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ABSTRACT 
Scotch whisky is produced in a two step distillation process that has 

remained relatively unchanged for decades, even centuries. The 

chemical composition of the whisky is vital to its flavor and character. 

Much work has been done to analyze and study the final composition of 

different whiskies. However, to date little work has been published that 

studies the composition of the distillate with respect to distillation time. 

The goal of this work is to develop an experimental basis for study of the 

scotch whisky production process. Experimental data would allow us to 

gain a better understanding of the effects of distillation and aging. 

Samples collected during the distillation process were analyzed using 

gas-chromatography mass spectrometry. This analysis allowed the 

development of composition curves for several components found in 

whisky to help understand process decisions made during distillation. 

The experimental data developed during the chemical analysis provided a 

physical basis for development of a process simulation. The simulation 

was done using the HYSYS® Simulation software. The batch distillation 

process was· modeled using a tray distillation column with a large 

reboiler and low reflux. These conditions closely mimic the operation of 

the actual process. The simulation successfully modeled the 

experimental data for both the major and minor components. Simulation 

studies have also been able to produce suggestions for process 

improvements that could increase the economic yield of the distillery. 
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Introduction 

1 



1. OVERVIEW AND RATIONALE 

The purpose of this thesis is to serve as a partial fulfillment of the 

requirements to obtain a Masters of Science in Chemical Engineering. 

This thesis is composed of four Parts. Part I presents an introduction to 

the topic of research and a rationale for the research. It also includes 

the research problem and the research objectives and deliverables. In 

addition to this a review of the literature is included in Part I. Part II 

presents the experimental results of a distillate sample analysis using 

Gas Chromatography Mass Spectrometry as a stand alone peer review 

journal article. Part III discusses a model for the distillation process 

under study and proposes possible improvements based on simulation. 

Part IV is a summary of the work with a discussion of conclusions and 

future work. 

1.1 Rationale for the Research 

This research involves a study of Scotch whisky production at a 

small scale traditional distillery. The traditional operation of the 

distillation process uses a minimum of computer hardware and does not 

require extensive data logging. The research aim was to develop a set of 

data sufficient to characterize the time dependent nature of a batch 

distillation of whisky spirit. With this basis of knowledge it would then 

be possible to develop a computer simulation of the distillation process. 
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The simulation could then be used to better understand the mechanics 

of the distillation and provide a basis for proposing improvements. 

1.2 Research Problem 

The distillery does not utilize data logging as part of the normal 

operation. To address the scarcity of data in the process distillate 

samples were collected during a normal operation cycle. The distillate 

samples were collected from both stages of the distillation to develop a 

time dependent profile of composition. The samples were analyzed for 

chemical composition and used as the basis for model development. 

1.3 Research Objectives 

The objective of this research is to develop an experimental basis 

for a time dependent study of the whisky batch distillation. A working 

model of the distillation process was also to be developed subsequent to 

developing the experimental basis for such a model. An important 

feature of this work will be the use of the model to propose improvements 

that could be made to the process. The improvements will be based on 

simulations of different process conditions. 

1.4 Summary of Deliverables 

The deliverables from this work are a chemical analysis of distillate 

samples collected on site at the distillery, a working model of the 

distillation process, and two peer review journal articles. In support of 
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the model will be a discussion of diverse simulations which serve as the 

basis for possible process improvements. The final deliverables are two 

peer review journal articles detailing the work completed. 

4 



2. INTRODUCTION 

Scotch whisky is produced in many areas of Scotland under a 

variety of conditions. Large distillers often produce millions of liters of 

whisky in a year. A majority of whiskies are then blended to produce the 

bottled product. The blending process consists of taking Scotch malt 

and mixing it with several other malts until the desired flavor is reached. 

Often coloring agents are added into the whisky to match the desired 

color in the final bottling. Single malt Scotch is produced from only a 

single type of whisky from a single distillery and requires the aged malt 

to already contain the proper flavor compounds to produce the desired 

result. Single malts are typically more valuable than blended whiskies 

and therefore consistent production results are highly desirable. The 

nature of the production process makes it more difficult to maintain the 

desired quality and composition of the malt. This is especially true for 

traditional distilleries that have very little or no computer interaction 

during the production of the whisky. 

There are typically two methods for whisky manufacture, 

continuous distillation and batch wise distillation. Continuous 

distillation is normally used for American whiskey or bourbon and 

therefore plays little role in the manufacturing of Scotch whisky. 

Batchwise distillation is the normal means of producing Scotch and 

follows a simple pattern. Grain is allowed to sachrify and is ground into 
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a powdery substance called grist. The grist is then leached of sugar and 

the resulting sugar-water mixture is fermented with yeast. The 

fermentation product is sent into large pot stills of distinctive design and 

distilled. The distillate product from the first pot still is sent to a second 

pot still and distilled again to produce the desired alcohol mixture for 

barreling. Once the distillate is barreled it is allowed to age until it is 

deemed to be ready for bottling, usually a minimum of 8 years. [I] 

Scotch whisky is a complex mixture which contains many flavor 

compounds that contribute to the overall taste of the whisky. Many of 

the flavor compounds are found only in very small concentrations in the 

final product, yet they are major components of the taste and character 

of any particular whisky. [I] Several types of substances contribute to 

the flavor, alcohols, esters, organic acids, aldehydes, ketones, and 

others. (2-4] The flavor of any whisky is vital to its ability to sell and 

consumers expect the whisky to have a consistent flavor from one 

production to the next. The ability to control the composition of these 

minor components is important to the overall profitability of the 

production process. 

In the case of Scotch whisky, the government imposed duties and 

taxes are collected on the total amount of alcohol barreled. As the 

whisky ages it loses some of it alcohol content, therefore the distillery is 

paying taxes on alcohol they cannot sell. This puts even greater pressure 
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on the distiller to maximize the alcohol recovered from the fermentation 

process while maintaining consistent product. This leads traditional 

distilleries to stay with a particular production process that works with 

little consideration given to process improvement for fear of changing the 

overall product. 

The object of this work is to create a model of the Bruichladdich 

Distillery distillation process. Bruichladdich Distillery is located on the 

island of Islay, Scotland. It operates as a traditional distillery with no 

computerized controls. The distillation proceeds as two distinct batch 

distillations. The first step concentrates the alcohol from the beer, or 

fermentation product, to a much higher alcohol content while leaving 

behind a large portion of the water and almost all solids such as dead 

yeast cells. The second distillation further concentrates the alcohol and 

is split into three distillate segments. The first segment, or cut, which 

includes approximately one third of the distillate product is called the 

foreshots and is high in alcohol concentration. The second segment is 

the product or spirit cut which is collected for barreling. This cut is also 

approximately one third of the distillate product. The third and final cut 

is the feints and is lower in alcohol content then either of the first two 

cuts. The foreshots and feints are collected in a large holding tank and 

recycled in subsequent distillations to maximize alcohol recove:ry. 

Throughout this process, which takes roughly 8 hours to complete, the 
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operators monitor the alcohol content of the distillate using hydrometer 

measurements taken during the distillation. Based on these 

measurements and established practice at the distillery the operators 

adjust the steam flow into the distillation vessel. 

To carry out the modeling of this process it was necessary to 

collect liquid samples throughout the distillation process. Samples of the 

distillate and feed liquids were collected during both the first and second 

distillation steps. The samples were analyzed to determine the 

composition of the distillate and feed liquids to help identify the 

chemicals present during the distillation. The analysis also provides a 

basis for comparing the predicted results from the model to the actual 

process conditions. Therefore, the sample analysis is used to determine 

the success and accuracy of the process model. 
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3. BACKGROUND 

This chapter gives a brief overview of the decisions and rationales 

that constitute the basis of this work. Included in this discussion is a 

review of the literature applicable to this work. The first section provides 

information relevant to material dealing with the analysis and 

classification of chemicals by GC-MS. The second �ection addresses the 

simulation model and the literature on process modeling, batch process 

modeling, and modeling using HYSYS™. 

