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Abstract 

Osteoporosis is a very disabling disease in humans, and not until 

recently with the advent of modern technology has it been researched in a 

manner beneficial to medical applications. Initially, the use of animals in 

osteoporosis research served primarily as an avenue for testing and 

research. Recently the use of nonhuman primates has expanded the 

research potential for such studies on related individuals more similar to 

humans. Baboon colonies provide researchers with accessible nonhuman 

primate populations in which pedigrees can be determined and .biomedical 

studies can be performed. This study is based on 186 hand-wrist 

radiographs of two baboon subspecies, Papio hamadryas cynocephalus 

and P.h. anubis, collected at the Southwest Foundation for Biomedical 

Research in San Antonio, Texas. The records of the baboons from which 

the radiographs were taken were arranged into pedigrees. The third 

metacarpal of each radiograph was digitized on a video analysis system 

using x,y coordinates at 1.0 mm intervals to establish cortical bone area 

measurements. Subsequent analysis of these measurements established 
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first and second moments of area and radii of gyration. Computer 

analysis using the program "Maxlikh2", similar to Fischer's Fundamental 

theorem, determined heritability estimates from the measurements along 

the parameters of the pedigrees for seven quantitative traits. Heritability 

is a function of degree of genetic inheritance of a complex trait, in this 

case radii of gyration of cortical bone. Multivariate analysis using 

variables mean, sex, age, sex/age interaction, and phenotypic variance 

and yielded heritability and standard error estimates for the quantitative 

traits kmax, kmin, area, length, subperiosteal-medullary width, 

kmax\length, and kmin\length. Quantitative traits are significantly 

heritable. Cortical bone morphology of baboon third metacarpals may 

provide a methodology for identifying risk factors associated with 

developing osteoporosis. The study of bone heritability in primates 

contributes a new application for osteoporosis research. Studies of bone 

heritability in baboons could lead to the use of such studies as models for 

human osteoporosis. 
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CHAPT ER I 

INTRODUCTION 

Physiological osteopenia (loss of bone) is a common result of the 

aging process. However, when osteopenia becomes pathological, the loss 

of bone results in osteoporosis. This pathological loss of bone is not only 

devastating in human populations, it is also the most prevalent form of 

disease affecting bone (Dequeker 1989). Dequeker ( 1989) also refers to 

osteoporosis as "a silent thief" (p.85), indicating its relationship to bone 

loss and its initial undetectablility 

The National Institutes of Health (NIH) has defined osteoporosis 

as an "age-related disorder characterized by decreased bone mass and 

by increased susceptibility to fractures in the absence of other recogniz­

able causes of bone loss" (NI H  Consensus Development Panel 1984: 

799). Although this serves as an adequate working definition, it does not 

provide the medical profession with a method for diagnosis. 

The clinical characteristics for diagnosing osteoporosis are fractures 

detected from radiographs. While fractures induced by osteoporosis are 

common, the loss of bone mass does not necessarily lead to fracture. 

Even when bone loss does lead to fracture in the elderly, in the span of a 

year the chances of subsequent mortality are nearly 20 percent (NI H  
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Consensus Development Panel 1984). Without the radiographic evidence 

of bone fracture, the diagnosis of osteoporosis can be arduous at best. 

In the absence of trauma to induce fracture, osteoporosis cannot be 

reliably diagnosed (Raisz 1988). The medical implications of finding a 

way to determine possible risk factors associated with osteoporosis prior 

to fracture would be considerable. 

Continuing research in osteoporosis reflects the magnitude of 

concern not only for early detection and diagnosis, but also for reduction 

in medical costs associated with osteoporosis. The NI H Consensus Devel­

opment Panel ( 1984) estimates the annual cost of osteoporosis-related 

injuries to reach nearly four billion dollars in the United States alone. In 

elderly individuals, more than 90 percent of all hip fractures will occur in 

those over the age of 70. Additionally, one third of all females reaching 

90 years of age will experience hip fractures, leading to costs exceeding 

six billion dollars per annum and less than 50 percent chance for full 

recovery (Resnick and Greenspan 1989). The ecumenical mortality rate of 

elderly patients experiencing hip fractures is more than 15 percent 

(Magaziner 1989). Peck et al. (1988: 275) recognize the impact of osteo­

porosis in the United States alone: "The frequency of osteo-porosis and 

osteoporosis-related fractures is expected to increase, because the most 

susceptible population--the elderly--is expanding." An increase in the 

elderly population eventuates an increase in medical costs associated with 
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osteoporotic disorders. 

Of all the bones in the body, long bones have a tubular shape and 

are relatively easy to assess and examine in radiographic form. Of the 

long bones in the body, some of the smallest are the metacarpals, or the 

bones which form the palm, articulating with the proximal phalanges of 

the fingers and the carpals of the wrist. Metacarpals are conventional 

measurement sites for loss of cortical bone (Garn 1975). Plato and Norris 

( 1980) also use radiographs of metacarpals from human sample popula­

tions to analyze loss of cortical bone. Radiographs of second metacarpals 

have been taken from rhesus monkeys to determine cortical bone loss 

(DeRousseau 1985). 

Nonhuman primates have recently become more common in studies 

of bone mineral content (BMC), bone density, and bone mass. Nonhu­

man primates are studied in these areas mainly because both environmen­

tal and genetic aspects of such populations can be controlled or closely 

monitored. This study analyzes hand-wrist (specifically third metacarpal) 

radiographs from a colony of baboons (genus Papio) made available by the 

Southwest Foundation for Biomedical Research (SFBR) in San Antonio, 

Texas. For the purposes of this study, these radiographs have been 

digitized to determine cortical bone size using a computer video analysis 

system. 
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The purpose of this study is determining the genetic component of 

cortical bone size in baboon third metacarpals. Kelly et. al. state that 

"genetic factors are major determinants of adult bone density" (1991: 

808). It has also been shown that "genetic influences make a major 

contribution to variance in adult bone density" (Kelly et al. 1990). 

Heritability, a key component used in statistical analyses of bone mea­

surement data, has been defined by Krall and Dawson-Hughes as "the 

proportion of total variance attributable to genetic effects" (1993: 2). In 

this analysis, it is possible to measure familial resemblances and produce 

accurate estimates of the additive genetic variance for cortical bone size 

measurements. One of the objectives in this study is to determine the 

heritability of cortical bone size in a sample population of baboons (Papio 

hamadryas anubis, P.h. cynocephalus and a hybrid of P .h. anubis and P.h. 

cynocepha/us) of known genetic background (Williams-Blangero et al. 

1990). 

As with most nonhuman primate studies concerning bone, this 

study utilizes nonhuman primate data as an approach to model similar 

processes in humans. Specifically, this study examines cortical bone size 

in a number of Papio subspecies of known genetic background and relates 

the findings as a nonhuman primate model for determining the heritability 

of human cortical bone size. Williams-Blangero et al. ( 1990) have empha­

sized the importance of distinguishing subpopulations of baboons in 
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biomedical research. In their study of polymorphic protein loci, genetic 

distances between baboon subspecies were statistically significant, 

supporting experiment designs structured with regard to subpopulation 

types. Failing to distinguish between subpopulations across experiments 

could lead to skewed statistical parameters and incompatible repeated 

experimented results. Consequently, Williams-Blangero suggest the 

designation of hamadryas for all Papio species, and the above-mentioned 

subspecies. The original taxonomic classification of baboon species dates 

back to Linnaeus' original designation of P. hamadryas for the long-tailed 

baboon (1758). 

Eight quantitative traits are examined for six effects. The traits of 

quantitative bone size analyzed are kmax and kmin (radii of gyration}, 

area, length, subperiosteal and medullary width, and three functional 

aspects of these traits, kmax / length, kmin / length, and kmax / kmin. 

Kmax / kmin is used for its mechanical convenience in determining the 

distribution of cortical bone and the consequent strength or fragility of the 

bone. Maximum likelihood estimates for six parameters describing these 

traits and functional aspects are estimated, including mean, sex, age, sex 

and age interaction, phenotypic variance, and heritability. 

To thoroughly examine traits and functional aspects of cortical 

bone, particular issues inherent in this study must be resolved: 
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1.) What is the relationship between the functional properties of bone 

analyzed and their relevance to osteoporosis studies? 2.) What are the 

distributions and associations of the proportion of observed variance of 

cortical bone size with regard to heritability, sex, age and environment? 
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CHAPT ER II 

REVIEW OF LITERATURE 

Evaluating the effects of quantitative traits obtained from baboon 

metacarpals and their relevance to osteoporosis-related studies is best 

understood with background information reviewing the pertinent literature. 

During the preparation of this study, several areas were reviewed: epide­

miology of osteoporosis; histology of cortical bone; bone mass, measure­

ment, and loss; nonhuman studies; Papio studies; hormonal and environ­

mental effects on bone; and quantitative genetics. T he relevance of each 

topic to this study is discussed in separate sections within this chapter . 

EPIDEMIOLOGY OF OSTEOPOROSIS 

As discussed above, osteoporosis-related injuries are common in 

the elderly, difficult to diagnose, potentially fatal, costly, and expected to 

become more common with the growing elderly population. Clearly the 

presence of osteoporosis needs to be diagnosed early (prior to fracture), 

and, more importantly, accurately. This situation necessitates a meth-
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odology for early diagnosis of osteoporosis and of those susceptible to 

pathological bone loss. The first step in this multi-faceted process re­

quires an understanding of the properties of osteoporosis at the cellular 

level. 

Among the components necessary for bone formation, four account 

for most of the bone matrix (Woolf and Dixon 1988): collagen (made by 

fibroblasts and osteoblasts), mucosaccharides, osteocalcin and bone 

minerals (primarily calcium and phosphorus). The bone multicellular unit 

(BMU) is composed of osteoids, osteoblasts and osteoclasts operating in 

unison. 

If the rate of bone absorption is greater than that of bone formation 

and is unregulated by the BMU, the result is osteoporosis. Osteoporosis 

results in less bone mass, thus weaker bone. The dense, compact bone 

on external bone surfaces and in bone shafts is cortical bone, which 

makes up approximately 80 percent of the bone in the skeleton (Wahner 

1987). Cortical bone becomes very porous with osteoporosis, and 

haversian canals which facilitate passages for nerve fibers, blood, and 

lymph (White 1991) become wider. 

The properties of bone discussed above referred to the presence of 

cortical bone in bone shafts. The structure of long bones is divided into 

three primary parts relative to ossification centers: the epiphysis (articular 

surface at both ends of the bone); the diaphysis (center portion of bone or 
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bone shaft); and the metaphysis (layer of cartilage between the epiphysis 

and the diaphysis). Cortical bone appears along the bone shaft, and 

extends roughly from the end of one epiphysis to the beginning of the 

other epiphysis. Bone is a dynamic organ, undergoing modeling during 

growth and remodeling (or continual change) after growth.· To look at 

bone at any given stage of modeling or remodeling, radiography provides 

a comparably inexpensive, convenient, and accurately quantifiable means 

of analyzing cortical bone size. 

Cortical bone undergoes endochondral ossification, or ossification 

antedated by cartilage, which is flexible and composed primarily of 

collagen. After long bones have reached their final stage of growth, they 

have undergone appositional growth (enlargement of shaft diameter) and 

lengthening of the shaft (the primary growth center). The overall density 

of bone at this stage is at best an inaccurate indicator of bone loss in 

adults. Undetected bone loss occurs primarily because only cortical bone 

can clearly be seen on radiographs, and loss of cancellous bone occurs 

long before it can be detected by radiographs. Riggs and Melton ( 1986) 

estimate that the peak level of cortical bone mass is reached by the time 

an individual is between 30 and 40 years of age, and the reduction of 

cortical bone begins shortly thereafter. 

