.7277

rotation Acrostichum danaeifolium2 0.7253

scale Pteris vittata1 0.7017

scale Pteris longifolia1 0.6641

B.2.2 Acrostichum danaeifolium2

Transform Type Species Image R2 Value

translation Acrostichum danaeifolium2 1.0000

intensity Acrostichum danaeifolium2 1.0000

rotation Acrostichum danaeifolium2 0.9960

scale Acrostichum danaeifolium2 0.8454

rotation Pteris vittata2 0.7843

contrast Pteris vittata2 0.7759

translation Pteris vittata2 0.7759

rotation Acrostichum danaeifolium1 0.7283

contrast Acrostichum danaeifolium1 0.7277

translation Acrostichum danaeifolium1 0.7277

105



B.2.3 Blechnum serrulatum1

Transform Type Species Image R2 Value

contrast Blechnum serrulatum1 1.0000

intensity Blechnum serrulatum1 1.0000

translation Blechnum serrulatum1 1.0000

scale Blechnum serrulatum1 0.9870

rotation Blechnum serrulatum1 0.9811

rotation Pistia stratiotes1 0.8572

contrast Pistia stratiotes1 0.8569

intensity Pistia stratiotes1 0.8569

translation Pistia stratiotes1 0.8569

scale Pistia stratiotes1 0.8167

B.2.4 Blechnum serrulatum2

Transform Type Species Image R2 Value

translation Blechnum serrulatum2 1.0000

contrast Blechnum serrulatum2 1.0000

intensity Blechnum serrulatum2 1.0000

rotation Blechnum serrulatum2 0.9843

contrast Phlebodium aureum2 0.8102

intensity Phlebodium aureum2 0.8102

translation Phlebodium aureum2 0.8102

rotation Phlebodium aureum2 0.8101

rotation Thelypteris kunthii2 0.7481

contrast Thelypteris kunthii2 0.7474
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B.2.5 Ipomoea pes-caprae1

Transform Type Species Image R2 Value

translation Ipomoea pes-caprae1 1.0000

rotation Ipomoea pes-caprae1 0.9993

scale Ipomoea pes-caprae2 0.7071

intensity Polygonum hydropiperoides1 0.6303

scale Ipomoea pes-caprae1 0.5943

scale Polygonum densiflorum2 0.5858

rotation Polygonum densiflorum2 0.5820

contrast Polygonum densiflorum2 0.5537

intensity Polygonum densiflorum2 0.5537

translation Polygonum densiflorum2 0.5537

B.2.6 Ipomoea pes-caprae2

Transform Type Species Image R2 Value

contrast Ipomoea pes-caprae2 1.0000

intensity Ipomoea pes-caprae2 1.0000

translation Ipomoea pes-caprae2 1.0000

rotation Ipomoea pes-caprae2 0.9959

scale Ipomoea pes-caprae2 0.7421

scale Acrostichum danaeifolium1 0.6326

intensity Ipomoea pes-caprae1 0.5916

scale Pteris vittata1 0.5814

contrast Pteris vittata2 0.5602

translation Pteris vittata2 0.5602
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B.2.7 Phlebodium aureum1

Transform Type Species Image R2 Value

contrast Phlebodium aureum1 1.0000

intensity Phlebodium aureum1 1.0000

translation Phlebodium aureum1 1.0000

rotation Phlebodium aureum1 0.9917

scale Phlebodium aureum1 0.8421

contrast Phlebodium aureum2 0.8287

intensity Phlebodium aureum2 0.8287

translation Phlebodium aureum2 0.8287

rotation Phlebodium aureum2 0.8284

rotation Schoenoplectus taberaemontani2 0.8035

B.2.8 Phlebodium aureum2

Transform Type Species Image R2 Value

contrast Phlebodium aureum2 1.0000

intensity Phlebodium aureum2 1.0000

translation Phlebodium aureum2 1.0000

rotation Phlebodium aureum2 1.0000

contrast Phlebodium aureum1 0.8287

intensity Phlebodium aureum1 0.8287

translation Phlebodium aureum1 0.8287

scale Phlebodium aureum1 0.8223

intensity Rhynchospora colorata1 0.8172

rotation Phlebodium aureum1 0.8122
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B.2.9 Pistia stratiotes1

Transform Type Species Image R2 Value

contrast Pistia stratiotes1 1.0000

intensity Pistia stratiotes1 1.0000

translation Pistia stratiotes1 1.0000

rotation Pistia stratiotes1 0.9942

scale Pistia stratiotes1 0.9171

scale Blechnum serrulatum1 0.8641

contrast Blechnum serrulatum1 0.8569

intensity Blechnum serrulatum1 0.8569

translation Blechnum serrulatum1 0.8569

rotation Blechnum serrulatum1 0.8529

B.2.10 Pistia stratiotes2

Transform Type Species Image R2 Value

contrast Pistia stratiotes2 1.0000

translation Pistia stratiotes2 1.0000

rotation Pistia stratiotes2 0.9965

scale Pistia stratiotes2 0.8112

rotation Blechnum serrulatum1 0.7881

scale Blechnum serrulatum1 0.7644

contrast Pistia stratiotes1 0.7639

intensity Pistia stratiotes1 0.7639

translation Pistia stratiotes1 0.7639

rotation Thelypteris kunthii1 0.7568
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B.2.11 Polygonum densiflorum1

