
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2003

Size, Speed, and Power Analysis for Application-Specific Size, Speed, and Power Analysis for Application-Specific

Integrated Circuits Using Synthesis Integrated Circuits Using Synthesis

Chung Ku
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Ku, Chung, "Size, Speed, and Power Analysis for Application-Specific Integrated Circuits Using Synthesis. "
Master's Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/2052

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2052&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Chung Ku entitled "Size, Speed, and Power Analysis

for Application-Specific Integrated Circuits Using Synthesis." I have examined the final electronic

copy of this thesis for form and content and recommend that it be accepted in partial fulfillment

of the requirements for the degree of Master of Science, with a major in Electrical Engineering.

Donald Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Paul Cilly, Chandra Tan

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Chung Ku entitled “Size, Speed, and Power
Analysis for Application-Specific Integrated Circuits Using Synthesis.” I have examined
the final electronic copy of this thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Master of Science,
with a major in Electrical Engineering.

 Major Professor

We have read this thesis and
recommend its acceptance:

 Accepted for the Council:

 Vice Provost and Dean of Graduate Studies

doncahr
Donald Bouldin

doncahr
Paul Crilly

doncahr
Chandra Tan

doncahr
Anne Mayhew

doncahr
Original signatures are on file with official student records.

Size, Speed, and Power Analysis for
Application-Specific Integrated Circuits

Using Synthesis

A Thesis
Presented for the
Master of Science

Degree

The University of Tennessee, Knoxville

Chung Ku
May 2003

 Dedicated to my parents:

Kui-Din Ku and Chiu-Mei Chang,
and my lovely girl friend, Ya-wen Yang who

have motivated and supported me
throughout my college career.

 ii

Acknowledgements

I sincerely appreciate the many people who offered me guidance and support during the

course of my Master’s program. First of all, I would like to thank my thesis committee,

Dr. Bouldin, Dr. Crilly, and Dr. Tan, for taking time to review and direct my thesis work.

Special thanks to Dr. Bouldin for serving as my major professor and graduate advisor. In

addition, I would like to thank each of my graduate professors for their excellent

instruction and guidance.

 iii

Abstract

An application-specific integrated circuit (ASIC) must not only provide the required

functionality at the desired speed but it must also be economical. In the past, minimizing

the size of the ASIC was sufficient to accomplish this goal. Today it is increasingly

necessary that the ASIC also achieve minimum power dissipation or an optimal

combination of speed, size and power, especially in communication and portable

electronic devices. The research reported in this thesis describes the implementation of a

Huffman encoder and a finite impulse response (FIR) filter using a hardware description

language (HDL) and the testing of the corresponding register transfer level (RTL) for

functionality. The RTL was targeted for two different libraries, TSMC-0.18 CMOS and

the Xilinx Virtex V1000EHQ240-6. The RTL was synthesized and optimized for

different sizes, speeds, and power by using the Synopsys Design Compiler, FPGA

Compiler II, and Mentor Graphics Spectrum. Cadence place and route tools optimized

area, delay, and power of post-layout stages for TSMC-0.18. Xilinx place and route tools

were used for the Virtex V1000EHQ240-6. The various ASICs were produced and

compared over a range of speed, area, and power.

 iv

Table of Contents

Chapter Page

1. INTRODUCTION... 1
1.1 OVERVIEW ... 1

1.1.1 Behavioral Synthesis Level... 1
1.1.2 RTL/logic Synthesis Level ... 2
1.1.3 Physical Synthesis Level... 3

1.2 RESEARCH OBJECTIVES ... 4
1.3 CHAPTER CONTENTS.. 5

2. BACKGROUND ... 6

2.1 HUFFMAN CODING THEORY... 6
2.2 FIR FILTER THEORY .. 8
2.3 TYPES OF ASICS.. 11

2.3.1 Full-Custom ASICs... 11
2.3.2 Standard-Cell ASICs... 12
2.3.3 Gate Array ASICs ... 12
2.3.4 Programmable Logic Devices... 14
2.3.5 Field-programmable Gate Arrays ... 14
2.3.6 Summary ... 15

2.4 AREA, DELAY, AND POWER CONSIDERATION.. 16
2.4.1 Area... 16
2.4.2 Delay ... 17
2.4.3 Power .. 18

2.4.3.1 Switching Current ... 19
2.4.3.2 Short-Circuit Current .. 20
2.4.3.3 Static Power Dissipation ... 20

2.4.4 Summary ... 22

3. DESIGN FLOW AND DESIGN VERIFICATION... 23
3.1 ASIC DESIGN FLOW DESCRIPTION .. 23
3.2 DESIGN VERIFICATION... 27

4. IMPLEMENTATION .. 32
4.1 FUNCTION DESCRIPTION OF HUFFMAN VHDL CODE .. 32
4.2 FUNCTION DESCRIPTION OF THE FIR VHDL CODE .. 36
4.3 SYNTHESIS AND OPTIMIZATION ... 38

5. RESULTS AND DISCUSSIONS... 44

5.1 HUFFMAN ENCODER IMPLEMENTATION... 44
5.1.1 Results for FPGA Implementation.. 44
5.1.2 Results for TSMC-0.18 Implementation... 52

5.1.2.1 Results for Timing Optimization .. 52
5.1.2.2 Results for Area Optimization .. 54

 v

5.1.2.3 Results of Power Optimization ... 55
5.1.2.4 Discussions ... 57

5.2 FIR FILTER IMPLEMENTATION... 61

6.SUMMARY, CONCLUSION AND FUTURE WORKS.. 63
6.1 SUMMARY.. 63
6.2 CONCLUSION.. 64
6.3 FUTURE WORK .. 66

REFERENCES.. 67

APPENDICES... 70

APPENDIX A: VHDL CODE OF HUFFMAN ENCODER....................................... 71
A1 TEST-BENCH .. 72

APPENDIX B: C++ CODE FOR DESIGN VERIFICATION 74
B1 HUFFMAN.CPP.. 75

VITA... 83

 vi

List of Figures

Figure Page

FIGURE 2.1 HUFFMAN CODING TREE FOR A SIX-CHARACTER SET.................................... 7
FIGURE 2.2 BLOCK-DIAGRAM STRUCTURE FOR THE 8-TAP FIR FILTER........................... 9
FIGURE 2.3 CONVOLUTION OF FINITE-LENGTH SIGNALS ... 10
FIGURE 2.4 DIFFERENT TYPES OF GATE ARRAY ASICS... 13
FIGURE 2.5 CMOS INVERTER WITH CAPACITIVE LOAD, CL .. 19
FIGURE 2.6 CMOS INVERTER REPRESENTED AS SWITCH.. 21
FIGURE 3.1 PROGRAMMABLE ASIC DESIGN FLOW ... 24
FIGURE 3.2 ASIC DESIGN FLOW ... 25
FIGURE 3.2 INPUT FILE FOR C++ PROGRAM.. 29
FIGURE 3.3 OUTPUT HUFFMAN CODE FROM C++ ... 29
FIGURE 3.4 OUTPUT HUFFMAN CODE FROM C++ SAVE AS FILE.................................... 30
FIGURE 3.5 COMPARE RESULT OF USING “DIFF” COMMAND ... 31
FIGURE 4.1 STATE DIAGRAM FOR HUFFMAN.VHD... 34
FIGURE 4.2 SYMBOL OF FIR FILTER ... 36
FIGURE 4.3 BASIC DESIGN IMPLEMENTATION FLOW ... 38
FIGURE 4.4 TIMING ANALYSIS OUTPUT... 43
FIGURE 5.1 PRE-SYNTHESIS SIMULATION OF VIRTEX 1000E... 45
FIGURE 5.2 DESIGN FLOW OF GENERATING [.VCD] FILE.. 49
FIGURE 5.3 OUTPUT FILE OF XPOWER .. 50
FIGURE 5.4 POST LAYOUT SIMULATION OF VIRTEX 1000E ... 51
FIGURE 5.5 HUFFMAN ENCODER LAYOUT OF VIRTEX 1000E.. 51
FIGURE 5.6 PLOT RESULTS OF TIMING OPTIMIZATION ... 53
FIGURE 5.7 PLOT RESULTS OF AREA OPTIMIZATION.. 55
FIGURE 5.8 PLOT RESULTS OF POWER OPTIMIZATION ... 56
FIGURE 5.9 COMPARISON OF TIMING, AREA, AND POWER OPTIMIZATION 57
FIGURE 5.10 LAYOUT OF HUFFMAN ENCODER.. 60
FIGURE 5.11 FIR FILTER LAYOUT OF VIRTEX 1000E .. 62

 vii

List of Tables

Table Page

TABLE 2.1 CALCULATION OF AVERAGE CODE LENGTH, n .. 8
TABLE 3.1 HUFFMAN LOOK-UP TABLE .. 28
TABLE 4.1 GENERAL DESCRIPTION OF MODULES... 32
TABLE 4.2 COEFFICIENT TABLE OF FIR FILTER ... 37
TABLE 5.1 RESULTS FROM DIFFERENT SYNTHESIS TOOLS.. 48
TABLE 5.2 TIMING OPTIMIZATION RESULTS... 53
TABLE 5.3 AREA OPTIMIZATION RESULTS ... 54
TABLE 5.4 POWER OPTIMIZATION RESULTS... 56
TABLE 5.5 DELAY FOR DIFFERENT METHODS OF OPTIMIZATION 58
TABLE 5.6 AREA FOR DIFFERENT METHODS OF OPTIMIZATION 59
TABLE 5.7 POWER FOR DIFFERENT METHODS OF OPTIMIZATION.................................. 60
TABLE 5.8 RESULTS OF FIR FILTER USING DIFFERENT SYNTHESIS TOOLS 61

 viii

CHAPTER 1

Introduction

1.1 Overview

The first commercial discrete integrated circuit (IC) was introduced in the late 1950s. As

predicted by Moore’s Law in the 1960s, integrated circuit density has been doubling

approximately every 18 months, and circuit speed has also simultaneously increased by

the similar exponential [1]. Integrated circuit performance is typically characterized by

the size of the chip, the speed of operation, the available circuit functionality, and the

power consumption. The size of the chip not only affects the performance, but also

influences the price of the chip and the number of potential sites and yield during

fabrication. For example, reducing the area by factor of 4 increases the number of good

dies by factor of 5 on a 5-inch wafer with 2-defects/sq. cm [6]. The other important factor

for chip design is the time-to-market of the product. The earlier the product is brought

into the market, the more money it is likely to produce. For this reason it is very

important to find the most efficient way to optimize the size, delay, and power. This can

be accomplished from different levels, such as the behavioral synthesis level, RTL/logic

synthesis level, and the physical synthesis level.

1.1.1 Behavioral Synthesis Level

Behavioral synthesis is the process for synthesizing the circuit structure into RTL from

the input behavioral descriptions written in a hardware description language such as

 1

VHDL or Verilog. It describes how the system should behave in response to input signals

but without having to specify the implementation. This level is the best level to debug the

operation of the complete system and is also the level that provides the fastest emulation

of the system [5].