3.1 Chemical Analysis 

There are many ways to identify an unknown substance. Analysis 

methods include gas chromatography (GC), mass spectrometry (MS), 

nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and 

combinations of these and many other methods. (5-7) GC and gas 

chromatography-mass spectrometry (GC/MS) are popular methods of 

analysis for many types of unknown compounds. GC/MS has a wide 

range of application and extensive literature is available on its uses. As 

discussed in [5] the basis of GC analysis is the separation of chemicals 

by affmity with the chosen column stationary phase. The affinity of each 

compound effects the elution time of the compound through the column 

which is the main factor in determining the identity of the compound 

when using GC alone. However the elution time will be influenced by 

several other factors mainly the columns stationary phase but also 
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column length and carrier gas flow rate which can vary widely from one 

machine to the next. 

Mass spectrometry is often used in conjunction with gas 

chromatography because mass spectroscopy has the ability to identify 

individual compounds based on their_mass spectral signals. GC-MS as it 

is commonly ref erred to, first separates the individual components in an 

unknown sample and then using a mass spectral detector records the 

unknown's mass signal. The mass spectral data is then compared to 

mass spectral data libraries to identify the compound from the library 

that most closely matches the observed spectra. The elution time from 

the GC column can also be used for verification of chemical identity by 

comparison to standards of known compounds that have been run under 

the same conditions. 

There are some limitations on GC-MS analysis. Unknowns that 

have very low concentrations can be difficult to isolate and it is often 

necessary to use a solvent for analysis. Large solvent peaks can mask or 

distort other peaks that elute at nearly the same time. Large solvent 

peaks can also make it difficult to obtain accurate integration results 

from the signal because of the significant fraction of the area made up by 

the single peak. The best solvents elute before any of the other 

compounds so that a solvent delay can be used and allow the detector to 

ignore the solvent peak in the analysis of the signal. It can also be 
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difficult to isolate minor components from a solution without pre

concentration steps. (8] 

3.2 Simulation and Modeling 

Process simulation and modeling has been a part of chemical 

engineering for many years. One of the many uses of a process model is 

to allow an engineer to modify an existing process and evaluate its 

performance without actually disturbing the process. This ability has 

been invaluable to the chemical engineering profession. As computers 

have gotten faster and more powerful it has become possible to model 

more and more complex systems accurately and quickly. However, it is 

important to establish the validity of the process model before any work 

is done that relies on the model. 

The basis for any process simulator is the fundamental mass and 

energy equations that govern the mass and energy balances of the 

system. Another fundamental part of the model is the method for 

including the interactions of the components of the system with each 

other and the unit operations that are being simulated. With so many 

methods available to the engineer to account for the interactions of the 

molecules it is vital that good judgment be used in selecting a 

thermodynamic framework for the chosen simulation environment. [9- 10] 

The system under consideration for this work is a mixture of 

mainly ethanol and water. There are several minor components that 
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include longer chain alcohols, fusel oils, and other fermentation 

products. The overwhelming amount of ethanol and water in the system 

make it imperative to select a thermodynamic system that can accurately 

account for the non idealities present in the system. There is a wealth of 

information on ethanol-water VLE data and model parameters to fit the 

data. [11-12] Upon inspection of this data it seems that with proper 

tuning many equations of state and activity models can accurately model 

the ethanol-water vapor liquid equilibrium. Based solely on this data it 

was impossible to implicitly select one pref erred thermodynamic system. 

As the HYSYS™ simulation program is the modeling system used for this 

work the literature provided with the program was examined. The 

manuals and help documentation with the software included an example 

simulation of an ethanol production plant. The plant simulated was a 

continuous production simulation but the essential elements of the 

simulation were similar enough to the work presented here that some 

guidance could be gleaned from the work. ( 13) The authors of the 

manuals selected the NRTL or Non Random Two Liquid thermodynamic 

package. The available literature suggests that NRTL thermodynamic 

package is an appropriate simulation package for this work. 
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This is a copy of a paper to be submitted for publication in the Journal of 

Agricultural and Food Chemistry by Ben Rogers, Samuel Morton, and 

John Collier. Ben Rogers was the primacy author of this work with 

advice and support from Samuel Morton and John Collier. 

ABSTRACT 

Scotch whisky is produced in a two step distillation process that 

has remained relatively unchanged for decades, even centuries. The 

chemical composition of the whisky is vital to its flavor and character. 

Much work has been done to analyze and study the final composition of 

different whiskies. However, to date no work has been published that 

studies the composition of the distillate with respect to distillation time. 

The goal of this work is to develop an experimental basis for study of the 

scotch whisky production process to gain a better understanding of the 

effects of distillation and aging. Samples collected during the distillation 

process were analyzed using gas-chromatography mass spectrometry. 

This analysis allowed the development of composition curves for several 

components found in whisky to help understand process decisions made 

during distillation. 
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INTRODUCTION 

Scotch whisky is a complex mixture which contains many flavor 

compounds that contribute to the overall taste of the whisky. Many of 

the flavor compounds are found only in very small concentrations in the 

final product, yet they are major components of the taste and character 

of any particular whisky. [ 1 ]  Several types of substances contribute to 

the flavor, alcohols, esters, organic acids, aldehydes, ketones, and 

others. (2-4] The flavor of any whisky is vital to its ability to sell and 

consumers expect the whisky to have a consistent flavor from one 

production to the next. The ability to control the composition of these 

minor components is important to the overall profitability of the 

production process. In order to control the composition of the whisky 

you must first know specifically which compounds are present. 

The composition of bottled Scotch has been studied by several 

different groups (5-9) but to date there has not been a published analysis 

of the distilled spirit prior to aging, mixing, and bottling. Aging of the 

whisky has a dramatic effect on its flavor [ 10) and is therefore very · 

important, but it is difficult to assess how important without knowing 

the effect of distillation on final quality. This study will analyze a series 

of samples · taken during the distillation process at a traditional distillery 

in Scotland. The goal of this work is to determine the composition of a 

scotch whisky distillate as distillation proceeds. Time dependent 
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dtstillate composition information will help explain some of the process 

decisions that have been handed down through traditional practice and 

whisky lore. It is commonly held that spirit cut of a scotch 

manufacturing process is chosen as the optimal combination of ethanol 

and flavor compounds. By choosing only the middle band of the 

distillate many minor components are being excluded either because 

they distilled before or after the bounds of the spirit cut. This work 

should begin to establish the experimental proof of this long held belief 

by identifying those compounds excluded by the spirit cut. 

The distillation processes has two steps. The first step is 

distillation in the wash still . . The second step is distillation in the spirit 

still. Samples were collected from both distillation steps. Figure 1 shows 

a diagram of the Scotch production process from malting to distillation. 

Each stage (malting, milling, fermentation, distillation, and barreling) of 

the production will be discussed briefly here. 

The first stage, malting, is the process that converts grain starches 

found in the barley into fermentable sugars. It also is the point in the 

process where peating occurs. Peating is done by heating wet barley over 

a peat fire and allowing the barley to absorb the flavor of the peat smoke. 

After malting the grain is sent to the second processing stage, milling, 

and is milled into grist which is rough flour. The flour is filtered to 

remove any small stones and other impurities. The filtered grist is 
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pumped into the mash tun where the sugars in the grist are extracted by 

leaching. The grist is washed three or four times with hot water to 

extract as much sugar as possible. The resulting sugar water or worts is 

cooled and pumped to the third stage washbacks where fermentation 

occurs. Yeast is added to the worts and allowed to ferment for up to 72 

hours. After fermentation the fermented worts or beer is pumped into a 

holding tank until it is ready for the fourth stage, distillation. This takes 

place in a series of two pot stills, the wash still and the spirit still. The 

distillate from the wash still is mixed with the recycled portion of the 

spirit still distillate from previous runs and fed to the spirit still. The 

spirit still distillation has three cuts or phases. The first cut is the 

foreshots and is recycled. The middle cut is the spirit which is the 

desired product and is pumped to a large holding tank for barreling. The 

final cut is the feints and is recycled. The non-distilled material from 

both stills is waste. In the final stage, barreling, the spirit is placed into 

large casks and stored in a warehouse where the spirit is allowed to age 

and mature. 

There are many ways to identify an unknown substance. Analysis 

methods include gas chromatography (GC) , mass spectrometry (MS), 

nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and 

combinations of these and many other methods. [ 1 1 - 13] GC and gas 

chromatography-mass spectrometry (GC/MS) are popular methods of 
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analysis for many types of unknown compounds. GC/MS has a wide 

range of application and extensive literature is available on its uses. As 

discussed in [ 1 1] the basis of GC analysis is the separation of chemicals 

by affmity with the chosen column stationary phase. The affinity of each 

compound effects the elution time of the compound through the column 

which is the main factor in determining the identity of the compound 

when using GC alone. However the elution time will be influenced by 

several other factors mainly the columns stationary phase but also 

column length and carrier gas flow rate which can vary widely from one 

machine to the next. 

