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Abstract

Understanding functional gene relationships is a major challenge in bioninformatics

and computational biology. Currently, many approaches extract gene relationships via term

co-occurrence models from the biomedical literature. Unfortunately, however, many genes

that are experimentally identified to be related have not been previously studied together.

As a result, many automated models fail to help researchers understand the nature of the

relationships. In this work, the particular schema used to mine genomic data is called Latent

Semantic Indexing (LSI). LSI performs a singular-value decomposition (SVD) to produce

a low-rank approximation of the data set. Effectively, it allows queries to be interpreted

in a more concept-based space and can allow for gene relationships to be discovered that

would ordinarily be overlooked by other models.
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Chapter 1

Introduction

Recent technological advances in genomics, proteomics, and related fields have enabled re-

searchers to generate vast amounts of biological data. Techniques such as DNA microarray

analysis are effective methods that help reveal functionalgene relationships. Unfortunately,

however, such techniques are often time-consuming and expensive. Uncovering new gene

relationships is a combinatorially difficult problem that requires some direction to make it

tractable.

One approach is simply to scan the literature for future direction. This approach, how-

ever, is infeasible. At the current rate of literature growth, a researcher would be required

to scan over 130 journals and read 27 papers daily to stay current with information about

breast cancer [HHW
�

03]. The literature concerning other diseases exhibit similar unman-

ageable growth trends.
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The Semantic Gene Organizer (SGO)1 has been developed as a utility to help biological

researchers more quickly identify and understand functional gene relationships. Currently,

to understand functional gene relationships investigators must manually extract biological

literature from several different databases. Most of thesedatabases match queries in a

simple term co-occurrence framework that does not retrievepotentially relevant documents

in a satisfactory manner. SGO is based on Latent Semantic Indexing (LSI) [DDF
�

90],

which can help identify latent structural similarities in the literature. As such, SGO can

help uncover gene-gene and gene-keyword relationships with good accuracy.

Given the nature of text mining tools, SGO is not meant to replace biological tech-

niques, but rather to enhance them. SGO is designed as an intelligent guide for future

research as well as a verifier for new results. In no way does a result gleaned from SGO

have more biological significance than one gained from the lab.

SGO has performed well on a few sample data sets. To interpretthe results of SGO,

however, the user must understand existing information retrieval (IR) techniques and what

SGO is trying to uncover. Existing and related techniques are covered in Chapter 2. The

information retrieval techniques used by SGO are introduced in Chapter 3, while the back-

ground biological information is covered in Chapter 4. SGO’s results are examined in

Chapter 5, and the possible future directions for SGO development are discussed in Chap-

ter 6.

1SGO is available for use at http://shad.cs.utk.edu/sgo/.
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Chapter 2

Previous Work

SGO and its interface are inspired by a previous and related work called the Semantic

Conference Organizer (SCO) that was built to assist conference organizers with session

building [HBDV03]. Seeing the effectiveness of SCO with clustering conference abstracts,

the idea of clustering genes via similar methods arose.

Since biomedical literature has been growing at a high rate,data mining tools have

been developed to help investigators extract meaningful information about genes of in-

terest. [JLKH01] has developed PubGene, a literature network that assigns a functional

association between two genes if there is a co-occurrence between gene symbols in MED-

LINE (discussed in Chapter 4) abstracts. This network is an attempt to identify functionally

related genes based on the published literature. Once this network has been created, graph

theoretic methods to identify communities of related genescan be applied. The resulting

partition will hopefully link abstracts on some common termco-occurrence that has spe-
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cial meaning, like gene function [WH04]. Once groups of functionally related genes are

identified, natural language processing techniques can be employed to further extract the

nature of the relationships between genes [YM02].

These methods, however, have one underlying assumption—related genes will have

term co-occurrence somewhere in the literature to produce an association between them.

One of the problems of genomic data is the high occurrence of gene aliases. Depending on

the time the literature was published, one of several aliases can be used to identify a gene.

As such, many term co-occurrence models will fail to consider associations between genes

that relate gene aliases rather than official gene names.

This scenario can be extended to where literature can identify relationships between

genes without even mentioning a gene or any of its aliases. Ifa gene has certain functional

attributes, the literature about it will generally exhibitthe same fundamental structure. As

a result, methods that base their similarity measures not onthe number of simple term co-

occurrences but on the underlying document word usage patterns will be more likely to find

previously unknown relationships.

The information retrieval technique described is Latent Semantic Indexing (LSI) and is

discussed in detail in Section 3.2. This technique is just one of many IR methods that falls

within the broad category of vector space models (discussedin Chapter 3). Set theoretic

and probabilistic models are the two other classifications that are typically assigned to IR

techniques. Set theoretic models, in their simplicity, arealready used in most biological

contexts. That is, a document is retrieved if an index term occurs in it. Most of the term

4



co-occurrence models and their derivatives fall into this category. Probabilistic models are

also being researched. For example, [MSY03] is refining a hidden Markov model that

attempts to extract useful noun phrases from biomedical literature. This model will help

identify related genes and refine existing ontologies used for classification.
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Chapter 3

Information Retrieval

As the amount of data stored on the Web increases, efficient techniques to navigate and

access that data must be explored. The field of information retrieval (IR) has been well-

researched; however, its application in other disciplinesis just recently being developed.

This chapter contains an overview of the general vector space model. Additionally, a

dimension-reduction technique, Latent Semantic Indexing(LSI), is explained, and the stan-

dard evaluation measures, precision and recall, are discussed.

