
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2007

A Study of the Homology of Subset Spaces and their Connection A Study of the Homology of Subset Spaces and their Connection

to the K-SAT Problem in Computer Science to the K-SAT Problem in Computer Science

Oliver J. Thistlethwaite
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Thistlethwaite, Oliver J., "A Study of the Homology of Subset Spaces and their Connection to the K-SAT
Problem in Computer Science. " Master's Thesis, University of Tennessee, 2007.
https://trace.tennessee.edu/utk_gradthes/228

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268801395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=trace.tennessee.edu%2Futk_gradthes%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Oliver J. Thistlethwaite entitled "A Study of the

Homology of Subset Spaces and their Connection to the K-SAT Problem in Computer Science." I

have examined the final electronic copy of this thesis for form and content and recommend that

it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with

a major in Mathematics.

James Conant, Major Professor

We have read this thesis and recommend its acceptance:

David Anderson, Conrad Plaut

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Oliver James Thistlethwaite entitled
“A Study of the Homology of Subset Spaces and their Connection to the K-SAT
Problem in Computer Science”. I have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major in
Mathematics.

James Conant

Major Professor

We have read this thesis
and recommend its acceptance:

David Anderson

Conrad Plaut

Accepted for the Council:

Carolyn Hodges

Vice Provost and
Dean of the Graduate School

(Original signatures are on file with official student records.)

A Study of the Homology of Subset

Spaces and their Connection to the

K-SAT Problem in Computer Science

A Thesis Presented for

the Master of Science Degree

in Mathematics

The University of Tennessee, Knoxville

Oliver James Thistlethwaite

August 2007

Copyright 2007 by Oliver James Thistlethwaite

All rights reserved.

ii

Acknowledgments

Dr. Conant, thank you all for your help.

I would also like to thank my father, Dr. Morwen Thistlethwaite,

and the rest of the Thistlethwaite family.

iii

Abstract

It is the purpose of this thesis to introduce an idea for studying questions of

computer science via topology. We begin by describing the homology of a certain

space constructed from a given subset of the power set of any finite set. We then

discuss how this relates to the k -SAT problem in computer science.

We shall use computers as a tool to calculate the homology groups as well as

the Euler characteristic of some of these spaces. Due to the sheer number of calcu-

lations needed, doing the necessary computations by hand is both impractical and

impossible.

In addition, with inspiration from these results, we will provide several rigorous

mathematical proofs detailing certain properties of the spaces produced by some

input sets.

iv

Contents

1 Introduction 1

1.1 The Combinatorial Questions . 1

1.2 Relationship to Problems in Computer Science 2

2 Literature Review 5

3 Materials and Methods 6

3.1 How the Homology Groups are Calculated 6

3.2 How the Euler Characteristic is Calculated 7

3.3 Program Design . 7

4 Results and Discussion 12

4.1 The Homology of Some Spaces Generated by Small Input Sets 12

4.2 Proof that any Finite Simplicial Complex can be Realized 13

4.3 The Space Generated by the Set of all Subsets of Size k 14

4.4 The Homology of k -SAT . 16

4.4.1 Homology of 1 -SAT . 16

4.4.2 Homology of k -SAT with k variables 17

4.4.3 Other Properties of k -SAT . 18

5 Conclusions and Recommendations 19

5.1 C++ versus Mathematica . 19

References 20

Appendices 22

Appendix A: Tables . 23

Appendix B: Figures . 30

Appendix C: C++ Source Code . 36

Vita 52

v

List of Tables

1 Homology calculated for KA where |F| = 3 or 4. 24

2 Homology calculated for KA for some random As with |F| = 5. 25

3 Subsets of K̂A. 26

4 k -SAT. 27

5 Original and nerve Euler characteristic computation times. 28

6 Mathematica and C++ homology computation time comparison. . . . 29

vi

List of Figures

1 The simplicial complex KA generated by all the proper subsets of a

set of order 3. 31

2 The geometric realization of the set of proper subsets of a 3 element

set. 32

3 Pseudocode for the algorithm. 33

4 Chain group tree storage example. 34

5 K2,1 shown to be the suspension of K1,1. 35

vii

1 Introduction

1.1 The Combinatorial Questions

There are several ways we may contruct topological spaces out of a subset of

the power set of any finite set. Here we begin with some definitions and examples.

Definition 1. Let F be a finite set and A be a collection of proper subsets of F.

We may define a simplicial complex KA as follows. The vertices are the elements of

A and there is an n-simplex [a0, a1, . . . , an] if and only if a0 ∩ a1 ∩ · · · ∩ an 6= ∅.

Remark. Let us only consider As which do not contain the entire set F as a subset.

If we add {F} to our A, then KA will be contractible, as KA∪{F} is a cone on KA.

Example. Define F = {1 , 2 , 3} and A to be the set of all proper subsets of F.

Then KA is homotopy equivalent to S1. This is shown in Figure 1.

Definition 2 (Geometric Realization of a Poset). Recall that a set, X, has a partial

order, <, if < is irreflexive and transitive. The pair (X,<) is often called a poset.

Any poset can be turned into a simplical complex, |X|, as follows. The 0-simplices

are simply elements of X. The 1-simplices correspond to all pairs x, y where x < y.

Similarly, the n-simplices correspond to (n+1)-tuples, (x0, . . . , xn), where x0 < x1 <

. . . < xn. This simplicial complex is called the geometric realization of X.

Example. The set of proper subsets of {a, b, c} is partially ordered by inclusion.

The geometric realization is homeomorphic to S1. This is shown in Figure 2.

Definition 3. Let F a finite set, and A a collection of proper subsets of F, as in

the first section. Let 〈A〉 be the set of all nonempty intersections a1 ∩ a2 ∩ . . . ∩ ak
where ai ∈ A, and define the simplicial complex K̂A = |〈A〉|.

For example, consider A = {{1, 2}, {2, 3}}. Then

〈A〉 = {{1, 2}, {2, 3}, {2}}, and the simplicial complex K̂A is just two line segments

glued at one endpoint of each.

Theorem 1. The complexes KA and K̂A are homotopy equivalent.

Proof. First note that U =
⋃

a∈A

Ua is a cover of K̂A, where Ua is the complex spanned

1

by all bi ∈ 〈A〉 such that bi ⊂ a.

Now we see bi ∈ Ua ∩ Uc ⇐⇒ bi ∈ a and bi ∈ c ⇐⇒ bi ∈ a ∩ c ⇐⇒

bi ∈ Ua∩c. Therefore Ua ∩Uc = Ua∩c. So if this intersection exists it is a simplex, so

it is contractible.

Now generalizing this argument we see,

Ua1
∩ · · · ∩ Uan

≃

{
∗ if a1 ∩ · · · ∩ an 6= ∅
∅ if a1 ∩ · · · ∩ an = ∅ ,

where ∗ is the homotopy type of a point. Note we may make our U cover an open

cover of K̂A by taking arbitrarily small neighborhoods around each Ua.

Now we may apply Corollary 4.G.3 from [Hat06] to show K̂A is homotopy equivalent

to the nerve NU. But this nerve is clearly homeomorphic to KA; so we’re done. �

1.2 Relationship to Problems in Computer Science

Definition 4 (Boolean Formula). First fix a finite alphabet

Sn = {x1, . . . , xn}. A boolean formula is a formula in these variables and their

negations x̄1, . . . , x̄n, with the logical operators ∧ (“AND”) and ∨ (“OR”).

Definition 5 (k-SAT). A boolean formula is an element of k-SAT if it is of the
form

(a11 ∨ a12 ∨ . . . ∨ a1k) ∧ (a21 ∨ a22 ∨ . . . ∨ a2k) ∧ · · · ∧ (am1 ∨ am2 ∨ . . . ∨ amk) ,

where each aij is an element of Sn ∪ S̄n, and furthermore, the same variable cannot

occur more than once in each pair of parentheses.

