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                                                  Abstract  
 
In this project, I started with a System-on-Chip platform with embedded test 
structures. The baseline platform consisted of a Leon2 CPU, AMBA on-chip bus, 
and an Advanced Encryption Standard decryption module. The basic objective of 
this thesis was to use the embedded reconfigurable logic blocks for post-silicon 
debug and verification.  
 
The System-on-Chip platform was designed at the register transistor level and 
implemented in a 180-nm IBM process. Test logic instrumentation was done with 
DAFCA (Design Automation for Flexible Chip Architecture) Inc. pre-silicon tools. 
The design was then synthesized using the Synopsys Design Compiler and 
placed and routed using Cadence SOC Encounter. Total transistor count is about 
3 million, including 1400K transistors for the debug module serving as on chip 
logic analyzer. Core size of the design is about 4.8mm x 4.8mm and the system 
is working at 151MHz. Design verification was done with Cadence NCSim.  
 
The controllability and observability of internal signals of the design is greatly 
increased with the help of pre-silicon tools which helps locate bugs and later fix 
them with the help of post-silicon tools. This helps prevent re-spins on several 
occasions thus saving millions of dollars. Post-silicon tools have been used to 
program assertions and triggers and inject numerous personalities into the 
reconfigurable fabric which has greatly increased the versatility of the circuit.                               
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Chapter 1 Overview 
 
1.1 System-on-Chip (SoC)  
 
System-on-a-Chip (SoC) design refers to implementing an entire electronics sub-
system on a single IC. A typical SoC consists of: 

1. one or more microcontroller, microprocessor or DSP core(s);  
2. memory blocks including a selection of ROM, RAM, EEPROM and Flash;  
3. timing sources including oscillators and phase-locked loops;  
4. peripherals including counter-timers, real-time timers and power-on reset 

generators;  
5. external interfaces including industry standards such as USB, FireWire, 

Ethernet, USART, SPI;  
6. analog interfaces including ADCs and DACs; 
7. voltage regulators and power management circuits.  
 

These blocks are connected by an industry-standard bus such as the AMBA bus 
from ARM. DMA controllers route data directly between external interfaces and 
memory, by-passing the processor core and thereby increasing the data 
throughput of the SoC [1].Today designers of application-integrated circuits are 
faced with the challenge of creating and verifying the content of million-transistor 
chips as quickly as possible in order to reduce the time-to-market [2].It has been 
estimated that a one-month delay in bringing a product to market can result in a 
loss of ten percent of the potential revenue [3].Hence, not all of the transistors on 
these chips can be customized but instead must be ported from previous 
designs. These reusable cores or intellectual property (IP) blocks include CPUs 
(like ARM, PowerPC and LEON), MPEG decompression engines, PCI bus 
controllers, specialized DSPs, etc. Combining several complex cores using 
standard cells is much more manageable and quicker than designing millions of 
transistors one at a time. The myth that characterizes today’s IP is that these 
components are blocks that have well-defined contents and interfaces. However, 
they are often fuzzy and hence appear more like patches in a quilt, which must 
be stitched together. The components cannot be assembled blindly and rapidly, 
but rather must be carefully pieced together to form a working system. Therefore, 
design for reuse does not come free. Rather it involves much more in-depth 
documentation and characterization. 
 
1.2 Design Testing and Verification 
 
Testing has two major aspects: control and observation. Control is the measure 
of the difficulty with which an internal net can be driven to a particular logic state. 
Observation is the ability with which an internal signal’s current logic state can be 
driven to an output where it can be measured. 
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To test any system it is necessary to put the system into a known state, supply 
known input data (test data), and observe the system to see if it performs as 
designed and manufactured. If control or observation cannot be carried out, there 
is no way to know empirically if the system performs as it should. During the 
normal product development flow, testing (it may be known by different names) 
takes place at many points during the process. 
 
Table 1.1 lists the trends that impact cost and difficulty of testing. In order to 
overcome the challenges posed by increasing complexity of designs 
(approaching one billion transistors) better testing algorithms and debug methods  
are needed to locate the design/physical errors and more efficient ways are 
required to verify the fixes. Currently, an increasing number of circuits are 
designed in accordance with Design-For-Testability (DFT) guidelines, which 
makes the design easier to be tested and debugged. The payoff is not only 
higher quality, but also shorter time-to-market [4]. 
 
1.3 Motivation
 
Silicon debug is a costly problem that delays volume production and market 
entry. Until recently, debugging pre-production silicon required one or two 
prototype re-spins, weeks of lab time to isolate problems, and cost hundreds of 
thousands of dollars. Today, four or five re-spins are not uncommon, and months 
can be spent stabilizing the design. Moreover, with the rapid shrinking of the 
feature size, more physical errors are bound to occur due to timing, crosstalk, 
noise, temperature, and process variation. At the same time, the designers are 
losing visibility into the design as the size of the design increases [6]. 
 
Scan chains are only accessible with very constrained test patterns, and not at 
speed. Simulators may take weeks to produce an incorrect result, or miss it if the 
problem is environmentally dependent or an intermittent manufacturing defect. 
The motivation of my research is to restore the designer’s ability to debug silicon 
 
 
                             Table 1.1 VLSI Technology Trends [5] 
 

Year 97-01 03-06 09-12 
Feature Size (um) 0.25-0.15 0.13-0.10 0.07-0.05 

Millions of transistors/cm2 4-10 18-39 84-180 
Number of wiring layers 6-7 7-8 8-9 

Die Size, mm2 50-385 60-520 70-750 
Pin Count 100-900 160-1475 260-2690 

Clock Rate, MHz 200-730 530-1100 840-1830 
Voltage, V 1.2-2.5 0.9-1.5 0.5-0.9 
Power, W 1.2-61 2-96 2.8-109 

  2



rapidly. I have used tools from DAFCA Inc. to insert this at speed debug 
capability to our Volunteer SoC which is a LEON-based SoC platform built by 
previous students at the University of Tennessee. The baseline SoC was first 
instrumented with reconfigurable fabric (using DAFCA pre-silicon tools) that 
enables the user to run the design at speed and monitor selected signals using 
assertions and triggers. Then the post-silicon tools were used to isolate and 
repair bugs, as well as to accelerate fix verification. 
 
1.4 Thesis Goals 
 

1. To insert an rMATRIX (a two-dimensional reconfigurable logic block array 
used for wrapping ports/signals) into our SoC design. 

2. To configure the LEON design according to the IBM 7RF 180-nm process. 
3. To use DAFCA post-silicon tools to create debug assertions, signal 

generators and logic fixes or repairs. 
4. To synthesize, place and route the design using the IBM 7RF process and 

submit to IBM via MOSIS for fabrication. 
5. To test the fabricated chip and verify its self-repair capability using DAFCA 

post-silicon tools. 
 
1.5 Thesis Outline
 
In this section I briefly introduced the challenges that the current design 
technology is facing and the need for new testing methodologies and tools. In 
Chapter Two I will discuss some background information such as the challenges 
in SoC design, problems associated with the presently prevalent testing 
methodologies and the solution offered by DAFCA to overcome these problems. 
Chapter Three explains the Volunteer SoC platform developed at the University 
of Tennessee and its components. Chapter Four discusses about the DAFCA 
tools and instrumentation of our SoC with these tools. Chapter Five presents the 
design implementation in detail and my results. Chapter Six presents the tests 
performed with the post-silicon tools. Chapter Seven concludes my work and 
presents a plan for future work.  
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Chapter 2 Background  
 
2.1 Challenges in System-on-Chip Design
 
With rapid advances in semiconductor processing technologies, the density of 
gates on the die increased in line with what Moore's law predicted. This helped in 
the realization of more complicated designs on the same IC. Over the last few 
years, an increasingly evident need has been that of incorporating the traditional 
microprocessor, memories and peripherals -or in other words the whole system - 
on single silicon. This is what has marked the beginning of the SoC era. 
 