3.1 Vector Space Model

Thevector space modelis one of many types of information retrieval techniques. Vector

space models assume that the meaning of a document can be derived from the words that

comprise it [Let96]. In fact, many popular vector space models only consider the distribu-

tion of some meaningful words while ignoring the order and proximity with which those

6



words occur.

3.1.1 Data Representation

Treating each document as abag of words, the text must first be parsed into keywords or

tokens. Such parsing typically ignores capitalization and most non-alphanumeric charac-

ters. Also, articles and other non-distinguishing words are removed. The resulting view of

each document is a list of “meaningful” words that representit.

Given a dictionary of� tokens, a document is represented by a vector of length� .

Thus, document
�

can be represented by�� � �� �� � 	 	 	 � �
� �, where��� is the weight as-

sociated with term in document
�
. The� documents in a collection comprise the columns

of an� � � term-by-document matrix� � �� �� �. Conversely, the rows of� represent�
term vectors that show the correspondence between each termand the documents in which

it occurs.

3.1.2 Term Weighting

Each matrix entry��� is a weighted value that represents the occurrence of token� in

document
�

and can be computed as

��� � ��� � ��� �

where��� denotes the local weight of term� in document
�
, �� is the global weight of term

�, and�� is a document normalization factor that can normalize the columns of� [BB99].
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Normalizing the columns ensures that each column has a norm of unit length and helps

eliminate the influence that document size can have on some weighting schemes.

One of the simplest weighting schemes isterm frequencyor

��� � ��� �

where��� denotes the frequency with which term� occurs in document
�
. Since, under

this scheme, rankings (discussed in Section 3.1.3) are biased toward larger documents and

more common terms, aninverse document frequencyglobal weighting factor such as

�� �
�
� ���

�
� � ���� �

can be introduced, where� ���� � is a binary weight that equals one if��� is nonzero and

zero otherwise [BYRN99]. This weighting scheme, calledterm frequency, inverse docu-

ment frequencyor tf-idf has an alternative scheme (referred to astf-idf2) where the global

weighting factor is changed to

�� � ���� ��
� � ���� �

� � 	

Another weighting scheme designed to give distinguishing tokens higher weight islog-

entropy, given by

��� � ��� �� � ��� � �

8



�� � � �
�
��
�
� �� �� ��� � �� �

��� �

�
�� �

where� �� � ��� � �� ��� represents the probability of term� occurring in document
�

[BB99].

3.1.3 Query and Similarity

Once term weights are computed and the term-by-document matrix is constructed, a query

can be represented by apseudo-document vector,	 � �� � � �� � 	 	 	 � �
 �. Since queries are

commonly shorter than documents and rarely contain repetitive terms, the local weight

components are usually ignored. However, query vectors canbe modified to include local

weights if queries are sufficiently large. Also, as with document vectors, query vectors can

be normalized.

Once a query is constructed, computing the similarity of document
�

with respect to

the query	 is accomplished by computing the cosine of the angle betweenthe two vectors.

That is,


�� �	 � �� � � ��� � � �	 � ����
�	
� � � ��� � �


��� � ��� ��� 
��� � � ��
� 
��� � � ���

	

This computation is performed for each of the� documents and the result is sorted to

produce a ranking of the documents with respect to the query	 [BYRN99].1 The actual

value of the similarity score carries little value—the realrelevance information is gained by

1Cosine is one of many similarity measures. For more similarity measures, the reader is directed to
[SM83, ORRW81, Cho99].
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the rank of a document with respect to another document. In practice, however, similarity

scores are thresholded, and only documents with a similarity score above that threshold are

presented back to the user [BB99].

3.2 Latent Semantic Indexing

Two major obstacles of almost all information retrieval models aresynonymyandpolysemy.

Synonymy refers to different words having the same meaning,while polysemy refers to the

same word having a different meaning depending on its context. In both cases, a simple

vector space model does not attempt to handle these anomalies. A variant of the vector

space model called Latent Semantic Indexing, however, does. LSI attempts to discern

global usage patterns in vocabulary to determine the hiddenor latent structure of the doc-

uments; in effect, LSI is an attempt to overcome the problemsof synonymy and polysemy

[Jia97]. [DDF
�

90] argues that LSI overcomes the problem of synonymy well, while it has

marginal success dealing with polysemy.

After the term-by-document matrix,� , has been computed, a truncated singular value

decomposition is performed to generate three factor matrices

� � � �� � �

where� is the� � � matrix of eigenvectors of��� , � is the� � � diagonal matrix of the

� singular values of� , � � is the� � � matrix of eigenvectors of�� � , and� is the rank of

10



the� [GL96]. A rank-
 approximation� � of � can be computed by truncating each of the

factor matrices to the first
 columns. That is,

� � � � �� �� �� 	

Document-to-document similarity is then given by

��� � � � �� �� � � �� �� � �� 	

Queries in LSI must be projected into the appropriate low-rank approximation space. Given

the initialpseudo-document	� of associated term weights, a projected query,	 , is given by

	 � 	�� � ���
�

� �

where� � and� � denote the first
 columns of� and�, respectively [BB99]. If scaled

document vectors
� � � � � �� �� , where�� denotes the
�
th column of the� � � identity

matrix, are calculated, similarity between each
� and	 can be computed by


�� �
� � 	 � � ��� � �

�� �� �� 	 ���
� ��� ��	 ��� � � � � � � � 	 	 	 � � 	

LSI’s end effect is to project the term-by-document matrix into a lower-dimensional

space, thereby forcing queries and documents to be interpreted in a more conceptual man-

ner rather than a literal one by explicitly modeling the interrelationships among terms

11



[BDO95]. Choice of the number of factors or dimensions of thefactorization determines

the conceptual level at which documents are compared, with more factors tending to a more

literal comparison. Because of this, LSI can find similarities between documents that have

no term co-occurrence, and many of the negative effects ofnoiseare reduced [LB97]. The

optimal choice of factors is an open question, and often the choice of dimensions is an

empirical tradeoff between accuracy and problem size or storage [BDJ99].