Transform Type Species Image R2 Value

translation Polygonum densiflorum1 1.0000

contrast Polygonum densiflorum1 1.0000

rotation Polygonum densiflorum1 0.9956

scale Polygonum densiflorum2 0.8112

rotation Polygonum densiflorum2 0.7960

contrast Polygonum densiflorum2 0.7832

intensity Polygonum densiflorum2 0.7832

translation Polygonum densiflorum2 0.7832

scale Polygonum densiflorum1 0.7566

intensity Polygonum densiflorum1 0.7316

B.2.12 Polygonum densiflorum2

Transform Type Species Image R2 Value

contrast Polygonum densiflorum2 1.0000

intensity Polygonum densiflorum2 1.0000

translation Polygonum densiflorum2 1.0000

rotation Polygonum densiflorum2 0.9901

scale Polygonum densiflorum2 0.9032

contrast Polygonum densiflorum1 0.7832

translation Polygonum densiflorum1 0.7832

rotation Polygonum densiflorum1 0.7832

translation Pteris longifolia1 0.7139

contrast Pteris longifolia1 0.7139
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B.2.13 Polygonum hydropiperoides1

Transform Type Species Image R2 Value

contrast Polygonum hydropiperoides1 1.0000

translation Polygonum hydropiperoides1 1.0000

rotation Polygonum hydropiperoides1 0.9965

scale Polygonum hydropiperoides1 0.9655

rotation Polygonum hydropiperoides2 0.6492

contrast Polygonum hydropiperoides2 0.6481

intensity Polygonum hydropiperoides2 0.6481

scale Polygonum hydropiperoides2 0.6481

translation Polygonum hydropiperoides2 0.6481

contrast Thelypteris kunthii2 0.6423

B.2.14 Polygonum hydropiperoides2

Transform Type Species Image R2 Value

translation Polygonum hydropiperoides2 1.0000

contrast Polygonum hydropiperoides2 1.0000

intensity Polygonum hydropiperoides2 1.0000

scale Polygonum hydropiperoides2 1.0000

rotation Polygonum hydropiperoides2 0.9954

rotation Polygonum densiflorum2 0.6831

scale Polygonum densiflorum2 0.6714

contrast Polygonum densiflorum2 0.6573

intensity Polygonum densiflorum2 0.6573

translation Polygonum densiflorum2 0.6573
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B.2.15 Pteris longifolia1

Transform Type Species Image R2 Value

contrast Pteris longifolia1 1.0000

intensity Pteris longifolia1 1.0000

translation Pteris longifolia1 1.0000

rotation Pteris longifolia1 0.9949

scale Pteris vittata1 0.8089

scale Polygonum densiflorum2 0.7580

rotation Pteris vittata1 0.7503

contrast Pteris vittata1 0.7491

intensity Pteris vittata1 0.7491

translation Pteris vittata1 0.7491

B.2.16 Pteris longifolia2

Transform Type Species Image R2 Value

contrast Pteris longifolia2 1.0000

translation Pteris longifolia2 1.0000

rotation Pteris longifolia2 0.9923

intensity Pteris longifolia2 0.9840

scale Pteris longifolia2 0.9773

rotation Pteris vittata1 0.7136

rotation Acrostichum danaeifolium2 0.7066

translation Acrostichum danaeifolium2 0.7046

intensity Acrostichum danaeifolium2 0.7046

contrast Pteris vittata1 0.7020
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B.2.17 Pteris vittata1

Transform Type Species Image R2 Value

contrast Pteris vittata1 1.0000

intensity Pteris vittata1 1.0000

translation Pteris vittata1 1.0000

rotation Pteris vittata1 0.9886

rotation Pteris longifolia1 0.7721

translation Pteris longifolia1 0.7491

contrast Pteris longifolia1 0.7491

intensity Pteris longifolia1 0.7491

scale Pteris vittata1 0.7323

scale Acrostichum danaeifolium1 0.7193

B.2.18 Pteris vittata2

Transform Type Species Image R2 Value

contrast Pteris vittata2 1.0000

translation Pteris vittata2 1.0000

rotation Pteris vittata2 0.9947

scale Pteris longifolia1 0.8279

intensity Acrostichum danaeifolium2 0.7759

translation Acrostichum danaeifolium2 0.7759

rotation Acrostichum danaeifolium2 0.7667

scale Pteris vittata2 0.7327

intensity Polygonum densiflorum1 0.6777

scale Acrostichum danaeifolium1 0.6730
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B.2.19 Rhynchospora colorata1

Transform Type Species Image R2 Value

contrast Rhynchospora colorata1 1.0000

translation Rhynchospora colorata1 1.0000

rotation Rhynchospora colorata1 0.9998

scale Rhynchospora colorata1 0.7835

scale Pistia stratiotes2 0.7292

contrast Schoenoplectus taberaemontani2 0.6993

intensity Schoenoplectus taberaemontani2 0.6993

translation Schoenoplectus taberaemontani2 0.6993

rotation Schoenoplectus taberaemontani2 0.6981

contrast Phlebodium aureum1 0.6899

B.2.20 Rhynchospora colorata2

Transform Type Species Image R2 Value

contrast Rhynchospora colorata2 1.0000

intensity Rhynchospora colorata2 1.0000

translation Rhynchospora colorata2 1.0000

rotation Rhynchospora colorata2 0.9929

scale Rhynchospora colorata2 0.8337

scale Thelypteris kunthii2 0.8153

rotation Phlebodium aureum2 0.8093

contrast Phlebodium aureum2 0.8092

intensity Phlebodium aureum2 0.8092

translation Phlebodium aureum2 0.8092
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B.2.21 Schoenoplectus taberaemontani1