Clinically, osteopenia occurs when bone mass is below normal and 

fracture has not occurred, and does not indicate causality of osteoporosis 
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(Scheider 1984). Many authorities in the medical field use the term 

osteoporosis only when fracture has already occurred. Factors associat­

ed with osteoporosis are primarily interpreted as the amount of 'normal' 

bone mineralization reduced to a level conducive to fractures without the 

necessity of external catalysts such as trauma, including circumstances 

where fracture has occurred given undetected bone loss. With the excep­

tion of hip fractures, osteoporotic fractures in long bones respond favor­

ably to orthopedic treatment, usually with complete recovery of both 

function and form. Although this information appears promising, osteo­

porosis continues to be increasingly common, painful, costly, fatal, and 

difficult to diagnose prior to fracture. It should be noted here that al­

though there are two types of osteoporosis (Type I, or post-menopausal, 

and Type II, senile or age-related osteoporosis); the author, unless specifi­

cally stated, uses the term osteoporosis interchangeably for both types 

(following Raisz et al. 1989). 

Osteoporotic fractures occur most frequently in the hip, humerus, 

vertebrae, and distal forearm (Cummings et al. 1985). The significant 

health impact of osteoporotic fractures is reflected in the 20 percent 

mortality rate of individuals experiencing hip fractures. Avioli ( 1991) 

views the increase of hip fracture incidence (about 40 percent per annum 

in the United States) as an indicator of osteoporosis-related disorders. 

Approximately 80 percent of all hip fractures occur in women, and after 
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the age of fifty, white women experience approximately twice as many 

osteoporotic hip fractures as white men (Cummings et al. 1985). With 

the increase in hip fractures, an increase in medical costs can also be 

expected. The high incidence of osteoporosis-related injuries and health 

problems will only increase the costs associated with such injuries, not to 

mention the pain and suffering of affected individuals. Until the age of 75 , 

white women in the United States and Europe are affected most common­

ly by distal forearm osteoporotic fractures (or Co lies' fractures). Co lies' 

fractures are only to be surpassed by hip fractures in ages greater than 75 

(Cummings et al. 1985). The incidence of Colles' fractures in men is 

fairly constant at approximately eight percent from ages 45 to 85 (Cooper 

1989). 

Of the vertebral fractures, all are either complete compression frac­

tures or partial deformities causing loss of height of vertebral bodies 

(wedge fractures). The majority (60 percent p·revalence) of vertebral 

fractures occurring in women over 75 in the United States and Europe 

(Cooper 1 989) are wedge fractures. These fractures can occur without 

trauma, and if trauma is involved, it is frequently induced by minimal 

catalysts, such as coughing (Parfitt and Duncan 1 982). Cooper ( 1 989 : 

755) states that the risk factors for osteoporotic fractures for individuals 

depends upon "the peak bone mass ... attained at maturity, and its subse­

quent rate of loss." Given the present and forecasted prevalence of 
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osteoporosis-related injuries and health problems, accurate prediction, 

prevention, diagnosis prior to fracture, and health care implementation are 

all going to be imperative. 

HISTOLOGY OF CORTICA L BONE 

The cortical bone of physically mature individuals consists of 

lamellar bone, rather than immature or woven bone. Layers of homoge­

neous lamellae (collagen fibers) accumulated slowly produce both trabecu­

lar and cortical bone. Being more dense and less porous than trabecular 

bone, cortical bone cannot obtain essential nourishment from available 

marrow spaces or surface blood vessels. Instead cortical bone receives 

nourishment by means of haversian systems (White 1991). 

Haversian systems are the central structural units of cortical bone. 

Within the haversian system exists an haversian canal, providing a pas­

sageway for lymph, nerve fibers, and blood, the latter supplying the 

nourishment for cortical bone. Both cortical bone formation and mainte­

nance rely primarily on three cell types: osteoblasts (cells that form 

bone); osteocytes (cells that maintain bone tissue); and osteoclasts (cells 

that remove or resorb bone tissue). 
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Bone is a dynamic tissue, and its formation continues throughout 

life. Garn et al. (1975) have found that bone growth continues up to and 

past 80 years of age. One aspect of this continual formation occurs at 

the cellular level and is referred to as remodeling. Bone remodeling can 

maintain bone shape through the resorption of bone tissue by osteoclasts 

and placement of new bone tissue by osteoblasts. The balance of these 

two processes also allows bone to exhibit plasticity, or the ability to 

change shape. 

Any bone remodeling must occur on the foundation of original or 

preexisting bone (White 1991 ). This is because bone, during growth, is 

produced at a rapid pace and the matrix calcifies quickly, eliminating any 

possibility of augmentation of bone tissue from within the preexisting 

tissue (White 1991 ). Kelly et al. (1991) suggest that bone remodeling is 

the primary metabolic process occurring in adults (rather than bone 

modeling which is prevalent during bone development). Dequeker (1989) 

also suggests that osteoblasts could be the "target cells for oestrogens" 

(p. 86). Parfitt ( 1982) proposes that post-menopausal women suffering 

from osteoporotic fractures may not experience sufficient osteoblast 

"recruitment" or osteoblast "stamina" (p. 5). Thus, they exhibit an 

inability to compensate for resorption. An understanding of bone mass, 

measurement, and the remodeling process provides a better opportunity 

for understanding the underlying processes and causes of osteoporosis. 

13 



BONE MASS 

Review of Terminology 

Before beginning a review of the development, measurement, and 

loss of bone, a clarification of the terminology used in this study is 

addressed. Bone mass refers to the quantity of matter forming a bone of 

indefinite shape or size. Bone density, in most osteological applications, 

refers to bone mass per area. In literal terms bone density would refer to 

bone weight per unit of volume, or grams per cm3 • However, in many 

anthropological studies, the measure of bone volume is not an available 

option. Bone mineral content (BMC) is literally the measurement of the 

content of bone minerals per grams of bone measured, or a cross-section 

of bone measuring mineral content in grams per centimeter. Bone mineral 

measurements of this type can be done using single-photon 

absorptiometry (SPA). In dual-photon absorptiometry, bone area is 

extrapolated , measuring true area as grams per cm2
• The term cortical 

bone size is used in the first two chapters of this study to simplify a 

complex description of the functional properties inherent in cortical bone, 

which will be addressed in the following chapter. 
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Development and Growth 

The determination of heritability of bone size can best be under­

stood with an examination of what constitutes bone mass, how it is mea­

sured, and how it is lost. Both trabecular and cortical bone contribute to 

the strength and mass of bone. Each individual bone has a fundamental 

proportion of trabecular and cortical bone components (Cummings et al. 

1985). As mentioned earlier, about 80 percent of al l  bone in the body is 

cortical bone. Vertebrae are composed mostly of trabecular bone, while 

long bones are no less than 90 percent cortical bone (Crilly et al. 1981). 

Riggs et al. ( 1986) assert that conditions that cause rapid bone loss 

usually affect trabecular bone faster than cortical bone. This is due 

primarily to the fact that trabecular bone is more susceptible to influences 

of metabolic processes, including estrogen level changes. During child­

hood and adolescence, bone mass increases greatly, then plateaus be­

tween the ages of 30 and 40. Stevenson ( 1988) suggests that adult 

peak mass is reached by the conclusion of linear bone growth. 

Environmental Effects 

Environmental effects on peak bone mass such as exercise and diet 

are not well understood. It is clear, however, that malnutrition, physical 

stagnation, or intercurrent illness impede attainment of peak bone mass 

(Stevenson 1988). In severe cases, extreme amounts of exercise can 
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actually decrease bone density through hypothalamic disturbance. During 

childhood and adolescence, it is unclear whether addition of calor ies or 

exercise beyond levels sufficient for general growth and well-being 

increase bone mass. 

As previously stated, women lose bone mass faster than men after 

the age of f ifty, which is the mean age of menopause (Worley 1981). 

Chow et al. ( 1987) indicate that moderate increases in exercise not only 

increase bone mass, but also preclude menopausal and age-related bone 

loss. Zhang et al. (1992) found that "perimenopausal women with more 

physical activ ity have s ignif icantly higher BMD when other determinants 

of BMD are taken into account" (p. 737). In addition, Stevenson et al. 

(1989) observed that neither dietary calcium intake nor family history had 

any effect on bone density. 

Age, Sex, and Summary of Effects 

It is evident that sex, age, and achieved peak bone mass are all 

factors affecting observed bone mass. One of the predominant factors 

affecting bone mass is age. In a study on diffe�ential changes in bone 

mineral density, Riggs et al. ( 1981) found that the most prominent effect 

in both sexes on BMD was age. After the age of fifty, gender distinctions 

become significant, ev idenced pr imar ily in the long bones of women. 

When within normal, healthy ranges, environmental factors such as 
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exercise and nutrition have little observable effects on peak bone mass. 

Hormonal factors that may affect bone mass, especially in pre-, peri-, and 

post-menopausal women are discussed below. 

Hormonal Factors 

· Hormonal influences on bone mass in men and women are re­

viewed at this point, as some of these aspects are considered influential 

in bone mass and osteoporotic cases. Most studies of osteoporosis and 

bone mass focus on twins or female subjects. Obviously, most twin 

studies are focused on genetic aspects of bone mass. Studies isolating 

women are by the same token interested in hormonal effects on bone 

mass and osteoporosis associated with pre-, peri-, and post-menopausal 

hormonal fluctuations and changes. There are few studies concerned 

with hormonal aspects of bone mass and osteoporosis in men, mostly 

because of the relatively low incidence of osteoporotic-related injuries in 

men when compared to women. However, a few studies incorporating 

men in the examination of bone mass will be discussed. 

It has been noted that hormonal effects contributing to osteoporo­

sis may be heightened in women (as opposed to men) due to their more 

delicate and fragile skeletal structure (Dequeker 1989). Graham et al. 

( 1979) emphasize that after the discontinuation of menses, several 

changes in hormones occur. Of these changes due to ovarian failure, 
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noticeably low serum levels of progesterone and estradiol cause a de­

crease in their ratio to estrone. It is the deficiency of progesto­

gen/estrogen that contributes to the aging affects of loss of bone mass in 

women. However, not all post-menopausal women wil l  necessari ly 

suffer osteoporotic fractures, because some experience less severe 

estrogen deficiency and have greater initial peak bone mass. The de­

crease in the secretion of progesterone "allows cortico-steroids to exert 

their action ful ly on bone" (Dequeker 1989 : 87) . This sug-gests the 

interaction of progesterone and cortisone, along with the deficiency of 

estrogen, contribute to the majority of hormonal effects on bone mass. 

Ni las and Christiansen ( 1988) observed that the rate of bone loss 

was significant prior to menopause, and that this loss was significantly 

higher after the menopause. In post-menopausal women , it has also 

been found that fracture and non-fracture sites on the skeleton have a 

significant difference in bone mineral densities, with fracture sites having 

the lower densities (Nordin et al . 1988) . Another study revealed that 

there is insignificant change in BMD in pre-menopausal women and a 

quick decrease in BMD in post-menopausal women (Sambrook et al. 

1987) . 

Raisz ( 1988) states that the main hormonal results of menopause 

on women's bone mass is an increase in bone resorption coupled with a 

smal ler increase in bone formation, resulting in a decl ine in bone mass. 
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T he hormone primarily associated with this result is estrogen .  Further 

studies indicate that this effect passes from mother to daughter. From a 

study of 95 premenopausal women and their daughters, Tylavski et al. 

(1988) found h2 estimates in the distal radius of 0 .80 and 0 .56 for bone 

mineral content (BMC, measured as g cm·1 ) and BMD, respectively. Lutz 

( 1986) conducted a similar study, and concluded that mothers with low 

radius BMC are inclined to have daughters with low radius BMC, evi­

denced by high heritability estimates. Seeman et al . ( 1989) also found 

that pre-menopausal daughters of women with post-menopausal osteopo­

rosis have significantly lower bone mass than women of the same age 

whose mothers do not have post-menopausal osteoporosis . Furthermore, 

Seeman and colleagues suggest that post-menopausal osteoporosis may 

be partly due to a predisposition to relatively low peak bone mass. 

