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   ABSTRACT 

Marine viruses are critically important in the regulation of biogeochemical cycles and 

host microbial communities.  In this study, we tested whether the indirect effects of virus 

predation on a phototroph (i.e., Synechococcus) affected the composition of co-occurring 

heterotrophic bacteria under nitrogen and phosphorus limitation in long-term chemostat 

experiments.  Using 454 Titanium barcoded pyrosequencing of the 16S rRNA gene, microbial 

diversity and technical (i.e., sequencing) reproducibility were assessed for nine individual 

chemostats across five different time points.  A total of 325,142 reads were obtained; 194,778 

high-quality, non-cyanobacterial sequences were assigned to 110 OTUs.  Our results show high 

reproducibility with most communities clustering closest with their technical replicate, and a 

similar distribution of taxonomic assignments across replicates.  The most abundant phylum was 

Proteobacteria, with Cyanobacteria representing only 20% of the sequences.  OTU-based 

analyses revealed similar trends across chemostats; Sulfitobacter was the dominant genus while 

Pseudomonas was unique to the phosphorus-limited chemostats.  A statistical examination of 

biological replicates revealed significant differences between the nitrogen- and phosphorus-

limited treatments (p = 0.0001) and time (p = 0.0001), as well as a significant interaction 

between nutrient limitation and time (p = 0.0091).  These results demonstrate the relative 

importance of nutrient-limitation as a potential primary driver of non-target heterotrophic 

community change as opposed to the indirect effects of viruses on a marine food web. 
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INTRODUCTION 

Importance of microbes in marine systems 

The importance of microbial processes in aquatic ecosystems has been increasingly 

recognized since the advent of Azam’s “microbial loop” (Azam et al. 1983).   This concept 

spurred interest in how microorganisms influence biogeochemical cycles and ecological 

processes.  In that model, phytoplankton provide carbon (C) as dissolved organic matter (DOM) 

to heterotrophic bacteria as an energy source as well as materials ultimately converted into 

particulate organic matter (POM).  Then, protozoans graze on these bacteria, providing a source 

of nutrients for microzooplankton at higher trophic levels.  Since then, the concept has been 

revisited and the role of viruses has been integrated into the model (Fuhrman 1999; Wilhelm and 

Suttle 1999).  Viruses are extremely abundant in marine systems and play an important but 

previously overlooked role in short circuiting up to one-quarter of organic carbon into DOM 

pools available to heterotrophic bacteria (Wilhelm and Suttle 1999).  At a larger scale, this shunt 

controls the efficiency of the biological pump which alters the amount of carbon sequestered in 

the deep oceans (Suttle 2005).   

Interplay of cyanobacteria and heterotrophic bacteria 

Cyanobacteria (also referred to as blue-green algae) are considered the most diverse and 

widespread group of photoautotrophic prokaryotes in the marine environment (Stanier and 

Cohen-Bazire 1977).  The world’s oceans are dominated by two major genera of ecologically 

critical picophytoplankton: Synechococcus (Waterbury et al. 1979) and Prochlorococcus 

(Chisholm et al. 1988).  Both genera are abundant in the marine environment, with higher 

Synechococcus abundances in nutrient-rich (near coastal) waters and Prochlorococcus 
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populations dominating oligotrophic waters (Partensky et al. 1999).  Although they differ in their 

light-harvesting complexes, distribution and abundance, together these organisms contribute up 

to 50% of primary productivity in the world’s oceans (Li 1995; Liu et al. 1997).  Autotrophic 

picoplankton occurring at the ocean’s surface serve as a high quality C source for heterotrophic 

bacteria in the form of DOM (Azam et al. 1983).  Given their distribution and contribution to 

primary productivity, cyanobacteria are critical components of the marine environment. 

 Heterotrophic bacteria are also important to marine microbial food webs (Sherr and Sherr 

1988).  While cyanobacteria occur at high abundances in the marine environment, heterotrophic 

bacteria actually are the majority of microorganisms in marine systems.  Since the early papers 

of Pomeroy and Azam (Pomeroy 1974; Azam et al. 1983), the role of heterotrophic bacteria in 

the environment has been of particular interest.  Estimates suggest that heterotrophs make up 40-

70% of the stored organic carbon in the euphotic zone of oligotrophic, open-ocean environments 

(Fuhrman et al. 1989; Cho and Azam 1990).  Heterotrophic bacteria utilize DOM released by 

living or dead phytoplankton as a primary food source (Ducklow and Carlson 1992).  In turn, 

heterotrophs at the base of the food web transfer energy to higher trophic levels (i.e., larger 

zooplankton) through grazing.  Therefore, heterotrophic bacteria are fundamental to microbial 

food webs as agents of organic matter decomposition and as a food source to higher organisms. 

The complex interactions between cyanobacteria and heterotrophic bacteria in the oceans 

have been considered one of the most important factors regulating primary productivity 

(Fuhrman et al. 1989).  Previous studies have shown that viral lysis of heterotrophic bacteria 

releases both DOM and POM (Riemann and Middelboe 2002).  While cyanobacteria are capable 

of taking up DOM, heterotrophic bacteria break down POM and assimilate the carbon from it 

(Noble and Furhrman 1999; Poorvin et al. 2004).  In the presence of viruses, lysate products 
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from phytoplankton release nutrients that are rapidly assimilated by heterotrophic bacteria 

(Gobler et al. 1997).  Conversely, Weinbauer et al. (2011) suggested that the regeneration of 

nutrients released from the lysis of co-occurring heterotrophic bacteria in the environment may 

actually stimulate the growth of the ecologically critical cyanobacterium, Synechococcus.  These 

findings provide evidence that heterotrophic bacterial lysis potentially regulates the growth of 

phytoplankton, which may have major implications on primary production.  Elucidating the 

importance and influence of cyanobacteria and heterotrophic bacteria is essential to our current 

understanding of marine food webs. 

Marine Viruses  

Viruses are highly abundant, biologically active components of aquatic ecosystems.  The 

first estimates of viral abundance via transmission electron microscopy (TEM) reported 

concentrations greater than 108 viruses per mL-1 in aquatic environments, stimulating new 

interest in their ecological contribution to aquatic food webs (Torrella and Morita 1979).  While 

TEM still remains a standard method for visualizing viral morphology and estimating burst size, 

original abundance estimates based on this technique were largely underestimated (Bergh et al. 

1989; Proctor and Fuhrman 1990; Hennes and Suttle 1995).  In the early-1990s, direct counts via 

epifluorescence microcopy emerged as a more practical technique for enumerating viruses 

(Suttle et al. 1990; Hara et al. 1991; Proctor and Fuhrman 1992; Hennes and Suttle 1995).  Since 

then, a number of fluorescent dyes (DAPI, Yo-Pro-1, SYBR Green and SYBR Gold) have been 

used for direct counts and flow cytometry for rapid enumeration of viruses (Suttle et al. 1990; 

Hennes and Suttle 1995; Noble and Fuhrman 1998; Chen et al. 2001).  Although virus 

abundance varies widely across ecosystems, estimates in aquatic systems typically differ by at 

least two orders of magnitude (~106 to 108 viruses mL-1) with recent estimates suggesting the 
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oceans contain upwards of ~1030 viruses (Wommack and Colwell 2000; Suttle 2005).  Viral 

abundance depends on a number of environmental factors including productivity levels, bacteria 

and chlorophyll concentrations, and tends to decrease by one order of magnitude as nutrient 

conditions transition from nutrient-rich coastal waters to oligotrophic, open ocean waters 

(Hennes et al. 1995; Fuhrman 1999).   

Cyanophages 

Cyanophages (i.e., viruses that specifically infect cyanobacteria) have been extensively 

studied since the first isolation reported in the early 1960s (Safferman and Morris 1963).  

Cyanophages that have been studied to date all belong to one of three morphologically distinct 

families of double-stranded DNA viruses: Myoviridae (T4-like phage), Siphoviridae (λ-like 

phage) and Podoviridae (T7-like phage) (Mann 2003).  Although cyanophages were originally 

isolated from a freshwater system, they are widespread in the marine environment and ubiquitous 

across aquatic systems (Moisa et al. 1981; Suttle and Chan 1993; Waterbury and Valois 1993; 

Suttle and Chan 1994).  Their ability to lyse host cells of numerically dominant cyanobacteria 

species plays a significant and potentially underestimated role in biogeochemical cycling 

(Fuhrman 1999; Wilhelm and Suttle 1999).   Since viral infection is a selective process (Stoddard 

et al. 2007), it is not surprising that their presence can influence microbial communities.  While 

previous studies have identified cyanophages as significant agents of mortality, others suggest 

that their role has been largely overestimated (Waterbury and Valois 1993).  In these 

communities, a dominating resistant (i.e., to co-occurring phage) population was thought to 

enable Synechococcus to maintain stable cell densities, resulting in different clonal populations 
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of Synechococcus.  Therefore, the rapid evolution of cyanophage resistance alters and influences 

the dynamics and diversity of the host and infecting phage.   

Biogeochemical cycling 

Marine viruses are critically important in the regulation and transformation of both 

carbon and nutrients in biogeochemical cycles (Fuhrman 1999; Suttle 2005; Suttle 2007; Rohwer 

and Thurber 2009).  Although the role of viruses was not originally included in early models of 

the marine food web or microbial loop, their significance in marine systems has been recognized 

by ecologists over the last two decades (Bergh et al. 1989; Proctor and Fuhrman 1990).  Reports 

that viruses were potentially significant agents of microbial mortality increased interest in their 

effects on nutrient cycling.  In the late 1990s, the viral shunt was introduced as a modification to 

the original microbial loop incorporating the lysis of phytoplankton and production of 

heterotrophic bacteria (Wilhelm and Suttle 1999).  The revised model suggests that between 6-

26% of organic carbon released from lysed host cells is transferred through the viral shunt to the 

DOM pool, resulting in higher respiration rates and reducing the transfer efficiency of energy to 

higher trophic levels.  In addition to carbon, viral-mediated processes release other elements such 

as nitrogen (N) and phosphorus (P).  Together carbon, nitrogen and phosphorus play an 

important role in nutrient cycling and regulating primary production. 

Carbon 

In marine systems, carbon is divided into two separate pools of particulate organic carbon 

(POC) and dissolved organic carbon (DOC).  While POC is typically transferred to higher 

trophic levels in the marine food web, DOC is recycled through the microbial loop (Azam et al. 

1983; Wilhelm and Suttle 1999).  Viral lysis mediates the flux of the global carbon pool by 
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shifting carbon from POC to DOC (Suttle 2005).   This transformation of carbon alters the 

efficiency of the biological pump (Longhurst and Glen Harrison 1989).  Viral lysis reduces the 

rate that carbon sinks to the bottom of the ocean.  As a result, a higher proportion of carbon is 

retained at the ocean’s surface, resulting in higher respiration rates (Suttle 2005).  Observations 

from laboratory studies have shown viral lysis of a phytoplankton bloom can stimulate the 

growth of heterotrophic bacteria (Gobler et al. 1997; Wilhelm and Suttle 1999).  Results from the 

work of Gobler et al. (1997) predict that cell lysis in the field can potentially generate up to 40 

µM of DOC for bacterial uptake.  Additionally, experimental evidence suggests that carbon 

released from control cells is assimilated more readily than carbon released from virally-infected 

cells which may be larger and less labile (Gobler et al. 1997).  Thus, viral lysis affects global 

carbon cycling and has implications on the amount of carbon sequestered to deep ocean waters. 

Nitrogen and Phosphorus 

Nitrogen and phosphorus are both important macronutrients in the marine environment.  

These elements, which can limit primary productivity and mediate the efficiency of the 

biological pump, exist in either a particulate or dissolved phase (organic or inorganic) (Smith 

1984; Downing 1997; Zehr and Ward 2002; Suttle 2007).  Despite the longstanding 

disagreement over which of the two nutrients are truly limiting in the marine environment, it is 

well understood that both elements play important roles in biogeochemistry (Smith 1984; 

Downing 1997; Arrigo 2005).  More importantly, phytoplankton are capable of readily 

assimilating labile forms of N and P in the environment, which are recycled in the oceans 

through processes such as grazing or cell lysis (Tyrrell 1999).  The liberated nitrogen and 
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phosphorus-based compounds from lysed phytoplankton cells are readily available for 

subsequent uptake by heterotrophic bacteria as a nutrient source. 

Viral activity fuels nutrient cycling 

Viral activity contributes to the elemental cycling of nitrogen and phosphorus by 

diverting organic matter away from the classical grazing model and promoting heterotrophic 

bacterial growth (Proctor and Fuhrman 1990; Haaber and Middelboe 2009).  Cell lysis releases 

phage and cellular debris in the form of DOM (Fuhrman 1999; Middelboe and Jorgensen 2006).  

A number of studies have shown that viral lysis catalyzes the transfer of energy through the food 

web (Gobler et al. 1997; Bratbak et al. 1998; Haaber and Middelboe 2009).  The results from a 

study investigating the effects of viral lysis of Aureococcus anophagefferens on elemental 

cycling suggest that bacteria rapidly consume nutrients following lysis.  The demise of the bloom 

was correlated to increases in organic N and bacterial abundance (Gobler et al. 1997).  The 

bacteria were able to re-assimilate more phosphorus in its inorganic form compared to 

phosphorus released from the lysed phytoplankton.  Additionally, it has been shown 

experimentally that there are differences in the mineralization efficiency of viral-induced 

substrates (Gobler et al. 1997; Haaber and Middelboe 2009).  Both authors found that the lysate-

derived P was recycled less efficiently than N.  Examples of specific lysate products sustaining 

heterotrophic growth include both dissolved DNA (D-DNA) (Brum 2005; Holmfeldt et al. 2010) 

and cell wall compounds (Middelboe and Jorgensen 2006) which provide important sources of 

amino acids and nucleic acids.  The literature collectively suggests that viral activity is of critical 

importance to the rapid recycling of nitrogen and phosphorus in the oceans. 
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Viruses shape community structure 

In addition to altering the biogeochemistry of marine systems, viruses can impact the 

genetic diversity and structure of microbial communities.  At any given time, approximately 20% 

of marine heterotrophs are thought to be infected by viruses (Suttle 1994).  Furthermore, 

estimates suggest that viruses may be responsible for removing 20-40% of the prokaryotic 

standing stock per day, which likely equals or exceeds mortality rates due to grazing (Suttle 

1994; Suttle 2007).  The influence of viral lysis on prokaryotic diversity has previously been 

described in the literature through the “killing the winner” hypothesis (Thingstad and Lignell 

1997).  The “killing the winner” theory explains that once a competitive specialist becomes 

dominant in a system, its contact rates with viruses should increase, leading to a decline in the 

dominant species (Thingstad and Lignell 1997; Winter et al. 2010).  This theory enables the 

survival of less abundant members as well as virus-resistant populations in a bacterial 

community.  The selection of virus-resistant populations has been examined in depth through a 

number of bacterial community studies (Waterbury and Valois 1993; Middelboe 2000; Fuhrman 

and Schwalbach 2003; Bouvier and del Giorgio 2007).   

In other cases, specific populations may benefit from the release of different cell lysis 

products (i.e., organic matter) allowing resource specialists to become dominant (Riemann et al. 

2000; Weinbauer 2004).  For example in a chemostat study investigating the dynamics between a 

single marine phage and its host (Pseudoalteromonas), the phage-resistant population replaced 

the sensitive population (Middelboe 2000).  The lysis products released from the infected host 

stimulated the growth of the resistant population, enabling the non-infected population to 

dominate.  Another study using multiple host-phage systems confirmed these results and 

concluded that the change in clonal composition was likely due to viral lysis over a long time 
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scale (Middelboe et al. 2001).  Based on these results, specific lysate products stimulate the 

growth of nutrient specialists and the overall growth of the surviving bacterial community. 