Scheduling, allocation, and assignment (binding) are three phases in the behavioral

synthesis process. Scheduling assigns operators into time slots without violating

constraints. Allocation determines how many instances of each resource are needed in

order to re-use hardware for different operators and to minimize registers and

interconnections. The assignment decides which resources will be used by each operation

of the behavioral description [3]. Behavioral synthesis attempts to minimize the number

of resources to perform a task in a given time and tries to reduce the execution time for a

given set of resources.

1.1.2 RTL/logic Synthesis Level

Conventional RTL synthesis or logic synthesis starts with a given RTL architecture

where scheduling and allocation are already determined [2]. RTL/Logic synthesis is used

to improve the logic to meet area or timing constraints. It provides a link between RTL

architecture and a net-list. Generally, there are two stages in RTL/logic synthesis: the

technology-independent stage and the technology-mapping stage [5].

A technology-independent stage uses algebraic and/or Boolean techniques for

optimization. Most tools use algebraic techniques rather than Boolean techniques. These

 2

algebraic techniques use a series of factoring, substitution, and elimination steps to

simplify the equation that represents the synthesized network. A technology-mapping

stage matches pieces of the network with the logic cells that are available in a

technology-dependent target cell library. During the mapping, the algorithms seek to

minimize the area under consideration of any other constraints such as timing or power

[4].

1.1.3 Physical Synthesis Level

Physical synthesis is very well developed and is accomplished primarily by the software.

Once the gate net-list from the RTL/logic synthesis is available, and then it can be

automatically converted to a layout. This step is normally divided into system

partitioning, floorplanning, placement, and routing.

System partitioning, if needed, is the division of the microelectronics system into a

number of ASICs in order to minimize the number of external connections between

ASICs, thus keeping each ASIC small. Floorplanning consists of estimating sizes and

assigning the location of all the blocks to keep the highly connected blocks physically

close to each other. Placement involves defining the location of all logic cells within the

flexible blocks and assigning the sets of the interconnect areas to minimize the layout

area and interconnect density. Routing is the production of the connections between all

the logic cells to minimize the total interconnection area and length used [4].

 3

1.2 Research Objectives

Behavioral synthesis is the process that starts from the description of behavioral

functionality and produces an architecture able to execute the design specification. The

architecture is generally given as a RTL specification. The behavioral synthesis tool acts

as a compiler that maps a high-level specification into an architecture. In order to modify

the architecture, the behavioral description is simply changed and rerun through the

behavioral synthesis tool. The high-level synthesis is the bridge between system design

and CAD tools acting at the RTL/logic level [3].

The high-level of abstraction provides more powerful and complete methods to explore

the design space within a much shorter turn-around time than the tasks performed by

human designers. For example, software tools produce assembly code from a high-level

language, such as C, by using the compiler. Previously, designers used assembly code

and then translated them into machine code with an assembler. The goal of this research

is to obtain a variety of size, speed and power solutions for a given HDL using several

high-level synthesis tools.

The first step of ASIC design process is to use a hardware description language to

describe the desired functionality. The VHDL codes for this research work were provided

by Honeywell Inc. for the Huffman encoder, and by the Boeing Company for the FIR

filter. The code for the Huffman encoder was not completely error free in our CAD

environment so some modification was necessary.

 4

The second step in implementing an ASIC is to compile and simulate the VHDL code

using a Mentor Graphics simulator, ModelSim. This step is also called pre-synthesis

simulation. The next step is to change the design constraints so that a synthesis tool

(Synopsys Design Compiler, Synopsys FPGA Compiler, and Mentor Graphics Spectrum)

can produce multiple solutions within the area, delay, and power design space. The gate-

level net-list is produced and made ready for the Cadence and Xilinx place and route

tools. After this step, the different layouts are simulated again using ModelSim to verify

the functionality and timing of the design. The final values of area, delay, and power are

then determined.

1.3 Chapter Contents

The first part of Chapter Two is a brief tutorial of the Huffman encoder and FIR filter

theory. It is followed by an introduction to the different types of ASICs. The brief

explanation of how the parameters affect area, delay, and power will be given in the last

part of Chapter Two.

A detailed explanation of ASIC design flow and design verification are illustrated in

Chapter Three. Chapter Four presents the implementation of the Huffman encoder and

FIR filter. Results and discussions are presented in Chapter Five and Chapter Six gives

the summary and conclusion of this research work.

 5

CHAPTER 2

Background

2.1 Huffman Coding Theory

The purpose of source coding is to form efficient descriptions of information sources.

Source coding is used to either improve the signal-noise ratio (SNR) for a given bit rate

or to reduce the bit rate for a given SNR. There are several different types of source

coding, such as amplitude quantizing, differential pulse code modulation,

synthesis/analysis coding, block coding, and redundancy-reducing coding [7]. Huffman

coding is in the category of redundancy-reducing coding.

In Huffman coding, characters (or other data items) are represented as bit sequences of

varying length, so that the most frequent character will have the shortest bit symbol. In

written text, some characters are not used as frequently as others. The letter “e” appears

quite often in English text, but rarely does one see a “z.” Even though the least frequent

character usually will have more bit sequences than fixed-length bit sequences, Huffman

coding will still achieve the shortest average code length compared to fixed-length bit

sequences if the frequency distribution is appropriate for the input data. Huffman codes

can be properly decoded because they obey the prefix property, which means that no

code can be a prefix of another code. The complete set of codes can be represented as a

binary tree, known as a Huffman tree.

 6

As an example of the coding process, six input alphabets with different probabilities will

form a Huffman tree as shown in Figure 2.1. The Huffman tree traces the tree path from

right to left for each branch. The path contains the binary sequence, which will be the

Huffman code.

A data compression technique varies the length of the encoded symbol in proportion to its

information content. The more often a symbol or token is used, the shorter the binary

string is used to represent it in the compressed stream. It is known that Huffman coding

will achieve the shortest average code length. Table 2.1 shows how to calculate the

average code length, n .

Input
alphabet

Code
Symbols

a 11
b 00
c 101
d 100
e 011
f 010

0

0

0

1

0

0

1.0
1 0.6

0.2

0.4

0.4

0.4

0.40.4

0.4
1

0.2

0.2

0.2

0.2
1

0.1

0.1

0.2

0.2

0.2
1

0.1

0.1

0.1

0.1

0.2

0.4 a

b
c

d

 e

 f

Figure 2.1 Huffman coding tree for a six-character set [7].

 7

Table 2.1 Calculation of average code length, n [7].

Xi P(Xi) Code ni niP(Xi)
a 0.4 11 2 0.8
b 0.2 00 2 0.4
c 0.1 101 3 0.3
d 0.1 100 3 0.3
e 0.1 011 3 0.3
f 0.1 010 3 0.3

 ()∑ == 4.2ii XPnn

 is probability y of input (iXP)

 is number of data bits in

The average code length is 2.4 bits per character. This means that on the average, 240 bits

will be sent during the transmission of 100 input symbols. However, a fixed-length code

of 3 bits representing a six-character input alphabet would require that 300 bits be

transmitted for 100 symbols. Thus, the compression ratio will be 1.25 (3).

2.2 FIR Filter Theory

A filter is used to remove some component or modify some characteristic of a signal, but

often the two terms are used interchangeably. A digital filter is simply a discrete-time,

discrete-amplitude convolver. Basic Fourier transform theory states that the linear

convolution of two sequences in the time domain is the same as multiplication of two

corresponding spectral sequences in the frequency domain. Filtering is in essence the

multiplication of the signal spectrum by the frequency domain impulse response of the

filter.

 8

 A finite impulse response (FIR) filter performs a weighted average of a finite number of

samples of the input sequence. The basic input-output structure of the FIR filter is a time-

domain computation based on a feed-forward difference equation. Figure 2.2 shows a

flow diagram of a standard 8-tap FIR filter. The filter has seven data registers. The FIR is

often termed a transversal filter since the input data transverses through the data registers

in shift register fashion. The output of each register (D1 to D7) is called a tap and is

termed x[n], where n is the tap number. Each tap is multiplied by a coefficient ck and the

resulting products are summed. A general expression for the FIR filter’s output can be

derived in terms of the impulse response. Since the filter coefficients are identical to the

impulse response values, the general form of a standard FIR filter can be represented as

Equation 2.1 [15].

∑
=

−=
M

k
knxkhny

0
][][][2.1

When the relation between the input and the output of the FIR filter is expressed in terms

of the input and the impulse response, it is called a finite convolution sum. We say that

the output is obtained by convolving the sequences x[n] and h[n] [15]. There is a simple

interpretation that leads to a better algorithm for achieving convolution. This algorithm

can be implemented using the tableau that tracks the relative position of the signal values.

The example in Figure 2.3 shows how to convolve x[n] with h[n].

y[n]

x[n-7] D7 x[n-6] D6 x[n-5] D5 x[n-4] D4 x[n-1] D1 x[n-3] x[n-2] D3 D2 x[n]

c0 c4 c5 c6 c7 c2 c3 c1

Figure 2.2 Block-diagram structure for the 8-tap FIR filter

 9

 n 0 1 2 3 4 5 6 7

 x[n] 1 3 5 2 4

 h[n] 2 -1 3 1

h[0]x[n-1] 2 6 10 4 8

h[0]x[n-2] -1 -3 -5 -2 -4

h[0]x[n-3] 3 9 15 6 12

h[0]x[n-4] 1 3 5 2 4

 y[n] 2 5 10 9 24 7 14 4

Figure 2.3 Convolution of finite-length signals

The determination of filter coefficients controls the characteristic of the FIR filter. The

most popular way to calculate coefficients is the window method. The coefficient

function h(n) can be represented by the following equation.

) 2.2 ()()(nwnhnh D=

)(nhD is ideal filter function in the frequency domain. For example, the ideal low-pass

filter for h is the sinc function, and is the window function. There are several

common window methods such as Hamming window, Blackman window, and Kaiser

window, which give stop-band attenuation less than 50db. The Hamming window is the

most popular method due to the proper filter length and simple calculation. Equation 2.3

illustrates the function of a Hamming window.

)(nD)(nw

 





+=

N
nnw π2cos46.054.0)(2.3

where

 N is the number of FIR coefficients.

 10

2.3 Types of ASICs

An ASIC (application-specific integrated circuit) consists of a single chip or die. It is

made on a thin silicon wafer, each containing hundreds of dice. Transistors and wiring

are made from many layers on the top of a die [4]. Using CAD tools, the ASIC designer’s

task is to place and wire the transistors to perform logic functions that meet the design

specification. There are several different approaches to designing an ASIC. The

following will explain those design methods and give a brief explanation of each.

2.3.1 Full-Custom ASICs

In a full-custom design, a designer starts from the ground up using a layout editor to

generate a physical layout description of the circuit. Full-custom ASICs are the most

expensive to manufacture and design, but give full control to the designer to achieve a

higher degree of optimization in both circuit area and performance. For instance, in this

type of ASIC, the designer may change the width-to-length ratio of individual transistors

to tune their performance [8]. On the other hand, this is a time-consuming and difficult

task. The manufacturing lead-time is typically eight weeks [4]. The designer has to

understand fully the characteristic and the rules of the physical layout in order to carry

out each design. A full-custom approach is used when no existing cell libraries can meet

the performance requirement, as for example, a microprocessor. The advantages are

maximum circuit performance, minimum design size, and minimum high-volume

production cost. The disadvantages are a long development cycle and manufacturing

lead-time, less design change flexibility, and very high initial development cost [9].

