
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2006

System-on-Chip Design and Test with Embedded
Debug Capabilities
Tushti Marwah
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Marwah, Tushti, "System-on-Chip Design and Test with Embedded Debug Capabilities. " Master's Thesis, University of Tennessee,
2006.
https://trace.tennessee.edu/utk_gradthes/1734

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Tushti Marwah entitled "System-on-Chip Design and Test
with Embedded Debug Capabilities." I have examined the final electronic copy of this thesis for form and
content and recommend that it be accepted in partial fulfillment of the requirements for the degree of
Master of Science, with a major in Electrical Engineering.

Donald W. Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Syed Islam, Mohammed Ferdjallah

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Tushti Marwah entitled “System-on-
Chip Design and Test with Embedded Debug Capabilities.” I have examined the
final electronic copy of this thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirement for the degree of Master of
Science, with a major in Electrical Engineering.

__Donald W. Bouldin______
 Major Professor

We have read this thesis
and recommend its acceptance:

 Syed Islam

 Mohammed Ferdjallah

Accepted for the Council:
_____Anne Mayhew__________

Vice Chancellor and
Dean of Graduate Studies

(Original signatures are on file with official student records.)

 System-on-Chip Design and Test with
 Embedded Debug Capabilities

A Thesis
Presented for the

Master of Science Degree
The University of Tennessee, Knoxville

Tushti Marwah
August 2006

 Acknowledgement

First of all, I would like to thank my thesis advisor, Dr. Don Bouldin for his
guidance, advice and support throughout my research. It was he who suggested
me to pursue my research on the concept of using reconfigurable logic for
debugging an SoC and I have greatly enjoyed my work. He was a constant
source of encouragement for me throughout my research. I am also very grateful
to Dr.Syed K.Islam and Dr.M. Ferdjallah for serving on my thesis committee.

I would like to thank Wei Jiang, for his teamwork in this project and
instrumentation of the LEON design with the pre-silicon tools that gave me a
platform to start from.

I would also like to thank DAFCA Inc., where I interned from June 2005-August
2005 for providing me with the pre and post-silicon tools and teaching me their
usage. I am thankful to Paul Bradley, Rich Lundblad, Tat Ng and Daniel Hoggar
at DAFCA for guiding me during the timing analysis and layout generation of the
design.

Last but not the least I would like to thank my parents, Dr. Narinder Singh and
Mrs. Kamla Marwah and my brother Joban for their unrelenting support and
encouragement throughout my education.

 ii

 Abstract

In this project, I started with a System-on-Chip platform with embedded test
structures. The baseline platform consisted of a Leon2 CPU, AMBA on-chip bus,
and an Advanced Encryption Standard decryption module. The basic objective of
this thesis was to use the embedded reconfigurable logic blocks for post-silicon
debug and verification.

The System-on-Chip platform was designed at the register transistor level and
implemented in a 180-nm IBM process. Test logic instrumentation was done with
DAFCA (Design Automation for Flexible Chip Architecture) Inc. pre-silicon tools.
The design was then synthesized using the Synopsys Design Compiler and
placed and routed using Cadence SOC Encounter. Total transistor count is about
3 million, including 1400K transistors for the debug module serving as on chip
logic analyzer. Core size of the design is about 4.8mm x 4.8mm and the system
is working at 151MHz. Design verification was done with Cadence NCSim.

The controllability and observability of internal signals of the design is greatly
increased with the help of pre-silicon tools which helps locate bugs and later fix
them with the help of post-silicon tools. This helps prevent re-spins on several
occasions thus saving millions of dollars. Post-silicon tools have been used to
program assertions and triggers and inject numerous personalities into the
reconfigurable fabric which has greatly increased the versatility of the circuit.

 iii

 Table of Contents
Chapter 1 Overview .. 1

1.1 System-on-Chip (SoC) .. 1
1.2 Design Testing and Verification .. 1
1.3 Motivation .. 2
1.4 Thesis Goals.. 3
1.5 Thesis Outline ... 3

Chapter 2 Background ... 4
2.1 Challenges in System-on-Chip Design ... 4
2.2 Types of Testing and their Problems .. 4
2.3 The DAFCA Solution... 5
2.4 Debug Methods Supported by DAFCA.. 6

Chapter 3 Volunteer SoC ... 9
3.1 Overview .. 9
3.2 LEON CPU ... 9
3.3 AMBA Buses ... 11
3.4 AES Module ... 13
3.5 Artisan RAM .. 13

Chapter 4 Volunteer SoC Debug using DAFCA Tools................................... 16
4.1 Introduction to the DAFCA Tools .. 16
4.2 Pre - silicon Tools ... 16
4.3 Instrumentation of the Volunteer SoC Using Pre-Silicon Tools 19
4.4 Post-Silicon Tools... 20

4.4.1 Personality Editor... 22
Chapter 5 Implementation.. 27

5.1 Customizing the LEON2 Processor... 27
5.1.1 Configuration.. 27
5.1.2 Artisan RAM.. 28

5.2 The Integrated SoC ... 29
5.3 Insertion of rMatrix to the Design.. 30
5.4 Synthesis ... 31
5.5 Physical Place and Route... 32

 iv

5.5.1 Floorplanning, Powerplanning and Placement.............................. 32
5.5.2 Clock Tree Synthesis ... 34
5.5.3 Routing.. 35

5.6 Simulation Result.. 35
5.7 Sending the Design to MOSIS.. 37

Chapter 6 Testing with Post-Silicon tools.. 45
6.1 Tests Performed.. 45
6.2 Discussion... 55

6.2.1 Area Comparison.. 55
6.2.2 Timing Overhead .. 55
6.2.3 General Discussion.. 55

Chapter 7 Future Work and Conclusion ... 57
7.1 Future Work... 57
7.2 Conclusion .. 57

References .. 58
Vita... 61

 v

 List of Tables

Table 1.1 VLSI Technology Trends [5].. 2

Table 3.1 LEON2 Memory Address Space.. 14

Table 4.1 Instrument Capability and Attributes ... 18

Table 5.1 Block RAM Parameters.. 30

Table 5.2 IP Block APB Memory Mapping .. 30

Table 6.1 Transistor Count Comparison... 56

 vi

 List of Figures

Figure 2.1 DAFCA Solution.. 6
Figure 2.2 rMatrix and rWrap... 7
Figure 3.1 SoC Baseline Platform Block Diagram ... 10
Figure 3.2 LEON2 Block Diagram.. 10
Figure 3.3 AHB Master Interface ... 12
Figure 3.4 APB Slave Interface.. 13
Figure 3.5 Artisan RAM Read Cycle.. 14
Figure 3.6 LEON-2 Processor Read Cycle.. 15
Figure 4.1 Wrap versus Tap... 17
Figure 4.2 Post-Silicon Tools Interface .. 20
Figure 4.3 Routing Signals .. 21
Figure 4.4 Personality Editor ... 23
Figure 4.5 Example Design Block with Associated Logic View 23
Figure 4.6 Example Logic View ... 24
Figure 4.7 LUT Function Entry Dialog .. 25
Figure 4.8 Example Routing View ... 25
Figure 4.9 Module Insertion Dialog ... 26
Figure 5.1 Instrumented SoC... 31
Figure 5.2 Physical Design Flow [13].. 33
Figure 5.3 Floorplan Guide .. 34
Figure 5.4 Clock Tree Phase Delay ... 35
Figure 5.5 SoC Design Routed .. 36
Figure 5.6 Post-Layout Simulation.. 38
Figure 5.7 SoC Layout in Cadence Virtuoso .. 40
Figure 5.8 Guard Ring and CHIPEDGE Polygon .. 41
Figure 5.9 Initial MT Density in the SoC ... 42
Figure 5.10 Initial ML Density in the SoC.. 42
Figure 5.11 SoC with MT Fill .. 43

 vii

Figure 5.12 SoC with ML Fill .. 44
Figure 6.1 Personality Editor Window Depicting ‘paddr’ Modification 46
Figure 6.2 SoC Post-Layout Simulation after ‘paddr’ Changes.................... 47
Figure 6.3 Personality Editor Window Depicting ‘hgrant’ Modification....... 49
Figure 6.4 SoC Post-Layout Simulation after ‘hgrant’ Changes................... 50
Figure 6.5 Personality Editor Window Depicting ‘done’ Modification 51
Figure 6.6 SoC Post-Layout Simulation after ‘done’ Changes 52
Figure 6.7 Post-Layout Waveform after Injection of Counter Personality to

paddr[2] and paddr[3] ... 53
Figure 6.8 ‘assert Always’ Assertion being Fired .. 54

 viii

Chapter 1 Overview

1.1 System-on-Chip (SoC)

System-on-a-Chip (SoC) design refers to implementing an entire electronics sub-
system on a single IC. A typical SoC consists of:

1. one or more microcontroller, microprocessor or DSP core(s);
2. memory blocks including a selection of ROM, RAM, EEPROM and Flash;
3. timing sources including oscillators and phase-locked loops;
4. peripherals including counter-timers, real-time timers and power-on reset

generators;
5. external interfaces including industry standards such as USB, FireWire,

Ethernet, USART, SPI;
6. analog interfaces including ADCs and DACs;
7. voltage regulators and power management circuits.