In contrast to focusing on the direct effects of viruses, others have studied the indirect 

effects of viral lysis on non-target bacteria.  Middelboe et al. (1996) investigated the growth rates 

of non-infected bacteria in a natural bacterioplankton community and found that lysis products 

may serve as an important nutrient source for the non-infected bacterial community.  Lennon and 

Martiny (2008) conducted a chemostat experiment examining the direct effects of a cyanophage 

on Synechococcus population dynamics, nutrient availability and microbial stoichiometry in a P-

limited system.  This study also provided insight into the indirect effects of a cyanophage on 

heterotrophic bacterial community structure.  Findings from this study suggested that the 

presence of viruses did not significantly impact the abundance or composition of the 

heterotrophic bacterial community based on T-RFLP (terminal restriction fragment length 

polymorphism) profiles.  Additionally, viruses may also indirectly influence community 

composition via viral-mediated grazer lysis (reducing bacterial predation) or through species-

specific growth responses to organic substrates recycled in the system (Weinbauer and 

Rassoulzadegan 2004; Suttle 2007).  To date, the indirect effects of viruses on the non-target 

bacterial community are unclear and have yet to be further investigated in detail.   

Evidence for virus resistance 

Chemostat studies reveal rapid evolution of virus resistance 

Chemostats (also referred to as continuous cultures) have been used for years as model 

systems to link simple laboratory communities to large-scale, complex ecological dynamics and 

community-level evolutionary theory (Droop 1974; Lenski and Levin 1985; Bohannan and 
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Lenski 1997; Bohannan et al. 1999; Bohannan and Lenski 2000; Middelboe 2000; Lennon et al. 

2007; Middelboe et al. 2009).  The earliest models of virus-host systems within chemostats 

examined the co-evolution of Escherichia coli (E. coli) B and its lytic T-series bacteriophages 

(Lenski and Levin 1985; Lenski 1988).  In this set of experiments, phage-resistant and resource-

limited E. coli populations readily evolved in the closed system (Lenski and Levin 1985).  

Although no phage mutants co-evolved in the experiment, the wildtype phage was able to persist 

due to a small population of susceptible bacteria that were able to outcompete the resource-

limited resistant E. coli.  Other studies have investigated the effects of nutrient enrichment on 

bacteria-bacteriophage dynamics (Bohannan and Lenski 1997).  Increases in the equilibrium 

density of both E. coli B and bacteriophage T4 were observed in response to glucose enrichment.  

The enrichment reduced the amount of time it took for phage-resistant mutants to emerge and 

increased the rate at which they appeared.  Collectively, these small-scale evolutionary processes 

frequently observed in chemostats imply that resistant populations are selected for in response to 

bacteriophage, enabling the coexistence of competitors (sensitive and resistant phenotypes) and 

altering the dynamics and structure of the bacterial community. 

For E. coli, populations resistant to all of the T-series phages have been reported (Lenski 

1988).   When a specific mutation occurs that confers resistance to a lytic phage, the density of 

bacteria can dramatically increase, sometimes by orders of magnitude until the population 

becomes resource-limited in a chemostat (Chao et al. 1977).  After resistant populations evolve 

and dominate the system, the virulent phage is sustained by a minority population of sensitive 

bacteria that are successful resource competitors (Lenski and Levin 1985).  Furthermore, a 

tradeoff between resistance and competitive ability is typically associated with the evolution of 

viral resistance (Bohannan and Lenski 2000).  This tradeoff is often referred to as a cost of 
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resistance (COR).  Examples of fitness reductions in bacteria include lower rates of resource 

uptake, reduced growth rates or increased susceptibility to other phages (Bohannan and Lenski 

1997; Bohannan et al. 1999).  Thus, phage-resistant strains have a competitive disadvantage to 

their co-occurring wildtype strains.  The magnitude of the COR can vary depending on a number 

of factors including the specific mutation, resource availability and the identity of other phages 

in the system (Bohannan et al. 1999; Bohannan et al. 2002; Lennon et al. 2007). 

While a number of chemostat studies have focused on clinically relevant bacteria (Chao 

et al. 1977; Lenski and Levin 1985), population dynamics have also been explored in marine 

systems.  Evolution of virus resistance in these systems has become increasingly recognized, but 

still remains highly understudied (Suttle and Chan 1994; Lennon et al. 2007; Stoddard et al. 

2007).  These studies have investigated the effects of phage on ecologically relevant marine 

bacteria and cyanobacteria (Bratbak and Thingstad 1985; Bratbak et al. 1998; Middelboe 2000; 

Middelboe et al. 2001; Lennon et al. 2007).  In the mid-1980s, Bratbak and Thingstad (1985) 

sought to understand how a mixed algal-bacterial system would respond to P-limited conditions 

in a continuous culture.  Their conclusions suggest that increasing the degree of nutrient 

limitation resulted in higher abundances of bacteria and lower abundances of algae.  Middelboe 

et al. (2001) found that bacterial diversity was driven by interspecies competition following the 

initial lytic event.  Although the overall bacterial density was not affected by phage, the clonal 

composition was significantly influenced, resulting in a complete shift of sensitive to resistant 

cells within a time span of 5 to 10 generations (Middelboe et al. 2001).  This example of clonal 

composition change in a biological system supports the production of high phage titers in the 

presence of sensitive and resistant populations which refutes previous assumptions rejecting the 

importance of resistant strains in marine communities (Fuhrman 1999).   
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Resistance in cyanobacteria 

Despite previous literature on host-phage interactions, a general mechanism of loss of 

infectivity in cyanobacterial host systems has yet to be investigated in detail.  Hypothesized 

resistance mechanisms in cyanobacteria include variability in phage receptors, 

lipopolysaccharide modifications, restriction-endonuclease systems, lysogeny as a form of 

immunity and the novel CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) 

defense system (Wilson et al. 1993; Xu et al. 1997; Mann 2003; Barrangou et al. 2007).  The 

discovery that marine cyanophages were capable of infecting both Prochlorococcus marinus and 

a Synechococcus strain, suggests conservation of phage receptor expression among 

cyanobacteria (Sullivan et al. 2003).  The identity and diversity of receptors and other receptor-

like structures likely contribute to the attachment specificity of cyanophages in the environment, 

leading to evolved resistance in some cyanobacterial populations (Stoddard et al. 2007).   

Avrani et al. (2011) unveiled genome-level evidence of viral resistance among mutant 

strains of Prochlorococcus.  In the study, a virus-resistant population of Prochlorococcus 

emerged following a lytic podocyanophage infection.  The resulting phage-resistant population 

was characterized by gene mutations involved in the biosynthesis of putative viral receptors on 

the host cell surface with the majority of mutant genes confined to a specific region of the 

genome.  In addition to impaired phage attachment to the cell surface, the mutations also 

imposed a COR on the mutant genotypes resulting in a reduced growth rate and increased 

susceptibility to other viruses similar to previous studies (Bohannan and Lenski 2000; Lennon et 

al. 2007).  These findings suggest that gene mutations are capable of shaping host subpopulations 

of both sensitive and resistant genotypes and support the stable existence of co-occurring 

cyanophages in the environment (Avrani et al. 2011). 
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Next-generation sequencing 

Accurately estimating the diversity of a microbial community remains a challenge in the 

field of microbial ecology.  Prior to its development, automated Sanger sequencing dominated 

the DNA sequencing industry (Sanger et al. 1977).  However, a number of limitations and 

challenges associated with Sanger-based sequencing gave rise to next-generation sequencing 

technologies (Metzker 2010).  These new sequencing methods have enabled deeper community 

analyses by generating orders of magnitude more sequence data and revealing a remarkable 

degree of prokaryotic diversity in the environment (Tringe and Hugenholtz 2008).  Next-

generation sequencing platforms (e.g. Roche’s 454 Genome Sequencers, Illumina’s 

Solexa/Genome Analyzer and Applied Biosystem’s SOLiD) can be coupled with a culture-

independent 16S ribosomal ribonucleic acid (rRNA) gene analysis.  The 16S rDNA technique is 

widely used to identify and understand the diversity of bacteria, and the universality of the gene 

makes it ideal for comparison to current databases (Woese 1987; Wang et al. 2007).   

These methods are more robust and increasingly cost-effective compared to traditional 

Sanger sequencing.  Although next-generation sequencing platforms can rapidly generate 

enormous amounts of data in a short amount of time (Mardis 2008), the technologies are still 

limited by shorter read lengths and less accurate base-calls (Shendure and Ji 2008).  The 

development of 454 Titanium-based pyrosequencing (454 GS FLX Titanium) increased the 

average read length to 400-500 base pairs (bp) (Sogin et al. 2006), compared to 250 bp generated 

by 454 GS FLX chemistry.  While the Illumina and SOLiD systems provide more sequence data, 

they both produce much shorter reads making the 454/Roche system a cost-effective option for 

relatively longer sequence lengths.  The pyrosequencing process also offers the capability to 

multiplex through the use of unique DNA sequence tags referred to as barcodes that can be 
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incorporated via primers (Parameswaran et al. 2007).  Using barcoding technology, multiple 

samples can be pooled in one run for high-throughput sequencing.  Pyrosequencing data can then 

be used to classify sequences taxonomically to reference databases and standard indices (i.e., 

species richness, species evenness, and diversity) can be calculated to assess the dynamics and 

microbial composition of bacterial communities.     

Bias in pyrosequencing studies  

Despite the powerful nature of the approach, pyrosequencing suffers from a set of 

challenges and drawbacks.  Sampling size is considered one of the biggest challenges in 

microbial diversity studies (Lemos et al. 2011).  Two factors that must be considered in 

microbial community studies are i) how many sequences must be acquired from each sample to 

adequately characterize diversity (i.e., sequencing depth) and ii) how unequal sample sizes affect 

overall conclusions.  A number of studies have concluded that diversity indices are directly tied 

to sampling effort and must be normalized to make reasonable comparisons across studies 

(Hughes et al. 2001; Youssef et al. 2009; Gihring et al. 2011; Lemos et al. 2011).  A recent study 

conducted by Gihring et al. (2011) emphasized the importance of randomly subsampling 

pyrosequenced libraries to overcome the variation often reported across samples.  Remarkably, 

only one quarter of the studies they reviewed normalized their dataset by subsampling.  The 

authors suggest that future studies should subsample to eliminate this type of bias. 

Other factors reported to bias pyrosequencing data include PCR conditions (Martin 

2002), primer choice (Engelbrektson et al. 2010), amplicon length (Huber et al. 2009), 

operational taxonomic unit (OTU) clustering (Hughes et al. 2001; Huse et al. 2010) and fragment 

choice (Wang and Qian 2009; Youssef et al. 2009).  OTUs are frequently described at different 

levels in the literature making diversity comparisons across studies very challenging (Martin 
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2002).  This source of bias could be overcome by keeping OTU cutoffs defined and consistent 

across studies (Hughes et al. 2001).  For amplicon length, shorter amplicons (less than 400 bp) 

have resulted in higher richness estimates than longer ones (Huber et al. 2009).  Furthermore, 

fragment choice can underestimate or overestimate the number of OTUs defined at different 

cutoffs (Youssef et al. 2009).  Thus, region choice of the 16S rRNA gene must be selected with 

great caution depending on the desired fragment length to make appropriate conclusions using 

taxonomic assignments and standard indices (Wang and Qian 2009).  Another source of error in 

pyrosequencing of the 16S rRNA gene is the formation of chimeras (Haas et al. 2011; Quince et 

al. 2011).  Chimeras are generated during the PCR step when an aborted extension product 

serves as a primer in the next PCR cycle, resulting in a sequence derived from two separate 

parents (Meyerhans et al. 1990).  In order to reduce sequencing error, a number of programs 

have been developed such as Bellerophon, ChimeraSlayer and UCHIME to detect chimeras 

(Huber et al. 2004; Edgar et al. 2011; Haas et al. 2011).  Previous pyrosequencing studies of the 

16S rRNA gene have also included sequencing a mock community sample as a control (Huse et 

al. 2010).  By including a defined community of 16S rRNA gene sequences with each run, 

pyrosequencing error and processing drift can be accurately assessed. 

 To date, the reproducibility of amplicon-based sequencing has not been addressed 

extensively in the literature.  A recent study by Zhou et al. (2011) reported low reproducibility 

with regards to OTU overlap among technical replicates due to random sampling processes (e.g. 

selective PCR amplification, bead deposition).  However, when singletons or less representative 

sequences of OTUs were removed from the dataset, the OTU overlap increased significantly. 

Conversely, other studies using the GS FLX and Illumina platforms have demonstrated much 

higher levels of sequencing reproducibility (Bartram et al. 2011; Kauserud et al. 2011).  Others 
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have developed methods to improve pyrosequencing reproducibility such as using a two-step 

barcoding approach that reveals more sequence diversity than the standard one-step method 

(Berry et al. 2011).  The bias resulting from their barcoded primers is unclear, but the authors 

suggest it may be a result of unknown interactions between the DNA template and barcode.  

With the limited number of publications in the literature, more comparisons will be necessary to 

validate the technical sequencing reproducibility of next-generation sequencing platforms.  
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RESEARCH OBJECTIVES 

While the direct effect(s) of viruses on marine microbial communities have been well 

documented in the literature, less emphasis has been placed on understanding the indirect effects 

of viruses on the non-target microbial community.  The overall goal of this study was to 

determine if the indirect effects of a cyanophage (Cyanomyoviridae) or nutrient limitation 

(nitrogen or phosphorus deplete conditions) affected the structure of the co-occurring 

heterotrophic bacteria in a long-term chemostat experiment.  In our approach, we used 454 

Titanium barcoded pyrosequencing of the 16S rRNA gene to characterize the structure and 

microbial diversity of nine individual nutrient-limited chemostats with or without cyanophage 

over time.  We also assessed the technical reproducibility of sequencing on the 454 Titanium 

platform.  In this thesis, we address our questions with the following specific hypotheses: 

H1: The heterotrophic bacterial community structure in a chemostat is different under 
nitrogen-limited conditions than phosphorus-limited conditions. 
 
H2: The presence of cyanophage results in a different heterotrophic community structure 
in a chemostat. 
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METHODS  

Chemostat setup and sample collection 

 The experimental setup was based on a set of established techniques from a previous 

chemostat experiment (Lennon et al. 2007).  Briefly, chemostats were set up based on a 2 x 2 

factorial design altering N : P ratios and exposure to the phage (Larsen and Lennon, 

unpublished).  Stoichiometric nutrient ratios of N (NaNO3, sodium nitrate) : P (K2HPO4, 

dipotassium phosphate) were adjusted to 10 : 1 and 40 : 1, respectively to simulate N-limiting 

and P-limiting growth conditions.  The host, Synechococcus strain (WH7803) was derived from 

a single colony isolate and was added to ten chemostats (five per nutrient supply ratio, each 

consisting of three phage additions and two controls).  Each chemostat was maintained at 40 mL 

volumes of a modified version of ‘AN’ artificial seawater (Waterbury and Willey 1988) at a 

dilution rate of 1 d-1 and stirred continuously with a star stir bar.  All chemostats were incubated 

in a growth chamber at 25°C on a 14 : 10 light : dark cycle at 15-17 µmol photons m-2s -1.  Prior 

to phage addition (day -62), one of the N-limited controls was lost due to fungal contamination.  

Beginning on day -63, the ‘AN’ media was further amended with cyclohexamide to control 

fungal growth.  Nitrogen and phosphorus concentrations were adjusted as necessary to achieve 

equal steady state densities, but ratios remained constant.  The cyanomyovirus, S-RIM8 

(Marston and Sallee 2003) was added to the phage-amended chemostats (2.5 mL of 7.65 x 106 

phage mL-1) 126 days after bacterial equilibrium was achieved.  Bacterial equilibrium was 

defined based on predictions by previous chemostat models. 

Cyanobacteria and cyanophage were quantified 3 times per week via epifluorescence 

microscopy (Larsen and Lennon, unpublished).  One hundred to 500 µL of each chemostat 
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sample was filtered onto black polycarbonate filters and visualized under a CY3 filter set.  For 

viral counts, samples were pre-filtered through a 0.2-µm syringe filter and filtered onto a 0.02 

micron Anodisc™ filter (Whatman®).  Filters were stained with SYBR Green® (Invitrogen) and 

incubated for 10 min in the dark (Noble and Fuhrman 1998).  After drying, filters were fixed 

with an anti-fade solution, 4 : 1 Citifluor : Vectashield, and counted under a FITC filter set.  A 

counting program was used to enumerate total cyanomyophages from ten images per sample 

with the assumption that all phages in the chemostat samples were cyanophages. 