3.3 Evaluation Measures

Information retrieval systems are often evaluated by the standard measures of precision and

recall.Precisionis the ratio of relevant returned documents to the total number of returned

documents.Recallrefers to the ratio of relevant returned documents to the total number of

relevant documents [BYRN99].

Often, graphs of a system’s performance are given, measuring precision at varying

levels of recall. To condense a system’s performance into one value, the concept ofaverage

precision (AP)is introduced. The�-point (interpolated) average precision is given by

��� �
�
�
�� ����

�

�� � �
� � � � �

where
�� �� � is the maximum precision up to the�th document. That is,

�� �� � � ��	 � �
� � � � � � � � 	 	 	 � � �

12



where� � is the number of relevant documents up to and including the�th position of the

returned list of documents [BB99]. In general, precision isobserved at the endpoints of the

ten decile ranges (i.e., at recall levels of 0%, 10%, 20%, etc.) to form a standard 11-point

average precision value.
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Chapter 4

Gene Document Construction

Information retrieval techniques assume that meaningful document collections exist and

can be easily retrieved. IR methods do not handle the actual construction of the document

collections. In the case of SGO, the construction of documents to represent genes is a

nontrivial process. This chapter describes the method of gene document construction used

to create a test data set, and gives a brief description of thegenes in the test data set.

4.1 Literature Sources

Ultimately, genes affect many diseases. Currently, the entire human genome as well as

several key model organisms have recently been sequenced and annotated. While gene

research is a relatively new field, documentation for disease treatment is much more ex-

tensive. Furthermore, researchers are interested in linking known gene information with

existing medical literature, which is a non-trivial task. There are many databases avail-

14



able online concerning both medical and gene information; however, SGO primarily uses

MEDLINE and LocusLink.

4.1.1 MEDLINE

The United States National Library of Medicine1 (NLM) has a bibliographic database

called MEDLINE (Medical Literature, Analysis, and Retrieval System Online) that con-

tains over fourteen million references to biological journal articles with a concentration in

medicine. MEDLINE covers topics related to basic biomedical research, clinical sciences,

and life sciences that concern biomedical practitioners. Citations span over 4,600 journals

worldwide, while approximately half of the cited articles are published in the United States.

PubMed and NLM Gateway are publicly available tools to search MEDLINE.

All citations in MEDLINE start with indexing year 1966. Approximately 109,000 cita-

tions from 1953-1965 are in OLDMEDLINE and can be searched and retrieved when using

NLM Gateway. PubMed, however, does not have this feature andonly includes citations

from 1966 onward.

Almost a half million completed references are added to MEDLINE yearly, with about

2,000 citations added daily six days a week. Each citation ismanually indexed with Med-

ical Subject Headings (MeSH) terms, a controlled vocabulary provided by NLM. MeSH

terms are organized in a hierarchical fashion.

PubMed retrieves articles from MEDLINE based on any combination of attributes rang-

1NLM, MEDLINE, PubMed, and MeSH are all registered trademarks.
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ing from MeSH terms to simple keyword and keyword phrases. PubMed also provides

access to other selected life science journals not in MEDLINE, although MEDLINE makes

up the vast majority of PubMed’s coverage [NLM].

Not all abstracts in MEDLINE relate to genes. Since MEDLINE contains literature that

spans the last forty years, some of the genomic nomenclaturehas changed over time. As

a result, simply querying PubMed for a gene name will not retrieve the expected amount

of abstracts from MEDLINE. Querying with gene aliases, however, often gathers too many

abstracts from MEDLINE that usually have very little to do with the gene in question. As

a result, ad hoc methods that refine PubMed alias queries withcertain keywords to produce

an appropriate number and type of abstracts is being researched and is discussed in Section

5.2.

4.1.2 LocusLink

The National Center for Biotechnology Information (NCBI) is a division of NLM that fo-

cuses more on molecular biology. Specifically, NCBI provides access to a human-curated

gene-centric database called LocusLink in addition to other databases and services. Lo-

cusLink is a single query interface to a comprehensive directory for genes and gene refer-

ence sequences for key genomes ranging from sea urchins to fruit flies to humans. Lo-

cusLink provides links to other public databases such as MapViewer,2 OMIM (Online

2http://www.ncbi.nlm.nih.gov/mapview/
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Mendelian Inheritance in Man),3 UniGene,4 Gene Ontology (GO) Annotation,5 and the

Genome Browser.6 LocusLink provides links to related records in PubMed and other cita-

tions that are deemed relevant to a specific sequence area or gene. Also, whenever avail-

able, LocusLink displays other information such as officialgene name and symbols as well

as other known aliases [PKSM00]. In addition, annotators provide a RefSeq Summary of

gene function and links to key MEDLINE citations relevant toeach gene.