Worley ( 1981: 204) contributes the following to estrogen deficien-

cy in women and its effects on bone mass: 

. . .  removal of functioning ovaries from women before age 45 
leads to earlier loss of bone mass than if the ovaries remain 
intact . Furthermore, the degree of bone loss is dependent 
principally upon the time elapsed since oophorectomy or 
spontaneous menopause. 

Stevenson ( 1988) supports Worley's conclusion with findings indicating 

bone loss is high immediately after natural menopause, and even higher in 

women who have undergone oophorectomy. Although Stevenson et al . 
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( 1.989) found that genetic factors are highly significant in determining 

peak bone mass, it was also established that in any given site , the largest 

effect on bone density was menopause. However, this does not negate 

the effect of genetic influences on bone mass; rather, it emphasizes that 

the familial link between mothers and their daughters is expressed both in 

bone mass, and in hormonal effects of menopause on bone mass. 

Androgen deficiency may have similar effects on bone mass in men 

as noted by Foresta (1985) and Riasz (1988). These studies suggest 

that androgen deficiencies increase the incidence of osteoporosis in men. 

However, such sex-hormone deficiencies are not the only determinants of 

osteoporosis. Other studies indicate that aging effects of hormonal 

changes in men may contribute to a decrease in bone formation but that 

they do not affect bone resorption (Francis et al. 1989; Kelly et al. 1991 ) .  

Meier et al. (1984), in a study of bone loss in men, indicate that as 

healthy men age, they exhibit a substantial decline in vertebral BMC, but 

Meier and colleagues did not indicate any hormonal factors involved. 

Christian et al. ( 1989) found that their low h2 estimates for bone mass 

loss in men can be attributed to an emphasis on environmental influences. 
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Genetic Factors 

Stevenson et al. (1989: 926) conclude that "genetic influences are 

an important determinant of peak bone mass." Smith et al. ( 1973) 

further state that the variance of bone density is significantly less in 

homozygotic twins than in heterozygotic twins. It has also been suggest­

ed that parents and their adolescent children have significantly similar 

bone densit ies (Chesnut 1988). Kelly et al. (199 1) assert that genetic 

factors are primary determinants of bone density in adults, and that bone 

density is directly related to bone resorption and formation. Many studies 

focusing on families and twins elicit a sound genetic effect on the bone 

densities of adults (Dequeker et al. 1987; Evans et al. 1988; Lutz 1986; 

Moller et al 1978; Pocock et al. 1987; Seeman et al. 1989; Smith et al . 

1973). Pocock et al. (1987) found in their study of twin pairs (with 

separate analysis of premenopausal twin pairs) "a strong genetic compo­

nent to the determination of bone mass" (p. 709). Smith et al. (1973) 

and Moller et al. ( 1978) found that particularly in the peripheral skeleton, 

the determination for the quantity of cortical bone is a d irect result of 

genetic factors. 

Dequeker et al. ( 1987) estimated the heritability (h2) value of 

cortical bone mass at 0. 75 in their adult sample, suggesting a significant 

heritable component to cortical bone mass. The h2 value in the younger 

sample was 0.4 7, exhibiting a heritable component; the authors suggest 
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differential environmental influences have a more pronounced effect in 

this age group. Relatives of osteoporotic patients have been found to 

have lower mean bone mass than in individuals without osteoporosis 

identified in relatives (Evans et al. 1 988). A unique longitudinal study on 

the loss of mass and bone density in aging male twins found within-family 

factors to play a significant role in bone mass and bone mass loss (Chris­

tian et al. 1 989). Gardsell et al. ( 1 989) also found evidence in the axial 

and appendicular skeleton for a genetic component. Krall and Dawson­

Hughes ( 1 993) found bone density to be strongly correlated with familial 

aspects, even after site- and case-specific environmental factors were 

controlled. Heritability estimates of bone mass suggest that a genetic 

component has an apparent and observable effect on bone mass 

(Table 1 1 . 1  ). 

Table 1 1 . 1 . Bone mass heritability results form other studies. 

Study Authors 

Christian et al. ( 1 989) 

Krall and Dawson-Hughes 
( 1 993) 

Pocock et al. ( 1 987) 

Aspect of Bone Measured 

radial mass 
radial width 
total body density 
radial density 
femoral neck 
lumbar BMD 
femoral neck 

Note: All h2 estimates are significant at (P < 0.05). 
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0.50 
0.76 
0. 69 
0.51  
0.70 
0.92 
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BONE MEASUREMENT 

Current Techniques 

Noninvasive bone methods have progressed steadily with techno­

logical advances. Many noninvasive methods are used to measure BMC 

and BMD, but are not necessarily appropriate for many aspects of bone 

measurement. Some of the prominent methods of noninvasive bone 

measurement include radiographic morphometry, radiographic photodensi­

tometry, single-photon absorptiometry (SPA), dual-photon absorptiometry 

(DPA), and quantitative computed tomography (OCT ), (Mazess 1989). 

Heaney et al. ( 1989) present detection of osteoporotic overall bone 

fragility instead of bone mass through ultrasound transmission velocity. 

Many of these methods are used to directly analyze osteoporosis or its 

prediction. Specific site studies provide information on, and recommenda­

tions for, direct measurements at high-risk locations (Barentsen et al. 

1988). Some site-specific studies even suggest that measurement at 

one site can predict situational bone mineral aspects at other sites 

(Manicourt et al. 1981). 
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Bone Mineral Content and Density 

Recently, the Food and Drug Administration has required the mea­

surement of spinal bone mineral content in evaluating the treatment 

and/or prevention of osteoporosis (Ri is and Christiansen 1988). Nordin et 

al. ( 1987) used densitometry to screen for osteoporosis, and found peak 

density to be the main predicting factor. Many studies using noninvasive 

measurement techniques are concerned with BMC, and measure such 

aspects as calcium, z inc, copper, and iron (Lei and Young 1979). Vogel 

et al. (1988) summarize some recent techniques and conclude that BMC 

relates to the r isk of osteoporotic fractures. Some studies have used 

noninvasive techniques to clinically diagnose osteoporosis through BMC 

measurements. The units of measurement in BMD analyze mass per 

volume (density), rather than content, examining particular bone minerals 

or cortical index, the ratio of the total density to that of cortex thickness 

(Wahner 1983). One study on the detection of prefracture osteoporosis 

using bone mineral absorptiometry concluded that it is not so much the 

measurement technique that is important, but rather the site of measure­

ment (Ross et al. 1988). 

Bone density measurements relate to bone mass, but not to the 

quality of bone, making a diagnosis between metabolic bone diseases 

such as osteomalacia and osteoporosis clinically inadmissible (Alhava 

1991 ). Although the noninvasive bone measurement techniques men-
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tioned above focus on current osteoporotic inquiries, they also apply to 

past problems. 

Bone Mass 

Bone mass measurements are taken primarily for their diagnostic 

and predictive possibilities. Although bone mass is not the only determin­

ing factor for predicting fractures, it provides an easily accessible means 

for measurement both in the clinic and in research. It is commonly 

accepted that as bone mass decreases, fracture risk increases (Chesnut 

1 988). Many of the current measurements mentioned above are limited 

in their application. QCT and DPA measure bone mass in the axial skele­

ton, and require large amounts of money, time, and space. 

SPA only measures peripheral bone mass and cannot be used to 

accurately predict bone mass in the axial skeleton (Cosman et al. 1 991 ). 

Furthermore, QCT can frequently overestimate bone loss and can only be 

used to measure trabecular bone. Radiographic Absorptiometry (RA) 

measurements are relatively easy to perform, inexpensive, and less time 

consuming. When radiographs are used in conjunction with computer­

controlled digitization and scanning, RA measurements provide widely­

accessible and accepted methods of bone mass measurement with low 

radiation exposure. 
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Since peak bone mass has been determined as significant in the 

occurrence of osteoporosis and osteoporotic fractures, research and 

clinical use for screening analysis are becoming increasingly important 

(Fogelman 1989). Measurement of bone mass at specific sites is one 

aspect of current osteoporotic fracture risk studies that is also increasing­

ly common. One reason for specific site measurement is that the correla­

tions between specific measurement sites and bone mass are higher than 

the correlations between particular site's rates of bone loss (Slemenda et 

al. 1988). 

BONE Loss 

It has been established that as age increases, bone mass decreases, 

and with decreasing bone mass the risk of fracture increases (Ott et al. 

1987). Vaananen (1991) asserts that during and after the fourth decade 

of life, bone mass begins to decrease from achieved peak bone mass. 

Moreover, most sex differences in age-related bone loss are attributable to 

decreased bone formation in men and increased bone resorption in women 

(Vaananen 1991). Specifically, age-related changes in bone loss relative 

to cortical bone consist of cortical thinning due to endosteal resorption. 

In a study of long-term bone loss in men, Slemenda et al. ( 1992) 

found that along with genetic factors, cigarette smoking and alcohol con-
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sumption contributed to bone loss. They further concluded that the 

significance associated with exercise and bone loss should be cautiously 

regarded, since individual exercise history and exercise habits observed 

under research conditions may vary. It is commonly accepted that bone 

loss, whether attributable more to bone resorption or decreased bone 

formation, is the primary cause of osteoporosis. Furthermore,· bone loss 

has been shown to be indirectly related to peak bone mass. Pollitzer and 

Anderson ( 1989) performed a comprehensive study of bone loss, includ­

ing four major determinants: hormonal factors, dietary factors, physical 

activity, and ethnic-genetic factors. They conclude that environmental 

factors such as diet and exercise exhibit modulating effects on bone loss. 

More significant are their findings on ethnic factors; both menopause­

related and age-related bone loss occur across several ethnic groups, 

including both black and white populations. Their most convincing 

findings suggest a significantly strong hereditary contribution to bone 

mass and loss. 

Studies on Rats and Nonhuman Primates 

Before beginning a review of nonhuman studies, it should be noted 

that especial ly in primates there is considerable life history variation. 

Harvey and Clutton-Brock (1985) reported a comprehensive study of life 

history variables in primates, including age at sexual maturity and length 
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of estrous cycle. Any variations may have effects on findings of different 

genera and species studies, and although noted by the author when 

reported in specific studies, these variations should be kept in mind 

throughout the review. 

Although only primates experience menopause, rats provide an 

accessible means to measure bone mass. In their study, Safadi et al. 

( 1988) used both CT and SPA techniques to measure vertebral bone loss 

with age in female rats. Both measuring techniques appeared equally able 

to determine BMC. However, since female rats do not experience bone 

remodeling, this study is not pertinent to the post-menopausal model. 

The remaining reviews in this section consolidate several non-human 

primate studies dealing with both New and Old World primates. 

An SPA study was performed on rhesus monkeys by Aguilo and 

Cabrera ( 1989) to model effects of osteopenia in humans. This study 

reasserted that age has a differential effect on trabecular and cortical 

bone. Aguilo and Cabrera also found that osteoporosis results in more hip 

fractures; consequently, a h igher mortal ity rate. The find ings of this 

study suggest that the high correlations of bone size and weight with 

BMC and bone density support the use of SPA on rhesus macaques as a 

model for similar procedures in humans. Another study on rhesus ma­

caques by Grynpas et al. ( 1989) examined osteoporosis and BMC. 

Rhesus macaques have been found to experience age-related osteopenia, 
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and although females lose more bone mass than males, high parity 

appears to shield against bone loss (Bowden et al . 1979). 

Although Bowden et al. ( 1979) found change in cortical thickness 

with age, Grynpas et al. ( 1 989) found no change in percent cortical 

thickness in rhesus macaques with age. In essence, their study suggests 

a strong correlation between mineralization and cortical bone aging. Pope 

et al. ( 1 989), in a rhesus monkey study of sex and age effects on bone 

density, observed changes in bone density directly related to age and sex. 