Whole, unfiltered aliquots were sampled from each chemostat every other day and 

cryopreserved with a final concentration of 2.5% glutaraldehyde for flow cytometry.  

Additionally, whole samples were frozen without a cryoprotectant for downstream qPCR 

analysis.  All frozen samples were stored at -80°C until further analysis.  A flow chart of 

methods is available in the appendix (Figure 26).   

Note: Chemostat setup, microscope counts and cryopreservation steps were completed by 

Megan Larsen at Michigan State University.  All subsequent steps were performed as a part of 

this study at the University of Tennessee – Knoxville.  

Flow cytometry methods and acridine orange slide preparation 

Although the Synechococcus was originally derived from a single colony isolate, 

contaminating heterotrophic bacteria were present in the chemostats based on preliminary 

microscopic observations.  These heterotrophs were likely introduced to the chemostats from the 

picked colony or may have entered the system over the course of the experiment during 

sampling.  In order to gate and confirm heterotrophic bacterial populations on the flow 

cytometer, bacteria were enumerated on an epifluorescence microscope using a published 

acridine orange protocol.  Acridine orange (Invitrogen) counts were used as a reference for 
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gating total bacteria on the Guava EasyCyte 6HT 2L (Millipore) flow cytometer.  Three replicate 

samples were thawed, diluted and filtered onto slides stained with acridine orange using a 

slightly modified published protocol (Sherr et al. 1993).  Diluted, 2-mL samples were collected 

on a 25 mm 0.45-µm HAWP backing filter (Millipore) and a 0.2-µm GTBP Isopore™ 

membrane filter (Millipore).  Ten µL of 1% w/v 0.22 µm-filtered acridine orange stain was 

mixed into the sample.  After staining for 3 minutes under reduced light, the filter was rinsed and 

mounted onto a slide with immersion oil.  Autotrophic (Synechococcus) cells were enumerated 

via epifluorescence microscopy using a Leica DMRXA under a Texas Red filter set (λEx, 595 

nm; λEm, 610 to 615 nm) while total bacteria were counted under a blue light filter (λEx, 450 to 

490 nm; λEm, 510 nm).  Total counts were recorded for a minimum of 10 fields or 200 total cells.  

The number of heterotrophic bacteria was calculated as the difference between Synechococcus 

counts and total bacterial counts.  The average number of heterotrophic bacteria from the 

replicate filters was used to gate total bacterial populations on the flow cytometer. 

A modification of an established protocol by Tripp (2008) was used to count 

heterotrophic bacterial cells and Synechococcus cells.  Frozen 1-mL samples preserved in 2.5% 

glutaraldehyde were thawed on ice and prepared using a 10-fold dilution series in 0.22 µm 

filtered ‘AN’ media.  Diluted samples were transferred to two 96-well clear, flat bottom, 

polystyrene plates (BD-FalconTM) for flow cytometry.  In addition to chemostat samples, media 

blanks were also prepared in triplicate.  To enumerate total bacteria, a working stock of SYBR 

Green (Molecular Probes) was added to each well of one plate at a final dilution of 1 : 3000.  The 

stained plate was incubated in the dark at room temperature for one hour.  No SYBR Green was 

added to the second plate in order to enumerate Synechococcus via autofluorescence.  
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Both 96-well plates were counted using a Guava 6HT 2L (Millipore) flow cytometer.  A 

combination of autotrophic cell counts, acridine orange microscope counts and histogram gating 

was used to differentiate and rapidly enumerate heterotrophic bacterial cells and Synechococcus 

cells using plots of log green and log red fluorescence versus forward scatter (Figure 27 and 

Figure 28 in Appendix).  Flow cytometer counts were subtracted from blanks and compared to 

direct microscope counts of Synechococcus cells.  To assess technical reproducibility of our 

counts, some samples were run in triplicate as analytical replicates for 6 of the time points for the 

N-limited control and one of the P-limited controls to calculate the coefficient of variance.  The 

average overall coefficient of variance for Synechococcus counts was 26% while the average 

coefficient of variance for heterotrophic bacteria counts was 19%. 

Community DNA extraction 

For community DNA analysis, cryopreserved chemostat samples were thawed and 

maintained on ice for all subsequent steps.  Each tube was vortexed for 5 seconds prior to being 

aliquoted into a 1.5-mL microcentrifuge tube.  A 500 µL sample was brought to 1000 µL with 

autoclaved, 0.22-µm PVDF filter-sterilized (Millipore) Milli-Q water.  Cells were pelleted by 

centrifugation at 21,000 g for 20 minutes at 4°C (Thermo IEC MicroMax RF centrifuge).  The 

supernatant was removed using a P1000 pipettor followed by a P40 pipettor.  

Cells were lysed and DNA was extracted using a modification of a direct PCR protocol 

(Long and Azam 2001).  Pellets were resuspended in 10 µL of Lyse-N-Go™ (Thermo Scientific) 

and transferred to a 200-µL autoclaved, UV-sterilized PCR tube.  The tubes were heated briefly 

in a thermal cycler (Bio-Rad PTC-200 DNA Engine® Peltier Thermal Cycler) to enhance DNA 

release.  Cycling conditions for cell lysis of the Lyse-N-Go™ treated cells were set as indicated 

by the manufacturer’s protocol: 65°C for 30 seconds, 8°C for 30 seconds, 65°C for 1.5 minutes, 
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97°C for 3 minutes, 8°C for 1 minute, 65°C for 3 minutes, 97°C for 1 minute, 65°C for 1 minute, 

and held at 80°C until PCR reagents were added.  

PCR amplification 

Genomic DNA from each sample was amplified using 16S rRNA gene bacterial primers 

338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 926R (5’-CCGTCAATTCMTTTRAGT-3’) 

spanning the V3 to V4 hypervariable regions (Huse et al. 2008) (Table 4 in Appendix).  A primer 

matrix was performed to optimize primer concentrations for 16S rRNA gene amplification.  

Pairwise combinations of four different primer concentrations (0.1 µm, 0.2 µm, 0.4 µm, and 0.8 

µm) were tested to identify the optimal primer concentrations for the samples.   

PCR reactions were performed in 25 µL volumes consisting of 1 µL of template DNA, 

5X High Fidelity PCR Buffer (Invitrogen), 0.4 mM DNTPs (Invitrogen), 0.7 mM MgCl2 

(Promega), 0.2 µm of primer 338F (Operon), 0.8 µm of primer 926R (Operon) and 1 U of 

Platinum® TaqDNA Polymerase High Fidelity (Invitrogen).  Thermal cycling conditions 

consisted of an initial denaturation of 95°C for 5 minutes, followed by 30 cycles of denaturation 

at 95°C for 30 seconds, annealing at 56°C for 30 seconds, extension at 72°C for 1.5 minutes, and 

a final extension at 72°C for 10 minutes in a Bio-Rad PTC-200 DNA Engine® Peltier Thermal 

Cycler.  The products were run on a 1% agarose gel at 120 volts for 40 minutes and stained with 

ethidium bromide for 20 minutes.  PCR products were purified using the QIAquick PCR 

purification kit (Qiagen), eluting with 30 µL Tris-HCl, according to the manufacturer’s 

specifications.  The DNA concentration and quality (A260/280) were quantified on a NanoDrop® 

ND-1000 Spectrophotometer (Thermo Scientific) and final products were stored at -20°C. 
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Barcoded amplicon library construction and 454 Titanium pyrosequencing 

Oligonucleotides were designed to include GS FLX Titanium sequence adapters (A and 

B) fused to the 5’ end of 338F (A adapter: 5’-CCATCTCATCCCTGCGTGTCTCCGAC-3’) and 

926R (B adapter: 5’ CCTATCCCCTGTGTGCCTTGGCAGTC-3’) (Operon), a key sequence 

(TCAG) for quality control, and a unique 8 nucleotide (nt) error-correcting barcode for each 

sample (Hamady et al. 2008).  Twenty-two individual barcodes were used twice to barcode a 

total of 44 samples (Table 4 in Appendix).  Samples were divided into 5 groups to achieve an 

equimolar concentration (1 ng/µL) of template DNA based on direct quantification from 

spectroscopy.  PCR reactions were performed in 25 µL volumes consisting of 1 to 3 µL of 

template DNA, 5X High Fidelity PCR Buffer (Invitrogen), 0.4 mM DNTPs (Invitrogen), 0.7 mM 

MgCl2 (Promega), 0.2 µm of primer 338F with adapter A (Operon), 0.8 µm of primer 926R with 

adapter B, (Operon) and 1 U of Platinum® TaqDNA Polymerase High Fidelity (Invitrogen).  

One or two duplicates of each template DNA volume were prepared to run on the agarose gel to 

verify attachment of the barcode. 

Barcoding PCR parameters consisted of an initial denaturation of 95°C for 5 minutes, 

then 6 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and 

extension at 72°C for 30 seconds, followed by a final extension at 72°C for 10 minutes on a 

thermal cycler.  The barcoded products were run on a 1% agarose gel at 120 volts for 40 minutes 

and stained with ethidium bromide to visualize bands.  At least two unbarcoded duplicate 

samples from the first PCR amplification were run on the gel adjacent to barcoded samples to 

confirm the 50 bp product shift expected with barcode attachment.   

The 44 barcoded products were purified using QIAquick PCR purification columns 

(Qiagen) and pooled as two separate sets (22 samples each) with one modification to the 



 
 
 

 24 

manufacturer’s protocol; PCR water was used to elute 40 uL of pooled DNA from each column.  

Each set of pooled amplicons was quantified on a NanoDrop® ND-1000 Spectrophotometer 

(Thermo Scientific) and stored at -20°C.  Pooled amplicons were submitted to the UT/ORNL 

Joint Institute of Biological Sciences for unidirectional pyrosequencing using GS FLX Titanium 

chemistry (LIB-L kit) on a Roche 454 GS FLX Instrument (454 Life Sciences).  The LIB-L kit 

has been recommended over other kits given its low cost and high number of reads (Tamaki et al. 

2011).  To compare technical sequencing reproducibility, both sets of barcoded samples were 

sequenced in duplicate across four regions of a PicoTiter Plate (454 Life Sciences). 

Sequence data processing 

Initial sequence pre-processing was completed using the program MOTHUR v.1.20.0 

(Schloss et al. 2009) following the Costello stool analysis tutorial 

(http://www.mothur.org/wiki/Costello_stool_analysis).  In order to compare technical 

sequencing reproducibility, both technical replicates were analyzed separately.  Sequences were 

trimmed in MOTHUR to remove the following: sequences with 2 mismatches to their respective 

primers, sequences with 1 mismatch to their respective barcode, sequences with an average 

quality score lower than 35 over an average window size of 50 bases, sequences with more than 

8 homopolymers, and sequences with ambiguous bases.  After screening and sorting, good 

quality sequences were submitted to the Ribosomal Database Project (RDP, 

http://rdp.cme.msu.edu) Classifier (Cole et al. 2009) to compare taxonomic classifications across 

technical replicates.  Each region was submitted individually and classified using the RDP Naïve 

Bayesian rRNA Classifier Version 2.2 (March 2010) to examine and compare the technical 

sequencing reproducibility of 454 Titanium pyrosequencing at the phylum level. 
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To simplify the dataset, a set of non-redundant sequences was obtained.  Good quality 

sequences were aligned with the MOTHUR-formatted SILVA-compatible database 

(http://www.arb-silva.de/) (Pruesse et al. 2007).  Newly produced replicates from the sequence 

dataset were removed and screened in MOTHUR to achieve the greatest region of overlap for 

sequence analysis.  The following parameters were set to maximize sequence overlap: the start 

and end positions were set to 6428 and 15500, respectively and the minimum base length setting 

was optimized to retain 85% of the sequences.  The resulting filtered alignment was 442 

positions long with a range of 185 to 215 bases.  To reduce pyrosequencing noise, the single-

linkage preclustering method was used to “pre-cluster” sequences to reduce spurious clustering 

(Huse et al. 2010).  The algorithm is designed to identify rarer sequences with one mismatch and 

merge them with more abundant sequences.   

Chimera-like sequences were identified using the chimera.uchime algorithm in 

MOTHUR based on the original UCHIME program (Edgar et al. 2011) using the SILVA-

database as a reference to detect chimeric sequences.  After removing potentially chimeric 

sequences, the dataset was classified using the MOTHUR-formatted RDP training set.  

Sequences were assigned using the Bayesian method with a kmer value of 8 and 100 iterations.  

In order to analyze the heterotrophic bacterial community, all sequences classified as 

cyanobacteria were removed from the dataset for the remainder of the analysis. 

In MOTHUR, a distance matrix was generated, clustered using the average-neighbor 

algorithm (Huse et al. 2010) and assigned to OTUs using 97% similarity.  To compare the 

similarity of communities across technical replicates, a dendrogram was generated in MOTHUR 

using the Yue and Clayton measure of dissimilarity.  The sequences were clustered again using 
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the average neighbor algorithm and assigned to OTUs using 97% similarity in order to analyze 

the heterotrophic community by itself.  

Pooling samples 

In order to increase the number of sequences used in the analysis, sequences for both 

technical replicates from each library were pooled after sorting, removing barcodes and primers 

and setting quality parameters enabling analysis of sequences of the same filtered length.  All 

subsequent steps in the pooled analysis of technical replicates were repeated as previously 

mentioned for the non-pooled sequence steps including removal of cyanobacterial sequences and 

OTU-based analyses using 97% similarity.  

Statistical analyses 

Differences in community structure among time points and between nutrient-limited and 

cyanophage treatments were analyzed in PRIMER 6.0 (Anderson et al. 2006).  Data was 

standardized to relative abundances and fourth-root transformed to downweight the importance 

of the most abundant OTUs.  Samples were compared based on OTU abundances using the zero-

adjusted Bray-Curtis measure of similarity (Clarke et al. 2006).  The Bray-Curtis measure is a 

popular index used widely in ecological studies involving species abundance data.  Results from 

the resemblance matrix were visualized using hierarchical cluster analysis (average cluster 

linkage) and non-metric multidimensional scaling (MDS) (Field et al. 1982) with Kruskal’s 

stress formula set to a minimum stress of 0.01 using 25 iterations.  To determine the effect of 

singletons, doubletons and less abundant sequences, an additional resemblance matrix was 

generated from the 10 most abundant OTUs from our dataset.  This subset of data was clustered 

using the average cluster linkage method and visualized on a MDS plot for comparison. 
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PERMANOVA+ (permutational-based analysis of variance) for PRIMER 6 was used to 

perform multivariate data analyses to test for significant differences in community structure 

between nitrogen and phosphorus-limited libraries (“Nutrient”) as well as control and 

cyanophage-amended libraries (“Virus”).  PERMANOVA+ was also used to detect community 

change over the course of the experiment (“Day”).  A PERMANOVA was performed with 9,999 

iterations and the Type III sums of squares to compare the following factors: “Nutrient” versus 

“Virus,” “Nutrient” versus “Day” and “Virus” versus “Day.”  If there were significant 

differences between any of the main factors with more than two levels (i.e., day), further 

pairwise comparisons were tested separately for each factor to identify within-group differences.  

For statistically significant interactions, further pairwise tests were performed among pairs of 

levels of the factor of interest. 
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RESULTS 

Nitrogen-limited chemostat dynamics 

In the N-limited control chemostat without cyanophage (Figure 1), Synechococcus 

populations maintained an equilibrium density of 1.2 x 107 ± 3.5 x 106 cells mL-1 for the subset 

of ten time points selected for flow cytometry (FC).   Epifluorescence counts (EM) of 

autotrophic cells for time points after steady state was achieved (1.4 x 107  ± 1.5 x 106 cells mL-1) 

were statistically similar to FC counts (Figure 29 in Appendix, r2 = 0.4258, n=90, p < 0.0001).  