Transform Type Species Image R2 Value

contrast Schoenoplectus taberaemontani1 1.0000

translation Schoenoplectus taberaemontani1 1.0000

rotation Schoenoplectus taberaemontani1 0.9981

scale Schoenoplectus taberaemontani1 0.9820

intensity Schoenoplectus taberaemontani1 0.8482

scale Schoenoplectus taberaemontani2 0.6297

rotation Schoenoplectus taberaemontani2 0.5946

contrast Schoenoplectus taberaemontani2 0.5845

intensity Schoenoplectus taberaemontani2 0.5845

translation Schoenoplectus taberaemontani2 0.5845

B.2.22 Schoenoplectus taberaemontani2

Transform Type Species Image R2 Value

contrast Schoenoplectus taberaemontani2 1.0000

intensity Schoenoplectus taberaemontani2 1.0000

translation Schoenoplectus taberaemontani2 1.0000

rotation Schoenoplectus taberaemontani2 0.9935

scale Phlebodium aureum1 0.8451

scale Schoenoplectus taberaemontani2 0.8115

contrast Acrostichum danaeifolium2 0.8075

rotation Phlebodium aureum2 0.7983

contrast Phlebodium aureum1 0.7982

intensity Phlebodium aureum1 0.7982
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B.2.23 Thelypteris kunthii1

Transform Type Species Image R2 Value

contrast Thelypteris kunthii1 1.0000

intensity Thelypteris kunthii1 1.0000

translation Thelypteris kunthii1 1.0000

rotation Thelypteris kunthii1 0.9884

scale Thelypteris kunthii1 0.8386

scale Blechnum serrulatum2 0.8331

contrast Thelypteris kunthii2 0.7990

intensity Thelypteris kunthii2 0.7990

translation Thelypteris kunthii2 0.7990

scale Rhynchospora colorata2 0.7978

B.2.24 Thelypteris kunthii2

Transform Type Species Image R2 Value

contrast Thelypteris kunthii2 1.0000

intensity Thelypteris kunthii2 1.0000

translation Thelypteris kunthii2 1.0000

rotation Thelypteris kunthii2 0.9837

rotation Thelypteris kunthii1 0.8105

scale Blechnum serrulatum2 0.8035

contrast Thelypteris kunthii1 0.7990

intensity Thelypteris kunthii1 0.7990

translation Thelypteris kunthii1 0.7990

rotation Phlebodium aureum2 0.7835
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Appendix C

Source Code

C.1 Overview

This section contains a listing of the source code of the software used to explore

the data set, generate the affine transformations and to conduct the bulk of the

experiments in Chapter 4. The implementation of the FLLT is not included due

to its excessive length and the original version by Monasse and Guichard (2000) is

available from Megawave’s website. Being a viewer, the shape explorer GUI’s code is

excluded and any classifier code present has an equivalent in the GNU Octave scripts

below.

C.2 Code

C.2.1 Fourier Descriptor Analysis

This GNU Octave script creates centroid distance Fourier descriptors from a set of

boundary points and then performs an all-pairs comparison for all shapes in the input

file:

%

% Input
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% boundar ies input f i l e , output f i l e path , sample s i z e

% Output

% Al l−pa i r s CSV f i l e f o r R2 s im i l a r i t y

%

function [ ] = analyze bound ( INFILE , OUTFILE, s a m p l e s i z e )

in = csvread ( INFILE) ;

[m n ] = s ize ( in ) ;

l g s s = log ( s a m p l e s i z e /2) / log (2 ) ;

%K = 2 . ˆ ( 1 : l g s s ) ;

K = 2 : 2 : 2 ˆ l g s s ;

k l e n = length (K) ;

MAX K = max(K) ;

%

% Generate Fourier Desc r i p to r s

%

data = zeros (m, MAX K) ;

for i =1:m

data ( i , : ) = compute fd ( in ( i , : ) , MAX K, s a m p l e s i z e ) ;

end

%

% Ca lcu l a t e R2 Values f o r each dimension K

%

for d=1: k l e n

k = K(d) ;

% Determine space r equ i r ed

r2 va l s m = ce i l ( f a c t o r i a l (m) / (2* f a c t o r i a l (m−2) ) ) ;

r 2 v a l s = zeros ( r2 vals m , 7) ;

% Li s t sample s i z e and k va lue

118



r 2 v a l s ( : , 1 ) = ones ( r2 vals m , 1) * s a m p l e s i z e ;

r 2 v a l s ( : , 2 ) = ones ( r2 vals m , 1) *k ;

% Perform a l l−pa i r s comparison

pos = 1 ;

for i =1:m

for j =( i +1) :m

% Import Image ID

r 2 v a l s ( pos , 3) = in ( i , 1) ;

r 2 v a l s ( pos , 4) = in ( j , 1) ;

% Import Group ID

r 2 v a l s ( pos , 5) = in ( i , 2) ;

r 2 v a l s ( pos , 6) = in ( j , 2) ;

% Ca lcu l a t e cos ine s im i l a r i t y

r 2 v a l s ( pos , 7) = cos s im ( data ( i , 1 : k ) , data ( j , 1 : k ) ) ;

pos = pos + 1 ;

end

end

% Sort r e s u l t s by decreas ing R2 va lue

r 2 v a l s = sort rows ( r 2 v a l s , −7) ;

