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Abstract 
 

An application-specific integrated circuit (ASIC) must not only provide the required 

functionality at the desired speed but it must also be economical.  In the past, minimizing 

the size of the ASIC was sufficient to accomplish this goal.  Today it is increasingly 

necessary that the ASIC also achieve minimum power dissipation or an optimal 

combination of speed, size and power, especially in communication and portable 

electronic devices. The research reported in this thesis describes the implementation of a 

Huffman encoder and a finite impulse response (FIR) filter using a hardware description 

language (HDL) and the testing of the corresponding register transfer level (RTL) for 

functionality. The RTL was targeted for two different libraries, TSMC-0.18 CMOS and 

the Xilinx Virtex V1000EHQ240-6. The RTL was synthesized and optimized for 

different sizes, speeds, and power by using the Synopsys Design Compiler, FPGA 

Compiler II, and Mentor Graphics Spectrum. Cadence place and route tools optimized 

area, delay, and power of post-layout stages for TSMC-0.18. Xilinx place and route tools 

were used for the Virtex V1000EHQ240-6. The various ASICs were produced and 

compared over a range of speed, area, and power. 
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CHAPTER 1 

Introduction 

 

1.1 Overview 

The first commercial discrete integrated circuit (IC) was introduced in the late 1950s. As 

predicted by Moore’s Law in the 1960s, integrated circuit density has been doubling 

approximately every 18 months, and circuit speed has also simultaneously increased by 

the similar exponential [1]. Integrated circuit performance is typically characterized by 

the size of the chip, the speed of operation, the available circuit functionality, and the 

power consumption. The size of the chip not only affects the performance, but also 

influences the price of the chip and the number of potential sites and yield during 

fabrication. For example, reducing the area by factor of 4 increases the number of good 

dies by factor of 5 on a 5-inch wafer with 2-defects/sq. cm [6]. The other important factor 

for chip design is the time-to-market of the product. The earlier the product is brought 

into the market, the more money it is likely to produce. For this reason it is very 

important to find the most efficient way to optimize the size, delay, and power. This can 

be accomplished from different levels, such as the behavioral synthesis level, RTL/logic 

synthesis level, and the physical synthesis level. 

 

1.1.1 Behavioral Synthesis Level 

Behavioral synthesis is the process for synthesizing the circuit structure into RTL from 

the input behavioral descriptions written in a hardware description language such as 
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VHDL or Verilog. It describes how the system should behave in response to input signals 

but without having to specify the implementation. This level is the best level to debug the 

operation of the complete system and is also the level that provides the fastest emulation 

of the system [5]. 

 

Scheduling, allocation, and assignment (binding) are three phases in the behavioral 

synthesis process. Scheduling assigns operators into time slots without violating 

constraints. Allocation determines how many instances of each resource are needed in 

order to re-use hardware for different operators and to minimize registers and 

interconnections. The assignment decides which resources will be used by each operation 

of the behavioral description [3]. Behavioral synthesis attempts to minimize the number 

of resources to perform a task in a given time and tries to reduce the execution time for a 

given set of resources. 

 

1.1.2 RTL/logic Synthesis Level 

Conventional RTL synthesis or logic synthesis starts with a given RTL architecture 

where scheduling and allocation are already determined [2]. RTL/Logic synthesis is used 

to improve the logic to meet area or timing constraints. It provides a link between RTL 

architecture and a net-list. Generally, there are two stages in RTL/logic synthesis: the 

technology-independent stage and the technology-mapping stage [5]. 

 

A technology-independent stage uses algebraic and/or Boolean techniques for 

optimization. Most tools use algebraic techniques rather than Boolean techniques. These 
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algebraic techniques use a series of factoring, substitution, and elimination steps to 

simplify the equation that represents the synthesized network. A technology-mapping 

stage matches pieces of the network with the logic cells that are available in a 

technology-dependent target cell library. During the mapping, the algorithms seek to 

minimize the area under consideration of any other constraints such as timing or power 

[4]. 

 

1.1.3 Physical Synthesis Level 

Physical synthesis is very well developed and is accomplished primarily by the software. 

Once the gate net-list from the RTL/logic synthesis is available, and then it can be 

automatically converted to a layout.  This step is normally divided into system 

partitioning, floorplanning, placement, and routing. 

 

System partitioning, if needed, is the division of the microelectronics system into a 

number of ASICs in order to minimize the number of external connections between 

ASICs, thus keeping each ASIC small. Floorplanning consists of estimating sizes and 

assigning the location of all the blocks to keep the highly connected blocks physically 

close to each other. Placement involves defining the location of all logic cells within the 

flexible blocks and assigning the sets of the interconnect areas to minimize the layout 

area and interconnect density. Routing is the production of the connections between all 

the logic cells to minimize the total interconnection area and length used [4].  
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1.2 Research Objectives 

Behavioral synthesis is the process that starts from the description of behavioral 

functionality and produces an architecture able to execute the design specification. The 

architecture is generally given as a RTL specification. The behavioral synthesis tool acts 

as a compiler that maps a high-level specification into an architecture. In order to modify 

the architecture, the behavioral description is simply changed and rerun through the 

behavioral synthesis tool. The high-level synthesis is the bridge between system design 

and CAD tools acting at the RTL/logic level [3]. 

 

The high-level of abstraction provides more powerful and complete methods to explore 

the design space within a much shorter turn-around time than the tasks performed by 

human designers. For example, software tools produce assembly code from a high-level 

language, such as C, by using the compiler. Previously, designers used assembly code 

and then translated them into machine code with an assembler. The goal of this research 

is to obtain a variety of size, speed and power solutions for a given HDL using several 

high-level synthesis tools. 

 

The first step of ASIC design process is to use a hardware description language to 

describe the desired functionality. The VHDL codes for this research work were provided 

by Honeywell Inc. for the Huffman encoder, and by the Boeing Company for the FIR 

filter. The code for the Huffman encoder was not completely error free in our CAD 

environment so some modification was necessary. 
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The second step in implementing an ASIC is to compile and simulate the VHDL code 

using a Mentor Graphics simulator, ModelSim. This step is also called pre-synthesis 

simulation. The next step is to change the design constraints so that a synthesis tool 

(Synopsys Design Compiler, Synopsys FPGA Compiler, and Mentor Graphics Spectrum) 

can produce multiple solutions within the area, delay, and power design space. The gate-

level net-list is produced and made ready for the Cadence and Xilinx place and route 

tools. After this step, the different layouts are simulated again using ModelSim to verify 

the functionality and timing of the design. The final values of area, delay, and power are 

then determined. 

 

1.3 Chapter Contents 

The first part of Chapter Two is a brief tutorial of the Huffman encoder and FIR filter 

theory. It is followed by an introduction to the different types of ASICs. The brief 

explanation of how the parameters affect area, delay, and power will be given in the last 

part of Chapter Two. 

 

A detailed explanation of ASIC design flow and design verification are illustrated in 

Chapter Three. Chapter Four presents the implementation of the Huffman encoder and 

FIR filter. Results and discussions are presented in Chapter Five and Chapter Six gives 

the summary and conclusion of this research work. 
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CHAPTER 2 

Background 

 

2.1 Huffman Coding Theory 

The purpose of source coding is to form efficient descriptions of information sources. 

Source coding is used to either improve the signal-noise ratio (SNR) for a given bit rate 

or to reduce the bit rate for a given SNR. There are several different types of source 

coding, such as amplitude quantizing, differential pulse code modulation, 

synthesis/analysis coding, block coding, and redundancy-reducing coding [7]. Huffman 

coding is in the category of redundancy-reducing coding. 

 

In Huffman coding, characters (or other data items) are represented as bit sequences of 

varying length, so that the most frequent character will have the shortest bit symbol. In 

written text, some characters are not used as frequently as others. The letter “e” appears 

quite often in English text, but rarely does one see a “z.” Even though the least frequent 

character usually will have more bit sequences than fixed-length bit sequences, Huffman 

coding will still achieve the shortest average code length compared to fixed-length bit 

sequences if the frequency distribution is appropriate for the input data. Huffman codes 

can be properly decoded because they obey the prefix property, which means that no 

code can be a prefix of another code. The complete set of codes can be represented as a 

binary tree, known as a Huffman tree. 
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As an example of the coding process, six input alphabets with different probabilities will 

form a Huffman tree as shown in Figure 2.1. The Huffman tree traces the tree path from 

right to left for each branch. The path contains the binary sequence, which will be the 

Huffman code. 

 

A data compression technique varies the length of the encoded symbol in proportion to its 

information content. The more often a symbol or token is used, the shorter the binary 

string is used to represent it in the compressed stream. It is known that Huffman coding 

will achieve the shortest average code length. Table 2.1 shows how to calculate the 

average code length, n . 

 

Input 
alphabet 

Code 
Symbols 

a 11 
b 00 
c 101 
d 100 
e 011 
f 010 

0 

0 

0 

1 

0 

0 

1.0 
1 0.6 

0.2 

0.4

0.4

0.4

0.40.4

0.4 
1 

0.2 

0.2 

0.2 

0.2 
1 

0.1 

0.1 

0.2 

0.2 

0.2 
1 

0.1

0.1

0.1

0.1

0.2

0.4 a 

b  
c 

 
d 

 e 

 f 

 

 

 

Figure 2.1 Huffman coding tree for a six-character set [7]. 
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Table 2.1 Calculation of average code length, n  [7]. 

Xi P(Xi) Code ni niP(Xi) 
a 0.4 11 2 0.8 
b 0.2 00 2 0.4 
c 0.1 101 3 0.3 
d 0.1 100 3 0.3 
e 0.1 011 3 0.3 
f 0.1 010 3 0.3 

 

 ( )∑ == 4.2ii XPnn   

  is probability y of input ( iXP )

  is number of data bits in

The average code length is 2.4 bits per character. This means that on the average, 240 bits 

will be sent during the transmission of 100 input symbols. However, a fixed-length code 

of 3 bits representing a six-character input alphabet would require that 300 bits be 

transmitted for 100 symbols. Thus, the compression ratio will be 1.25 (3). 