The advantages of an SoC are drastic reduction in the overall design cycle time 
due to the use of existing IP (intellectual property) blocks ,superior performance 
levels, less area requirements and hence greater economic viability. On the flip 
side a greater concern of the designers today is the efficient testing of such a 
chip while meeting the time to market pressures. Bugs in the design can lead to 
several re-spins costing millions of dollars. Test costs in VDSM (very deep 
submicron) SoC designs is approaching 60% of the total product cost [7]. As the 
design complexity increases the designer loses visibility into the chip and testing 
becomes even more challenging. So what is needed to achieve at this point is: 
 

1. Improvement in Test Coverage 
2. Reduction in Test Time 
3. Reduction in Tester Requirements 
4. Self-repair 

 
2.2 Types of Testing and their Problems 
 
Today circuit density has increased dramatically, and the cost of devices has 
decreased as their performance has improved [8]. So reliability has become 
increasingly important. However with the advent of very-large-scale integration 
(VLSI), gate density is increasing much more rapidly than the number of access 
terminals. So the ability to generate test patterns and process fault simulation is 
deteriorating. This suggests that the circuits should be designed to be tested 
easily. Testability of a logic circuit can be defined as the ease of testing or as the 
ability to test easily or cost-effectively. 
 
Early designers mainly used prototypes which were physical mockups of the 
circuit being designed for testing purposes. These prototypes were used to 
evaluate the logical correctness and timing characteristics of the design. The 
prototype is attractive because it can run at or near design speed, it can be 
evaluated near actual operating conditions, it does not require detailed simulation 
models, and it can be run with virtually unlimited amounts of stimuli [9]. But some 
of the drawbacks of a prototype are that many months of effort and expenditure 
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may be required to build it. Also, if the prototype goes down due to some reason 
the entire design team may be idled. 
 
So eventually simulation started to play an important role in the testing process. 
Present day simulators can operate on models at levels of abstraction ranging 
from switch level to behavioral. Simulation at a high level of abstraction requires 
less detailed processing and hence is faster. But in the other cases the 
simulators may take weeks to reproduce an incorrect result, or miss it entirely if 
the problem is environmentally dependent, an intermittent manufacturing defect, 
or caused by inaccuracies in the pre-silicon models (e.g. an inadequately 
modeled hard IPcore [6]). So the designer is forced to guess the cause of the 
problem based on incomplete information and limited visibility. Consequently, the 
process of determining an appropriate repair strategy becomes incredibly difficult 
and risky. 
 
Another approach to testing is generating test patterns and applying them to the 
circuit under test. These input patterns produce erroneous responses when faults 
are present. However as the complexity of circuits increases the generation of 
test patterns becomes a tedious process. Moreover scan chains are only 
accessible with very constrained test patterns, and not at speed. Also, storage of 
huge amount of test patterns and responses is required and testing is slow 
because of the shifting of patterns through the scan path. 
 
2.3 The DAFCA Solution 
 
One way to overcome the above problems is to add extra logic to be used for 
testing to the design. Formerly a designer used to concentrate on minimization of 
hardware cost and maximization of performance. However because of the 
increasing testing cost and decreasing hardware cost, design for testability is 
now becoming a cost effective approach. 
 
DAFCA’s solution restores the designer’s ability to debug silicon rapidly [6]. It 
achieves this task by putting reconfigurable instrumentation onto the chip that 
enables the user to isolate and repair bugs. It provides at-speed access to 
internal signals on the chip, delivers instrumentation for trigger and capture 
events, and creates reconfigurable structures that can be used for in-situ repairs. 
Figure 2.1 depicts the pre-silicon instrumentation and post-silicon debug 
approach followed by DAFCA. The DAFCA solution has both software and in-
silicon components. The software interface enables the user to specify where the 
instrumentation is placed on chip and provide debug and analysis capabilities 
(post-silicon). 
 
DAFCA’s in-silicon instruments are known as ReDI fabric. 
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INSERT

 
                                          Figure 2.1 DAFCA Solution 

Two of the ReDI logic elements, the rWrap and the rMatrix are shown in the 
Figure 2.2.The rWrap is a thin reconfigurable logic block that can be used to 
generate debug assertions, signal generators and even logic repairs. It wraps the 
desired user block and hence provides complete controllability and observability 
to the critical ports. An rMatrix is a two dimensional version of the wrapper and is 
used to wrap more complex user blocks. 
 
With the DAFCA instrumentation in place the designer can perform at-speed in-
system debug. The user can configure the instrumentation by identifying the 
signals to be monitored and programming the wrappers to realize assertions and 
logic fixes. The internal state of the system is hence available for examination. 
 
A detailed discussion of the DAFCA tools is given in Chapter 4 of this thesis. 
 
2.4 Debug Methods Supported by DAFCA  
 
There are a number of industry-wide debug methods currently used for chip 
debug. Each of these methods is supported by DAFCA [10]. 
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                                    Figure 2.2 rMatrix and rWrap 

 
1. Full Scan/Partial Scan/Single-Step - Full Scan or Partial Scan uses the 

scan registers to provide observation and control over the circuit under 
test. A circuit can be tested “at-speed”, but must be halted to retrieve data 
from the scan chain. Hence this debug method requires an iterative 
approach of starting, stopping, and restarting the circuit under test in order 
to isolate a problem. In many cases it is useful to advance a sequential 
circuit one clock at a time during debug. This is often the most effective 
method to isolate problems rapidly. Unfortunately many circuits can not be 
stopped and started, much less single-stepped. 

 
2. At-Speed Observation - Whereas Full Scan provides a wide but shallow 

view of signal state, many chips are designed with debug muxes and 
memory that provide a means to see a narrow but deep view of selected 
signals. This is analogous to logic analyzer based debug techniques 
where a user builds triggers and captures data as a means to isolate a 
particular problem. While this method can be effective, it is often iterative 
as the user often must create many triggers and capture many signal 
states to reduce the scope of the problem continuously before it is fully 
isolated. 

 
3. Assertion-based Debug – Assertion-based debug uses assertions to 

monitor the behavior of circuits. In some cases the assertion is hard-coded 
into the RTL (register transfer level) code, while in other cases the 
assertion can be defined post-silicon using the DAFCA post-silicon tools. 
While some assertions can pinpoint a problem, most only limit the scope 
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of a problem. Often additional methods (or assertions) are required to 
isolate a problem fully. 

 
4. At-Speed Control – At-speed control refers to debug techniques that 

allow a user to dynamically modify the behavior of a circuit running at-
speed. In some cases this is simply the control over a configuration 
register changed on-the-fly. In other cases, it may involve the dynamic 
reconfiguration of a programmable circuit. At-speed control does not 
include the ability to change scan registers and/or configuration registers 
while in “test mode”. Such “test mode” control is provided with full scan. 
At-speed control explicitly implies the ability to modify the behavior of a 
circuit without requiring the circuit to be slowed or stopped. 
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Chapter 3 Volunteer SoC  
 
The Volunteer SoC that I have worked on was developed as part of a graduate 
course in the Electrical and Computer Engineering Department of the University 
of Tennessee over the last two years. The IP cores library were developed and 
verified by different student teams. In this section I am going to discuss about the 
basic components of this SoC and also the AMBA bus. 
 
3.1 Overview 
 
Our SoC is a LEON 2-1.0.12 based SoC and has two IP blocks attached to it. 
The communication between the processor and the IP blocks takes place 
through AMBA (AHB and APB) buses. The AHB is used for high-speed data 
transfer and APB for on-chip peripherals. A memory controller is used to 
communicate with external memories. The first IP block is an encryption module 
that performs 128-bit decryption according to the Advanced Encryption Standard 
(AES). The second block is a dummy block that is inserted to demonstrate the 
debug capabilities of DAFCA tools. 
 
The SoC is designed at the register transfer level and can be fully synthesized for 
different processes. I have implemented it using the 180-nm IBM 7RF process. 
The block diagram of this SoC is shown in Figure 3.1. 
 
The two user IP blocks are attached to both the APB and the AHB. They are 
defined as masters on the AHB and slaves on the APB. In our design, the AHB is 
used for data transfer between memory and IP blocks and the APB is used for 
control signals. APB bridge is the only master on the APB. 
 