 11

2.3.2 Standard-Cell ASICs

The standard-cell is the logic block (AND gates and multiplexers, for example) which is

optimized, tested for a particular function, and built into a standard-cell library. The

designer places and interconnects multiple standard-cells to yield the desired circuit

function. The range of gates in a standard-cell ASIC is usually from 10,000 to 10,000,000

gates (or more). The design of this type of ASIC requires a workstation-based

development environment and costs about $100K [6]. All the standard-cells have the

same height and the cells are connected together horizontally to form rows. In order to fit

standard-cells together, there are particular rules and formatting requirements for a

standard-cell. The advantages of standard-cells are time efficiency and risk reduction by

using a pre-optimized and pre-tested standard-cell library. The disadvantages include the

time to develop a standard-cell library and long manufacturing lead-time, which is

approximately eight weeks [4].

2.3.3 Gate Array ASICs

In a gate array ASIC, thousands of transistors are prefabricated on a silicon wafer in

regular two-dimensional arrays, containing 10,000 to 10,000,000 gates (or more) [6].

Initially the transistors in the arrays are not connected to each other. That means the top

few layers of the metal have not been fabricated. The designer will then define the

connection between transistors to perform the desired logic function using custom masks.

For this reason it is often called a mask gate array (MGA). The process of adding metal

wires to a gate array is called personalizing the array [8]. Wafers of gate arrays can be

stock-piled so that only the personalization of the top few layers of metal need to be

 12

performed, thereby reducing the manufacturing lead-time to 3–5 weeks [6]. The

following are three different types of gate array ASICs [4]:

• Channeled gate array.

• Channelless gate array.

• Structured gate array (embedded gate array).

The differences among the gate array ASICs are slight. Channeled gate arrays have

spaces between rows of base cells for interconnections. Channelless gate arrays, on the

other hand, are completely filled with array base cells. Structured gate arrays like

channelless gate arrays have no spaces between rows. The difference lies in the

embedded block area which can be dedicated to a specific function, usually building

memory cells. Figure 2.4 shows three different types of gate arrays. The advantages of

gate array ASICs are shorter turnaround time due to prefabrication of most of the layers

and lower cost. The major disadvantage is that all the transistors are the same size (width

embedded
block

Channeled Gate Array Channelless Gate Array Structured Gate Array

Figure 2.4 Different types of gate array ASICs [4].

 13

and height). The cell library must be specially designed to meet the requirement [8];

otherwise, there will be wasted areas for all those unused transistors.

2.3.4 Programmable Logic Devices

A programmable logic device (PLD) consists of logic array blocks (LABs) which

implement logic as two-level sum-of-product expressions. A LAB contains wide and

programmable AND-gates, and narrow and fixed OR-gates. The AND plane implements

the product terms and the OR plane implements the sums. PLD includes programmable

array logic (PAL). A PLD can replace 300 to 8000 gates with a single package of 24-80

pins. However, it only contains up to 8000 gates, which limits the logic complexity. It is

simple enough to use a PC-based development system costing about $5K-10K [6], can be

programmed within few minutes, and has the shortest turnaround time to handle a simple

design.

2.3.5 Field-programmable Gate Arrays

Field-programmable gate array (FPGA) is a step above the PLD in complexity. The

difference between FPGA and PLD is very little. Both FPGA and PLD can be volatile or

non-volatile. FPGA is just larger and more complex than a PLD. FPGA consists of a two-

dimensional array of logic blocks. Each logic block is programmable to implement any

logic function. Thus, they are also called configurable logic blocks (CLBs) [8].

Switchboxes or channels contain interconnection resources that can be programmed to

connect CLBs to implement more complex logic functions. Designers can use existing

CAD tools to convert HDL code in order to program FPGAs. An FPGA contains 2,000 to

 14

2,000,000 gates (or more) [6]. Since the FPGA can be reprogrammed, the turnaround

time is only a few minutes. The advantages of FPGAs are lower prototyping costs and

shorter production lead times, which advances the time-to-market and in turn increases

profitability. It can also ensure the reliability of the design on the board. The

disadvantages include lower speed of operations and lower gate density, which has a

larger area compared to a MGA. Thus, a typical FPGA may be 2x-10x slower and 2x-10x

more expensive than an equivalent-gate MGA.

2.3.6 Summary

From the previous sections, we know the types of ASICs can be defined as two main

categories: non-programmable and programmable ASICs. There are some advantages of

programmable ASICs (PLDs and FPGAs) such as rapid prototyping, low risk, effective

design verification, and low fixed costs. There are also some disadvantages of FPGAs

such as bigger chip size, higher part cost, more power consumption, and lower speed.

Because of those factors, FPGAs are better for smaller volume applications, reducing

time-to-market, and prototyping [6]. In terms of prototyping, FPGAs can be easily tested

and can always be reprogrammed if the design does not completely meet the

specification. On the other hand, a MGA and a standard-cell are far better for high-

volume and/or high-performance applications for which FPGAs cannot meet the

specification.

 15

2.4 Area, Delay, and Power Consideration

ASIC performance is typically characterized by the size of the chip, the speed of

operation, and power consumption. The following sections will briefly describe how the

parameters affect area, delay, and power.

2.4.1 Area

Chip area is determined by the logic blocks, interconnections and the I/O pads. Routing

area, area of diffusion, transistor size, and parasitic transistor capacitance are some of the

important factors that affect the area of the device. Routing area is the most demanding

factor of all, taking up to 30% of the design time and a large percentage of the layout area

[8]. Using the technology mapping approach, the routing area can be estimated by using

two parameters available at the mapping stage; one is the fanout count of a gate, and the

other is the "overlap of fanin level intervals” [11]. Minimizing switching capacitance can

reduce the size of the transistors. Typically up to 70 to 80% of node parasitic capacitance

is due to the interconnection routing. There are some techniques that can reduce the

routing area such as the use of more metal layers routing interconnects and new

technology to reduce λ size. Reducing λ can also reduce the area of diffusion and

transistor size.

The area of a circuit has a direct influence on the yield of the manufacturing process.

Yield is defined as the number of chips that are defect-free in a batch of manufactured

chips. According to Stapper [12], the following is the yield formula to calculate the

original yield of the memory array:

 16

α

α
δ −







 +=

AY 10 2.4

where

 δ is the defect density

 A is the area of the RAM array

α is some clustering factor of the defects

From the equation above we know that the smaller the chip area, the higher the yield. A

low yield would mean a high production cost, which in turn would increase the selling

cost of the chip.

2.4.2 Delay

The time taken to charge and discharge the load capacitance CL determines the switching

speed of the CMOS gate. Rise time is defined during charging time from 10 % to 90% of

its steady-state value; this is the same as the fall time. Delay time is defined by the time

difference between 50% of charging time and 50% of discharging time. The rise time is

described by Equation 2.5 [1].

(







−+

−
−

−









= γ

γ
γ

γβ
2019ln

1
1.02

)1(
1

DDp

L
r V

Ct) 2.5

The propagation delay of 50% of charging time is [1]:

() (







−+

−−









= γ

γ
γ

γβ
43ln

1
2

1
1

DDp

L
PLH V

Ct) 2.6

where

 17

DD

tp

V
V

−=γ 2.7

Due to the symmetry of the CMOS circuit, the fall time is [1]

() (







−+

−
−

+







= η

η
η

ηβ
2019ln

1
1.02

1
1

DDn

L
f V

Ct) 2.8

and the propagation delay of 50%of discharging time is [1]

() (







−+

−−







=

η
η

ηβ
43ln

1
2

1
1

DDn

L
PHL V

Ct)η 2.9

where

DD

tn

V
V

=η 2.10

Therefore, the delay time will be

PHLPLHdelay ttt += 2.11

From the equations, in order to improve the individual gate delays, the load impedance

CL is reduced or the current gain of the transistors is increased. Increasing the current

gain means higher β, approximately equal to the W/L of the transistor. Therefore, by

increasing β, the transistor size will increase, thus affecting the size of the chip.

2.4.3 Power

There are three sources that cause power dissipation in a CMOS circuit:

• Dynamic power dissipation due to switching current

• Dynamic power dissipation due to short-circuit current

• Static power dissipation

 18

2.4.3.1 Switching Current

When the p-channel transistor charges the output capacitive load, CL, the current through

the transistor is CL(dV/dt). Figure 2.5 shows an inverter with output capacitive load. The

power dissipation is thus CLV(dV/dt) for one-half the period of the input. The power

dissipated in the p-channel transistor is thus

2
)2/(1

0 0 2
1

DDL

f V

LL VCdVVCdt
dt
dVVC

DD

∫ ∫ ==





 2.12

When the n-channel discharges the capacitor, the power dissipation is equal and that

makes the total switching power dissipation [10]

fVCP DDLD
2= 2.13

From Equation 2.13, the best way to reduce power is to reduce VDD, which has a squared

term. That is why some of the TTL chips operate under 3.3V to reduce power dissipation.

CL

Vo

VDD

Vin

Figure 2.5 CMOS inverter with capacitive load, CL

 19

2.4.3.2 Short-Circuit Current

Another source of power dissipation is during the transition of “0” to “1” or “1” to “0”,

and both p-channel and n-channel transistors are on for a short period of time. This

results in a short current pulse from VDD to GND that causes a short-circuit power

dissipation. The short-circuit power dissipation is given by

DDmeanSC VIP ×= 2.14

Assume that V , , and t , thus for an inverter without load

[4].

tntn V−= βββ == pn rffr tt ==

(32
12 tDD

rf
sc VV

ft
P −=

β) 2.15

In general, the transistor size of the p-channel and the n-channel are not the same to

achieve the same rising time and falling time. The short-circuit current is also typically

less than 20% of the switching current.

2.4.3.3 Static Power Dissipation

Considering a CMOS gate, as shown in Figure 2.6, when the p-channel is biased “ON,”

the n-channel will be “OFF”. On the other hand, when the n-channel is “ON,” the p-

channel will be “OFF.” Since one of the transistors is always “OFF,” there should be no

DC current from VDD to GND. However, there is a small leakage current between the

diffusion and the substrate to cause the static dissipation. The leakage current is described

by Equation 2.16 [5].

()1/ −= kTqV
s eII 2.16

where

 20

Vout=0

n-channel

p-channel

Vin=1 Vin=0 Vout=1

n-channel

p-channel

Figure 2.6 CMOS inverter represented as switch

sI = reverse saturation current

V = diode voltage

q = electronic charge ()C1910602.1 −×

k = Boltzmann’s constant ()KJ /1038.1 23−×

T = temperature.

The static power dissipation is produced by the leakage current and the supply voltage.

Then the total static power dissipation is obtained from

 2.17 ∑ ×=
n

1
tagesupply vol current leakagesP

where

 n = number of devices.

 21

Typical static power dissipation due to leakage for an inverter operating at 5 volts is

between 1 and 2 nanowatts [5]. The static power dissipation is generally negligible due to

the low range compared to dynamic power dissipation.