Heterotrophic bacterial populations fluctuated, increasing to 1.3 x 108 and decreasing to 2.9 x 107 

cells mL-1 at the final FC time point (day 132).   

Conversely, in the N-limited, phage-amended chemostats (Figure 2, Figure 3, Figure 4), 

Synechococcus densities declined rapidly in all 3 replicate chemostats, reaching very low 

densities (FC: 1.7 x 105 cells mL-1; EM: 9.3 x 104 cells mL-1) within the first 50 days of phage 

addition (day 0).  Cyanomyophage reached abundances as high as 1.0 x 109 virus-like particles 

mL-1 during the period of decline.  However around day 50, the Synechococcus population 

recovered in all 3 replicate chemostats, as indicated by an exponential increase in cell abundance.  

By day 100, Synechococcus abundances declined again (FC: 2.7 x 107 cells mL-1; EM: 3.5 x 106 

cells mL-1) in phase with high phage counts reaching upwards of 5.8 x 108 virus-like particles 

mL-1.  In 1 out of 3 chemostats, Synechococcus populations recovered again around day 150.  

Heterotrophic bacterial counts via flow cytometry were consistently higher than Synechococcus 

counts with the exception of one time point in each of the phage-amended chemostats.  

Heterotrophs reached their maximum abundances during the initial crash at times when 

Synechococcus counts were lowest in 2 of 3 replicate chemostats.   
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Figure 1: Microscope and flow cytometry counts of Synechococcus and heterotrophic bacteria 
from the nitrogen-limited control chemostat. Synechococcus microscope counts (black lines), 
Synechococcus flow cytometry counts (red triangles) and heterotrophic bacteria flow cytometry 
counts (green squares) are shown for one individual chemostat (n=1).  The vertical line at day 0 
denotes the day after steady state was achieved.  Epifluorescence microscope counts were 
provided by Megan Larsen (Michigan State University). 
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Figure 2: Microscope and flow cytometry counts of Synechococcus, heterotrophic bacteria and 
cyanophage from a nitrogen-limited, phage-amended chemostat (biological replicate 1).  
Synechococcus microscope counts (black lines), Synechococcus flow cytometry counts (red 
triangles), heterotrophic bacteria flow cytometry counts (green squares) and phage microscope 
counts (blue lines) are shown for one chemostat (n=3).  The vertical line at day 0 denotes the day 
phage was added.  Epifluorescence microscope counts were provided by Megan Larsen 
(Michigan State University). 
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Figure 3: Microscope and flow cytometry counts of Synechococcus, heterotrophic bacteria and 
cyanophage from a nitrogen-limited, phage-amended chemostat (biological replicate 2).  
Synechococcus microscope counts (black lines), Synechococcus flow cytometry counts (red 
triangles), heterotrophic bacteria flow cytometry counts (green squares) and phage microscope 
counts (blue lines) are shown for one chemostat (n=3).  The vertical line at day 0 denotes the day 
phage was added.  Epifluorescence microscope counts were provided by Megan Larsen 
(Michigan State University). 
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Figure 4: Microscope and flow cytometry counts of Synechococcus, heterotrophic bacteria and 
cyanophage from a nitrogen-limited, phage-amended chemostat (biological replicate 3).  
Synechococcus microscope counts (black lines), Synechococcus flow cytometry counts (red 
triangles), heterotrophic bacteria flow cytometry counts (green squares) and phage microscope 
counts (blue lines) are shown for one chemostat (n=3).  The vertical line at day 0 denotes the day 
phage was added.  Epifluorescence microscope counts were provided by Megan Larsen 
(Michigan State University). 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 33 

Phosphorus-limited chemostat dynamics  

Similar to the N-limited control chemostat, Synechococcus populations maintained an 

equilibrium density in the P-limited replicate control chemostats (EM: 2.6 x 107 ± 3.6 x 106 cells 

mL-1 and 9.9 x 106 ± 6.9 x 106 cells mL-1 for replicate 1 and replicate 2, respectively) (Figure 5 

and Figure 6).  Flow cytometry counts of autotrophic cells for the subset of time points (2.6 x 107 

± 8.6 x 106 cells mL-1) were statistically similar to epifluorescence counts (1.4 x 107 ± 4.0 x 106 

cells mL-1) (Figure 29 in Appendix, r2 = 0.4258, n=90, p < 0.0001).  Heterotrophic bacterial 

abundances in the P-limited controls reached densities as high as 5.3 x 108 cells mL-1 in one of 

the replicates on day 45 (Figure 6).  In both biological replicates, heterotrophic bacteria varied 

slightly with a noticeable increase within the first 50 days following phage addition.  By day 130, 

heterotrophic bacterial counts had decreased again to their initial abundances (Figure 5). 

In the P-limited, phage-amended chemostats, Synechococcus populations declined in all 3 

biological replicates (Figure 7, Figure 8, Figure 9).  However, the decrease in Synechococcus 

(EM: 2.3 x 105 cells mL-1; FC: 5.1 x 105 cells mL-1) was not as low as the N-limited chemostats 

with phage (Figure 8).  In phase with the crash, cyanomyophage reached abundances as high as 

8.6 x 108 virus-like particles mL-1 (Figure 9).  Around day 75, Synechococcus populations 

recovered again similar to the exponential increase at day 50 in the N-limited replicates.  Unlike 

the second crash at day 100 observed in the N-limited treatment, the host continued to grow 

exponentially in 2 of the 3 P-limited replicates (Figure 7, Figure 9) while abundances leveled off 

in the other biological replicate (Figure 8).  Heterotrophic bacterial populations maintained 

higher abundances than Synechococcus at all time points except 2 with heterotrophs peaking at 

4.8 x 108 cells mL-1 (Figure 8) during a period of host decline. 
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Figure 5: Microscope and flow cytometry counts of Synechococcus and heterotrophic bacteria 
from a phosphorus-limited control chemostat (biological replicate 1).   Synechococcus 
microscope counts (black lines), Synechococcus flow cytometry counts (red triangles) and 
heterotrophic bacteria flow cytometry counts (green squares) are shown for one chemostat (n=2).  
The vertical line at day 0 denotes the day after steady state was achieved.  Epifluorescence 
microscope counts were provided by Megan Larsen (Michigan State University). 
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Figure 6: Microscope and flow cytometry counts of Synechococcus and heterotrophic bacteria 
from a phosphorus-limited control chemostat (biological replicate 2).   Synechococcus 
microscope counts (black lines), Synechococcus flow cytometry counts (red triangles) and 
heterotrophic bacteria flow cytometry counts (green squares) are shown for one chemostat (n=2).  
The vertical line at day 0 denotes the day after steady state was achieved.  Epifluorescence 
microscope counts were provided by Megan Larsen (Michigan State University). 
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Figure 7: Microscope and flow cytometry counts of Synechococcus, heterotrophic bacteria and 
cyanophage from a phosphorus-limited, phage-amended chemostat (biological replicate 1).  
Synechococcus microscope counts (black lines), Synechococcus flow cytometry counts (red 
triangles), heterotrophic bacteria flow cytometry counts (green squares) and phage microscope 
counts (blue lines) are shown for one chemostat (n=3).  The vertical line at day 0 denotes the day 
phage was added.  Epifluorescence microscope counts were provided by (Michigan State 
University). 
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Figure 8: Microscope and flow cytometry counts of Synechococcus, heterotrophic bacteria and 
cyanophage from a phosphorus-limited, phage-amended chemostat (biological replicate 2). 
Synechococcus microscope counts (black lines), Synechococcus flow cytometry counts (red 
triangles), heterotrophic bacteria flow cytometry counts (green squares) and phage microscope 
counts (blue lines) are shown for one chemostat (n=3).  The vertical line at day 0 denotes the day 
phage was added.  Epifluorescence microscope counts were provided by Megan Larsen 
(Michigan State University). 
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Figure 9: Microscope and flow cytometry counts of Synechococcus, heterotrophic bacteria and 
cyanophage from a phosphorus-limited, phage-amended chemostat (biological replicate 3).  
Synechococcus microscope counts (black lines), Synechococcus flow cytometry counts (red 
triangles), heterotrophic bacteria flow cytometry counts (green squares) and phage microscope 
counts (blue lines) are shown for one chemostat (n=3).  The vertical line at day 0 denotes the day 
phage was added.  Epifluorescence microscope counts were provided by Megan Larsen 
(Michigan State University). 
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Comparison of bacterial counts  

To validate flow cytometry counts for bacteria, direct counts were completed on 

representative samples using epifluorescence microscopy.  A simple linear regression was 

performed on a scatter plot of flow cytometry versus epifluorescence counts (Figure 10).  The 

slope resulting from the regression (1.004) was very close to 1 indicating a strong linear 

relationship between flow cytometry and epifluorescence microscopy counts.  Flow cytometry 

counts of SYBR Green-stained bacterial cells were highly correlated with epifluorescence counts 

of acridine orange stained cells (r2 = 0.9972).  The variation between the two methods was 

within the range reported by others (Lebaron et al. 1998; Hall et al. 2006).   

 
 
Figure 10: Scatter plot with linear regression of flow cytometry counts versus epifluorescence 
counts of heterotrophic bacteria (n=15). 
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Heterotrophic bacteria : Synechococcus ratios 

Using the flow cytometry counts, the ratio of heterotrophic bacteria to Synechococcus 

was determined for each time point.  For the N-limited control chemostat (n=1), the ratio ranged 

from 0.8 (day 130) to 21.7 (day 92) heterotrophs per Synechococcus.  In contrast, the N-limited, 

phage-amended chemostats (n=3) supported a higher number of heterotrophic bacteria ranging 

from 1.83 ± 0.8 (day 73) to 507.3 ± 83.7 (day 45) (mean ± SEM).  Ratios for all four N-limited 

chemostats were averaged for both treatments and graphed over time (Figure 11A).  The ratio of 

heterotrophic bacteria to Synechococcus increased to its highest average value at day 45 (381.8 ± 

138.7) and declined at day 59 (11.8 ± 1.1).  Time points following day 59 maintained a ratio of 

5.3 ± 1.4 (n=7) heterotrophs to Synechococcus for the remainder of the experiment.  

 Ratios of heterotrophic bacteria to Synechococcus were also calculated from flow 

cytometry counts for the P-limited control and phage-amended treatments.  For the P-limited 

controls (n=2), ratios ranged from 1.7 ± 0.9 (day 10) to 32.7 ± 14.5 (day 92).  The averaged 

controls maintained a relatively steady ratio (9.8 ± 2.8) over the course of the experiment.  

Conversely, in the P-limited, phage-amended chemostats (n=3), values were much higher 

reaching a ratio of 1005.5 ± 307.1 heterotrophs per Synechococcus (day 45).  Ratios for all five 

P-limited chemostats were also averaged for both control and phage treatments and graphed over 

time (Figure 11B).  The initial increase was similar to the trend in the N-limited graph (Figure 

11A).  However, after day 45 the P-limited ratios increased slightly until day 92 (216.0 ± 43.1) 

and gradually decreased, maintaining a slightly higher ratio of heterotrophs : Synechococcus for 

the remainder of the experiment (34.7 ± 8.6).  
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(A)  

(B)  
 

Figure 11: Ratios of heterotrophic bacteria to Synechococcus.  Standard error bars represent 
mean ± SEM.  Each time point represents the mean and standard error of 4 replicate nitrogen-
limited chemostats (A) and 5 replicate phosphorus-limited chemostats (B).  



 
 
 

 42 

454 Titanium pyrosequencing  

Sequence analysis 

 The 454 Titanium pyrosequencing platform produced a total of 325,142 raw reads from 

43 individual libraries sequenced in duplicate (86 total).  One of the samples was lost in sample 

collection and another (P-limited phage, biological replicate 3, day 24) was not included in the 

analysis due to unsuccessful barcoding.  An average of 81,286 reads were acquired from each 

region with an average length of 541 bp.   The number of reads acquired from each library varied 

for each region with a range of 2,828 to 4,775 sequences, resulting in an average of 3,525 reads.  

The dataset was reduced to 314,068 sequences after the initial trim step in MOTHUR (See 

Materials and Methods) resulting in a 3.4% reduction.  After removing low quality reads, 

sequences were assigned to taxonomic groups. 

In order to generate taxonomic profiles of each technical replicate, 314,068 high-quality 

sequences were assigned to taxonomic groups using the RDP Naïve Bayesian rRNA Classifier 

Version ver. 2.2 (Wang et al. 2007).  Taxonomic assignments of all reads were standardized to 

relative abundances for both technical replicates (R1, R2).  At the phylum-level, the distribution 

of taxonomic assignments was highly similar across technical replicates (Figure 12).  Based on a 

95% confidence interval, the majority of sequences (~70%) were assigned to the phylum, 

Proteobacteria.  The next largest proportion of sequences was assigned to Cyanobacteria (21% 

and 24% for R1 and R2, respectively).  The remaining sequences were classified as 

Acidobacteria, Bacteroidetes, Actinobacteria and Firmicutes (less than 7% for each), and 

approximately 1% of the sequences were unclassifiable.  One obvious difference between the 

two sets was the difference in the proportion of sequences assigned to Actinobacteria.  For half 
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of the libraries (set 1), Actinobacteria represented an average of 1.3% of the sequences across 

both technical replicates.  However in set 2, Actinobacteria was more abundant (9.0%). 

 
 
Figure 12: Relative abundances of RDP taxonomic assignments for two technical replicates at a 
95% confidence threshold. Individual sets of barcodes are denoted by an S and technical 
replicates are denoted by R.  Submitted sequences were trimmed in MOTHUR prior to 
submission to the RDP Classifier ver. 2.2 as previously described. 
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Approximately 81% of the original sequences were retained (263,606) after further 

sequence processing in MOTHUR.  The resulting filtered alignment was 442 positions long and 

190 to 215 bases were used for sequence analyses.  The libraries were dominated by non-

cyanobacterial sequences (194,778), while the remaining 68,828 sequences were classified as 

cyanobacterial sequences.   

Comparing technical sequencing reproducibility 

Sequence analyses of libraries were performed two separate ways.  Initially, all of the 

technical replicates were analyzed together.  In order to examine the heterotrophic bacterial 

community, all cyanobacterial sequences were removed from the dataset.  A column-formatted 

distance matrix of uncorrected pairwise distances between sequences was generated using 

194,778 heterotrophic bacterial sequences and clustered into OTUs using the average neighbor 

algorithm in MOTHUR (method between the nearest and furthest neighbor) at a 0.03 cutoff 

level.  The sequences clustered into 110 OTUs, of which 40 represented singletons (36.4%) and 

14 represented doubletons (12.7%).  A large proportion (67.5%) of the singleton sequences were 

identified in replicate 1, while a lower percentage (33.5%) was unique to replicate 2.     

To compare OTU recovery across technical replicates, read counts were standardized to 

relative abundances.  Relative abundances for each library and its technical replicate were highly 

correlated (r 2 = 0.9864) (Figure 13).  There was a strong linear relationship between technical 

replicates as indicated by the slope of 0.9844.  While the majority of data points were tightly 

associated with the regression line, one point clustered away.  The outlier was from a N-limited, 

phage-amended replicate representing the Sulfitobacter overlap (78.26% versus 42.1%) at Day 

108.  When this outlier was removed from the scatter plot the r 2 value increased to 0.9936.   
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Figure 13: Linear regression of relative abundances of OTUs for both technical replicates. 