Mass spectrometry is often used in conjunction with gas 

chromatography because mass spectroscopy has the ability to identify 

individual compounds based on their mass spectral signals. GC-MS as it 

is commonly referred to, first separates the individual components in an 

unknown sample and then using a mass spectral detector records the 

unknown's mass signal. The mass spectral data is then compared to 

mass spectral data libraries to identify the compound from the library 

that most closely matches the observed spectra. The elution time from 

the GC column can also be used for verification of chemical identity by 

comparison to standards of known compounds that have been run under 

the same conditions. 
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There are some limitations on GC-MS analysis. Unknowns that 

have very low concentrations can be difficult to isolate and it is often 

necessary to use a solvent for analysis. Large solvent peaks can mask or 

distort other peaks that elute at nearly the same time. Large solvent 

peaks can also make it difficult to obtain accurate integration results 

from the signal because of the significant fraction of the area made up by 

the single peak. The best solvents elute before any of the other 

compounds so that a solvent delay can be used and allow the detector to 

ignore the solvent peak in the analysis of the signal. It can also be 

difficult to isolate minor components from a solution without pre

concentration steps. (9] 
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MATERIALS AND METHODS 

Scotch whisky distillate samples were obtained during a single 

series of batch still operations. The distillate samples came from a single 

fermented charge that was distilled first in the wash still and then in the 

spirit still. The samples were collected during ·June 2003 at the 

Bruichladdich Distillery on the island of Islay, Scotland. The samples 

were collected throughout the wash still distillation at intervals of 10  

minutes. Spirit still samples were collected roughly every 10 minutes 

from the beginning of the distillation until approximately 50 minutes into 

the feints cut. No further samples were collected after this point due to 

limitations on available sample vials. The samples were collected in glass 

sample vials, labeled, sealed with shipping tape, and shipped from 

Scotland to the University of Tennessee for analysis. The glass vials were 

left sealed until just before analysis to prevent evaporation or 

contamination. The analysis was performed in Knoxville, Tennessee in 

the analytical laboratory of Bush Brothers and Company. 

Gas Chromatographic Analysis. The individual component 

separation was performed using a HP 6890 gas chromatogram (Palo Alto, 

CA) with a 5973 Mass Selective Detector. The MSD was held at 280
°

C 

and scanned from 10 amu to 550 amu with a frequency of 2.74 

scans/sec. The column used in this analysis was a DB-WAX column 

30m x .25 mm x .25 µm (J&W Scientific, Folsom, CA) The oven 
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temperature profile was 35
°

C for 10 min, 5
°

C/min to 180
°

C held for 5 

min, 20
°

C/min to 20Q
°

C held for 5 min. The column pressure profile was 

.25 psi for 10 min then 2 psi/min to 5 psi. The carrier gas was hydrogen 

produced by a hydrogen generator and the flow rate was variable with 

pressure. Injector temperature was a constant 250
°

C, .25 psi, and 33.2 

mL/min flow. The column was run with a 25:1 split ratio for each 

injection. Component peaks from chromatographic data were identified 

using mass spectral data and retention time comparisons. The GC/MS 

database used for comparison was the Wiley7N library. The samples 

were run a total of three times under the same conditions. The 

chromatographic data was integrated using a self developed analysis 

routine for calculating peak area that is included in the appendix. The 

peak area calculation makes a correction for the average baseline of the 

signal and then performs peak analysis by identifying peaks of interest 

and integrating under the curve using a trapezoidal approximation. 

Quantitation. A calibration curve was produced using 1 1  

standard solutions of ethanol and water at the concentrations shown in 

Table 1 .  Each s�dard was run 5 times to determine the calibration 

curve for ethanol and water concentrations. The calibration curves are 

shown in Figures 2 and 3. The ethanol calibration curve was used to 

estimate the concentration of the minor components. 
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Table 1 - Standard solution composition in volume percent ethanol 
Standard 

1 

2 

3 

4 

5 
6 

7 

8 

9 

1 0  

1 1  

%EtOH 
10.07 

1 5.23 

20.00 

35. 1 0  

50.00 

54.97 

60.00 

64.90 

69.80 

74.67 

80.00 

%H20 
89.93 

84.77 

80.00 

64.90 

50.00 

45.03 

40.00 

35. 10  

30.20 

25.33 

20.00 

The ethanol calibration curve was constrained by two conditions, 

first that it must have a zero intercept, and second that it must also pass 

through the point ( 100, 100) . These conditions correspond to zero 

percent by volume ethanol and 100 percent by volume ethanol. The 

same conditions applied to the water calibration curve. As seen in 

Figures 2 and 3 the data appears to have an inflection point due to the 

non ideal nature of the ethanol water mixture. Therefore a third order 

polynomial was used for the calibration curve. 
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RESULTS AND DISCUSSION 

Identified Compounds. The GC/MS analysis has shown the 

presence of several minor components in the distillate samples taken 

from the Bruichladdich distillation process. Table 1 is a list of the 

components reliably identified in the distillate samples. Of these 

compounds only ethyl acetate, ethanol, 1-propanol, water, 2-M- 1 

butanol, and isoamyl alcohol are present in significant amounts during 

the course of the distillation. 

The components listed in Table 2 are each present in an 

identifiable amount at some.point during the distillation. 

Table 2 - Identified Compounds from GC/MS Analysis 

ld�htified &,�pounds 
Wash Still 

2. Ethyl Acetate 
3. Acetal · 
4. Ethanol 
8. 1-Propanol 
9. Water 
10. 2-M- 1 Butanol 
11. lsoamyl Acetate 
13. lsoamyl Alcohol 
15. Ethyl Caprylate 
16. Ethyl Caprate 
1 7. Ethyl Laurate 
18. Phenethyl Alcohol 
2 1. Capric Acid 
23. Laurie Acid 

28 

Spirit Still 
2. Ethyl Acetate 
3. Acetal 
4. Ethanol 
8. 1-Propanol 
9. Water 
10. 2-M- 1 Butanol 
1 1. Isoamyl Acetate 
13. lsoamyl Alcohol 
14. Ethyl n-Caproate 
15. Ethyl Caprylate 
16. Ethyl Caprate 
1 7. Ethyl Laurate 
18. Phenethyl Alcohol 
20. Ethyl Palmitate 
21. Capric Acid 



Some of the compounds are identifiable in only a few samples, in some 

cases only in one sample. This is almost certainly a result of the 

extremely low concentration of most of the minor identifiable 

components. There are more components whose identity could not be 

reasonably determined whose concentrations are even smaller. This 

discrepancy exists because the analysis method scanned a range of 

masses that include water and ethanol. Inclusion of the two major 

components of the mixture makes it much harder to determine the 

existence of other minor components because of interference from water 

and ethanol. 

Wash Still Data. Figures 4-10 are examples of typical GC 

chromatograms from the wash still analysis with identified compounds 

labeled. The numbers on each chart correspond to the compound listed 

in Table 2. Wash still samples are labeled with the wash still numbers 

and spirit still samples with the spirit still numbers. The low wines and 

feints receiver is also labeled with the spirit still numbers. 

Figure 4 shows the analysis of the first distillate sample from the 

wash still. Each of the peaks observed in this chromatogram has been 

reliably identified by mass spectral analysis. Figure 5 shows the second 

sample taken during the wash still distillation which has the largest 

number of observable peaks. It is evident that there are significantly 

more peaks in this chromatogram than in Figure 4. This is evidence of 
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the presence of several other unidentifiable compounds. Figures 6- 10 

are spaced over the rest of the distillation run and have peaks consistent 

with those found in the first two chromatograms. 

Spirit Still Data. Figures 1 1 - 18 are examples of typical GC 

chromatograms from the spirit still analysis with identified compounds 

labeled. Figure 1 1  shows the chromatogram for the low wines and feints 

charger that supplies the feed to the spirit still. Figure 12 shows the 

second sample collected from the spirit still which is recycled as 

foreshots. This sample had the largest number of visible peaks of any 

spirit still sample. Figure 1 3  shows the last sample taken during the 

foreshots cut of the spirit still. Figure 14  shows the first sample taken 

during the spirit cut of the spirit still distillation. Figures 1 5  and 16 are 

chromatograms of samples taken during the spirit cut. Figure 1 7 is the 

last sample taken during the spirit cut. Figure 18 is the first sample 

taken during the feints cut of the spirit still distillation. 
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CONCLUSIONS 

With such a wealth of experimental data it is possible to develop 

curves describing the concentration trends in the data. This ability is 

limited to those components present in relatively high concentrations. 