 

2.2 FIR Filter Theory 

A filter is used to remove some component or modify some characteristic of a signal, but 

often the two terms are used interchangeably. A digital filter is simply a discrete-time, 

discrete-amplitude convolver. Basic Fourier transform theory states that the linear 

convolution of two sequences in the time domain is the same as multiplication of two 

corresponding spectral sequences in the frequency domain. Filtering is in essence the 

multiplication of the signal spectrum by the frequency domain impulse response of the 

filter. 
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 A finite impulse response (FIR) filter performs a weighted average of a finite number of 

samples of the input sequence. The basic input-output structure of the FIR filter is a time-

domain computation based on a feed-forward difference equation. Figure 2.2 shows a 

flow diagram of a standard 8-tap FIR filter. The filter has seven data registers. The FIR is 

often termed a transversal filter since the input data transverses through the data registers 

in shift register fashion. The output of each register (D1 to D7) is called a tap and is 

termed x[n], where n is the tap number. Each tap is multiplied by a coefficient ck and the 

resulting products are summed. A general expression for the FIR filter’s output can be 

derived in terms of the impulse response. Since the filter coefficients are identical to the 

impulse response values, the general form of a standard FIR filter can be represented as 

Equation 2.1 [15]. 

∑
=

−=
M

k
knxkhny

0
][][][  2.1 

When the relation between the input and the output of the FIR filter is expressed in terms 

of the input and the impulse response, it is called a finite convolution sum. We say that 

the output is obtained by convolving the sequences x[n] and h[n] [15]. There is a simple 

interpretation that leads to a better algorithm for achieving convolution. This algorithm 

can be implemented using the tableau that tracks the relative position of the signal values. 

The example in Figure 2.3 shows how to convolve x[n] with h[n]. 

 

 

 

 
y[n] 

x[n-7] D7 x[n-6] D6 x[n-5] D5 x[n-4] D4 x[n-1] D1 x[n-3] x[n-2] D3 D2 x[n] 

c0 c4 c5 c6 c7 c2 c3 c1 

Figure 2.2 Block-diagram structure for the 8-tap FIR filter 
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  n 0 1 2 3 4 5 6 7 

 x[n] 1 3 5 2 4 

 h[n] 2 -1 3 1 

h[0]x[n-1] 2 6 10 4 8 

h[0]x[n-2]  -1 -3 -5 -2 -4 

h[0]x[n-3]   3 9 15 6 12 

h[0]x[n-4]    1 3 5 2 4 

 y[n]  2 5 10 9 24 7 14 4 

 

 

 

 

 

 

Figure 2.3 Convolution of finite-length signals 

The determination of filter coefficients controls the characteristic of the FIR filter. The 

most popular way to calculate coefficients is the window method. The coefficient 

function h(n) can be represented by the following equation. 

 )  2.2 ()()( nwnhnh D=

)(nhD  is ideal filter function in the frequency domain. For example, the ideal low-pass 

filter for h  is the sinc function, and  is the window function. There are several 

common window methods such as Hamming window, Blackman window, and Kaiser 

window, which give stop-band attenuation less than 50db. The Hamming window is the 

most popular method due to the proper filter length and simple calculation. Equation 2.3 

illustrates the function of a Hamming window. 

)(nD )(nw

 





+=

N
nnw π2cos46.054.0)(  2.3 

where 

 N is the number of FIR coefficients. 
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2.3 Types of ASICs 

An ASIC (application-specific integrated circuit) consists of a single chip or die.  It is 

made on a thin silicon wafer, each containing hundreds of dice. Transistors and wiring 

are made from many layers on the top of a die [4]. Using CAD tools, the ASIC designer’s 

task is to place and wire the transistors to perform logic functions that meet the design 

specification. There are several different approaches to designing an ASIC. The 

following will explain those design methods and give a brief explanation of each. 

 

2.3.1 Full-Custom ASICs 

In a full-custom design, a designer starts from the ground up using a layout editor to 

generate a physical layout description of the circuit. Full-custom ASICs are the most 

expensive to manufacture and design, but give full control to the designer to achieve a 

higher degree of optimization in both circuit area and performance. For instance, in this 

type of ASIC, the designer may change the width-to-length ratio of individual transistors 

to tune their performance [8]. On the other hand, this is a time-consuming and difficult 

task. The manufacturing lead-time is typically eight weeks [4]. The designer has to 

understand fully the characteristic and the rules of the physical layout in order to carry 

out each design. A full-custom approach is used when no existing cell libraries can meet 

the performance requirement, as for example, a microprocessor. The advantages are 

maximum circuit performance, minimum design size, and minimum high-volume 

production cost. The disadvantages are a long development cycle and manufacturing 

lead-time, less design change flexibility, and very high initial development cost [9]. 
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2.3.2 Standard-Cell ASICs 

The standard-cell is the logic block (AND gates and multiplexers, for example) which is 

optimized, tested for a particular function, and built into a standard-cell library. The 

designer places and interconnects multiple standard-cells to yield the desired circuit 

function. The range of gates in a standard-cell ASIC is usually from 10,000 to 10,000,000 

gates (or more). The design of this type of ASIC requires a workstation-based 

development environment and costs about $100K [6]. All the standard-cells have the 

same height and the cells are connected together horizontally to form rows. In order to fit 

standard-cells together, there are particular rules and formatting requirements for a 

standard-cell. The advantages of standard-cells are time efficiency and risk reduction by 

using a pre-optimized and pre-tested standard-cell library. The disadvantages include the 

time to develop a standard-cell library and long manufacturing lead-time, which is 

approximately eight weeks [4]. 

 

2.3.3 Gate Array ASICs 

In a gate array ASIC, thousands of transistors are prefabricated on a silicon wafer in 

regular two-dimensional arrays, containing 10,000 to 10,000,000 gates (or more) [6]. 

Initially the transistors in the arrays are not connected to each other. That means the top 

few layers of the metal have not been fabricated. The designer will then define the 

connection between transistors to perform the desired logic function using custom masks. 

For this reason it is often called a mask gate array (MGA). The process of adding metal 

wires to a gate array is called personalizing the array [8]. Wafers of gate arrays can be 

stock-piled so that only the personalization of the top few layers of metal need to be 
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performed, thereby reducing the manufacturing lead-time to 3–5 weeks [6]. The 

following are three different types of gate array ASICs [4]: 

• Channeled gate array. 

• Channelless gate array. 

• Structured gate array (embedded gate array). 

The differences among the gate array ASICs are slight. Channeled gate arrays have 

spaces between rows of base cells for interconnections. Channelless gate arrays, on the 

other hand, are completely filled with array base cells. Structured gate arrays like 

channelless gate arrays have no spaces between rows. The difference lies in the 

embedded block area which can be dedicated to a specific function, usually building 

memory cells. Figure 2.4 shows three different types of gate arrays. The advantages of 

gate array ASICs are shorter turnaround time due to prefabrication of most of the layers 

and lower cost. The major disadvantage is that all the transistors are the same size (width 

 
embedded 
block  

 

 

 

 

 

 
Channeled Gate Array Channelless Gate Array Structured Gate Array 

 

Figure 2.4 Different types of gate array ASICs [4]. 
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and height). The cell library must be specially designed to meet the requirement [8]; 

otherwise, there will be wasted areas for all those unused transistors. 

 

2.3.4 Programmable Logic Devices 

A programmable logic device (PLD) consists of logic array blocks (LABs) which 

implement logic as two-level sum-of-product expressions. A LAB contains wide and 

programmable AND-gates, and narrow and fixed OR-gates. The AND plane implements 

the product terms and the OR plane implements the sums. PLD includes programmable 

array logic (PAL). A PLD can replace 300 to 8000 gates with a single package of 24-80 

pins. However, it only contains up to 8000 gates, which limits the logic complexity. It is 

simple enough to use a PC-based development system costing about $5K-10K [6], can be 

programmed within few minutes, and has the shortest turnaround time to handle a simple 

design. 

 

2.3.5 Field-programmable Gate Arrays 

Field-programmable gate array (FPGA) is a step above the PLD in complexity. The 

difference between FPGA and PLD is very little. Both FPGA and PLD can be volatile or 

non-volatile. FPGA is just larger and more complex than a PLD. FPGA consists of a two-

dimensional array of logic blocks. Each logic block is programmable to implement any 

logic function. Thus, they are also called configurable logic blocks (CLBs) [8]. 

Switchboxes or channels contain interconnection resources that can be programmed to 

connect CLBs to implement more complex logic functions. Designers can use existing 

CAD tools to convert HDL code in order to program FPGAs. An FPGA contains 2,000 to 
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2,000,000 gates (or more) [6]. Since the FPGA can be reprogrammed, the turnaround 

time is only a few minutes. The advantages of FPGAs are lower prototyping costs and 

shorter production lead times, which advances the time-to-market and in turn increases 

profitability. It can also ensure the reliability of the design on the board. The 

disadvantages include lower speed of operations and lower gate density, which has a 

larger area compared to a MGA. Thus, a typical FPGA may be 2x-10x slower and 2x-10x 

more expensive than an equivalent-gate MGA. 

 

2.3.6 Summary 

From the previous sections, we know the types of ASICs can be defined as two main 

categories: non-programmable and programmable ASICs. There are some advantages of 

programmable ASICs (PLDs and FPGAs) such as rapid prototyping, low risk, effective 

design verification, and low fixed costs. There are also some disadvantages of FPGAs 

such as bigger chip size, higher part cost, more power consumption, and lower speed. 