These blocks are connected by an industry-standard bus such as the AMBA bus
from ARM. DMA controllers route data directly between external interfaces and
memory, by-passing the processor core and thereby increasing the data
throughput of the SoC [1].Today designers of application-integrated circuits are
faced with the challenge of creating and verifying the content of million-transistor
chips as quickly as possible in order to reduce the time-to-market [2].It has been
estimated that a one-month delay in bringing a product to market can result in a
loss of ten percent of the potential revenue [3].Hence, not all of the transistors on
these chips can be customized but instead must be ported from previous
designs. These reusable cores or intellectual property (IP) blocks include CPUs
(like ARM, PowerPC and LEON), MPEG decompression engines, PCI bus
controllers, specialized DSPs, etc. Combining several complex cores using
standard cells is much more manageable and quicker than designing millions of
transistors one at a time. The myth that characterizes today’s IP is that these
components are blocks that have well-defined contents and interfaces. However,
they are often fuzzy and hence appear more like patches in a quilt, which must
be stitched together. The components cannot be assembled blindly and rapidly,
but rather must be carefully pieced together to form a working system. Therefore,
design for reuse does not come free. Rather it involves much more in-depth
documentation and characterization.

1.2 Design Testing and Verification

Testing has two major aspects: control and observation. Control is the measure
of the difficulty with which an internal net can be driven to a particular logic state.
Observation is the ability with which an internal signal’s current logic state can be
driven to an output where it can be measured.

 1

To test any system it is necessary to put the system into a known state, supply
known input data (test data), and observe the system to see if it performs as
designed and manufactured. If control or observation cannot be carried out, there
is no way to know empirically if the system performs as it should. During the
normal product development flow, testing (it may be known by different names)
takes place at many points during the process.

Table 1.1 lists the trends that impact cost and difficulty of testing. In order to
overcome the challenges posed by increasing complexity of designs
(approaching one billion transistors) better testing algorithms and debug methods
are needed to locate the design/physical errors and more efficient ways are
required to verify the fixes. Currently, an increasing number of circuits are
designed in accordance with Design-For-Testability (DFT) guidelines, which
makes the design easier to be tested and debugged. The payoff is not only
higher quality, but also shorter time-to-market [4].

1.3 Motivation

Silicon debug is a costly problem that delays volume production and market
entry. Until recently, debugging pre-production silicon required one or two
prototype re-spins, weeks of lab time to isolate problems, and cost hundreds of
thousands of dollars. Today, four or five re-spins are not uncommon, and months
can be spent stabilizing the design. Moreover, with the rapid shrinking of the
feature size, more physical errors are bound to occur due to timing, crosstalk,
noise, temperature, and process variation. At the same time, the designers are
losing visibility into the design as the size of the design increases [6].

Scan chains are only accessible with very constrained test patterns, and not at
speed. Simulators may take weeks to produce an incorrect result, or miss it if the
problem is environmentally dependent or an intermittent manufacturing defect.
The motivation of my research is to restore the designer’s ability to debug silicon

 Table 1.1 VLSI Technology Trends [5]

Year 97-01 03-06 09-12
Feature Size (um) 0.25-0.15 0.13-0.10 0.07-0.05

Millions of transistors/cm2 4-10 18-39 84-180
Number of wiring layers 6-7 7-8 8-9

Die Size, mm2 50-385 60-520 70-750
Pin Count 100-900 160-1475 260-2690

Clock Rate, MHz 200-730 530-1100 840-1830
Voltage, V 1.2-2.5 0.9-1.5 0.5-0.9
Power, W 1.2-61 2-96 2.8-109

 2

rapidly. I have used tools from DAFCA Inc. to insert this at speed debug
capability to our Volunteer SoC which is a LEON-based SoC platform built by
previous students at the University of Tennessee. The baseline SoC was first
instrumented with reconfigurable fabric (using DAFCA pre-silicon tools) that
enables the user to run the design at speed and monitor selected signals using
assertions and triggers. Then the post-silicon tools were used to isolate and
repair bugs, as well as to accelerate fix verification.

1.4 Thesis Goals

1. To insert an rMATRIX (a two-dimensional reconfigurable logic block array
used for wrapping ports/signals) into our SoC design.

2. To configure the LEON design according to the IBM 7RF 180-nm process.
3. To use DAFCA post-silicon tools to create debug assertions, signal

generators and logic fixes or repairs.
4. To synthesize, place and route the design using the IBM 7RF process and

submit to IBM via MOSIS for fabrication.
5. To test the fabricated chip and verify its self-repair capability using DAFCA

post-silicon tools.

1.5 Thesis Outline

In this section I briefly introduced the challenges that the current design
technology is facing and the need for new testing methodologies and tools. In
Chapter Two I will discuss some background information such as the challenges
in SoC design, problems associated with the presently prevalent testing
methodologies and the solution offered by DAFCA to overcome these problems.
Chapter Three explains the Volunteer SoC platform developed at the University
of Tennessee and its components. Chapter Four discusses about the DAFCA
tools and instrumentation of our SoC with these tools. Chapter Five presents the
design implementation in detail and my results. Chapter Six presents the tests
performed with the post-silicon tools. Chapter Seven concludes my work and
presents a plan for future work.

 3

Chapter 2 Background

2.1 Challenges in System-on-Chip Design

With rapid advances in semiconductor processing technologies, the density of
gates on the die increased in line with what Moore's law predicted. This helped in
the realization of more complicated designs on the same IC. Over the last few
years, an increasingly evident need has been that of incorporating the traditional
microprocessor, memories and peripherals -or in other words the whole system -
on single silicon. This is what has marked the beginning of the SoC era.

The advantages of an SoC are drastic reduction in the overall design cycle time
due to the use of existing IP (intellectual property) blocks ,superior performance
levels, less area requirements and hence greater economic viability. On the flip
side a greater concern of the designers today is the efficient testing of such a
chip while meeting the time to market pressures. Bugs in the design can lead to
several re-spins costing millions of dollars. Test costs in VDSM (very deep
submicron) SoC designs is approaching 60% of the total product cost [7]. As the
design complexity increases the designer loses visibility into the chip and testing
becomes even more challenging. So what is needed to achieve at this point is:

1. Improvement in Test Coverage
2. Reduction in Test Time
3. Reduction in Tester Requirements
4. Self-repair

2.2 Types of Testing and their Problems

Today circuit density has increased dramatically, and the cost of devices has
decreased as their performance has improved [8]. So reliability has become
increasingly important. However with the advent of very-large-scale integration
(VLSI), gate density is increasing much more rapidly than the number of access
terminals. So the ability to generate test patterns and process fault simulation is
deteriorating. This suggests that the circuits should be designed to be tested
easily. Testability of a logic circuit can be defined as the ease of testing or as the
ability to test easily or cost-effectively.

Early designers mainly used prototypes which were physical mockups of the
circuit being designed for testing purposes. These prototypes were used to
evaluate the logical correctness and timing characteristics of the design. The
prototype is attractive because it can run at or near design speed, it can be
evaluated near actual operating conditions, it does not require detailed simulation
models, and it can be run with virtually unlimited amounts of stimuli [9]. But some
of the drawbacks of a prototype are that many months of effort and expenditure

 4

may be required to build it. Also, if the prototype goes down due to some reason
the entire design team may be idled.

So eventually simulation started to play an important role in the testing process.
Present day simulators can operate on models at levels of abstraction ranging
from switch level to behavioral. Simulation at a high level of abstraction requires
less detailed processing and hence is faster. But in the other cases the
simulators may take weeks to reproduce an incorrect result, or miss it entirely if
the problem is environmentally dependent, an intermittent manufacturing defect,
or caused by inaccuracies in the pre-silicon models (e.g. an inadequately
modeled hard IPcore [6]). So the designer is forced to guess the cause of the
problem based on incomplete information and limited visibility. Consequently, the
process of determining an appropriate repair strategy becomes incredibly difficult
and risky.

Another approach to testing is generating test patterns and applying them to the
circuit under test. These input patterns produce erroneous responses when faults
are present. However as the complexity of circuits increases the generation of
test patterns becomes a tedious process. Moreover scan chains are only
accessible with very constrained test patterns, and not at speed. Also, storage of
huge amount of test patterns and responses is required and testing is slow
because of the shifting of patterns through the scan path.

2.3 The DAFCA Solution

One way to overcome the above problems is to add extra logic to be used for
testing to the design. Formerly a designer used to concentrate on minimization of
hardware cost and maximization of performance. However because of the
increasing testing cost and decreasing hardware cost, design for testability is
now becoming a cost effective approach.