As seen in the chromatograms presented in this work a majority of the 

identifiable compounds are not present in significant amount throughout 

most of the distillation. Since the amount of these compounds cannot be 

quantified they will be left out of the discussion. Figures 19-22 show the 

trends of ethanol and the most significant minor components through 

time for both the wash still and spirit still. Ethyl acetate and acetal were 

combined into a single concentration due to the difficulty separating the 

two compounds sufficiently during GC/MS analysis. 

As seen in Figures 19-22 in both stills the first data point sampled 

has significantly less ethanol and minor components than the second 

data point. This would seem to be indicative of sample dilution. The 

most likely cause of this dilution is the presence of water in the 

condenser and pipes that lead from the stills to the spirit safe where the 

samples were taken. The presence of water is logical when you consider 

the operation method of the facility. After each run of the still it is steam 

cleaned. The steam will bleed over into the condenser where it will 

naturally condense on the cooler surfaces. This water will then remain 

in the condenser and in the pipes leading away from the condenser until 
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something pushes it through the system. The first sample collected at 

the distillery for each still is part of the very first liquid coming out of the 

condenser. The fluid is therefor� a mixture of the first distillate product 

which should be highest in alcohol content and the water present in the 

condenser and pipes. Therefore the first data point will be skewed 

toward lower ethanol and minor component concentrations. This makes 

the first data point of each trend unreliable. 

The wash still sample analysis produced the results shown in 

Figures 19 and 20. As can be seen in Figure 19 the ethanol 

concentration trends significantly downward throughout the distillation 

slowing only when the concentration of ethanol becomes very low. This 

is the behavior one would expect of the low boiling key component of a 

batch distillation. 

The minor component concentration profiles shown in Figure 18 

follow a similar pattern. The operational nature of the wash still is such 

that all distillate is pumped into the low wines and feints receiver. This 

means that nothing that is boiled over in the wash still is excluded from 

the next distillation step. Therefore the trends in minor component 

concentration do not reflect significant processing decisions. They only 

establish the compounds present in the feed to the spirit still. Other 

components present in the feed to the wash still remain in the wash still 

after distillation is complete. This liquid is called the pot ale and is 
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stored in a sealed tank until a truck comes to cany it to the disposal site 

in the channel between Islay and Jura. No sample of this liquid was 

obtained so there is no way to be sure of the composition of this stream. 

Operational knowledge suggests that there should be large amounts of 

yeast, bacteria, and water present in this liquid. 

The low wines and feints receiver is the source of the feed to the 

spirit still. It is a holding tank for the output from the wash still and the 

recycle streams from the spirit still. A sample of this liquid was taken 

and analyzed. The analysis of this sample indicated that only four minor 

component compounds were present in any significant amount, ethyl 

acetate, 1 -propanol, isoamyl alcohol, and phenethyl alcohol. This 

analysis seems to contradict the evidence of the spirit still distillate 

analysis. It would seem that several compounds present in the spirit 

distillate are missing. Since the spirit still feed comes from the low wines 

and feints receiver it would be unlikely for those compounds to be 

present in the distillate and not be present in the feed. To explain this 

discrepancy it is postulated that the sample taken from the low wines 

and feints receiver was not well mixed. The ethanol concentration 

determined by analysis of this sample seems reasonable. This could be a 

result of the large amount of ethanol in the holding tank or it could be a 

result of the analysis method being too coarse to isolate the other minor 

flavor components in the sample. 
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The spirit still samples are the source of the most useful 

information. The major and minor component concentration profiles can 

give hints about the reasons behind process decisions that have been 

implemented through multiple generations of distillery operation. As 

explained by the operators and managers of the distillery the method of 

distillation has remained largely unchanged in decades of production. 

The operators make process adjustments based more on tradition and 

experience than on a specific understanding of the underlying chemistry 

of the distillation. Currently there is no process analysis other than a 

hygrometer measurement for alcohol content used to determine where 

the phase breakpoints should be. This does not mean that the decisions 

are incorrect or inadequate, but a fuller understanding of the underlying 

phenomena can help to optimize the production. 

The process phases are labeled on Figure 23. As can be seen from 

the figure the first phase consists of the first five samples. The second 

phase or spirit cut begins with the sixth sample. Comparison of the fifth 

and sixth samples indicates that the ethanol concentration is nearly 

identical. The concentration of the minor components also has little 

difference between the two samples. This would seem to indicate that 

there is very little practical difference between the distillate samples 5 

and 6 and thus the distinction in the process seems artificial. However, 

there is a distinct decline in ethyl acetate and acetal through the early 
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part of the distillation as shown in Figure 22. This decline could be the 

reason for the process decision. 

The boundary between the second and third phase is similarly 

constructed. The second phase ends with sample 24 and the third phase 

begins with sample 25. Again the ethanol concentrations are nearly the 

same, both approximately 66% ethanol. The minor components again 

show no practical difference from one sample to the next. This also 

suggests that the distinction is largely superficial. 

However it would be improper to state these conclusions as fact. 

Without a detailed analysis of all the components present in the distillate 

it is possible that the process breakpoints are related to another 

substance that is present in too low a concentration to have been 

included in this work. 

The body of experimental work that has been performed up to this 

point is significant. However, due to current equipment limitations it is 

impractical to perform further analysis of the samples for the trace 

components. A different �ethod of analysis is needed to establish a 

reliable method for the determination and quantization of the remaining 

flavor components. Research has suggested that solid-phase 

microextraction (SPME) analysis could provide the kind of results that 

would allow for further study of this topic. [9, 14- 17) 
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In addition to conducting SPME analysis on the samples to 

quantify the minor components more samples are needed. As has been 

discussed the first samples taken were likely diluted by the presence of 

water in the condenser and pipes at the beginning of distillation. Also 

the low wines and feints receiver sample seems to have been poorly 

mixed. Taking more samples both to replace suspect samples already 

collected and to acquire more data points during the analysis could prove 

critical to the development of a dependable experimental basis for 

analysis of scotch whisky. 

The experimental basis is important for computer modeling work 

currently being undertaken as well as for studies designed to analyze the 

effect of aging on the whisky. Combined with the work already in the 

literature on the analysis of the final whisky product after aging, this 

work and the studies of the effects of barreling should provide a solid 

foundation for better understanding of the scotch whisky production 

process. Better understanding can and should lead to production 

improvements that benefit not only the producers but the consumers as 

well. 
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% Ben Rogers 
% Matlab Program 
% Integration Routine 
clear all 
close all 
clc 

data=dlmread('C: \Mass Spec Data\Sample Analysis 3\A3_59.txt', ' \t' ,3,0) ; 

fid = fopen('C: \Mass Spec Data\Sample Analysis 3\components.csv' ,'a') ; 
sampleid = input('What is the sample id? [ 1 .  .. 59] \n') ; 
success = input('Run good? yes - 1 no - 0 \n') ; 
if success == 0 

fprintf(fid,' \n') ; 
end 
fprintf(fid, 'o/oi, ',sampleid) ; 
data=[data(: , l) ,data(: ,2)] ; 

%Baseline correction 

for ii = 1 :  1 :length(data) 
if data(ii,2) > SES 

avgdata(ii) = 20000; 
else 

avgdata(ii) = data(ii,2) ; 
end 
end 
average = avg(avgdata) ; 
cordata = data(: ,2)-average; 
for ii = 1 :  1 :length(data) 

if cordata(ii) < 0 
cordata(ii) = 0; 

end 
end 

%Find the indices of peaks 
qq = I ;  
for ii = I :  1 :length(data) 

if cordata(ii) > 100000 & cordata(ii- 1) < 100000 
index(qq) = ii; 
qq = qq + I ;  

elseif cordata(ii) > 100000 & cordata(ii+ 1 )  < 100000 
index(qq) = ii; 
qq = qq + 1 ;  

end 

Figure 24: Peak Area Calculation Program 
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end 
index=index'; 