Because of those factors, FPGAs are better for smaller volume applications, reducing 

time-to-market, and prototyping [6]. In terms of prototyping, FPGAs can be easily tested 

and can always be reprogrammed if the design does not completely meet the 

specification. On the other hand, a MGA and a standard-cell are far better for high-

volume and/or high-performance applications for which FPGAs cannot meet the 

specification. 
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2.4 Area, Delay, and Power Consideration 

ASIC performance is typically characterized by the size of the chip, the speed of 

operation, and power consumption. The following sections will briefly describe how the 

parameters affect area, delay, and power. 

 

2.4.1 Area 

Chip area is determined by the logic blocks, interconnections and the I/O pads. Routing 

area, area of diffusion, transistor size, and parasitic transistor capacitance are some of the 

important factors that affect the area of the device. Routing area is the most demanding 

factor of all, taking up to 30% of the design time and a large percentage of the layout area 

[8]. Using the technology mapping approach, the routing area can be estimated by using 

two parameters available at the mapping stage; one is the fanout count of a gate, and the 

other is the "overlap of fanin level intervals” [11]. Minimizing switching capacitance can 

reduce the size of the transistors. Typically up to 70 to 80% of node parasitic capacitance 

is due to the interconnection routing. There are some techniques that can reduce the 

routing area such as the use of more metal layers routing interconnects and new 

technology to reduce λ size. Reducing λ can also reduce the area of diffusion and 

transistor size.  

 

The area of a circuit has a direct influence on the yield of the manufacturing process. 

Yield is defined as the number of chips that are defect-free in a batch of manufactured 

chips. According to Stapper [12], the following is the yield formula to calculate the 

original yield of the memory array: 
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where 

 δ is the defect density 

 A is the area of the RAM array 

α is some clustering factor of the defects 

From the equation above we know that the smaller the chip area, the higher the yield. A 

low yield would mean a high production cost, which in turn would increase the selling 

cost of the chip. 

 

2.4.2 Delay 

The time taken to charge and discharge the load capacitance CL determines the switching 

speed of the CMOS gate. Rise time is defined during charging time from 10 % to 90% of 

its steady-state value; this is the same as the fall time. Delay time is defined by the time 

difference between 50% of charging time and 50% of discharging time. The rise time is 

described by Equation 2.5 [1]. 
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The propagation delay of 50% of charging time is [1]: 
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Due to the symmetry of the CMOS circuit, the fall time is [1] 
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and the propagation delay of 50%of discharging time is [1] 
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Therefore, the delay time will be 

PHLPLHdelay ttt +=  2.11 

From the equations, in order to improve the individual gate delays, the load impedance 

CL is reduced or the current gain of the transistors is increased. Increasing the current 

gain means higher β, approximately equal to the W/L of the transistor. Therefore, by 

increasing β, the transistor size will increase, thus affecting the size of the chip. 

 

2.4.3 Power 

There are three sources that cause power dissipation in a  CMOS circuit: 

• Dynamic power dissipation due to switching current 

• Dynamic power dissipation due to short-circuit current 

• Static power dissipation 
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2.4.3.1 Switching Current 

When the p-channel transistor charges the output capacitive load, CL, the current through 

the transistor is CL(dV/dt). Figure 2.5 shows an inverter with output capacitive load. The 

power dissipation is thus CLV(dV/dt) for one-half the period of the input. The power 

dissipated in the p-channel transistor is thus 
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When the n-channel discharges the capacitor, the power dissipation is equal and that 

makes the total switching power dissipation [10] 

fVCP DDLD
2=  2.13 

From Equation 2.13, the best way to reduce power is to reduce VDD, which has a squared 

term. That is why some of the TTL chips operate under 3.3V to reduce power dissipation. 
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Figure 2.5 CMOS inverter with capacitive load, CL 
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2.4.3.2 Short-Circuit Current 

Another source of power dissipation is during the transition of “0” to “1” or “1” to “0”, 

and both p-channel and n-channel transistors are on for a short period of time. This 

results in a short current pulse from VDD to GND that causes a short-circuit power 

dissipation. The short-circuit power dissipation is given by  

DDmeanSC VIP ×=  2.14 

Assume that V , , and t , thus for an inverter without load 

[4]. 

tntn V−= βββ == pn rffr tt ==

( 32
12 tDD

rf
sc VV

ft
P −=

β )  2.15 

In general, the transistor size of the p-channel and the n-channel are not the same to 

achieve the same rising time and falling time. The short-circuit current is also typically 

less than 20% of the switching current. 

 

2.4.3.3 Static Power Dissipation 

Considering a CMOS gate, as shown in Figure 2.6, when the p-channel is biased “ON,” 

the n-channel will be “OFF”. On the other hand, when the n-channel is “ON,” the p-

channel will be “OFF.” Since one of the transistors is always “OFF,” there should be no 

DC current from VDD to GND. However, there is a small leakage current between the 

diffusion and the substrate to cause the static dissipation. The leakage current is described 

by Equation 2.16 [5]. 

( )1/ −= kTqV
s eII  2.16 

where 

 20 



 

 

 

Vout=0 

n-channel 

p-channel 

Vin=1 Vin=0 Vout=1 

n-channel 

p-channel 
 

 

 

 

 

Figure 2.6 CMOS inverter represented as switch 

 

sI = reverse saturation current 

V = diode voltage 

q = electronic charge ( )C1910602.1 −×  

k = Boltzmann’s constant ( )KJ /1038.1 23−×  

T = temperature. 

The static power dissipation is produced by the leakage current and the supply voltage. 

Then the total static power dissipation is obtained from 

  2.17 ∑ ×=
n

1
tagesupply vol current  leakagesP

where 

 n = number of devices. 
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Typical static power dissipation due to leakage for an inverter operating at 5 volts is 

between 1 and 2 nanowatts [5]. The static power dissipation is generally negligible due to 

the low range compared to dynamic power dissipation. 

 

2.4.4 Summary 

From the previous sections, the general factors on area, delay, and power are explained 

from the fundamental theory. There are some causes that have a more significant effect 

on area, delay, and power. The power consumption of interconnect wires and clock 

signals can be up to 40 and 50% of the total on-chop power consumption. More than 90% 

of the power dissipation of traditional FPGA devices has been attributable to the 

interconnection [13]. From Chapter One, we know that area, delay, and power 

optimization can be achieved from a behavioral synthesis level, RTL/logic level, and 

physical level. Each level has different controls and effects to the design, and most of the 

design optimizations are done by these levels. The importance of the fundamental theory 

is that most synthesis tools are based on techniques developed from the fundamental 

theory just presented. 
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CHAPTER 3 

Design Flow and Design Verification 

 

3.1 ASIC Design Flow Description 

Figure 3.1 shows the programmable ASIC design flow, and Figure 3.2 shows the ASIC 

design flow of this research. The VHDL codes were obtained from Honeywell Inc. and 

the Boeing Company. In this research, the focus was on the Synopsys synthesis tools. 

The results from Mentor Graphics were also performed for comparison. The Synopsys 

synthesis can target different cell libraries to implement different types of ASICs. The 

four major steps of the design flow are pre-synthesis simulation, synthesis, placement and 

routing, and post-layout simulation. 

 

• Pre-synthesis Simulation 

Before the synthesis procedure, pre-synthesis simulation must be performed. 

Functionality tests are usually the first tests a designer might construct as part of the 

design process. The verification of functionality will be explained in Section 3.2. The 

pre-synthesis simulation procedure not only tests the functionality of the design, but also 

compiles the VHDL codes of the design. Before the simulation, all the VHDL codes for 

the design have to be complied without error, and then simulation can take place. Pre-

synthesis simulation is technology-independent because it only simulates the 

functionality of the design without actually mapping to the target library. It ignores 

timing and includes unit-delay simulation, which sets delay to a fixed value. 
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Figure 3.1 Programmable ASIC design flow 
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Figure 3.2 ASIC design flow 
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• Synthesis 

The pre-synthesis simulation is followed by the synthesis procedure. In this research, a 

Synopsys synthesis tool; Design Compiler (DC), was used. Design Compiler synthesizes 

the high-level design description, written in VHDL or Verilog, into optimized gate-level 

designs. The Design Compiler generates ASIC designs by employing user-specified 

standard-cell or gate array libraries and translates designs from one technology to 

another. In this research, Xilinx libraries were used to implement the FPGA layout, and 

the Artisan library was used for Cadence place and route tools. The Design Compiler 

used the target library and optimized the design. 

 

• Placement and Routing 

After synthesis, the design is already mapped with the target library (Xilinx or Artisan) 

and the technology has been specified. Xilinx uses its own placement and routing tools to 

generate and optimize the layout. For the Artisan library, Cadence place and route tool 

links with the Artisan library to optimize and generate the layout of the design. 

 

• Post-layout Simulation 

After placement and routing, the physical layout of the design is generated. Unlike pre-

synthesis simulation, post-layout simulation is technology-dependent and depending on 

the library, the delay will be different. The Standard Delay Format or “sdf” file has 

already been generated by the place and route tool, so the logic-cell delays and the 

interconnect delays have been calculated. Therefore, post-layout simulation will have an 

estimated delay time for the signal outputs for the design. After the post-layout 
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simulation, if the simulation result is correct, the design is ready to be downloaded into 

the FPGA or sent to a foundry for fabrication. 

 

3.2 Design Verification 

It is very important to know the correct result of the design. That is why we perform pre-

synthesis simulation and post-layout simulation to verify the functionality of the design. 