2.4.4 Summary

From the previous sections, the general factors on area, delay, and power are explained

from the fundamental theory. There are some causes that have a more significant effect

on area, delay, and power. The power consumption of interconnect wires and clock

signals can be up to 40 and 50% of the total on-chop power consumption. More than 90%

of the power dissipation of traditional FPGA devices has been attributable to the

interconnection [13]. From Chapter One, we know that area, delay, and power

optimization can be achieved from a behavioral synthesis level, RTL/logic level, and

physical level. Each level has different controls and effects to the design, and most of the

design optimizations are done by these levels. The importance of the fundamental theory

is that most synthesis tools are based on techniques developed from the fundamental

theory just presented.

 22

CHAPTER 3

Design Flow and Design Verification

3.1 ASIC Design Flow Description

Figure 3.1 shows the programmable ASIC design flow, and Figure 3.2 shows the ASIC

design flow of this research. The VHDL codes were obtained from Honeywell Inc. and

the Boeing Company. In this research, the focus was on the Synopsys synthesis tools.

The results from Mentor Graphics were also performed for comparison. The Synopsys

synthesis can target different cell libraries to implement different types of ASICs. The

four major steps of the design flow are pre-synthesis simulation, synthesis, placement and

routing, and post-layout simulation.

• Pre-synthesis Simulation

Before the synthesis procedure, pre-synthesis simulation must be performed.

Functionality tests are usually the first tests a designer might construct as part of the

design process. The verification of functionality will be explained in Section 3.2. The

pre-synthesis simulation procedure not only tests the functionality of the design, but also

compiles the VHDL codes of the design. Before the simulation, all the VHDL codes for

the design have to be complied without error, and then simulation can take place. Pre-

synthesis simulation is technology-independent because it only simulates the

functionality of the design without actually mapping to the target library. It ignores

timing and includes unit-delay simulation, which sets delay to a fixed value.

 23

Scripts for
synthesis
tools

VHDL

Synthesis
dc/fc2/

Spectrum

Pre-synthesis

Xilinx
library

Xilinx
library

ModelSim
simulation

Xilinx place
& route

FPGA

Post-layout

Xilinx
Xpower

Script and
simulation
[.vcd] file

Figure 3.1 Programmable ASIC design flow

 24

Script

ModelSim
simulation

VHDL

Synthesis tool,
Design Compiler

Post-layout (Testable ASIC)

Pre-synthesis

ARTISAN
library

File for
Fabrication

ARTISAN
library

Cadence place
& route

Figure 3.2 ASIC design flow

 25

• Synthesis

The pre-synthesis simulation is followed by the synthesis procedure. In this research, a

Synopsys synthesis tool; Design Compiler (DC), was used. Design Compiler synthesizes

the high-level design description, written in VHDL or Verilog, into optimized gate-level

designs. The Design Compiler generates ASIC designs by employing user-specified

standard-cell or gate array libraries and translates designs from one technology to

another. In this research, Xilinx libraries were used to implement the FPGA layout, and

the Artisan library was used for Cadence place and route tools. The Design Compiler

used the target library and optimized the design.

• Placement and Routing

After synthesis, the design is already mapped with the target library (Xilinx or Artisan)

and the technology has been specified. Xilinx uses its own placement and routing tools to

generate and optimize the layout. For the Artisan library, Cadence place and route tool

links with the Artisan library to optimize and generate the layout of the design.

• Post-layout Simulation

After placement and routing, the physical layout of the design is generated. Unlike pre-

synthesis simulation, post-layout simulation is technology-dependent and depending on

the library, the delay will be different. The Standard Delay Format or “sdf” file has

already been generated by the place and route tool, so the logic-cell delays and the

interconnect delays have been calculated. Therefore, post-layout simulation will have an

estimated delay time for the signal outputs for the design. After the post-layout

 26

simulation, if the simulation result is correct, the design is ready to be downloaded into

the FPGA or sent to a foundry for fabrication.

3.2 Design Verification

It is very important to know the correct result of the design. That is why we perform pre-

synthesis simulation and post-layout simulation to verify the functionality of the design.

The purpose of the simulation is to verify the result. However, the question is whether or

not we know the result is correct in the first place. In order to know the correct result of

the Huffman encoder, a C++ code (shown in Appendix B1) must be generated and

compiled as the function of the Huffman encoder. An input data (shown in Figure 3.2)

was made for testing the accuracy of the conversion from the program. Based on the

input data, a Huffman look-up table (shown in Table 3.1) was generated with the

probability of each character. The program read the input data from the file

“huff_input.txt” and encoded the input data. Then it displayed the Huffman code on the

screen (shown in Figure 3.3) and wrote out the Huffman code into file “huff_code.txt”

(shown in Figure 3.4).

In the VHDL environment, the input signals to the entity under scrutiny are generated by

means of another VHDL entity referred to as a Test-bench. The concept of a test-bench is

an accepted VHDL standard means of simulating, testing, and documenting an entity.

 27

Table 3.1 Huffman look-up table

Symbol Probability Huffman Look-up
number Huffman Code

q 0.005714286 31 011110
v 0.005714286 30 011111

apostrophe 0.005714286 26 100110
begin quote 0.005714286 29 100111
end quote 0.005714286 27 101000

9 0.005714286 23 101001
5 0.005714286 21 101010
(0.005714286 28 101011
) 0.005714286 25 110000
1 0.005714286 20 110001
2 0.005714286 24 110100

hyphen 0.011428571 19 110101
period 0.011428571 15 110110

l 0.017142857 22 110111
y 0.017142857 18 00000
g 0.022857143 17 00001
h 0.028571429 14 00110
f 0.034285714 13 00111
p 0.034285714 16 01000
t 0.034285714 11 01001
d 0.04 12 01100
m 0.04 10 01101
u 0.04 7 01110
a 0.045714286 9 10000
c 0.045714286 8 10001
s 0.045714286 6 10010
i 0.051428571 5 11001
o 0.062857143 4 0001
n 0.068571429 3 0010
r 0.068571429 2 0101
e 0.08 1 1011

space 0.137142857 0 111

 28

Figure 3.2 Input file for C++ program

Figure 3.3 Output Huffman code from C++

 29

Figure 3.4 Output Huffman code from C++ save as file.

The entity/test-bench pair can form the basis for executable specifications and

documentation in a top-down design methodology [14]. In other words, the test-bench

will generate the input signals for the design and, if necessary, it will also give the

appropriate response from an output signal of the design. The test-bench of this design

(shown in Appendix A1) will read the data input from a file “datain.txt”. The data in

datain.txt is the input sequence of corresponding values of input characters. After the

simulation, the test-bench will write the output as “dataout.txt”. The “diff” command

under UNIX is used to compare the differences between “huff_code.txt” and

“dataout.txt”. The result is shown in Figure 3.5. There was only one difference between

the two files. In the C++ program, if the last Huffman code does not fill up the last group

of 8-bits, the software will fill it up with spaces, “_1010001” in this case. However, in the

simulation output, it fills up by the next Huffman code, “01010001” in this case. This is

the only the difference. Therefore, the output from simulation is accurate.

 30

Figure 3.5 Compare result of using “diff” Command

For the verification of the FIR, the test-bench of the FIR will produce the expected output

that can compare with the actual data output to verify the accuracy of the results.

Therefore, the simulation result can confirm verification. If the expected output and

actual output do not match, an error is reported to the transcript.

 31

CHAPTER 4

Implementation

This chapter describes the design methodology for this research. The Function

description of the VHDL code used for this research is explained in detail, followed by

the procedures for achieving delay, area, and power optimization.

4.1 Function Description of Huffman VHDL Code

The VHDL module huffman.vhd describes an algorithm for transforming data words

(each 8-bits long) from a memory module and encoding them into a variable-length

Huffman-coded sequence which is stored in another memory module (with 8-bit word

width). The code consists of four modules: huffman.vhd (top module), huff.vhd,

state.vhd, and control.vhd. A simplified description of each module’s functionality is

listed in Table 4.1.

Table 4.1 General description of modules

VHDL Filename Description

huffman.vhd Top-level module. Plus support code to
interface with lower-level modules.

huff.vhd Simple Huffman look-up table (only 32
symbols for an 8-bit input)

state.vhd
State machine which loads and compiles 8-
bit sequences of Huffman codes. Writes
output to memory.

control.vhd Keeps track of memory address to use when
reading and writing data to memory.

 32

http://microsys7.engr.utk.edu/~mswiatko/ee552/proj/simhuff.htm
http://microsys7.engr.utk.edu/~mswiatko/ee552/proj/huff.htm
http://microsys7.engr.utk.edu/~mswiatko/ee552/proj/state.htm

The huff.vhd module describes a simple, partial Huffman lookup table for an 8-bit input.

Given an 8-bit input, the traditional Huffman encoding would generate a variable length

output (i.e. if the input were an 8-bit value, for example “00010010”, the encoded output

might only be a 3-bit value, say “110”). However, in the physical world, the number of

data output lines is fixed and cannot be varied. Therefore, huff.vhd uses an 8-bit output

“dataout” to describe the traditional Huffman code (with some additional zeros) plus an

additional 3-bit output “encodelength” to describe the length. For example, if the

Huffman code is to output is “011”, then the huff.vhd module would output: dataout =>

“00000011”, encodelength => “010”. The encodelength, which equals two, describes the

desired length. The reason the encodelength equals two is that it counts 3 from “000” to

“010”. Therefore, 3-bits of code length are present. Adjusting for this condition, a

traditional Huffman table can be generated from huff.vhd. Table 3.1 from Chapter Three

is the traditional Huffman table with the assign characters and probability for this

research.

This huffman.vhd, state.vhd, and control.vhd module combines to create a six-level state

machine. The combined state machine diagram is illustrated in Figure 4.1. The “Load”

state is the first state occupied upon reset. It generates an address (“address” output),

which is used to load the next data input from an external memory module. During the

“Load” state, the data input is loaded and cycled through the huff.vhd module, resulting

in an 8-bit “dataout” and a 3-bit “encodelength” value. Once the data input has been

loaded and cycled through the huff.vhd module, the system moves into the “Shift” state.

 33

Figure 4.1 State diagram for Huffman.vhd

In the “Shift” state, the system will build a variable-length Huffman coded sequence. If

the sequence is less than 8-bits, the “Shift” state will continue to load and encode data

from memory until its sequence of coded data is 8-bits or greater. An 8-bit sequence must

be maintained so that when the encoded sequence is written to a memory module (with

word width equal to 8-bits), its width will match appropriately. The functionality of the

“Shift” state is very important since it must be fully understood to properly simulate the

Huffman code without use of an external memory module. The “Shift” state is a multi-

clock cycle state. During this multi-cycle process, the “Shift” state assumes that the

“dataout” input and the “encodelength” input (from huff.vhd) will not change unless the

memory “address” output value changes. During a simulation it is the responsibility of

the programmer to ensure that this requirement is met. This can be particularly difficult

since the number of clock cycles required for various inputs is different. For example, if

the input values (from huff.vhd) are dataout = “00011110” and encodelength = “101”,

then the “Shift” state will require 6 clock cycles to process this data. During this time the

 34

simulated data input must not be changed (the input must remain static for exactly 6

clock cycles, no more and no less). By contrast, if the input values (from huff.vhd) are

dataout = “00000111” and encodelength = “010”, then the “Shift” state will require only

3 clock cycles to process this data (again, the data must remain static for exactly 3 clock

cycles). As a result, if the simulator inputs are not timed properly, they will not

effectively simulate the response of a memory module and the output data will be

nonsense. Assuming these conditions have been met, and an encoded 8-bit sequence

properly constructed, the system moves to the “Write1” state.