LocusLink, however, does not cover all relevant citations for each gene. In fact, Lo-

cusLink only links to a representative few. Currently, there are 22,661 abstracts associated

with 38,504 Human LocusLink entries. The 70,413 and 27,393 Mouse and Rat LocusLink

entries have 27,720 and 7,797 associated abstracts, respectively.

4.2 Method of Document Construction

Gene document construction is a nontrivial process that hasnot yet been perfected. One

approach would be to use a small collection of highly relevant abstracts for given genes

that have been assigned by professional curators at LocusLink. This approach would, in

theory, accurately represent genes so known relationshipscould easily be identified, but the

probability of finding hidden relationships is decreased.

A text document to represent a gene orgene documentis created by concatenating all

titles and abstracts of MEDLINE citations cross-referenced in the Mouse, Rat, and Human

3http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
4http://www.ncbi.nlm.nih.gov/UniGene/
5http://www.ebi.ac.uk/GOA/
6http://genome.ucsc.edu
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LocusLink entries for that gene. It is important to note thatsequencing abstracts were

included in each gene document, and that the LocusLink references are not comprehensive.

As such, noise is introduced and the recall of all abstracts associated with a gene is not

guaranteed.

4.3 Test Data Set

A test data set consisting of 50 genes was created to test SGO.The genes occurred in at least

one of three broad functional categories: development, Alzheimer’s disease, and cancer

biology. The genes in the test data set are listed in Table A.1and their classifications are

given in Table A.2. The number of LocusLink citations for each gene in the test data set is

given in Table A.3.

TheReelinsignaling pathway was used as a basis for evaluation and is depicted in Fig-

ure 4.1 [HHWB04]. Reelinbinds directly to the lipoprotein receptorsVldlr andApoer2

and induces tyrosine phosphorylation of the cytoplasmic adapter proteinDab1by fyn tyro-

sine kinase.Dab1binds to amyloid precursor family proteins (APP) among other proteins

and is phosphorylated on ser residues bycyclin dependent protein kinase 5 (Cdk5). Dis-

ruption of theCdk5gene or its activatorP35causes brain structure abnormalities similar

to those observed inreelermice [KT98, DT01], and accumulating evidence suggests that

some components of theReelinsignaling pathway are associated with Alzheimer’s disease

[HRSC99, HHWB04].

For evaluation purposes, the genesReln, Vldlr, Lrp8, Dab1, andFyn are assumed to

18



Figure 4.1: Schematic of theReelinsignaling pathway.

be directly related toReln. Genes indirectly associated withRelnare assumed to beCdk5,

Apoe, Src, Mapt, App, Aplp1, andAplp2. Biological justification for these assumptions are

given in detail in [HHWB04].
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Chapter 5

Use and Evaluation of SGO

SGO is built upon an existing information retrieval (IR) tool and must, in the end, present

results that are meaningful to biologists. This chapter explains SGO in detail including its

interface, features, and strengths and weaknesses.

Once a gene document collection has been created and extraneous tags filtered, only ti-

tles and abstracts should remain. The resulting documents are then parsed via General Text

Parser (GTP), which also performs an SVD and stores the resulting matrices [GWB03].

When GTP finishes processing the document collection, usersare able to query the collec-

tion via the web interface.

5.1 User Interface

A screenshot of the user interface is shown in Figure 5.1. During design, much thought was

given to making the interface as intuitive for biologists aspossible. From the start page,
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Figure 5.1: Screenshot of the SGO interface.
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the user is able to recall previous saved searches, browse genes in a collection, or query a

collection. Demos are provided to illustrate different query types.

Given the research-oriented nature of the user base, the need to save and recall previous

query sessions is evident. Storing query sessions gives SGOthe flexibility to store session-

specific information as well as the ability to incorporate future extensions more easily.

5.2 Query Types

A user can query either by gene or by keyword. To query by gene,a list of genes must be

entered by their UniGene ID, LocusLink ID, OMIM ID, or GenBank Accession Number.

Since biologists usually have lists of these identifiers readily available for the genes of their

interest, this query method should be straightforward. When a gene query is performed,

the entire gene document is used as the query vector for comparison. In essence, the return

list will show gene-gene relationships as dictated by the literature.

On the other hand, keyword queries can be performed in a manner similar to most

any web search engine. Each query is a few keywords that are used to create apseudo-

document that is then compared against all genes in the chosen database. In effect, the

return list will show gene-keyword relationships. If keywords are chosen wisely, gene-

disease, gene-function, and other novel gene relationships can be exposed.

In order to exploit the power of LSI, users are also able to choose the number of factors

with which to query. As discussed in Section 3.2, the number of factors used dictates the

semantic level at which queries are compared. As a result, users are able to compare queries
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at the broadest conceptual level (2 factors) up to a significant level of detail (anywhere up

to the number of documents in the collection). In practice, LSI is most effective at querying

with approximately 300 dimensions for large collections [LLD04]. As a result, a maximum

of 500 dimensions is enforced for any user query.

To demonstrate the effectiveness of SGO, the user can chooseto show “latent” matches,

or gene documents that contain none of the query words. This option is only available with

keyword queries and helps users quickly identify possible previously-unknown relation-

ships that exist in the semantic structure of the literature.

A sample query is shown in Figure 5.2. After a query has been performed, the user can

view the return list by clicking on the query. Each gene will be listed in rank order along

with its cosine similarity value. If applicable, latent matches will be highlighted in red. For

quick assessment, links to the LocusLink or OMIM entries areprovided when appropriate.