3.2 LEON CPU  
 
The LEON2 CPU is a 32-bit processor conforming to IEEE-1754 (SPARC V8) 
architecture. It is designed for embedded applications with the following features 
on-chip: separate instruction and data caches, hardware multiplier and divider, 
interrupt controller, debug support unit with trace buffer, two 24-bit timers, two 
UARTs, power-down function, watchdog, 16-bit I/O port and a flexible memory 
controller. New modules can easily be added using the on-chip AMBA AHB/APB 
buses. The VHDL model is fully synthesizable with most synthesis tools [11]. 
 
A block diagram of LEON-2 can be seen in Figure 3.2. 
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                         Figure 3.1 SoC Baseline Platform Block Diagram  

 
 

           
                    Figure 3.2 LEON2 Block Diagram 
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The Leon CPU is configured to minimum size in order to save silicon space. The 
registers in LEON2 are implemented using a dual port RAM (dpram136x32) while 
the instruction and data cache are implemented using single port RAMs 
(ram256x32 and ram32x30 respectively). I have used the IBM 7RF Artisan RAM 
generator to generate these RAM models for this design. Most of the optional 
components like the hardware multiplier/divider and the on-chip debug unit are 
disabled in the baseline design. 

3.3 AMBA Buses   
 
AMBA, which stands for an Advanced Microcontroller Bus Architecture, is an 
open standard which defines an on-chip bus specification for interconnection and 
management of various functional blocks that are a part of a System-on-Chip. 
 
Two distinct buses defined within the AMBA specification are [12]:  
 
Advanced High-performance Bus (AHB) - The AMBA AHB is for high-
performance. AHB supports the efficient connection of processors, on-chip 
memories and off-chip external memory interfaces with low-power peripheral 
macrocell functions. 
 
Advanced Peripheral Bus (APB) - The AMBA APB is for low-power peripherals. 
AMBA APB is optimized for minimal power consumption and reduced interface 
complexity to support peripheral functions. APB can be used in conjunction with 
the system bus. 
 
In our design AHB and APB are used as the on-chip bus architecture for our 
platform. The APB is used to access on-chip registers in the peripheral functions 
while the AHB is used for high-speed data transfer. 
 
The user IP blocks can be attached to AHB and/or APB, as a master or as a 
slave. In this design the IP blocks have been attached to both the AHB and APB 
in order to separate control signals and data transfer. They are defined as 
additional masters on the AHB and slaves on the APB. As a master on the bus, 
the IP blocks have the ability to initialize a data transfer with bus slaves without 
waiting for the CPU, which is essential for a high performance system [13]. 
 
The AHB master interface is shown in Figure 3.3. A description of some of the 
signals is given below: 
 

1. HBUSREQx – A signal from the bus master x to the bus arbiter which 
indicates that the bus master requires the bus. 

2. HWRITE – When high this signal indicates a write transfer and when low a 
read transfer. 
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                           Figure 3.3 AHB Master Interface 

 

3. HRDATA – The read data bus is used to transfer data from the bus slaves 
to the bus master during read operations. 

4. HWDATA – The write data bus is used to transfer data from the master to 
the bus slaves during the write operations. 

 
Before the data transfer, the master first requests the bus from the arbiter. Once 
the bus is granted, the master can initialize a data transfer. 
 
The user IP block also serves as an APB slave, whose interface is shown in 
Figure 3.4. 
 
A description of some signals of the APB is given below: 

1. PSELx – This signal indicates that a slave device is selected and a data 
transfer is required. 

2. PENABLE – This signal is used to time all accesses on the peripheral bus. 
3. PWDATA - The write data bus is driven by the peripheral bus bridge unit 

during write cycles. 
4. PRDATA – The read data bus is driven by the selected slave during the 

read cycles. 
 
Being a slave, the IP block will wait for the selection signal from the bus master 
and read in the data/address bus, with control signals indicating the type of the 
data transfer. According to the command, it will perform a particular function. 
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                          Figure 3.4 APB Slave Interface 

 
3.4 AES Module 
 
In this SoC design an Advanced Encryption Standard (AES) module is being 
used as a user IP block. AES is a block-cipher/decipher with block size of 128 
bits. Keys for the cipher come in one of three lengths: 128, 192, or 256 bits. For 
the purpose of achieving smaller design size, only a 128-bit key is supported in 
this design. This particular AES module is a part of a cryptographic project 
developed at the University of Tennessee [13]. 
 
Table 3.1 shows the LEON2 memory address space. The address space for the 
APB Bridge is from 0x80000000-0x8FFFFFFF. Since the user IP blocks (AES 
and rMat) have been attached on the APB, they have to be assigned this part of 
the memory space. 
 
3.5 Artisan RAM 
 
The cache system and the register file are implemented by using technology- 
dependent RAM cells. The Artisan RAM generator for the 180-nm IBM 7RF 
process has been used for the generation of synthesizable RAM models. 
To utilize this SRAM in our design it is required to understand its read and write 
operation cycle and then create a wrapper to enable the communication with the 
LEON-2 processor. 
 
Figure 3.5 describes the read operation in Artisan SRAM. To perform a read 
operation an important thing to notice is that address of the memory location to 
be accessed should already be there when the rising edge of the clock appears. 
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                              Table 3.1 LEON2 Memory Address Space 
 

 
 
 
 
 

 
                                  Figure 3.5 Artisan RAM Read Cycle 
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                        Figure 3.6 LEON-2 Processor Read Cycle 

 
Similarly while writing to a memory location at the rising edge both data and 
address location should already be there at the data and address bus I/O ports. 
However the simulation of LEON-2 processor read cycle in Figure 3.6 shows that 
it loads the address and data I/Os at the rising edge of the clock. This caused a 
failure in the LEON-2 processor. Therefore a wrapper has been created, which 
acts as an interface between LEON-2 and Artisan RAM [14]. 
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Chapter 4 Volunteer SoC Debug using DAFCA Tools 
 
4.1 Introduction to the DAFCA Tools 
 
DAFCA tools can be divided into two categories: pre-silicon tools and post - 
silicon tools. 
 
Pre - silicon tools enable a designer to instrument a RTL design with 
reconfigurable debug infrastructure (ReDI) logic. This logic takes the following 
two forms: 
 
• ReDI library blocks provided by DAFCA - fixed function blocks that are required 
for specific debug applications. 
• Customizable logic blocks generated with the DAFCA pre-silicon tools which 
are highly configurable blocks that are tuned for a designer’s special debugging 
requirements. 
 
This instrumentation enables the post-silicon debugger/tester to detect, isolate, 
and repair bugs, as well as accelerate verification using Post-Silicon tools. It 
provides at-speed access to internal signals on the chip, delivers instrumentation 
to trigger and capture events, and creates reconfigurable structures that can be 
used for everything from assertions to on-the-fly repairs to signal generation [14]. 
 
The ‘Personality Editor’ package of the post -silicon tool enables a designer to 
program the reconfigurable logic blocks to realize assertions, logic modifications 
and fixes. At-speed patterns can be run through the system, by executing system 
software. The internal state, recorded by the Tracer in the debug module is then 
available for examination through the debug environment of NOVAS Debussy. 
 
The user selects a net or set of nets to be to be observed, and the DAFCA tools 
automate routing the nets through interstitial PAN (parallel access network) 
network, programming triggers, and starting the tracer block. The result is that 
the SoC is no longer a black box. The user has the ability to debug the silicon at-
speed, in the system, using the real logic and regains visibility to the signals that 
had become inaccessible. 
 
4.2 Pre - silicon Tools  
 
The pre-silicon tools are used for the insertion of ReDI logic to a SoC. User logic 
can be “wrapped” or “tapped” with DAFCA instruments. Wrapping refers to the 
insertion of an instrument on a signal/port that introduces a mux element in the 
path. Tapping refers to the insertion of an instrument that taps off a signal/port. 
No new elements are explicitly inserted within the existing path [9]. 
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                                 Figure 4.1 Wrap versus Tap 

 
Figure 4.1 illustrates the difference between wrapping and tapping. 
 