% SAMPLE SIZE | K | ID 1 | ID 2 | GROUP 1 | GROUP 2 | R2

dlmwrite (OUTFILE, r 2 v a l s , ’−append ’ , ’ d e l i m i t e r ’ , ’ , ’ , ’ p r e c i s i o n ’ ,

’ %1.4 f ’ ) ;

end

end

%

% input :
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% In l i n e : l i n e from CSV: ID , Group ID , Boundary Length , Boundary 0

. . . Boundary n

% samp l e s i z e : Number o f samples from the boundary%

% output :

% f o u r i e r d e s c r i p t o r (minus DC component )

%

function [ fd ] = compute fd ( inLine , MAX K, s a m p l e s i z e )

[m n ] = s ize ( inL ine ) ;

boundary len = inLine (3 ) ;

% Adjust n to match the end o f the boundary

n = 3 + 2* boundary len ;

x = zeros (1 , boundary len ) ;

y = zeros (1 , boundary len ) ;

% Extrac t l i n e in t o coord ina te v e c t o r s

pos = 1 ;

for i =4:2 :n

x ( pos ) = inLine ( i ) ;

pos = pos + 1 ;

end

pos = 1 ;

for i =5:2 :n

y ( pos ) = inLine ( i ) ;

pos = pos + 1 ;

end

% mean cen ter ( c en t ro i d at coord ina te 0 ,0)

mean x = mean( x ) ;

x = x − mean x ;
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mean y = mean( y ) ;

y = y − mean y ;

% crea t e i n t e r p o l a n t

xx = angle ( x+sqrt (−1)*y ) ;

% Determine rad ius

r = abs ( x+sqrt (−1)*y ) ;

% Sca le r a d i i

r norm = norm( r ) ;

r = r / r norm ;

% Sample the i t e r p o l a t e d boundary

% po la rx = 0:(2* p i / boundary len ) :2* p i *(1−1/ boundary len ) ;

% sampley = s p l i n e ( po larx , r , ( 0 : ( 2 * p i / samp l e s i z e ) :2* p i *(1−1/

samp l e s i z e ) ) ) ;

samplex3 = 0 : ( 2* pi/ boundary len ) : ( 6* pi−2*pi/ boundary len ) ;

sampley3 = spline ( samplex3 , [ r r r ] , ( 0 : ( 2 * pi/ s a m p l e s i z e ) : ( 6* pi−2*pi/

s a m p l e s i z e ) ) ) ;

sampley = sampley3 ( ( f loor ( length ( sampley3 ) /3)+1) : f loor ( length ( sampley3

) )/3+ s a m p l e s i z e ) ;

% samplex = 0:(2* p i / boundary len ) : (2* p i *(1−1/ boundary len ) ) ;

% Get magnitude , d i s ca rd DC component

fd = abs ( f f t ( sampley ) ) ;

fd = fd ( 2 : (MAX K+1) ) ;

end

% Compute cos ine s im i l a r i t y between two ve c t o r s

function [ r2 ] = cos s im ( v1 , v2 )

m = length ( v1 ) ;
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% Mul t i p l y by index

ind = 1 :m;

v1 = v1 .* ind ;

v2 = v2 .* ind ;

v dot = dot ( v1 , v2 ) ;

v1 mag = norm( v1 ) ;

v2 mag = norm( v2 ) ;

# Compute DOT Product

r2 = v dot / ( v1 mag*v2 mag ) ;

# R2

r2 = r2 * r2 ;

end

This GNU Octave script evaluates different sample sizes and dimension retention

for Fourier descriptors:

function e v a l k s s (BOUNDARIES FILE, R2 FILE , RES PATH, SAMPLE SIZE)

s s l e n = length (SAMPLE SIZE) ;

delete ( R2 FILE ) ;

for i =1: length (SAMPLE SIZE)

s = SAMPLE SIZE( i ) ;

analyze bound (BOUNDARIES FILE, R2 FILE , s ) ;

end

r2 = csvread ( R2 FILE ) ;

imgs = unique ( [ r2 ( : , 3) r2 ( : , 4) ] ) ;

imgs l en = length ( imgs ) ;
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grps = unique ( [ r2 ( : , 5) r2 ( : , 6) ] ) ;

g r p s l e n = length ( grps ) ;

summary = [ ] ;

% Traverse Sample S i z e s

for s s = 1 : s s l e n

s = SAMPLE SIZE( s s ) ;

% determine K s i z e

l g s s = log ( s /2) / log (2 ) ;

%K = 2 . ˆ ( 1 : l g s s ) ;

K = 2 : 2 : 2 ˆ l g s s ;

k l e n = length (K) ;

% l im i t r e s u l t s to t h i s group

l im = r2 ( : , 1) == s ;

r 2 s s = r2 ( lim , : ) ;

for kk=1: k l e n

k = K( kk ) ;

g r p t a l l y = zeros ( g rps l en , 4) ;

g r p t a l l y ( : , 1 ) = ones ( g rps l en , 1) * s ;

g r p t a l l y ( : , 2 ) = ones ( g rps l en , 1) * k ;

l im = r 2 s s ( : , 2) == k ;

r2 k = r 2 s s ( lim , : ) ;