 
A dendrogram was generated in MOTHUR to compare the reproducibility of community 

structure among technical replicates (Figure 14).  The Yue and Clayton measure of dissimilarity 

(ΘYC) was used to construct the dendrogram of all 86 groups (Yue and Clayton 2005).  Although 

treatments and specific time points did not consistently cluster together, 40 of the 43 libraries 

clustered most closely with its technical replicate.  For the 3 technical replicate libraries that did 

not cluster together, the distance was very short (Day 132, P-limited, phage-amended biological 

replicate 2: 0.0391; Day 132, P-limited, control, biological replicate 1: 0.0783; Day 233, N-

limited, control, biological replicate 1: 0.047). 
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Figure 14: Dendrogram of relatedness of all technical and biological replicate (R) libraries 
generated by MOTHUR using the Yue and Clayton measure of dissimilarity (ΘYC).  
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After observing similar phylum-level distributions among technical replicates (Figure 

12), highly similar relative abundances of OTUs (Figure 13) and reproducible community 

clustering (Figure 14), technical replicate libraries were pooled in MOTHUR to increase read 

numbers.  All subsequent analyses were based on the pooled sequence dataset.  Each pooled 

library had an average of 4529.72 ± 247.16 reads (mean ± SEM). 

Community Trends 

RDP Assignments 

 All pooled sequences were classified to RDP by comparing sequences to the MOTHUR-

formatted RDP reference files using a bootstrapping algorithm to classify sequences to a 60% or 

greater confidence limit.  A total of 194,778 reads represented 5,201 unique sequences.  Out of 

the 5,201 unique sequences, 5,120 sequences had 5 or less reads (6,446 reads comprising 3.32% 

of all reads) while the 81 remaining sequences had 6 or more reads (188,312 reads comprising 

96.7% of all reads).  Of the 81 unique sequences with 6 or more reads, 77.3% (51 reads) could be 

classified with a 60% bootstrap value to the genus level.  The remaining 30 sequences could not 

be classified at the genus level.  Of these, sequences were assigned to 3 different classes 

including Alphaproteobacteria (28), Actinobacteria (1) and Betaproteobacteria (1). Within the 

Alphaproteobacteria class, sequences were further classified to the families of 

Sphingomonadaceae (13) and Erythrobacteraceae (2).  The remaining 13 sequences could not be 

classified at the family level.  A large proportion of reads from the dataset were assigned to one 

of the Sphingomonadaceae sequences (28,245) and one of the Rhizobiales sequences (15,700).  

The reads from this Sphingomonadaceae sequence were abundant among the P-limited 
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chemostats.  However reads from the abundant Rhizobiales sequence were distributed more 

evenly across both nutrient-limited chemostats.  

OTU Assignments 

Since less than half of the sequences were unsuccessfully assigned to the genus level 

using RDP at a 60% bootstrap value, community structure was analyzed using an OTU-based 

approach at a 0.03 cutoff.  A high percentage of sequences (95.5%) were successfully assigned to 

the genus level.  While there was typically one OTU for each genus, more than half of the genus-

level classifications were assigned to more than one OTU.  For example, there were 13 

Sulfitobacter OTUs, 8 Arthrobacter OTUs, 6 Pseudomonas OTUs and 5 Alcanivorax and 

Erythrobacter OTUs.  Individual OTUs from each genus were pooled and represented as a single 

OTU.  In our analyses, 99.5% of our sequences were assigned to the first 6 OTUs (Sulfitobacter, 

Sphingomonas, Rhizobium, Arthrobacter, Pseudomonas and Alcanivorax).  Out of these 6 OTUs, 

over 80% of the sequences were assigned to Sulfitobacter or Sphingomonas, which are referred 

to as “abundants” in subsequent graphs.  These OTUs were the most abundant across all of the 

chemostats regardless of treatment.  The next 4 OTUs (Rhizobium, Arthrobacter, Pseudomonas 

and Alcanivorax) made up approximately 17% of all the sequences in the dataset and are referred 

to as “rares.”  The top 6 OTUs each had a significant number of reads (more than 20 across at 

least 2 separate libraries), therefore we are confident in the calls and consider them real.  The 

reads from the remaining 104 OTUs only contributed to 0.5% of all the sequences in the dataset. 

For the N-limited chemostats with or without phage, the Sulfitobacter population 

inversely oscillated in abundance with Sphingomonas (Figure 15A, Figure 16A, Figure 17A, 

Figure 18A).  Across all N-limited chemostats, there was a higher relative abundance of 

Sulfitobacter OTU at day 0 relative to Sphingomonas.  Trends for both abundant OTUs are 
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highly similar across all N-limited chemostats characterized by an initial decrease in 

Sulfitobacter, decreasing to half of its relative abundance and increasing again at day 73 along 

with opposite Sphingomonas trends. 

In the case of the rares, some patterns in OTU abundance were highly predictable while 

others were far less predictable (Figure 15B, Figure 16B, Figure 17B, Figure 18B).  For example, 

a similar decline in Rhizobium was observed across all N-limited chemostats regardless of phage 

addition.  Pseudomonas populations were consistently negligible across all 4 chemostats (3 

Pseudomonas reads across 2 different libraries).  For Alcanivorax, a decline was observed in two 

of the chemostats (Figure 15B and Figure 18B) but in the other two phage-amended chemostats, 

Alcanivorax consistently made up less than 5% of all reads (Figure 16B and Figure 17B).  The 

relative abundance of Arthrobacter was less predictable.  In one phage-amended chemostat, 

Arthrobacter peaked at day 24 and declined at day 73 (Figure 18B).  In the remaining chemostats 

(1 control and 2 phage-amended), there was a consistent peak to 5 or 15% of the sequences in the 

Arthrobacter populations at later time points (Figure 15B, Figure 16B, Figure 17B, Figure 19B). 
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(A)   

(B)  

Figure 15: Dynamics of abundant (A) and rare (B) OTUs in a N-limited control chemostat. 
Abundant OTUs include: Sulfitobacter (black squares) and Sphingomonas (white squares).  Rare 
OTUs include: Rhizobium (black circles), Arthrobacter (red triangles), Alcanivorax (yellow 
diamonds) and Pseudomonas (green squares). 
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(A)  

(B)  
 

Figure 16: Dynamics of abundant (A) and rare (B) OTUs in a N-limited, phage-amended 
chemostat (biological replicate 1).  Abundant OTUs include: Sulfitobacter (black squares) and 
Sphingomonas (white squares).  Rare OTUs include: Rhizobium (black circles), Arthrobacter 
(red triangles), Alcanivorax (yellow diamonds) and Pseudomonas (green squares).   
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(A)  

(B)  
 
Figure 17: Dynamics of abundant (A) and rare (B) OTUs in a N-limited, phage-amended 
chemostat (biological replicate 2).  Abundant OTUs include: Sulfitobacter (black squares) and 
Sphingomonas (white squares).  Rare OTUs include: Rhizobium (black circles), Arthrobacter 
(red triangles), Alcanivorax (yellow diamonds) and Pseudomonas (green squares). 
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(A)  

(B)  
 
Figure 18: Dynamics of abundant (A) and rare (B) OTUs in a N-limited, phage-amended 
chemostat (biological replicate 3).  Abundant OTUs include: Sulfitobacter (black squares) and 
Sphingomonas (white squares).  Rare OTUs include: Rhizobium (black circles), Arthrobacter 
(red triangles), Alcanivorax (yellow diamonds) and Pseudomonas (green squares). 
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 Overall in the P-limited chemostats, trends in OTUs were far less consistent than the N-

limited chemostats.  Similar to the N-limited chemostats, the Sulfitobacter and Sphingomonas 

genera were the two most abundant OTUs.  In contrast to results from the N-limited libraries, 

Sphingomonas was more abundant than Sulfitobacter at day 0 in 3 out of the 5 libraries (Figure 

20A, Figure 22A, Figure 23A).  For the remaining libaries, Sulfitobacter was more abundant 

(Figure 19A) and relative abundances were unknown at day 0 due to a missing sample (Figure 

21A).  Although similar fluctuations in Sulfitobacter and Sphingomonas populations were 

characteristic of all the N-limited chemostats, patterns in the P-limited chemostats were more 

variable.  For example in 3 of the 5 chemostats (Figure 20A, Figure 22A, Figure 23A), 

Sulfitobacter gradually increased but decreased in the other 2 chemostats (Figure 19A, Figure 

21A).  No obvious patterns specific to the phage-amended or control treatments were observed. 

 Similar to the N-limited chemostats, there was a rapid decline in Rhizobium in the rare 

populations of all the P-limited chemostats.  One major difference between both nutrient 

treatments was the presence of Pseudomonas in the P-limited chemostats.  In both P-limited 

controls, the Pseudomonas OTU increased to similar relative abundances (15-20% of all reads) 

(Figure 19B and Figure 20B).  The Alcanivorax population was less abundant in the P-limited 

chemostats compared to the N-limited chemostats making up less than 5% of sequences across 

all of the chemostats.  There was also a similar trend in Arthrobacter populations as noted for the 

N-limited treatments with peaks in abundance occuring at later time points between day 73 and 

day 132.  However, there was no obvious trend in Arthrobacter consistently unique to control or 

phage-amended chemostats. 
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(A)  

(B)  
 
Figure 19: Dynamics of abundant (A) and rare (B) OTUs in a P-limited control chemostat 
(biological replicate 1).  Abundant OTUs include: Sulfitobacter (black squares) and 
Sphingomonas (white squares).  Rare OTUs include: Rhizobium (black circles), Arthrobacter 
(red triangles), Alcanivorax (yellow diamonds) and Pseudomonas (green squares). 
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(A)  

(B)  

 

Figure 20: Dynamics of abundant (A) and rare (B) OTUs in a P-limited control chemostat 
(biological replicate 2).  Abundant OTUs include: Sulfitobacter (black squares) and 
Sphingomonas (white squares).  Rare OTUs include: Rhizobium (black circles), Arthrobacter 
(red triangles), Alcanivorax (yellow diamonds) and Pseudomonas (green squares). 
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(A)  

(B)  

Figure 21: Dynamics of abundant (A) and rare (B) OTUs in a P-limited, phage-amended 
chemostat (biological replicate 1).  Abundant OTUs include: Sulfitobacter (black squares) and 
Sphingomonas (white squares).  Rare OTUs include: Rhizobium (black circles), Arthrobacter 
(red triangles), Alcanivorax (yellow diamonds) and Pseudomonas (green squares).  Sample for 
the first time point was lost. 
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(A)  

(B)   
 
Figure 22: Dynamics of abundant (A) and rare (B) OTUs in a P-limited, phage-amended 
chemostat (biological replicate 2).  Abundant OTUs include: Sulfitobacter (black squares) and 
Sphingomonas (white squares).  Rare OTUs include: Rhizobium (black circles), Arthrobacter 
(red triangles), Alcanivorax (yellow diamonds) and Pseudomonas (green squares). 
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(A)  

(B)  
 

Figure 23: Dynamics of abundant (A) and rare (B) OTUs in a P-limited, phage-amended 
chemostat (biological replicate 3).  Abundant OTUs include: Sulfitobacter (black squares) and 
Sphingomonas (white squares).  Rare OTUs include: Rhizobium (black circles), Arthrobacter 
(red triangles), Alcanivorax (yellow diamonds) and Pseudomonas (green squares).  Day 24 was 
not barcoded correctly. 
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Cluster analyses and non-metric multidimensional dimensional scaling analyses 

 OTU abundance for pooled libraries was standardized to relative abundances and fourth-

root transformed.  After a distance matrix was generated, OTUs were clustered in PRIMER using 

the average linkage method and visualized on a dendrogram (Figure 24A).  Although clustering 

between technical replicates was common (Figure 14), clustering between biological replicate 

treatments was less frequent.  Only 4 out of the 43 pooled samples clustered closest with one of 

its biological replicate chemostats.  Three out of the four were N-limited phage treatments, while 

the other was a P-limited, phage-amended time point.  Clustering of N-limited or P-limited 

samples (regardless of time or phage treatment) was more common. 

 The similarity matrix was visualized in PRIMER using a 2-dimensional MDS plot.  The 

stress value of 0.19 (< 0.2) for the ordination plot (Figure 24B) was moderately high but the 

superimposed clustering further supported that the graph was an adequate representation of the 

relationships between libraries.  Three separate groups formed at a 60% similarity level.  Two of 

the three groups (both P-limited controls at day 0 and the P-limited phage-amended library at day 

24) clustered away from the majority of the dataset.  At a higher similarity level (70%), the rest 

of the libraries clustered into 6 separate groups.  With the exception of four P-limited libraries, 

the P-limited treatments clustered into three separate groups away from the three N-limited 

groups.  Additionally, libraries from earlier time points were less similar than those from later 

time points for both nutrient-limited chemostats.  For example, earlier time points from N-

limited samples were more similar to earlier time points from P-limited samples than later time 

points for the same nutrient treatment.  Therefore, there was an obvious trajectory of early to late 

time points across the MDS plot.  No distinct clustering of phage-amended groups from control 

groups was observed for either nutrient-limited treatment. 
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(A) 

 

(B) 

 

Figure 24: Average cluster analysis (A) and MDS ordination plot (B) of 110 non-cyanobacterial 
OTUs based on the zero-adjusted Bray-Curtis similarity index.  Biological replicates (A) are 
denoted by a, b and c.   
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To determine if the less abundant OTUs had an effect on the cluster analysis or 

ordination plot, the sequence data for the 10 most abundant non-cyanobacterial OTUs were 

analyzed separately.  The 10 most abundant OTUs made up 99.7% of all sequences in the dataset 

while the remaining sequences (0.03%) were assigned to 100 additional OTUs.  Abundance data 

was standardized to relative abundances and fourth-root transformed.  The distance matrix was 

clustered using the average-linkage method as previously mentioned (Figure 25A).  Samples 

from the N-limited treatments clustered away from the P-limited treatments more distinctly than 

in the cluster analysis of all the OTUs (Figure 24A).  Lastly, clustering of biological replicates 

was more common than in the dendrogram representing all of the OTUs. 

An additional MDS plot was generated from the distance matrix of the 10 most abundant 

OTUs in the dataset (Figure 24A).  The stress value (0.18) was slightly lower and well within the 

range of the previous MDS plot (< 0.2).   Although the stress value was still at the upper end of 

the range (0.1 to 0.2), the superimposed clustering at 40, 60 and 80% confirmed that the graph 

was an adequate representation of the data.  The slightly lower stress value provided an improved 

representation of the relationships between samples than the previous graph (Figure 23B).  All 

libraries were within the same group at a 60% similarity level.  Four separate groups formed at 

an 80% similarity level.  Two of the clusters consisted of all three P-limited phage-amended 

biological replicates at day 0 and one P-limited, phage-amended replicate at day 24.  The 2 

remaining groups consisted largely of all N-limited or P-limited libraries with the exception of 4 

P-limited libraries (early time points) within the N-limited cluster.  Earlier time points appeared 

to be more similar to each other than later time points regardless of treatments with a noticeable 

trajectory in time across the plot.  As noted in the previous cluster analyses, no distinct grouping 

of phage-amended or control treatments was observed for N- or P-limited libraries.  
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(A) 
 

 

(B) 

 

Figure 25: Average cluster analysis (A) and MDS ordination plot (B) of the 10 most abundant 
non-cyanobacterial OTUs based on the zero-adjusted Bray-Curtis similarity index. Biological 
replicates (A) are denoted by a, b and c. 
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Statistical analyses 
 

While the cluster analyses and ordination plots both showed differences in the grouping 

of N-limited libraries and P-limited libraries, statistical analyses were run in PERMANOVA+ to 

test for significant differences in community structure among treatments.  “Nutrient” (N- or P-

limitation), “Virus” (virus-amended or control) and “Day” (0, 24, 73, 108, 132) were established 

as the main factors.  P-values were obtained under a reduced model and Type III partial sums of 

squares.  After comparing all combinations of main factors, statistically significant P-values (α < 

0.05) were detected (Table 1).  Significant differences were identified between nutrient 

treatments (P=0.0001) and day sampled (P=0.0001) and a significant interaction was identified 

between “Treatment” and “Day” (P=0.0091).  No significant interactions were identified 

between the other main factors: “Treatment” vs. “Virus” (P=0.643), “Virus” vs. “Day” 

(P=0.2871) or “Treatment” vs. “Virus” vs. “Day” (P=0.9231).   