As stated in the previous section ReDI logic can be divided into DAFCA provided 
logic blocks and Customizable logic. DAFCA provided logic blocks include: 
 

1. Primary Controller (PCON) – PCON is a part of the Access Mechanism 
which is communication channel instrumented on-chip and used to 
transfer control and data information between off-chip tools and on-chip 
instruments. The Access Mechanism is serial and utilizes a JTAG port for 
connectivity to the primary I/O. The PCON provides the interface and 
control between the JTAG TAP and the rest of the DAFCA infrastructure. 

 
     2.   Serial Access Node (SAN) -   The SAN provides the interface between 
           end-point instrumentation and the serial access channel. All DAFCA 
           instruments have serial chains for configuration and control. 
 
     3.  Monitor - The Monitor is the programmable “controller” used to manage      
          assertions, triggers and Tracer activity within the Debug Module (module 
          used for on-chip logic analysis). Although the size of the rMonitor is about 
          600 K gates it will pay off to have an on-chip logic analyzer for a multi- 
          million gate design.      
 
    4.  Tracer - The Tracer is part of the Debug Module and used for the    

    storage of state information during logic analysis. The Tracer uses 
    embedded memory for storage.    

 
Customizable logic blocks include: 
 
     1.  rWRAP - rWRAP is a one-dimensional array of reconfigurable logic blocks. 
          The number of blocks in the array is user-specified. Each reconfigurable 
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           logic block includes configuration registers, logic, and routing resources 
           that can be programmed to perform debug and validation functions during 
           post-silicon verification.     
   
    2.  rMATRIX - rMATRIX is a two-dimensional array of reconfigurable logic 
         blocks. The number of blocks in the array (rows and columns) is user- 
         specified. Whereas the rWRAP may be routing or logic resource limited due 
         to the one-dimensional architecture, rMATRIX provides a richer set of logic  
         and routing   resources. As such, a wider range of functions (such as 
         complex assertions) can be programmed into this resource.   
  
    3.  CMUX - The CMUX is a collection of 2:1 muxes, pipeline registers and   
        configuration registers. It is used to observe the critical ports/signals in a 
        circuit. A CMUX cannot be used for controlling ports/signals like an rWRAP. 
 
    4.  r1500 - r1500 instruments provide resources for basic observation and 
         control. An r1500 cell can be composed of one or more scan chain 
         registers, an update register and control muxes. 
 
As Table 4.1 suggests the r1500, rWRAP and rMatrix introduce an extra mux 
delay to the design, while rMux does not. This is because of the difference 
between the nature of tapping and wrapping a signal. 
     

  
                     Table 4.1 Instrument Capability and Attributes 
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4.3 Instrumentation of the Volunteer SoC Using Pre-Silicon 
Tools
 
The SoC I started working with had already been instrumented with some ReDI 
blocks by Wei Jiang as a part of his thesis work. The design had two rWraps 
(XRW_Leon1 and XRW_Leon2) and 3 CMUXs (XCMUX_Leon1,XCMUX_Leon2 
and XCMUX_Leon3).77 ports had been wrapped and 672 ports had been tapped 
using these wrappers and MUXs respectively.  

 
The instrumentation of the ReDI block results in a larger design size. The number 
of extra gates depends on the choice of ReDI blocks and instrumentation 
decision. Designers should have a basic guideline in the design process to 
decide what signals or ports need to be instrumented and what kind of wrappers 
should be used. As a principle consideration, it makes perfect sense that the 
debug logic should be inserted in relative new and more complex logic, which 
has a high risk of failure and may be harder to be verified [13]. In this system 
design, since the IP blocks were pre-verified, they were less likely to have 
problems after silicon manufacture. So critical control logic (e.g. AMBA interface, 
APB Bridge, AHB arbiter) was instead wrapped since it was more problem prone. 
Similarly as the data transfer is generally straight forward and does not have 
much scope for logic error, the AMBA data bus was tapped (and not wrapped) to 
monitor the data transfer. This was also done to save silicon space as a CMUX 
occupies much less area (100 u2/port) than an rWrap (4000 u2/port). 
 
Another consideration is that although it is required to test the DAFCA debug 
approach, it cannot be predicted whether the error will occur in-silicon or not. In 
the case that no design or fabrication error occurs in the silicon, a mechanism is 
needed to test the ability of the DAFCA debug method. To solve this problem, I 
decided to introduce an rMatrix into the design. This rMatrix wraps the second IP 
block (rMat) which is the dummy IP block. The rMatrix can be used to 
deliberately insert errors into the rMat block and hence demonstrate the error 
locating and debug capabilities of the DAFCA tools. The DAFCA Post-Silicon 
tools have a package called the ‘Personality Editor’ which can also be used to 
inject any desired personalities (adder, counter etc.) into this rMatrix and hence 
enable it to work as an eFPGA (embedded FPGA) thus enhancing the versatility 
of the SoC. 
 
In addition to the wrappers, MUXes and the rMatrix, the design also has a debug 
module comprised of the Monitor and the Tracer and a PCON and SAN for off- 
chip communication. 
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                      Figure 4.2 Post-Silicon Tools Interface 

 

4.4 Post-Silicon Tools  
 

Post-silicon tools utilize the ReDI blocks inserted into the design using pre-silicon 
tools to isolate and repair bugs. They have a GUI with an interface as shown in 
Figure 4.2. 
 
The Debug Environment GUI has three main areas [16]: 
 

• Signal Tree – Located on the left side of the main window, the signal 
tree shows all wrapped and tapped signals in the current design 
hierarchically. The signals that have been routed through a wrapper 
are shown in green. 
The Instruments tab displays a list of all ReDI instruments that were 
inserted into the design. 

• Command Log – The top-right area of the main window shows the 
Debug Environment commands exactly as they are executed. 

The Transcript tab provides the details of the debug session—not only the 
commands that are issued, but also the specifics of each route that is made (that 
is, signal sources and destinations). If there are any problems during the session, 
the errors are displayed in the Transcript. 
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                            Figure 4.3 Routing Signals 

 
Tcl Prompt – The bottom-right area of the main window provides a Tcl 
prompt that can be used to issue Debug Environment commands. The Tcl 
prompt has a multi-line mode, which allows access by placing the cursor 
in the window and clicking the right mouse button. Once in multi-line 
mode, multiple commands can be issued without them being executed. To 
execute the commands, one can press Shift-Enter while in multi-line mode 
or can switch back to single-line mode and then press Enter. 
 

To route signals: 

 

1. Expand the signal tree hierarchy to locate the signals that have to be 
routed. 

2. Right-click the selected signal to display a drop-down menu. Select 
observe, and the instrument and port that has to be routed to. The full 
hierarchy of a routed signal displays in green in the Signals tree as shown 
in Figure 4.3. 

After selecting all the signals, the routes can be saved to a .pan file which can be 
pulled up if needed in a later debug session. 
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Certain ReDI instruments have an associated graphical user interface (GUI) that 
simplifies the debug process. The instruments with an available GUI can be 
controlled either by using the GUI or the Tcl commands accessible from the CLI. 
An instrument’s GUI can be accessed by clicking the instrument’s name in the 
instrument browser. If the instrument is colored blue, it can be double-clicked to 
control it through the GUI. 

4.4.1 Personality Editor   
 
The Personality Editor is a GUI-based tool that can be used to create assertions 
and checkers to isolate design defects. A personality is essentially a specific 
configuration of a ReDI instrument. Currently, personalities can only be created 
for the rWrap instrument. The Personality Editor may be invoked from the 
instrument’s application within the Debug Environment GUI. 
 
To access the Personality Editor from the Debug Environment GUI: 

1. Select the Instruments tab from the main window. 

2. Double-click on the instrument (rWrap) with the left mouse button to 
invoke the wrapper’s GUI. 

3. Select Configure/Launch Personality Editor from the menu bar of the 
rWrap GUI.                               

The Personality Editor interface is shown in Figure 4.4. There are three main 
views of the Personality Editor, which work together to provide a complete picture 
of the instrument and its functions as they are configured. 

The three views are: 
 
a) Block View 
 
An rWrap instrument is composed of a set of blocks, which display along the 
bottom of the Personality Editor. All input and output signals are noted on each 
block; lines that connect to status and control bits appear in green. This area of 
the Personality Editor provides an overview of the instrument, that is, what 
functions are configured for the instrument and in which blocks.  
 