DAFCA’s solution restores the designer’s ability to debug silicon rapidly [6]. It
achieves this task by putting reconfigurable instrumentation onto the chip that
enables the user to isolate and repair bugs. It provides at-speed access to
internal signals on the chip, delivers instrumentation for trigger and capture
events, and creates reconfigurable structures that can be used for in-situ repairs.
Figure 2.1 depicts the pre-silicon instrumentation and post-silicon debug
approach followed by DAFCA. The DAFCA solution has both software and in-
silicon components. The software interface enables the user to specify where the
instrumentation is placed on chip and provide debug and analysis capabilities
(post-silicon).

DAFCA’s in-silicon instruments are known as ReDI fabric.

 5

DEBUG

INSERT

 Figure 2.1 DAFCA Solution

Two of the ReDI logic elements, the rWrap and the rMatrix are shown in the
Figure 2.2.The rWrap is a thin reconfigurable logic block that can be used to
generate debug assertions, signal generators and even logic repairs. It wraps the
desired user block and hence provides complete controllability and observability
to the critical ports. An rMatrix is a two dimensional version of the wrapper and is
used to wrap more complex user blocks.

With the DAFCA instrumentation in place the designer can perform at-speed in-
system debug. The user can configure the instrumentation by identifying the
signals to be monitored and programming the wrappers to realize assertions and
logic fixes. The internal state of the system is hence available for examination.

A detailed discussion of the DAFCA tools is given in Chapter 4 of this thesis.

2.4 Debug Methods Supported by DAFCA

There are a number of industry-wide debug methods currently used for chip
debug. Each of these methods is supported by DAFCA [10].

 6

 Figure 2.2 rMatrix and rWrap

1. Full Scan/Partial Scan/Single-Step - Full Scan or Partial Scan uses the

scan registers to provide observation and control over the circuit under
test. A circuit can be tested “at-speed”, but must be halted to retrieve data
from the scan chain. Hence this debug method requires an iterative
approach of starting, stopping, and restarting the circuit under test in order
to isolate a problem. In many cases it is useful to advance a sequential
circuit one clock at a time during debug. This is often the most effective
method to isolate problems rapidly. Unfortunately many circuits can not be
stopped and started, much less single-stepped.

2. At-Speed Observation - Whereas Full Scan provides a wide but shallow

view of signal state, many chips are designed with debug muxes and
memory that provide a means to see a narrow but deep view of selected
signals. This is analogous to logic analyzer based debug techniques
where a user builds triggers and captures data as a means to isolate a
particular problem. While this method can be effective, it is often iterative
as the user often must create many triggers and capture many signal
states to reduce the scope of the problem continuously before it is fully
isolated.

3. Assertion-based Debug – Assertion-based debug uses assertions to

monitor the behavior of circuits. In some cases the assertion is hard-coded
into the RTL (register transfer level) code, while in other cases the
assertion can be defined post-silicon using the DAFCA post-silicon tools.
While some assertions can pinpoint a problem, most only limit the scope

 7

of a problem. Often additional methods (or assertions) are required to
isolate a problem fully.

4. At-Speed Control – At-speed control refers to debug techniques that

allow a user to dynamically modify the behavior of a circuit running at-
speed. In some cases this is simply the control over a configuration
register changed on-the-fly. In other cases, it may involve the dynamic
reconfiguration of a programmable circuit. At-speed control does not
include the ability to change scan registers and/or configuration registers
while in “test mode”. Such “test mode” control is provided with full scan.
At-speed control explicitly implies the ability to modify the behavior of a
circuit without requiring the circuit to be slowed or stopped.

 8

Chapter 3 Volunteer SoC

The Volunteer SoC that I have worked on was developed as part of a graduate
course in the Electrical and Computer Engineering Department of the University
of Tennessee over the last two years. The IP cores library were developed and
verified by different student teams. In this section I am going to discuss about the
basic components of this SoC and also the AMBA bus.

3.1 Overview

Our SoC is a LEON 2-1.0.12 based SoC and has two IP blocks attached to it.
The communication between the processor and the IP blocks takes place
through AMBA (AHB and APB) buses. The AHB is used for high-speed data
transfer and APB for on-chip peripherals. A memory controller is used to
communicate with external memories. The first IP block is an encryption module
that performs 128-bit decryption according to the Advanced Encryption Standard
(AES). The second block is a dummy block that is inserted to demonstrate the
debug capabilities of DAFCA tools.

The SoC is designed at the register transfer level and can be fully synthesized for
different processes. I have implemented it using the 180-nm IBM 7RF process.
The block diagram of this SoC is shown in Figure 3.1.

The two user IP blocks are attached to both the APB and the AHB. They are
defined as masters on the AHB and slaves on the APB. In our design, the AHB is
used for data transfer between memory and IP blocks and the APB is used for
control signals. APB bridge is the only master on the APB.

3.2 LEON CPU

The LEON2 CPU is a 32-bit processor conforming to IEEE-1754 (SPARC V8)
architecture. It is designed for embedded applications with the following features
on-chip: separate instruction and data caches, hardware multiplier and divider,
interrupt controller, debug support unit with trace buffer, two 24-bit timers, two
UARTs, power-down function, watchdog, 16-bit I/O port and a flexible memory
controller. New modules can easily be added using the on-chip AMBA AHB/APB
buses. The VHDL model is fully synthesizable with most synthesis tools [11].

A block diagram of LEON-2 can be seen in Figure 3.2.

 9

 Figure 3.1 SoC Baseline Platform Block Diagram

 Figure 3.2 LEON2 Block Diagram

 10

The Leon CPU is configured to minimum size in order to save silicon space. The
registers in LEON2 are implemented using a dual port RAM (dpram136x32) while
the instruction and data cache are implemented using single port RAMs
(ram256x32 and ram32x30 respectively). I have used the IBM 7RF Artisan RAM
generator to generate these RAM models for this design. Most of the optional
components like the hardware multiplier/divider and the on-chip debug unit are
disabled in the baseline design.

3.3 AMBA Buses

AMBA, which stands for an Advanced Microcontroller Bus Architecture, is an
open standard which defines an on-chip bus specification for interconnection and
management of various functional blocks that are a part of a System-on-Chip.

Two distinct buses defined within the AMBA specification are [12]:

Advanced High-performance Bus (AHB) - The AMBA AHB is for high-
performance. AHB supports the efficient connection of processors, on-chip
memories and off-chip external memory interfaces with low-power peripheral
macrocell functions.

Advanced Peripheral Bus (APB) - The AMBA APB is for low-power peripherals.
AMBA APB is optimized for minimal power consumption and reduced interface
complexity to support peripheral functions. APB can be used in conjunction with
the system bus.

In our design AHB and APB are used as the on-chip bus architecture for our
platform. The APB is used to access on-chip registers in the peripheral functions
while the AHB is used for high-speed data transfer.

The user IP blocks can be attached to AHB and/or APB, as a master or as a
slave. In this design the IP blocks have been attached to both the AHB and APB
in order to separate control signals and data transfer. They are defined as
additional masters on the AHB and slaves on the APB. As a master on the bus,
the IP blocks have the ability to initialize a data transfer with bus slaves without
waiting for the CPU, which is essential for a high performance system [13].

The AHB master interface is shown in Figure 3.3. A description of some of the
signals is given below:

1. HBUSREQx – A signal from the bus master x to the bus arbiter which
indicates that the bus master requires the bus.

2. HWRITE – When high this signal indicates a write transfer and when low a
read transfer.

 11

 Figure 3.3 AHB Master Interface

3. HRDATA – The read data bus is used to transfer data from the bus slaves
to the bus master during read operations.

4. HWDATA – The write data bus is used to transfer data from the master to
the bus slaves during the write operations.

Before the data transfer, the master first requests the bus from the arbiter. Once
the bus is granted, the master can initialize a data transfer.

The user IP block also serves as an APB slave, whose interface is shown in
Figure 3.4.

A description of some signals of the APB is given below:

1. PSELx – This signal indicates that a slave device is selected and a data
transfer is required.

2. PENABLE – This signal is used to time all accesses on the peripheral bus.
3. PWDATA - The write data bus is driven by the peripheral bus bridge unit

during write cycles.
4. PRDATA – The read data bus is driven by the selected slave during the

read cycles.

Being a slave, the IP block will wait for the selection signal from the bus master
and read in the data/address bus, with control signals indicating the type of the
data transfer. According to the command, it will perform a particular function.

 12

 Figure 3.4 APB Slave Interface

3.4 AES Module

In this SoC design an Advanced Encryption Standard (AES) module is being
used as a user IP block. AES is a block-cipher/decipher with block size of 128
bits. Keys for the cipher come in one of three lengths: 128, 192, or 256 bits. For
the purpose of achieving smaller design size, only a 128-bit key is supported in
this design. This particular AES module is a part of a cryptographic project
developed at the University of Tennessee [13].

Table 3.1 shows the LEON2 memory address space. The address space for the
APB Bridge is from 0x80000000-0x8FFFFFFF. Since the user IP blocks (AES
and rMat) have been attached on the APB, they have to be assigned this part of
the memory space.