A formula is said to be satisfiable if there is an assignment of T or F to each

variable in Sn which makes the formula true. (Such an assignment is called a

satisfaction.) It is a theorem that there is a polynomial time algorithm for deciding

if a 2-SAT formula is satisfiable, but that deciding whether a 3-SAT formula is

satisfiable is an NP problem. Thus it is desirable to explore the difference between

these two problems.

P and NP are important concepts in computer science. The complexity class

of decision problems that can be solved on a deterministic sequential machine in

polynomial time is known as P. The class of decision problems that can be verified in

polynomial time is known as NP. It is one of the most significant unsolved problems

2

in mathematics whether or not P = NP. It is considered to be one of the “Millennium

Problems” and a million dollar prize is offered for the first correct proof. The

ultimate goal of this project was to find a topological invariant for distinguishing

between sets of P and NP formulae, but much work still remains to be done.

Definition 6.

1. Let Tn denote the set of all truth assignments of the variables in Sn. Thus Tn

has 2n elements.

2. Let φ be a Boolean formula. Define xφ ∈ P(Tn) by letting xφ be the set of all

satisfactions of the formula φ.

3. Now let Xn,k ⊂ P(Tn) be defined as

Xn,k = {xφ : φ is a k-SAT formula} \ {∅,Tn}

4. Let K̂n,k be the simplicial complex |Xn,k|.

The connection between this question and the first section is the following ob-

servation.

Theorem 2. K̂n,k = K̂A, where A = {xφ : φ = a1 ∨ · · · ∨ ak} \ {∅}, and F = Tn.

Proof. Notice that xφ ∩ xψ = xφ∧ψ. Thus 〈A〉 is equal to the set of all xφ where

φ is a set of formulas from A which are “and”ed together. That is, xφ is a k-SAT

formula. �

Example. Let’s work out K̂2,2. The only possible atomic formulae are

φ1 = x1 ∨ x2 φ2 = x1 ∨ x̄2 φ3 = x̄1 ∨ x2 φ4 = x̄1 ∨ x̄2.

Now

xφ1
= {{T, T}, {T, F}, {F, T}},

xφ2
= {{T, T}, {T, F}, {F, F}},

xφ3
= {{T, T}, {F, T}, {F, F}},

xφ4
= {{F, T}, {T, F}, {F, F}}.

Then {xφ1
, xφ2

, xφ3
, xφ4

} forms the set A, and the poset X̂2,2 that we are inter-

ested in is formed by taking all intersections of elements of A, excluding the empty

set.

Abbreviating notation, we get

X̂2,2 = {{TT, TF, FT}, {TT, TF, FF}, {TT, FT, FF}, {FT, TF, FF},

{TT, TF}, {TT, FT}, {FT, TF}, {TT, FF}, {TF, FF}, {FT, FF},

{TT}, {TF}, {FT}, {FF}} .

3

Definition 7. One can also define a complex Kn,k which has a vertex for every

xφ ∈ A as above, and which has an m-simplex [a0, . . . , am] whenever a0∩· · ·∩am 6= ∅.

Remark. For the rest of this paper when referring to k -SAT with n variables, let

us actually mean the simplicial complex Kn,k, unless the original meaning is implied

in the text. Also from now on we will be just studying Kn,k complexes and not K̂n,k

ones.

Example. Let’s work out K2,2. We already calculated

A = {{TT, TF, FT}, {TT, TF, FF}, {TT, FT, FF}, {FT, TF, FF}} .

Then K2,2 has the simplices

[1] , [2] , [3] , [4] , [12] , [13] , [14] , [23] , [24] , [34] , [123] , [124] , [134] , [234] .

By Theorem 4, this yields a 2-sphere: K2,2 ≃ S2.

4

2 Literature Review

Due to the unique nature of this project, there was not much literature available

for review. However, there were several interesting articles on related topics.

Michael Freedman has written several papers illustrating a possible connection

between the P / NP problem and techniques of topology. First we discuss some of

these papers.

In [Fre98b], Freedman discusses the P / NP problem and [notes that] in 25 years

only technical progress on the problem has been made. He makes note of new evi-

dence obtained from field theory that some physical system might be manipultated

to solve NP and even #P-hard problems in polynomial time. The most significant

idea presented is that ”ultrafilter limits” might be applied to the P / NP problem

to convert it into a logicial problem of decidability. These ”ultrafilter limits” are a

topological technique developed by Gromov. The concept is that in such a limit P

would become decidable, so a problem with an undecidable limit would be shown

to be outside of P.

In our next Freedman article, [Fre99], he defines infinite generalizations of 2 -SAT

and 3 -SAT which are respectively algorithmic and undecidable. In these general-

izations, decidability distinguishes between 2 -SAT and 3 -SAT. While this doesn’t

prove 2 -SAT and 3 -SAT are distinct, it is an important step in that direction.

The final Freedman article we make mention to is [Fre98a]. Here he further

delves into ”ultrafilter limits” idea of a way of distinguishing P and NP. He applies

these ”ultrafilter limits” to the classical Turing machine model of computation and

develops a paradigm for distinguishing P from NP as a logical problem of decid-

ability. His goal was to find an appropriate limit to prove the problems in P are

decidable and hence any problem that is undecidable must lie outside of P.

Now we move onto [KB00], an article by J. Kouneiher and A.P.M. Balen. Here

they outline a definition for a propositional manifold and logical cohomology. A

propositional manifold is a generalization of Boolean algebras of propositions. The

logical cohomology can be defined as the cohomology of these propositional mani-

folds. Finally it is shown that if two Boole algebras of mathematicial propositions are

nonequivalent then their cohomologies are not isomorphic. The topology for spaces

of formulae defined in [KB00] is the order topology relating to logical implication.

This inspired the definition of the complexes K̂A in this thesis.

5

3 Materials and Methods

3.1 How the Homology Groups are Calculated

To calculate the homology of KA we can use the equation,

Q ⊗ Hi(KA) ∼=
Qdim(Ci)−rank(∂i)

Qrank(∂i+1)
.

It is important to note that we aren’t actually calculating Hi but rather Q ⊗ Hi.

Tensoring with Q kills off all the torsion in Hi. While Q⊗Hi isn’t quite as powerful

a topological invariant as Hi, the computations are greatly simplified by using it.

Now we shall prove the above isomorphism.

Proposition 2.

Q ⊗ Hi(KA) ∼=
Qdim(Ci)−rank(∂i)

Qrank(∂i+1)
.

Proof. First, from the definition of Hi we have,

Hi(KA) ∼=
Ker(∂i : Ci → Ci−1)

Im(∂i+1 : Ci+1 → Ci)
.

Now if we tensor Hi(KA) with Q using the fact that Q⊗Hi(KA) ∼= Hi(Q⊗C∗), we

get

Q ⊗ Hi(KA) ∼=
Ker(∂i : Ci ⊗ Q → Ci−1 ⊗ Q)

Im(∂i+1 : Ci+1 ⊗ Q → Ci ⊗ Q)
.

The above is isomorphic to

Qdim(ker∂i)

Qdim(im∂i+1)
,

as tensoring with Q is equivalent to killing off the torsion. Now, using the elementary

linear algebra property that the rank plus the nullity is equal to the dimension of

the column space, we find,

Qdim(ker∂i)

Qdim(im∂i+1)
∼=

Qdim(Ci)−rank(∂i)

Qrank(∂i+1)
.�

Finally, it is worth mentioning that the rank of a homomorphism f : G ⊗ Q →

H ⊗ Q of finitely generated modules is determined by first finding a basis of βG =

6

{g1 , . . . , gn} of G ⊗ Q and a basis βH = {h1 , . . . , hm} of H ⊗ Q. Once bases are

known, we can find the coefficients cij such that f(gi) =
∑n

j=1 cijhj for each i. Now,

to find the rank of f , we simply need to calculate the rank of the matrix,

c11 c12 . . . c1m

c21 c22 . . . c2m
...

...
...

cn1 cn2 . . . cnm

.