Figure 4.5 shows an example block that has been configured and its 
accompanying logic (from the Logic View).Cells in the block correspond to the 
cells in the Logic View of that block. The up arrow icon appears in the left side of 
a cell if a carry chain is in use. The flip-flop icon appears in the right side of a cell 
if a flop is in use. 
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                                   Figure 4.4 Personality Editor 

 
 

                         
 

   Figure 4.5 Example Design Block with Associated Logic View 
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b) Logic View 
 
The Logic View, located in the top right of the Personality Editor, displays the 
logic for the selected block as shown in the following screen shot. Figure 4.6 
shows an example logic view. Cells displayed in green may be set to a value by 
left clicking on them. 
 
A logical function of a, b, and c can be entered for the look-up table using 
standard logical operators: & = and, | = or, + = xor, ~ = not. Right-click on the 
look-up table to display the LUT function entry dialog which appears as shown in 
Figure 4.7. Once we have entered the logical function for a cell, it is displayed in 
actual bit values in hexadecimal format. 
 
c) Routing View 
 
The Routing View, located in the top-left of the Personality Editor, displays all 
routes between blocks within the instrument as shown in Figure 4.8.The routing 
done in the Personality Editor is different from that in the Debug Environment. In 
the Debug Environment, signals are routed up to the perimeter of an instrument. 
In the Personality Editor, ports are routed within an instrument (in effect, 
interconnecting logic within the instrument). 
 
 
 

                              
                                    Figure 4.6 Example Logic View 
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                            Figure 4.7 LUT Function Entry Dialog  

 
 
 
 

 
 

                         
 

                                Figure 4.8 Example Routing View  
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                                 Figure 4.9 Module Insertion Dialog 

 
To view possible routes for a port, select the port name with the left mouse 
button. All legal routes are highlighted in blue. To route one port to another, left 
click on the start port and then left click on the end port. The routes are 
highlighted in red. 
 
Apart from designing personalities manually using the Logic and Routing View as 
discussed previously, pre-defined personalities (programmed using Python) can 
also be inserted into the wrappers. There are 32 such ready-to-use personalities 
(assertions) available with the Personality Editor. The ‘Insert Module’ option on 
the ‘Tools’ menu bar in the Personality Editor allows one to insert these pre-
defined modules into the instrument. Figure 4.9 shows this module insertion 
dialog box. Once the desired personality is injected into the Wrapper, its MODE 
bit can be set to 1 to activate the built-in personality. 
 
The post-silicon tools also provide integration into third party tools like NOVAS 
Debussy for debug purposes. Waveforms for the signals added to the tracer can 
be observed using Debussy, which makes debugging easier as it provides active 
annotation and active tracing of the signals. It is possible to click on the signal in 
the waveform and go back to the line of the HDL (hardware description 
language) code that is driving the signal at that time. 
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Chapter 5 Implementation  
 
In this section I describe the detailed implementation steps of the design. At each 
step of the implementation, verification is done with simulation to ensure the 
correctness of the final design. The design is implemented targeting the IBM 7RF 
180-nm process. The target process can be changed easily since the design is 
technology-independent. 
 
As stated in the previous sections I started my work using the Volunteer SoC 
which has two IP blocks (AES and rMat) attached to it. The design also had 
some DAFCA ReDI fabric inserted into it. VHDL and Verilog are used in the 
design. I have used the Synopsys Design Compiler for synthesis and Cadence 
SoC Encounter for place and route of the design. Simulation has been done 
using Cadence NCSim. DAFCA Post - Silicon tools use several C++ function 
calls and NCSim supports the Programming Language Interface (PLI) of the Post 
- Silicon tools. This is the primary reason for using NCSim. 
 
5.1 Customizing the LEON2 Processor 
 
5.1.1 Configuration  
 
The LEON model is highly configurable and hence can be customized for a 
certain application or target technology. A graphical configuration tool based on 
the linux kernel tkconfig scripts is used to configure the model. After a 
configuration has been saved, the corresponding VHDL configuration file 
(device.vhd) is generated. 
 
The graphical configuration tool can only be used to configure LEON for the 
Xilinx VIRTEX, Atmel ATC, UMC FS90A/B, UMC 0.18 um CMOS, TSMC 0.25 
um, Actel Proasic FPGA or the Actel AX anti-fuse FPGA technology. But the 
technology I was looking at was the IBM 7RF 180-nm process and so I could not 
use the tkconfig scripts to configure LEON but had to do so manually. 
 
LEON uses three types of technology-dependant cells; RAMs for the cache 
memories, 3-port register files for the IU registers, and pads. These cells can 
either be inferred by the synthesis tool or directly instantiated from a target 
specific library. The selection of instantiation method and target library is done 
through the configuration record in the TARGET package. 
 
To port to a new technology: 
 
1. A technology-dependent package should be added, exporting the proper cell 
generators. I achieved this by creating a file tech_ibm.vhd containing the IBM 
7RF specific RAMs, regfile, and pads. In my course work I had customized LEON 
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for the TSMC 0.25 um process where the IE and OE pins of the pads were active 
low. But the pad documentation for the IBM process suggested that these pins 
were active high and hence I wrote the behavioral models of the pads taking into 
account the new polarity. The technology-dependant packages can be seen as 
wrappers around the mega cells provided by the target technology or synthesis 
tool. The wrappers are then called from tech_map.vhd, where the selection is 
done depending on the configured synthesis method and target technology. 
 
2. The target.vhd should be edited to include the new technology or synthesis 
tool in targettechs. Shown below are a few lines from my target.vhd. The new 
technology ‘ibm’ has been added to targettechs. 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
package target is 
type targettechs is 
  (gen, virtex, virtex2, atc35, atc25, atc18, fs90, umc18, tsmc25, proasic, 
axcel,ibm); 
 
3. The tech_map.vhd should be edited to instantiate the cells when the 
technology is selected. Shown below are a few lines from my tech_map.vhd 
which indicate dpram instantiaton. 
 
ibm7rf : if TARGET_TECH = ibm generate 
      u0 : ibm_dpram generic map (abits => abits, dbits => dbits) 
           port map (address1, clk1, zero, dataout1, enable1, zero(0), 
                     address2, clk2, datain2, open, enable2, write2); 
    end generate; 
 
4.  The device.vhd should be edited to define and select the configuration using 
the new technology. 
 
In our LEON design, optional components such as FPU, Hardware Multiplier, and 
Debug Units were not selected during configuration. Instruction and data cache 
were set to be 1K, single set and 8 words per cache line. 

5.1.2 Artisan RAM 
 
The instruction/data caches are implemented as Single Port RAM (SPRAM) 
blocks and the register file is designed as two Dual-Port RAM (DPRAM) blocks. 
As the previous section states, the RAMs are technology-dependent and have to 
be instantiated by the user. The RAM blocks that come with the LEON2 package 
are behavioral models that can be used only for simulation. In order to synthesize 
the design these RAM blocks have been replaced with the ones generated by the 
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Artisan RAM generator for the IBM 7RF process. The size of the RAM block 
needed depends on the size of the I/D cache and register file. We have used two 
136x32 DPRAMs, two 256x32 SRAMs and two 32x30 SRAMs as hard macros in 
our design. 
 
Five views of the RAM blocks were generated using the Artisan RAM generator. 
They were: Verilog Model for simulation, Synopsys Model for logic synthesis, 
TLF Model for timing analysis, VCLEF footprint for Physical Design tools and 
GDSII layout for final tape out. The specifications used are shown in Table 5.1. 
 
As discussed in section 3.5, the RAM blocks cannot be used directly because of 
the timing specifications difference between the Artisan RAM and the Leon.  
Hence, they have been wrapped with a RAM block wrapper so that they can 
communicate with the LEON2 in the same fashion as the behavioral model. Then 
the Synopsys model is converted into the Synopsys database format to be used 
for logic synthesis. 
 