Furthermore, in females within the ages of 32 and 33, decrease in bone 

density was found to be related to a deficiency in estrogen, mirroring 

human post-menopausal bone density decrease. 

Bowles et al. (1985) conducted a study on ovariectomized and 

intact Macaca fascicularis. This study presented a human post-meno­

pausal model for osteoporosis. Utilizing the image analysis system "DAR­

WIN" , accurate bone area and density measurements were taken. 

Conclusions suggested that this model is appropriate relative to human 

studies since vertebral densities were lower in the ovariectomized fe­

males than the intact, closely mirroring results found in humans. In 

addition, the mean percent of trabecular bone area was approximately 1 9  

percent in the control group, and nearly 35 percent in the ovariectomized 

group. These findings, along with the fact that Old World monkeys 

experience menopause, indicate that Macaca fuscicularis provide a 
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reliable model for human osteoporosis-related studies. 

The genetic epidemiology approach to nonhuman primate popula­

tion studies usually requires pedigree information. One type of approach 

in particular, quantitative genetic studies, "assume the traits in question 

are influenced by a large number of polygenes" (Williams-Blangero 1991: 

85). After this assumption is made, the amount of variance due to 

genetic influences (heritability) can be estimated. This additive genetic 

component of complex traits is estimated along with genetic correlations 

between complex traits (when not performing a univariate study). Quanti­

tative genetic studies in captive nonhuman primate colonies have increas­

ingly improved and become more common among researchers. Although 

the number of captive nonhuman pr imate colonies is decreasing, their 

research potential remains high, especially when models are needed to 

research human genetic structure and function. 

BENEFITS OF PAP/0 STUDIES 

Baboons (genus Papio) have been used as models for human 

diseases and disorders since 1960 (McGill et al. 1960; VandeBerg and 

Cheng 1986). Studies are done on wild or captive baboons, depending 

upon research topic, availability, and cost. Captive primate colonies pro-
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vide researchers with nonhuman primates that serve as animal models for 

human diseases (MacCluer et al. 1987). The main benefit of using animal 

models comes from the ability to control many aspects of animal environ­

ment and breeding. Baboons provide scientists with the opportunity to 

work not only with animal models, but also with primate models for the 

study of human diseases. Another beneficial aspect of using baboons as 

animal models includes analyzing genetic components of diseases; with 

the ability to control environment and breeding, the complications associ­

ated with separating genetic and environmental effects are minimized. 

Although baboons were not used in genetic studies in the late 1960's, by 

1983 approximately 11 percent of nonhuman primate genetic studies uti­

lized baboons (Vandeberg and Cheng 1986). This increase in studies may 

indicate that as scientists' understanding of the role of genetics in hu­

mans increases, so will the use of baboon models increase. The net 

result of an increase of baboons used in genetic studies will be a better 

understanding of the role genetics plays in diseases affecting humans. 

QUANTITATIVE GENETICS 

Quantitative traits are traits that are "influenced by gene differ­

ences at many loci" (Falconer 1981: 1 ). Quantitative traits therefore 

cannot be measured or identified by single genes. Thus, Mendelian ratios 
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seen in differences in genes at single loci in qualitative traits, cannot be 

applied to quantitative traits. The fundamental basis of quantitative 

genetics is structured around the same properties and transmission of 

genes as those in Mendelian genetics (Falconer 1981). However, the 

study of quantitative traits is different from the study of qualitative traits 

in that quantitative trait studies must be conducted on large numbers of 

individuals (populations), and that traits must be measured, not simply 

classified. Quantitative genetic models have also been developed for 

qualitative traits. 

Konigsberg and Cheverud ( 1992) state the following: "One goal of 

quantitative genetics is the explication of phenotypic covariances between 

relatives in terms of environmental and genetic variances" (p. 133). In 

other words, quantitative genetics is concerned with the understanding of 

inherited differences in individuals which are prompted by differences in 

genes at several loci. To study the quantitative differences of the segre­

gation of genes at several loci, the measurement of phenotypic traits 

(rather than the classification of qualitative traits) is partitioned into 

sources of variance (Falconer 1981 ). Genetic and environmental 

covariance is a "portion of the total phenotypic variance" (Falconer 1981: 

135). 

Quantitative genetics is concerned with understanding resemblance 

between relatives. Genotypic variance can be divided into three parts: 
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additive, dominance, and interaction. An important component of geno­

typic variance is the additive genetic variance. The estimated additive 

genetic variance for an individual is the phenotypic value multiplied by the 

heritability. The additive genetic variance exhibits three primary charac­

teristics that make it so important in quantitative genetic studies: 1) It is 

the only part of genotypic variance that facilitates prompt estimation 

based on population observation; 2) It is the primary cause of inherited 

phenotypic resemblances; and 3) It is the primary determinant of measur­

able genetic aspects of populations (Falconer 1981). 

Quantitative genetic studies have been applied to natural popula­

tions, population structure analysis, and captive nonhuman primate 

colonies. Shaw ( 1987) studied estimation of quantitative genetic parame­

ters in natural populations, and found the estimates to be accurate for 

large populations. Williams-Blangero et al. ( 1990) note the advantages of 

using quantitative traits, asserting both the theoretical and practical 

implications of quantitative traits. As an example of theoretical implica­

tions, Williams-Blangero et al. ( 1 990) state the most important of 

Darwin's evolutionary factors (fitness) is best examined as a quantitative 

trait. They also suggest that measurement of metric traits is frequently 

more accessible to anthropologists than gathering qualitative data on 

genetic blood markers. Chakraborty ( 1990) describes the use of quantita­

tive traits in relation to population structure as appropriate and warranted. 
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More recently, Blangero and Konigsberg ( 1991) tested the practical 

implications of using quantitative traits in a captive baboon colony. They 

found that by using multivariate models, the "genotype-environment 

interaction" can be evaluated from trait measurements from individuals in 

different environments (Blangero and Konigsberg 1991 :3 15). Another 

study of nonhuman primate quantitative genetics found that heritability 

estimates are not significantly different in cases of known pedigree 

compared to cases with the absence of paternity data (Konigsberg and 

Cheverud 1992). 

SUMMARY OF LITERATURE REVIEW 

In this chapter, many subjects pertinent to the goals of this study 

have been discussed. It has been shown that a major component of 

osteoporosis is the reduction of bone mass and the subsequent fragility of 

the affected bone. When any of a number of external pressures act on 

weakened bone, the result is frequently fracture. Osteoporotic-related 

fractures are forecasted to increase in the years ahead, with the trend 

towards a generally older population. Associated directly with the in­

creasing incidence of fractures are other osteoporosis-related health prob­

lems, health care costs, and an increased mortality rate, primarily among 
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the elderly. An understanding of the underlying causes of osteoporosis 

and their detectability are extremely important in the prediction and 

prevention of osteoporosis-related injuries. 

Consequently, studies of the underlying causes of osteoporosis 

have begun to focus on the roles bone growth, formation, and subsequent 

loss play in the development of osteoporosis. As previously stated, bone 

is a dynamic tissue, and bone growth can continue up to and past the age 

of 80. With bone growth occurring in the elderly, the assessment and 

prediction of those individuals at risk for osteoporosis becomes a primary 

concern. Cortical bone constitutes approximately 80 percent of all the 

bone in the body and is found primarily in the appendicular skeleton (the 

arms and legs). Thus, obtaining cortical bone radiographs is relatively 

inexpensive and exposure to radiation is low. Several studies on osteopo­

rosis and the role of bone mass and density have been done using a wide 

variety of measurement techniques. Two-dimensional measurement of 

cortical bone size has been shown to be easily accessible and financially 

prudent in light of other measurement sites and techniques. The environ­

mental, hormonal, and age/sex influences on bone mass and measurement 

have been discussed, and their relevance to this study assessed. T heir 

particular effects on the results of this study will be addressed in the 

discussion chapter. 
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Animal model studies have shown high correlations with similar 

studies in humans. Nonhuman primate studies, including those dealing 

with baboons, have proven to be appropriate and accurate models for 

human diseases. Vandeberg and Cheng ( 1984) address the extensive use 

of baboons as models dealing with a diversity of genetically mediated 

diseases, including lymphoma, hypertension, alcoholism,  and diabetes (p. 

317). Finally, the use of quantitative genetics has elaborated both theo­

retical and practical aspects of anthropological studies. Through the use 

of quantitative genetics, pedigrees or populations can be analyzed and the 

phenotypic variances can be separated into genetic and environmental 

variances. Heritability can then be estimated, isolating to what degree the 

expression of a quantitative trait is due to genetic factors, and the effects 

that specific variables have on these traits. 
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CHAPT ER I ll 

MATERIALS AND METHODS 

THE SAMPLE 

Originally founded in 1941, The Southwest Foundation for Biomedi­

cal Research (SFBR) in San Antonio, Texas, developed corrals to breed a 

colony of baboons in 1979. Initially, the Papio colony was housed in a 

dodecagonal (ten-sided) corral encompassing 6.0 acres. In 1984 a 

second dodecagonal corral, also encompassing 6.0 acres, (Goodwin 

1986) was built t� house juvenile baboons. The initial colony was estab­

lished from 427 baboons. These baboons were either imported from 

Kenya or obtained from an existing breeding colony from the Department 

of Laboratory Animal Medicine at SFBR. The total number of baboons 

imported from Kenya was 24 7, and those already bred in Texas numbered 

180 (Goodwin and Coelho 1982). 

All imported baboons were quarantined for at least six weeks. All 

of the baboons in the initial colony and subsequent additions were tat­

tooed to provide permanent identification numbers. Two subspecies of 

baboons were purchased for the initial breeding program, either Papio 
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hamadryas anubis or P.h. cynocephalus. There are currently five subspe­

cies available for biomedical research at SFBR, including the two above­

mentioned and P. h. papio, P.h. ursinus, and P.h. hamadryas, total ling 

approximately 3000 animals (Wil liams-Blangero et al . 1990). P.h. anubis, 

P.h. cynocephalus and their hybrids are the subspecies analyzed in this 

study. 

Close records of age were made and updated at SFBR. T hese 

records start at birth and are updated three times a year. Estimating ages 

was unnecessary because all of the individuals radiographed were colony 

born, and are consequently of known age. The baboons analyzed in this 

study were separated into single-male groups consisting of one adult male 

and several females and their offspring. These groups were maintained 

and monitored in separate gang cages. 

The age of female baboons at first menarche induces hormonal 

changes possibly associated with peak bone mass. Consequently, age at 

first menarche in female baboons is presented as a possible contributing 

factor to observed cortical bone size in this study. Age at first menarche 

has been estimated in several studies; average ages reported from these 

studies are in Hayssen et al. ( 1993). Table 111. 1 presents the average 

ages given for P. hamadryas, and the mean age at first menarche from 

those estimates. For the purposes of this study, the mean age at menar­

che of the estimates wil l  be used as a measure of age at first menarche. 
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Table Ill. 1 . Age estimates at first menarche for P. hamadryas. 

Range of Age Estimates in Weeks Average Age Estimate 

8 1  - 297 1 89 

Table 1 1 1.2 presents the number of females and males of each subspecies 

analyzed in this study. 

Table 1 1 1 .2. Number of males and females by subspecies. 

Subspecies Males 

P.h. anubis 35 

P. h. cynocephalus 5 
hybrid 18 

Totals 58 

Females 

98 
0 

30 

128 

Table 1 1 1 .3 presents the age distributions of females by subspecies, and 

Table 1 1 1 .4  presents the age distribution for males by subspecies. The 

oldest female baboon in this study was 29 years old; the oldest male 

analyzed in this study was 23. In the initial phase of this study, the 

youngest age was six years for both females and males. 
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Table 1 1 1 .3. Age distribution of females by subspecies. 

Age in Years 

4 - 9  
10 - 15 
16 - 21 
21 - 29 

P.h. anubis 

31 
25 
26 
15 

Hybrid 

17 
11 

3 

Table 1 1 1 .4. Age distribution of males by subspecies. 