3.2 How the Euler Characteristic is Calculated

The Euler characteristic χ, is a topological invariant which we can use to de-

scribe an aspect of the shape or structure of a simplicial complex. While the Euler

characteristic is not as powerful an invariant as the homology type, it is much easier

to compute. For a finite simplicial complex KA, the Euler Characteristic χ(KA) is

defined by:

χ(KA) = c0 − c1 + c2 − . . .

This is an alternating sum where each ci is dimension of the Ci−th chain group.

Then, ci is equal to the number of i-cells in the complex. So, we simply need to find

the number of i-cells in KA for each i and insert these numbers into the above to

find χ.

Note, each ci is the number of nonempty intersections of i + 1 elements in some

subset A of the power set of a finite set F. So, as A is finite, we only need to find

up to c|A|−1.

3.3 Program Design

We begin by taking as input a file containing a collection of subsets of some

finite set F. For simplification we will only be considering sets F of form F =

{1 , 2 , 3 , . . . , n} where n ∈ N. The subsets will be stored as a list of numbers of F

with 0s to specify the gaps between subsets. For example A = {{1} , {2 , 3} , {3}}

would need to be stored as 1 0 2 3 0 3 0 in the input file.

The next step is to convert this into a more convenient format. First we read

through the data to determine both the size of F and size of A, our input set. Now

we initialize an integer array of size |F | ∗ |A| and store each element of A in a block

of numbers of size |F | with 0s for padding. For instance, A = {{1} , {2 , 3} , {3}}

would be stored as 1 0 0 2 3 0 3 0 0. This format is necessary so we can quickly move

7

between elements without having to calculate the length of an element of A before

we can move onto the next one, as would be required in the original format in the

input file. Note it is also faster to use a continuous block of memory such as this

array than it would be to use a linked list. A linked list would require more memory

access to obtain pointers to elements, whereas in this format all that is required is

some pointer arithmetic to obtain the address of the next element.

Now that we have our input set A in a convenient format, the next step is to

calculate the chain groups for KA. That is to find each Ck, or kth chain group, we

need to know all the nontrivial intersections of k + 1 and fewer elements of A.

Note we only are required to calculate the first |F| − 1 chain groups to find the

homology groups.

Lemma 1. Hi(KA) is trivial for all i > |F| − 2.

Proof. By Theorem 1, KA is homotopy equivalent to K̂A.

Each simplex in K̂A corresponds to an n-tuple (x1, . . . , xn) of xi ∈ 〈A〉, where

x1 ⊂ x2 ⊂ . . . ⊂ xn. Note since x1 ⊂ x2, x2 must be at least a 2 element subset of

F. Likewise, xn must be at least an n element subset of F. So the largest possible

simplex in K̂A is an (|F| − 2)-simplex, as we are excluding As that contain F as a

subset. Recall,

Hi(K̂A) ∼=
Ker(∂i : Ci → Ci−1)

Im(∂i+1 : Ci+1 → Ci)
.

So it is clear Hi(K̂A) is trivial for all i > |F| − 2. Therefore Hi(KA) is also. �

We start by initializing three arrays of size |F| of cells, where each cell is stored

as a pointer to some element of A. Let us call them a, p, and I. a will serve as a

placeholder for cells to add to a simplex, pk will represent the next element after ak
for each k, and finally I will be used to store intersections of various cells.

First we read in the first element of A into p0, the first position of p. We then

set a0 = p0 and increment p0. We are starting with 0-simplices so, as we don’t need

to calculate any intersections, we just set I0 = a0. We then test to see if there are

any more elements left in A. If there are and if i < |F | − 1 we set p1 = p0 and

increment i.

In the general case, we first set ai = pi and calculate the intersection of ai and

Ii−1, which we will store in Ii. If this intersection is nonempty and i < |F| − 1, we

still have some slots remaining in our arrays, so we set pi+1 = pi and increment i,

and the process is repeated. Otherwise, if i = |F| − 1, we have run out of slots in

8

our arrays, so we just repeat the above on the next element of A. Finally when we

have run out of elements in A, we first decrement i and start the process over with

the next element after ai.

Note that every time a nonempty cell is added to, say the kth slot in I, we store

from the beginning to the kth slots of a as k-simplex. Also note the simplices are

stored in a dynamic linked list structure, so we may store them on our first iteration,

without having to first calculate the storage needed.

Finally, we know the algorithm has completed if we try to move to a negative slot

of our arrays; if i < 0. Simply put, we are going through all the possible k-simplices

of KA in lexicographic order. The pseudocode for the algorithm is shown in Figure

3.

Now that we have calculated the generators for all the chain groups, the next

step is to calculate the rank of the boundary operations between them. For example,

say we are trying to find the rank of the boundary map ∂n : Cn → Cn−1. The first

step is to determine what generators of Cn get mapped to in the form of generators

of Cn−1. The boundary map ∂n : Cn → Cn−1 is defined by the formula:

∂n(σ) =
∑

i

(−1)iσ|[v0 , ... , bvi , ... , vn]

This is an alternating sum of (n − 1)-simplices, each ith simplex formed by

removing the ith cell from σ. So given some simplex σ of Cn, it is trivial to determine

∂n(σ). The difficulty arises in that we would like to determine the coefficients xi
needed to write ∂n(σ) in the form:

∂n(σ) =
∑

i

xibi

where bi are the ordered (n − 1)-simplices of A, the generators of Cn−1.

One’s first thought is to simply write an algorithm that parses through all the

(n−1)-simplices of KA until a match is found for each summand in the above. How-

ever, when the ranks of the chain groups get large, this approach is very inefficient.

For instance, if KA contains 20,000 (n − 1)-simplices, we must parse through this

set of 20,000 elements each time we wish to find one of the xi in the above.

A much more efficient way of doing this is to store the basis of Cn−1, the (n−1)-

simplices, in an ordered tree data structure. We shall define the tree as follows.

Each node will have an integer value as well as a set of size |F| + 1 of pointers to

other nodes, let us call this set branches.

To store a simplex, first we move to the head of the tree and then look at the first

number in the simplex’s first cell, say it is j. We then move to the node branches [

j] is pointing to. If no such node exists there, we create one there and move to it.

9

We continue in this way until we reached the end of a cell. When this happens we

move to the node branches [0], that the current node is pointing to. Finally when

we have reached the end of our simplex, we change the integer value stored in our

current cell to that simplices position in the set of (n − 1)-simplices we calculated

earlier.

After the tree has been constructed, finding what position a simplex has in the

list of (n−1)-simplices is simply done by scrolling through the tree in the same way

as earlier and looking at the value of the node we end up in. Both the contruction

of the tree and finding the positions of elements can be done in linear time with

respect to n and the total number of (n − 1)-simplices.

Illustrated in Figure 4 is a diagram of how the set of simplices

{{1} , {1 , 2}} , {{2} , {2 , 3}} , {{3} , {3 , 4}}

is stored in tree form.

Now we have all the information we need to construct our boundary matrix. We

will store this information in a matrix of size dim(Cn) by dim(Cn−1). Now all that

remains is to calculate the rank of this matrix.

Note that these matrices quickly become very large and very sparse as we use

larger As, so using traditional rank finding algorithms becomes impossible without

requiring a massive amount of computer memory. A much more efficient method

is to use a sparse matrix rank algorithm. While these sparse algorithms may be

slower than their nonsparse counterparts, their lack in speed is certainly made up

by requiring only a tiny fraction of the memory needed by the nonsparse variety.

To determine rank, we will use the LinBox C++ library. This library is appro-

priate, as it is one of the only sparse matrix libraries designed to handle integer

matrices. More information can be found at [Lin07]. Most sparse matrix computa-

tion today is done with matrices whose entries are decimal approximations, which

arise often in engineering related fields.

So now after we have calculated the ranks of all the necessary boundary maps

∂n : Cn → Cn−1, we may determine Q ⊗ Hi(KA) for each i. This is calculated by

Q ⊗ Hi(KA) ∼=
Qdim(Ci)−rank(∂i)

Qrank(∂i+1)
.