 Further pairwise comparisons were tested separately for the statistically significant 

interactions to detect differences within the groups (Table 2).  P-values of less than 0.05 were 

identified between N- and P-limited treatments on day 0 (P=0.007) and day 73 (P=0.012).  No 

statistically significant interactions were detected for the three other time points (24, 108, 132).  

For statistically significant interactions within groups, additional pairwise tests were performed 

among pairs of levels of the factor of interest (Table 3).  Within the N-limited groups, there were 

significant differences between all pairwise comparisons of time points.  Five out of the eight 

combinations had P-values of less than 0.005.  In the P-limited groups, significant differences 

were detected between all groups except three (0, 24: P=0.6435; 73, 108: P=0.7129; 108, 132: 

P=0.193).  These P-values provided statistically significant evidence for differences in our 

libraries visualized through cluster analyses and MDS plots. 
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Table 1.  PERMANOVA of chemostat bacterial community for the 10 most abundant OTUs 
showing the main tests for the factors of nitrogen or phosphorus treatment, no virus or virus 
addition, time and their interactions. *P<0.05. 

 
Source of Variation d.f. SS pseudo-F P 
 
Treatment = Tr 

 
1 

 
1187.1 

 
12.676 

 
0.0001* 

Virus = V 1 208.73 2.2288 0.0832 
Day = Da 4 2704.8 7.2203 0.0001* 
Tr x V 1 57.761 0.61676 0.643 
Tr x Da 4 978.24 2.4512 0.0091* 
V x Da 4 463.82 1.2382 0.2871 
Tr x V x Da 4 159.33 39.833 0.9231 
Residuals 23 2154 93.652  
Total 42 9054.2 

 
  

P-values were obtained using 9999 permutations of residuals under a reduced 
model using Type III (partial) sums of squares. 
 
 
 
 
 
 

 
Table 2.  Pairwise comparisons of Treatment x Day (significant interaction identified by 
PERMANOVA main tests) for pairs of levels of Treatment for the 10 most abundant OTUs. 
*P<0.05. 

 
 Treatment (N vs. P) 
Day t P 
 
0 

 
2.0902 

 
0.007* 

24 1.5128 0.1234 
73 2.1319 0.012* 
108 2.3385 0.006 
132 2.6008 0.0048 
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Table 3. Pairwise comparisons of Treatment x Day (significant interaction identified by 
PERMANOVA main tests) for pairs of levels of Day for the 10 most abundant OTUs. *P<0.05. 
 

Within N (Nitrogen-Limited)         Within P (Phosphorus-Limited) 

Groups t P  Groups t P 
 
0, 24 

 
2.8561 

 
0.0018* 

  
0, 24 

 
0.84779 

 
0.6435 

0, 73 2.3539 0.0023*  0, 73 2.9003 0.0028* 
0, 108 2.5369 0.0012*  0, 108 2.7043 0.0023* 
0, 132 2.4327 0.0047*  0, 132 3.2127 0.0029* 
24, 73 1.7322 0.0292*  24, 73 2.4921 0.0121* 
24, 108 2.6089 0.0039*  24, 108 2.6184 0.0111* 
24, 132 1.8162 0.0416*  24, 132 2.7575 0.0083* 
73, 108 2.4505 0.0213*  73, 108 0.75186 0.7129 
73, 132 
108, 132 
 

2.039 
1.7554 

0.0157* 
0.0682 

 73, 132 
108, 132 

1.8123 
1.3138 

0.0186* 
0.193 

P-values were obtained using 9999 permutations of residuals under a reduced model using Type 
III (partial) sums of squares. 
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DISCUSSION 
 
 Since our Synechococcus inoculum was initially derived from a single colony isolate at 

the beginning of the experiment, the high number of heterotrophs in our chemostats was 

particularly surprising.  This observation, however, highlights the inherent difficulties in 

maintaining an axenic strain of cyanobacteria in the laboratory and particularly in a chemostat 

system.  While previous experiments have reported the successful maintenance of axenic 

cyanobacteria in continuous culture (Groeneweg and Soeder 1978; Bruyant et al. 2001; Fu et al. 

2006), others have used non-axenic strains of cyanobacteria (De Nobel et al. 1997; Lennon and 

Martiny 2008).  Our results suggest that each individual chemostat supported approximately 108 

heterotrophic bacterial cells mL-1, and these cells were consistently more abundant than the 

autotrophic host with the exception of a few time points (Figure 1, Figure 3, Figure 4, Figure 8).  

Although heterotrophic bacteria peaked during the Synechococcus crash in a few of the 

chemostats, there were no consistent trends in heterotrophic bacterial abundance across 

biological replicate chemostats.  Virus-mediated lysis of the host cyanobacterium has been 

shown to liberate both carbon and nutrients that can be rapidly assimilated and mineralized by 

the co-occurring heterotrophic bacterial community (Noble and Furhrman 1999; Weinbauer et al. 

2011).  Heterotrophic bacterial growth in our chemostats was ultimately limited by the quantity 

and quality of these substrates, which likely regulated the consistent density of heterotrophs 

(Middelboe et al. 1996; Gobler et al. 1997).    

 Overall the ratios of heterotrophic bacteria to Synechococcus in our study did not appear 

to be controlled by the abundance of Synechococcus at any given time point.  When the 

cyanobacterial population crashed after phage infection, the heterotrophic bacteria density 

remained relatively similar, resulting in an increased heterotroph : Synechococcus ratio.  We 
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would have expected that the indirect effects of cyanobacterial lysis would have resulted in an 

increase in nutrients (i.e., lysate products) that would be rapidly assimilated by heterotrophic 

bacteria and lead to a marked increase in heterotrophic bacterial abundance (Gobler et al. 1997).  

However, this was not the case in our chemostats.  Additionally, with regards to host-phage 

dynamics, differences in Synechococcus abundance were also observed between the initial N- 

and P-limited lytic events.   In the N-limited chemostats, host lysis occurred immediately 

following phage addition (Figure 2, Figure 3, Figure 4).  However, in the P-limited chemostats 

there was a delay in cell lysis of Synechococcus (Figure 7, Figure 8, Figure 9).  This delay was 

similar to a report from a previous chemostat study by Wilson et al. (1996) investigating the 

effect of phosphate on cyanophage infection kinetics.  Their work suggests that this delay may 

have been due to lysogeny, reducing cyanophage production under P-deplete conditions.   

 Heterotrophic bacteria : Synechococcus ratios in our chemostats were similar to those 

reported across natural marine environments (Li 1998).  The results from our flow cytometry 

counts indicated averages (across all time points) of 7.6 ± 0.3 (mean ± SEM) and 9.8 ± 0.3 

heterotrophic bacteria for every Synechococcus cell for the N- and P-limited controls, 

respectively.  This average ratio was much higher for the phage-amended chemostats with ratios 

of 81.5 ± 1.3 and 185.4 ± 1.7 for the N-limited and P-limited chemostats.  Furthermore, if the 

phage-amended and control averages were combined for either nutrient-limited treatment, they 

resulted in very similar ratios (63.1 ± 1.1 and 51.3 ± 0.9 for the N-limited and P-limited 

chemostats, respectively).  Based on these results it appears that overall, the P-limited chemostats 

supported a higher ratio of heterotrophs to Synechococcus compared to the N-limited chemostats.  

In order for our system to support this number of heterotrophs, the organic carbon turnover rate 

of phytoplankton must have been faster than that of the heterotrophic bacteria (Fuhrman et al. 
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1989).  Furthermore, the growth of phytoplankton and heterotrophic bacteria were likely limited 

by different resources (Daufresne et al. 2008).  The coexistence of both competitors was 

facilitated by C-limitation of the heterotrophs and nutrient limitation of the phytoplankton. 

Technical sequencing reproducibility 
 
 The results from this study provide strong evidence for the potential of the Roche 454 

Titanium pyrosequencing platform. To our knowledge, technical sequencing reproducibility has 

not been compared using the 454 Titanium platform.  Our sequence analysis revealed a high 

degree of reproducibility among technical replicates at both the phylum and OTU levels.  Given 

the inherent technical issues with next-generation sequencing, pyrosequencing results from 

community DNA studies have been variable (Zhou et al. 2011).  Results from the 454 GS FLX 

and Illumina platforms have been assessed but the quality of sequencing replication differs 

largely between the two methods (Bartram et al. 2011; Zhou et al. 2011).   

Taxonomic distributions at the phylum-level were similar across technical replicates, 

which has been noted previously in the literature (Bartram et al. 2011).  Using OTU analyses to 

compare our technical replicate libraries, we found that 40 of our 43 biological replicate libraries 

clustered most closely with its technical replicate, indicating a high degree of relatedness 

between technical replicates for individual libraries.  Additionally, the 3 libraries that did not 

cluster most closely with each other were a short distance (i.e., 1 to 2 steps away) from their 

technical replicates.  The results from this dendrogram and our rarefaction curves suggested that 

we had sequenced deep enough (Figure 14, Figure 29 in Appendix) and gave us reason to pool 

our sequences to increase our sampling depth.  We also evaluated OTU recovery across technical 

replicates by comparing the relative abundance of all OTUs.  Again, the relative abundances 

between technical replicate libraries were remarkably similar and highly correlated indicating a 
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similar assignment of reads at a 97% similarity level.  Together, these findings imply that 

sequencing was highly reproducible on our 454 Titanium run providing a baseline to compare 

454 Titanium runs that include technical replication in future studies.  

MDS and cluster analyses show differences in communities 
 
 Our OTU-based analyses showed similar trends across biologically replicated 

chemostats.  Comparable OTU trends were evident among individual replicate chemostats with 

the same treatments (e.g. all 3 P-limited, phage-amended chemostats).  The major difference 

between the N-limited and P-limited chemostats was the consistent presence of the Pseudomonas 

OTU in the P-limited chemostats regardless of phage addition.  For the most part, the results 

from our OTU trends were very similar across all treatments and we observed no marked 

differences between the control and phage-amended chemostats.  Even when the OTU 

abundance data was not pooled, there were no major clonal differences within multiple OTUs 

assigned to the same genus (e.g. within the 13 Sulfitobacter OTUs).  However, the results from 

our OTU abundance trends were relatively unsatisfying in our attempt to address the 

aforementioned hypotheses. 

 Using MDS plots and overlaid cluster analyses of the 10 most abundant OTUs identified 

in our chemostats, we were able to address our hypotheses with higher confidence.  Although no 

heterotrophic bacterial counts were completed prior to phage addition, we can make the 

following conclusions regarding differences in our chemostat communities: 1) N-limited libraries 

largely clustered away from the P-limited libraries.  2) Libraries from earlier time points 

clustered loosely together, while libraries from later time points clustered together away from the 

earlier time points.  A trajectory is observed between early and late time points suggesting that 

our chemostats were not in steady state but evolving.  3) Control and phage-amended libraries 
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clustered together regardless of nutrient limitation.  These differences (i.e., in nutrients and day 

sampled) were further supported by statistically significant P-values.  

Based on these results, we failed to reject our first null hypothesis (H1: The heterotrophic 

bacterial community structure in a chemostat is different under nitrogen-limited conditions than 

phosphorus-limited conditions).  Indeed, the heterotrophic bacterial community structure did 

appear to be different under N-limited conditions compared to P-limited conditions.  Differences 

in nutrient availability between the N- and P-limited chemostats likely induced the selection of 

substrate specialists, resulting in a slightly different bacterial community structure for each 

treatment.  Therefore, we propose that under different nutrient-limiting conditions, lysed 

phytoplankton released different organic substrates in our chemostats.  Differences in our 

communities based on the Bray-Curtis similarity coefficient were likely due to the presence of 

Pseudomonas among the P-limited chemostats and minor differences in OTUs.  However, we 

must reject our second null hypothesis.   Similar to previous findings (Lennon and Martiny 

2008),  the presence of cyanophage in our chemostats did not strongly affect the structure and 

composition of non-target bacterial populations.  Collectively, the results from our MDS plots 

and statistical analyses suggest that the direct effects of nutrient limitation drove non-target 

heterotrophic bacterial diversity instead of the indirect effects of a cyanophage. 

Limitations and future directions 
 

These results demonstrate the relative importance of nutrient-limiting conditions as a 

potential primary driver of non-target heterotrophic community change as opposed to the indirect 

effects of viruses on a marine food web.  While we can make these conclusions for our 

chemostat study, there are four caveats in this experiment that must be addressed: 1) Our 

chemostat is a closed system.  As a result, nothing new comes in and anything that is lost is 
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never returned.  2) Our chemostat represents a relatively simple model.  Assumedly, we began 

the study with relatively low levels of diversity and no new bacteria could enter the system.  3) 

The richness in our chemostats does not mimic natural systems.  We would expect different 

bacterial richness levels in a marine or coastal system based on variations in nutrient availability 

and substrate competition.  4) Lastly, the cyanobacteria in our chemostat evolved.  We were able 

to isolate cyanophage-resistant Synechococcus cells during the chemostat experiment as well as 

isolate mutant cyanophage that are capable of lysing previously resistant cell lines.   

Our hypotheses may be further tested using three additional approaches, which include 

quantifying cyanomyoviruses, determining the heterotrophic bacterial diversity prior to phage 

addition and detecting single nucleotide polymorphisms or SNPs in our Synechococcus 

sequences.  Although we have assumed in our counts that all phage in the chemostats are indeed 

cyanophages, it is likely that other bacteriophages are also present given the number of 

heterotrophic bacteria in our system.  Over the last two decades, the g20 portal vortex gene has 

been used in studies as a proxy for cyanomyovirus diversity, richness and abundance (Fuller et 

al. 1998; Wilhelm et al. 2006; Matteson et al. 2011).  By employing quantitative PCR, we can 

use the g20 gene as a proxy for cyanomyovirus abundance to extract the number of heterotrophic 

bacteriophage relative to cyanophage from our total phage counts.  With regards to our flow 

cytometry results, our initial heterotrophic bacterial counts began 9 days following phage 

addition.  By enumerating the heterotrophs prior to phage addition, we can confidently estimate 

the number of heterotrophic bacteria in our chemostats at the beginning of the experiment.  

Additionally, it would be ideal to pyrosequence or generate a clone library of the basal 

heterotrophic bacterial community from our initial inoculum to compare to the bacterial 

community at the end of the chemostat experiment.  Results from this 16S rRNA gene 
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community data should provide stronger evidence to support our initial conclusion that nutrient 

limitation appears to be a potential driver of heterotrophic bacterial diversity in our chemostats. 

As previously mentioned, the cyanophage in our chemostat appeared to have co-evolved 

with its host over the course of the experiment resulting in a phage capable of lysing previously 

resistant Synechococcus.  We plan to re-sequence this virulent mutant cyanophage and compare 

its genome to the wildtype cyanophage.  Characterization of genome-level differences leading to 

infection of previously resistant cyanobacterial phenotypes has the potential to improve our 

understanding of the arms race between host and phage.  Since these results are based on a subset 

of all the non-cyanobacterial sequences, we intend to analyze the remaining 16S Synechococcus 

sequences.  In doing this, we hope to address differences in the abundance of specific clonal 

populations of the host cyanobacteria across treatments and over time.  We also would like to 

identify SNPs within our cyanobacterial sequences.  Previous literature suggests that SNPs may 

confer phage resistance phenotypes in bacteria (Barrangou et al. 2007).  By comparing the host 

Synechococcus genome to the wildtype and mutant cyanophages, we may be able to identify a 

nucleic acid-level mechanism of cyanobacterial resistance in our host-phage system. 