%Choose integration range 
rr= l ;  
for ss = 1 :2:length(index:) 
peakarea = 0; 
for .ii = index:(ss): 1 :index:(ss+ 1)- 1 

area = .S*(cordata(ij)+cordata(ij+ l))*(data(jj+ 1 , 1)-data(ij, 1)) ; 
peakarea = peakarea + area; 

end 
peaks(rr)=peakarea; 
rr=rr+ l ;  
totarea = O; 
for .ii = 1 : 1 :length(data)- 1 

area = .S*(cordata(jj)+cordata(ij+ l))*(data(ij+ 1 ,1 )-data(ij,1)) ; 
totarea = totarea + area; 

end 
end 
for tt= 1 :  1 :length(peaks) 

areapercent(tt) = (peaks(tt) / sum(peaks))* 100; 
end 
ppercent = (sum(peaks)/totarea)*l00; 
aa = 1 ;  
for ii = 1 :  1 :length(peaks) 
fprintf('%3.0g Peak Area is % 10.4g and Percent of Total Area is 
% 10.4g\n' ,ii,peaks(ii) ,areapercent(ii)) 
fprintf('Peak Occurs at time % 10.2g\n\n',data(index:(aa) , l)) 
aa = aa + 2; 
end 
fprintf('Peaks acount for %10.4g percent of total area\n',ppercent) 

% Plug it in a datafile 
aa= l ;  
for jj = 1 :  1 :length(peaks) 

fprintf(fid,'o/of, o/of, ' ,data(index(aa, 1)) ,areapercent(ij)); 
aa = aa + 2; 

end 

fprintf(fid, I \n') ; 
fclose(fid) ; 

Figure 24: Continued 
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Part III 

Scotch Whisky Distillation Modeling and Simulation 
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Part III of this thesis is a copy of a paper by the same name to be 

submitted for publication in the Journal of Agricultural and Food 

Chemistry in 2004 by Ben Rogers, Charlie Moore, Samuel Morton, and 

John Collier. This article was written in its entirety by Ben Rogers. 

Charlie Moore contributed to the work as an advisor, consultant on the 

computer simulation software, and editor. Samuel Morton contributed 

in the literature search and as an editor. John Collier contributed as an 

advisor and editor. The authors reserved the right to publish this article 

in this thesis. 

ABSTRACT 

Scotch whisky is produced in a two step distillation process that 

has remained relatively unchanged for decades, even centuries. Much 

work has been done to analyze and study the final composition of 

different whiskies. However, to date little work has been published that 

studies the composition of the distillate with respect to distillation time. 

Samples collected during the distillation process were analyzed using 

gas-chromatography mass spectrometry to develop composition curves 

for several components found in whisky. The experimental data 

developed during the chemical analysis provided a physical basis for 

development of a process simulation. The simulation was done using the 

HYSYS® Simulation software. The batch distillation process was 

modeled using a tray distillation column with a large reboiler and low 

reflux. The simulation successfully modeled the experimental data for 

both the major and minor components. Simulation studies have also 

been able to produce suggestions for process improvements that could 

increase the economic yield of the. distillery. 
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INTRODUCTION 

The manufacture of whisky can be done in a number of different 

ways. Some bourbon such as Jack Daniels Tennessee Whiskey is made 

in a continuous distillation process, while other whiskies are made in a 

batch distillation process. Irish whiskies are produced in a seri�s of 

three distillation steps. This work focuses on the Scottish process which 

is a two step distillation. Two major goals of this work are to develop a 

process simulation capable of reproducing experimental data collected 

from the operation of a Scotch whisky distillery and to determine if this 

can be accomplished using a tray distillation model to approximate the 

performance of a pot still. 

Whisky production in Scotland has a long history that is kept alive 

by the many distilleries that have been in continuous, or near 

continuous, production for more than a century. Many distilleries have 

gone to a modernized production scheme leaving behind the traditional 

methods of manufacturing. Some distilleries have preserved the 

methods used to produce Scotch for a hundred years or more. Despite 

the vast difference in the approach and equipment used to produce the 

whisky the two systems are essentially· the same. This is not true of 

grain distilleries which operate a continuous Coffey distillation. 

Distilleries of this type will not be addressed in this work. Figure 1 is a 

diagram of the production process from malting to aging. 
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The production of Scotch whisky is done exclusively with barley as 

the source for fermentable sugars. The barley is harvested and sent to a 

malting facility. Traditionally the malting would have been done at the 

distillery but today only a handful of distilleries still malt even a fraction 

of their total needs. At the malting facility the barley is first soaked in 

water to activate the enzymes that start the conversion of starches in the 

grain to sugars. The maximum conversion of starches to sugars occurs 

as the grain begins to sprout. Once the first growth is seen the grain 

shoots are broken off and the barley is moved into a kiln where it is 

heated. The heating temporarily deactivates the enzymes responsible for 

converting the starches and stops the growth of the seed. In addition to 

being heated the grain is also dried and peated. The peating of the 

barley is typical of some Scotch and is the most distinctive characteristic 

of some particular whiskies. Peating is done by adding peat during the 

initial kilning to the heating fires so that the smoke filters up through the 

grain and is absorbed. The amount of peat added is closely controlled by 

the malting facility and is considered to be extremely important in the 

final taste of the whisky. 

The heated and smoked grain or malt is then shipped to the 

distillery for milling. The milling operation produces rough flour called 

grist that is then used in the sugar extraction step. The sugar extraction 

takes place in a large, typically stainless steel, tank called the mash tun 

108 



that is equipped with a mixer. Traditional distilleries often have crawling 

or crab mixers while modern distilleries often have stirring arm mixers. 

The sugar extraction is performed by washing the flour with hot water 

three or four times to extract as much sugar as possible. The first two 

washes are relatively high in sugar content and are sent over to the 

wash backs for fermentation. The second two washes are too low in 

sugar to be fermented economically so they are recycled and used as the 

first two washes for the next batch of grist. The remaining material in 

the mash tun, the draff, is typically sold for animal feed as it has been 

almost completely leached of f ermentable sugar but still has value as 

feed. The sugar water or worts from the mash tun are pumped through a 

heat exchanger to cool them and then stored in a large vat or washback. 

The washback is the reaction vessel where fermentation takes place. 

Washbacks are large tanks made of either Oregon pine or stainless 

steel where the fermentation takes place. The worts are pumped into the 

washback and yeast is added and allowed to ferment for up to 3 days. 

Two kinds of yeast are typically used in the fermentation; distiller's yeast 

and brewer's yeast. Brewer's yeast is quick to begin conversion of sugar 

to ethanol but does not perform well in high alcohol concentration. 

Distiller's yeast is slow in the early stages but performs much better in 

high alcohol environments. Distillers typically use both kinds of yeast 

during fermentation. 
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Alcohol is produced during the fermentation by yeast converting 

sugars to ethanol and carbon dioxide. After the malting process most of 

the barley starch has been converted to sugars that are fermentable. 

Equation 1 shows a typical reaction of glucose to ethanol and carbon 

dioxide in the anaerobic state. [ 1 ]  

( 1) C6H1206 � 2 C2HsOH + 2 CO2 

The reaction in Equation 1 shows the mechanism responsible for the 

production of the ethanol. The fermented mixture or beer has a 

maximum alcohol content of roughly 18% ethanol. The yeast used to 

ferment the sugars will not produce any more ethanol at those 

concentrations. The simplified reaction predicts only ethanol and CO2 

as products of the fermentation. In reality, several alcohols are produced 

along with other esters, ketones, and acids. The ethanol is significantly 

preferred in the conversion but the other components are present and 

are important to the flavor of the final product. (2-4] 

The reaction shows that ethanol and CO2 are produced in equal 

molar amounts from the fermented sugars. The CO2 produced bubbles 

up through the mixture and can produce foam on the top of the 

fermenting liquid. The foam is knocked down either with a defoaming 

agent or with mechanical action such as a rotating bar. The CO2 that is 

produced typically is vented to the atmosphere although at large scale 

distilleries recovery and purification can be profitable. 
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The esulting mixture of water, yeast, alcohols, minor components, 

and whatever fraction of sugar remains is called the beer and is pumped 

into the wash still for the first distillation. The wash still �s simply the 

first distillation vessel. It is used to concentrate the alcohol to a point 

where subsequent distillation will yield the desired spirit. After 

distillation in the wash still the distillate is sent to a holding tank where 

it mixes with the first and third spirit cuts from the spirit still. The 

mixture of newly distilled wash and recycled spirit it then fed into the 

spirit still for distillation. The unused spirit is recycled to increase 

alcohol recovery, the single most important factor in the profitability of 

the distillery. The spirit still distillation is split into three separate 

phases. The first phase comprises roughly the first third of the 

distillation and is called the foreshots. It is the portion of the distillation 

highest in alcohol content and is recycled to the low wines and spirit 

receiver. The second phase of the distillation is the spirit cut and 

comprises roughly the middle third of the distillation. The spirit cut is 

sent to the barreling vat where it will be held until the spirit is casked 

and sent to the warehouse for storage and aging. The final third of the 

distillation is the feints and is also recycled to the low wines and spirits 

receiver. 