Finally, it is worth mentioning that the algorithm to find the Euler characteristic

is very similar to the algorithm mentioned earlier to calcuate the chain groups. The

key difference being that we must now parse through ALL the chain groups and not

just the first |F| − 1. In addition, now we are no longer required to store the cells,

we only need to count how many i-cells there are for each i so we may calculate the

alternating sum:

χ(KA) = c0 − c1 + c2 − . . . ,

10

where each ci is the number of i-cells in the complex.

Example. Now let us try using the method outlined in Section 3.1 of this text on the

complex illustrated in Figure 1. Note A = {{1} , {1 , 2} , {1 , 3} , {2} , {2 , 3} , {3}}.

Working out all the simplices we get:

C0 = 〈{1} , {1 , 2} , {1 , 3} , {2} , {2 , 3} , {3}〉

C1 = 〈{{1} , {1 , 2}} , {{1} , {1 , 3}} ,

{{1 , 2} , {1 , 3}} , {{1 , 2} , {2}} ,

{{1 , 2} , {2 , 3}} , {{1 , 3} , {2 , 3}} ,

{{1 , 3} , {3}} , {{2} , {2 , 3}} , {{2 , 3} , {3}}〉

C2 = 〈{{1} , {1 , 2} , {1 , 3}} , {{1 , 2} , {2} , {2 , 3}} ,

{{1 , 3} , {2 , 3} , {3}}〉 .

∂1 : C1 → C0 corresponds to the matrix

−1 1 0 0 0 0
−1 0 1 0 0 0

0 −1 1 0 0 0
0 −1 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 1 0
0 0 −1 0 0 1
0 0 0 −1 1 0
0 0 0 0 −1 1

which has rank 5.

∂2 : C2 → C1 corresponds to the matrix

1 −1 1 0 0 0 0 0 0
0 0 0 1 −1 0 0 1 0
0 0 0 0 0 1 −1 0 1

which has rank 3.

Now using the formula:

Q ⊗ Hi(A) ∼=
Qdim(Ci)−rank(∂i)

Qrank(∂i+1)
,

we find Q⊗H0(KA) ∼= Q and Q⊗H1(KA) ∼= Q. All the other homology groups are

trivial. So this suggests KA is homotopy equivalent to S1.

11

4 Results and Discussion

4.1 The Homology of Some Spaces Generated by Small In-

put Sets

Let us start by calculating the homology of KA for some As that are contained

in the power sets of some small sized Fs. Before we start, let us prove a helpful

lemma.

Lemma 2. If we append any {f} to A where f ∈ F and A is a subset of the power

set of F, the homology of KA is affected in one of two ways.

1. A new contractible path component is added to KA.

2. The homology of KA is left unchanged.

Proof. Case 1: Suppose {f} ∩ a = ∅ for all a ∈ A. Then it is clear {f} forms no

simplices with any other a ∈ A. Therefore it must be a disjoint vertex in KA, hence

a new contractible path component.

Case2: Suppose {f} ∩ a 6= ∅ for some a ∈ A. Define Sf to be the set of all points of

A that intersect {f}. It is clear Sf is a simplex, as the intersection of all its points

contains at least {f}. Note Sf ∪{f} is also a simplex. To show KA∪{f} is homotopy

equivalent to KA, we may simply retract Sf ∪ {f} to Sf . �

The lemma tells us that nothing really interesting happens to KA by appending

elements of F to A; so let us only consider As without any elements from F. Now,

let us work out the homology of KA for all As corresponding to F of size 3 and F of

size 4. The results are shown in Table 1.

In Table 1, each row represents a particular configuration of Hi. For instance

the first row would be just H0 = Q and all other Hi trivial. It is interesting to note

when |F| = 3, KA ≃ S1 only occurs if we take A to be the set of all subsets of F of

size 2. Also when |F| = 4, KA ≃ S1 ∨S1 ∨S1 only occurs if we take A to be the set

of all subsets of F of size 2. We actually prove these As produce KAs of these types

in Theorem 4.

Note it is impossible to compute tables like this for any F where |F| > 4, as there

are far too many possible As. So the best we can do is take a random sample. Also

the computations required to find the homology increase as well, as we choose larger

Fs. Now let us see what the homology looks like for some random KAs corresponding

to F of order 5.

12

From the information in Table 2, it would appear that KA ≃ S3 for a lot of As

taken from the power set of F where |F| = 5, similar to how it appeared were a lot

of KA ≃ S1 for |F| = 4. It is possible to work out random KA for sets of higher

order, but the time needed for the computations increases exponentially.

4.2 Proof that any Finite Simplicial Complex can be Real-

ized

The following theorem is important because it shows the study of KA is actually

equivalent to the study of finite simplicial complexes in general.

Theorem 3. Any finite simplicial complex X is equivalent to some KA for some

set F and some subset A of the power set of F.

Proof. Let X be a finite simplicial complex with i-simplices eiαi
, where 1 ≤ αi ≤ ni

for each i.

Define F = {e0
1 , . . . , e0

n0
, . . . , em1 , . . . , emnm

}. So F is the set of ALL the simplices

of X. Now define vi to be the set of all the simplices of X that contain e0
i for each

i. Let A = {v1 , . . . , vn0
}.

So we want to show KA is equivalent to X.

Let f : X → KA be a map where each simplex eiαi
is sent to [vβ1

, . . . , vβn
] where

vβj
are the vj that contain eiαi

. It is clear the image of eiαi
is a simplex as each vβj

contains at least eiαi
, so their intersection is nonempty.

Now define g : KA → X, where each simplex [vβ1
, . . . , vβn

] is sent to ekαk
, where

ekαk
is the smallest simplex contained in

n⋂

j=1

vβj
. Note the smallest simplex in

n⋂

j=1

vβj

is an (n − 1)-simplex and there can only be one (n − 1)-simplex on n vertices in a

simplicial complex, so it is unique and our g map is well defined.

First we want to show f and g are simplicial maps.

Suppose σ is face of τ . Then f(τ) = [vβ1
, . . . , vβn

], where vβi
are the vj that contain

τ . Also f(σ) = [vα1
, . . . , vαn

], where vαi
are the vj that contain σ. But all the vj

that contain σ also contain τ ; so we see f(σ) is indeed a face of f(τ).

13

Now consider a simplex [vβ1
, . . . , vβn

] in KA. Let [vα1
, . . . , vαk

] be a face of that

simplex. Note g([vβ1
, . . . , vβn

]) is the (n − 1)-simplex on the vertices e0
β1

, . . . , e0
βn

and g([vα1
, . . . , vαk

]) is the (k − 1)-simplex on the vertices e0
α1

, . . . , e0
αk

. Since

{e0
α1

, . . . , e0
αk
} is a subset of {e0

β1
, . . . , e0

βn
}, we see g([vα1

, . . . , vαk
]) is indeed a

face of g([vβ1
, . . . , vβn

]).

Now we need to show their compositions are the identity.

Suppose f(eiαi
) = [vβ1

, . . . , vβn
]. Note eiαi

is contained in each vβj
and eiαi

is an

(n − 1)-simplex. Thus g([vβ1
, . . . , vβn

]) = eiαi
.

Now suppose g([vβ1
, . . . , vβn

]) = ekαk
. Note ekαk

is the smallest simplex contained in

the intersection of all the vβj
. Note ekαk

is an (n − 1)-simplex. f(ekαk
) is a list of all

the vj that contain ekαk
. There are n-1 of these and they are precisely the vertices

of our original simplex [vβ1
, . . . , vβn

]. So we see f(ekαk
) = [vβ1

, . . . , vβn
].

So we have shown X and KA are equivalent simplicial complexes. �

4.3 The Space Generated by the Set of all Subsets of Size

k

Here we prove an interesting theorem about the space KA generated by the set

of all subsets of some F of size k. This will become useful later.