Total 

48 
36 
29 
15 

Age in Years P.h. anubis P. h. cynocephalus Hybrid Total 

4 - 9 13 
10 - 15 14 
16 - 21 8 
21 - 29 

2 
7 20 

11 27 
8 

3 3 

Six years is the commonly accepted age of maximum fertility in baboons 

(Lapin et al. 1979). The number of baboon subspecies of known pedigree 

aged six and older d id not provide an adequate sample size. Therefore, 

the youngest age was lowered to four for females and males. All subjects 

rad iographed exhibited closure of all long bone epiphyses and were thus 

considered skeletally mature. 

A total of 186 hand-wrist radiographs from the above baboon 

subspecies were analyzed in this study. Initially 208 radiographs were 
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taken, but 22 were deleted from this study due to their poor radiographic 

quality or to metacarpals exhibiting bone remodeling resulting from 

fracture. All radiographs were taken between September 1989 and Janu­

ary 1991. Figure 111. 1 depicts a computer-generated copy of one of the 

hand-wrist radiographs used in this study. 

PEDIGREE ANALYSIS 

The identification numbers from the 186 radiographs were com­

pared to the master file on all records of baboons at SFBR to match 

radiograph ID numbers with permanent ego ID numbers. To match the 

radiograph ID numbers with the permanent ego ID numbers, the Pedigree 

Data Management System (PEDSYS) was used (Dyke 1992). After 

obtaining the ego permanent ID numbers, a new file was created for the 

186 subjects analyzed in this study. T his file contained a list of subjects 

listed by ego ID, and cross-referenced by sire ID, dam ID, sex, age and 

subspecies. Twenty pedigrees were then constructed by sire ID numbers 

and included 73 dams. There were four cases where a dam was mated 

with two different sires. 
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Figure 1 1 1.1 Hand-wrist radiograph X4156. 
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RA DIOGRAPHIC ANA LYSIS 

The hand-wrist radiographs were taken to the Department of Geolo­

gy, University of Tennessee, Knoxville and digitized using the Java Video 

Analysis Software, version 1 .30 (Jandel Corporation 1 988). The 

digitizations were done between September 1 992 and November 1 992 by 

the author. The video analysis system in the geology department consist­

ed of an IBM 486 computer connected to both a digitization board and a 

35mm camera that transmitted images from a back-lit translucent tablet 

to a high-resolution video screen. Digitization was done on the video 

screen, and x, y coordinates were recorded in hard disk files. The 

digitization process measured cortical bone area by plotting x, y coordi­

nates of locations along the outer and inner edges of the third metacarpal. 

Cartesian coordinates were set to measure the bone in one millimeter 

increments and calibrated to one square centimeter (instead of default 

pixel units) on a one millimeter grid. To ensure consistency, all radio­

graphs were oriented in the same position with the pollex oriented to the 

right. The third metacarpals were digitized by tracing the outer and inner 

edges of the cortical bone, totalling four lines per radiograph. 

The metacarpals on each radiograph were traced by beginning at 

the bottom left edge at the end of the epiphysis and following the outer 

edge to the beginning of the other epiphysis. One digitization constituted 
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one "line" of x, y coordinates (Figure 111. 2). Each metacarpal had four 

digitized lines recording the x, y coordinates in a single file. Blank values 

were entered as markers to facilitate subsequent analysis. 

T he actual digitization process was primarily done automatically. 

The Java software offered options of automatic or manual edge tracing. 

In order to maintain consistent accuracy, the automatic option was used 

on all radiographs. To begin an automatic tracing, the cursor was placed 

at the initial point of measurement, defined by the beginning pixel in 

which cortical bone could actually be seen on the video screen. T his 

point was determined by zooming in on the epiphysis at a scale 200 times 

the original size. T he initial measuring point was designated, then the 

video was positioned to original size and tracing began. Tracing was 

manually stopped at the end of each "line" at a point designated in the 

same manner as the initial point. In some cases, automatic tracing 

automatically stopped when determination of edges was unclear (thus 

automatically untraceable) on the radiograph. At this point, the 

digitization was finished manually, one millimeter at a time, to approxi­

mate as closely as possible the automatic tracing. 
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Figure 1 1 1 .2 Automatic computer digitization of four data lines. 
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DATA ANALYSIS 

The data gathered from the radiographs were 'smoothed' using a 

local ly weighted regression presented by Cleveland and Devlin ( 1988) . 

This "smoothing" process was performed because when line tracings 

were plotted, all x, y points were connected with either a paral lel or 

perpendicular perimeter section. Consequently, the plots were jagged 

since curves could not be represented (Figure 1 1 1.3) .  A form of " lowess" 

was used in this study because it is highly resistant to outliers (Cleveland 

1979). By fitting simple linear regressions, " lowess" analyzed each data 

point of the edges of cortical bone. Each data point Xj (where i = 1 to n) 

was analyzed through a "window" of closest points on x around each 

point xi . In this study, the "window" around point Xj was 25 percent. 

The vector x contained points plotted along the edges of cortical bone. 

For each plotted point of cortical bone x , a regression of y was calculated 

for the 25 percent closest points of �. Less influence is placed on x 

values the farther away from xi they occurred by using weighted regres­

sion. For any point i, the kth closest point has the given weight: 

W;k = ( 1 -cf\k )
3 

where dik is the scaled distance of xi to xk which was divided by the 

"window" width across units of x for point Xj (Cleveland 1979). The 

estimate of y from xi can be calculated from the weighted regression. 
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Figure 111.3 Plot of "unsmoothed" data lines. 
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The resid uals can be calculated and used to repeated ly fi lter 

through the estimates. Th is process made the regressions more res i l ient 

to outl iers. The res iduals are calculated from their  absolute values from 

the regression of y on x around point Xj.  The residuals are represented as 

rik across the k c losest points, and fractioned to s ix times their med ian 

va lue. Using Tukey's bisquare, a nevwveight can _be ca lculated :  

6ll = ( 1  -r!)2 

where the symbol - ind icates that r values have been fractioned to six 

times their  med ian value (Cleveland 1 979) . The weights 6;k and W;k can 

be appl ied repeatedly, thus making weighted regressions that are more 

res i l ient to outl iers (See "smoothed " plot, Figure 1 1 1 .4) .  

The relative position of the x, y coord inates traced from the rad io­

graphs was arbitrary, and consequently an x, y axis was superimposed 

onto this plot. Fi rst moments of area with respect to an arbitrar i ly posi­

tioned x and y axis a re ca lculated as fol lows: 

M
;c 

= f:,dA and M, = fxdA 
where y and x i n  the i ntegrals are d istances to the x and y axes (respec­

tively) ,  and the integration is across un its of area (dA) . When d ivided by 

the tota l area of the outl ine, the first moments can be connected to 

centroids ( i .e. ,  centers of gravity or mean locations ) :  
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- M, 
.% = --

area 
and 

- M� 
y = -

area 

The second moments of area (or moments of inertia) follow immedi­

ately from the equation for the first moments. The second moments are 

calculated as follows: 

and 

and the product of inertia is then 

lz, = JzydA 
Two or more simple areas, such as rectangles, triangles, and trape­

zoids, are referred to in engineering circles as composite areas. Higdon 

and Stiles ( 1 968) define the moments of inertia of composite areas "with 

respect to any axis is equal to the sum of the moments of inertia of its 

component areas with respect to the same axis" (p. 298). Composite 

areas usually include cross-sectional areas of structural elements, includ­

ing I-beams (Higdon and Stiles 1 968). Thus, when an area, such as 

cortical bone size, is removed from the larger area of the entire metacarpal 

shaft, the net moment of area is obtained. 

From the net moment of area, the moments of inertia can be ex­

pressed as a function of length and area, or the radii of gyration (Higdon 
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and Stiles 1 968). T he program "Slicer" (Nagurka and Hayes 1 980) 

implemented for this study, uses a parallel axis theorem to determine 

moments of inertia with respect to a parallel axis. T he parallel-axis theo­

rem relates the moment of inertia of an area to two parallel axes. One of 

these parallel axes passes through the centroid of the area. Furthermore, 

the distance from the axis to the centroid is always less than the radius of 

gyration for any axis (Higdon and Stiles 1 968). When radii of gyration are 

used to get moments of inertia, there is only one pair of major axes for 

any point in the area (circles excluded). 

As described earlier, radii of gyration are quantitative traits, or 

structural dimensions of elements, specifically here dimensions of cortical 

bone. Radii of gyration (expressed in the first power) are used instead of 

second moments because if the radii are normally distributed, then the 

second moments which are in the fourth powers cannot be normally 

distributed. T he radii of gyration can be calculated by reducing the 

second moments of area to diagonal form (an eigen structure problem), 

which produces lmax and ln,;n (see Figure 1 1 1 .5). The radii of gyration 

(kmax,kmin) can be calculated in the following manner: 
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Figure 1 1 1.5 Plot of KMAX and KMIN superimposed on data lines. 
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bna.t = � 1- and 
area 

kmin = � � a,;;  
where area is the total area of the outline excluding the medullary cavity. 

Higdon and Stiles (1968) described the radius of gyration of an area as 

"the distance from a given axis at which the entire area can be conceived 

to be concentrated without changing the second moment of the area 

about the given axis" (p. 297). Figure 1 1 1 . 6  depicts a diagram of the radii 

of gyration . 

The traits kmax / length, kmin / length, and kmax / kmin are ana­

lyzed to determine the genetic effects and other parameter value effects 

inherent in bone length and structural orientation. Specifically, kmax / 

kmin addresses the strength of cortical bone after undergoing the above 

processes. If kmax / kmin is high, the implications are that the bone has 

a more pronounced linear orientation resulting in thin, more fragile cortical 

strength. If kmax / kmin is low, the implications are that the bone is more 

compressed, resulting in more compact, resilient cortical strength. 

Although these implications are not direct predictors of osteoporosis, they 

do address the genetic considerations of the functional properties of 

cortical bone. These aspects of cortical bone may provide researchers 

with a cross-sectional model for developing a longitudinal study for 
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determining which subjects are predisposed to the onset of such bone 

diseases as osteoporosis. The statistical analyses performed on these 

traits are presented below. 

Maximum Likelihood Estimates 

To estimate the effects of measured genetic traits, maximum 

likelihood estimates were implemented. In pedigree studies, covariances 

between different groups of individuals are not independent (Hopper and 

Mathews 1982). To avoid this bias and to account for all trait values 

observed for all individuals, the maximum likelihood approach provided the 

best model for the data. The maximum likelihood estimate of a parameter 

is the best supported parameter value for the data. The likelihood (L) of, 

for exam.pie, hypothesis H given the data D can be written as L (H I D). 

The log-likelihood ( l n), then, is the natural logarithm of the likelihood (Ed­

wards 1992). The maximum likelihood is the best ln(H I D) for that 

parameter. When there are two or more parameters, parameter values are 

the most likely values over all parameters (Edwards 1992). Statistical 

analyses were performed using the program " Maxlikh2", which finds the 

maximum likelihood estimate for h2
, given the following calculations: 

2 
h2 = _a_:A_ 

2 2 O..,t + 0� 
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where a2 A is the additive genetic variance and a2 e is the environmental 

variance (Konigsberg and Cheverud 1 992). The values calculated by 

"Maxlikh2" will be presented in the following chapter. 

Maximum likelihood estimates (MLE) can be calculated using the 

complete pedigree data. The program "Maxlikh2" was used to analyze 

the above data fields. The values for kmax and kmin were calculated in 

"Slicer" (Nagurka and Hayes 1 980). This program utilizes a simple 

algorithm that calculates cross-sectional area from perimeter coordinates . 

"Slicer" was used to calculate moments of area and orientations of major 

and minor axes, which were used to plot the radii of gyration for each 

metacarpal. Kmax and kmin were combined with the ego, sire, and dam 

I D  numbers, sex designation, and age fields and placed in an input file. 