3.5 Artisan RAM

The cache system and the register file are implemented by using technology-
dependent RAM cells. The Artisan RAM generator for the 180-nm IBM 7RF
process has been used for the generation of synthesizable RAM models.
To utilize this SRAM in our design it is required to understand its read and write
operation cycle and then create a wrapper to enable the communication with the
LEON-2 processor.

Figure 3.5 describes the read operation in Artisan SRAM. To perform a read
operation an important thing to notice is that address of the memory location to
be accessed should already be there when the rising edge of the clock appears.

 13

 Table 3.1 LEON2 Memory Address Space

 Figure 3.5 Artisan RAM Read Cycle

 14

 Figure 3.6 LEON-2 Processor Read Cycle

Similarly while writing to a memory location at the rising edge both data and
address location should already be there at the data and address bus I/O ports.
However the simulation of LEON-2 processor read cycle in Figure 3.6 shows that
it loads the address and data I/Os at the rising edge of the clock. This caused a
failure in the LEON-2 processor. Therefore a wrapper has been created, which
acts as an interface between LEON-2 and Artisan RAM [14].

 15

Chapter 4 Volunteer SoC Debug using DAFCA Tools

4.1 Introduction to the DAFCA Tools

DAFCA tools can be divided into two categories: pre-silicon tools and post -
silicon tools.

Pre - silicon tools enable a designer to instrument a RTL design with
reconfigurable debug infrastructure (ReDI) logic. This logic takes the following
two forms:

• ReDI library blocks provided by DAFCA - fixed function blocks that are required
for specific debug applications.
• Customizable logic blocks generated with the DAFCA pre-silicon tools which
are highly configurable blocks that are tuned for a designer’s special debugging
requirements.

This instrumentation enables the post-silicon debugger/tester to detect, isolate,
and repair bugs, as well as accelerate verification using Post-Silicon tools. It
provides at-speed access to internal signals on the chip, delivers instrumentation
to trigger and capture events, and creates reconfigurable structures that can be
used for everything from assertions to on-the-fly repairs to signal generation [14].

The ‘Personality Editor’ package of the post -silicon tool enables a designer to
program the reconfigurable logic blocks to realize assertions, logic modifications
and fixes. At-speed patterns can be run through the system, by executing system
software. The internal state, recorded by the Tracer in the debug module is then
available for examination through the debug environment of NOVAS Debussy.

The user selects a net or set of nets to be to be observed, and the DAFCA tools
automate routing the nets through interstitial PAN (parallel access network)
network, programming triggers, and starting the tracer block. The result is that
the SoC is no longer a black box. The user has the ability to debug the silicon at-
speed, in the system, using the real logic and regains visibility to the signals that
had become inaccessible.

4.2 Pre - silicon Tools

The pre-silicon tools are used for the insertion of ReDI logic to a SoC. User logic
can be “wrapped” or “tapped” with DAFCA instruments. Wrapping refers to the
insertion of an instrument on a signal/port that introduces a mux element in the
path. Tapping refers to the insertion of an instrument that taps off a signal/port.
No new elements are explicitly inserted within the existing path [9].

 16

 Figure 4.1 Wrap versus Tap

Figure 4.1 illustrates the difference between wrapping and tapping.

As stated in the previous section ReDI logic can be divided into DAFCA provided
logic blocks and Customizable logic. DAFCA provided logic blocks include:

1. Primary Controller (PCON) – PCON is a part of the Access Mechanism
which is communication channel instrumented on-chip and used to
transfer control and data information between off-chip tools and on-chip
instruments. The Access Mechanism is serial and utilizes a JTAG port for
connectivity to the primary I/O. The PCON provides the interface and
control between the JTAG TAP and the rest of the DAFCA infrastructure.

 2. Serial Access Node (SAN) - The SAN provides the interface between
 end-point instrumentation and the serial access channel. All DAFCA
 instruments have serial chains for configuration and control.

 3. Monitor - The Monitor is the programmable “controller” used to manage
 assertions, triggers and Tracer activity within the Debug Module (module
 used for on-chip logic analysis). Although the size of the rMonitor is about
 600 K gates it will pay off to have an on-chip logic analyzer for a multi-
 million gate design.

 4. Tracer - The Tracer is part of the Debug Module and used for the

 storage of state information during logic analysis. The Tracer uses
 embedded memory for storage.

Customizable logic blocks include:

 1. rWRAP - rWRAP is a one-dimensional array of reconfigurable logic blocks.
 The number of blocks in the array is user-specified. Each reconfigurable

 17

 logic block includes configuration registers, logic, and routing resources
 that can be programmed to perform debug and validation functions during
 post-silicon verification.

 2. rMATRIX - rMATRIX is a two-dimensional array of reconfigurable logic
 blocks. The number of blocks in the array (rows and columns) is user-
 specified. Whereas the rWRAP may be routing or logic resource limited due
 to the one-dimensional architecture, rMATRIX provides a richer set of logic
 and routing resources. As such, a wider range of functions (such as
 complex assertions) can be programmed into this resource.

 3. CMUX - The CMUX is a collection of 2:1 muxes, pipeline registers and
 configuration registers. It is used to observe the critical ports/signals in a
 circuit. A CMUX cannot be used for controlling ports/signals like an rWRAP.

 4. r1500 - r1500 instruments provide resources for basic observation and
 control. An r1500 cell can be composed of one or more scan chain
 registers, an update register and control muxes.

As Table 4.1 suggests the r1500, rWRAP and rMatrix introduce an extra mux
delay to the design, while rMux does not. This is because of the difference
between the nature of tapping and wrapping a signal.

 Table 4.1 Instrument Capability and Attributes

 18

4.3 Instrumentation of the Volunteer SoC Using Pre-Silicon
Tools

The SoC I started working with had already been instrumented with some ReDI
blocks by Wei Jiang as a part of his thesis work. The design had two rWraps
(XRW_Leon1 and XRW_Leon2) and 3 CMUXs (XCMUX_Leon1,XCMUX_Leon2
and XCMUX_Leon3).77 ports had been wrapped and 672 ports had been tapped
using these wrappers and MUXs respectively.

The instrumentation of the ReDI block results in a larger design size. The number
of extra gates depends on the choice of ReDI blocks and instrumentation
decision. Designers should have a basic guideline in the design process to
decide what signals or ports need to be instrumented and what kind of wrappers
should be used. As a principle consideration, it makes perfect sense that the
debug logic should be inserted in relative new and more complex logic, which
has a high risk of failure and may be harder to be verified [13]. In this system
design, since the IP blocks were pre-verified, they were less likely to have
problems after silicon manufacture. So critical control logic (e.g. AMBA interface,
APB Bridge, AHB arbiter) was instead wrapped since it was more problem prone.
Similarly as the data transfer is generally straight forward and does not have
much scope for logic error, the AMBA data bus was tapped (and not wrapped) to
monitor the data transfer. This was also done to save silicon space as a CMUX
occupies much less area (100 u2/port) than an rWrap (4000 u2/port).

Another consideration is that although it is required to test the DAFCA debug
approach, it cannot be predicted whether the error will occur in-silicon or not. In
the case that no design or fabrication error occurs in the silicon, a mechanism is
needed to test the ability of the DAFCA debug method. To solve this problem, I
decided to introduce an rMatrix into the design. This rMatrix wraps the second IP
block (rMat) which is the dummy IP block. The rMatrix can be used to
deliberately insert errors into the rMat block and hence demonstrate the error
locating and debug capabilities of the DAFCA tools. The DAFCA Post-Silicon
tools have a package called the ‘Personality Editor’ which can also be used to
inject any desired personalities (adder, counter etc.) into this rMatrix and hence
enable it to work as an eFPGA (embedded FPGA) thus enhancing the versatility
of the SoC.

In addition to the wrappers, MUXes and the rMatrix, the design also has a debug
module comprised of the Monitor and the Tracer and a PCON and SAN for off-
chip communication.

 19

Signal Tree

Tcl Prompt

Transcript
Window

 Figure 4.2 Post-Silicon Tools Interface

4.4 Post-Silicon Tools

Post-silicon tools utilize the ReDI blocks inserted into the design using pre-silicon
tools to isolate and repair bugs. They have a GUI with an interface as shown in
Figure 4.2.

The Debug Environment GUI has three main areas [16]:

• Signal Tree – Located on the left side of the main window, the signal
tree shows all wrapped and tapped signals in the current design
hierarchically. The signals that have been routed through a wrapper
are shown in green.
The Instruments tab displays a list of all ReDI instruments that were
inserted into the design.

• Command Log – The top-right area of the main window shows the
Debug Environment commands exactly as they are executed.

The Transcript tab provides the details of the debug session—not only the
commands that are issued, but also the specifics of each route that is made (that
is, signal sources and destinations). If there are any problems during the session,
the errors are displayed in the Transcript.