Theorem 4. If we take A to be the set of all subsets of F of size k where |F| = n,

then KA is homotopy equivalent to a wedge of (k − 1)-spheres. Also the number of

these spheres is determined by

(
n − 1

k

)
.

Proof. Let A be the set of all subsets of size k. It is clear

〈A〉 =

size k subsets
...
size 1 subsets

.

K̂A decomposes as a union of simplices; one i-simplex ∆x for each subset x of size

i. Note ∆x is a subcomplex of K̂A spanned by subsets of x.

Claim: ∆x is an i-simplex.

14

In fact, ∆x is the Barycentric subdivision of the simplex whose vertices are elements

of x.

Suppose ∆ is a simplex whose vertices are elements of x. To subdivide, note there

is vertex in b(∆) for every face of ∆. The faces of ∆ correspond to subsets of x.

This gives us the vertices of ∆x.

Note, v1 is a face of v2 if and only if the corresponding subsets are contained in each

other. So simplices v1 , . . . , vl in b(∆) occur when xv1 ⊂ xv2 · · · ⊂ xvl
. This means

these simplices are in ∆x ⊂ K̂A.

We see K̂A =
⋃

∆x. Now we want to collapse some of the ∆xs. In general we may

collapse a pair ∆x and ∆y if ∆x is a k-simplex and ∆y is a (k − 1)-simplex that is

a face of ∆x and all the faces of ∆x except for ∆y have been crushed.

Note in Table 3, σ represents arbitrary numbers that can occur. First we may

collapse the pair ∆2 ⊂ ∆12 as ∆12 has faces ∆1 and ∆2, and ∆1 is already crushed

since it is just a vertex. We may also crush the pair ∆3 ⊂ ∆13 and continue in this

way until ∆n ⊂ ∆1n is crushed. So we have crushed 1σ and the vertices 2 to n.

Similarly in the general case we may use 1σ in the set of subsets of size i to crush

all the 2σ , . . . nσ in the set of subsets of size i − 1.

So after this process is completed, we see all we have left is the vertex 1 and

2σ , . . . , {n−k+1 , . . . , n} in the subsets of size k. Note if we completely crush the

boundary of a (k−1)-simplex to a point, we get a (k−1)-sphere. As all the simplices

have their boundaries crushed to the same point, we see K̂A is indeed a wedge of

(k−1)-spheres. And the number of subsets of size k in 2σ , . . . , {n−k +1 , . . . , n}

is

(
n − 1

k

)
. Finally using Theorem 1, we know K̂A is homotopy equivalent to KA;

so we’re done. �

Corollary. The set of proper subsets of a set with n elements has a geometric

realization homotopy equivalent to Sn−2.

15

4.4 The Homology of k-SAT

In Table 4 is most of the data we have been able to deduce about the complexes

produced by k -SAT. Note by Hi we really mean Q ⊗ Hi, and H0 is assumed to be

Q for all cases. Where actual topological spaces are listed, the implied meaning is

the corresponding complex is homotopy equivalent to it. The homotopy type of the

2 -SAT with 3 variables complex was computed using a by hand calculation on the

nerve produced by the method outlined in Section 4.4.3.

Computing the Homology and Euler characteristics of k -SAT complexes is a very

difficult problem. Even generating this much of the table required many techniques.

Computing the homology is difficult as we must deal with very large sparse matrices.

While the computations needed to find the Euler characteristic are not as bad, they

too quickly become impractical.

After computing the first couple values in this table, it seems as there is an

obvious pattern, where the Euler characteristic of 2 -SAT with k variables is 22k−2

and 3 -SAT with k variables is 23k−3

. But this pattern is clearly broken at 2 -SAT

with 5 variables, which is 106 instead of 256, and 3 -SAT with 5 variables, which is

58 and not 512.

Conjecture. Kn,2 is homotopy equivalent to a wedge of (2n − 3)!! spheres of

dimension 2n−2. Also Kn,3 is homotopy equivalent to a wedge of (2n−3)!!−(2n−4)!!

spheres of dimension 4n − 6.

Now we shall prove some theorems about various properties of k -SAT.

4.4.1 Homology of 1 -SAT

Note in Figure 5 each vertex is labeled as its elementary formula instead of as a

set of truth assigments.

Theorem 5. Kn,1, the simplicial complex corresponding to 1-SAT with n variables,

is homeomorphic to a (k − 1)-sphere.

Proof. 1 -SAT with n variables has elementary formulae,

x1 , x̄1 , . . . , xn , x̄n.

And 1 -SAT with n + 1 variables has elementary formulae,

φ1 = x1 , φ2 = x̄1 , . . . , φ2n−1 = xn , φ2n = x̄n , φ2n+1 = xn+1 , φ2n+2 = x̄n+1.

16

Note the set of satisfactions for each φi where 1 ≤ i ≤ 2n is the same as in the 1 -

SAT with n variables case, except now this set is twice as large, as each satisfaction

must be appended with T or F for the xn+1 variable. This however does not change

how the xφi
for 1 ≤ i ≤ 2n intersect with each other, so the complex generated by

them is the same as Kn,1, the complex corresponding to 1 -SAT with n variables.

Now we want to investigate the effects of adjoining φ2n+1 = xn+1 and φ2n+2 = x̄n+1.

Note xn+1 is satisfied by any t ∈ Tn+1 which has xn+1 set to true. So xφ2n+1
forms a

(k + 1)-simplex on every k-simplex in the complex generated by xφi
for 1 ≤ i ≤ 2n.

Similarly, xφ2n+2
also forms a (k + 1)-simplex on every k-simplex in that complex.

Finally, we note φ2n+1 = xn+1 and φ2n+2 = x̄n+1 have no mutual satisfactions, so

there is no edge between xφ2n+1
and xφ2n+2

.

Therefore it is clear 1 -SAT with n + 1 variables is homeomorphic to the suspension

of 1 -SAT with n variables.

It is easy to show the complex corresponding to 1 -SAT with 1 variable is S0 as it just

has elementary formulae φ1 = x1 and φ2 = x̄1 which have satisfactions xφ1
= {T}

and xφ2
= {F}. These are just two disjoint vertices.

Therefore by induction and the fact that the suspension of an n-sphere Sn is home-

omorphic to Sn+1, we see the complex corresponding to 1 -SAT with n variables is

homeomorphic to Sn−1 for each n. �

4.4.2 Homology of k-SAT with k variables

The following theorem tells us what the homology of the first k -SAT with k

variables for each k.

Theorem 6. Kk,k, the simplicial complex corresponding to k-SAT with k variables,

is homotopy equivalent to a (2k − 2)-sphere.

Proof. The elementary formulae for k -SAT with k variables are of the form x1 ∨

x2 ∨ · · · ∨xn, where some of the variables are negated. This only excludes one truth

assignment, in this case x1 = F, x2 = F, . . . , xn = F , when there are no negated

variables. Furthermore every truth assignment is excluded by one such formula. In

our case |F| = 2k, so A consists of all subsets of F of size 2k − 1. By Theorem 4,

this is homotopy equivalent to a sphere of dimension 2k − 2. �

17

4.4.3 Other Properties of k-SAT

There is a technique we may use to reduce almost every k -SAT complex near

the beginning of the table into a simpler homotopy equivalent complex. We start

by defining a cover U of the Kn,k complex defined by U =
⋃

t∈Tn

Ut, where Ut is the

simplex formed by all the vertices that correspond to elementary formulae that are

satisfied by t.

Note all the Ut have either empty or contractible intersections since simplices

in simplicial complexes always do. Similar to in the proof of Theorem 1, we may

take arbitrarily small neighborhoods around the Ut to make them open. Now we

can apply Corollary 4.G.3 from [Hat06] to show Kn,k is homotopy equivalent to the

nerve NU.

Using this nerve greatly simplifies things in most cases. For instance, in K4,3

the largest Ci dimension is 410, 894, 304, but the corresponding nerve complex had

a largest Ci dimension of only 12, 868.