The use of pot stills is the most characteristic aspect of the Scotch 

malt production. Every malt distillery in Scotland operates batch 
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distillation in pot stills. Individual distillers often patent the design of 

their pot stills to protect the specific manufacturing process they use. 

After the spirit cut from the spirit still has been collected it is 

pumped over to the barreling facility. In the barreling process the spirit 

is placed into previously used casks. Used casks are preferred because 

new oak would overpower the flavors found in scotch. Bourbon casks 

from the United States are used since Kentucky law requires bourbon to 

be aged in new oak casks. Other types of casks that are used are sherry, 

port, madeira, rum, and cognac although rum and cognac have only 

recently been used. 

The spirit, once placed in the cask, is left there for a minimum of 

three years. Scottish law requires that scotch be aged at least three 

years in Scotland to be considered authentic. Typically the spirit will be _ 

aged a minimum of 8 years to be considered for bottling as a single malt. 

If the malt is to be used for blending it may not be · aged as long in the 

warehouses. As the spirit ages in the casks the ethanol content slowly 

decreases at about .8%/yr and the total volume decreases by about 

2%/yr. This effect, sometimes referred to as the angel's share, increases 

the cost of aging the whisky beyond the cost of merely storing the casks. 

By common consensus the longer the malt is aged the better it becomes. 

However, it is uncommon to see single malts older than 25 years because 

the positive effect of aging virtually vanishes after that length of time. 
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Further explanation of each step of the production process is available in 

the literature. [5] 

This work will use experimentally derived information about a malt 

distillation process to evaluate the feasibility of a computer simulation 

that correctly models the whisky production process. Computer 

simulations of continuous whisky distillation processes have been 

successful but little work has been done on simulation of batch 

processes. [6] This computer simulation of a batch process will utilize a 

tray column approximation of the pot still. The aim is to be able to 

propose process improvements based on our ability to simulate a wide 

range of operating conditions. 
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MATERIALS AND METHODS 

The experimental basis for this study comes from the prior work of 

Rogers et al. (7) The work develops experimental data from a single 

production run of a traditional scotch whisky distillery. The data 

developed in the work included concentration values for ethanol, water, 

and some minor components. These values were of particular use in this 

work. The work provides the simulation targets for evaluating simulation 

accuracy. However, the work does not include an experimentally 

determined set of initial feed conditions. 

The computer tools used for this work were HYSYS v3.0. 1 (Build 

4602) by Hyprotech Ltd. The software was used to simulate both the 

initial steady state and dynamic modes of operation. The HYSYS help 

documentation was used extensively as a source for simulation guidance 

and troubleshooting. [8] HYSYS was run on a Windows XP machine. 

Based on information collected from the distillery in Scotland a· 

preliminary distillation design was developed. The fluid modeling 

package used for this simulation was selected based on the available 

literature for ethanol-water binary mixtures. [9- 10] The Non-Random 

Two Liquid property package was selected for use in this model. The 

components included in the simulation based on experimental evidence 

and literature review were water, ethanol, 1-propanol, 2-methyl- 1 -

butanol, isoamyl alcohol, and ethyl acetate. Unknown binary interaction 
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parameters were estimated using the UNIFAC VLE estimation method 

provided in the software package. 

A pot still is a batch distillation vessel that is steam heated to 

precipitate the boiling of the mixture. HYSYS does not have a predefined 

batch distillation unit so it was necessary to approximate such a process 

with the available unit operations. It was decided to simulate the pot 

still with a trayed distillation tower using a large reboiler and a small 

rectifying section. 

Pot stills used in the production of Scotch whisky have specially 

designed geometries that are often patented. The geometry of the still 

affects the heat transfer from the vessel to the surroundings and also 

affects the reflux of the vessel. The batch distillation vessels do not have 

a reflux stream from the condenser so the only reflux is from 

condensation at the walls of the vessel. To approximate the internal 

reflux of the pot stills the reflux from the condenser of the tray tower was 

adjusted. 

Using the steady state solver the initial condition of the pot still 

was solved to approximate the values determined in the experimental 

analysis of the distillate in Rogers et al . [6] The initial conditions of the 

dynamic model were determined by trial and error analysis of the steady 

state solution. Flow valves and process controllers were added to allow 

the dynamic simulation of the model from the initial conditions 

1 15 



determined by the steady state model. · The dynamic model was then 

tuned to reproduce the experimental data as nearly as possible. The 

tuning was done on only a few variables in order to maintain consistency 

with the actual operation of the process. The manipulated variables were 

reflux ratio and heat added to the reboiler. 

1 16 



RESULTS AND DISCUSSION 

The first process to be simulated was the wash still. The wash still 

model along with the experimental data was being used to predict the 

feed composition to the spirit still. 

Wash Still Feed Conditions. The initial composition of the weak 

beer in the wash still is the most important variable in the distillation 

process. There was no experimental basis for predicting the beer 

composition at the start of the distillation process. It was therefore 

necessary to determine the feed composition by trial and error. In order 

to consider the model successful it had to reasonably predict the 

composition of the distillate at each point in time. As discussed by 

Rogers et al. [6] the ethanol concentration of the first data point from the 

analysis of the wash still distillate is probably inaccurate due to water 

remaining in the condenser or pipes between runs. Because the first 

data point was likely to be inaccurate it was determined that it was more 

important to fit the second data point than the first for the feed 

conditions. This also held true for the minor components. The feed 

compositions were altered systematically until the predicted 

compositions from the steady state model were reached. The final 

distillable feed compositions are shown in Table 1. 
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Table 1 - Wash Still Feed Composition 

Compound 
Ethanol 
Water 
Ethyl Acetate + Acetal 
1 -Propanol 
2-M-1 -Butanol 
lsoamyl Alcohol 

Feed Composition 
%byvot 

14.000 
83.725 

0.900 
0. 125 
0.250 
1 .000 

The wash still configuration is shown in Figure 2.  As shown the 

model of the process included a tray distillation column with a partial 

condenser, a storage tank for the distillate, and four PI controllers. The 

controllers are designed to control the condenser level and pressure, the 

reboiler level, and the charging tank pressure. The reboiler level is 

controlled to ensure that bottoms flow is zero during the distillation 

simulation. The condenser pressure and level and the charging tank 

pressure are controlled to maintain dynamic stability. The controllers do 

not significantly affect the model aside from maintaining numerical 

stability during the simulation. 

Wash Still Model Ethanol Tuning. The first decision that was 

made was to tune the model to accurately reflect the ethanol composition 

profile. Ethanol is the species of interest and it was therefore determined 

that ethanol was the most important variable for the model. 

The first attempt to model the system was done with a constant 

flux of heat into the reboiler. Constant heat flux is different from the 
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normal operation of the distillery but was simulated to gain a rough 

approximation of the wash still performance. The ethanol concentration 

results of the constant heat flux model plotted against the experimental 

data are shown in Figure 3. The constant heat flux operation mimics the 

overall behavior of the distillation, but it does not accurately reflect the 

experimental data. The time to deplete the ethanol in the system for a 

large constant heat flux is significantly shorter than that for the actual 

process. For a small constant heat flux the time to depletion is too short. 

This results in concentration trajectories that are either too steeply 

sloped or too shallowly sloped. 

This is a result of the nature of batch distillation. If you consider 

the energy and material balances it becomes evident that as the amount 

of material in the reboiler decreases the amount of heat needed to boil 

the remaining liquid also decreases. For the high constant heat flux 

model this results in a shortened distillation time, for the low constant 

heat flux a longer time. While it is possible to determine the heat flux 

that would accurately reflect the experimental time to depletion, the 

model is significantly inaccurate with respect to most of the data points. 