 20

 Figure 4.3 Routing Signals

Tcl Prompt – The bottom-right area of the main window provides a Tcl
prompt that can be used to issue Debug Environment commands. The Tcl
prompt has a multi-line mode, which allows access by placing the cursor
in the window and clicking the right mouse button. Once in multi-line
mode, multiple commands can be issued without them being executed. To
execute the commands, one can press Shift-Enter while in multi-line mode
or can switch back to single-line mode and then press Enter.

To route signals:

1. Expand the signal tree hierarchy to locate the signals that have to be
routed.

2. Right-click the selected signal to display a drop-down menu. Select
observe, and the instrument and port that has to be routed to. The full
hierarchy of a routed signal displays in green in the Signals tree as shown
in Figure 4.3.

After selecting all the signals, the routes can be saved to a .pan file which can be
pulled up if needed in a later debug session.

 21

Certain ReDI instruments have an associated graphical user interface (GUI) that
simplifies the debug process. The instruments with an available GUI can be
controlled either by using the GUI or the Tcl commands accessible from the CLI.
An instrument’s GUI can be accessed by clicking the instrument’s name in the
instrument browser. If the instrument is colored blue, it can be double-clicked to
control it through the GUI.

4.4.1 Personality Editor

The Personality Editor is a GUI-based tool that can be used to create assertions
and checkers to isolate design defects. A personality is essentially a specific
configuration of a ReDI instrument. Currently, personalities can only be created
for the rWrap instrument. The Personality Editor may be invoked from the
instrument’s application within the Debug Environment GUI.

To access the Personality Editor from the Debug Environment GUI:

1. Select the Instruments tab from the main window.

2. Double-click on the instrument (rWrap) with the left mouse button to
invoke the wrapper’s GUI.

3. Select Configure/Launch Personality Editor from the menu bar of the
rWrap GUI.

The Personality Editor interface is shown in Figure 4.4. There are three main
views of the Personality Editor, which work together to provide a complete picture
of the instrument and its functions as they are configured.

The three views are:

a) Block View

An rWrap instrument is composed of a set of blocks, which display along the
bottom of the Personality Editor. All input and output signals are noted on each
block; lines that connect to status and control bits appear in green. This area of
the Personality Editor provides an overview of the instrument, that is, what
functions are configured for the instrument and in which blocks.

Figure 4.5 shows an example block that has been configured and its
accompanying logic (from the Logic View).Cells in the block correspond to the
cells in the Logic View of that block. The up arrow icon appears in the left side of
a cell if a carry chain is in use. The flip-flop icon appears in the right side of a cell
if a flop is in use.

 22

 Figure 4.4 Personality Editor

 Figure 4.5 Example Design Block with Associated Logic View

 23

b) Logic View

The Logic View, located in the top right of the Personality Editor, displays the
logic for the selected block as shown in the following screen shot. Figure 4.6
shows an example logic view. Cells displayed in green may be set to a value by
left clicking on them.

A logical function of a, b, and c can be entered for the look-up table using
standard logical operators: & = and, | = or, + = xor, ~ = not. Right-click on the
look-up table to display the LUT function entry dialog which appears as shown in
Figure 4.7. Once we have entered the logical function for a cell, it is displayed in
actual bit values in hexadecimal format.

c) Routing View

The Routing View, located in the top-left of the Personality Editor, displays all
routes between blocks within the instrument as shown in Figure 4.8.The routing
done in the Personality Editor is different from that in the Debug Environment. In
the Debug Environment, signals are routed up to the perimeter of an instrument.
In the Personality Editor, ports are routed within an instrument (in effect,
interconnecting logic within the instrument).

 Figure 4.6 Example Logic View

 24

 Figure 4.7 LUT Function Entry Dialog

 Figure 4.8 Example Routing View

 25

 Figure 4.9 Module Insertion Dialog

To view possible routes for a port, select the port name with the left mouse
button. All legal routes are highlighted in blue. To route one port to another, left
click on the start port and then left click on the end port. The routes are
highlighted in red.

Apart from designing personalities manually using the Logic and Routing View as
discussed previously, pre-defined personalities (programmed using Python) can
also be inserted into the wrappers. There are 32 such ready-to-use personalities
(assertions) available with the Personality Editor. The ‘Insert Module’ option on
the ‘Tools’ menu bar in the Personality Editor allows one to insert these pre-
defined modules into the instrument. Figure 4.9 shows this module insertion
dialog box. Once the desired personality is injected into the Wrapper, its MODE
bit can be set to 1 to activate the built-in personality.

The post-silicon tools also provide integration into third party tools like NOVAS
Debussy for debug purposes. Waveforms for the signals added to the tracer can
be observed using Debussy, which makes debugging easier as it provides active
annotation and active tracing of the signals. It is possible to click on the signal in
the waveform and go back to the line of the HDL (hardware description
language) code that is driving the signal at that time.

 26

Chapter 5 Implementation

In this section I describe the detailed implementation steps of the design. At each
step of the implementation, verification is done with simulation to ensure the
correctness of the final design. The design is implemented targeting the IBM 7RF
180-nm process. The target process can be changed easily since the design is
technology-independent.

As stated in the previous sections I started my work using the Volunteer SoC
which has two IP blocks (AES and rMat) attached to it. The design also had
some DAFCA ReDI fabric inserted into it. VHDL and Verilog are used in the
design. I have used the Synopsys Design Compiler for synthesis and Cadence
SoC Encounter for place and route of the design. Simulation has been done
using Cadence NCSim. DAFCA Post - Silicon tools use several C++ function
calls and NCSim supports the Programming Language Interface (PLI) of the Post
- Silicon tools. This is the primary reason for using NCSim.

5.1 Customizing the LEON2 Processor

5.1.1 Configuration

The LEON model is highly configurable and hence can be customized for a
certain application or target technology. A graphical configuration tool based on
the linux kernel tkconfig scripts is used to configure the model. After a
configuration has been saved, the corresponding VHDL configuration file
(device.vhd) is generated.

The graphical configuration tool can only be used to configure LEON for the
Xilinx VIRTEX, Atmel ATC, UMC FS90A/B, UMC 0.18 um CMOS, TSMC 0.25
um, Actel Proasic FPGA or the Actel AX anti-fuse FPGA technology. But the
technology I was looking at was the IBM 7RF 180-nm process and so I could not
use the tkconfig scripts to configure LEON but had to do so manually.

LEON uses three types of technology-dependant cells; RAMs for the cache
memories, 3-port register files for the IU registers, and pads. These cells can
either be inferred by the synthesis tool or directly instantiated from a target
specific library. The selection of instantiation method and target library is done
through the configuration record in the TARGET package.

To port to a new technology:

1. A technology-dependent package should be added, exporting the proper cell
generators. I achieved this by creating a file tech_ibm.vhd containing the IBM
7RF specific RAMs, regfile, and pads. In my course work I had customized LEON

 27

for the TSMC 0.25 um process where the IE and OE pins of the pads were active
low. But the pad documentation for the IBM process suggested that these pins
were active high and hence I wrote the behavioral models of the pads taking into
account the new polarity. The technology-dependant packages can be seen as
wrappers around the mega cells provided by the target technology or synthesis
tool. The wrappers are then called from tech_map.vhd, where the selection is
done depending on the configured synthesis method and target technology.

2. The target.vhd should be edited to include the new technology or synthesis
tool in targettechs. Shown below are a few lines from my target.vhd. The new
technology ‘ibm’ has been added to targettechs.

library IEEE;
use IEEE.std_logic_1164.all;

package target is
type targettechs is
 (gen, virtex, virtex2, atc35, atc25, atc18, fs90, umc18, tsmc25, proasic,
axcel,ibm);

3. The tech_map.vhd should be edited to instantiate the cells when the
technology is selected. Shown below are a few lines from my tech_map.vhd
which indicate dpram instantiaton.

ibm7rf : if TARGET_TECH = ibm generate
 u0 : ibm_dpram generic map (abits => abits, dbits => dbits)
 port map (address1, clk1, zero, dataout1, enable1, zero(0),
 address2, clk2, datain2, open, enable2, write2);
 end generate;

4. The device.vhd should be edited to define and select the configuration using
the new technology.

In our LEON design, optional components such as FPU, Hardware Multiplier, and
Debug Units were not selected during configuration. Instruction and data cache
were set to be 1K, single set and 8 words per cache line.

5.1.2 Artisan RAM

The instruction/data caches are implemented as Single Port RAM (SPRAM)
blocks and the register file is designed as two Dual-Port RAM (DPRAM) blocks.
As the previous section states, the RAMs are technology-dependent and have to
be instantiated by the user. The RAM blocks that come with the LEON2 package
are behavioral models that can be used only for simulation. In order to synthesize
the design these RAM blocks have been replaced with the ones generated by the

 28

Artisan RAM generator for the IBM 7RF process. The size of the RAM block
needed depends on the size of the I/D cache and register file. We have used two
136x32 DPRAMs, two 256x32 SRAMs and two 32x30 SRAMs as hard macros in
our design.