% Traverse images

for i i =1: imgs l en

id = imgs ( i i ) ;

g r p t a l l y = c a l c t a l l y ( r2 k , id , g r p t a l l y ) ;

% Limit to proper ss , k and id number

end
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summary = [ summary ; g r p t a l l y ] ;

end

end

summary ( : , 3 : 4 ) = summary ( : , 3 : 4 ) . / 6 ;

p l o t r e s ( summary , RES PATH) ;

end

function [ g r p t a l l y ] = c a l c t a l l y ( r2 , id , g r p t a l l y )

l i m i d a = r2 ( : , 3 ) == id ;

l im idb = r2 ( : , 4 ) == id ;

l im = ( l i m i d a | l im idb ) ;

img = r2 ( lim , : ) ;

img = img ( 1 : 3 , : ) ;

i f img (1 , 3) == id

grp = img (1 , 5) ;

else

grp = img (1 , 6) ;

end

i f img (1 , 5 ) == img (1 , 6 )

g r p t a l l y ( grp , 3 ) = g r p t a l l y ( grp , 3 ) + 1 ;

end

maj = 0 ;

for i =1:3

i f img ( i , 5 ) == img ( i , 6 )

maj = maj + 1 ;

end

end

i f maj >= 2
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g r p t a l l y ( grp , 4 ) = g r p t a l l y ( grp , 4 ) + 1 ;

end

end

function p l o t r e s ( summary , RES PATH)

% Plot the r e s u l t s f o r K

K CSV PATH = s t r c a t (RES PATH, ’ /k summary . csv ’ ) ;

K PLOT PATH = s t r c a t (RES PATH, ’ /k summary . eps ’ ) ;

% Plot sample s i z e r e s u l t s

s = 256 ;

l im = summary ( : , 1 ) == s ;

r e s = summary( lim , : ) ;

K = unique ( r e s ( : , 2 ) ) ;

k l e n = length (K) ;

summary k = zeros ( k len , 5) ;

delete (K CSV PATH) ;

for i =1: k l e n

k = K( i ) ;

l im = r e s ( : , 2 ) == k ;

sum k = r e s ( lim , : ) ;

mean hit = mean( sum k ( : , 3) ) ;

mean maj = mean( sum k ( : , 4) ) ;

w o r s t h i t = min( sum k ( : , 3) ) ;

worst maj = min( sum k ( : , 4) ) ;

summary k ( i , 1) = k ;

summary k ( i , 2) = mean hit ;

summary k ( i , 3) = mean maj ;

summary k ( i , 4) = w o r s t h i t ;
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summary k ( i , 5) = worst maj ;

end

dlmwrite (K CSV PATH, summary k , ’−append ’ , ’ d e l i m i t e r ’ , ’ , ’ , ’

p r e c i s i o n ’ , ’ %1.4 f ’ ) ;

hold on ;

axis equal ;

%p l o t ( summary k ( : , 1 ) , summary k ( : , 2 ) , ’−−rs ’ , ’ MarkerSize ’ , 7 ) ;

plot ( summary k ( : , 1 ) , summary k ( : , 3 ) , ’−−gs ’ , ’ MarkerSize ’ , 7 ) ;

%p l o t ( summary k ( : , 1 ) , summary k ( : , 4 ) , ’−−bs ’ , ’ MarkerSize ’ , 7 ) ;

plot ( summary k ( : , 1 ) , summary k ( : , 5 ) , ’−−ms ’ , ’ MarkerSize ’ , 7 ) ;

t i t l e ( ’ Dimens iona l i ty eva lua t i on f o r morpho log ica l group

c l a s s i f i c a t i o n (256−Sample S i z e ) ’ ) ;

xlabel ( ’ Dimensions Retained ’ ) ;

ylabel ( ’ Accuracy ’ ) ;

%legend ( ’ Average Hit ’ , ’ Average Majority ’ , ’Minimum Hit ’ , ’Minimum

Majority ’ , ’ Location ’ , ’ South ’ ) ;

legend ( ’ Average ’ , ’Minimum ’ , ’ Locat ion ’ , ’ South ’ ) ;

hold o f f ;

print (K PLOT PATH) ;

close a l l ;

% Plot the r e s u l t s f o r Sample S i z e

S CSV PATH = s t r c a t (RES PATH, ’ /s summary . csv ’ ) ;

S PLOT PATH = s t r c a t (RES PATH, ’ /s summary . eps ’ ) ;

S = unique ( summary ( : , 1 ) ) ;

s l e n = length (S) ;

summary s = zeros ( s l e n , 5) ;

delete (S CSV PATH) ;
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for i =1: s l e n

s = S( i ) ;

l i m s = summary ( : , 1 ) == s ;

l im k = summary ( : , 2 ) == f loor ( s /4) ;

l im = l i m s & l im k ;

sum s = summary( lim , : ) ;

mean hit = mean( sum s ( : , 3) ) ;

mean maj = mean( sum s ( : , 4) ) ;

w o r s t h i t = min( sum s ( : , 3) ) ;

worst maj = min( sum s ( : , 4) ) ;

summary s ( i , 1) = s ;

summary s ( i , 2) = mean hit ;

summary s ( i , 3) = mean maj ;

summary s ( i , 4) = w o r s t h i t ;

summary s ( i , 5) = worst maj ;

end

dlmwrite (S CSV PATH, summary s , ’−append ’ , ’ d e l i m i t e r ’ , ’ , ’ , ’

p r e c i s i o n ’ , ’ %1.4 f ’ ) ;

hold on ;

axis equal ;