Conclusions 
 
 Several important conclusions can be made from this dataset.  First, our flow cytometry 

counts of heterotrophic bacteria reveal an abundance of heterotrophic bacterial contaminants in 

our cyanobacterial chemostats.  The heterotrophic bacterial counts provided motivation for us to 

pyrosequence our bacterial communities to determine if direct (nutrient limitation) or indirect 

effects (cyanomyovirus) were driving the non-target heterotrophic bacterial diversity in our 

chemostats.  Results from our phylum-level assignments, cluster analysis of non-cyanobacterial 

libraries and OTU overlap among technical replicates suggest high levels of sequencing 
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reproducibility on the 454 Titanium platform.  Next, we observed high reproducibility among 

our technical replicates and also highly similar patterns in our OTUs across biological replicate 

chemostats.  Lastly, we were able to detect differences in our chemostat libraries with regards to 

nutrient limitation and time.  Results from our cluster analyses, MDS plots and statistical tests 

indicated statistically significant differences between both nutrient-limited treatments and day 

sampled.  We did not reject our first hypothesis (i.e., in that we determined N-limited and P-

limited communities are different) but rejected our second null hypothesis (i.e., cyanophage 

addition did not result in a different heterotrophic community structure).  Although there were 

caveats that must be acknowledged in our study, the results from this study collectively suggest 

that in our chemostats, the indirect effects of a cyanophage did not have a significant effect on 

the diversity of non-target hosts, but that the direct effects of nutrient limitation and time resulted 

in a different non-target heterotrophic community structure. 



 
 
 

 75 

REFERENCES 
 

Anderson, M. J., K. E. Ellingsen and B. H. McArdle. 2006. Multivariate dispersion as a measure 
of beta diversity. Ecology Letters 9(6): 683-693. 

Arrigo, K. R. 2005. Marine microorganisms and global nutrient cycles. Nature 437(7057): 349-
355. 

Avrani, S., O. Wurtzel, I. Sharon, R. Sorek and D. Lindell. 2011. Genomic island variability 
facilitates Prochlorococcus-virus coexistence. Nature 474(7353): 604-608. 

Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer and F. Thingstad. 1983. The ecological 
role of water column microbes in the sea. Marine Ecology Progress Series 10: 257-263. 

Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero and 
P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. 
Science 315(5819): 1709-1712. 

Bartram, A. K., M. D. J. Lynch, J. C. Stearns, G. Moreno-Hagelsieb and J. D. Neufeld. 2011. 
Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial 
communities by assembling paired-end Illumina reads. Applied and Environmental 
Microbiology 77(15): 5569-5569. 

Bergh, O., K. Y. Borsheim, G. Bratbak and M. Heldal. 1989. High abundance of viruses found in 
aquatic environments. Nature 340(6233): 467-468. 

Berry, D., K. Ben Mahfoudh, M. Wagner and A. Loy. 2011. Barcoded primers used in multiplex 
amplicon pyrosequencing bias amplification. Applied and Environmental 
Microbiology. 77(21): 7846-7849. 

Bohannan, B., B. Kerr, C. Jessup, J. Hughes and G. Sandvik. 2002. Trade-offs and coexistence in 
microbial microcosms. Antonie van Leeuwenhoek 81(1): 107-115. 

Bohannan, B. J. M. and R. E. Lenski. 1997. Effect of resource enrichment on a chemostat 
community of bacteria and bacteriophage. Ecology 78(8): 2303-2315. 

Bohannan, B. J. M. and R. E. Lenski. 2000. Linking genetic change to community evolution: 
insights from studies of bacteria and bacteriophage. Ecology Letters 3(4): 362-377. 

Bohannan, B. J. M., M. Travisano and R. E. Lenski. 1999. Epistatic interactions can lower the 
cost of resistance to multiple consumers. Evolution 53(1): 292-295. 

Bouvier, T. and P. A. del Giorgio. 2007. Key role of selective viral-induced mortality in 
determining marine bacterial community composition. Environmental Microbiology 
9(2): 287-297. 

Bratbak, G., A. Jacobsen, M. Heldal, K. Nagasaki and F. Thingstad. 1998. Virus production in 
Phaeocystis pouchetii and its relation to host cell growth and nutrition. Aquatic 
Microbial Ecology 16(1): 1-9. 

Bratbak, G. and T. F. Thingstad. 1985. Phytoplankton-bacteria interactions: an apparent 
paradox? Analysis of a model system with both competition and commensalism. Marine 
Ecology - Progress Series 25: 23-30. 

Brum, J. R. 2005. Concentration, production and turnover of viruses and dissolved DNA pools at 
Stn ALOHA, North Pacific Subtropical Gyre. Aquatic Microbial Ecology 41(2): 103-
113. 

Bruyant, F., M. Babin, A. Sciandra, D. Marie, B. Genty, H. Claustre, J. Blanchot, A. Bricaud, R. 
Rippka, S. Boulben, F. Louis and F. Partensky. 2001. An axenic cyclostat of 



 
 
 

 76 

Prochlorococcus PCC 9511 with a simulator of natural light regimes. Journal of 
Applied Phycology 13(2): 135-142. 

Chao, L., B. R. Levin and F. M. Stewart. 1977. A complex community in a simple habitat: an 
experimental study with bacteria and phage. Ecology 58(2): 369-378. 

Chen, F., J. R. Lu, B. J. Binder, Y. C. Liu and R. E. Hodson. 2001. Application of digital image 
analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. 
Applied and Environmental Microbiology 67(2): 539-545. 

Chisholm, S. W., R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury and N. A. 
Welschmeyer. 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic 
zone. Nature 334(6180): 340-343. 

Cho, B. C. and F. Azam. 1990. Biogeochemical significance of bacterial biomass in the ocean's 
euphotic zone. Marine Ecology Progress Series 63: 253-259. 

Clarke, K. R., P. J. Somerfield and M. G. Chapman. 2006. On resemblance measures for 
ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis 
coefficient for denuded assemblages. Journal of Experimental Marine Biology and 
Ecology 330(1): 55-80. 

Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed-Mohideen, D. 
M. McGarrell, T. Marsh, G. M. Garrity and J. M. Tiedje. 2009. The Ribosomal Database 
Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 
37: D141-D145. 

Daufresne, T., G. Lacroix, D. Benhaim and M. Loreau. 2008. Coexistence of algae and bacteria: 
a test of the carbon hypothesis. Aquatic Microbial Ecology 53(3): 323-332. 

De Nobel, W. T., J. Huisman, J. L. Snoep and L. R. Mur. 1997. Competition for phosphorus 
between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. FEMS 
Microbiology Ecology 24(3): 259-267. 

Downing, J. A. 1997. Marine nitrogen: Phosphorus stoichiometry and the global N:P cycle. 
Biogeochemistry 37(3): 237-252. 

Droop, M. R. 1974. The nutrient status of algal cells in continuous culture. Journal of the 
Marine Biological Association of the United Kingdom 54(04): 825-855. 

Ducklow, H. W. and C. A. Carlson. 1992. Oceanic bacterial production. Advances in Microbial 
Ecology 12: 113-181. 

Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince and R. Knight. 2011. UCHIME improves 
sensitivity and speed of chimera detection. Bioinformatics 27(16): 2194-2200. 

Engelbrektson, A., V. Kunin, K. C. Wrighton, N. Zvenigorodsky, F. Chen, H. Ochman and P. 
Hugenholtz. 2010. Experimental factors affecting PCR-based estimates of microbial 
species richness and evenness. ISME Journal 4(5): 642-647. 

Field, J. G., K. R. Clarke and R. M. Warwick. 1982. A practical strategy for analyzing 
multispecies distribution patterns. Marine Ecology Progress Series 8(1): 37-52. 

Fu, F. X., Y. H. Zhang, Y. Y. Feng and D. A. Hutchins. 2006. Phosphate and ATP uptake and 
growth kinetics in axenic cultures of the cyanobacterium Synechococcus CCMP 1334. 
European Journal of Phycology 41(1): 15-28. 

Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature 
399(6736): 541-548. 

Fuhrman, J. A. and M. Schwalbach. 2003. Viral influence on aquatic bacterial communities. 
Biological Bulletin 204(2): 192-195. 



 
 
 

 77 

Fuhrman, J. A., T. D. Sleeter, C. A. Carlson and L. M. Proctor. 1989. Dominance of bacterial 
biomass in the Sargasso Sea and its ecological implications. Marine Ecology Progress 
Series 57(3): 207-217. 

Fuller, N. J., W. H. Wilson, I. R. Joint and N. H. Mann. 1998. Occurrence of a sequence in 
marine cyanophages similar to that of T4 g20 and its application to PCR-based detection 
and quantification techniques. Applied and Environmental Microbiology 64(6): 2051-
2060. 

Gihring, T. M., S. J. Green and C. W. Schadt. 2011. Massively parallel rRNA gene sequencing 
exacerbates the potential for biased community diversity comparisons due to variable 
library sizes. Environmental Microbiology doi: 10.1111/j.1462-2920.2011.02550.x. 

Gobler, C. J., D. A. Hutchins, N. S. Fisher, E. M. Cosper and S. A. Sanudo-Wilhelmy. 1997. 
Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine 
chrysophyte. Limnology and Oceanography 42(7): 1492-1504. 

Groeneweg, J. and C. J. Soeder. 1978. An improved culture tube for axenic cultures of 
microalgae. British Phycological Journal 13(4): 337-340. 

Haaber, J. and M. Middelboe. 2009. Viral lysis of Phaeocystis pouchetii: Implications for algal 
population dynamics and heterotrophic C, N and P cycling. ISME Journal 3(4): 430-
441. 

Haas, B. J., D. Gevers, A. M. Earl, M. Feldgarden, D. V. Ward, G. Giannoukos, D. Ciulla, D. 
Tabbaa, S. K. Highlander, E. Sodergren, B. Methe, T. Z. DeSantis, J. F. Petrosino, R. 
Knight, B. W. Birren and H. M. Consortium. 2011. Chimeric 16S rRNA sequence 
formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome 
Research 21(3): 494-504. 

Hall, J. A., K. Safi, M. R. James, J. Zeldis and M. Weatherhead. 2006. Microbial assemblage 
during the spring-summer transition on the northeast continental shelf of New Zealand. 
New Zealand Journal of Marine and Freshwater Research 40: 195-210. 

Hamady, M., J. J. Walker, J. K. Harris, N. J. Gold and R. Knight. 2008. Error-correcting 
barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature 
Methods 5(3): 235-237. 

Hara, S., K. Terauchi and I. Koike. 1991. Abundance of viruses in marine waters - assessment by 
epifluorescence and transmission electron microscopy. Applied and Environmental 
Microbiology 57(9): 2731-2734. 

Hennes, K., C. Suttle and A. Chan. 1995. Fluorescently labeled virus probes show that natural 
virus populations can control the structure of marine microbial communities. Applied 
and Environmental Microbiology 61(10): 3623-3627. 

Hennes, K. P. and C. A. Suttle. 1995. Direct counts of viruses in natural-waters and laboratory 
cultures by epifluorescence microscopy. Limnology and Oceanography 40(6): 1050-
1055. 

Holmfeldt, K., J. Titelman and L. Riemann. 2010. Virus production and lysate recycling in 
different sub-basins of the Northern Baltic Sea. Microbial Ecology 60(3): 572-580. 

Huber, J. A., H. G. Morrison, S. M. Huse, P. R. Neal, M. L. Sogin and D. B. Mark Welch. 2009. 
Effect of PCR amplicon size on assessments of clone library microbial diversity and 
community structure. Environmental Microbiology 11(5): 1292-1302. 

Huber, T., G. Faulkner and P. Hugenholtz. 2004. Bellerophon: a program to detect chimeric 
sequences in multiple sequence alignments. Bioinformatics 20(14): 2317-2319. 



 
 
 

 78 

Hughes, J. B., J. J. Hellmann, T. H. Ricketts and B. J. M. Bohannan. 2001. Counting the 
uncountable: Statistical approaches to estimating microbial diversity. Applied and 
Environmental Microbiology 67(10): 4399-4406. 

Huse, S. M., L. Dethlefsen, J. A. Huber, D. M. Welch, D. A. Relman and M. L. Sogin. 2008. 
Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag 
sequencing. PLoS Genetics 4(11): e1000255. 

Huse, S. M., D. M. Welch, H. G. Morrison and M. L. Sogin. 2010. Ironing out the wrinkles in 
the rare biosphere through improved OTU clustering. Environmental Microbiology 
12(7): 1889-1898. 

Kauserud, H., S. Kumar, A. Brysting, J. Nordén and T. Carlsen. 2011. High consistency between 
replicate 454 pyrosequencing analyses of ectomycorrhizal plant root samples. 
Mycorrhiza: 1-7. 

Lebaron, P., N. Parthuisot and P. Catala. 1998. Comparison of blue nucleic acid dyes for flow 
cytometric enumeration of bacteria in aquatic systems. Appl. Environ. Microbiol. 64(5): 
1725-1730. 

Lemos, L. N., R. R. Fulthorpe, E. W. Triplett and L. F. W. Roesch. 2011. Rethinking microbial 
diversity analysis in the high throughput sequencing era. Journal of Microbiological 
Methods 86(1): 42-51. 

Lennon, J. T., S. A. M. Khatana, M. F. Marston and J. B. H. Martiny. 2007. Is there a cost of 
virus resistance in marine cyanobacteria? ISME Journal 1(4): 300-312. 

Lennon, J. T. and J. B. H. Martiny. 2008. Rapid evolution buffers ecosystem impacts of viruses 
in a microbial food web. Ecology Letters 11(11): 1178-1188. 

Lenski, R. E. 1988. Dynamics of interactions between bacteria and virulent bacteriophage. 
Advances in Microbial Ecology 10: 1-44. 

Lenski, R. E. and B. R. Levin. 1985. Constraints on the coevolution of bacteria and virulent 
phage - A model, some experiments, and predictions for natural communities. American 
Naturalist 125(4): 585-602. 

Li, W. K. 1995. Composition of ultraphytoplankton in the central North Atlantic. Marine 
Ecology Progress Series 122: 1-8. 

Li, W. K. W. 1998. Annual average abundance of heterotrophic bacteria and Synechococcus in 
surface ocean waters. Limnology and Oceanography 43(7): 1746-1753. 

Liu, H. B., H. A. Nolla and L. Campbell. 1997. Prochlorococcus growth rate and contribution to 
primary production in the equatorial and subtropical North Pacific Ocean. Aquatic 
Microbial Ecology 12(1): 39-47. 

Long, R. A. and F. Azam. 2001. Antagonistic interactions among marine pelagic bacteria. 
Applied and Environmental Microbiology 67(11): 4975-4983. 

Longhurst, A. R. and W. Glen Harrison. 1989. The biological pump: Profiles of plankton 
production and consumption in the upper ocean. Progress In Oceanography 22(1): 47-
123. 

Mann, N. H. 2003. Phages of the marine cyanobacterial picophytoplankton. FEMS 
Microbiology Reviews 27(1): 17-34. 

Mardis, E. R. 2008. The impact of next-generation sequencing technology on genetics. Trends 
in Genetics 24(3): 133-141. 

Marston, M. F. and J. L. Sallee. 2003. Genetic diversity and temporal variation in the 
cyanophage community infecting marine Synechococcus species in Rhode Island's 
coastal waters. Applied and Environmental Microbiology 69(8): 4639-4647. 



 
 
 

 79 

Martin, A. P. 2002. Phylogenetic approaches for describing and comparing the diversity of 
microbial communities. Applied and Environmental Microbiology 68(8): 3673-3682. 

Matteson, A. R., S. N. Loar, R. A. Bourbonniere and S. W. Wilhelm. 2011. Molecular 
enumeration of an ecologically important cyanophage in a Laurentian Great Lake. 
Applied and Environmental Microbiology 77(19): 6772-6779. 

Metzker, M. L. 2010. Sequencing technologies - the next generation. Nat Rev Genet 11(1): 31-
46. 

Meyerhans, A., J. P. Vartanian and S. Wainhobson. 1990. DNA recombination during PCR. 
Nucleic Acids Research 18(7): 1687-1691. 

Middelboe, M. 2000. Bacterial growth rate and marine virus host dynamics. Microbial Ecology 
40(2): 114-124. 

Middelboe, M., A. Hagström, N. Blackburn, B. Sinn, U. Fischer, N. H. Borch, J. Pinhassi, K. 
Simu and M. G. Lorenz. 2001. Effects of bacteriophages on the population dynamics of 
four strains of pelagic marine bacteria. Microbial Ecology 42(3): 395-406. 