Five views of the RAM blocks were generated using the Artisan RAM generator.
They were: Verilog Model for simulation, Synopsys Model for logic synthesis,
TLF Model for timing analysis, VCLEF footprint for Physical Design tools and
GDSII layout for final tape out. The specifications used are shown in Table 5.1.

As discussed in section 3.5, the RAM blocks cannot be used directly because of
the timing specifications difference between the Artisan RAM and the Leon.
Hence, they have been wrapped with a RAM block wrapper so that they can
communicate with the LEON2 in the same fashion as the behavioral model. Then
the Synopsys model is converted into the Synopsys database format to be used
for logic synthesis.

5.2 The Integrated SoC

As mentioned in Chapter 3, our design has a 128-bit AES decryption module and
a dummy rMat block as the two user IP blocks and these are defined as
additional masters on the AHB bus and slaves on the APB bus. The user IP
blocks have been instantiated in the top level VHDL file (mcore.vhd), in order for
Leon to recognize the extra master on AHB. For the APB connection, the
APB/AHB Bridge has been modified to define the memory mapping for the APB
signals of AES block [13].

The AMBA interface of our SoC is designed to take care of AMBA signals and
pass the input/output data between the AMBA bus and the IP blocks. It is a state
machine which performs several sequential steps. For AES, the steps are [13]:

1) Initialize, Enable AES module and wait for start request signal on APB.
2) Read in control data through APB (input data memory address).
3) Request AHB bus and transfer data upon bus granted.
4) Load key/data into AES and signal AES to start.
5) Read in AES output when AES finishes, signal system that output ready.
6) Write back output data to the memory address that system specified.
7) Go back to initial state and wait for next call.

In order to have the system recognize the additional bus masters and slaves, the
IP blocks had to be connected to the bus arbiter and the APB Bridge had to be
modified to re-define the peripheral memory mapping. The IP blocks were
instantiated and connected to the AHB arbiter with a unique index. The arbiter’s
arbitration scheme is fixed and a higher index has higher priority. The CPU is

 29

 Table 5.1 Block RAM Parameters

 Table 5.2 IP Block APB Memory Mapping

the default master on the bus and has an index of zero, which means that the IP
block has higher priority than the CPU when both of them are requesting the bus
at the same time. As we see in Table 3.1, the memory range of the APB Bridge is
between 0x80000000 and 0x8FFFFFFF, so the IP blocks have been assigned
addresses within this range. The memory mapping and AHB master indexes of
both the IP blocks are shown in Table 5.2.

5.3 Insertion of rMatrix to the Design

As mentioned in Section 4.3, the SoC I started working with had already been
instrumented with two rWraps and 3 CMUXs. This ReDI fabric was inserted into
the most critical and error prone portion of the design. The wrappers were
inserted around the AMBA bus interface, AHB bus arbiter and APB bridge while
the MUXs were inserted around the data bus.

The instrumented design is shown in Figure 5.1. In order to display the debug
ability of DAFCA tools in a better way I have introduced an rMatrix into the
design. The rMatrix can be seen in Figure 5.1 as the grey block next to the
dummy IP block (rMat) and can be used to deliberately insert some errors or
additional features into rMat. The rMatrix wraps the input and output ports of the
rMat block and can also be used as an embedded FPGA block.

 30

 Figure 5.1 Instrumented SoC

After the design was instrumented, simulation was also done to make sure that
the insertion of the DAFCA ReDI fabric did not affect the logic of the design.

5.4 Synthesis

Logic synthesis was done using Synopsys Design Compiler after the DAFCA IP
blocks were inserted into the design. The synthesis script was written with tighter
timing constraints to accommodate the delay that would be introduced due to the
addition of the DAFCA logic. I have used the ‘set_case_analysis’ command to
assign a constant value to some ports and pins so that the false paths in the
design are ignored during timing analysis and optimization.

The bottom-up synthesis approach has been used for the on-chip debug circuitry.
Because the muxes and D flip-flops are instantiated in the CMUX design and a
large number of signals are being tapped, a large number of muxes and D flip-
flops are instantiated in the design. Design Compiler automatically compiles
hierarchical circuits without collapsing the hierarchy. After each module in the
design is compiled, Design Compiler continues to optimize the circuit until the
constraints are met. This process sometimes requires recompiling sub-designs
on a critical path [17].To prevent this recompiling and hence save time in the
synthesis process ‘set_dont_touch’ command has been used in the synthesis
script. Hence each sub-design is synthesized and compiled only once and there
is only one copy loaded in the memory for each sub-module. After the debug
module is synthesized, top-down approach can be followed for the rest of the
design in order to have better optimization. After the design is synthesized, a

 31

gate-level verilog netlist and a timing constraint file (SDC) are written out to be
used in the physical design.

5.5 Physical Place and Route

After synthesis, the physical place and route of the design was done using
Cadence SOC Encounter. This included floorplanning, clock tree synthesis and
timing analysis. The physical design flow is shown in Figure 5.2.

I started by importing the gate level net-list into Encounter. The timing files (.tlf)
and lef files for the IBM 7RF standard cells, pads and RAM blocks were also
imported. I have used the slow timing libraries for better timing closure on the
design. In order to use the 132-pin package PGA132M from MOSIS, an I/O file
was created for I/O pad assignments with I/Os evenly spread out on each side of
the chip. The I/Os included 8 VDD and 8 VSS pins too. This I/O file was also
imported into Encounter. Then floorplanning was initiated where the hard macro
blocks (i.e. memory) were pre-placed. Then I proceeded with standard cell
placement. After all the cells were placed, three clock trees were synthesized to
minimize the clock skew. At this point trial route and timing analysis was used to
check if the timing requirement was met. Very often there are timing violations so
several iterations of in place optimization (IPO) are needed. The whole process is
an iterative procedure and it is possible to go back to modify the initial floorplan,
until the timing requirement is met. Then the final layout and timing delay file for
post-layout simulation was generated.

5.5.1 Floorplanning, Powerplanning and Placement

The goal of floorplanning is to place the logic in ways that make the routing
easier, less congested and shorter. The RAM blocks (register files and cache for
LEON) have been placed and aligned in a corner. The tracer memory has been
placed away from rest of the RAM blocks to separate the original baseline design
from the DAFCA instrumentation. The basic principle used in the floorplan was to
arrange the modules such that blocks with connections are placed closer to each
other, especially for critical components such as the CPU, cache controller,
memory controller, etc. At the same time, the original un-instrumented baseline
design was separated from the DAFCA instruments, to minimize the impact of
introducing extra logic into our design. Cache blocks for LEON were placed in the
bottom left corner, while register file RAM blocks were placed in the middle left
and the tracer memory has been placed in the top left corner. Block halos were
added around these blocks to reduce congestion around the block. We also set
the die size (4.784mm x 4.796mm) and the core to I/O boundary distance (100
um) in the ‘Specify Floorplan’ form. The die size was decided taking into account
the size of the I/O Pad cells and the Pad filler cells

 32

 Figure 5.2 Physical Design Flow [13]

 33

 Figure 5.3 Floorplan Guide

Figure 5.3 shows the floorplan guides for the layout. Power rings were added
around the core boundary. Power stripes were also added for easy access to
VDD and GND but stripes were omitted inside the block rings.

Then amoeba placement was carried out on the design. It was a medium effort,
timing-driven placement.

5.5.2 Clock Tree Synthesis

The clock tree was synthesized after the placement was done. I have generated
an individual clock tree separately each for CLK (clock for LEON), PTCK (clock
for JTAG controller) and PTRST_N (reset for the JTAG controller).The clock tree
specification file for the CLK signal is listed below:

AutoCTSRootPin clk
NoGating NO
MaxDelay 2ns
MinDelay 0.5ps
MaxSkew 0.5ns
SinkMaxTran 3ns

 34

BufMaxTran 3ns
Buffer BUFX1 BUFX2 BUFX3 BUFX4 BUFX8 BUFX12 BUFX16
End

After the clock tree was synthesized, the modified net-list was saved and the
clock phase delay is shown in Figure 5.4.

5.5.3 Routing

The design was routed using 6 layers of metal. I used NanoRoute for the process
and performed global and detail routing. Global Route plans the global
interconnect and detailed routing for the design using NanoRoute while Detail
Route performs detailed routing on the design following the global routing plan.
Timing analysis and in placement optimization were done to solve the timing
violation after the routing. The final layout of the design is shown in Figure 5.5.

5.6 Simulation Result

The simulation of the design was done at the pre-synthesis, post-synthesis and
post-layout steps to verify the functionality at each step. After the design was

 Figure 5.4 Clock Tree Phase Delay

 35

 Figure 5.5 SoC Design Routed

 36

routed to the final layout, the timing information was extracted and written to a file
in the Standard Delay Format (SDF). The SDF file was imported back to the
simulator for back annotation of the simulation.