The “Write1” state is merely a single clock latency state. This state pauses for one cycle

to allow time for other operations to complete. Other operations include switching the

“address” output to display the proper memory address to which the encoded data output

will be written. After one clock cycle the module moves into the “Write2” state.

In the “Write2” state, the system write-enables (Wen => low) an external 8-bit memory

module for the address described by the “address” output. The data written to memory is

the 8-bit encoded sequence constructed during the “Shift” state. The varying length of

Huffman codes will fill up 8-bit memories by sequence. Since Huffman code obeys

prefix property, which means that no code can be a prefix of another code, the codes can

be correctly decoded when the codes are read from memory. Only 8-bits of data are

written to memory, so if a 9-bit sequence was constructed during the “Shift” state, the

remaining 1-bit will be utilized in the next sequence generated by the “Shift” state. After

one clock cycle the module moves into the “Write3” state.

 35

The “Write3” state allows for a single clock cycle latency so that the memory address can

again be switched back to the memory address for the data input. The “Write3” state also

determines whether the system needs to return to the “Load” state or the “Shift” state. If

the “Shift” state had constructed a sequence greater than 8-bits, (i.e., if a 9-bit sequence

was constructed then there would be 1-bit remaining) then those remaining bits represent

the start of a new sequence and the system would need to return to the “Shift” state.

However, if there are no bits remaining, then the system needs a new data value and must

return to the “Load” state. It is assumed that the maximum memory size for the “data in”

memory module is 64 words. Therefore, if the memory address of the next data value is

greater than 64, the module would instead move to the “Done” state, where it would

remain disabled until reset.

4.2 Function Description of The FIR VHDL Code

The FIR filter implements a low-pass operation with a cutoff frequency of 17 MHz with a

sampling frequency of 50 MHz. Figure 4.2 is the symbol of the FIR filter. The block

diagram of FIR is similar to Figure 2.2 in Chapter Two, but instead of 7 registers, it has

26

12 d_in

FIR
filter

clk

q_out
 reset

load_enable

Figure 4.2 Symbol of FIR filter

 36

31 registers; that means it has 32 coefficients. Equation 2.2 and 2.3 from Chapter Two

explained how to calculate the coefficients. The coefficients are fixed and shown in Table

4.2. The registers are triggered on the rising edge of the clock when load-enable is active

high. They are synchronously reset to zero when reset is low. This implementation had

three pipeline stages. The first stage controlled the data shifting into the register. The

second stage multiplied the data from registers with coefficients. The third stage was the

added tree, which summed all the products from previous stage. The VHDL code used

only adders to implement the added tree without any registers; in other words, it is a

sequential process. Therefore, the delay of the third stage is quite long due to the serial of

adding process. To improve this problem, we can change the implementation of the

VHDL code to modify the structure of the added tree, which inserts some registers

Table 4.2 Coefficient table of FIR filter

Coefficient Value Binary Coefficient Value Binary
0 0.013671875 0000001100 16 0.0576171875 0111111111
1 0.0078125 0000000111 17 -0.0527.34375 1111010001
2 -0.02734375 1111101000 18 -0.072265625 1111000000
3 -0.009765625 1111110111 19 0.0859375 0001001100
4 0.0078125 0000000111 20 -0.044924875 1111011000
5 -0.025390625 1111101001 21 -0.0078125 1111111001
6 0.009765625 0000001001 22 0.03515625 0000011111
7 0.0078125 0000000111 23 -0.03515625 1111100001
8 -0.03515625 1111100001 24 0.0078125 0000000111
9 0.03515625 0000011111 25 0.009765625 0000001001
10 -0.0078125 1111111001 26 -0.025390625 1111101001
11 -0.044924875 1111011000 27 0.0078125 0000000111
12 0.0859375 0001001100 28 -0.009765625 1111110111
13 -0.072265625 1111000000 29 -0.02734375 1111101000
14 -0.0527.34375 1111010001 30 0.0078125 0000000111
15 0.0576171875 0111111111 31 0.013671875 0000001100

 37

between the adders. In this case, the registers will store the data after few of the adding

process instead of all of the adding process; in other words, it becomes a pipeline process.

Even though this requires more clock cycle to allow the data pass through the added tree,

it will greatly increase the clock frequency to improve the overall performance.

4.3 Synthesis and Optimization

The basic design implementation flow (shown in Figure 4.3) involves defining the design

goals, selecting a compilation strategy, optimizing the design, and analyzing the results to

drive the place and route to achieve timing closure. In order to achieve delay, area, and

power optimization, the design constraints for each must be defined, and then synthesis

Analyze Results

Design Optimization

Define Constraints

Design Source (HDL)

Figure 4.3 Basic design implementation flow

 38

tools can optimize the design and try to meet the constraints. The result can be analyzed

for verifying whether the design specification has been met, and then the constraints can

be redefined, if necessary. For results of the FPGA implementation, the power

information cannot be determined until using Xilinx Xpower after place and route. The

results can then be analyzed and then constraints redefined, if necessary. In this research,

Design Compiler was used for the high-level synthesis and the Xilinx and Cadence place

and route tools were used for the physical level synthesis.

Design Compiler optimizes the RTL design performing both technology-independent

optimization as well as technology-specific optimization. Design Compiler removes the

existing gate structure from a design, and then rebuilds the design with the goal of

improving the design’s logic structure. The optimization of logic equations does not

affect a particular part of a function; rather, it has a global effect on the overall area or

speed characteristics of a design. The following are some of the key features in Design

Compiler for using design optimization in this research.

• Flattening

Flattening is an optional logic optimization step that removes all intermediate levels and

uses Boolean distributive laws to remove all parentheses. Thus, flattening removes all

logic hierarchy from a design. Removing poor intermediate levels enables Design

Compiler to choose more-efficient sub-functions. The result of flattening is a two-level,

sum-of-products form. Flattening can result in a faster design because the two-level form

 39

generally has fewer levels of logic between inputs and outputs. The command

“set_flatten true” is used to activate flattening.

• Structuring

Structuring is a logic optimization step that intermediates variables and logic structure to

a design. During structuring, Design Compiler searches for sub-functions that can be

factored out and then evaluates these factors based on the size of the factor and the

number of times the factor appears in the design. Design Compiler structures a design

during compilation by default.

• Timing-driven

Design Compiler offers timing-driven structuring to minimize delays and Boolean

structuring to reduce area. Timing-driven structuring considers a design’s timing

constraints during local and global structuring and improves critical paths as necessary.

Timing-driven structuring is on by default. When using timing-driven structuring, the

accurate timing and clock constraints must be defined. Boolean optimization is used to

reduce the area. Boolean optimization structuring uses Boolean algebra to capture non-

essential information and reduce circuit equation input format.

• Delay optimization

During the delay optimization phase, Design Compiler creates an optimal net-list

representation in the target technology library that meets the timing goals. Design

Compiler takes design rules into account for optimizing the delay performance of critical

 40

paths in the design. When two circuit solutions offer the same delay performance, Design

Compiler implements the solution that has the lower design rule cost.

• Area optimization

Assuming that the area constraints have been placed on the design, Design Compiler now

attempts to minimize the number of gates in the design. The Design Compiler can be

directed to put a low, medium, or high effort into area optimization. When low effort is

set, Design Compiler performs gate sizing and buffer and inverter cleanup. Design

Compiler allocates limited CPU time to this effort level. When medium effort is selected,

Design Compiler adds phase assignment to gate sizing and buffer and inverter cleanup.

Design Compiler allocates more CPU time to this effort than to a low-effort optimization.

When high effort is set, Design Compiler performs additional gate minimization

strategies and increases the number of iterations. The tool adds gate composition to the

process and allocates even more CPU time.

• Power optimization

This constraint sets the maximum power attributes to the current design. In order to

achieve the minimum power, the command is “set_max_dynamic_power 0”. This

command will set the target power as low as the design could achieve.

• Timing analysis

The purpose of timing analysis is to understand the performance and to ensure that the

design meets the design goals after synthesis. Design Compiler automatically determines

 41

the maximum and minimum path delay requirements for the design. It examines the clock

waveforms at each timing path startpoint and endpoint. A timing path is a path through

logic along which signals can propagate. Timing paths normally start at primary inputs or

clock pins of registers and end at primary outputs or data pins of registers. Figure 4.3

shows the timing analysis output file. The timing exception command such as

“set_max_delay” is used to set the constraint. The timing exception commands operate

on a “from” set, a “to” set, and several “through” sets. The -from option indicates a path

startpoint, -to indicates a path endpoint, and -through enables control over a specific path

or multiple paths between a given startpoint and endpoint. In the case shown in Figure

4.4, the command will be “set_max_delay 0.97 -from startpoint -to end point ”.

 42

Figure 4.4 Timing analysis output

 43

CHAPTER 5

Results and Discussions

This chapter presents the result of this research with discussions. The first section shows

the result of Huffman encoder implementation and the second section illustrates the

results of the FIR filter.

5.1 Huffman Encoder Implementation

In this section, the implementation of the Huffman encoder will be explained. The first

part of the implementation is the comparison of different FPGA results using different

synthesis tools. This is followed by the detailed explanation of implementation for the

Artisan library with different results.

5.1.1 Results for FPGA Implementation

The Design Compiler, FPGA Compiler II, and Mentor Graphics Spectrum are used to

synthesize the FPGA. From the design flow shown in Figure 3.1, the synthesis tool can

target different libraries to implement different types of ASICs. The target library for

FPGA implementation is Xilinx Virtex V1000EHQ240-6. The pre-synthesis simulation is

shown in Figure 5.1. The functionality of the Huffman encoder was verified from

Chapter Three. The following are the basic scripts for each synthesis tool and

explanation.

 44

Figure 5.1 Pre-synthesis simulation of Virtex 1000e

• Mentor Graphics Spectrum

set part v1000ehq240
set process 6
set wire_table xcve1000-6_avg
set lut_max_fanout ""
load_library xcve
read -technology "xcve" {
/tnfs/home/cku/thesis/nrfir/new_fir/huff/state.vhd
/tnfs/home/cku/thesis/nrfir/new_fir/huff/control.vhd
/tnfs/home/cku/thesis/nrfir/new_fir/huff/huff.vhd
/tnfs/home/cku/thesis/nrfir/new_fir/huff/huffman.vhd }
pre_optimize -common_logic -unused_logic -boundary -xor_comparator_optimize
pre_optimize -extract
set register2register 20
set input2register 20
set register2output 20
optimize .work.huffman.huffman_arch -target xcve -chip -area -effort quick -hierarchy auto
auto_write -format EDIF /tnfs/home/cku/thesis/nrfir/new_fir/huff/result/huffleo1.edf

The script above is targeted for area optimization. If one wants to change to timing

optimization, then -area should be changed to -delay in the optimize command. The other

way is to find the maximum delay of the design, then change the time in set

register2register 20 to the time to be constrained, such as set register2register 6 in this

case, and add optimize_timing .work.huffman.huffman_arch -force after the optimize

 45

command. This will force the synthesis tool to optimize the longest path and attempt to

meet the constraint.