The purpose of the simulation is to verify the result. However, the question is whether or 

not we know the result is correct in the first place. In order to know the correct result of 

the Huffman encoder, a C++ code (shown in Appendix B1) must be generated and 

compiled as the function of the Huffman encoder. An input data (shown in Figure 3.2) 

was made for testing the accuracy of the conversion from the program. Based on the 

input data, a Huffman look-up table (shown in Table 3.1) was generated with the 

probability of each character. The program read the input data from the file 

“huff_input.txt” and encoded the input data. Then it displayed the Huffman code on the 

screen (shown in Figure 3.3) and wrote out the Huffman code into file “huff_code.txt” 

(shown in Figure 3.4). 

 

In the VHDL environment, the input signals to the entity under scrutiny are generated by 

means of another VHDL entity referred to as a Test-bench. The concept of a test-bench is 

an accepted VHDL standard means of simulating, testing, and documenting an entity. 
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Table 3.1 Huffman look-up table 

Symbol Probability Huffman Look-up 
number Huffman Code 

q 0.005714286 31 011110 
v 0.005714286 30 011111 

apostrophe 0.005714286 26 100110 
begin quote 0.005714286 29 100111 
end quote 0.005714286 27 101000 

9 0.005714286 23 101001 
5 0.005714286 21 101010 
( 0.005714286 28 101011 
) 0.005714286 25 110000 
1 0.005714286 20 110001 
2 0.005714286 24 110100 

hyphen 0.011428571 19 110101 
period 0.011428571 15 110110 

l 0.017142857 22 110111 
y 0.017142857 18 00000 
g 0.022857143 17 00001 
h 0.028571429 14 00110 
f 0.034285714 13 00111 
p 0.034285714 16 01000 
t 0.034285714 11 01001 
d 0.04 12 01100 
m 0.04 10 01101 
u 0.04 7 01110 
a 0.045714286 9 10000 
c 0.045714286 8 10001 
s 0.045714286 6 10010 
i 0.051428571 5 11001 
o 0.062857143 4 0001 
n 0.068571429 3 0010 
r 0.068571429 2 0101 
e 0.08 1 1011 

space 0.137142857 0 111 
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Figure 3.2 Input file for C++ program 

 

 

Figure 3.3 Output Huffman code from C++ 
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Figure 3.4 Output Huffman code from C++ save as file. 

 

The entity/test-bench pair can form the basis for executable specifications and 

documentation in a top-down design methodology [14]. In other words, the test-bench 

will generate the input signals for the design and, if necessary, it will also give the 

appropriate response from an output signal of the design. The test-bench of this design 

(shown in Appendix A1) will read the data input from a file “datain.txt”. The data in 

datain.txt is the input sequence of corresponding values of input characters. After the 

simulation, the test-bench will write the output as “dataout.txt”. The “diff” command 

under UNIX is used to compare the differences between “huff_code.txt” and 

“dataout.txt”. The result is shown in Figure 3.5. There was only one difference between 

the two files. In the C++ program, if the last Huffman code does not fill up the last group 

of 8-bits, the software will fill it up with spaces, “_1010001” in this case. However, in the 

simulation output, it fills up by the next Huffman code, “01010001” in this case. This is  

the only the difference. Therefore, the output from simulation is accurate. 

 30 



 

 

 

Figure 3.5 Compare result of using “diff” Command 

For the verification of the FIR, the test-bench of the FIR will produce the expected output 

that can compare with the actual data output to verify the accuracy of the results. 

Therefore, the simulation result can confirm verification. If the expected output and 

actual output do not match, an error is reported to the transcript. 
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CHAPTER 4 

Implementation 

 

This chapter describes the design methodology for this research. The Function 

description of the VHDL code used for this research is explained in detail, followed by 

the procedures for achieving delay, area, and power optimization. 

 

4.1 Function Description of Huffman VHDL Code 

The VHDL module huffman.vhd describes an algorithm for transforming data words 

(each 8-bits long) from a memory module and encoding them into a variable-length 

Huffman-coded sequence which is stored in another memory module (with 8-bit word 

width). The code consists of four modules: huffman.vhd (top module), huff.vhd, 

state.vhd, and control.vhd. A simplified description of each module’s functionality is 

listed in Table 4.1. 

Table 4.1 General description of modules  

VHDL Filename Description 

huffman.vhd Top-level module. Plus support code to 
interface with lower-level modules. 

huff.vhd Simple Huffman look-up table (only 32 
symbols for an 8-bit input) 

state.vhd 
State machine which loads and compiles 8-
bit sequences of Huffman codes. Writes 
output to memory. 

control.vhd Keeps track of memory address to use when 
reading and writing data to memory. 
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The huff.vhd module describes a simple, partial Huffman lookup table for an 8-bit input. 

Given an 8-bit input, the traditional Huffman encoding would generate a variable length 

output (i.e. if the input were an 8-bit value, for example “00010010”, the encoded output 

might only be a 3-bit value, say “110”). However, in the physical world, the number of 

data output lines is fixed and cannot be varied. Therefore, huff.vhd uses an 8-bit output 

“dataout” to describe the traditional Huffman code (with some additional zeros) plus an 

additional 3-bit output “encodelength” to describe the length. For example, if the 

Huffman code is to output is “011”, then the huff.vhd module would output: dataout => 

“00000011”, encodelength => “010”. The encodelength, which equals two, describes the 

desired length. The reason the encodelength equals two is that it counts 3 from “000” to 

“010”. Therefore, 3-bits of code length are present. Adjusting for this condition, a 

traditional Huffman table can be generated from huff.vhd. Table 3.1 from Chapter Three 

is the traditional Huffman table with the assign characters and probability for this 

research. 

 

This huffman.vhd, state.vhd, and control.vhd module combines to create a six-level state 

machine. The combined state machine diagram is illustrated in Figure 4.1. The “Load” 

state is the first state occupied upon reset. It generates an address (“address” output), 

which is used to load the next data input from an external memory module. During the 

“Load” state, the data input is loaded and cycled through the huff.vhd module, resulting 

in an 8-bit “dataout” and a 3-bit “encodelength” value. Once the data input has been 

loaded and cycled through the huff.vhd module, the system moves into the “Shift” state. 

 

 33 



 

   

Figure 4.1 State diagram for Huffman.vhd  

 

In the “Shift” state, the system will build a variable-length Huffman coded sequence. If 

the sequence is less than 8-bits, the “Shift” state will continue to load and encode data 

from memory until its sequence of coded data is 8-bits or greater. An 8-bit sequence must 

be maintained so that when the encoded sequence is written to a memory module (with 

word width equal to 8-bits), its width will match appropriately. The functionality of the 

“Shift” state is very important since it must be fully understood to properly simulate the 

Huffman code without use of an external memory module. The “Shift” state is a multi-

clock cycle state. During this multi-cycle process, the “Shift” state assumes that the 

“dataout” input and the “encodelength” input (from huff.vhd) will not change unless the 

memory “address” output value changes. During a simulation it is the responsibility of 

the programmer to ensure that this requirement is met. This can be particularly difficult 

since the number of clock cycles required for various inputs is different. For example, if 

the input values (from huff.vhd) are dataout = “00011110” and encodelength = “101”, 

then the “Shift” state will require 6 clock cycles to process this data. During this time the 
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simulated data input must not be changed (the input must remain static for exactly 6 

clock cycles, no more and no less). By contrast, if the input values (from huff.vhd) are 

dataout = “00000111” and encodelength = “010”, then the “Shift” state will require only 

3 clock cycles to process this data (again, the data must remain static for exactly 3 clock 

cycles). As a result, if the simulator inputs are not timed properly, they will not 

effectively simulate the response of a memory module and the output data will be 

nonsense. Assuming these conditions have been met, and an encoded 8-bit sequence 

properly constructed, the system moves to the “Write1” state. 

 

The “Write1” state is merely a single clock latency state. This state pauses for one cycle 

to allow time for other operations to complete. Other operations include switching the 

“address” output to display the proper memory address to which the encoded data output 

will be written. After one clock cycle the module moves into the “Write2” state.  

 

In the “Write2” state, the system write-enables (Wen => low) an external 8-bit memory 

module for the address described by the “address” output. The data written to memory is 

the 8-bit encoded sequence constructed during the “Shift” state. The varying length of 

Huffman codes will fill up 8-bit memories by sequence. Since Huffman code obeys 

prefix property, which means that no code can be a prefix of another code, the codes can 

be correctly decoded when the codes are read from memory. Only 8-bits of data are 

written to memory, so if a 9-bit sequence was constructed during the “Shift” state, the 

remaining 1-bit will be utilized in the next sequence generated by the “Shift” state. After 

one clock cycle the module moves into the “Write3” state. 
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The “Write3” state allows for a single clock cycle latency so that the memory address can 

again be switched back to the memory address for the data input. The “Write3” state also 

determines whether the system needs to return to the “Load” state or the “Shift” state. If 

the “Shift” state had constructed a sequence greater than 8-bits, (i.e., if a 9-bit sequence 

was constructed then there would be 1-bit remaining) then those remaining bits represent 

the start of a new sequence and the system would need to return to the “Shift” state. 

However, if there are no bits remaining, then the system needs a new data value and must 

return to the “Load” state. It is assumed that the maximum memory size for the “data in” 

memory module is 64 words. Therefore, if the memory address of the next data value is 

greater than 64, the module would instead move to the “Done” state, where it would 

remain disabled until reset. 