Middelboe, M., K. Holmfeldt, L. Riemann, O. Nybroe and J. Haaber. 2009. Bacteriophages drive 
strain diversification in a marine Flavobacterium: implications for phage resistance and 
physiological properties. Environmental Microbiology 11(8): 1971-1982. 

Middelboe, M. and N. O. G. Jorgensen. 2006. Viral lysis of bacteria: an important source of 
dissolved amino acids and cell wall compounds. Journal of the Marine Biological 
Association of the United Kingdom 86(3): 605-612. 

Middelboe, M., N. O. G. Jorgensen and N. Kroer. 1996. Effects of viruses on nutrient turnover 
and growth efficiency of non-infected marine bacterioplankton. Applied and 
Environmental Microbiology 62: 1991-1997. 

Moisa, I., E. Sotropa and V. Velehorschi. 1981. Investigations on the presence of cyanophages in 
fresh and sea waters of Romania. Virologie 32(2): 127-132. 

Noble, R. T. and J. A. Fuhrman. 1998. Use of SYBR Green I for rapid epifluorescence counts of 
marine viruses and bacteria. Aquatic Microbial Ecology 14(2): 113-118. 

Noble, R. T. and J. A. Furhrman. 1999. Breakdown and microbial uptake of marine viruses and 
other lysis products. Aquatic Microbial Ecology 20: 1-11. 

Parameswaran, P., R. Jalili, L. Tao, S. Shokralla, B. Gharizadeh, M. Ronaghi and A. Z. Fire. 
2007. A pyrosequencing-tailored nucleotide barcode design unveils opportunities for 
large-scale sample multiplexing. Nucleic Acids Research 35(19): e130: 131-139. 

Partensky, F., J. Blanchot and D. Vaulot. 1999. Differential distribution and ecology of 
Prochlorococcus and Synechococcus in oceanic waters : a review. Bull. Inst. Océanogr. 
Monaco Special 19: 457-475. 

Pomeroy, L. R. 1974. The ocean's food web, a changing paradigm. BioScience 24(9): 499-504. 
Poorvin, L., J. M. Rinta-Kanto, D. A. Hutchins and S. W. Wilhelm. 2004. Viral release of iron 

and its bioavailability to marine plankton. Limnology and Oceanography 49(5): 1734-
1741. 

Proctor, L. M. and J. A. Fuhrman. 1990. Viral mortality of marine bacteria and cyanobacteria. 
Nature 343(6253): 60-62. 

Proctor, L. M. and J. A. Fuhrman. 1992. Mortality of marine bacteria in response to enrichments 
of the virus size fraction from seawater. Marine Ecology-Progress Series 87(3): 283-
293. 



 
 
 

 80 

Pruesse, E., C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies and F. O. Glöckner. 2007. 
SILVA: a comprehensive online resource for quality checked and aligned ribosomal 
RNA sequence data compatible with ARB. Nucleic Acids Research 35(21): 7188-7196. 

Quince, C., A. Lanzen, R. J. Davenport and P. J. Turnbaugh. 2011. Removing noise from 
pyrosequenced amplicons. BMC Bioinformatics 12. 

Riemann, L. and M. Middelboe. 2002. Viral lysis of marine bacterioplankton: implications for 
organic matter cycling and bacterial clonal composition. Ophelia 56: 57-68. 

Riemann, L., G. F. Steward and F. Azam. 2000. Dynamics of bacterial community composition 
and activity during a mesocosm diatom bloom. Applied and Environmental 
Microbiology 66(2): 578-587. 

Rohwer, F. and R. V. Thurber. 2009. Viruses manipulate the marine environment. Nature 
459(7244): 207-212. 

Safferman, R. S. and M. E. Morris. 1963. Algal virus: isolation. Science 140(3567): 679-680. 
Sanger, F., S. Nicklen and A. R. Coulson. 1977. DNA sequencing with chain-terminating 

inhibitors. Proceedings of the National Academy of Sciences 74(12): 5463-5467. 
Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. 

Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. 
Thallinger, D. J. Van Horn and C. F. Weber. 2009. Introducing mothur: Open-source, 
platform-independent, community-supported software for describing and comparing 
microbial communities. Applied and Environmental Microbiology 75(23): 7537-7541. 

Shendure, J. and H. L. Ji. 2008. Next-generation DNA sequencing. Nature Biotechnology 
26(10): 1135-1145. 

Sherr, E. and B. Sherr. 1988. Role of microbes in pelagic food webs - a revised concept. 
Limnology and Oceanography 33(5): 1225-1227. 

Sherr, E. B., D. A. Caron and B. F. Sherr.1993. Staining of heterotrophic protists for 
visualization via epifluorescence microscopy. Handbook of Methods in Aquatic 
Microbial Ecology. P. F. Kemp, B. F. Sherr, E. B. Sherr and J. J. Cole. Boca Raton, FL, 
Lewis Publishers: 213-221. 

Smith, S. V. 1984. Phosphorus versus nitrogen limitation in the marine environment. Limnology 
and Oceanography 29(6): 1149-1160. 

Sogin, M. L., H. G. Morrison, J. A. Huber, D. Mark Welch, S. M. Huse, P. R. Neal, J. M. Arrieta 
and G. J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored "rare 
biosphere". Proceedings of the National Academy of Sciences of the United States of 
America 103(32): 12115-12120. 

Stanier, R. Y. and G. Cohen-Bazire. 1977. Phototrophic prokaryotes: the cyanobacteria. Annual 
Review of Microbiology 31: 225-274. 

Stoddard, L. I., J. B. H. Martiny and M. F. Marston. 2007. Selection and characterization of 
cyanophage resistance in marine Synechococcus strains. Appl. Environ. Microbiol. 
73(17): 5516-5522. 

Sullivan, M. B., J. B. Waterbury and S. W. Chisholm. 2003. Cyanophages infecting the oceanic 
cyanobacterium Prochlorococcus. Nature 426(6966): 584-584. 

Suttle, C. A. 1994. The significance of viruses to mortality in aquatic microbial communities. 
Microbial Ecology 28(2): 237-243. 

Suttle, C. A. 2005. Viruses in the sea. Nature 437(7057): 356-361. 
Suttle, C. A. 2007. Marine viruses - major players in the global ecosystem. Nature Reviews 

Microbiology 5(10): 801-812. 



 
 
 

 81 

Suttle, C. A. and A. M. Chan. 1993. Marine cyanophages infecting oceanic and coastal strains of 
Synechococcus - Abundance, morphology, cross-infectivity and growth characteristics. 
Marine Ecology Progress Series 92(1-2): 99-109. 

Suttle, C. A. and A. M. Chan. 1994. Dynamics and distribution of cyanophages and their effect 
on marine Synechococcus spp. Applied and Environmental Microbiology 60(9): 3167-
3174. 

Suttle, C. A., A. M. Chan and M. T. Cottrell. 1990. Infection of phytoplankton by viruses and 
reduction of primary productivity. Nature 347(6292): 467-469. 

Tamaki, H., C. L. Wright, X. Li, Q. Lin, C. Hwang, S. Wang, J. Thimmapuram, Y. Kamagata 
and W.-T. Liu. 2011. Analysis of 16S rRNA amplicon sequencing options on the 
Roche/454 next-generation Titanium sequencing platform. PLoS One 6(9): e25263. 

Thingstad, T. F. and R. Lignell. 1997. Theoretical models for the control of bacterial growth rate, 
abundance, diversity and carbon demand. Aquatic Microbial Ecology 13(1): 19-27. 

Torrella, F. and R. Y. Morita. 1979. Evidence by electron micrographs for a high incidence of 
bacteriophage particles in the waters of Yaquina Bay, oregon: ecological and taxonomical 
implications. Applied and Environmental Microbiology 37(4): 774-778. 

Tringe, S. G. and P. Hugenholtz. 2008. A renaissance for the pioneering 16S rRNA gene. 
Current Opinion in Microbiology 11(5): 442-446. 

Tripp, H. J. 2008. Counting marine microbes with Guava Easy-Cyte 96 well plate reading flow 
cytometer. Nature Protocol Exchange doi:10.1038/nprot.2008.29. 

Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary 
production. Nature 400(6744): 525-531. 

Wang, Q., G. M. Garrity, J. M. Tiedje and J. R. Cole. 2007. Naive Bayesian classifier for rapid 
assignment of rRNA sequences into the new bacterial taxonomy. Applied and 
Environmental Microbiology 73(16): 5261-5267. 

Wang, Y. and P.-Y. Qian. 2009. Conservative fragments in bacterial 16S rRNA genes and primer 
design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10): 
e7401. 

Waterbury, J. B. and F. W. Valois. 1993. Resistance to co-occurring phages enables marine 
Synechococcus communities to coexist with cyanophages abundant in seawater. Applied 
and Environmental Microbiology 59(10): 3393-3399. 

Waterbury, J. B., S. W. Watson, R. R. L. Guillard and L. E. Brand. 1979. Widespread occurrence 
of a unicellular, marine, planktonic, cyanobacterium. Nature 277(5694): 293-294. 

Waterbury, J. B. and J. M. Willey.1988. [6] Isolation and growth of marine planktonic 
cyanobacteria. Methods in Enzymology. A. N. G. Lester Packer, Academic Press. 
Volume 167: 100-105. 

Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews 28(2): 
127-181. 

Weinbauer, M. G., O. Bonilla-Findji, A. M. Chan, J. R. Dolan, S. M. Short, K. Šimek, S. W. 
Wilhelm and C. A. Suttle. 2011. Synechococcus growth in the ocean may depend on the 
lysis of heterotrophic bacteria. Journal of Plankton Research 33(10): 1465-1476. 

Weinbauer, M. G. and F. Rassoulzadegan. 2004. Are viruses driving microbial diversification 
and diversity? Environmental Microbiology 6(1): 1-11. 

Wilhelm, S. W., M. J. Carberry, M. L. Eldridge, L. Poorvin, M. A. Saxton and M. A. Doblin. 
2006. Marine and freshwater cyanophages in a Laurentian Great Lake: Evidence from 



 
 
 

 82 

infectivity assays and molecular analyses of g20 genes. Applied and Environmental 
Microbiology 72(7): 4957-4963. 

Wilhelm, S. W. and C. A. Suttle. 1999. Viruses and nutrient cycles in the sea. BioScience 
49(10): 781-788. 

Wilson, W. H., N. G. Carr and N. H. Mann. 1996. The effect of phosphate status on the kinetics 
of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. 
Journal of Phycology 32(4): 506-516. 

Wilson, W. H., I. R. Joint, N. G. Carr and N. H. Mann. 1993. Isolation and molecular 
characterization of five marine cyanophages propagated on Synechococcus sp. strain 
WH7803. Applied and Environmental Microbiology 59(11): 3736-3743. 

Winter, C., T. Bouvier, M. G. Weinbauer and T. F. Thingstad. 2010. Trade-offs between 
competition and defense specialists among unicellular planktonic organisms: The 
"Killing the Winner" hypothesis revisited. Microbiology and Molecular Biology 
Reviews 74(1): 42-57. 

Woese, C. R. 1987. Bacterial evolution. Microbiological Reviews 51(2): 221-271. 
Wommack, K. E. and R. R. Colwell. 2000. Virioplankton: Viruses in aquatic ecosystems. 

Microbiology and Molecular Biology Reviews 64(1): 69-114. 
Xu, X., I. Khudyakov and C. Wolk. 1997. Lipopolysaccharide dependence of cyanophage 

sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120. J. Bacteriol. 
179(9): 2884-2891. 

Youssef, N., C. S. Sheik, L. R. Krumholz, F. Z. Najar, B. A. Roe and M. S. Elshahed. 2009. 
Comparison of species richness estimates obtained using nearly complete fragments and 
simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental 
surveys. Applied and Environmental Microbiology 75(16): 5227-5236. 

Yue, J. C. and M. K. Clayton. 2005. A similarity measure based on species proportions. 
Communications in Statistics-Theory and Methods 34(11): 2123-2131. 

Zehr, J. P. and B. B. Ward. 2002. Nitrogen cycling in the ocean: New perspectives on processes 
and paradigms. Applied and Environmental Microbiology 68(3): 1015-1024. 

Zhou, J., L. Wu, Y. Deng, X. Zhi, Y. H. Jiang, Q. Tu, J. Xie, J. D. Van Nostrand, Z. He and Y. 
Yang. 2011. Reproducibility and quantitation of amplicon sequencing-based detection. 
ISME Journal 5(8): 1303-1313. 

 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 



 
 
 

 83 

 
 

 
 

Figure 26: Flow chart of experimental setup and methods (flow cytometry, pyrosequencing and 
sequence processing). 
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(A)  
 

(B)  

 
Figure 27.  Sample dot plot (A) and histogram (B) of total bacterial counts.  Total bacteria were 
counted for 100 seconds, set to count a maximum of 1000 events and set to the lowest flow rate 
on the Guava flow cytometer. 
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(A)  
 

(B)  

 

Figure 28. Sample dot plot (A) and histogram (B) of autotrophic cell counts.  Autotrophic cells 
(Synechococcus) were counted for 180 seconds, set to count a maximum of 2500 events and set 
to the lowest flow rate of the Guava flow cytometer. 
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Figure 29. Scatter plot with linear regression of flow cytometry counts versus epifluorescence 
counts of Synechococcus (n=90). 
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Figure 30:  Example rarefaction curves generated using 1,000 randomizations in MOTHUR of 3 
biological replicate libraries from day 73 of a phosphorus-limited, phage-amended chemostat. 
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Table 4:  Universal primers, fusion primers and barcoded primers used to barcode chemostat 
libraries (Wang and Qian 2009).  
 
Primer Adapter Sequence Key Barcode Sequence 
338F_A CCATCTCATCCCTGCGTGTCTCCGAC TCAG AACCATGC 
338F_B CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACACAGAG 
338F_C CCATCTCATCCCTGCGTGTCTCCGAC TCAG AACGCGTT 
338F_D CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACTCAGTG 
338F_E CCATCTCATCCCTGCGTGTCTCCGAC TCAG AGACCACT 
338F_F CCATCTCATCCCTGCGTGTCTCCGAC TCAG CGTTCGTT 
338F_G CCATCTCATCCCTGCGTGTCTCCGAC TCAG CTGTCGTT 
338F_H CCATCTCATCCCTGCGTGTCTCCGAC TCAG CGTAATGC 
338F_I CCATCTCATCCCTGCGTGTCTCCGAC TCAG CAGTCTCT 
338F_J CCATCTCATCCCTGCGTGTCTCCGAC TCAG CCAATACG 
338F_K CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACCACATG 
338F_L CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACCAGTAC 
338F_M CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACCTAGCA 
338F_N CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACCTTCGT 
338F_O CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGAAGCA 
338F_P CCATCTCATCCCTGCGTGTCTCCGAC TCAG CCTTCGAT 
338F_Q CCATCTCATCCCTGCGTGTCTCCGAC TCAG CACAGAGA 
338F_R CCATCTCATCCCTGCGTGTCTCCGAC TCAG CACAACAC 
338F_S CCATCTCATCCCTGCGTGTCTCCGAC TCAG CCTAGCTT 
338F_T CCATCTCATCCCTGCGTGTCTCCGAC TCAG CCAAGGTT 
338F_U CCATCTCATCCCTGCGTGTCTCCGAC TCAG AACGTACC 
338F_V CCATCTCATCCCTGCGTGTCTCCGAC TCAG AAGCAAGC 
926R CCTATCCCCTGTGTGCCTTGGCAGTC TCAG  
 
Forward Fusion Primer:  
CCATCTCATCCCTGCGTGTCTCCGAC-[Key]-Barcode-ACTCCTACGGGAGGCAGCAG 
 
Reverse Fusion Primer: 
CCTATCCCCTGTGTGCCTTGGCAGTC-[Key]-CCGTCAATTCMTTTRAGT 
 
338F Primer Sequence:   ACTCCTACGGGAGGCAGCAG 
926R Primer Sequence:   CCGTCAATTCMTTTRAGT 
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