Clicking on a gene returns the gene document in the upper leftframe along with the docu-

ment’s top 100 terms and their corresponding global weights. This information can be used

for possible PubMed query refinement and is discussed in Chapter 4.

5.3 Trees

In addition to simple ranked lists, SGO provides other visualization techniques. To do so,

SGO must first modify its output to be used by other algorithms. A self-similarity matrix

of the gene documents in a collection can be built by concatenating gene document queries
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Figure 5.2: Screenshot of a gene document and return list with latent matches (Lrp8) en-
abled.
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into a matrix. Adistance matrix, � � ���� �, can be constructed such that

��� � � � ��� �� �

where��� �� is the cosine similarity between documents� and
�
. This distance matrix can

then be used by any number of tree-building algorithms to create hierarchical trees. Using

the PHYLIP implementation1 of the Fitch-Margoliash method [FM67], SGO produced the

hierarchical tree shown in Figure 5.3 on the 50 gene test dataset. The distance matrix

for the tree shown was computed using 25 factors to compute similarity, and the tree was

displayed with the ATV Java applet.2

By employing thresholdsto the self-similarity matrix, a graph� � �� �� � can be

constructed where� is the set of vertices or genes and� is the set of edges. In the case of

SGO, an edge�� � � � is drawn between gene� and
�

if the similarity between them is higher

than a predefined threshold. Figure 5.4 shows the output of a Java applet3 that displays a

graph orNodal treethat was built with a threshold value of 0.7 on the 50 gene testdata

set. This applet is interactive—the user can drag a gene to see what genes cluster to and

away from it. Such a graph structure, although simplistic, helps the user quickly identify

the overall structure and relationships between all the genes in the collection.

1http://evolution.genetics.washington.edu/phylip.html
2http://www.genetics.wustl.edu/eddy/atv/
3modified from http://java.sun.com/applets/jdk/1.0/demo/GraphLayout/
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Figure 5.3: Screenshot of a hierarchical tree produced by SGO.
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Figure 5.4: Screenshot of a nodal tree produced by SGO.
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5.4 Coding Issues

Since SGO has an interactive web interface, server responsetime is a key issue. As a result,

all actual querying of the database is performed when the user clicks on a query rather than

when the query is submitted. Along the same lines, both the hierarchical and nodal trees are

static for each collection. Since quality tree construction is a slow process, trees are built

offline and presented after the collection is available. It is important to note, however, that

SGO has ascalableinterface—the user is able to query a 50 gene collection or a collection

of thousands of genes with little noticeable difference in response time.

The 50 test gene collection contained 19,789 terms. If a global and document threshold

of 1 is applied—that is, if terms that occur only once across the document collection or

only once in a document are discarded—the number of terms is reduced to 8,754. With no

threshold, the matrices produced by GTP are approximately 7Mb in size; with thresholds,

the matrices are approximately half that size. Simple vector space models produce matrices

that are about 5.5 Mb in size. If the document collection is scaled up to include 20,856

Human LocusLink abstracts (85,999 terms), the storage space required is slightly less than

150 Mb. Likewise, a collection of 4,956 Rat LocusLink abstracts (28,905 terms) requires

approximately 32 Mb.4

4Both LocusLink collections only have a 100-dimension factorization since they were created before
the 500-factor query limit was decided. Expanding these collections to 500 dimensions would add storage
requirements but would still easily be within a manageable size.

28



5.5 Results

SGO performance was evaluated against existing methods forfinding gene relationships in

literature, and LSI was compared against standard tf-idf vector space models. Table 5.1

shows the performance of SGO using various models to identify genes directly and indi-

rectly associated with theReelinsignaling pathway. Although the LSI methods are slightly

outperformed by the vector space methods for gene document queries, the LSI methods are

more robust in that they are able to identify relationships for small queries. As collections

scale up, this discrepancy will become more noticeable since simple vector space models

require term co-occurrence to produce a non-zero similarity. Along the same lines, query-

ing either PubMed or LocusLink for co-citations between genes produces results similar

to the vector space models for keyword queries for the same reasons. Thus, LSI is able to

rank all twelve genes related toReelin, while other intuitive methods fail.

Genes from Gene Ontology (GO) classifications and genes known to be associated

with certain human diseases were retrieved from the test data set using several models, and

SGO’s average precision for each case is presented in Table 5.2.

One advantage of SGO’s interface is that it allows the user tospecify the number of

factors with which to query. This, in effect, determines thescope of the semantic space

with which genes are compared. Figures 5.5 and 5.6 show the precision-recall graphs for

SGO identifying the five direct and twelve indirect genes associated withReelinsignaling,

respectively. Both graphs compare the effect of querying with 5, 25, and 50 factors for

the keyword “Reelin,” since querying by gene would skew the results in favor ofReelin.
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Table 5.1: Ranks for genes directly and indirectly associated with theReelinsignaling
pathway.

LSI 25 factors LSI 50 factors tf-idf tf-idf2Gene
Gene Keyword Gene Keyword Gene Keyword Gene Keyword

RELN 1 2 1 3 1 1 1 1
DAB1 2 1 2 1 2 2 2 2
LRP8 3 3 3 2 3 3 3 3

VLDLR 4 4 4 4 4 4 4 4
FYN 41 34 24 47 14 - 29 -

CDK5 13 8 5 6 29 5 6 5
APOE 22 25 9 34 43 - 9 -
SRC 45 42 33 44 15 - 19 -

MAPT 18 41 7 48 47 - 26 -
APP 20 40 8 16 24 - 8 -

APLP1 10 14 45 30 10 - 18 -
APLP2 12 16 38 11 18 - 10 -

AP 0.634 0.593 0.728 0.617 0.604 0.757

Table 5.2: SGO’s AP performance for different keyword queries.