One method to counteract this variable rate of boiling is to adjust the 

reflux of the system in such a way to offset the heating effects. This 

solution however is inconsistent with the actual production and 

mechanisms of the process. It therefore was not attempted. 
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To avoid the problems inherent with adjusting the reflux in the 

simulation, the heat flux was changed. The model prediction for the 

variable heat flux wash still model is shown in Figure 4 and is plotted 

against the experimental data. As shown the variable heat flux method 

produces significantly better results. It would be possible with a 

constantly adjusted heat flux to fit almost any concentration trajectory. 

To avoid the temptation of giving the model too many adjustments for the 

sake of fitting the data a limit was set on the number of time the heat 

could be adjusted. For the wash still no more than four adjustments 

could be made to the heat flow. This prevented the model from 

overfitting the data and allowed the simulation to follow a system of 

operation typical of the actual distillery where adjustments to the steam 

are made on average one to two times an hour. The heating profile used 

for the wash still model simulation is shown in Table 3 in the appendix. 

Wash Still Model Minor Component Tuning. After tuning the 

model to accurately reflect the ethanol composition profile the minor 

component profiles were studied. As discussed in Rogers et al (7) there 

were some concerns about the accuracy of the estimates for minor 

component concentrations based on the method of calibration and 

relatively small amounts of material. While these are valid reasons for 

concern the ability of the model to predict the overall shape and trends 
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observed in the minor component profiles was determined to be a 

reliable measure of the model's ability to accurately simulate the minor 

components. Altering the initial concentrations of the feed to the still 

would have a profound impact on the value of the concentration 

predicted by the model but even large changes in the initial 

concentrations are unlikely to alter the shape of the concentration 

profile. Therefore it was less important to be able to match the 

experimentally reported concentration values than it was to be able to 

follow the same trends through time with respect to the minor 

components. 

The variable heat flow model was very accurate with respect to the 

ethanol concentration predicted by simulation, so if the modeling 

parameters and initial concentrations are correct then it should also be 

able to predict the minor component concentrations. Looking at the 

minor component profiles from the variable heat flux simulation it was 

apparent this was not the case. 

The NRTL fluid package used to model this system is an activity 

coefficient model. Each component must have a set of two interaction 

parameters for every other component in the system. In some cases the 

HYSYS interaction parameters were unknown and had to be estimated. 

Parameter estimation can be dramatically inaccurate and must not be 

accepted as true until experimental data can be shown to support the 
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estimation. ( 1 1 - 12] The estimated parameters were insufficient to 

accurately model the behavior of the wash still system. The minor 

component concentration profiles did not reflect the overall trend in the 

experimental data. Figures 5-8 show the results of the original 

interaction parameters compared with the results of the adjusted 

interaction parameters. Again it is important to note that the actual 

concentration values of the minor components are less important to the 

quality of the model than the overall shape of the curve. With better 

chemical analysis of the minor components accurate concentration 

values can be obtained and the current model adjusted accordingly. 

Final Wash Still Model. The final wash still model accurately 

predicts the composition profile of the ethanol and gives the correct 

shape for each of the minor components. The model was a success 

based on its ability to meet both of the stated criteria. Using the results 

of the wash still simulation the spirit still was undertaken. 

Spirit Still Simulation. The operation of the spirit still is very 

similar to that of the wash still. Figure 9 shows the simulation 

schematic. The spirit still feed is taken from the low wines and feints 

receiver. This means that the feed to each run of the spirit still is related 

to the recycled distillate from the sprit still. Modeling the spirit still 

therefore required a sample from the low wines and feints receiver 

(LWFR). A sample was taken and analyzed. Comparing the sample from 
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the LWFR to the analysis of the spirit still distillate it was evident that 

the sample was poorly mixed and could not be relied upon as an 

accurate source of information about the concentrations of the minor 

components. It was also evident that the results of the wash still model 

could not be relied upon as an accurate measure of those concentrations 

either. It was necessary to consider the spirit still models ability to 

reflect the ethanol concentration cUIVe while focusing_ on the shape of the 

minor component profiles. 

Spirit Still Feed Conditions. The sample of spirit still feed taken 

at the distillery and analyzed proved unreliable for use in the modeling. 

Without a reliable method for determining the actual compositions of the 

feed an estimation of the feed composition was determined. Even though 

the LWFR sample was evidently ill mixed the ethanol concentration 

should be close to the actual ethanol concentration. The wash still 

model prediction for the final concentrations of the wash distillate should 

also be nearly correct for the amount of ethanol coming into the LWFR. 

Therefore a value between that of the LWFR sample and the predicted 

wash still contribution was chosen. It was selected close to the LWFR 

concentration on the belief that the LWFR ethanol concentration was 

likely to be close to the actual concentration. The minor component 

131  



concentrations of the LWFR were deemed less reliable than the model 

results. To account for this discrepancy an average of the model 

prediction and the LWFR value was used. The final composition is listed 

in Table 2 .  

Spirit Still Ethanol Tuning. The original spirit still model, much 

like the wash still model, could not be run as a constant heat process. 

The distillery process is run at relatively low heat. The distillate comes 

off slowly for the first few hours and the total amount of material sent 

over the top is relatively small. The second distillation leg is essentially a 

slow simmering of the feed to separate the alcohol and take as little of 

the water over as possible. Also of much concern in the spirit distillation 

are the minor component concentrations. 

To simulate the slow simmering process it was necessary to adjust 

the heat to the system drastically over the first hour or so of the 

Table 2 - Spirit Still Feed Composition 

Ethanol 

Water 

Ethyl Acetate 

1-Propanol 

2-Methyl- 1 -Butanol 

Isoamyl Alcohol 

Spirit StilfFeed Composition · 
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26.08 

72.08 

0.66 

0. 1 1  

0.24 

0.82 



simulation. The simulation initializes with a relatively high heat flux 

which must be reduced quickly to simulate a slow boil. Once the heat 

was adjusted to a low heat flow the heat did not need to be adjusted until 

near the very end of the simulation. Near the end of the simulation the 

heat was increased drastically. The drastic increase is observed in the 

experimental data and in the normal operation of the spirit still. After 

completing the spirit cut of the second distillation the heat is increased 

to increase the rate of boiling and recover the remaining alcohol quickly. 

After adjusting the simulated heat flow to the spirit still the model 

was able to accurately reproduce the ethanol concentration curve from 

the experimental data. Figure 10 shows the simulation results. The 

ability of the model to reflect the trends and concentrations observed in 

the experimental data indicated that the model was sufficient for 

accurate simulation of the process. 

Spirit Still Minor Component ProClles. The minor components 

concentrations of the distillate were known to be unreliable for the 

reasons discussed earlier. Therefore it was difficult to determine the 

effectiveness of this model for predicting the minor component behavior 

in the spirit still distillation. Figures 1 1 - 14 show the minor component 

concentrations as a function of reflux ratio. As seen in the figures the 

minor components again follow similar trends as the experimental data 

without being able to accurately reflect the concentrations at specific 
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Figure 10: Spirit Still Simulation Results 
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times. The ability to simulate the trends in the data indicates that the 

model will be sufficient to accurately model the system when accurate 

feed concentrations are known. 

The model interaction parameters determined in the wash still 

model were used for the spirit still model as well. The ability of both 

models to replicate the experimental data so closely is a solid indication 

of the model's fitness for use as a tool to study the process. 

Process Improvements. With a working model of both the wash 

and spirit stills it was possible to begin considering ways to improve the 

process. The first aspect of the process to be considered for improvement 

was the heating system. The distillery relies on steam heating for both 

distillations as well as for the mashing operations. It is possible to 

installheat exchanger systems that would allow for the recovery of a 

significant portion of the heat used in the process. The savings on total 

energy expenses should more than offset the capital costs of the heat 

exchanger system and the resulting piping and pumping equipment. 

- Another possible improvement to enhance energy efficiency would 

be to insulate the copper pot stills from the environment to help 

minimize heat loss to the surroundings. This proposal is significantly 

more dangerous however. The heat loss at the walls of the pot stills are 

the only source of reflux in the system. The cooling film of liquid along 

the inside wall of the still is the source of the systems reflux. By 
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insulating the system to prevent much of that heat loss the system's 

operation would change. From simulations done with the model 

developed in this research it seems probable that the changes to the 

operation of the system would be minimal. However, there are many 

more minor components present iri the actual distillate than are 

represented in this model. Some of the minor components have a 

distinct impact on the final flavor of the whisky even at very small 

concentrations. For the case of the spirit still, further study is necessary 

to determine the effect of any changes in operation on those other 

components not included in this work. 