• FPGA Compiler II

create_project test
add_file -format VHDL state.vhd
add_file -format VHDL control.vhd
add_file -format VHDL huff.vhd
add_file -format VHDL huffman.vhd
analyze_file -progress
create_chip -progress -name huffman -target VIRTEXE -device V1000EHQ240 -speed -6 -
frequency 50 -preserve huffman
current_chip huffman
set_chip_objective speed
set_chip_constraint_driven -enable
set_chip_effort high
optimize_chip -progress -name huff1
report_chip
current_chip Huffman
get_pathgroup
create_subpath -from_name p0 -to_name p1 -from_list /huffman/UncodeData_reg<0> -to_list
/huffman/ctrl/state_mach/current_state_reg<2> -maxd 15 (RC,Clk):(RC,Clk)
set_max_delay -path_group p0:p1 15
optimize_chip -progress -name huff2
report_chip
export_chip -pregress -dir result
quit

The create_subpath command is used to define the critical path of the chip. The

command, set_max_delay -path_group p0:p1 15, is to set the timing constraint to 15ns.

This step can be repeated after each optimization to change the timing constraint of the

critical path.

• Design Compiler

analyze -f vhdl state.vhd

 46

analyze -f vhdl control.vhd
analyze -f vhdl huff.vhd
analyze -f vhdl huffman.vhd
elaborate huffman
link
uniquify
current_design huffman
create_clock -name "Clk" -period 20 -waveform {0 10} {"Clk"}
set_wire_load_model -name xcv1000e-6_avg -library xdc_virtexe-6
set_port_is_pad "*"
insert_pads
set_cost_priority
set_flatten true -effort high
compile -map_effort high -boundary_optimization
report_timing -max_paths 5
set_max_delay 19 -from "UncodeData_reg<4>" -to "ctrl/state_mach/current_state_reg<0>"
compile -map_effort high -boundary_optimization
write -format edif -hierarchy -output ./result/huffdc2.edf
write_script > ./result/huffdc2.dc
cd result
sh dc2ncf huffdc2.dc
cd ..
quit

Before using Design Compiler, the “.synopsys_dc.setup” had to point to the right .db file.

In order to find the correct .db file, simply type “synlibs virtexe 1000e-6”, and the file

will show on the screen. The command set_wire_load_model -name xcv1000e-6_avg -

library xdc_virtexe-6 had to be used to setup the correct wire load. As in the previous

chapter, set_max_delay 19 -from "starting point" -to "ending point" is used to control the

critical path. The report_timing -max_paths 5 command is to list the 5 longest paths in

the chip to help control the critical path.

Table 5.1 shows all the results from different synthesis tools. The delay and number of

slices were determined during place and route. The power estimation used Xilinx Xpower

to estimate the total consumption. The power results in the table are the values after

 47

Table 5.1 Results from different synthesis tools

Synthesis tool Delay (ns) Slices Power (mW)

Tool A 11.923 47 45

Tool A 7.684 46 45

Tool A 6.079 46 46

Tool B 11.829 63 46

Tool B 11.659 63 46

Tool C 16.462 74 48

Tool C 13.521 70 48

Tool C 12.343 64 48

subtracting the quiescent power consumption, which is 900 mW. Before using Xpower,

“huff.vcd” had to be generated. “Huff.vcd” provides detailed design activity rates for all

nets. It was generated during the post-layout-synthesis simulation. The following are the

scripts for generate “huff.vcd”.

• postsim

#!/bin/csh -f
source ~cad/.cshrc
mentor_tools
vlib work
vmap simprim /usr/cad/course/simprim
vcom -work work huff_tim_sim.vhd
vcom -work work huffman_tb.vhd
vsim -sdftyp top_inst=huffl_tim_sim.sdf huffman_tb -do stim.do

• stim.do

vcd file huff.vcd
vcd on

 48

vcd add /*
view wave
add wave *
run 10000ns

 Figure 5.2 show the flow to generate the “huff.vcd” file for Xpower to estimate power

consumption. Figure 5.3 is the Xpower report file. It shows the total estimated power

consumption and power consumption for each cell under the respective clock frequency.

According to the table, the best result was implemented by Tool A from timing and area

point of view. The best result from Tool A was used for post-layout simulation by using

Modelsim. The delay of 7 ns is shown in the post-layout simulation (shown in Figure

5.4). The delay from Table 5.1 is 6.079, which is very close to the post-layout simulation

result. The layout of the Virtex 1000e is shown in Figure 5.5.

Scripts

Scripts

simdata [.vcd]

fpgadesign [.ncd]
constraint [.pcf]

Xilinx
Xpower

time_sim.sdf
time_sim.vhd ModelSim

simulation
Xilinx

place & route

Figure 5.2 Design flow of generating [.vcd] file

 49

Figure 5.3 Output file of Xpower

 50

Figure 5.4 Post layout simulation of Virtex 1000e

Figure 5.5 Huffman encoder Layout of Virtex 1000e

 51

5.1.2 Results for TSMC-0.18 Implementation

The following sections are the different optimization methods and results for Design

Compiler to implement the Huffman encoder. The script for this is similar to the script

for FPGA implementation using Design Compiler. Therefore, only the key commands

will be discussed in this section. All the power estimations in this section are pre-layout

values reported by Design Compiler without the use of switching activity. More accurate

results could be obtained following layout using a switching activity and other tools.

5.1.2.1 Results for Timing Optimization

The delay optimization was performed by setting the timing constraint. The first step to

optimize timing was to use the “-map_effort high” command. The first set of the delay,

area, and power was found. The timing analyzer determined the actual path delays of the

design and compared them with the required path delay. The timing analyzer computed

each gate and interconnect delay, then traced critical paths, calculating minimum and

maximum arrival time to points of interest. The timing analyzer used the critical path

values to evaluate design constraints and created timing reports. Then, the timing report

was checked to find out the critical path of the design. The new timing constraint was set

and then the design was compiled with the new timing constraint using the

“set_max_delay” command. The slack in the timing report had to be checked to ensure

that it was met not violated after the design was compiled. The steps were repeated until

the minimum delay was found. The minimum delay is 0.83 ns, so the highest internal

operation frequency is 1.2 GHz. Table 5.2 presents the timing optimization results. Figure

5.6 gives the values in three dimensions.

 52

Table 5.2 Timing optimization results

Timing Constraints
(ns)

Delay
(ns)

Area
(sq.µm)

Power
(µW)

-map_effort high 2.43 6885.276855 396.6453

2.23 1.97 6948.478516 399.8609

1.77 1.65 7204.621094 423.2546

1.45 1.31 8086.309082 469.6368

1.11 1 9926.186523 537.3382

0.97 0.83 10415.21777 550.435

Results of Timing Optimization

Power

Delay Area

0.5
1.0

1.5
2.0

2.5
3.0

300

350

400

450

500

550

600

6000
7000

8000
9000

10000
11000

Figure 5.6 Plot results of timing optimization

 53

5.1.2.2 Results for Area Optimization

The command “set_max_area 0” was used to optimize the area. The high, medium, and

low effort was put into area optimization, and also combined with a different effort of the

area and power optimization. Table 5.3 shown the results for area optimization. The

smallest area for this research was 6379.51709 sq. µm. The areas were between 6300 and

6700 sq. µm for area optimization. The areas were between 6800 and 10500 sq. µm for

timing optimization. The largest area from area optimization was still smaller than the

smallest area from timing optimization. The difference between the smallest area for

timing and area optimization is 3.8%. From the comparison of both optimization

methods, we found that the timing optimization is critical to area optimization. Figure 5.7

is the 3-D plot of the area optimization.

Table 5.3 Area optimization results

Area Constraints
set_max_area 0

Area
(sq.µm)

Delay
(ns)

Power
(µW)

delay, power effort_low
area effort_high 6379.51709 2.2 366.1497

delay, power effort_low
area effort_medium 6399.48928 2.2 367.4032

delay, power effort_high
area effort_high 6416.12305 2.2 392.945

delay, power effort_high
area effort_medium 6432.76025 2.18 393.9166

delay, power effort_high
area effort_low 6609.20986 2.47 371.0525

delay, power effort_low
area effort_low 6639.04443 2.43 398.6882

 54

Results of Area Optimization

Power

Delay Area

2.0
2.1

2.2
2.3

2.4
2.5

300

320

340

360

380

400

6300
6400

6500
6600

6700

Figure 5.7 Plot results of area optimization

5.1.2.3 Results of Power Optimization

The method of power optimization was similar to that of the area optimization. The

command “set_max_dynamic_power 0” was used to minimize the power. The tool was

setup for minimum power and maximum area. From the previous section, reducing the

area increased more power than the delay of the design. The cells were characterized for

power in the target library. The tool selected the low-power equivalent of the device from

library TMSC-0.18, which was the library used for this research work. During the power

optimization, it also targeted the delay of the design. From Table 5.4, the minimum delay

is 1.15 ns and has the power of 433.3379 µW. Comparing the result from timing

optimization, the delay of 1.31 ns has the power of 469.6368 µW. The result from power

optimization had less delay and used less power. Figure 5.8 is the plot of the results.

 55

Table 5.4 Power optimization results

Power
(µW)

Delay
(ns)

Area
(sq.µm)

326.9737 2.88 7161.495605

324.9893 2.53 7194.774902

339.7595 2.12 7244.647461

344.1441 1.85 7274.599609

371.7438 1.5 7577.355469

433.3379 1.15 8741.692383

Results of Power Optimization

Power

Delay Area

1.0
1.5

2.0
2.5

3.0
300

350

400

450

7000
7500

8000
8500

9000

Figure 5.8 Plot results of power optimization

 56

5.1.2.4 Discussions

From the previous sections, the minimum delay of Xilinx Virtex 1000e was 6.079 ns. The

minimum delay from the timing optimization was 0.83 ns and the minimum delay

between them was a factor of 7.32. The reason the Virtex required more delay time is

because the programmable interconnect caused a decrease in speed. Another

consideration is the gate capacity for the FPGA. Only 44 out of 12,288 slices were used

for the Huffman encoder. It is less than 1% of the available gates. Therefore,

understanding the design and then choosing the size of the FPGA for different designs is

very important. Section 5.1.2.1 through 5.1.2.3 described the different methods to

optimize the design. Figure 5.9 shows the result for each optimization method.

Comparison of Timing, Area, and Power Optimization

Power

Delay Area

0.0
0.5

1.0
1.5

2.0
2.53.0

300

350

400

450

500

550

600

6000
7000

8000
9000

10000
11000

▼ : timing optimization
■ : area optimization
● : power optimization

Figure 5.9 Comparison of timing, area, and power optimization

 57

The three different shapes of the points represent three different optimization methods;

the triangle is timing optimization, the square is area optimization, and the circle is power

optimization. From Figure 5.9, the pattern of each optimization was obvious. The timing

optimization only targeted delay, so the area and the power were large compared to the

others. The area optimization had the largest area located at 6000 sq. µm, and the power

and delay were in the middle range. The power optimization also targeted delay, thus the

results were similar to timing optimization, only less power was used and more area

consumed.