Query Relevant Genes LSI-25 LSI-50 tf-idf tf-idf2

GO Classifications
apoptosis 7 0.34 0.45 - -
axon guidance 1 0.10 1.00 1.00 1.00
cell fate 2 0.59 0.64 0.22 0.62
kinase 8 0.72 0.80 0.93 0.97
neurogenesis 10 0.27 0.37 - -
patterning 5 0.71 0.68 0.68 0.75
transcription 10 0.40 0.75 0.79 0.83
tyrosine kinase 3 0.19 0.30 0.27 0.38

Human Disease
Alzheimer Disease 8 0.72 0.70 0.85 0.78
Breast Cancer 3 0.75 0.85 0.60 0.91
Lissencephaly 1 1.00 1.00 1.00 1.00
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Figure 5.5: Interpolated precision values for identifyingprimary genes at the decile recall
ranges.
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Figure 5.6: Interpolated precision values for identifyingprimary and secondary genes at
the decile recall ranges.
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Querying with 25 and 50 factors both produced an average precision of 84% for the five

primary genes, while AP dropped to 61% when 5 factors were used. When identifying the

twelve secondary genes, however, using 5, 25, and 50 factorsproduced AP values of 53%,

59%, and 61%, respectively.

The secondary genes, used to simulate latent relationships, demonstrate the power of

SGO. SGO was able to correctly identify all twelve genes withacceptable AP. Other in-

tuitive methods, however, were not so successful. For example, examining PubMed co-

citations generates results comparable to SGO when identifying the five primary genes.

However, only two of the remaining seven secondary genes were identified. Using abstract

overlap of LocusLink citations fails to identify any of the indirectly associated genes.

To offset the bias of the 50 gene document collection towardsthe Reelinsignaling

pathway and to simulate a relatively larger collection withrespect to the relevant genes,

smaller representations of the five primary genes were constructed. 75%, 50%, 25%, and

5% of the original number of abstracts of the genes involved in Reelinsignaling were

chosen in three random samples. The average of the AP values are depicted in Figure

5.7, with the standard deviation shown at the top of each bar.For a collection of 20,856

Human LocusLink abstracts, SGO was able to identify the five primary genes associated

with Reelinwith an average precision of 47%. Further analysis of that and other large

collections is underway.

Unfortunately, precision and recall mean little to biologists. If the hierarchical tree

given in Figure 5.3 is cross-referenced with the classifications given in Table A.2, it is evi-
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Figure 5.7: Effect on AP of decreasing abstract representation of the five primaryReelin-
related gene documents.
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dent that most functional clusters are preserved. The two most notable exceptions are that

of Fyn andShc1. Fyn, an oncogene, is clustered near the Alzheimer andReelingenes al-

though it did not rank highly with the “Reelin” queries. Similarly, Shc1, another oncogene,

is clustered near the genes directly associated withReelinsignaling. At the time of the

construction of the test data set,5 there was very little evidence to support this association.

Recently, however, it has been shown thatShc1directly interacts withApp and plays a

significant role with Alzheimer’s disease [ZGB+04].

5July 7, 2003
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Chapter 6

Conclusion

SGO was tested on the 50 gene test data set as a proof-of-principle experiment. With the

encouraging results produced from that data set, SGO’s datasets must be scaled up to

include entire genomes. In fact, SGO’s interface allows forother information to parsed and

comparisons made between entities other than genes. For example, rather than create gene

documents, “patient” documents can be made that describe a patient’s symptoms to help

physicians quickly identify possible disease threats.

In addition to increasing the size of document collections,the method with which gene

documents are created must also be examined. Currently, only titles and abstracts from

MEDLINE citations of LocusLink entries are used to form a gene document. LocusLink

will soon be replaced by Entrez Gene, so another method must be devised to construct gene

documents. Whether through LocusLink, Entrez Gene, or another database, steps must be

made to ensure that the abstracts in the gene documents are asnoise-free as possible. For
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example, sequencing files that contribute little or no meaningful value to a gene document

must be removed.

Along the same lines, methods must be devised to help overcome the recall problem.

That is, given a gene, find all or a high percentage of the abstracts related to the gene in

question rather than a representative few. This approach will help increase the chances

of uncovering latent relationships. Another obvious approach that should expose latent

relationships is to include entire text documents rather than just titles and abstracts. Of

course, including entire documents may introduce more noise than meaningful information.

So far, SGO uses genomic literature to represent genes; however, other information

can be used to represent genes. [GDAW03] has been developinga system to deal with the

growth of structural protein information. [SB03] applies similar text mining techniques not

to genomic literature, but to protein sequence data. In essence, this data can represent genes

in a genotypic sense, while using genomic literature to represent genes covers a gene’s

phenotype. Methods can be derived that combine both genotype (structural and sequence

data) and phenotype information about a gene to produce a multi-modal similarity. As

hinted in [YM02], literature-based similarity methods often produce results correlated to

sequence-based alignment methods. As such, positive results from a multi-modal method

would have more inherent validation than one that only considers one aspect of genomic

information.