%p l o t ( summary s ( : , 1 ) , summary s ( : , 2 ) , ’−−rs ’ , ’ MarkerSize ’ , 7 ) ;

plot ( summary s ( : , 1 ) , summary s ( : , 3 ) , ’−−gs ’ , ’ MarkerSize ’ , 7 ) ;

%p l o t ( summary s ( : , 1 ) , summary s ( : , 4 ) , ’−−bs ’ , ’ MarkerSize ’ , 7 ) ;

plot ( summary s ( : , 1 ) , summary s ( : , 5 ) , ’−−ms ’ , ’ MarkerSize ’ , 7 ) ;

t i t l e ( ’ Sample s i z e eva lua t i on f o r morpho log ica l group c l a s s i f i c a t i o n ’ )

;
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xlabel ( ’ Sample S i z e ’ ) ;

ylabel ( ’ Accuracy ’ ) ;

%legend ( ’ Average Hit ’ , ’ Average Majority ’ , ’Minimum Hit ’ , ’Minimum

Majority ’ , ’ Location ’ , ’ South ’ ) ;

legend ( ’ Average ’ , ’Minimum ’ , ’ Locat ion ’ , ’ South ’ ) ;

hold o f f ;

print (S PLOT PATH) ;

close a l l ;

end

C.2.2 TOS Metrics

This GNU Octave script is used to help determine optimal TOS Metric Phase 1

constraints using a set of known image classes:

function a n a l y z e t o s (INPUT FILE , RES PATH)

in = csvread (INPUT FILE) ;

[m n ] = s ize ( in ) ;

% Read TOS Metr ics

% image id , group id , c h i l d sum area ra t i o , i n t r a t i o ,

b ounda ry s i z e r a t i o , dc

n = 6 ;

to s = zeros (m, n) ;

to s ( : , 1 : 2 ) = in ( : , 1 : 2 ) ;

for i =1:m

boundary len = in ( i , 3) *2 ;

to s ( i , 3 : 6 ) = in ( i , (4+ boundary len ) :(7+ boundary len ) ) ;

end

% Get image IDs

imgs = unique ( to s ( : , 1 ) ) ;

imgs l en = length ( imgs ) ;
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% Get group IDs

grps = unique ( to s ( : , 2 ) ) ;

g r p s l e n = length ( grps ) ;

% Set Weights

weights = [ 3 , 4 , 3 , 5 . 2 ] ;

summary

for i =1:m

% Apply c on s t r a i n t s

l im = tos ( : , 1 ) ˜= i ;

r e s t o s = tos ( lim , : ) ;

for j =3:6

l im u = r e s t o s ( : , j ) <= tos ( i , j ) * weights ( j−2) ;

l i m l = r e s t o s ( : , j ) >= tos ( i , j ) / weights ( j−2) ;

l im = l im u & l i m l ;

r e s t o s = r e s t o s ( lim , : ) ;

end

end

plot summary (RES PATH, grps , g rp s l en , to s )

end

function plot summary (RES PATH, grps , g rp s l en , to s )

%image id , group id , c h i l d sum area ra t i o , i n t r a t i o ,

b ounda ry s i z e r a t i o , dc

summary = zeros ( g rps l en , 13) ;

summary ( : , 1 ) = grps ;

for i = 1 : g r p s l e n
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l im = tos ( : , 2 ) == grps ( i ) ;

sum g = tos ( lim , : ) ;

[m n ] = s ize ( sum g ) ;

for j = 1 : n

sum g ( : , j ) = sum g ( : , j ) / norm( sum g ( : , j ) ) ;

end

for j = 1 : n

sum g ( : , j ) = sum g ( : , j ) − mean( sum g ( : , j ) ) ;

end

for j = 0 :3

summary( i , j *4+2) = max( sum g (: ,3+ j ) ) ;

summary( i , j *4+3) = median( sum g (: ,3+ j ) ) ;

summary( i , j *4+4) = min( sum g (: ,3+ j ) ) ;

summary( i , j *4+5) = std ( sum g (: ,3+ j ) ) ;

end

end

c o l o r s =[ ’ r ’ , ’ g ’ , ’ b ’ , ’ k ’ ] ;

t i t l e s ={ ’ Child Sum Area Ratio ’ , ’ I n t e n s i t y Ratio ’ , ’ Boundary S i z e

Ratio ’ , ’DC’ } ;

save name={ ’ c s a r p l o t ’ , ’ i n t p l o t ’ , ’ b s p l o t ’ , ’ d c p l o t ’ } ;

for i = 0 :3

f igure

hold on ;

t i t l e ( char ( t i t l e s ( i +1) ) ) ;

plot ( 1 : 4 , summary ( : , i *4+2) ’ , ’−−r s ’ , ’ MarkerSize ’ , 7) ;

plot ( 1 : 4 , summary ( : , i *4+3) ’ , ’−−gs ’ , ’ MarkerSize ’ , 7) ;

plot ( 1 : 4 , summary ( : , i *4+4) ’ , ’−−bs ’ , ’ MarkerSize ’ , 7) ;

axis ( [ 0 . 5 4 .5 −.65 . 6 5 ] ) ;

legend ( ’Maximum ’ , ’ Median ’ , ’Minimum ’ ) ;
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set (gca , ’ XTickLabel ’ ,{ ’ I nape r tu ra t e ’ , ’ Monolete ’ , ’ Pe r ipora te ’ , ’