The values in this file were run through "Maxlikh2" to calculate M LE 's. 

The probability of obtaining the observed data is conditional upon 

the given parameters, where the parameters are the mean (µ), regression 

on the covariate (P), the environmental variance (a2 e), and the heritability 

(h2), where the environmental variance is equal to the phenotypic variance 

minus the additive genetic variance. This probability can be represented 

as follows: 

Prob ( x l B )  

where x represents the data and 6 represents the parameters. 
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This probability function can be restated as a likelihood: 

L ( B l x ) 

which leads to the estimation of the most likely parameter values given 

the data using a probability density function (p.d. f.): 

Prob ( xi I e ) = (2"r½ 0""1 exp [- ½ (xi - p /u )2) 

where p is the mean, u is the standard deviation, and 6 is p, u. 

The next step in the M LE process calculates a joint density function: 

L ( 6 I x  ) = Prob ( x I 6 ) = (2") -N12 I r  �½ exp [ - ½ (x - p)' r- 1 (x - p)] 

where 6 is p, r where r is the variance/covariance matrix (the statistical 

symbol r is also known as n in genetics). The natural logarithm can be 

calculated as follows: 

ln (L ( e l x)) = - ½ ln (2") - N/2 ln I n  I - ½ (x - p)' n· 1 (x - p) 

where ln (L) is the log-likelihood, N is the number of individuals in any 

given pedigree, n is the variance/covariance matrix, and where 

P = Pi + (Page O age) + (P.ex O sex), 

In order to identify genetic effects on quantitative traits and func­

tional aspects of cortical bone size, this study analyzed the above de­

scribed phenotypic measurements from related baboons. Heritability was 

estimated from these measurements taken from full pedigree data. 

Previously, it was stated that the phenotypic value is composed of the 

total genetic and environmental effects. T he expected genetic covariance 

between individual baboons i and j is covij = 24>ij c,2 A , where the 
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covariance is i and j ,  a2 A is the additive genetic variance, and Cl> is the 

probability of alleles being identical by descent (i.b.d. ,  or kinship coeffi­

cient). The pedigree data were used to determine the <l>ij values between 

individuals. 

The next step requires searching for the a2 A and a2-E values that 

lead to the most likely model that explains the observed data. Finding 

these values is done by finding the likelihood of the values given the 

observed phenotypic data and the relationships established from the 

pedigrees. T he phenotypic covariance can be calculated as follows: 

n = 2a\ci> + la2-E 

The additive genetic variance and the environmental variance must be 

adjusted to maximize the log-likelihood. 

Metacarpal lengths and subperiosteal and medullary widths for the 

subjects were obtained from SFBR. The radiographs were measured for 

metacarpal length and subperiosteal and medullary width using calipers. 

Statistical analyzes estimated parameter values for mean, age, sex, sex 

and age interaction, heritability, and phenotypic variance, and calculated 

values for each quantitative trait kmax, kmin, area, length, (TW -

MW)/TW, kmax / length, kmin / length, and kmax/kmin, where T W  is the 

subperiosteal width and MW is the medullary width. The variables T W, 

MW and the calculation (TW - MW)/TW converted into percents because 
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the estimates calculated by " Maxlikh2" would otherwise be too small for 

the program to recognize. These values will be presented in the following 

chapter. 
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CHAPT ER IV 

RESULTS 

The statistical analyses performed by "Maxlikh2" are presented 

below. M LE 's and standard error estimates for eight quantitative traits 

(kmax, kmin, area, length, (TW - MW)/TW, kmax/length, kmin/length, and 

kmax/kmin) were calculated within the parameters of the six effects 

mean, sex, age, sex o age (sex age interaction), phenotypic variance (vp), 

and heritability (h2). Values for the t-statistic were calculated by dividing 

M LE 's by the standard error estimates. Agresti and Agresti ( 1979) define 

the t-statistic as symmetric around zero, and that this is "analogous . . .  of 

the z-statistic (the standard normal distribution) . . .  " (p. 140). The t­

statistic is used since its dispersion depends on the degrees of freedom. 

Furthermore, its variance decreases to one as the degrees of freedom 

increase, with no limit (Agresti and Agresti 1979). Al l  P-values are 

asymptotic to a z-score. The resulting calculations for the first quanti­

tative trait (kmax) are presented in Table IV. 1 .  The analyses indicate that 

the trait "kmax" is moderately heritable with an h2 value of 0.53,  and a 

standard error of 0.22. 
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Table IV. 1 . Results of statistical analyses for trait KMAX. 

Variable 

mean 
sex 
age 
sex o age 
vp 
h2 

M LE 

2.0034 1 
-0. 10252 
-0.00057 
-0.01183 
0. 12030 
0.53 105 

Standard Error 

0. 10771 
0. 12488 
0.00829 
0.00979 
0.21700 
0.21703 

t 

18.6000 
-0.8209 
-0.6876 
- 1.2084 
0.5544 
2.4469 

Note: All p-values are 2-tailed except for h2 estimates. 

p 

< 0.0001 
0.4 117 
0.49 17 
0.2269 
0.5793 
0.0072 

The statistical analyses of the second quantitative trait (kmin) are 

presented in Table IV.2. The trait kmin is not highly heritable, with an h2 

value of 0.23 and a standard error of 0.20. 

Table IV.2. Results of statistical analyses for trait KMIN.  

Variable M LE Standard Error t p 

mean 1.02944 0.08149 12.6327 < 0.0001 
sex 0.05933 0.09425 0.6295 0.5290 
age 0.01649 0.00630 2.6 175 0.0088 
sex o age -0.0175 1 0.00736 -2.3791 0.0170 
vp 0.06765 0.00782 8.6509 < 0. 0000 
h2 0.22853 0.20408 1. 1 198 0. 13 14 

Note: All P-values are 2-tailed except for h2 estimates. 
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Statistical analyses for area, the third quantitative trait analyzed, are 

presented in Table IV.3. T he analyses for this trait indicate that area is 

not highly heritable, since the h2 estimate is 0.40 with a standard error of 

0.2 1. 

Table IV.3. Results of statistical analyses for trait AREA. 

Variable MLE Standard Error t 

mean 6.30855 0.50482 1 2.4967 
sex -0.98549 0.59284 - 1 . 6623 
age 0.02852 0.03975 0.71 75 
sex o age -0.061 23 0.04642 -1 .31 90 
vp 2. 641 53 0.32482 8. 1 323 
h2 0.40371 0.20652 1 . 9548 

Note: All P-values are 2-tailed except for h2 estimates. 

p 

< 0.0001 
0.0964 
0.4731 
0. 1 872 

< 0.0001 
0.0253 

The statistical analyses calculated by "Maxlikh2" for the fourth quanti­

tative trait (length) are presented in Table V l.4. T hese analyses indicate 

that length is a highly heritable trait. 
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Table V l.4. Results of statistical analyses of trait LENGT H. 

Variable MLE Standard Error t 

mean 52.03370 0.82181 63.3160 
sex -5.80430 0. 93266 -6.2234 
age 0.24112 0.05710 4.2228 
sex o age -0.21946 0.07359 -2. 9822 
vp 9.06650 1.11264 8.1486 
h2 0.84422 0.08250 10.2330 

Note: All P-values are 2-tailed except h2 estimates. 

p 

< 0.0001 
< 0.0001 
< 0.0001 

0.0029 
< 0.0001 
< 0.0001 

Statistical analyses of the fifth trait, (TW - MW) / TW, are presented in 

Table IV.5. These results indicate that this quantitative trait is moderately 

heritable, with a standard error of 0.14 and a heritability of 0. 63. 

Table IV.5. Results of statistical analyses for trait (TW - MW) / TW. 

Variable MLE Standard Error t p 

mean 54. 3 1 484 2 .2763 1 23 . 86 1 0 < 0.0001 
sex -4.86865 2. 69335 - 1 . 8077 0.0706 
age -0.00207 0 . 1 7084 -0 .0 1 2 1  0. 9903 
sex o age -0. 1 1 75 1  0. 2 1 1 1 0 -0.5567 0.5777 
vp 61.06803 7. 66188 7. 9704 < 0.0001 
h2 0. 63222 0.13788 4.5830 < 0.0001 

Note: All P-values are 2-tailed except for h2 estimates. 
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The statistical analyses performed by "Maxlikh2" for quantitative 

traits kmax/length and kmin/length are presented below in Table IV. 6 and 

Table IV. 7. Analyses of both traits indicates that neither trait is heritable. 

Heritability was set at zero for these two analyses. 

Table IV.6. Results of statistical analyses for trait KMAX / LE NGTH. 

Effect 

mean 
sex 
age 
sex o age 
vp 

M LE 

38.1 4938 
2.6901 0 

-0.1 2402 
-0.1 1 751 

37.57272 

Standard Error 

2.0185 
2.3585 
0.1 620 
0.1 825 
4.2957 

Note: All P-values are 2-tailed. 

t 

1 8.90030 
1 .1 4060 
-0.76570 
-0.6441 0 
8.74670 

p 

< 0.0001 
0.2540 
0.4438 
0.51 59 

< 0.0001 

Table IV.7. Results of statistical analyses for trait KMIN  / LE NGTH. 

Effect MLE Standard Error t p 

mean 20.0834 1 .6454 1 2.2062 < 0.0001 
sex 3.2777 1.9459 1. 6844 0.092 1 
age 0.1 729 0.1 330 1 .2999 0.1 936 
sex o age -0. 1939 0. 15 10 - 1.2840 0.1 991 
vp 27.1 290 2.9752 9.1 1 82 < 0.0001 

Note: All P-values are 2-tailed. 
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T he statistical analyses for trait "kmax/kmin" are presented in Table IV.8. 

The heritability estimate 0.28 is significant, as indicated by a t-value of 

1.76. 

Table IV.8. Results of statistical analyses for trait K MAX / K MIN . 

Effect MLE Standard Error t p 

mean 1.8584 0.0841 22. 1025 < 0.0001 
sex -0.0931 0.1007 -0. 9251 0.3549 
age -0.0157 0.0067 -2.3583 0.0183 
sex o age 0.0086 0.0080 1.0843 0.2782 
vp 0.28 14 0. 1602 8.7742 < 0.0001 
h2 0.2814 0.1602 1. 7566 0.0395 

Note: All P-values are 2-tailed except for h2 estimates. 

Table IV.9 presents the maximum likelihood ratio tests for the first five 

traits, and their corresponding significance values. A comparison between 

two models was evaluated using heritability set at zero in one model, and 

estimated between zero and one in the other model. 
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Table IV. 9. Maximum likelihood ratios for KMAX, KMIN, AREA, LENGTH, 
and (TW - MW)/TW. 

Trait x2 p 

kmax 9.0426 .00 1 3 

kmin 1 . 5338 . 1 078 

area 6.3502 . 0059 

length 48 . 1 674 < .000 1 

(tw-mw)/tw 93 .3648 < . 000 1 

Figure IV.1 presents the results of kmin plotted on age for both fe­

males and males. In males, there is a positive correlation between kmin 

and age. Females exhibited a slight negative correlation between the two 

traits. A discussion of the results is presented in the following chapter. 
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CHAPT ER V 

DISCUSSION 

The results indicate that the most heritable quantitative trait ana­

lyzed is length, with an effect estimate of 0.84. Heritability of length is 

significant as evidenced by the t-value of 10.23. The data obtained from 

Table IV.4 indicate that sexual dimorphism also exhibits a significant 

effect on length with a t-value of -2.98. Estimates of heritability are 

significant in both traits "area" and "(T W  - MW) / T W", with t-values of 

1.95 and 4.58, respectively. These significance estimates indicate that 

area, length, and aspects of bone width exhibit significant genetic compo­

nents. 