Also the nerve complexes have an interesting structure. The nerve of Kn,k is

actually homeomorphic to the KA simplicial complex you get by taking F to be set

k − 1 dimensional faces of an an n dimensional octahedron and A to be the set of

complements of n − 1 dimensional faces. Unfortunately, it is still very difficult to

calculate the homotopy type of these spaces.

In Table 5, we compare the times for computing the Euler characteristics of the

original and nerve complexes corresponding to the given k -SAT complexes.

18

5 Conclusions and Recommendations

In conclusion, the study of computer science via topology appears to be an

intriguing area of study. By studying the simplicial complexes we produced from

k -SAT, it may be possible to gain new understanding into other areas of computer

science such as whether or not P = NP. Also these k -SAT complexes are interesting

in their own right, as at the current time there appears to be no clear pattern

between them.

The greatest difficulty encountered in studying this material is the sheer need

for computing power. Even as little as 15 years ago, a lot of the results reached

would have been unattainable.

To any reader who is interested in continuing this research, I would encourage

them to become proficient in a middle-level programming language such as C++,

as high-level languages such as Mathematica and Maple are too cumbersome to

quickly carry out the complicated computations necessary. Also, the “brute force”

approach to programming doesn’t really work here, as from my experience in the

project, inefficient algorithms are likely to produce no interesting results.

5.1 C++ versus Mathematica

During the course of this project, both C++ and Mathematica versions of the

programs were made. The project was started in Mathematica, but due to speed

and memory problems, the code had to be ported to C++. In Table 6 we compare

the times taken by each program.

Note that C++ outperforms Mathematica in every case except for the 10 random

KA for |F| = 5 one. The reason for this is the matrices produced for this case are just

small enough to be stored entirely in computer memory, so Mathematica is able to

efficiently run its nonsparse matrix rank algorithm. C++, on the other hand, uses a

sparse algorithm, which is slower. The value of the sparse rank algorithm becomes

apparent in the next case, however, which Mathematica is unable to complete.

19

References

20

[Fre98a] Michael H. Freedman. Limit, logic, and computation. Proceedings of the

National Academy of Sciences, pages 95–97, 1998.

[Fre98b] Michael H. Freedman. Logic, P/ NP, and the quantum field computer.

Proceedings of the National Academy of Sciences, pages 98–101, 1998.

[Fre99] Michael H. Freedman. K-sat on groups and undecidability. Symposium on

Theory of Computing, pages 572–576, 1999.

[Hat06] Allen Hatcher. Algebraic Topology. Cambridge University Press, New York,

seventh edition, 2006.

[KB00] J. Kouneiher and A.P.M. Balan. Propositional manifolds and logical coho-

mology. Festschrift in honor of Newton C. A. da Costa on the occasion of

his seventieth birthday. Synthese, pages 147–154, 2000.

[Lin07] Project Linbox: Exact computational linear algebra.

http://www.linalg.org, 2007.

[Sch95] Herbert Schild. C: The Complete Reference. Osborne McGraw-Hill, Cali-

fornia, third edition, 1995.

[Str00] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley,

Massachusetts, special edition, 2000.

[Wol91] Stephen Wolfram. Mathematica: A System for doing Mathematics by Com-

puter. Addison Wesley, Massachusetts, second edition, 1991.

21

Appendices

22

Appendix A: Tables

23

Table 1: Homology calculated for KA where |F| = 3 or 4.

Homology occurrences when |F| = 3 occurrences when |F| = 4
H0 = Q 6 610
H0 = Q2 0 3
H0 = Q

H1 = Q 1 307
H0 = Q

H1 = Q2 0 38
H0 = Q

H1 = Q3 0 1
H0 = Q

H2 = Q 0 64

24

Table 2: Homology calculated for KA for some random As with |F| = 5.

Homology |F| = 5
H0 = Q 53
H0 = Q

H1 = Q 3
H0 = Q

H2 = Q 9
H0 = Q

H3 = Q 34
H0 = Q2 1

25

Table 3: Subsets of K̂A.

subsets of size k 1σ 2σ . . . {n − k + 1 , . . . , n}
subsets of size k − 1 1σ 2σ . . . {n − k , . . . , n}
...

...
...

...
subsets of size 2 1σ 2σ . . . {n − 1 , n}
subsets of size 1 1 2 . . . n

26

Table 4: k -SAT.

of Vars 1 -SAT χ 2 -SAT χ 3 -SAT χ 4 -SAT χ

1 S0 2
2 S1 0 S2 2
3 S2 2 S4 ∨ S4 ∨ S4 4 S6 2
4 S3 0 H6 = Q15 16 H10 = Q7 8 S14 2
5 S4 2 ? 106 ? 58 ? 11

27

Table 5: Original and nerve Euler characteristic computation times.

Test Original Time (sec) Nerve Time (sec)
2 -SAT with 3 variables 0.004 0.003
2 -SAT with 4 variables 1.288 0.024
2 -SAT with 5 variables 18013.410 385.956
3 -SAT with 4 variables 1009.635 0.064

28

Table 6: Mathematica and C++ homology computation time comparison.

Test C++ time (sec) Mathematica time (sec)
2 -SAT with 3 variables 0.344 19.781

All KA for |F| = 4 1.040 58.360
10 random KA for |F| = 5 604.634 350.234
1 random KA for |F| = 6 6775.567 OUT OF MEMORY!

29

Appendix B: Figures

30

1

12

2

23

3 13

Figure 1: The simplicial complex KA generated by all the proper subsets of a set of
order 3.

31

bc c

ac

aab

b

Figure 2: The geometric realization of the set of proper subsets of a 3 element set.

32

a = new array of size |F|;
p = new array of size |F|;
I = new array of size |F|;

p0 = first element of A;

i = 0;

while(i ≥ 0)
{

ai = pi;

pi = element of A after ai;

if(i > 0) Ii = Ii−1 ∩ ai;

else Ii = ai;

if(Ii 6= ∅)

{

add a0 . . . ai as an i simplex;

if(pi 6= ∅ and i < |F| − 1)

{

pi+1 = pi;

i = i + 1;

}

}

if(pi = ∅) i = i − 1;

}

Figure 3: Pseudocode for the algorithm.

33

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 40 1 2

Figure 4: Chain group tree storage example.

34

x
_

x
_

x

x

2

1

2

1

Figure 5: K2,1 shown to be the suspension of K1,1.

35

Appendix C: C++ Source Code

36

findCi.cpp

#include <cstdio>

#include "homology.h"

ciNode **Ci;

ciNode **CiPointer;

ciNode **makeCi(int sizeF, int sizeA, int *A)

{
/* This is the initalization stage */

int i; bool intersPrev;

int **a = new int*[sizeF];

for(i=0; i<sizeF; i++)

{
a[i] = NULL;

}

int **aPointer = new int*[sizeF];

for(i=0; i<sizeF; i++)

{

aPointer[i] = NULL;

}

int **inters = new int*[sizeF];

for(i=0; i<sizeF; i++)

{
inters[i] = NULL;

}

initCi(sizeF);

int level;

level = 0;

aPointer[0] = A;

/* This while loop will calculate chain groups of A. */

while(1)

{

/* First we grab an element from aPointer. */

a[level] = aPointer[level];

/* Now increment aPointer. */

aPointer[level] = aPointer[level] + (sizeF+1);

intersPrev = true;

/* Here we calculate the intersection of a with all the previous as. */

if(level > 0)

{
if(inters[level] != NULL) delete [] (inters[level]);

inters[level] = intersection(inters[level-1],a[level], sizeF);

}
else

inters[0] = a[0];

37

if (inters[level][0] == 0) intersPrev = false;

/* If a does intersect all the previous as: */

if(intersPrev)

{
addtoCi(a, level);

if(aPointer[level][0] != -1 && level + 1< sizeF)

{

aPointer[level+1] = aPointer[level];

level++;

}
}

/* If we have reached the end of A we go back a level. */

if(aPointer[level][0] == -1)