SGO focuses on LSI as its primary retrieval model. It is, however, able to incorporate

other models such as the simple vector space model. One such model that looks promis-
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ing in the bioinformatics context is the Nonnegative MatrixFactorization (NMF). Rather

than ensure orthogonality of factor matrices, NMF guarantees that all factor matrices will

remain, as the name implies, nonnegative. As a result, specific features such as gene func-

tion can hopefully be identified. This method has been shown to have good clustering and

classification results but has yet to be applied to genomic information [Sha04].

As well as increasing the scope of SGO, steps must be taken to ensure that informa-

tion remains current. Weekly updates of gene document information would be one such

step. However, as the amount of information increases, the need for more scalable storage

media will become apparent. Using network storage to house larger matrices and other

information is one viable option that could help increase the availability of SGO [Mir03].

To make SGO more meaningful for biologists who study large groups of genes, a dy-

namic tree-building option must be implemented where biologists can submit a list of sev-

eral hundred genes with which to build a tree. Currently, theFitch-Margoliash method

is used to build trees and was originally chosen for the accurate trees it produced. How-

ever, speed may be traded for acceptable losses in accuracy if faster methods such as the

neighbor-joining method can produce trees in an interactive manner [KF94].

In the end, SGO must continue to use information to produce useful results in an easily-

interpretable format to the user. As with all applications,SGO development will continue

to balance speed with solution quality. Ultimately, however, SGO remains and should

always remain a tool to help validate current lab research and uncover directions for future

exploration.
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Appendix A

Genes Used in Test Data Set

The 50 gene test data set and all associated information is presented in this appendix

[HHWB04].

1. Table A.1 gives a list of the genes along with their officialgene names.

2. Table A.2 lists the genes along with their assumed primaryand secondary classifica-

tions.

3. Table A.3 shows the number of Human (H), Rat (R), and Mouse (M) LocusLink

citations for each gene, along with other identifying information such as GenBank

Accession Number, Unigene ID, and LocusLink IDs.
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Table A.1: Genes in the test data set.

Gene Symbol Official Gene Name
A2M alpha-2-macroglobulin
ABL1 v-abl Abelson murine leukemia oncogene 1

APBA1 amyloid beta (A4) precursor protein-binding, family A, member 1
APBB1 amyloid beta (A4) precursor protein-binding, family B, member 1
APLP1 amyloid beta (A4) precursor-like protein 1
APLP2 amyloid beta (A4) precursor-like protein 2
APOE apolipoprotein E
APP amyloid beta (A4) precursor protein

ATOH1 atonal homolog 1 (Drosophila)
BRCA1 breast cancer 1
BRCA2 breast cancer 2
CDK5 cyclin-dependent kinase 5

CDK5R cyclin-dependent kinase 5, regulatory subunit (p35)
CDK5R2 cyclin-dependent kinase 5, regulatory subunit 2 (p39)

DAB1 disabled homolog 1 (Drosophila)
DLL1 delta-like 1 (Drosophila)

DNMT1 DNA methyltransferase (cytosine-5) 1
EGFR epidermal growth factor receptor

ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
ETS1 E26 avian leukemia oncogene 1, 5� domain
FOS FBJ osteosarcoma oncogene
FYN Fyn proto-oncogene
GLI GLI-Kruppel family member GLI
GLI2 GLI-Kruppel family member GLI2
GLI3 GLI-Kruppel family member GLI3
JAG1 jagged 1
KIT kit oncogene

LRP1 low density lipoprotein receptor-related protein 1
LRP8 low density lipoprotein receptor-related protein 8, apolipoprotein
MAPT microtubule-associated protein tau
MYC myelocytomatosis oncogene

NOTCH1 Notch gene homolog 1 (Drosophila)
NRAS neuroblastoma ras oncogene
PAX2 paired box gene 2
PAX3 paired box gene 3
PSEN1 presenilin 1
PSEN2 presenilin 2
PTCH patched homolog
RELN reelin

ROBO1 roundabout homolog 1 (Drosophila)
SHC1 src homology 2 domain-containing transforming protein C1
SHH sonic hedgehog
SMO smoothened homolog (Drosophila)
SRC Rous sarcoma oncogene

TGFB1 transforming growth factor, beta 1
TRP53 transformation related protein 53
VLDLR very low density lipoprotein receptor
WNT1 wingless-related MMTV integration site 1
WNT2 wingless-related MMTV integration site 2
WNT3 wingless-related MMTV integration site 3
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Table A.2: Classifications associated with each gene.

ClassificationGene Symbol
Primary Secondary

A2M Alzheimer
APBA1 Alzheimer
APBB1 Alzheimer
APLP1 Alzheimer
APLP2 Alzheimer
APOE Alzheimer
APP Alzheimer
LRP1 Alzheimer
MAPT Alzheimer
PSEN1 Alzheimer
PSEN2 Alzheimer
ABL1 Cancer

BRCA1 Cancer
BRCA2 Cancer
DNMT1 Cancer
EGFR Cancer
ERBB2 Cancer
ETS1 Cancer
FOS Cancer
KIT Cancer

MYC Cancer
NRAS Cancer
TRP53 Cancer
SHC1 Cancer
SRC Cancer
FYN Cancer Reelin

ATOH1 Development
CDK5 Development Alzheimer

CDK5R Development Alzheimer
CDK5R2 Development Alzheimer

DLL1 Development Cancer
GLI Development Cancer
GLI2 Development Cancer
GLI3 Development Cancer
JAG1 Development Cancer

NOTCH1 Development Cancer
PAX2 Development Cancer
PAX3 Development Cancer
PTCH Development Cancer

ROBO1 Development Cancer
SHH Development Cancer
SMO Development Cancer

TGFB1 Development Cancer
WNT1 Development Cancer
WNT2 Development Cancer
WNT3 Development Cancer
DAB1 Development Reelin
LRP8 Development Reelin
RELN Development Reelin

VLDLR Development Reelin
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Table A.3: Number of citations associated with LocusLink entries for each gene sorted by
total number of citations.