 

4.2 Function Description of The FIR VHDL Code 

The FIR filter implements a low-pass operation with a cutoff frequency of 17 MHz with a 

sampling frequency of 50 MHz. Figure 4.2 is the symbol of the FIR filter. The block 

diagram of FIR is similar to Figure 2.2 in Chapter Two, but instead of 7 registers, it has  
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31 registers; that means it has 32 coefficients. Equation 2.2 and 2.3 from Chapter Two 

explained how to calculate the coefficients. The coefficients are fixed and shown in Table 

4.2. The registers are triggered on the rising edge of the clock when load-enable is active 

high. They are synchronously reset to zero when reset is low. This implementation had 

three pipeline stages. The first stage controlled the data shifting into the register. The 

second stage multiplied the data from registers with coefficients. The third stage was the 

added tree, which summed all the products from previous stage. The VHDL code used 

only adders to implement the added tree without any registers; in other words, it is a 

sequential process. Therefore, the delay of the third stage is quite long due to the serial of 

adding process. To improve this problem, we can change the implementation of the 

VHDL code to modify the structure of the added tree, which inserts some registers 

Table 4.2 Coefficient table of FIR filter 

Coefficient Value Binary Coefficient Value Binary 
0 0.013671875 0000001100 16 0.0576171875 0111111111 
1 0.0078125 0000000111 17 -0.0527.34375 1111010001 
2 -0.02734375 1111101000 18 -0.072265625 1111000000 
3 -0.009765625 1111110111 19 0.0859375 0001001100 
4 0.0078125 0000000111 20 -0.044924875 1111011000 
5 -0.025390625 1111101001 21 -0.0078125 1111111001 
6 0.009765625 0000001001 22 0.03515625 0000011111 
7 0.0078125 0000000111 23 -0.03515625 1111100001 
8 -0.03515625 1111100001 24 0.0078125 0000000111 
9 0.03515625 0000011111 25 0.009765625 0000001001 
10 -0.0078125 1111111001 26 -0.025390625 1111101001 
11 -0.044924875 1111011000 27 0.0078125 0000000111 
12 0.0859375 0001001100 28 -0.009765625 1111110111 
13 -0.072265625 1111000000 29 -0.02734375 1111101000 
14 -0.0527.34375 1111010001 30 0.0078125 0000000111 
15 0.0576171875 0111111111 31 0.013671875 0000001100 
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between the adders. In this case, the registers will store the data after few of the adding 

process instead of all of the adding process; in other words, it becomes a pipeline process. 

Even though this requires more clock cycle to allow the data pass through the added tree, 

it will greatly increase the clock frequency to improve the overall performance. 

 

4.3 Synthesis and Optimization 

The basic design implementation flow (shown in Figure 4.3) involves defining the design 

goals, selecting a compilation strategy, optimizing the design, and analyzing the results to 

drive the place and route to achieve timing closure. In order to achieve delay, area, and 

power optimization, the design constraints for each must be defined, and then synthesis 
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Figure 4.3 Basic design implementation flow 
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tools can optimize the design and try to meet the constraints. The result can be analyzed 

for verifying whether the design specification has been met, and then the constraints can 

be redefined, if necessary. For results of the FPGA implementation, the power 

information cannot be determined until using Xilinx Xpower after place and route. The 

results can then be analyzed and then constraints redefined, if necessary. In this research, 

Design Compiler was used for the high-level synthesis and the Xilinx and Cadence place 

and route tools were used for the physical level synthesis. 

 

Design Compiler optimizes the RTL design performing both technology-independent 

optimization as well as technology-specific optimization. Design Compiler removes the 

existing gate structure from a design, and then rebuilds the design with the goal of 

improving the design’s logic structure. The optimization of logic equations does not 

affect a particular part of a function; rather, it has a global effect on the overall area or 

speed characteristics of a design. The following are some of the key features in Design 

Compiler for using design optimization in this research. 

 

• Flattening 

Flattening is an optional logic optimization step that removes all intermediate levels and 

uses Boolean distributive laws to remove all parentheses.  Thus, flattening removes all 

logic hierarchy from a design. Removing poor intermediate levels enables Design 

Compiler to choose more-efficient sub-functions. The result of flattening is a two-level, 

sum-of-products form. Flattening can result in a faster design because the two-level form 
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generally has fewer levels of logic between inputs and outputs. The command 

“set_flatten true” is used to activate flattening. 

 

• Structuring 

Structuring is a logic optimization step that intermediates variables and logic structure to 

a design. During structuring, Design Compiler searches for sub-functions that can be 

factored out and then evaluates these factors based on the size of the factor and the 

number of times the factor appears in the design. Design Compiler structures a design 

during compilation by default. 

 

• Timing-driven 

Design Compiler offers timing-driven structuring to minimize delays and Boolean 

structuring to reduce area. Timing-driven structuring considers a design’s timing 

constraints during local and global structuring and improves critical paths as necessary. 

Timing-driven structuring is on by default. When using timing-driven structuring, the 

accurate timing and clock constraints must be defined. Boolean optimization is used to 

reduce the area. Boolean optimization structuring uses Boolean algebra to capture non-

essential information and reduce circuit equation input format. 

 

• Delay optimization 

During the delay optimization phase, Design Compiler creates an optimal net-list 

representation in the target technology library that meets the timing goals. Design 

Compiler takes design rules into account for optimizing the delay performance of critical 
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paths in the design. When two circuit solutions offer the same delay performance, Design 

Compiler implements the solution that has the lower design rule cost. 

 

• Area optimization 

Assuming that the area constraints have been placed on the design, Design Compiler now 

attempts to minimize the number of gates in the design. The Design Compiler can be 

directed to put a low, medium, or high effort into area optimization. When low effort is 

set, Design Compiler performs gate sizing and buffer and inverter cleanup. Design 

Compiler allocates limited CPU time to this effort level. When medium effort is selected, 

Design Compiler adds phase assignment to gate sizing and buffer and inverter cleanup. 

Design Compiler allocates more CPU time to this effort than to a low-effort optimization. 

When high effort is set, Design Compiler performs additional gate minimization 

strategies and increases the number of iterations. The tool adds gate composition to the 

process and allocates even more CPU time. 

 

• Power optimization 

This constraint sets the maximum power attributes to the current design. In order to 

achieve the minimum power, the command is “set_max_dynamic_power 0”. This 

command will set the target power as low as the design could achieve. 

 

• Timing analysis 

The purpose of timing analysis is to understand the performance and to ensure that the 

design meets the design goals after synthesis. Design Compiler automatically determines 
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the maximum and minimum path delay requirements for the design. It examines the clock 

waveforms at each timing path startpoint and endpoint. A timing path is a path through 

logic along which signals can propagate. Timing paths normally start at primary inputs or 

clock pins of registers and end at primary outputs or data pins of registers. Figure 4.3 

shows the timing analysis output file. The timing exception command such as 

“set_max_delay” is used to set the constraint. The timing exception commands operate 

on a “from” set, a “to” set, and several “through” sets. The -from option indicates a path 

startpoint, -to indicates a path endpoint, and -through enables control over a specific path 

or multiple paths between a given startpoint and endpoint. In the case shown in Figure 

4.4, the command will be “set_max_delay 0.97 -from startpoint -to end point ”. 
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Figure 4.4 Timing analysis output 
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CHAPTER 5 

Results and Discussions 

 

This chapter presents the result of this research with discussions. The first section shows 

the result of Huffman encoder implementation and the second section illustrates the 

results of the FIR filter. 

 

5.1 Huffman Encoder Implementation 

In this section, the implementation of the Huffman encoder will be explained. The first 

part of the implementation is the comparison of different FPGA results using different 

synthesis tools. This is followed by the detailed explanation of implementation for the 

Artisan library with different results. 

 

5.1.1 Results for FPGA Implementation  

The Design Compiler, FPGA Compiler II, and Mentor Graphics Spectrum are used to 

synthesize the FPGA. From the design flow shown in Figure 3.1, the synthesis tool can 

target different libraries to implement different types of ASICs. The target library for 

FPGA implementation is Xilinx Virtex V1000EHQ240-6. The pre-synthesis simulation is 

shown in Figure 5.1. The functionality of the Huffman encoder was verified from 

Chapter Three. The following are the basic scripts for each synthesis tool and 

explanation. 
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Figure 5.1  Pre-synthesis simulation of Virtex 1000e 

• Mentor Graphics Spectrum 

set part v1000ehq240 
set process 6 
set wire_table xcve1000-6_avg 
set lut_max_fanout "" 
load_library xcve 
read -technology "xcve"  { 
/tnfs/home/cku/thesis/nrfir/new_fir/huff/state.vhd 
/tnfs/home/cku/thesis/nrfir/new_fir/huff/control.vhd 
/tnfs/home/cku/thesis/nrfir/new_fir/huff/huff.vhd 
/tnfs/home/cku/thesis/nrfir/new_fir/huff/huffman.vhd } 
pre_optimize -common_logic -unused_logic -boundary -xor_comparator_optimize  
pre_optimize -extract  
set register2register 20 
set input2register 20 
set register2output 20 
optimize .work.huffman.huffman_arch -target xcve -chip -area -effort quick -hierarchy auto  
auto_write -format EDIF /tnfs/home/cku/thesis/nrfir/new_fir/huff/result/huffleo1.edf 

 

The script above is targeted for area optimization. If one wants to change to timing 

optimization, then -area should be changed to -delay in the optimize command. The other 

way is to find the maximum delay of the design, then change the time in set 

register2register 20 to the time to be constrained, such as set register2register 6 in this 

case, and add optimize_timing .work.huffman.huffman_arch -force after the optimize 
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command. This will force the synthesis tool to optimize the longest path and attempt to 

meet the constraint. 

 

• FPGA Compiler II 

create_project test 
add_file -format VHDL state.vhd 
add_file -format VHDL control.vhd 
add_file -format VHDL huff.vhd 
add_file -format VHDL huffman.vhd 
analyze_file -progress 
create_chip -progress -name huffman -target VIRTEXE -device V1000EHQ240 -speed -6 -
frequency 50 -preserve huffman 
current_chip huffman 
set_chip_objective speed 
set_chip_constraint_driven -enable 
set_chip_effort high 
optimize_chip -progress -name huff1 
report_chip 
current_chip Huffman 
get_pathgroup 
create_subpath -from_name p0 -to_name p1 -from_list /huffman/UncodeData_reg<0> -to_list 
/huffman/ctrl/state_mach/current_state_reg<2> -maxd 15 (RC,Clk):(RC,Clk) 
set_max_delay -path_group p0:p1 15 
optimize_chip -progress -name huff2 
report_chip 
export_chip -pregress -dir result 
quit 

 

The create_subpath command is used to define the critical path of the chip. The 

command, set_max_delay -path_group p0:p1 15, is to set the timing constraint to 15ns. 