{

level--;

}

/* Finally we break if level goes below 0. */

if(level < 0) break;

}

/* Finally we do some garbage collection. */

for(i=1; i<sizeF; i++)

{

if(inters[i] != NULL) delete [] inters[i];

}
delete [] a;

delete [] aPointer;

delete [] inters;

return(Ci);

}

void initCi(int sizeF)

{

Ci = new ciNode*[sizeF];

CiPointer = new ciNode*[sizeF];

for(int i=0; i < sizeF; i++)

{
Ci[i] = new ciNode(i+1);

CiPointer[i] = Ci[i];

}
}
void addtoCi(int **a, int level)

{

for(int i=0; i <= level; i++)

(CiPointer[level]->complex)[i] = a[i];

CiPointer[level] -> next = new ciNode(level+1);

CiPointer[level] = CiPointer[level] -> next;

}

38

/* This function calculates the intersection of cells a and b. */

int *intersection(int *a, int *b, int sizeF)

{
int i; int j; int k;

int *inter; int min;

inter = new int[sizeF+1];

i = 0; j = 0; k = 0;

while(a[i] != 0 && b[j] != 0)

{

if(a[i] < b[j]) i++;

else if (a[i] > b[j]) j++;

else

{

inter[k] = a[i];

i++; j++; k++;

}
}

inter[k] = 0;

return(inter);

}

39

findHomology.cpp

#include <cstdio>

#include "homology.h"

/* The needed Linbox libraries. */

#include "linbox/field/gf2.h"

#include "linbox/field/gmp-integers.h"

#include "linbox/blackbox/sparse.h"

#include "linbox/blackbox/zero-one.h"

#include "linbox/solutions/rank.h"

using namespace LinBox;

using namespace std;

/* Prototypes */

SparseMatrix<PID integer> *findBMatrix(int i, int im1, int sizeF, ciNode **Ci, int *CiLength);

/* This will return the homology of A. */

long unsigned int *findHomology(int sizeF, int sizeA, int *A)

{
int i, j; ciNode **Ci; int *CiLength;

SparseMatrix<PID integer> *BMatrix;

long unsigned int *homology = new long unsigned int[sizeF];

commentator.setMaxDetailLevel (-1);

commentator.setMaxDepth (-1);

commentator.setReportStream (std::cerr);

/* Now we calculate the chain groups. */

Ci = makeCi(sizeF, sizeA, A);

CiLength = findCiLengths(Ci, sizeF);

long unsigned int BRank[sizeF];

for(i=0; i<sizeF; i++)

{
BRank[i] = 0;

homology[i] = -1;

}

/* Here we calculate the boundary matrices and find their ranks using Linbox. */

for(i=1;i<sizeF;i++)

{

BMatrix = findBMatrix(i-1,i, sizeF, Ci, CiLength);

if(BMatrix != NULL)

{

rank (BRank[i], *BMatrix);

delete BMatrix;

}
delete Ci[i-1];

}
delete Ci[sizeF-1];

/* Finally we compute the homology. */

for(i=0; i<sizeF-1; i++)

homology[i] = CiLength[i] - BRank[i] - BRank[i+1];

40

delete [] CiLength;

return(homology);

}

/* This function contructs the boundary matrix between two chain groups. */

SparseMatrix<PID integer> *findBMatrix(int im1, int i, int sizeF, ciNode **Ci, int *CiLength)

{
int **Matrix;

int **complex;

int *temp[im1];

ciNode *p;

int j, k, m, n, pos;

if(CiLength[i] == 0 || CiLength[im1] == 0) return(NULL);

PID integer ZZ;

SparseMatrix<PID integer> *BMatrix = new SparseMatrix<PID integer>(ZZ, CiLength[i], CiLength[im1]);

treeNode *Tree = makeTree(im1, sizeF, Ci[im1]);

p = Ci[i];

for(j=0; p->next != NULL; j++)

{

complex = p->complex;

for(k=0; k<=i; k++)

{
n=0;

for(m=0; m <= i; m++)

if(m != k)

{
temp[n] = complex[m];

n++;

}

pos = findinTree(im1, temp, Tree);

if(k BMatrix->setEntry(j, pos, 1);

else

BMatrix->setEntry(j, pos, -1);

}

p = p->next;

}

Tree->delTree(im1);

delete Tree;

return(BMatrix);

}

/* This function turns Cim1 into a tree for easier access to finding elements positions in it. */

treeNode *makeTree(int im1, int sizeF, ciNode *C)

{
int pos;

treeNode *Tree = new treeNode(sizeF);

ciNode *p = C;

41

for(pos=0;p->next != NULL; pos++)

{
addtoTree(im1, pos, sizeF, Tree, p);

p = p->next;

}
return(Tree);

}

/* Here we search Tree and return the position of complex in it. */

int findinTree(int im1, int **complex, treeNode *Tree)

{
int i, j;

treeNode *Treep = Tree;

int *cell;

for(i=0; i <= im1; i++)

{
cell = complex[i];

for(j=0; cell[j] != 0; j++)

{

Treep = (Treep->branch)[cell[j]];

}

if(i != im1) Treep = (Treep->branch)[0];

}
return(Treep->val);

}

/* This adds a complex to our Cim1 tree. */

void addtoTree(int im1, int pos, int sizeF, treeNode *Tree, ciNode *p)

{

int i, j;

treeNode *Treep = Tree;

int *cell;

for(i=0; i<=im1; i++)

{
cell = (p->complex)[i];

for(j=0; cell[j] != 0; j++)

{
if((Treep->branch)[cell[j]] == NULL)

(Treep->branch)[cell[j]] = new treeNode(sizeF);

Treep = (Treep->branch)[cell[j]];

}

if(i != im1)

{

if((Treep->branch)[0] == NULL)

(Treep->branch)[0] = new treeNode(sizeF);

Treep = (Treep->branch)[0];

}
}
Treep->val = pos;

}

42

main.cpp

#include <cstdio>

#include <iostream>

#include <iomanip>

#include <fstream>

#include <cstring>

#include "homology.h"

using namespace std;

int sizeF; int sizeA;

int main(int argc, char *argv[])

{

int *A; int i; int j; int x; sizeA = 0;

int counter; int ccounter = 0;

streampos sp;

ifstream inFile;

long unsigned int *homology;

if(argc != 2)

{
printf("Usage is: findHomology filename\nwhere filename is a file containing A.\n");

exit(1);

}

inFile.open(argv[1]);

if (!inFile) {

cout << "Error: Unable to open file.\n";
exit(1); // Terminate with error.

}

counter = 0;

sp = inFile.tellg();

/* This loop enables us to read in multiple As. */

while(inFile >> x)

{
/* Here we find the number of cells in A and the size of F. */

sizeA = 0; sizeF = 0;

while(x != -1)

{

if(x > sizeF) sizeF = x;

if(x == 0) sizeA++;

inFile >> x;

}

inFile.seekg(sp);

/* Now we initalize A. */

A = new int[sizeA * (sizeF+1) + 1];

A[sizeA * (sizeF+1)] = -1;

43

for(i=0; i < sizeA * (sizeF+1); i++)

A[i] = 0;

/* Finally we put the cells in it. */

i=0;j=0;

inFile >> x;

while(x != -1)

{
A[j*(sizeF+1)+i] = x;

i++;

if(x==0)

{
i = 0; j++;

}
inFile >> x;

}

/* Now we run the program on A. */

homology = findHomology(sizeF, sizeA, A);

printA(A);

for(i=0; i < sizeF-1; i++)

{
printf("H%d is Q%̂d\n", i, homology[i]);

// fprintf(stderr, "H%d is Q%̂d\n", i, homology[i]);

}

sp = inFile.tellg();

delete [] A;

delete [] homology;

}

return(0);

}

void printA(int *A)

{

/* Here we print A */

printf("A = ");

for(int i=0; i < sizeA; i++)

{
printf("{");

printCell(A+ i * (sizeF+1));

printf("}");
if(i+1<sizeA) printf(" , ");

}

printf("\n");
}

/* This function contructs A from a file. */

44

int *makeA(char *filename)

{
int i, j; int *A;

ifstream inFile;

inFile.open(filename);

if (!inFile) {
cout << "Error: Unable to open file.\n";

exit(1); // Terminate with error.