From Table 5.5, the minimum delay was 0.83 from timing optimization. It had a ratio of

2.63 and 1.39 in comparison with the smallest delay of area optimization and power

optimization. If the timing is critical for design specification, the timing optimization will

be used since timing optimization will cause large area and high power use.

Table 5.5 Delay for different methods of optimization

Timing Area Power

2.43 ns 2.2 ns 2.88 ns

1.97 ns 2.2 ns 2.53 ns

1.65 ns 2.2 ns 2.12 ns

1.31 ns 2.18 ns 1.85 ns

1 ns 2.47 ns 1.5 ns

0.83 ns 2.43 ns 1.15 ns

 58

From Table 5.6, the area from timing optimization was about 1.6 times the area of

optimization. Although the timing optimization had a delay ratio of 2.63 with area

optimization, if the delay from area optimization had satisfied the design specification,

the timing optimization would not have needed to be performed. Reducing the area size

will increase the yield and reduce fabrication cost.

From Table 5.7, the maximum power was produced by the timing optimization and the

minimum power was produced by the power optimization. Comparing the power

dissipation between them, the timing optimization consumed 1.7 times more power than

the power optimization. The power dissipation is critical when the chip is operating on

portable electronic devices because the less power consumption, the longer the battery

operating life.

The net-list was generated after the synthesis. The net-list was used by the Cadence place

and route tool to generate the physical layout. The physical layout is shown in Figure

5.10.

Table 5.6 Area for different methods of optimization

Timing Area Power
6885.276855 6379.51709 7161.495605
6948.478516 6399.48928 7194.774902
7204.621094 6416.12305 7244.647461
8086.309082 6432.76025 7274.599609
9926.186523 6609.20986 7577.355469
10415.21777 6639.04443 8741.692383

 59

Table 5.7 Power for different methods of optimization

Timing Area Power
396.6453 366.1497 326.9737

399.8609 367.4032 324.9893
423.2546 392.945 339.7595
469.6368 393.9166 344.1441

537.3382 371.0525 371.7438
550.435 398.6882 433.3379

Figure 5.10 Layout of Huffman encoder

 60

5.2 FIR Filter Implementation

The implementation of the FIR filter was targeted to the Xilinx Virtex only. The

procedure was similar to the Huffman encoder FPGA implementation. The scripts for

each synthesis tool were also similar. From Section 4.2, we knew the added tree for the

FIR filter is a large sequential process. Since there are 32 taps in the FIR filter and the

input signal is 12-bit, the fanout after the adder tree is more than 1000. The large

sequential structural and the large fanout limited the timing constraint. Table 5.8 shows

the results from different synthesis tools. As seen in Table 5.8, the Tool A still performed

better than Tool B or Tool C. Tool C performed much better for TSMC-0.18

implementation, but not for FPGA implementation. Both results of Huffman and FIR

implementation from Tool C, the delay and slices are the worst when compared to Tool A

and Tool B, but Tool C had the most control of timing constraint. Figure 5.11 is the

layout of Virtex 1000e.

Table 5.8 Results of FIR filter using different Synthesis tools

Synthesis tool Delay (ns) Slices Power (mW)
Tool A 22.668 910 112
Tool A 20.192 910 114
Tool A 19.243 910 109
Tool B 22.382 1350 126
Tool B 21.237 1351 126
Tool C 33.762 2042 143
Tool C 32.611 2044 144
Tool C 30.000 2038 149
Tool C 28.784 2040 144

 61

Figure 5.11 FIR filter layout of Virtex 1000e

 62

CHAPTER 6

Summary, Conclusion and Future Works

6.1 Summary

In this research work, the Huffman encoder and FIR filter were implemented using

VHDL. The design was functionally tested, synthesized, optimized, and placed and

routed. Testing of the RTL was performed using Synopsys and Mentor Graphics tool

sets. The high-level synthesis and optimization were performed using the Mentor

Graphics Spectrum, Synopsys Design Compiler and FPGA Compiler II. The physical

level synthesis used Cadence and Xilinx for place and route. The VHDL code for this

research work was obtained from Honeywell Inc. and the Boeing Company. A few

modifications were made to the code, such as adding in Synopsys libraries, altering the

modules, etc. This was done to make the code compatible to the Synopsys and Mentor

Graphics tool during synthesis and optimization.

The functional testing of the Huffman encoder was done by using C++ and the input

characters were transferred to corresponding binary codes. The corresponding binary

codes were saved as “datain.txt”. A test-bench was made for the purpose of simulation.

The test-bench read the file and wrote the output as “dataout.txt” during simulation. The

result from simulation was compared with the C++ result from Chapter Three.

The three synthesis tools were used to optimize the FIR filter design, then Xilinx place

and route tools implemented the synthesis results to the FPGA layout for Virtex 1000e.

 63

The Synopsys synthesis tool, Design Compiler, was used to operate timing, area, and

power optimization for different results. The target library for the synthesis tool and place

and route tool is TSMC-0.18. The net-list from synthesis was used by Cadence to

generate the physical layout.

6.2 Conclusion

Integrated circuit performance is typically characterized by the size of the chip, the speed

of operation, the available circuit functionality, and the power consumption. Many

market segments are driving the need for smaller, faster and less power-consuming ICs.

With the increasing use of portable electronic devices, the emphasis is now on power

optimization. The optimization of the timing, delay, and power has to be performed at all

design phases for better results. There are three levels to design synthesis, but the

RTL/logic level is by far the most efficient.

In this research, a VHDL synthesis methodology for ASIC was implemented. The overall

ASIC design cycle can be significantly reduced by the use of VHDL synthesis partly due

to the elimination of the schematic generation and maintenance tasks and partially due to

the reduction in design error by using higher level VHDL simulation early in the cycle.

VHDL synthesis also has the advantage of vendor and technology independence. Most of

the synthesis tool vendors provide libraries for a number of different ASIC foundries and

technologies.

 64

The high-level synthesis and optimization for TSMC-0.18 was performed using the

Synopsys Design Compiler in this research. The timing, area, and power optimization

results were shown in Chapter Five. From the results, each method of optimization would

affect the result of the other two methods. The maximum speed of the design also

consumed maximum power. Using more power not only consumed more energy, but also

generated heat. Therefore, the dissipation of heat became another problem. The designer

has to focus on the design specification in order to get the best performance out of the

chip. For example, if the design calls for critical power efficiency, the designer can

concentrate on power optimization method to optimize the design.

From the results of the FPGA implementation, the faster designs did not use more slices

and power as TSMC-0.18 did. The increasing of area and power consumption was not

significant during timing optimization. The power consumption of the FPGA was much

greater than TSMC-0.18.

The ASIC development also involves the “time-to-market” issues. The FPGA

implementation has the shortest turn-around time. The result from Xilinx Virtex for the

Huffman encoder had 6.067 ns of delay. It is more than 7 times slower than the minimum

delay from timing optimization. Because of the shortest turn around time and the lower

prototyping cost, the FPGA is still chosen for some designs. With the tremendous growth

in technology today, FPGAs are becoming faster, and the number of gates is

exponentially increasing annually.

 65

6.3 Future Work

For the Huffman encoder, the layout needs to be put into a frame and the input and output

pins need to be connected with pads before the fabrication process. A Smart Frame was

developed from the previous class. The Smart Frame has a build-in-self-test (BIST)

ability. The signature compressor produces a unique signal pattern to test the

functionality of the chip. In addition, the design has to simulate the unique signal pattern

in order to find out the corresponding output. The corresponding output will set up the

comparator in BIST. The design could be sent to the foundry for fabrication. After

receiving the actual chip, if the chip is set in the BIST mode, the design will read the data

from the signature compressor and compare it with the simulation result. If there are no

problems during the fabrication process, the comparator will send out a “Go” signal. The

maximum speed can be tested and compared with the synthesis result.

For the FIR filter, the VHDL code can be modified to reduce the adder tree timing delay

due to the sequential operation. That will also reduce the fanout of the adder tree. After

modifying the code, the new implementation can be done. The results can be compared

with the results of this research. The design can also be downloaded to the Virtex chip

and tested to determine the highest operation frequency. The frequency can then be

compared with this research.

 66

References

 67

[1] Ivan S. Kourtev, Eby G. Friedman, Timing Optimization Through Clock Skew
Scheduling, Kluwer Academic Publishers, ISBN 0-7923-7796-6.

[2] Mike Tien-Chien Lee, High-Level Test Synthesis of Digital VLSI Circuits, Artech
House, Inc. ISBN 8-89006-907-7.

[3] Ahmed Amine Jerraya, Hong Ding, Polen Kission, Maher Rahmouni, Behavioral
Synthesis and Component Reuse with VHDL, Kluwer Academic Publishers, ISBN 0-
7923-9827-0.

[4] Michael John Sebastain Smith, Application-Specific Integrated Circuits, Addison
Wesley Longman, Inc. ISBN 0-201-50022-1.

[5] Neil H. E. Weste, Kamran Eshraghian, Principles of CMOS VLSI Design, A Systems
Perspective, Second edition, Addison-Wesley Publishing Company, ISBN 0-201-53376-
6.

[6] “Designing Application-Specific Integrated Circuits”
http://vlsi1.engr.utk.edu/ece/bouldin_courses/551/overview_bw.pdf

[7] Bernard Sklar, Digital communications, Fundamentals and Applications, Prentice-
Hall, Inc. ISBN 0-13-211939-0.

[8] Sadiq M. Sait, Habib Youssef, VLSI Physical Design Automation, Theory and
Practice, IEEE Press, ISBN 0-7803-1411-8.

[9] Paul M. Brown, Jr. A Guide to Analog ASICs, Academic Press, Inc. ISBN 0-12-
136970-6.

[10] Srinivasa R. Vemuru, Norman Scheinberg, “Short-Circuit Power Dissipation
Estimation for CMOS Logic Gates”, IEEE Transactions on Circuits and Systems, Vol.
41, No. 11, Nov. 1994.

[11] A. Lu, G. Stenz, F.M. Johannes, “Technology Mapping for Minimizing Gate and
Routing Area”, IEEE Proceedings on Design, Automation and Test in Europe, February
23-26, 1998, p664-p669.

[12] K. Chakraborty, S. Kulkami, M. Bhattacharya, P. Mazumder, A. Gupta, “A physical
design tool for built-in self-repairable RAMs”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Volume: 9 Issue: 2, April 2001, p352 -p364.

[13] Kiat-Seng Yeo, Samir S. Rofail, Wang-Ling Goh, CMOS/BiCMOS ULSI, Low
Voltage, Low Power, Prentice Hall PTR, ISBN 0-13-032162-1.

 68

[14] Douglas E. Ott, Thomas J. Wilderotter, A Designer’s Guide to VHDL Synthesis,
Kluwer Academic Publishers, ISBN 0-7923-9472-0.

[15] James H. McClellan, Ronald W. Schafer, Mark A. Yoder, DSP FIRST: A
Multimedia Approach, Prentice Hall, ISBN 0-13-243171-8.