This step can be repeated after each optimization to change the timing constraint of the 

critical path. 

 

• Design Compiler 

analyze -f vhdl state.vhd 
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analyze -f vhdl control.vhd 
analyze -f vhdl huff.vhd 
analyze -f vhdl huffman.vhd 
elaborate huffman 
link 
uniquify 
current_design huffman 
create_clock -name "Clk" -period 20 -waveform {0 10} {"Clk"} 
set_wire_load_model -name xcv1000e-6_avg -library xdc_virtexe-6 
set_port_is_pad "*" 
insert_pads 
set_cost_priority 
set_flatten true -effort high 
compile -map_effort high -boundary_optimization 
report_timing -max_paths 5 
set_max_delay 19 -from "UncodeData_reg<4>" -to "ctrl/state_mach/current_state_reg<0>" 
compile -map_effort high -boundary_optimization 
write -format edif -hierarchy -output ./result/huffdc2.edf 
write_script > ./result/huffdc2.dc 
cd result 
sh dc2ncf huffdc2.dc 
cd .. 
quit 

 

Before using Design Compiler, the “.synopsys_dc.setup” had to point to the right .db file. 

In order to find the correct .db file, simply type “synlibs virtexe 1000e-6”, and the file 

will show on the screen. The command set_wire_load_model -name xcv1000e-6_avg -

library xdc_virtexe-6 had to be used to setup the correct wire load. As in the previous 

chapter, set_max_delay 19 -from "starting point" -to "ending point" is used to control the 

critical path. The report_timing -max_paths 5 command is to list the 5 longest paths in 

the chip to help control the critical path. 

 

Table 5.1 shows all the results from different synthesis tools. The delay and number of 

slices were determined during place and route. The power estimation used Xilinx Xpower 

to estimate the total consumption. The power results in the table are the values after  
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Table 5.1 Results from different synthesis tools 

Synthesis tool Delay (ns) Slices Power (mW) 

Tool A 11.923 47 45 

Tool A 7.684 46 45 

Tool A 6.079 46 46 

Tool B 11.829 63 46 

Tool B 11.659 63 46 

Tool C 16.462 74 48 

Tool C 13.521 70 48 

Tool C 12.343 64 48 
 

subtracting the quiescent power consumption, which is 900 mW. Before using Xpower, 

“huff.vcd” had to be generated. “Huff.vcd” provides detailed design activity rates for all 

nets. It was generated during the post-layout-synthesis simulation. The following are the 

scripts for generate “huff.vcd”. 

 

• postsim 

#!/bin/csh -f 
source ~cad/.cshrc 
mentor_tools 
vlib work 
vmap simprim /usr/cad/course/simprim 
vcom -work work huff_tim_sim.vhd 
vcom -work work huffman_tb.vhd 
vsim -sdftyp top_inst=huffl_tim_sim.sdf huffman_tb -do stim.do 

 

• stim.do 

vcd file huff.vcd 
vcd on 
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vcd add /* 
view wave 
add wave * 
run 10000ns 

 

 Figure 5.2 show the flow to generate the “huff.vcd” file for Xpower to estimate power 

consumption. Figure 5.3 is the Xpower report file. It shows the total estimated power 

consumption and power consumption for each cell under the respective clock frequency. 

According to the table, the best result was implemented by Tool A from timing and area 

point of view. The best result from Tool A was used for post-layout simulation by using 

Modelsim. The delay of 7 ns is shown in the post-layout simulation (shown in Figure 

5.4). The delay from Table 5.1 is 6.079, which is very close to the post-layout simulation 

result. The layout of the Virtex 1000e is shown in Figure 5.5. 

 

Scripts 

Scripts 

simdata [.vcd] 

fpgadesign [.ncd] 
constraint [.pcf] 

Xilinx 
Xpower 

time_sim.sdf 
time_sim.vhd ModelSim 

simulation 
Xilinx 

place & route 

 

 

 

 

 

 

 

 

 

Figure 5.2 Design flow of generating [.vcd] file 
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Figure 5.3 Output file of Xpower 
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Figure 5.4 Post layout simulation of Virtex 1000e 

 

 

Figure 5.5 Huffman encoder Layout of Virtex 1000e 
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5.1.2 Results for TSMC-0.18 Implementation 

The following sections are the different optimization methods and results for Design 

Compiler to implement the Huffman encoder. The script for this is similar to the script 

for FPGA implementation using Design Compiler. Therefore, only the key commands 

will be discussed in this section. All the power estimations in this section are pre-layout 

values reported by Design Compiler without the use of switching activity. More accurate 

results could be obtained following layout using a switching activity and other tools. 

 

5.1.2.1 Results for Timing Optimization 

The delay optimization was performed by setting the timing constraint. The first step to 

optimize timing was to use the “-map_effort high” command. The first set of the delay, 

area, and power was found. The timing analyzer determined the actual path delays of the 

design and compared them with the required path delay. The timing analyzer computed 

each gate and interconnect delay, then traced critical paths, calculating minimum and 

maximum arrival time to points of interest. The timing analyzer used the critical path 

values to evaluate design constraints and created timing reports. Then, the timing report 

was checked to find out the critical path of the design. The new timing constraint was set 

and then the design was compiled with the new timing constraint using the 

“set_max_delay” command. The slack in the timing report had to be checked to ensure 

that it was met not violated after the design was compiled. The steps were repeated until 

the minimum delay was found. The minimum delay is 0.83 ns, so the highest internal 

operation frequency is 1.2 GHz. Table 5.2 presents the timing optimization results. Figure 

5.6 gives the values in three dimensions. 
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Table 5.2 Timing optimization results 

Timing Constraints 
(ns) 

Delay 
(ns) 

Area 
(sq.µm) 

Power 
(µW) 

-map_effort high 2.43 6885.276855 396.6453 

2.23 1.97 6948.478516 399.8609 

1.77 1.65 7204.621094 423.2546 

1.45 1.31 8086.309082 469.6368 

1.11 1 9926.186523 537.3382 

0.97 0.83 10415.21777 550.435 
 

 

Results of Timing Optimization

Power

Delay              Area

0.5
1.0

1.5
2.0

2.5
3.0

300

350

400

450

500

550

600

6000
7000

8000
9000

10000
11000

 

Figure 5.6 Plot results of timing optimization 
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5.1.2.2 Results for Area Optimization 

The command “set_max_area 0” was used to optimize the area. The high, medium, and 

low effort was put into area optimization, and also combined with a different effort of the 

area and power optimization. Table 5.3 shown the results for area optimization. The 

smallest area for this research was 6379.51709 sq. µm. The areas were between 6300 and 

6700 sq. µm for area optimization. The areas were between 6800 and 10500 sq. µm for 

timing optimization. The largest area from area optimization was still smaller than the 

smallest area from timing optimization. The difference between the smallest area for 

timing and area optimization is 3.8%. From the comparison of both optimization 

methods, we found that the timing optimization is critical to area optimization. Figure 5.7 

is the 3-D plot of the area optimization. 

 

Table 5.3 Area optimization results 

Area Constraints 
set_max_area 0 

Area 
(sq.µm) 

Delay 
(ns) 

Power 
(µW) 

delay, power effort_low 
area effort_high 6379.51709 2.2 366.1497 

delay, power effort_low 
area effort_medium 6399.48928 2.2 367.4032 

delay, power effort_high 
area effort_high 6416.12305 2.2 392.945 

delay, power effort_high 
area effort_medium 6432.76025 2.18 393.9166 

delay, power effort_high 
area effort_low 6609.20986 2.47 371.0525 

delay, power effort_low 
area effort_low 6639.04443 2.43 398.6882 
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Results of Area Optimization
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Figure 5.7 Plot results of area optimization 

 

5.1.2.3 Results of Power Optimization  

The method of power optimization was similar to that of the area optimization. The 

command “set_max_dynamic_power 0” was used to minimize the power. The tool was 

setup for minimum power and maximum area. From the previous section, reducing the 

area increased more power than the delay of the design. The cells were characterized for 

power in the target library. The tool selected the low-power equivalent of the device from 

library TMSC-0.18, which was the library used for this research work. During the power 

optimization, it also targeted the delay of the design. From Table 5.4, the minimum delay 

is 1.15 ns and has the power of 433.3379 µW. Comparing the result from timing 

optimization, the delay of 1.31 ns has the power of 469.6368 µW. The result from power 

optimization had less delay and used less power. Figure 5.8 is the plot of the results. 
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Table 5.4 Power optimization results 

Power 
(µW) 

Delay 
(ns) 

Area 
(sq.µm) 

326.9737 2.88 7161.495605 

324.9893 2.53 7194.774902 

339.7595 2.12 7244.647461 

344.1441 1.85 7274.599609 

371.7438 1.5 7577.355469 

433.3379 1.15 8741.692383 

 
 
 
 

Results of Power Optimization
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Figure 5.8 Plot results of power optimization 
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5.1.2.4 Discussions 

From the previous sections, the minimum delay of Xilinx Virtex 1000e was 6.079 ns. The 

minimum delay from the timing optimization was 0.83 ns and the minimum delay 

between them was a factor of 7.32. The reason the Virtex required more delay time is 

because the programmable interconnect caused a decrease in speed. Another 

consideration is the gate capacity for the FPGA. Only 44 out of 12,288 slices were used 

for the Huffman encoder. It is less than 1% of the available gates. Therefore, 

understanding the design and then choosing the size of the FPGA for different designs is 

very important. Section 5.1.2.1 through 5.1.2.3 described the different methods to 

optimize the design. Figure 5.9 shows the result for each optimization method. 