5.2 The Integrated SoC  
 
As mentioned in Chapter 3, our design has a 128-bit AES decryption module and 
a dummy rMat block as the two user IP blocks and these are defined as 
additional masters on the AHB bus and slaves on the APB bus. The user IP 
blocks have been instantiated in the top level VHDL file (mcore.vhd), in order for 
Leon to recognize the extra master on AHB. For the APB connection, the 
APB/AHB Bridge has been modified to define the memory mapping for the APB 
signals of AES block [13]. 
 
The AMBA interface of our SoC is designed to take care of AMBA signals and 
pass the input/output data between the AMBA bus and the IP blocks. It is a state 
machine which performs several sequential steps. For AES, the steps are [13]:   
 

1) Initialize, Enable AES module and wait for start request signal on APB.  
2) Read in control data through APB (input data memory address).  
3) Request AHB bus and transfer data upon bus granted.  
4) Load key/data into AES and signal AES to start.  
5) Read in AES output when AES finishes, signal system that output ready.  
6) Write back output data to the memory address that system specified.  
7) Go back to initial state and wait for next call.  
 

In order to have the system recognize the additional bus masters and slaves, the 
IP blocks had to be connected to the bus arbiter and the APB Bridge had to be 
modified to re-define the peripheral memory mapping. The IP blocks were 
instantiated and connected to the AHB arbiter with a unique index. The arbiter’s 
arbitration scheme is fixed and a higher index has higher priority. The CPU is 
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                             Table 5.1 Block RAM Parameters 
 

 

 

                           Table 5.2 IP Block APB Memory Mapping 
 

 
 
 
the default master on the bus and has an index of zero, which means that the IP 
block has higher priority than the CPU when both of them are requesting the bus 
at the same time. As we see in Table 3.1, the memory range of the APB Bridge is 
between 0x80000000 and 0x8FFFFFFF, so the IP blocks have been assigned 
addresses within this range. The memory mapping and AHB master indexes of 
both the IP blocks are shown in Table 5.2. 
 
5.3 Insertion of rMatrix to the Design 
 
As mentioned in Section 4.3, the SoC I started working with had already been 
instrumented with two rWraps and 3 CMUXs. This ReDI fabric was inserted into 
the most critical and error prone portion of the design. The wrappers were 
inserted around the AMBA bus interface, AHB bus arbiter and APB bridge while 
the MUXs were inserted around the data bus. 
 
The instrumented design is shown in Figure 5.1. In order to display the debug 
ability of DAFCA tools in a better way I have introduced an rMatrix into the 
design. The rMatrix can be seen in Figure 5.1 as the grey block next to the 
dummy IP block (rMat) and can be used to deliberately insert some errors or 
additional features into rMat. The rMatrix wraps the input and output ports of the 
rMat block and can also be used as an embedded FPGA block.
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                                          Figure 5.1 Instrumented SoC  

After the design was instrumented, simulation was also done to make sure that 
the insertion of the DAFCA ReDI fabric did not affect the logic of the design. 
 
5.4 Synthesis 
 
Logic synthesis was done using Synopsys Design Compiler after the DAFCA IP 
blocks were inserted into the design. The synthesis script was written with tighter 
timing constraints to accommodate the delay that would be introduced due to the 
addition of the DAFCA logic. I have used the ‘set_case_analysis’ command to 
assign a constant value to some ports and pins so that the false paths in the 
design are ignored during timing analysis and optimization. 
 
The bottom-up synthesis approach has been used for the on-chip debug circuitry. 
Because the muxes and D flip-flops are instantiated in the CMUX design and a 
large number of signals are being tapped, a large number of muxes and D flip-
flops are instantiated in the design. Design Compiler automatically compiles 
hierarchical circuits without collapsing the hierarchy. After each module in the 
design is compiled, Design Compiler continues to optimize the circuit until the 
constraints are met. This process sometimes requires recompiling sub-designs 
on a critical path [17].To prevent this recompiling and hence save time in the 
synthesis process ‘set_dont_touch’ command has been used in the synthesis 
script. Hence each sub-design is synthesized and compiled only once and there 
is only one copy loaded in the memory for each sub-module. After the debug 
module is synthesized, top-down approach can be followed for the rest of the 
design in order to have better optimization. After the design is synthesized, a 
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gate-level verilog netlist and a timing constraint file (SDC) are written out to be 
used in the physical design. 
 
5.5 Physical Place and Route 
 
After synthesis, the physical place and route of the design was done using 
Cadence SOC Encounter. This included floorplanning, clock tree synthesis and 
timing analysis. The physical design flow is shown in Figure 5.2. 
 
I started by importing the gate level net-list into Encounter. The timing files (.tlf) 
and lef files for the IBM 7RF standard cells, pads and RAM blocks were also 
imported. I have used the slow timing libraries for better timing closure on the 
design. In order to use the 132-pin package PGA132M from MOSIS, an I/O file 
was created for I/O pad assignments with I/Os evenly spread out on each side of 
the chip. The I/Os included 8 VDD and 8 VSS pins too. This I/O file was also 
imported into Encounter. Then floorplanning was initiated where the hard macro 
blocks (i.e. memory) were pre-placed. Then I proceeded with standard cell 
placement. After all the cells were placed, three clock trees were synthesized to 
minimize the clock skew. At this point trial route and timing analysis was used to 
check if the timing requirement was met. Very often there are timing violations so 
several iterations of in place optimization (IPO) are needed. The whole process is 
an iterative procedure and it is possible to go back to modify the initial floorplan, 
until the timing requirement is met. Then the final layout and timing delay file for 
post-layout simulation was generated. 

5.5.1 Floorplanning, Powerplanning and Placement 
 
The goal of floorplanning is to place the logic in ways that make the routing 
easier, less congested and shorter. The RAM blocks (register files and cache for 
LEON) have been placed and aligned in a corner. The tracer memory has been 
placed away from rest of the RAM blocks to separate the original baseline design 
from the DAFCA instrumentation. The basic principle used in the floorplan was to 
arrange the modules such that blocks with connections are placed closer to each 
other, especially for critical components such as the CPU, cache controller, 
memory controller, etc. At the same time, the original un-instrumented baseline 
design was separated from the DAFCA instruments, to minimize the impact of 
introducing extra logic into our design. Cache blocks for LEON were placed in the 
bottom left corner, while register file RAM blocks were placed in the middle left 
and the tracer memory has been placed in the top left corner. Block halos were 
added around these blocks to reduce congestion around the block. We also set 
the die size (4.784mm x 4.796mm) and the core to I/O boundary distance (100 
um) in the ‘Specify Floorplan’ form. The die size was decided taking into account 
the size of the I/O Pad cells and the Pad filler cells
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                      Figure 5.2 Physical Design Flow [13]
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                                        Figure 5.3 Floorplan Guide

 
Figure 5.3 shows the floorplan guides for the layout. Power rings were added 
around the core boundary. Power stripes were also added for easy access to 
VDD and GND but stripes were omitted inside the block rings. 
  
Then amoeba placement was carried out on the design. It was a medium effort, 
timing-driven placement. 

5.5.2 Clock Tree Synthesis 
 
The clock tree was synthesized after the placement was done. I have generated 
an individual clock tree separately each for CLK (clock for LEON), PTCK (clock 
for JTAG controller) and PTRST_N (reset for the JTAG controller).The clock tree 
specification file for the CLK signal is listed below: 
 
AutoCTSRootPin    clk 
NoGating                NO 
MaxDelay               2ns 
MinDelay                0.5ps 
MaxSkew               0.5ns 
SinkMaxTran         3ns 
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BufMaxTran           3ns 
Buffer                     BUFX1 BUFX2 BUFX3 BUFX4 BUFX8 BUFX12 BUFX16 
End 
 
After the clock tree was synthesized, the modified net-list was saved and the 
clock phase delay is shown in Figure 5.4. 

5.5.3 Routing 
 
The design was routed using 6 layers of metal. I used NanoRoute for the process 
and performed global and detail routing. Global Route plans the global 
interconnect and detailed routing for the design using NanoRoute while Detail 
Route performs detailed routing on the design following the global routing plan. 
Timing analysis and in placement optimization were done to solve the timing 
violation after the routing. The final layout of the design is shown in Figure 5.5. 
 