Further study is unlikely to be needed to determine the effect of 

insulation on the wash still. Because only the middle cut of the spirit 

still is taken as product the time at which each component distills is 

important to the final spirit cut. This is not true for the wash still. The 

wash still is operated to separate ethanol and water. Little thought is 

given to the minor components since the time at which they come over 

the top of the wash still is immaterial. Therefore altering the reflux in 

the system is unlikely to affect the final composition of the wash still 

product. With a minimal chance of altering the product the energy 

savings to be had by insulating the wash still would seem to be sufficient 

reason to consider doing so. 
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Related to the energy savings is the issue of reflux in the stills. 

Currently both the wash still and the spirit still are of the same design. 

The spirit stills are slightly smaller than the wash still but the necks of 

the stills have the same overall shape and presumably the same reflux 

pattern. Since the wash still is larger it necessarily has a larger heat 

transfer area and a correspondingly greater volume of reflux. Because 

the reflux is less important to operation of the wash still than to the 

spirit still it would be possible to replace the wash stills with pot stills 

whose design is such that it minimizes the reflux in the system. By 

minimizing the reflux you would cut down on energy costs and the pot 

still itself is likely to be smaller and less expensive than the current 

model. While it would be unwise to replace the stills currently in use 

with a new still to minimize reflux, when it is time to replace the current 

still a different still design should be considered. Implementing the 

insulation suggestion and replacing the wash stills with lower reflux 

designs at the next opportunity should result in significant savings in the 

long term. 

The other area of possible process improvement is the spirit still. 

Process simulations using the model developed in this work would seem 

to indicate that the distinction between the foreshots, spirit cut, and 

feints is largely superficial. For the minor components included in this 

model there seems to be little difference between distillate deemed spirit 
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cut and the spirit deemed foreshots or feints. This would seem to 

indicate that it would be possible to increase the amount of spirit 

recovered for bottling in each distillation, thereby increasing the amount 

of product possible. This in turn should lead to higher revenues and 

profits from the same materials as are currently being used. 

However, this model is admittedly incomplete in that it does not 

include information on all of the minor components of interest. As stated 

before, it is possible for some minor components even in very small 

amounts to have dramatic effects on the quality and taste of the whisky. 

The possibility of altering the flavor and character of the whisky by 

expanding the spirit cut are evident. It is therefore necessary to conduct 

further analysis of the samples to quantitatively determine the 

composition of the distillate and include the other minor components in 

the simulation. 

Future Work. The most pressing area for future work is in the 

chemical analysis of the distillate samples. It is important to determine 

the other minor components present and quantify their concentrations. 

Rogers et al discussed the possibility of conducting solid phase 

microextraction (SPME) analysis on the distillate samples to evaluate the 

presence of other minor components that appear in GC/MS spectra. 

They also discussed repeating the analysis of the distillate samples in the 

GC/MS in splitless mode with adjusted mass spectrum scanning 
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parameters to filter out the water and ethanol peaks from the analysis. 

This analysis could produce quantifiable results that would allow for the 

inclusion of more minor components in the process simulation. 

Another area for future work is in the determination of the binary 

interaction parameters for the system of interest. It was evident 

throughout the work that the estimation method for the binary 

interaction parameters is not effective for predicting the actual values of 

the parameters. Fitting the parameters from experimental data in the 

model will allow us to get close to the desired system but is still in 

adequate. Laboratory experiments to determine the interaction 

parameters would be useful for future work on this topic. 
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Table 3 - Heat Flux to Reboiler Wash Still 

Time (min) 

0 

60 

90 

150 

Heat to Reboiler 

147 

Heat Flow (KJ /hr) 

3,500,000 

2 ,500,000 

2,200,000 

2,900,000 



Table 4: Heat Flux To Reboiler Spirit Still 

Time (min) 
0 

· 10  
27 
40 

270 

Heat to Reboiler 

148 

Heat Flow (KJ/hr) 
2,000,000 
1 ,500,000 
1 ,000,000 
700,000 

1,200,000 



PART IV 

CONCLUSIONS AND FUTURE WORK 
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1 .  SUMMARY 

The work presented in this work was done with the intention of 

developing a useful computer simulation of a traditional scotch whisky 

distillation process. Through extensive distillate sampling, sample 

analysis, and study an experimental basis for a computer simulation was 

developed. The experimental analysis of the distillate samples reliably 

identified 16 separate components found during the distillation of the 

whisky. As many as 23 separate chromatographic peaks were observed 

in the data analysis but only 16 could be reliably identified. This 

laboratory analysis served as th� basis for the computer modeling and 

simulation that followed. 

The simulation of the whisky batch distillation process was 

accomplished using HYSYS simulation software. The computer model 

was developed along the lines of the actual process whenever possible. 

This helped retain the physical significance of the simulation parameters 

in relation to the distillery process. A thermodynamic system was 

chosen based on literature review of the topic and successfully allowed 

the accurate simulation of the ethanol distillation. In addition to the 

ethanol several minor components were also simulated. The minor 

component interactions were not as well understood as those of ethanol 

and water, however the parameter estimation method utilized allowed for 

the simulation of the minor components. When the minor components 
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behaved differently in the simulated system than in the experimental 

data the parameters were adjust to bring the simulation closer to the 

experimental data. 

Not all of the experimental data was deemed reliable and therefore 

simulation and prediction of actual concentration values of the minor 

components was impossible. Simulation did allow comparison of trends 

in the experimental data with the simulated data. Comparing the two 

the trends observed in simulation were substantially similar to those 

observed in the analysis data. The simulation could accurately model 

the concentration of ethanol during the distillation and modeled the 

observed trends in the minor component concentrations. The model was 

therefore deemed successful. 
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2. PROPOSED IMPROVEMENTS 

The successful simulation models were then studied to address 

possible process improvements. Simulation and study provided several 

possible ways to improve the batch distillation process. The first 

proposed improvement was for implementation of a heat recovecy system. 

Anecdotal evidence suggests that such a system could be vecy valuable 

in terms of cost savings. The second improvement suggested was for 

insulation of the distillation vessels. Currently each distillation vessel 

generates significant amounts of heat that is radiated by the vessel into 

the ambient environment. While there are some legitimate concerns 

about the effects of insulating the vessel and the influence that would 

have on the internal reflux of the system, the idea is sound. Insulation is 

of particular interest for the wash still, where composition of the distillate 

at any given time is relatively unimportant. 

A third proposed improvement is for a redesign of the wash still 

and spirit still. With more knowledge of the process it would be possible 

to determine the approximate needed reflux for each operation. If 

insulation of the stills is rejected, or even if it were implemented it would 

be more effective if the stills were designed in such a way to minimize 

heat loss that exceeds the reflux needs of the still. This type of 

improvement would prevent energy waste. 

152 



The final process improvement stems directly from the simulation 

and analysis of process model. It seems likely that using the process 

model, particularly if it is extended to include more of the minor 

components, there will be enough evidence to justify extending the spirit 

cut of the second distillation to increase product recovery. Extending the 

spirit cut by just 20 minutes both before and after the current process 

cutoffs would likely make a significant difference in product recovery and 

profitability for a distillery of similar size and nature to the one studied 

here. The current spirit cut lasts approximately 200 minutes. Extending 

that time by 40 minutes should realize an increase in product recovery of 

close to 20%. 
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3. FUTURE WORK 

The most pressing area for future work is in the chemical analysis 

of the distillate samples. It is important to determine the other minor 

components present and quantify their concentrations. Knowing the 

minor component concentrations more accurately would allow us to 

compare the compounds found in the distillation to those known to have 

either favorable or unfavorable flavors and aromas. It would also allow 

for the extension of the current model to include more of the minor 

components and more accurately predict the behavior of the distillation 

process. 

Extension of the model to include the other process equipment 

would also allow for reliable estimation of the amount of heat that could 

be recovered from a heat integration and recovery system. Inclusion of 

the other process equipment would also allow studies of batch 

scheduling to increase production efficiency and reliability. 
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