Comparison of Timing, Area, and Power Optimization
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Figure 5.9 Comparison of timing, area, and power optimization 
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The three different shapes of the points represent three different optimization methods; 

the triangle is timing optimization, the square is area optimization, and the circle is power 

optimization. From Figure 5.9, the pattern of each optimization was obvious. The timing 

optimization only targeted delay, so the area and the power were large compared to the 

others. The area optimization had the largest area located at 6000 sq. µm, and the power 

and delay were in the middle range. The power optimization also targeted delay, thus the 

results were similar to timing optimization, only less power was used and more area 

consumed. 

 

From Table 5.5, the minimum delay was 0.83 from timing optimization. It had a ratio of 

2.63 and 1.39 in comparison with the smallest delay of area optimization and power 

optimization. If the timing is critical for design specification, the timing optimization will 

be used since timing optimization will cause large area and high power use. 

Table 5.5 Delay for different methods of optimization 

Timing Area Power 

2.43 ns 2.2 ns 2.88 ns 

1.97 ns 2.2 ns 2.53 ns 

1.65 ns 2.2 ns 2.12 ns 

1.31 ns 2.18 ns 1.85 ns 

1 ns 2.47 ns 1.5 ns 

0.83 ns 2.43 ns 1.15 ns 
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From Table 5.6, the area from timing optimization was about 1.6 times the area of 

optimization. Although the timing optimization had a delay ratio of 2.63 with area 

optimization, if the delay from area optimization had satisfied the design specification, 

the timing optimization would not have needed to be performed. Reducing the area size 

will increase the yield and reduce fabrication cost. 

 

From Table 5.7, the maximum power was produced by the timing optimization and the 

minimum power was produced by the power optimization. Comparing the power 

dissipation between them, the timing optimization consumed 1.7 times more power than 

the power optimization. The power dissipation is critical when the chip is operating on 

portable electronic devices because the less power consumption, the longer the battery 

operating life. 

 

The net-list was generated after the synthesis. The net-list was used by the Cadence place 

and route tool to generate the physical layout. The physical layout is shown in Figure 

5.10. 

Table 5.6 Area for different methods of optimization 

Timing Area Power 
6885.276855 6379.51709 7161.495605 
6948.478516 6399.48928 7194.774902 
7204.621094 6416.12305 7244.647461 
8086.309082 6432.76025 7274.599609 
9926.186523 6609.20986 7577.355469 
10415.21777 6639.04443 8741.692383 
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Table 5.7 Power for different methods of optimization 

Timing Area Power 
396.6453 366.1497 326.9737 

399.8609 367.4032 324.9893 
423.2546 392.945 339.7595 
469.6368 393.9166 344.1441 

537.3382 371.0525 371.7438 
550.435 398.6882 433.3379 

 

 

 

Figure 5.10 Layout of Huffman encoder 

 60 



 

5.2 FIR Filter Implementation 

The implementation of the FIR filter was targeted to the Xilinx Virtex only. The 

procedure was similar to the Huffman encoder FPGA implementation. The scripts for 

each synthesis tool were also similar. From Section 4.2, we knew the added tree for the 

FIR filter is a large sequential process. Since there are 32 taps in the FIR filter and the 

input signal is 12-bit, the fanout after the adder tree is more than 1000. The large 

sequential structural and the large fanout limited the timing constraint. Table 5.8 shows 

the results from different synthesis tools. As seen in Table 5.8, the Tool A still performed 

better than Tool B or Tool C. Tool C performed much better for TSMC-0.18 

implementation, but not for FPGA implementation. Both results of Huffman and FIR 

implementation from Tool C, the delay and slices are the worst when compared to Tool A 

and Tool B, but Tool C had the most control of timing constraint. Figure 5.11 is the 

layout of Virtex 1000e. 

 

Table 5.8 Results of FIR filter using different Synthesis tools 

Synthesis tool Delay (ns) Slices Power (mW) 
Tool A 22.668 910 112 
Tool A 20.192 910 114 
Tool A 19.243 910 109 
Tool B 22.382 1350 126 
Tool B 21.237 1351 126 
Tool C 33.762 2042 143 
Tool C 32.611 2044 144 
Tool C 30.000 2038 149 
Tool C 28.784 2040 144 
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Figure 5.11 FIR filter layout of Virtex 1000e 
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CHAPTER 6 

Summary, Conclusion and Future Works 
 

6.1 Summary 

In this research work, the Huffman encoder and FIR filter were implemented using 

VHDL. The design was functionally tested, synthesized, optimized, and placed and 

routed. Testing of the RTL was performed using Synopsys and Mentor Graphics tool 

sets. The high-level synthesis and optimization were performed using the Mentor 

Graphics Spectrum, Synopsys Design Compiler and FPGA Compiler II. The physical 

level synthesis used Cadence and Xilinx for place and route. The VHDL code for this 

research work was obtained from Honeywell Inc. and the Boeing Company. A few 

modifications were made to the code, such as adding in Synopsys libraries, altering the 

modules, etc. This was done to make the code compatible to the Synopsys and Mentor 

Graphics tool during synthesis and optimization. 

 

The functional testing of the Huffman encoder was done by using C++ and the input 

characters were transferred to corresponding binary codes. The corresponding binary 

codes were saved as “datain.txt”. A test-bench was made for the purpose of simulation. 

The test-bench read the file and wrote the output as “dataout.txt” during simulation. The 

result from simulation was compared with the C++ result from Chapter Three. 

 

The three synthesis tools were used to optimize the FIR filter design, then Xilinx place 

and route tools implemented the synthesis results to the FPGA layout for Virtex 1000e. 
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The Synopsys synthesis tool, Design Compiler, was used to operate timing, area, and 

power optimization for different results. The target library for the synthesis tool and place 

and route tool is TSMC-0.18. The net-list from synthesis was used by Cadence to 

generate the physical layout. 

 

6.2 Conclusion 

Integrated circuit performance is typically characterized by the size of the chip, the speed 

of operation, the available circuit functionality, and the power consumption. Many 

market segments are driving the need for smaller, faster and less power-consuming ICs. 

With the increasing use of portable electronic devices, the emphasis is now on power 

optimization. The optimization of the timing, delay, and power has to be performed at all 

design phases for better results. There are three levels to design synthesis, but the 

RTL/logic level is by far the most efficient. 

 

In this research, a VHDL synthesis methodology for ASIC was implemented. The overall 

ASIC design cycle can be significantly reduced by the use of VHDL synthesis partly due 

to the elimination of the schematic generation and maintenance tasks and partially due to 

the reduction in design error by using higher level VHDL simulation early in the cycle. 

VHDL synthesis also has the advantage of vendor and technology independence. Most of 

the synthesis tool vendors provide libraries for a number of different ASIC foundries and 

technologies. 
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The high-level synthesis and optimization for TSMC-0.18 was performed using the 

Synopsys Design Compiler in this research. The timing, area, and power optimization 

results were shown in Chapter Five. From the results, each method of optimization would 

affect the result of the other two methods. The maximum speed of the design also 

consumed maximum power. Using more power not only consumed more energy, but also 

generated heat. Therefore, the dissipation of heat became another problem. The designer 

has to focus on the design specification in order to get the best performance out of the 

chip. For example, if the design calls for critical power efficiency, the designer can 

concentrate on power optimization method to optimize the design. 

 

From the results of the FPGA implementation, the faster designs did not use more slices 

and power as TSMC-0.18 did. The increasing of area and power consumption was not 

significant during timing optimization. The power consumption of the FPGA was much 

greater than TSMC-0.18. 

 

The ASIC development also involves the “time-to-market” issues. The FPGA 

implementation has the shortest turn-around time. The result from Xilinx Virtex for the 

Huffman encoder had 6.067 ns of delay. It is more than 7 times slower than the minimum 

delay from timing optimization. Because of the shortest turn around time and the lower 

prototyping cost, the FPGA is still chosen for some designs. With the tremendous growth 

in technology today, FPGAs are becoming faster, and the number of gates is 

exponentially increasing annually. 

 

 65 



 

6.3 Future Work 

For the Huffman encoder, the layout needs to be put into a frame and the input and output 

pins need to be connected with pads before the fabrication process. A Smart Frame was 

developed from the previous class. The Smart Frame has a build-in-self-test (BIST) 

ability. The signature compressor produces a unique signal pattern to test the 

functionality of the chip. In addition, the design has to simulate the unique signal pattern 

in order to find out the corresponding output. The corresponding output will set up the 

comparator in BIST. The design could be sent to the foundry for fabrication. After 

receiving the actual chip, if the chip is set in the BIST mode, the design will read the data 

from the signature compressor and compare it with the simulation result. If there are no 

problems during the fabrication process, the comparator will send out a “Go” signal. The 

maximum speed can be tested and compared with the synthesis result. 