The significance of heritability estimates for these traits may be in 

part due to the overall genetic influences on body size. The sexual dimor­

phism exhibited by this tra it suggests that as age increases, so does 

expression of sexual dimorphism. T his trend has recently been examined 

in humans (Harris et al. 1992). Harris and colleagues found that as both 

males and females aged, the percent sexual dimorphism averages in­

creased based on length measurements of metacarpals and phalanges. 

Furthermore, DeRousseau ( 1985) found that the amount of cortical bone 
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decreases proportionately with length after peak bone mass is reached: 

the longer the bone, the more cortical bone present. Thus, if there is 

more cortical bone present, the amount of loss would be higher. In this 

study, aspects of third metacarpal length, width, and area are significantly 

heritable. Analysis of these traits may prove beneficial in longitudinal 

studies identifying genetic components associated with a predisposition 

for osteoporosis. In terms of sexual dimorphism, the proportional de­

crease of cortical bone would in part account for the larger amount of 

change associated with length effects exhibited in Table IV.4. Garn et al. 

(1975) found that long bones exhibit an increase in area with age even 

after bone resorption and apposition have been taken into account. 

The data presented in Table IV.8 indicate that age effects on the 

trait kmax / kmin are significant, with a t-value of 1. 76. In 1970, Garn 

proposed that in diaphyseal bones of all sizes, age is highly correlated 

with subperiosteal cortical expansion. However, as age increases, so do 

the size and number of haversian canals (Garn 1970; Harris et al. 1992). 

Although this may . promote fragility of cortica l bone, observed total bone 

loss results in large part from degenerative changes of the medullary 

cavity (Harris et al. 1992). This trait is also significantly heritable, with a 

t-value of 1. 76. This suggests that the biomechanical properties of bone 

analyzed here are heritable and thus have significant biological/functional 

implications for the growth and maintenance of cortical bone. 
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The heritability effects on trait "kmax" are statistically significant, 

evidenced by a t-value of 2.44. This indicates that the structural orienta­

tion of the first radius of gyration exhibits significant genetic components. 

Figure IV. 6 illustrates a slight ontogenetic relationship in females for the 

trait "kmin". Although age at menopause has not been reliably deter­

mined in nonhuman primates, Pope et al. ( 1989) suggest that menopause 

may occur in macaques between the ages of 25 and 30. If this is the 

case, any significant ontogenetic relationship between females and age 

with any traits analyzed here may not be apparent from the analyses of 

this study, since the oldest female analyzed was 29 years old. The 

observed difference of trait "kmin" between sexes is most likely not 

associated with female menopause since the data indicate a wide array of 

values for kmin across ages for both sexes up to age 29. 

The range of heritability estimates a mong the quantitative traits 

reflects that some traits may be more responsive to genetic or environ­

mental influences than others. Even though many environmental variables 

can be manipulated in nonhuman primate colonies, the effects of same­

environment cannot be monitored. Krall and Dawson-Hughes ( 1993) 

imply that familial associations become less enhanced in bone expression 

because environment becomes more influential in processes affecting 

bone. The common environment shared by the baboons analyzed in this 
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study may contribute to the range of values estimated for heritability. 

Sharing a common environment would increase the observed heritability 

estimates. Age at menarche did not appear to have any affect on the 

traits analyzed here. However, age at menarche is estimated to be around 

four years, and that is the youngest age of baboons analyzed in this 

study. 

The data in Table IV.9 indicate that heritability estimates are 

significantly greater than zero for all traits kmax, area, length, and (T W­

MW)/TW, using the likelihood ratio test. The results of this study indicate 

that there is a genetic component affecting quantitative traits in cortical 

bone. Genetic traits analyzed in this study do not completely explain the 

intra-population variation of metacarpal morphometry. In light of the 

results, biomechanical parameters, such as body size and weight for 

metacarpal morphometry analysis, may prove more informative, because 

peak bone mass is related to body size, and size-related traits are typically 

highly heritable. 
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CHAPT ER VI 

SUMMARY 

This study has examined quantitative genetic parameters in 186 ba­

boons (P. hamadryas) of known genetic background. The Southwest 

Foundation for Biomedical Research life history database was used to 

obtain pedigree, age, and sex information for a colony sample of 58 males 

and 128 females. The radiographs used in this study were measured for 

cortical bone size in the third metacarpal using a computer video analysis 

system made available by the Department of Geology, University of 

Tennessee, Knoxville. The data obtained were "smoothed" using a locally 

weighted regression. 

The quantitative traits examined included kmax, kmin, area, length, 

(TW - MW) / T W, kmax / length, kmin / length, and kmax / kmin. T he 

quantitative traits "kmax" and "kmin" were identified using the program 

"Slicer" .  Length and width measurements from the radiographs analyzed 

were done manually using a caliper and obtained from SFBR. Statistical 

analyses of the quantitative traits calculated MLE 's and standard error 

estimates for parameter value effects mean, sex, age, sex and age 

72 



interaction, phenotypic variance, and heritability using "Maxlikh2". 

Quantitative traits (excluding kmax / length and kmin / length) exhibited 

significant heritability estimates for parameter value effects heritability, 

sex and age interaction and for age in trait "kmax / kmin". 

Length is the most heritable trait. The significance of area, length, 

and aspects of bone width estimates may be partially due to the overall 

genetic influences on body size. The value for the sex and age interaction 

effect is significant for the trait "kmin" . Although this effect may be 

partly due to body size, sexual dimorphism may account for aspects of 

their morphometric variation. 

Functional properties of structural orientations are only one aspect 

of bone properties that may play a role in bone diseases such as osteopo­

rosis. Quantitative genetic models for human diseases are an important 

part of understanding the role genetics has in possible predispositions to 

diseases. The use of baboons in this study presents their appropriateness 

as models for intra-family studies of properties of bone. Consequently, 

longitudinal quantitative genetic studies of baboons as models for human 

bone diseases may be warranted. The quantitative traits analyzed in this 

study are only one aspect of bone morphology. This study determined 

that radii of gyration are a useful component in the analysis of heritability 

estimates for observed cortical bone size in skeletally mature baboons. 

Furthermore, the methodology implemented here provides researchers 
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with a model for estimating heritability of quantitative traits as a compo­

nent of cortical bone morphology. These effects could help determine the 

role biomechanical traits play in the development of bone diseases, 

specifically osteoporosis. 

An aspect of environmental variance not analyzed in this study 

could provide more information on the effects of age on bone. Another 

parameter value estimate that may prove significant in the analysis of 

bone size is parity effects. The number of parous females and their stage 

of reproduction may have hormonal influences on bone size. Parity may 

determine if the ontogenetic relationship in females and kmin is more 

significant than the relationship observed in this study. 

Radiographic analysis of other cortical bone properties, as well as 

noninvasive analysis of trabecular bone, may provide even more infor­

mation on quantitative traits in bone, including structural/functional 

properties. Other biomechanical parameters, such as body weight effects 

and extreme muscle activity effects, might prove beneficial in better 

understanding functional properties inherent in bone. It is suggested that 

multivariate longitudinal studies of this nature be conducted to further 

determine if baboons are appropriate models for analyzing bone properties 

in humans. 
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11x 11 , 9. 7 1  
11x 11 , 1 0 .65 
11x 11 , 8. 55  
11 c 11 ' 1 0 . 1 3  
II X II ' 1 1 . 64 
IIX II ' 1 2 .46 
II X II ' 9. 62 
"X 11 ' 8. 7 1  
" A II ' 2 1 . 36 
11 x 11 , 1 1 . 65 
II A II , 1 8. 1 5 
11x 11 , 1 0.97 
11x 11 , 8.98 
"X 11 , 9. 82 
II A II ' 1 6. 3 5  



"-1 X3855", 
"1 X21 7 4", 
11 1X3916", 
"1X0302", 
"1X4 124 11 , 
11 1 X4611 11 , 
" 1  X0354 11 , 
11 1 X2088", 
11 1 X2884", 
" 1  X4637", 
"1 X2045", 
11 1X3521 ", 
11 1 X0014", 
11 1 X4112", 
" 1X0153", 
" 1  X3026", 
11 1 X3782", 
"1 X4625 ", 
"1 0291 11 , 
"1  X0808", 
" 1  X081 3", 
" 1  X3979", 
" 1  X3759 11 , 
" 1  X2996", 
" 1  X4033", 
11 1 X3881 11 , 
"1X3655", 
11 1X0837 11 , 
11 1X2815", 
11 1 X3929", 
11 1X1177", 
" 1  X3654", 
"6845 II 

116830 n ' 
"6846 n 

116953 " ' 
"6870 " ' 
11 7053 II 
11 1X1693 11 , 
11 1X 1919", 
11 1 X3926", 
"1X 1958 11 , 
" 1X3810", 

" 1X0102", 
II " , 
" 1X0102 11 , " II , 
"1 A0776 11 , 
" 1  A0776", 
II II , 
" 1A0776 11 , 
11 1 A0776 11 , 
" 1  A0776", 
II II , 
" 1X 1778", 
II II , 
" 1A0947", " II , 
" 1A0947", 
11 1 A0947", 
"1 A0947 11 , 
II II , " II ' " " ' 
" 1X0808 11 , 
11 1 X0808", 
11 1 X0808", 
"1  X0808", 
11 1 X0808", 
" 1X0808", " " ' 
" 1  X0808", 
" 1  X0808", 
II n 

" 1  X0808", 
11 1 X0808", 
" 1  X0808", 
"1X0808 11 , 
" 1  X0808", 
11 1 X0808 11 , 
11 1  X0808", 
II II ' 
n " ' 
" 1X 1693", " n ' 
"1X 1693", 

" 1X2172", 
" " , 
" 1X2174", " " , 
11 1X0302 11 , 
"1X0302", 
II II , 
11 1 X0354 11 , 
11 1X0354", 
" 1 X0354", 
" II 
"1  X2045", 
II " , 
" 1  X0014", " " , 
11 1X0153", 
"1X0153", 
11 1 X0153 11 , 
II II ' 
II II ' " " , 
"1 X0813 11 , 
" 1  XOS 13", 
" 1  X0580 11 , 
" 1  X0580", 
"1  X0580", 
"1X0580", " II ' 
"1 X0837 11 , 
11 1X0837", 
II " ' 
" 1 X 1177", 
"1 X3688", 
"1 X3676", 
11 1 X3678", 
" 1X3685", 
"1 X3690 11 , 
11 1 X331 2 11 , 
II II , 
II II ' 
11 1X 19 19", 
II " 
"1X 1958", 
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"F", 
II F II , 
"F", 
"F 11 , 
"F 11 , 
"F", IIF", 
"M", 
"F 11 , 
"M", 
II F", 
"F", 
"F", 
"F", 
"F", 
"M 11 , 
"F", II M 11 , 
II F", II M II , 
II F"' II F Ii ' 
"M"' 
II F"' 
"F"' 
"M", 
"M", 
"F"' 
"F"' 
"F"' 
"F"' 
"F"' 
"F"' 
"F"' 
II F"' II M", 
II F"' 
II M II ' II M II , II F"' 
"F"' 
"F"' 
"F"' 

"X", 9 .75 
IIA II , 15 .29 
"X", 9 .53 
IIA II , 26. 11 
"A", 8 .84 
"A", 6 .41 
"A II , 22. 13 
"A 11 , 12.41 
IIA II , 11 .46 
"A", 6.2 
IIXII , 17 .59 
"X", 10.44 
"A", 13.5 
"X", 8.49 
"A 11 , 22. 13 
"X", 11 .21 
"X", 9.96 
IIX", 6 .3 
"A 11 , 26. 11 
IIA", 20.36 
"A", 2 1. 19 
IIAII , 9 .35 
"A 11 , 9 .94 
IIA", 11.23 
"A"' 9.06 
"A"' 9. 74 
"A 11 , 10.25 
"A II ' 19.42 
"A II ' 11.48 
"A", 9.49 
"A", 17.27 
IIA II