In order to test the design, the C testbench from LEON has been modified and
the RAM image has been recompiled for simulation. After LEON boots up, it
reads the data from memory, sends it to the AES block through the AHB bus and
enables the GO signal through the APB bus. AES reads in the key and encrypted
text, performs the decryption and sends the data back to RAM and flags the
DONE signal. The post-layout simulation is shown in Figure 5.6a and 5.6b. The
instrumentation of the DAFCA ReDI blocks has been done in the top level of the
design. Hence we have routed all the signals that had to be tapped / wrapped to
the top level of the design and then finally sent them back to their respective
modules. All wrapped signals begin with the word ‘dafca’ and are named in the
format ‘dafca_xxx_wrap_out’ or dafca_xxx_wrap_in’ where ‘xxx’ denotes the
port/signal name. The ‘dafca_xxx_wrap_out’ are the signals that have been
routed to the top level and appear at the input of the debug circuitry at the top
level. The ‘dafca_xxx_wrap_in’ are the signals that are routed back to the inner
modules after wrapping. A similar naming convention has been followed for the
tapped signals. It can be seen in Figure 5.6a that at around 508.9 µs, ‘psel’,
‘penable’, ‘pwrite’ are 1, ‘apb_paddr (4 downto 2)’ = ‘000’ and ‘apb_pwddata (0)’
= 1, hence AES is enabled. It can be seen in Figure 5.6b that at around 509 µs,
the AES requested the AHB bus. It is granted around 510 µs and data are
transferred through the AHB bus. After the data are read, ‘data ready’ and ‘go’
become high. Then ‘kld’ (key load) becomes high which signals the AES block to
load the encryption key. The data is converted into 128-bit encrypted cipher text
and 128- bit key and sent to the AES module. At 521 µs, the AES module
finishes decryption and the plain text is written out as ‘dataout’ and ‘done’ is high
to signal the AMBA interface that the data is decrypted and ready to be sent back
to memory.

5.7 Sending the Design to MOSIS

The SoC layout imported in Cadence Virtuoso is shown in Figure 5.7. A few
modifications and pattern density checks had to be performed on the design
before submitting it to MOSIS for fabrication. These were performed using
Cadence Virtuoso. The GDS file for the layout that had been exported from First
Encounter was imported into Cadence Virtuoso using the ‘gdstocds.map’ file
provided with the IBM PDK. The modifications and checks performed included –

1. Placement of a CHIPEDGE polygon around the Design – MOSIS requires
that the design should contain a CHIPEDGE shape which defines the
correct size of the chip matrix. This shape is required for pattern density
checking of the matrix. The CHIPEDGE requirement was met by creating
a guardring (which contains its own CHIPEDGE polygon) around the chip.

 37

 (a)

 Figure 5.6 Post-Layout Simulation

 38

 (b)
 Figure 5.6 Continued

 39

 Figure 5.7 SoC Layout in Cadence Virtuoso

The guardring was created using the rectangular ‘Image’ Pcell provided in
the IBM PDK. Finally, the chip origin (x=0, y=0) was placed at the lower
left corner of the CHIPEDGE polygon. The layout with the CHIPEDGE
polygon is shown in Figure 5.8.

2. Pattern Density Rules - Pattern density rules have been developed as a

manufacturing requirement for production of all semiconductor products in
order to better control the manufacturing process and assure control of
manufacturing parameters (film thicknesses, etch control, linewidths etc.)
and product yield [18].

Pattern density rules can be divided into-

a) Global Pattern Density Rules –

 40

 Figure 5.8 Guard Ring and CHIPEDGE Polygon

These rules require the designer to make sure that the density of MT and ML
metals in the chip is >= THRES-GLOBAL-MIN (IBM 7RF specific minimum global
density threshold value) and <= THRES-GLOBAL-MAX (IBM 7RF specific
maximum global density threshold value) [18].The metals M1, M2, M3 and M4
are auto-filled by MOSIS. Figures 5.9 and 5.10 show the initial density of MT and
ML metals respectively in our layout.

I met the density requirements for MT and ML by creating small dummy shapes
using the MT and ML dg layers. The pattern density fill guidelines for the IBM
7RF process required that these dummy shapes should not be more than DA
(area specified by the IBM 7RF process) um2 in area [18]. Dummy shapes should
be relatively small, especially on metal levels, to reduce cross-talk due to the
additional level-to-level capacitive coupling.

 41

 Figure 5.9 Initial MT Density in the SoC

 Figure 5.10 Initial ML Density in the SoC

 42

Also they should be well-dispersed, if possible, to maximize process uniformity.
I placed the dummy shapes as instances all over the layout till the global density
requirements were met. The key point to be careful about was not to overlap
these dummy shapes with the already present respective metal layers. Figures
5.11 and 5.12 show the layout with MT and ML fill respectively. The global
pattern density test was performed by running the file ‘divaDensity.rul’ and the
density requirements for ML and MT were met.

b) Local Pattern Density Rules –

These rules require that local density (minimum) for M2, M3, M4, M5 and MT
metals checked in 400μm x 400μm checking boxes stepped in 400μm
increments across the chip be greater than THRES-LOCAL (IBM 7RF specific
minimum local density threshold value) [18].Our design met the M2, M3, M4 and
M5 local densities by itself but the local density of MT had to be raised by
insertion of MT dummy shapes uniformly throughout the chip. The local pattern
density test was performed by running the file ‘divaLocalAlum.rul’.

 Figure 5.11 SoC with MT Fill

 43

 Figure 5.12 SoC with ML Fill

 44

Chapter 6 Testing with Post-Silicon tools

The experiments with the post-silicon tool have been performed on the post-
layout netlist due to unavailability of the fabricated chip at this time. The
Personality Editor from the post-silicon tools suite has been used to program
certain assertions and checkers by injecting different personalities into the
rWraps. Post-silicon tools communicate with the Cadence simulator as if it is a
real chip. I have modified the testbench to loop infinitely. Initially, I chose to
bypass the testing structure and hence the circuit was functioning normally. Then
I injected several personalities into the wrappers and could see the effect of that
change in the functionality of the of the IP blocks. I also implemented several
assertions with the help of wrappers to verify the functionality of critical signals.
The Personality Editor for rMatrix is not available at the moment so I could not
inject personalities into the rMatrix. Some of the tests I performed are:

6.1 Tests Performed

Forcing the bits [2], [3], [4] of the APB Address bus to ‘1’-

For AES to be enabled it is required that apb_paddr [2 - 4] be ‘0’. But with the
help of the personality editor, I programmed the wrapper XRW_Leon1 such
that these bits be stuck at 1 and as expected AES stopped working. Figure
6.1 shows the changes made in the wrapper using the Personality Editor. PO0
and PO1 are output pins of the wrapper block 3 that in turn connect to the bits[2]
and [3] of the APB Address bus. Pin PO0 of block 4 connects to bit [4] of the
address bus. As seen in the logic view on the right the cells have been set to the
logic function ‘FF’ which implements the stuck at ‘1’ function for the pins Z0 and
Z1 for block 3 and Z0 for block 4. As these pins are connected to the PO’s of the
wrapper they aid in setting APB address bus [2], [3] and [4] bits to 1.

Figure 6.2 shows the waveform for the SoC after this change. As expected the
AES has stopped working and no data input or output can be seen in the ‘datain’
and ‘dataout’ pins respectively. Also paddr[2],[3] and [4] are stuck at ‘1’.

Forcing the ‘hgrant’ signal of the AHB bus to ‘0’-

When AES is enabled, it waits for the ‘hgrant’ signal for the AHB bus which
indicates that the bus has been granted. The AHB address bus carries the
address of the data to be decrypted whereas the AHB data bus carries the data
to be decrypted. With the help of the Personality Editor, I stuck the ‘hgrant’ signal
to ‘0’ and hence the AES stopped working.

 45

 Figure 6.1 Personality Editor Window Depicting ‘paddr’ Modification

 46

 Figure 6.2 SoC Post-Layout Simulation after ‘paddr’ Changes

 47

Figure 6.3 shows the changes made in the wrapper using the Personality Editor
and Figure 6.4 shows the waveform for the SoC after this change. As seen in
Figure 6.4, ‘dafca_hgrant_wrap_in1’ is stuck at ‘0’. This is the signal that is at the
output of the wrapper XRW_Leon1 and goes all the way into the hierarchy to the
AES module from the top level. As expected ‘datain’ and ‘dataout’ pins show no
data values.

Forcing the ‘done’ signal from the AES module to ‘0’-

Once the AES is done with the decryption, it flags the ‘done’ signal to a high
value indicating the same. With the help of the Personality Editor, I stuck the
‘done’ signal to ‘0’ and Figure 6.5 indicates this change. The effect of this
personality can be seen in the waveform in Figure 6.6. As seen in Figure 6.6 as
soon as the ‘dafca_done_wrap_in1’ becomes ‘0’, the ‘dataout’ signal changes to
all zeroes.

Injecting the Counter Personality into the ‘paddr’ signals-

The Personality Editor can also be used to inject a Counter behavior to the
wrappers. The Counters to choose from include the Gray counter, Carry-Look
Ahead counter and the Ripple counter. I have inserted the 2-bit ripple counter
personality into paddr[2] and paddr[3] and the waveform reflecting this change
can be seen in Figure 6.7.