T r i l e t e ’ }) ;

xlabel ( ’ Po l l en Morpholog ica l Groups ’ ) ;

ylabel ( ’ Values ( normalized , mean−centered ) ’ ) ;

hold o f f ;

save path = s t r c a t (RES PATH, ’ / ’ , char ( save name ( i +1) ) , ’ . eps ’ ) ;

print ( save path ) ;

end

end

C.2.3 Affine Transformations

This GNU Octave script is used to evaluate the R2 values of original images with

their affine transformations:

close a l l ;

clc ;

clear a l l ;

K = 32 ;

SAMPLE SIZE = 256 ;

BOUNDARIES FILE = ’ r e s u l t s / t rans fo rm boundar i e s . csv ’ ;

R2 FILE = ’ r e s u l t s / t rans fo rm r2 . csv ’ ;

delete ( R2 FILE ) ;

analyze bound (BOUNDARIES FILE, R2 FILE , SAMPLE SIZE) ;

% Read input data from CSV f i l e s ( omit sample s i z e and K)

in = csvread ( R2 FILE ) ;

[m n ] = s ize ( in ) ;

% Only use s p e c i f i e d K va lue

l im = in ( : , 2 ) == K;
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r2 = in ( lim , 3 : n ) ;

% Determine number o f images

transform type m = length ( unique ( [ r2 ( : , 1 ) r2 ( : , 2 ) ] ) ) ;

% Locate IDs f o r each type

c o n i d s = 1 : 6 : transform type m ;

i n t i d s = 2 : 6 : transform type m ;

o r i g i d s = 3 : 6 : transform type m ;

r o t i d s = 4 : 6 : transform type m ;

s c a i d s = 5 : 6 : transform type m ;

t r a n i d s = 6 : 6 : transform type m ;

orig m = length ( o r i g i d s ) ;

% Get R2 va l u e s con ta in ing an o r i g i n a l image

o r i g r 2 a = ismember ( r2 ( : , 1 ) , o r i g i d s ) ;

o r i g r 2 b = ismember ( r2 ( : , 2 ) , o r i g i d s ) ;

o r i g r 2 n o t = o r i g r 2 a & o r i g r 2 b ; % remove o r i g i n a l comparisons wi th

each o ther

o r i g r 2 = ( o r i g r 2 a | o r i g r 2 b ) & ˜ o r i g r 2 n o t ;

o r i g r 2 = r2 ( o r i g r 2 , : ) ;

o r i g r2 m = length ( o r i g r 2 ) ;

c o n h i t = 0 ;

t r a n h i t = 0 ;

i n t h i t = 0 ;

s c a h i t = 0 ;

r o t h i t = 0 ;

u n r e l a t e d h i t = 0 ;

summary = [ ] ;

for i = 1 : or ig m
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% l im i t r e s u l t s to a s i n g l e image id

r 2 l i m a = o r i g r 2 ( : , 1 ) == o r i g i d s ( i ) ;

r 2 l im b = o r i g r 2 ( : , 2 ) == o r i g i d s ( i ) ;

r 2 l im = r 2 l i m a | r 2 l im b ;

r 2 i = o r i g r 2 ( r2 l im , : ) ;

% Place o r i g i n a l image in l e f t most s l o t

for j = 1 :10

i f r 2 i ( j , 1) ˜= o r i g i d s ( i )

tmp = r 2 i ( j , 1) ;

r 2 i ( j , 1) = r 2 i ( j , 2) ;

r 2 i ( j , 2) = tmp ;

tmp = r 2 i ( j , 3) ;

r 2 i ( j , 3) = r 2 i ( j , 4) ;

r 2 i ( j , 4) = tmp ;

end

end

summary = [ summary ; r 2 i ( 1 : 1 0 , : ) ] ;

% l im i t i t to > .95 r2

r 2 l im = r 2 i ( : , 5 ) > . 9 5 ;

r 2 i = r 2 i ( r2 l im , : ) ;

[ r2 i m foo ] = s ize ( r 2 i ) ;

for j =1: r2 i m

i f r 2 i ( j , 3 ) ˜= r 2 i ( : , 4 )

u n r e l a t e d h i t = u n r e l a t e d h i t + 1 ;

cont inue ;

end

i f ismember ( r 2 i ( j , 1) , c o n i d s ) | | ismember ( r 2 i ( j , 2) , c o n i d s )

c o n h i t = c o n h i t + 1 ;

end
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i f ismember ( r 2 i ( j , 1) , t r a n i d s ) | | ismember ( r 2 i ( j , 2) , t r a n i d s )

t r a n h i t = t r a n h i t + 1 ;

end

i f ismember ( r 2 i ( j , 1) , i n t i d s ) | | ismember ( r 2 i ( j , 2) , i n t i d s )

i n t h i t = i n t h i t + 1 ;

end

i f ismember ( r 2 i ( j , 1) , s c a i d s ) | | ismember ( r 2 i ( j , 2) , s c a i d s )

s c a h i t = s c a h i t + 1 ;

end

i f ismember ( r 2 i ( j , 1) , r o t i d s ) | | ismember ( r 2 i ( j , 2) , r o t i d s )

r o t h i t = r o t h i t + 1 ;

end

end

end

csvwrite (R2 FILE , summary) ;