 69

Appendices

 70

Appendix A: VHDL Code of Huffman Encoder

 71

A1 Test-bench

-- Test-bench for huffman.vhd

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use STD.textio.all;
use IEEE.std_logic_textio.all;

entity huffman_tb is
end huffman_tb;

architecture structure of huffman_tb is

 signal Resetn : std_logic;
 signal Clk : std_logic;
 signal DataIn : std_logic_vector(7 downto 0);
 signal Go : std_logic;
 signal DataOut : std_logic_vector(7 downto 0);
 signal Address : std_logic_vector(17 downto 0);
 signal Wen : std_logic;
 signal Done : std_logic;

 COMPONENT huffman PORT(
 Resetn : IN std_logic;
 Clk : IN std_logic;
 DataIn : IN std_logic_vector(7 downto 0);
 Go : IN std_logic;
 DataOut : OUT std_logic_vector(7 downto 0);
 Address : OUT std_logic_vector(17 downto 0);
 Wen : OUT std_logic;
 Done : OUT std_logic);
 END COMPONENT;

 constant Period : time := 20 ns;
 SIGNAL iclk : std_logic;

begin
 top_inst: huffman
 PORT MAP(Resetn, Clk, DataIn, Go, DataOut, Address, Wen, Done);

 ClockGen : PROCESS
 BEGIN
 iclk <= '1';

 72

 WAIT FOR Period/2;
 iclk <= '0';
 WAIT FOR Period/2;
 END PROCESS ClockGen;
 Clk <= iclk;
 Resetn <= '0',
 '1' after 20 ns;
 Go <= '0',
 '1' after 60 ns;

Simu : PROCESS (Clk, Resetn, Go, Wen)

 file Fileout : text is out "dataout.txt";
 file Filein : text is in "datain.txt";

 variable Lineout : line;
 variable Linein : line;
 variable tmpout : std_logic_vector (7 downto 0);
 variable tmpin : std_logic_vector (7 downto 0);

 begin

 if Clk'event and Clk = '1' then
 if not(endfile(Filein)) then
 readline (Filein, Linein);
 read (Linein, tmpin);
 DataIn <= tmpin;
 if Wen = '0' then
 tmpout := DataOut;
 write (Lineout, tmpout);
 writeline(Fileout, Lineout);
 end if;
 end if;
 end if;
END PROCESS Simu;
end structure;

configuration func_config of huffman_tb is
for structure
 for top_inst: huffman
 use entity WORK.huffman(BEHAVIORAL);
 end for;
end for;
end func_config;

 73

Appendix B: C++ Code for Design Verification

 74

B1 Huffman.cpp

/*---*/
/* */
/* Program for verification of Huffman encoder */
/* */
/* This program will take input of character */
/* string then use Huffman encode theory to */
/* convert the character string into binary */
/* code. */
/* */
/*---*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>
#include <fstream.h>

void main()
{
 int k;
 char inp[200];

 for (k = 0 ; k < 200 ; k++)
 {
 inp[k] = '\0';
 }

 ifstream File("huff_input.txt");
 File.read(inp,200);
 File.close();

 char huff[1200], temp[1200];
 int count=0;
 int flag=0;

 for (k = 0 ; k < 200 && inp[k] != '\0'; k++)

 {
 switch (inp[k])
 {
 case 'q':
 temp[flag+5]='0';

 75

 temp[flag+4]='1';
 temp[flag+3]='1';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='0';
 flag = flag + 6;
 break;
 case 'v':
 temp[flag+5]='0';
 temp[flag+4]='1';
 temp[flag+3]='1';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='1';
 flag = flag + 6;
 break;
 case 39:
 temp[flag+5]='1';
 temp[flag+4]='0';
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='0';
 flag = flag + 6;
 break;
 case '"':
 if (count ==0) /* begin quote */
 {
 temp[flag+5]='1';
 temp[flag+4]='0';
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='1';
 flag = flag + 6;
 count = 1;
 }
 else /* end quote */
 {
 temp[flag+5]='1';
 temp[flag+4]='0';
 temp[flag+3]='1';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='0';

 76

 flag = flag + 6;
 count = 0;
 }
 break;
 case '9':
 temp[flag+5]='1';
 temp[flag+4]='0';
 temp[flag+3]='1';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 6;
 break;
 case '5':
 temp[flag+5]='1';
 temp[flag+4]='0';
 temp[flag+3]='1';
 temp[flag+2]='0';
 temp[flag+1]='1';
 temp[flag]='0';
 flag = flag + 6;
 break;
 case '(':
 temp[flag+5]='1';
 temp[flag+4]='0';
 temp[flag+3]='1';
 temp[flag+2]='0';
 temp[flag+1]='1';
 temp[flag]='1';
 flag = flag +6;
 break;
 case ')':
 temp[flag+5]='1';
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='0';
 flag = flag + 6;
 break;
 case '1':
 temp[flag+5]='1';
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='0';

 77

 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 6;
 break;
 case '2':
 temp[flag+5]='1';
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='0';
 temp[flag]='0';
 flag = flag + 6;
 break;
 case '-':
 temp[flag+5]='1';
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 6;
 break;
 case '.':
 temp[flag+5]='1';
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='0';
 flag = flag + 6;
 break;
 case 'l':
 temp[flag+5]='1';
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='1';
 flag = flag +6;
 break;
 case 'y':
 temp[flag+4]='0';
 temp[flag+3]='0';
 temp[flag+2]='0';
 temp[flag+1]='0';

 78

 temp[flag]='0';
 flag = flag + 5;
 break;
 case 'g':
 temp[flag+4]='0';
 temp[flag+3]='0';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 5;
 break;
 case 'h':
 temp[flag+4]='0';
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='0';
 flag = flag + 5;
 break;
 case 'f':
 temp[flag+4]='0';
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='1';
 flag = flag + 5;
 break;
 case 'p':
 temp[flag+4]='0';
 temp[flag+3]='1';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='0';
 flag = flag + 5;
 break;
 case 't':
 temp[flag+4]='0';
 temp[flag+3]='1';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 5;
 break;
 case 'd':
 temp[flag+4]='0';

 79

 temp[flag+3]='1';
 temp[flag+2]='1';
 temp[flag+1]='0';
 temp[flag]='0';
 flag = flag + 5;
 break;
 case 'm':
 temp[flag+4]='0';
 temp[flag+3]='1';
 temp[flag+2]='1';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 5;
 break;
 case 'u':
 temp[flag+4]='0';
 temp[flag+3]='1';
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='0';
 flag = flag + 5;
 break;
 case 'a':
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='0';
 flag = flag + 5;
 break;
 case 'c':
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 5;
 break;
 case 's':
 temp[flag+4]='1';
 temp[flag+3]='0';
 temp[flag+2]='0';
 temp[flag+1]='1';
 temp[flag]='0';
 flag = flag + 5;

 80

 break;
 case 'i':
 temp[flag+4]='1';
 temp[flag+3]='1';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 5;
 break;
 case 'o':
 temp[flag+3]='0';
 temp[flag+2]='0';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 4;
 break;
 case 'n':
 temp[flag+3]='0';
 temp[flag+2]='0';
 temp[flag+1]='1';
 temp[flag]='0';
 flag = flag + 4;
 break;
 case 'r':
 temp[flag+3]='0';
 temp[flag+2]='1';
 temp[flag+1]='0';
 temp[flag]='1';
 flag = flag + 4;
 break;
 case 'e':
 temp[flag+3]='1';
 temp[flag+2]='0';
 temp[flag+1]='1';
 temp[flag]='1';
 flag = flag + 4;
 break;
 case ' ':
 temp[flag+2]='1';
 temp[flag+1]='1';
 temp[flag]='1';
 flag = flag + 3;
 break;
 }

 81

 }

 int l;
 cout << "The huffman code is:" << endl << endl;

 for (l = 0 ; l < flag ; l++)
 {
 huff [7 + l - 2*(l%8)] = temp[l];
 }

 ofstream a_file("huff_code.txt");

 for (l = 0 ; l < (flag + (8 - flag % 8)) ; l++)
 {
 if (l >= (flag - (flag%8)) && l < (flag + 8 - 2*(flag % 8)))
 a_file << " ";
 cout << " ";
 else
 {
 a_file << huff[l];
 cout << huff[l];

 if ((l % 8) == 7)
 {
 a_file << endl;

 cout << " ";
 }
 }
 }

 a_file.close();

 char yorn;
 cout << endl << endl;
 cout << "Do you want to exit? (y/n) ";
 cin >> yorn;
 cout << endl;
 if (yorn== 'y')
 exit (1);

}

 82

Vita

Chung Ku was born in Pingtung, Taiwan in 1971. He graduated from Senior Industrial

Vocational School, National Changhua University of Education in June 1989. He entered

the Department of Mechanical Engineering of the National Chin-Yi Institute of

Technology in August 1990. He finished his Associate degree in June 1992. After serving

in the Navy for two years, Chung Ku completed his military duty with honor from the

Department of Defense in August 1994.

Chung Ku came to the United States in January 1997 and started his undergraduate study

at The University of Tennessee, Knoxville, majoring in Electrical Engineering. He was

initiated into Eta Kappa Nu Honor Society. He also received the Engineering Academic

Achievement Award from the department of Electrical Engineering in Spring 1999.

Chung completed his undergraduate courses in the Spring of 1999 and received the

Bachelor of Science degree in Electrical Engineering.

He continued his graduate education at The University of Tennessee, Knoxville. He

joined Dr. Walker’s group with a Graduate Research Assistantship in August 1999. After

Dr. Walker left UTK, he received a Graduate Teaching Assistantship in May 2001.

 83

	Size, Speed, and Power Analysis for Application-Specific Integrated Circuits Using Synthesis
	Recommended Citation

	Introduction
	1.1 Overview
	1.1.1 Behavioral Synthesis Level
	1.1.2 RTL/logic Synthesis Level
	1.1.3 Physical Synthesis Level

	1.2 Research Objectives
	1.3 Chapter Contents

	Background
	2.1 Huffman Coding Theory
	2.2 FIR Filter Theory
	2.3 Types of ASICs
	2.3.1 Full-Custom ASICs
	2.3.2 Standard-Cell ASICs
	2.3.3 Gate Array ASICs
	2.3.4 Programmable Logic Devices
	2.3.5 Field-programmable Gate Arrays
	2.3.6 Summary

	2.4 Area, Delay, and Power Consideration
	2.4.1 Area
	2.4.2 Delay
	2.4.3 Power
	2.4.3.1 Switching Current
	2.4.3.2 Short-Circuit Current
	2.4.3.3 Static Power Dissipation

	2.4.4 Summary

	Design Flow and Design Verification
	3.1 ASIC Design Flow Description
	3.2 Design Verification

	Implementation
	4.1 Function Description of Huffman VHDL Code
	4.2 Function Description of The FIR VHDL Code
	4.3 Synthesis and Optimization

	Results and Discussions
	5.1 Huffman Encoder Implementation
	5.1.1 Results for FPGA Implementation
	5.1.2 Results for TSMC-0.18 Implementation
	5.1.2.1 Results for Timing Optimization
	5.1.2.2 Results for Area Optimization
	5.1.2.3 Results of Power Optimization
	5.1.2.4 Discussions

	5.2 FIR Filter Implementation

	Summary, Conclusion and Future Works
	6.1 Summary
	6.2 Conclusion
	6.3 Future Work

	References
	Appendices
	Appendix A: VHDL Code of Huffman Encoder
	A1Test-bench

	Appendix B: C++ Code for Design Verification
	B1Huffman.cpp

	Vita