}

/* Here we read in an A. */

int x; i = 0; sizeA = 0;

/* Here we find the number of cells in A and the size of F. */

sizeA = 0; sizeF = 0;

while(inFile >> x)

{

if(x > sizeF) sizeF = x;

if(x == 0) sizeA++;

}

inFile.close();

/* Now we initalize A. */

A = new int[sizeA * (sizeF+1) + 1];

A[sizeA * (sizeF+1)] = -1;

for(i=0; i < sizeA * (sizeF+1); i++)

A[i] = 0;

/* Finally we put the cells in it. */

inFile.open(filename);

i=0;j=0;

while(inFile >> x)

{
A[j*(sizeF+1)+i] = x;

i++;

if(x==0)

{
i = 0; j++;

}

}

inFile.close();

return(A);

}

45

misc.cpp

#include <cstdio>

#include "homology.h"

void printCell(int *a)

{
int i;

if(a != NULL) {
for(i=0; a[i] != 0;i++)

{
printf("%d",a[i]);

if(a[i+1] != 0) printf(" ");

}
}

else printf("NULL");

}

int *findCiLengths(ciNode **Ci, int sizeF)

{
int i;

int *CiLength = new int[sizeF];

int length;

ciNode *p;

for(i=0; i<sizeF;i++)

{
p = Ci[i];

for(length=0; p->next != NULL; length++) p = p->next;

CiLength[i] = length;

}

return(CiLength);

}

void printCi(ciNode **Ci, int sizeF)

{
ciNode *p;

int i, j;

for(i=0; i < sizeF; i++)

{

p = Ci[i];

if(p->next != NULL) printf("\nC%d is: ", i);

while(p->next != NULL)

{
printf("{");
for(j=0; j<=i; j++)

{
printCell((p->complex)[j]);

if(j!=i) printf(",");

}
printf("}");
if(p->next->next != NULL)printf(" , ");

p = p->next;

}
printf("\n");

}
}

46

homology.h

/* The Ci Tree node class. */

class treeNode

{
public:

treeNode(int size)

{
int i;

branch = new treeNode*[size+1];

for(i=0; i<size+1; i++)

branch[i] = NULL;

val = -1;

}
void delTree(int size)

{
int i;

for(i=0; i<size+1; i++)

if(branch[i] != NULL)

{
branch[i]->delTree(size);

delete branch[i];

}

delete [] branch;

}

treeNode **branch;

int val;

};

/* the node for the linked list each Ci will be stored in. */

class ciNode

{
public:

ciNode(int size)

{
int i;

complex = new int*[size];

for(i=0; i<size; i++)

complex[i] = NULL;

next = NULL;

}
ciNode()

{

delete [] complex;

if(next != NULL) delete next;

}

int **complex;

ciNode *next;

};

47

/*Function prototypes */

void printA(int *A);

int *makeA(char *filename);

long unsigned int *findHomology(int sizeF, int sizeA, int *A);

void initCi(int sizeF);

void addtoCi(int **a, int level);

void printCi(ciNode **Ci, int sizeF);

int *findCiLengths(ciNode **Ci, int sizeF);

ciNode **makeCi(int sizeF, int sizeA, int *A);

int *intersection(int *a, int *b, int sizeF);

void printCell(int *a);

void addtoTree(int im1, int pos, int sizeF, treeNode *Tree, ciNode *p);

treeNode *makeTree(int im1, int sizeF, ciNode *C);

int findinTree(int im1, int **complex, treeNode *Tree);

48

findEuler.cpp

#include <cstdio>

#include "homology.h"

/* This function calculates the Euler characteristic of A. */

long int findEuler(int sizeF, int sizeA, int *A)

{

/* This is the initalization stage */

int i; bool intersPrev;

int **a = new int*[sizeA];

for(i=0; i<sizeA; i++)

{
a[i] = NULL;

}

int **aPointer = new int*[sizeA];

for(i=0; i<sizeA; i++)

{
aPointer[i] = NULL;

}

int **inters = new int*[sizeA];

for(i=0; i<sizeA; i++)

{

inters[i] = NULL;

}

long unsigned int *CiCounter0 = new long unsigned int[sizeA];

long unsigned int *CiCounter1 = new long unsigned int[sizeA];

for(i=0; i<sizeA; i++)

{

CiCounter0[i] = 0;

CiCounter1[i] = 0;

}

int level;

level = 0;

aPointer[0] = A;

/* This while loop will calculate chain groups of A. */

while(1)

{

/* First we grab an element from aPointer. */

a[level] = aPointer[level];

/* Now increment aPointer. */

aPointer[level] = aPointer[level] + (sizeF+1);

intersPrev = true;

/* Here we calculate the intersection of a with all the previous as. */

if(level > 0)

{
if(inters[level] != NULL) delete [] (inters[level]);

49

inters[level] = intersection(inters[level-1],a[level], sizeF);

}
else

inters[0] = a[0];

if (inters[level][0] == 0) intersPrev = false;

/* If a does intersect all the previous as: */

if(intersPrev)

{
CiCounter0[level]++;

if(CiCounter0[level] == 1000000)

{
CiCounter1[level]++;

CiCounter0[level] = 0;

}

if(aPointer[level][0] != -1 && level + 1< sizeA)

{
aPointer[level+1] = aPointer[level];

level++;

}
}

/* If we have reached the end of A we go back a level. */

if(aPointer[level][0] == -1)

{
level--;

}

/* Finally we break if level goes below 0. */

if(level < 0) break;

}

/* Here we calculate the Euler characteristic */

long int X0 = 0;

long int X1 = 0;

for(i=0; i<sizeA; i++)

{

printf("C%d has dim %d %d.\n",i, CiCounter1[i], CiCounter0[i]);

if(i {

X0 = X0 + CiCounter0[i];

X1 = X1 + CiCounter1[i];

}

else

{
X0 = X0 - CiCounter0[i];

X1 = X1 - CiCounter1[i];

}
}

printf("\nThe 1st counter is the number of millions.\nThe 2nd counter is the remainder.\n");

/* Finally we do some garbage collection. */

for(i=1; i<sizeA; i++)

{
if(inters[i] != NULL) delete [] inters[i];

50

}

delete [] a;

delete [] aPointer;

delete [] CiCounter0;

delete [] CiCounter1;

delete [] inters;

/* Returns the Euler characteristic. */

return(X1*1000000 + X0);

}

/* This function calculates the intersection of cells a and b. */

int *intersection(int *a, int *b, int sizeF)

{

int i; int j; int k;

int *inter; int min;

inter = new int[sizeF+1];

i = 0; j = 0; k = 0;

while(a[i] != 0 && b[j] != 0)

{
if(a[i] < b[j]) i++;

else if (a[i] > b[j]) j++;

else

{
inter[k] = a[i];

i++; j++; k++;

}
}
inter[k] = 0;

return(inter);

}

51

Vita

Oliver Thistlethwaite was born in London, England, but moved to the United
States as a child. He first attended the University of Tennessee of Knoxville as an
undergraduate in Computer Science, but would later change his major to Mathe-
matics.

In his last year, he was first introduced to topology in a senior level class taught
by Dr. James Conant, who would later go on to become his thesis advisor. After
graduating in spring 2005 with a major in Mathematics and a minor in Computer
Science, Oliver enrolled as a graduate student in Mathematics. After completing
several more topology courses, he began writing his thesis and assisting Dr. Conant
in research.

52

	A Study of the Homology of Subset Spaces and their Connection to the K-SAT Problem in Computer Science
	Recommended Citation

	tmp.1456323383.pdf.mq7yQ