% Compute accuracy and p l o t r e s u l t s

c o n h i t = c o n h i t / orig m ;

t r a n h i t = t r a n h i t / orig m ;

i n t h i t = i n t h i t / orig m ;

s c a h i t = s c a h i t / orig m ;

r o t h i t = r o t h i t / orig m ;

f igure

bar ( [ c o n h i t t r a n h i t i n t h i t s c a h i t r o t h i t ] ) ;

set (gca , ’ XTickLabel ’ ,{ ’ ’ , ’ Contrast ’ , ’ Trans la t i on ’ , ’ I n t e n s i t y ’ , ’

S ca l i ng ’ , ’ Rotation ’ , ’ ’ }) ;

t i t l e ( ’ A f f i n e t rans fo rmat ion i nv a r i an c e t e s t r e s u l t s ’ ) ;
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xlabel ( ’ Transformation ’ ) ;

ylabel ( ’ Cor r ec t ly Mattched ’ ) ;

print −deps ’ r e s u l t s / a f fd summary plot . eps ’ ;

This Perl script, using Imagemagick Studio’s PerlMagick, creates affine transfor-

mations from an original set of images:

#!/ usr / b in / p e r l

use constant IN PATH => ’ /home/qhaas/Documents/ t h e s i s / paper / f i g u r e s / t e s t

’ ;

use constant OUT PATH => ’ /home/qhaas/Desktop/ fd exper iment /

t e s t t r a n s f o r m s ’ ;

use warnings ;

use F i l e : : Find ;

use Image : : Magick ;

use Math : : Round ;

sub rands ( ) ;

# Get l i s t o f Morpho log ica l groups

opendir (DIR , IN PATH) ;

my @morph groups = readdir (DIR) ;

closedir (DIR) ;

foreach my $group ( @morph groups ) {

next i f ( $group eq ’ . ’ or $group eq ’ . . ’ or $group eq ’ . svn ’ ) ; # omit

ba s i c f i l e markers

opendir (DIR , IN PATH . ’ / ’ . $group ) ;

my @images = readdir (DIR) ;

closedir (DIR) ;

# Get l i s t o f images in morpho log ica l groups
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foreach my $image ( @images ) {

next i f ( $image eq ’ . ’ or $image eq ’ . . ’ or $image eq ’ . svn ’ ) ; #

omit ba s i c f i l e markers

my ( $imgPath , $outPath , $img , $af img , $r , $rx , $ry , $width , $he ight

) ;

$imgPath = IN PATH . ’ / ’ . $group . ’ / ’ . $image ;

$image =˜ s / . png//g ;

$outPath = OUT PATH. ’ / ’ . $image . ’ / ’ ;

print ” Transforming :\ t$ image . . . ” ;

mkdir( $outPath ) ;

# Load o r i g i n a l image and reframe i t ( prevent s h a t t e r i n g )

$img = new Image : : Magick ;

$img−>read ( $imgPath ) ;

$img−>Border ( ’ width ’=>15, ’ he ight ’=>15, ’ bo rde r co l o r ’=> ’ white ’ ) ;

( $width , $he ight ) = $img−>Get ( ’ width ’ , ’ he ight ’ ) ;

$img−>write ( $outPath . ’ o r i g i n a l . png ’ ) ;

# Apply con t ra s t change

$af img = $img−>c lone ( ) ;

$r = round (rand (2 ) ) + 1 ;

$af img−>Sigmoida lContrast ( ’ c on t ra s t ’=>$r , ’ sharpen ’=>round (rand ( ) ) )

;

$af img−>write ( $outPath . ’ c on t r a s t . png ’ ) ;

# Apply i n t e n s i t y change

$af img = $img−>c lone ( ) ;

$r = .85 + round (rand (30) ) * . 0 1 ;

$af img−>Evaluate ( ’ va lue ’=>$r , ’ operator ’=> ’ mul t ip ly ’ ) ;

$af img−>write ( $outPath . ’ i n t e n s i t y . png ’ ) ;
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# Sca le Image

$af img = $img−>c lone ( ) ;

$r = .85 + round (rand (30) ) * . 0 1 ;

$af img−>AdaptiveResize ( ’ width ’=>($width* $r ) , ’ he ight ’=>($he ight * $r )

, ’ b lur ’=>0) ;

$af img−>write ( $outPath . ’ s c a l e . png ’ ) ;

# Rotate Image

$af img = $img−>c lone ( ) ;

$af img−>Aff ineTransform ( ’ a f f i n e ’ =>[−1 ,0 ,0 , rands ( ) , 0 , 0 ] ) ;

$af img−>write ( $outPath . ’ r o t a t i o n . png ’ ) ;

# Trans la te Image

$af img = $img−>c lone ( ) ;

$rx = round (rand ( round ( $width * . 1 ) ) ) ;

$ry = round (rand ( round ( $he ight * . 1 ) ) ) ;

$af img−>Extent ( ’ width ’=>($width + $rx ) , ’ he ight ’=>($he ight + $ry ) , ’

x ’=> $rx , ’ y ’=> $ry , ’ bo rde r co l o r ’=> ’ white ’ ) ;

$af img−>write ( $outPath . ’ t r a n s l a t i o n . png ’ ) ;

print ”done\n” ;

}

}

# Returns a random s ign

sub rands ( ) {

i f ( round (rand ( ) ) > 0) {

return 1 ;

} else {

return −1;

}

}
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