Programming the ‘assert always’ assertion for the ‘start’ signal-

The Personality Editor provides a library of 32 built-in assertions to load into the
wrappers. Some of these assertions are asset_always,assert_never,
assert_change,assert_decrement,assert_handshake etc. In addition to these
built-in assertions the designer also has the option of writing his own assertions
using the Python programming language. The assertions can be accessed from
the Tools -> Insert Module menu option from the Personality Editor. They are an
excellent way of verifying the functionality of critical signals in the SoC.

Using the Personality Editor, I programmed the ‘assert always’ assertion for the
‘start’ signal of XRW_Leon1. Once the key is loaded into AES, the ‘start’ signal
becomes high for a short duration to initiate the AES to start the decryption.
Figure 6.8 shows the assertion being fired as indicated by the ‘status’ bit on
XRW_Leon1. The assertion is fired because the ‘start’ signal is not stuck at ‘1’
but toggles between the ‘0’ and ‘1’ values.

 48

 Figure 6.3 Personality Editor Window Depicting ‘hgrant’ Modification

 49

 Figure 6.4 SoC Post-Layout Simulation after ‘hgrant’ Changes

 50

 Figure 6.5 Personality Editor Window Depicting ‘done’ Modification

 51

 Figure 6.6 SoC Post-Layout Simulation after ‘done’ Changes

 52

Figure 6.7 Post-Layout Waveform after Injection of Counter Personality to
paddr[2] and paddr[3]

 53

 Figure 6.8 ‘assert Always’ Assertion being Fired

 54

6.2 Discussion

The extra flexibility and debugging ability comes with the price of performance
and area. The amount of reconfigurable logic introduced in a SoC design is
always about the tradeoff between the flexibility and the area/delay of the design.

6.2.1 Area Comparison

The un-instrumented design has 812K transistors and the design core fit into a
2mm x 2mm area. In this instrumentation, 672 signals have been tapped and 77
signals have been wrapped and the tracer has a 2048x64 bit memory. The total
transistor count of the final design is 3135K; the whole design area takes about
4.8mm x 4.8mm. The transistor count comparison for different modules is listed
in Table 6.1.

6.2.2 Timing Overhead

Wrapping a signal introduces an extra MUX delay. Although tapping a signal
does not explicitly introduce any MUX delay in the signal path, the extra load will
slow down the transition time and the extra logic will introduce extra wiring delay
as well. In the physical layout an attempt has been made to separate the original
design and the embedded DAFCA blocks to minimize the impact of the design
timing due to the extra wiring. The impact due to the extra load was also reduced
since First Encounter performed transistor resizing during timing in-place-
optimization. Furthermore, during the synthesis step a tighter timing constraint
was used to leave some margin for the extra logic in the ReDI blocks. As a result,
when the circuit is running in mission mode (by-passing the DAFCA logic), there
is no degradation in design performance.

6.2.3 General Discussion

From the results above, it can be seen that the insertion of reconfigurable fabric
into the chip greatly enhanced its observability and controllability and made error
location and debugging easier. It gave the designer the internal access to the
chip. Assertions, checkers and logic fixes could be performed on signals and the
internal state of the circuit could be recorded. In addition to programming the
wrappers with assertions and counters, the Personality Editor also provides the
option of inserting arithmetic modules for implementing functions like add, equal,
greater_than, less_than etc. to the wrappers. This adds to the versatility of the
SoC.

It is true that about 60% of this design is embedded test logic, which might not
seem very attractive in this particular case. But it should be noted that the final

 55

 Table 6.1 Transistor Count Comparison

 Original Baseline With Test Logic
LEON CPU 408 K 467 K
AES 356 K 464 K

Cache 140 K 160 K
Register File 188 K 195 K
RAM Total 328 K 355 K

Wrapper 1 100 K
Wrapper 2 137 K
CMUX 74 K
rMatrix 280 K
rMonitor 603 K
Tracer Memory 819 K

SoC Total 812 K 3135 K

design has only about 3 million transistors, including 1.4 million transistors that
are used for on-chip debug module (rMonitor and tracer memory). In a multi-
million gate design, the size of the on chip debug module will remain the same
while only the size of the wrappers and MUXs will be scaled. In general, this
approach will be more suitable for a large SoC design where the extra cost can
be justified. But an important consideration will always be to make an intelligent
decision as to where to insert the ReDI fabric.

 56

Chapter 7 Future Work and Conclusion

7.1 Future Work

As mentioned in the previous sections, I have inserted an rMatrix in our SoC to
wrap the I/O ports of the dummy IP block. But due to unavailability of a
Personality Editor for the rMatrix at this point, no tests could be performed on it.
So injecting personalities into the rMatrix and testing it with the Post Silicon tool
needs to be done.

Also, the Python programming language can be used to program assertions and
personalities to be used in the Personality Editor in addition to the assertions
already available.

The chip has been submitted to MOSIS for fabrication and is expected back on
May 31, 2006. So a testing board needs to be designed before that time. Also,
the chip needs to be tested in the same way as the post-layout netlist.

7.2 Conclusion

• Inserted the rMatrix to the original instrumented design.
• Configured the design for the 180-nm IBM 7RF process
• Synthesized, Placed and Routed the design using the 180-nm IBM 7RF

process and submitted to IBM via MOSIS for fabrication.
• Tested the design through post-layout simulation and verified its self repair

capability using DAFCA post-silicon tools.
• Reconfigurable instrumentation can greatly help reduce testing time and

costs by making fault location and fixing easier.
• The approach is highly cost effective for multi million gate designs as

product delays and re-spins may be avoided.

 57

 References

 58

[1] Online Wikipedia. Available: http://en.wikipedia.org/wiki/System-on-a-chip

[2] International Technology Roadmap for Semiconductors, [Online].Available:
 http://public.itrs.net/

[3] Smith, M. J. S., “Application-Specific Integrated Circuits”, Addison-Wesley,
 Boston, MA, 1997

[4] Miczo, Alexander, “Digital Logic Testing and Simulation”, John Wiley & Sons,
 Inc. 2003

[5] Plusquellic, J. CMPE 646 Class Note, [Online]. Available:
 http://www.csee.umbc.edu/~plusquel/vlsi_test/

[6] DAFCA Inc., “In-Silicon Solution for Silicon Debug”, DAFCA whitepaper.

[7] Lin, J. Challenges for SoC Design in Very Deep Submicron Technologies,
 [Online].Available: http://www.ece.uci.edu/codes+isss/Invited/JamesLin.pdf

[8] Fujiwara, Hideo,”Logic Testing and Design for Testability”, MIT Press, 1985.

[9] Miczo, Alexander, “Digital Logic Testing and Simulation”, John Wiley & Sons,
 Inc. 2003

[10] DAFCA Inc., “DAFCA ReDI HW Data book”

[11] Jiri Gaisler, Gaisler Research. The LEON-2 Processor: User’s Manual,
 [Online]. Available: http://www.gaisler.com/.

[12] AMBA Specifications Rev 2.0, ARM IHI 0011A, ARM Limited, (1999),
 [Online]. Available: http://www.arm.com

[13] Jiang, W.,” Enhancing System-on-Chip Verification using Embedded Test
 Structures”, M.S. Thesis, University of Tennessee, December 2005.

[14] Srivastava, R.,”Development of an Open Core System-on-Chip Platform”,

 M.S.Thesis, University of Tennessee, August 2004.

[15] DAFCA Inc., “DAFCA pre-silicon Reference Guide”

[16] DAFCA Inc., “ClearBlue Debug Environment User’s Guide”

[17] Ecole Polytechnique notes, [Online]. Available:
 http://www.grm.polymtl.ca/~mahoney/dcrmo/dcrmo_2.pdf

 59

http://en.wikipedia.org/wiki/System-on-a-chip
http://public.itrs.net/
http://www.csee.umbc.edu/%7Eplusquel/vlsi_test/
http://www.ece.uci.edu/codes+isss/Invited/JamesLin.pdf
http://www.gaisler.com/
http://www.arm.com/
http://www.grm.polymtl.ca/%7Emahoney/dcrmo/dcrmo_2.pdf

[18] IBM Microelectronics Division, “CMOS7RF Design Manual”

 60

 Vita
Tushti Marwah was born in Delhi, India on August 29

th
, 1981. She received her

Bachelor of Technology degree in Electronics and Communication from Guru
Gobind Singh Indraprastha University in 2003. She attended The University of
Tennessee, Knoxville in 2004 and received her Master of Science degree in
Electrical Engineering in August 2006 under the guidance of Dr. Don Bouldin.
Her research interests include Digital VLSI design and debug and Embedded
Systems.

 61

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2006

	System-on-Chip Design and Test with Embedded Debug Capabilities
	Tushti Marwah
	Recommended Citation

	3.3 AMBA Buses
	6.1 Tests Performed
	6.2 Discussion