5.6 Simulation Result 
 
The simulation of the design was done at the pre-synthesis, post-synthesis and 
post-layout steps to verify the functionality at each step. After the design was 
 
 

           
 

                      Figure 5.4 Clock Tree Phase Delay 
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                                    Figure 5.5 SoC Design Routed 
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routed to the final layout, the timing information was extracted and written to a file 
in the Standard Delay Format (SDF). The SDF file was imported back to the 
simulator for back annotation of the simulation. 
 
In order to test the design, the C testbench from LEON has been modified and 
the RAM image has been recompiled for simulation. After LEON boots up, it 
reads the data from memory, sends it to the AES block through the AHB bus and 
enables the GO signal through the APB bus. AES reads in the key and encrypted 
text, performs the decryption and sends the data back to RAM and flags the 
DONE signal. The post-layout simulation is shown in Figure 5.6a and 5.6b. The 
instrumentation of the DAFCA ReDI blocks has been done in the top level of the 
design. Hence we have routed all the signals that had to be tapped / wrapped to 
the top level of the design and then finally sent them back to their respective 
modules. All wrapped signals begin with the word ‘dafca’ and are named in the 
format ‘dafca_xxx_wrap_out’ or dafca_xxx_wrap_in’ where ‘xxx’ denotes the 
port/signal name. The ‘dafca_xxx_wrap_out’ are the signals that have been  
routed to the top level and appear at the input of the debug circuitry at the top 
level. The ‘dafca_xxx_wrap_in’ are the signals that are routed back to the inner 
modules after wrapping. A similar naming convention has been followed for the 
tapped signals.  It can be seen in Figure 5.6a that at around 508.9 µs, ‘psel’, 
‘penable’, ‘pwrite’ are 1, ‘apb_paddr (4 downto 2)’ = ‘000’ and ‘apb_pwddata (0)’ 
= 1, hence AES is enabled. It can be seen in Figure 5.6b that at around 509 µs, 
the AES requested the AHB bus. It is granted around 510 µs and data are 
transferred through the AHB bus. After the data are read, ‘data ready’ and ‘go’ 
become high. Then ‘kld’ (key load) becomes high which signals the AES block to 
load the encryption key. The data is converted into 128-bit encrypted cipher text 
and 128- bit key and sent to the AES module. At 521 µs, the AES module 
finishes decryption and the plain text is written out as ‘dataout’ and ‘done’ is high 
to signal the AMBA interface that the data is decrypted and ready to be sent back 
to memory. 
 
5.7 Sending the Design to MOSIS 
 
The SoC layout imported in Cadence Virtuoso is shown in Figure 5.7. A few 
modifications and pattern density checks had to be performed on the design  
before submitting it to MOSIS for fabrication. These were performed using 
Cadence Virtuoso. The GDS file for the layout that had been exported from First 
Encounter was imported into Cadence Virtuoso using the ‘gdstocds.map’ file 
provided with the IBM PDK. The modifications and checks performed included – 
 

1. Placement of a CHIPEDGE polygon around the Design – MOSIS requires 
that the design should contain a CHIPEDGE shape which defines the 
correct size of the chip matrix. This shape is required for pattern density 
checking of the matrix. The CHIPEDGE requirement was met by creating 
a guardring (which contains its own CHIPEDGE polygon) around the chip. 
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                                                                   (a) 

                          Figure 5.6 Post-Layout Simulation 
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                                                           (b) 
                          Figure 5.6  Continued 
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                     Figure 5.7 SoC Layout in Cadence Virtuoso 

The guardring was created using the rectangular ‘Image’ Pcell provided in    
the IBM PDK. Finally, the chip origin (x=0, y=0) was placed at the lower 
left corner of the CHIPEDGE polygon. The layout with the CHIPEDGE 
polygon is shown in Figure 5.8. 

 
2. Pattern Density Rules -  Pattern density rules have been developed as a 

manufacturing requirement for production of all semiconductor products in 
order to better control the manufacturing process and assure control of 
manufacturing parameters (film thicknesses, etch control, linewidths etc.) 
and product yield [18].  

 
Pattern density rules can be divided into- 
 
a) Global Pattern Density Rules –  
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                     Figure 5.8 Guard Ring and CHIPEDGE Polygon 

 
These rules require the designer to make sure that the density of MT and ML 
metals in the chip is >= THRES-GLOBAL-MIN (IBM 7RF specific minimum global 
density threshold value) and <= THRES-GLOBAL-MAX (IBM 7RF specific 
maximum global density threshold value) [18].The metals M1, M2, M3 and M4 
are auto-filled by MOSIS. Figures 5.9 and 5.10 show the initial density of MT and 
ML metals respectively in our layout. 

 
I met the density requirements for MT and ML by creating small dummy shapes 
using the MT and ML dg layers. The pattern density fill guidelines for the IBM 
7RF process required that these dummy shapes should not be more than DA 
(area specified by the IBM 7RF process) um2 in area [18]. Dummy shapes should 
be relatively small, especially on metal levels, to reduce cross-talk due to the 
additional level-to-level capacitive coupling.  
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                          Figure 5.9 Initial MT Density in the SoC 
 

           
 

                     Figure 5.10 Initial ML Density in the SoC 
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Also they should be well-dispersed, if possible, to maximize process uniformity. 
I placed the dummy shapes as instances all over the layout till the global density 
requirements were met. The key point to be careful about was not to overlap 
these dummy shapes with the already present respective metal layers. Figures 
5.11 and 5.12 show the layout with MT and ML fill respectively. The global 
pattern density test was performed by running the file ‘divaDensity.rul’ and the 
density requirements for ML and MT were met. 
 
b) Local Pattern Density Rules –  
 
These rules require that local density (minimum) for M2, M3, M4, M5 and MT 
metals checked in 400μm x 400μm checking boxes stepped in 400μm 
increments across the chip be greater than THRES-LOCAL (IBM 7RF specific 
minimum local density threshold value) [18].Our design met the M2, M3, M4 and 
M5 local densities by itself but the local density of MT had to be raised by 
insertion of MT dummy shapes uniformly throughout the chip. The local pattern 
density test was performed by running the file ‘divaLocalAlum.rul’. 

 

              
                             Figure 5.11 SoC with MT Fill 
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                           Figure 5.12 SoC with ML Fill 
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Chapter 6 Testing with Post-Silicon tools 

The experiments with the post-silicon tool have been performed on the post-
layout netlist due to unavailability of the fabricated chip at this time. The 
Personality Editor from the post-silicon tools suite has been used to program 
certain assertions and checkers by injecting different personalities into the 
rWraps. Post-silicon tools communicate with the Cadence simulator as if it is a 
real chip. I have modified the testbench to loop infinitely. Initially, I chose to 
bypass the testing structure and hence the circuit was functioning normally. Then 
I injected several personalities into the wrappers and could see the effect of that 
change in the functionality of the of the IP blocks. I also implemented several 
assertions with the help of wrappers to verify the functionality of critical signals. 
The Personality Editor for rMatrix is not available at the moment so I could not 
inject personalities into the rMatrix. Some of the tests I performed are: 

6.1 Tests Performed 
 
Forcing the bits [2], [3], [4] of the APB Address bus to ‘1’- 
 
For AES to be enabled it is required that apb_paddr [2 - 4] be ‘0’. But with the 
help of the personality editor, I programmed the wrapper XRW_Leon1 such 
that these bits be stuck at 1 and as expected AES stopped working. Figure  
6.1 shows the changes made in the wrapper using the Personality Editor. PO0 
and PO1 are output pins of the wrapper block 3  that in turn connect to the bits[2] 
and [3] of the APB Address bus. Pin PO0 of block 4 connects to bit [4] of the 
address bus. As seen in the logic view on the right the cells have been set to the 
logic function ‘FF’ which implements the stuck at ‘1’ function for the pins Z0 and 
Z1 for block 3 and Z0 for block 4. As these pins are connected to the PO’s of the 
wrapper they aid in setting APB address bus [2], [3] and [4] bits to 1. 
  