 

For the FIR filter, the VHDL code can be modified to reduce the adder tree timing delay 

due to the sequential operation. That will also reduce the fanout of the adder tree. After 

modifying the code, the new implementation can be done. The results can be compared 

with the results of this research. The design can also be downloaded to the Virtex chip 

and tested to determine the highest operation frequency. The frequency can then be 

compared with this research. 
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A1 Test-bench 

-- Test-bench for huffman.vhd  
 
library ieee; 
use ieee.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use STD.textio.all; 
use IEEE.std_logic_textio.all; 
 
entity huffman_tb is 
end huffman_tb;  
 
architecture structure of huffman_tb is 
 
  signal Resetn         :      std_logic; 
  signal Clk            :      std_logic; 
  signal DataIn         :      std_logic_vector(7 downto 0); 
  signal Go             :      std_logic; 
  signal DataOut        :      std_logic_vector(7 downto 0); 
  signal Address        :      std_logic_vector(17 downto 0); 
  signal Wen            :      std_logic; 
  signal Done           :      std_logic; 
 
  COMPONENT huffman  PORT( 
         Resetn         :   IN   std_logic; 
         Clk            :   IN   std_logic; 
         DataIn         :   IN   std_logic_vector(7 downto 0); 
         Go             :   IN   std_logic; 
         DataOut        :   OUT  std_logic_vector(7 downto 0); 
         Address        :   OUT  std_logic_vector(17 downto 0); 
         Wen            :   OUT  std_logic; 
         Done           :   OUT  std_logic);  
  END COMPONENT; 
 
  constant Period : time := 20 ns; 
  SIGNAL iclk : std_logic; 
 
begin 
   top_inst: huffman  
   PORT MAP(Resetn, Clk, DataIn, Go, DataOut, Address, Wen, Done); 
 
  ClockGen : PROCESS 
  BEGIN 
     iclk <= '1'; 

 72 



 

     WAIT FOR Period/2; 
     iclk <= '0'; 
     WAIT FOR Period/2; 
  END PROCESS ClockGen; 
  Clk <= iclk; 
  Resetn <= '0', 
     '1' after 20 ns; 
  Go <= '0', 
        '1' after 60 ns; 
 
Simu : PROCESS (Clk, Resetn, Go, Wen) 
 
  file Fileout : text is out "dataout.txt"; 
  file Filein  : text is in  "datain.txt"; 
 
  variable Lineout : line; 
  variable Linein : line; 
  variable tmpout : std_logic_vector (7 downto 0); 
  variable tmpin : std_logic_vector (7 downto 0); 
 
  begin  
   
  if Clk'event and Clk = '1' then 
        if not(endfile(Filein)) then 
      readline ( Filein, Linein); 
  read (Linein, tmpin); 
      DataIn <= tmpin; 
  if Wen = '0' then 
   tmpout := DataOut; 
   write (Lineout, tmpout); 
          writeline(Fileout, Lineout);              
  end if; 
 end if; 
  end if; 
END PROCESS Simu; 
end structure; 
 
configuration func_config of huffman_tb is 
for structure 
    for top_inst: huffman 
        use entity WORK.huffman(BEHAVIORAL); 
    end for; 
end for; 
end func_config; 
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Appendix B: C++ Code for Design Verification 
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B1 Huffman.cpp 

/*---------------------------------------------------------*/ 
/* */ 
/*  Program for verification of Huffman encoder  */ 
/* */ 
/*  This program will take input of character */ 
/*  string then use Huffman encode theory to */ 
/*  convert the character string into binary */ 
/*  code. */ 
/* */ 
/*---------------------------------------------------------*/ 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <iostream.h> 
#include <fstream.h> 
 
void main() 
{ 
 int k; 
 char inp[200]; 
 
 for ( k = 0 ; k < 200 ; k++ ) 
 { 
  inp[k] = '\0'; 
 } 
 
 ifstream File("huff_input.txt"); 
 File.read(inp,200); 
 File.close(); 
 
 char huff[1200], temp[1200]; 
 int count=0; 
 int flag=0; 
 
 for ( k = 0 ; k < 200 && inp[k] != '\0'; k++ ) 
 
 { 
  switch (inp[k]) 
  { 
   case 'q': 
    temp[flag+5]='0'; 
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    temp[flag+4]='1'; 
    temp[flag+3]='1'; 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='0'; 
    flag = flag + 6; 
    break; 
   case 'v': 
    temp[flag+5]='0'; 
    temp[flag+4]='1'; 
    temp[flag+3]='1'; 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='1'; 
    flag = flag + 6; 
    break; 
   case 39:   
    temp[flag+5]='1'; 
    temp[flag+4]='0'; 
    temp[flag+3]='0'; 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='0'; 
    flag = flag + 6; 
    break; 
              case '"':   
    if (count ==0)  /* begin quote */ 
      {  
     temp[flag+5]='1'; 
     temp[flag+4]='0'; 
     temp[flag+3]='0'; 
     temp[flag+2]='1'; 
     temp[flag+1]='1'; 
     temp[flag]='1'; 
     flag = flag + 6; 
     count = 1; 
    } 
    else  /* end quote */ 
    { 
     temp[flag+5]='1'; 
     temp[flag+4]='0'; 
     temp[flag+3]='1'; 
     temp[flag+2]='0'; 
     temp[flag+1]='0'; 
     temp[flag]='0'; 
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     flag = flag + 6; 
     count = 0; 
    } 
    break; 
   case '9': 
    temp[flag+5]='1'; 
    temp[flag+4]='0'; 
    temp[flag+3]='1'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 6; 
    break; 
   case '5': 
    temp[flag+5]='1'; 
    temp[flag+4]='0'; 
    temp[flag+3]='1'; 
    temp[flag+2]='0'; 
    temp[flag+1]='1'; 
    temp[flag]='0'; 
    flag = flag + 6; 
    break; 
   case '(': 
    temp[flag+5]='1'; 
    temp[flag+4]='0'; 
    temp[flag+3]='1'; 
    temp[flag+2]='0'; 
    temp[flag+1]='1'; 
    temp[flag]='1'; 
    flag = flag +6; 
    break; 
   case ')': 
    temp[flag+5]='1'; 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='0'; 
    flag = flag + 6; 
    break; 
   case '1': 
    temp[flag+5]='1'; 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
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    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 6; 
    break; 
   case '2': 
    temp[flag+5]='1'; 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='1'; 
    temp[flag+1]='0'; 
    temp[flag]='0'; 
    flag = flag + 6; 
    break; 
   case '-': 
    temp[flag+5]='1'; 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='1'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 6; 
    break; 
   case '.': 
    temp[flag+5]='1'; 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='0'; 
    flag = flag + 6; 
    break; 
   case 'l': 
    temp[flag+5]='1'; 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='1'; 
    flag = flag +6; 
    break; 
   case 'y': 
    temp[flag+4]='0'; 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
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    temp[flag]='0'; 
    flag = flag + 5; 
    break; 
   case 'g': 
    temp[flag+4]='0'; 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 5; 
    break; 
   case 'h': 
    temp[flag+4]='0'; 
    temp[flag+3]='0'; 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='0'; 
    flag = flag + 5; 
    break; 
   case 'f': 
    temp[flag+4]='0'; 
    temp[flag+3]='0'; 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='1'; 
    flag = flag + 5; 
    break; 
   case 'p': 
    temp[flag+4]='0'; 
    temp[flag+3]='1'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='0'; 
    flag = flag + 5; 
    break; 
   case 't': 
    temp[flag+4]='0'; 
    temp[flag+3]='1'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 5; 
    break; 
   case 'd': 
    temp[flag+4]='0'; 
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    temp[flag+3]='1'; 
    temp[flag+2]='1'; 
    temp[flag+1]='0'; 
    temp[flag]='0'; 
    flag = flag + 5; 
    break; 
   case 'm': 
    temp[flag+4]='0'; 
    temp[flag+3]='1'; 
    temp[flag+2]='1'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 5; 
    break; 
   case 'u': 
    temp[flag+4]='0'; 
    temp[flag+3]='1'; 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='0'; 
    flag = flag + 5; 
    break; 
   case 'a': 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='0'; 
    flag = flag + 5; 
    break; 
   case 'c': 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 5; 
    break; 
   case 's': 
    temp[flag+4]='1'; 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
    temp[flag+1]='1'; 
    temp[flag]='0'; 
    flag = flag + 5; 
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    break; 
   case 'i': 
    temp[flag+4]='1'; 
    temp[flag+3]='1'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 5; 
    break; 
   case 'o': 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 4; 
    break; 
   case 'n': 
    temp[flag+3]='0'; 
    temp[flag+2]='0'; 
    temp[flag+1]='1'; 
    temp[flag]='0'; 
    flag = flag + 4; 
    break; 
   case 'r': 
    temp[flag+3]='0'; 
    temp[flag+2]='1'; 
    temp[flag+1]='0'; 
    temp[flag]='1'; 
    flag = flag + 4; 
    break; 
   case 'e': 
    temp[flag+3]='1'; 
    temp[flag+2]='0'; 
    temp[flag+1]='1'; 
    temp[flag]='1'; 
    flag = flag + 4; 
    break; 
   case ' ': 
    temp[flag+2]='1'; 
    temp[flag+1]='1'; 
    temp[flag]='1'; 
    flag = flag + 3; 
    break; 
  } 
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 } 
 
 int l; 
 cout << "The huffman code is:" << endl << endl; 
 
 for (l = 0 ; l < flag ; l++ ) 
 { 
  huff [7 + l - 2*(l%8)] = temp[l]; 
 } 
 
 ofstream a_file("huff_code.txt"); 
 
 for ( l = 0 ; l < (flag + (8 - flag % 8)) ; l++ ) 
 { 
  if (l >= (flag - (flag%8)) && l < (flag + 8 - 2*(flag % 8))) 
    a_file << " "; 
   cout << " "; 
  else 
  { 
   a_file << huff[l]; 
   cout << huff[l]; 
 
   if ((l % 8) == 7) 
   { 
    a_file << endl; 

   cout << " "; 
   } 
  } 
 } 
 
 a_file.close(); 
 
 char yorn; 
 cout << endl << endl; 
 cout << "Do you want to exit? (y/n)  "; 
 cin  >> yorn; 
 cout << endl; 
 if (yorn== 'y') 
  exit (1); 
 
} 
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