Gene Accession LocusLink ID Number of Citations
Symbol Number

Unigene ID
H R M H R M Total

APLP1 L04538 Mm.2381 333 11803 29572 4 3 1 8
CDK5R2 U90267 Mm.288703 8941 12570 3 5 0 8
WNT3 M32502 Mm.5188 7473 22415 24882 5 6 0 11
ROBO1 Y17793 Mm.310772 6091 19876 58946 3 8 1 12
DAB1 Y08380 Mm.289682 1600 13131 266729 3 11 0 14
LRP8 AJ312058 Mm.276656 7804 16975 6 9 0 15
WNT2 AI507247 Mm.33653 7472 22413 114487 5 8 2 15
ATOH1 D43693 Mm.57229 474 11921 3 13 0 16
DLL1 AV007019 Mm.4875 28514 13388 84010 9 7 0 16

APBA1 AF029106 Mm.22879 320 108119 83589 14 2 1 17
GLI AB025922 Mm.336839 2735 14632 140589 11 6 0 17
SMO AF089721 Mm.29279 6608 20596 9 9 0 18

VLDLR L33417 Mm.4141 7436 22359 25696 6 12 0 18
GLI2 X99104 Mm.273292 2736 14633 8 11 0 19
SHC1 AI050321 Mm.86595 6464 20416 85385 6 13 1 20
A2M AY185125 Mm.30151 2 232345 24153 14 2 5 21

CDK5R U89527 Mm.142275 8851 12569 116671 8 10 3 21
PAX2 X55781 5076 18504 16 7 0 23
APLP2 AV313336 Mm.19133 334 11804 25382 6 14 4 24
WNT1 M11943 Mm.1123 7471 22408 24881 11 14 0 25
APBB1 AI839886 Mm.38469 322 11785 29722 15 8 3 26
GLI3 X95255 Mm.5098 2737 14634 140588 10 16 0 26
LRP1 X67469 Mm.271854 4035 16971 15 11 0 26
JAG1 AF171092 Mm.22398 182 16449 29146 19 7 1 27
PTCH U46155 Mm.3057 5727 19206 89830 18 11 1 30
NRAS X13664 Mm.256975 4893 18176 24605 18 12 1 31
PAX3 X59358 Mm.1371 5077 18505 114502 17 14 0 31
ETS1 AA929300 Rn.88756 2113 23871 24356 19 14 1 34
CDK5 D29678 Mm.298798 1020 12568 140908 10 17 8 35

DNMT1 AF036008 Mm.128580 1786 13433 84350 14 20 2 36
FYN M27266 Mm.4848 2534 14360 25150 17 18 4 39

PSEN2 U57325 Mm.330850 5664 19165 81751 27 11 3 41
RELN AV263736 Mm.3057 5649 19699 24718 17 22 4 43
SRC M17031 Mm.22845 6714 20779 83805 27 14 5 46

ABL1 J02995 Mm.1318 25 11350 311860 44 12 0 56
BRCA2 U89652 Mm.236256 675 12190 25082 48 10 2 60
MAPT M18775 Mm.1287 4137 17762 29477 43 14 4 61
FOS AV252296 Mm.246513 2353 14281 24371 23 19 21 63
KIT Y00864 Mm.247073 3815 16590 64030 32 30 1 63

NOTCH1 AV374287 Mm.290610 4851 18128 25494 20 44 5 69
SHH X76290 Mm.57202 6469 20423 29499 18 46 7 71

PSEN1 L42177 Mm.998 5663 19164 29192 53 26 6 85
MYC L00039 Mm.2444 4609 17869 24577 59 34 9 102

ERBB2 AW213701 Mm.290822 2064 13866 24337 95 23 9 127
APOE AV092985 Mm.305152 348 11816 25728 93 31 4 128
APP U82624 Mm.277585 351 11820 54226 85 34 12 131

BRCA1 U32446 Mm.244975 672 12189 24227 114 20 3 137
EGFR L06864 Mm.8534 1956 13649 24329 89 40 11 140
TGFB1 AJ009862 Mm.248380 7040 21803 59086 111 49 22 182
TRP53 AB021961 Mm.222 7157 22059 24842 222 122 17 361

49



Vita

Kevin Erich Heinrich was born in Würzburg, Germany on October 24, 1979. He grad-

uated Valedictorian from Maryville High School in Maryville, Tennessee in 1997. He

received Top Graduate Honors and a Bachelor of Science degree in Computer Science

and Honors Mathematics with a minor in Economics from the University of Tennessee in

May 2001. Interested in his current projects, he remained atthe University at Tennessee

to receive a Master of Science degree in Computer Science in August 2004. He plans to

continue his research en route to a Doctorate in Computer Science.

50


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2004

	Finding Functional Gene Relationships Using the Semantic Gene Organizer (SGO)
	Kevin Erich Heinrich
	Recommended Citation


	thesis.dvi