Figure 6.2 shows the waveform for the SoC after this change. As expected the 
AES has stopped working and no data input or output can be seen in the ‘datain’ 
and ‘dataout’ pins respectively. Also paddr[2],[3] and [4] are stuck at ‘1’. 
 
Forcing the ‘hgrant’ signal of the AHB bus to ‘0’- 
 
When AES is enabled, it waits for the ‘hgrant’ signal for the AHB bus which 
indicates that the bus has been granted. The AHB address bus carries the 
address of the data to be decrypted whereas the AHB data bus carries the data 
to be decrypted. With the help of the Personality Editor, I stuck the ‘hgrant’ signal 
to ‘0’ and hence the AES stopped working. 
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  Figure 6.1 Personality Editor Window Depicting ‘paddr’ Modification 
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            Figure 6.2 SoC Post-Layout Simulation after ‘paddr’ Changes 
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Figure 6.3 shows the changes made in the wrapper using the Personality Editor 
and Figure 6.4 shows the waveform for the SoC after this change. As seen in 
Figure 6.4, ‘dafca_hgrant_wrap_in1’ is stuck at ‘0’. This is the signal that is at the 
output of the wrapper XRW_Leon1 and goes all the way into the hierarchy to the 
AES module from the top level. As expected ‘datain’ and ‘dataout’ pins show no 
data values. 
 
Forcing the ‘done’ signal from the AES module to ‘0’- 
 
Once the AES is done with the decryption, it flags the ‘done’ signal to a high 
value indicating the same. With the help of the Personality Editor, I stuck the 
‘done’ signal to ‘0’ and Figure 6.5 indicates this change. The effect of this 
personality can be seen in the waveform in Figure 6.6. As seen in Figure 6.6 as 
soon as the ‘dafca_done_wrap_in1’ becomes ‘0’, the ‘dataout’ signal changes to 
all zeroes. 
 
Injecting the Counter Personality into the ‘paddr’ signals- 
 
The Personality Editor can also be used to inject a Counter behavior to the 
wrappers. The Counters to choose from include the Gray counter, Carry-Look 
Ahead counter and the Ripple counter. I have inserted the 2-bit ripple counter 
personality into paddr[2] and paddr[3] and the waveform reflecting this change 
can be seen in Figure 6.7. 
 
Programming the ‘assert always’ assertion for the ‘start’ signal- 
 
The Personality Editor provides a library of 32 built-in assertions to load into the 
wrappers. Some of these assertions are asset_always,assert_never, 
assert_change,assert_decrement,assert_handshake etc. In addition to these 
built-in assertions the designer also has the option of writing his own assertions 
using the Python programming language. The assertions can be accessed from 
the Tools -> Insert Module menu option from the Personality Editor. They are an 
excellent way of verifying the functionality of critical signals in the SoC. 
 
Using the Personality Editor, I programmed the ‘assert always’ assertion for the 
‘start’ signal of XRW_Leon1. Once the key is loaded into AES, the ‘start’ signal 
becomes high for a short duration to initiate the AES to start the decryption. 
Figure 6.8 shows the assertion being fired as indicated by the ‘status’ bit on 
XRW_Leon1. The assertion is fired because the ‘start’ signal is not stuck at ‘1’ 
but toggles between the ‘0’ and ‘1’ values. 
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   Figure 6.3 Personality Editor Window Depicting ‘hgrant’ Modification 
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            Figure 6.4 SoC Post-Layout Simulation after ‘hgrant’ Changes 
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 Figure 6.5 Personality Editor Window Depicting ‘done’ Modification 
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        Figure 6.6 SoC Post-Layout Simulation after ‘done’ Changes 
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Figure 6.7 Post-Layout Waveform after Injection of Counter Personality to 
paddr[2] and paddr[3] 
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                     Figure 6.8 ‘assert Always’ Assertion being Fired 
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6.2 Discussion 
 
The extra flexibility and debugging ability comes with the price of performance 
and area. The amount of reconfigurable logic introduced in a SoC design is 
always about the tradeoff between the flexibility and the area/delay of the design. 

6.2.1 Area Comparison 
 
The un-instrumented design has 812K transistors and the design core fit into a 
2mm x 2mm area. In this instrumentation, 672 signals have been tapped and 77 
signals have been wrapped and the tracer has a  2048x64 bit memory. The total 
transistor count of the final design is 3135K; the whole design area takes about 
4.8mm x 4.8mm. The transistor count comparison for different modules is listed 
in Table 6.1. 

6.2.2 Timing Overhead   
 
Wrapping a signal introduces an extra MUX delay. Although tapping a signal 
does not explicitly introduce any MUX delay in the signal path, the extra load will 
slow down the transition time and the extra logic will introduce extra wiring delay 
as well. In the physical layout an attempt has been made to separate the original 
design and the embedded DAFCA blocks to minimize the impact of the design 
timing due to the extra wiring. The impact due to the extra load was also reduced 
since First Encounter performed transistor resizing during timing in-place-
optimization. Furthermore, during the synthesis step a tighter timing constraint 
was used to leave some margin for the extra logic in the ReDI blocks. As a result, 
when the circuit is running in mission mode (by-passing the DAFCA logic), there 
is no degradation in design performance. 

6.2.3 General Discussion  
 
From the results above, it can be seen that the insertion of reconfigurable fabric 
into the chip greatly enhanced its observability and controllability and made error 
location and debugging easier. It gave the designer the internal access to the 
chip. Assertions, checkers and logic fixes could be performed on signals and the 
internal state of the circuit could be recorded. In addition to programming the 
wrappers with assertions and counters, the Personality Editor also provides the 
option of inserting arithmetic modules for implementing functions like add, equal, 
greater_than, less_than etc. to the wrappers. This adds to the versatility of the 
SoC.  
 
It is true that about 60% of this design is embedded test logic, which might not 
seem very attractive in this particular case. But it should be noted that the final 
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                         Table 6.1 Transistor Count Comparison 
 
 Original Baseline With Test Logic 
LEON CPU 408 K 467 K 
AES 356 K 464 K 
   
Cache 140 K 160 K 
Register File 188 K 195 K 
RAM Total 328 K 355 K 
   
Wrapper 1  100 K 
Wrapper 2  137 K 
CMUX  74 K 
rMatrix  280 K 
rMonitor  603 K 
Tracer Memory  819 K 
   
SoC Total 812 K 3135 K 
 
  
design has only about 3 million transistors, including 1.4 million transistors that 
are used for on-chip debug module (rMonitor and tracer memory). In a multi-   
million gate design, the size of the on chip debug module will remain the same 
while only the size of the wrappers and MUXs will be scaled. In general, this 
approach will be more suitable for a large SoC design where the extra cost can 
be justified. But an important consideration will always be to make an intelligent 
decision as to where to insert the ReDI fabric. 
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Chapter 7 Future Work and Conclusion 
 
7.1 Future Work 
 
As mentioned in the previous sections, I have inserted an rMatrix in our SoC to 
wrap the I/O ports of the dummy IP block. But due to unavailability of a 
Personality Editor for the rMatrix at this point, no tests could be performed on it. 
So injecting personalities into the rMatrix and testing it with the Post Silicon tool 
needs to be done. 
 
Also, the Python programming language can be used to program assertions and 
personalities to be used in the Personality Editor in addition to the assertions 
already available. 
 
The chip has been submitted to MOSIS for fabrication and is expected back on 
May 31, 2006. So a testing board needs to be designed before that time. Also, 
the chip needs to be tested in the same way as the post-layout netlist. 
 
7.2 Conclusion 
 

• Inserted the rMatrix to the original instrumented design. 
• Configured the design for the 180-nm IBM 7RF process 
• Synthesized, Placed and Routed the design using the 180-nm IBM 7RF 

process and submitted to IBM via MOSIS for fabrication. 
• Tested the design through post-layout simulation and verified its self repair 

capability using DAFCA post-silicon tools. 
• Reconfigurable instrumentation can greatly help reduce testing time and 

costs by making fault location and fixing easier. 
• The approach is highly cost effective for multi million gate designs as 

product delays and re-spins may be avoided. 
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