' 10.3 
"A", 4.4 1 
"X", 4.44 
"X 11 , 4 .4 1  
"A", 4 . 19 
IIX II ' 4 .38 
IIAII , 4 .27 
II  A II ' 20.3 1  
IIA II , 16.3 1 
"A", 9.46 
"A"' 16.31 
"A", 9.92 



"1 X1962", 
111 X3424", 
111X2054", 
1
11X3914", 

111 X3656 11 , 

111 X2055", 
111 X3739", 
"1 X2053", 
111 X3749", 
111X167211 , 

111X1152", 
"1 X4630", 
111 X3973", 
111 X4236 11 , 

"1X0871", 
"1 X2594 11 , 

"1 X384811 , 

"1X4627 11 , 

111 X0882 11 , 

111 X382811 , 

"1 X4137 11 , 

111 X2490 11 , 

"1X4156", 
"1X3887", 
"1X0830", 
111 X4149 11 , 

"1X4647", 
"1 X0843", 
"1 X259711 , 

1
11 X407711 , 

111X1726 11 , 

111 X4337 11 , 

"1X1765", 
111 X2509", 
111X3846 11 , 

11 1 X2511 ", 
111 X398711 , 

111X1939 11 , 

11 1X4166 11 , 

"1 X393811 , 

111X1224 11 , 

"1 X4266 11 , 

1
11X1230", 

" " 
111X169311 , 

" " ' 
"1X1773", 
111X1773", " II 

"1X1773", 
II II ' 
111X177311 , 

II II ' 
II " ' 
"1X1672 11 , 

"1X1672", 
"1X167211 , 

II II ' 
111X1672", 
"1X167211 , 

"1X1672 11 , 

" II ' 
"1X167211 , 

1
11X1672 11 , 

II II ' 
"1X1672", 
"1X1672", 
" II ' 
"1X1672 11 , 

"1 X 1672", " " 
"1X1672 11 , 

111X1672", 
II II ' 
111X1672", 
" n 

" " ' 
"1X1765", 
II " 
111X176511 , 

II II ' 
111X1939 11 , 

"1X1939 11 , 

" " ' 
"1X193911 , 

" n ' 

II II 

"1X196211 , 

" II 

"1 X2054 11 , 

11 1 X2054 11 , 

II II 

"1 X2055", 
II II 

"1 X205311 , 

" n ' " II 

"1X1152" 
"1X1152 11 , 

"1X1152", " " ' 
"1 X0871 ", 
111 X0871 ", 
111 X0871 11 , 

II II ' 
111 X0882", 
1
11X0882", " II 

111 X2490", 
"1 X2490", 
II " ' 
"1 X0830 11 , 

"1 X0830", 
II " 
111X0843 11 , 

"1X0843", 
II " ' 
"1X1726", " " , " " ' 
111 X2509 11 , 

II II 

11 1 X2511 11 , 

II " 
11 1X1181 1

1 , 

111X118111 , 

" II ' 
111X1224 11 , 

" " ' 
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II F II

' 
II A II

' 17.13 
II F"

' 
" A 11 , 10.71 

" F " ' " A "
, 22.12 

" F " ' " A "
, 9. 6 

II F"
' 

II A II , 10.42 
II F "

, II A " ' 22.07 
" F " ' 

II A "
, 10.13 

II F II

' " A "
, 17.07 

II F Ii

' 
II A II , 10.11 

" M "
, II A "

, 19.35 
II F"

' 
" A "

, 14 
'

II F Ii

' 
II A II , 6. 61 

II M II , II A II , 9.28 
" F 11

' " A 11 , 8.26 
" F " ' " A 11 , 22.19 
II F "

, 
" A 11 , 11. 71 

II F " ' " A "
, 9.77 

II M II , 11 x 11 , 6.27 
II F II

' 
II A II , 23.59 

" M " ' " A "
, 10.1  

II F II

' 
II A II , 8.7 

II F " ' 
II A II , 22.09 

II F " ' 
II A II , 8. 62 

II M " ' " A " ' 9.57 
II F II

' " A " ' 20.21 
II F"

' 
" A "

, 8.59 
II M " ' " A "

, 6.14 
" F " ' " A 11 , 21.15 
II M II , II A II , 11. 65 
II F II

' 
II A II , 8.84 

" F "
, II

X " ' 17.27 
" F " ' " X " ' 7. 65 
"M" ,  " A "

, 19. 38 
II F " ' " A "

, 15.23 
II F II

' 
II A " ' 9.75 

" F 11
' " A 11 , 15.42 

II F II

' 
II A II , 9.24 

II M II

' " A "
, 19.36 

II F " ' " A 11 , 8.51 
" M "

, 
" A "

, 9.44 
" F " ' " A "

, 19.36 
II M II , II A II

' 8.02 
II F " ' " A "

, 20. 17 



11 -1 X4288 11 , 

111X1237 1
1 , 

111 X3292 11 , 

111 X 1126 11 , 

"1 0601 ", 
"6670 II 

I 
111X1121", 
111 X3748 11 , 

111 X0945 11 , 

111X2378 11 , 

111X4160 11 , 

111 X1125", 
"1 X2231 ", 
111 X4278", 
111 X4039 11 , 

111 X3432", 
111X1146 11 , 

111 X4303 11 , 

111X1151 11 , 

111X1899 11 , 

111X4254", 
111X3663 11 , 

111X1392 11 , 

111X271211 , 

11 1 X4645 11 , 

"1X4248", 
111 X3956 11 , 

"6601 n 

I 
117025 II 

I 
111X1032 11 , 

111 X3266 11 , 

11 6891 " 
I 

"6621 II 

I 
111X1835", 
111X1390 11 , 

11 1 X 44 1 8 11 , 

111 X2892 11 , 

11 1 X4230 11 , 

"1X115511 , 

111X4283 11 , 

111 X2698", 
111 X427311 , 

111 X3162", 

111X193911 , 

II " 
111X1939 11 , 

II II 

I " " 
I 

"1X1126 11 , 

" " 
I 

"1 X1126 11 , 

II II 
I 

111 X 1126 11 , 

111 X 1126 11 , 

" II 
I 

111 X 1126", 
111X1126 11 , 

111X1126 11 , 

"1X1126", 
II II 

I 
111X1126 11 , 

II " 
I 

111 X 1126 11 , 

111X1126 11 , 

111X1126 11 , 

II II 

I 

111X1126 11 , 

111X1126 11 , 

"1X1126 11 , 

"1 X 1126 11 , 

111X1126 11 , 

111X1126 11 , 

II n 

I 
111X1126 11 , 

"1X1126 11 , 

"1  X 11 26 11 , 

II II 

I 
II II 

I 
111X1835 11 , 

II II 

I 
1
11 X2892 11 , 

II II 

111 X2892", 
II II 

111 X2892 11 , 

" " 
I 

111X1230 11 , 

II " 
I 

1
11X1237 11 , 

II " 
I " " 
I 

"1 060111
, " n 

I 

"1X1121 11 , 

II n 

111 X094511 , 

11 1 X0945 11 , 

" II 

I 

"1 X1125", 
"1 X1125", 
111 X1125", 
"1 X1125", 
II II 

I 
111 X1146 11 , 

II " 
I 

111X1151 11 , 

111X1151 11 , 

111X1151 11 , 

n II 

I 
111X1392 11 , 

111X1392 11 , 

111X1392 11 , 

111X1392 11 , 

111 X3052 11 , 

1
11 X325511 , 

II II 

I 
111 X1032", 
"1 X4428 11 , 

11 1 X453311 , 

II II 

II II 

I 

111X1390 11 , 

II II 

1
11 X0586 11 , 

II " 
I 

111X1155", 
II II 

I 
111 X2698 11 , 

II " 
I 
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II F II , 

II F Ii , 

II F Ii , 

II M II , 

II F II , 

" M 11 , 

" F " , 

II M II , 

II F II , 

II M II , 

II F " , 

" F 11 , 

" M 11 , 

" F " , 

II F II , 

" F 11 , 

II F II , 

II F II , 

" F 11 , 

II M II , 

II F", 
II F II , 

II F II , 

II F " , 

II M II , 

" F 11 , 

" F 11 , 

II F", 
II F", 
II FIi, 
" F " , 

" F " , 

" F " ' 

II M II ' 

II F II ' 

II M II , 

II M " , 

" F " , 

" F 11 , 

II M " , 

II F II , 

II F II ' 

II M " , 

II A II , 7.83 
II A II , 18.35 
II A II , 10. 63 
II A II , 18.42 
II A II , 29.13 
II A " , 4. 63 
II A II , 22.33 
II A II , 10.11 
II A II , 21.23 
II A II , 11.87 
II A II , 8.54 
II A " , 20.23 
II A II , 12.05 
II A II , 7. 96 
I I  A II , 8. 97 
II A II , 10.73 
II A II , 20.38 
II A II , 7.74 
II A II , 21.19 
II A II , 12.85 
II A II , 7. 95 
II A II , 10.05 
II A II , 18.15 
II A II , 11. 67 
" A 11 , 6.36 
" A 11 , 8.2 
II A II , 9.35 
II A II , 4.71 
II A II , 4.31 
" A 11 , 17.23 
" A 11 , 10. 98 
II A II , 4.34 
II A " , 4.7 
II A II '  18.05 
II A II , 22.19 
II A " '  7.23 
11

C
11 ' 15.36 

"X" , 8. 28 
" A " , 20.13 
11 X 11 , 7.88 
"X 11 ' 18.27 
"X 11 , 7. 93 
II A II , 14.38 



" 1  X4301 ", "1 X3162", "1 X0580", "M"' "A" , 7.79 
"1X0102", " " " II "M"' "C", 23.33 
"6976 " 111X1309", "1X1487", "M", "X" I 4.4 I 

"1X0102 11
, 

II " II II IIM II' 11
c

11
, 23.33 I I 

117118 II "1X1309", "1X1978", IIF II' "X" I 4.2 
"6813 II "1X1309 11

, "1 X366711
, 

II F"' "X" I 4.47 I 
11 6530 II 111X1309", "1 X4389", "F"' "A" , 4.78 I 

"7182 " "1X1309", "1 X4537", "F"' "X" I 4.1 
"1X1126", " " " " "M", "A" , 18.42 I 

"1 X 1125", " II II " "F", "A", 20.23 I 

"1 X2231 ", "1X1126", "1X1125", "M"' "A", 12.05 
"1 0291", " " " " "F"' "A" ' 26.11 I 

"7111 " "1X2231 ", "1 X0750", "M"' "X", 4.22 
"7098 II "1 X2231 ", "1 X2072", "F"' "A", 4.23 I 

"7071 " "1X2231", "1X2159", "F"' "X", 4.26 I 

"7119 " "1 X2231 ", "1 X2788", "F" ' "X" I 

4.2 
"7333 " "1X2231 ", "1 X3299", "M", "A" , 3. 91 I 

"7123 " "1 X2870", "1X1709", "F"' "A"' 4.19 I 

"7090 " "1 X2870", "1X2271", "F"' "A", 4.24 
"7020 " "1 X2870", "1 X2277", IIM II' II A II' 4.31 I 

117077 " 11 1 X2870 11
, 

111X3707 11
, 

II M II' 11X" ' 
4.26 I 
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Trait Data 

KMAX, KMIN, AREA, LGT H, TW-MW, KMAX/KMIN, KMIN/KMAX 

1 .526378, .952268,4.44473 ,47.32, .5501 79, .032257, .0201 24 
1 .69204, 1 .1 98751 ,4.501 624,44.52, .507067, .038006, .026926 
2.21 7356, 1 .694052,6.574308,46.1 2, .5051 37, .048078, .036731 
.924566, .623341 , 1 .907959,46.1 1 , .3991 94, .020051 , .01 351 9 
2. 75031 , 1 .680321 ,8. 707561 ,56.64, .521 1 68, .048558, .029667 
1 .677765 , 1 .20676,4.866833,45.58, .466887, .036809, .026476 
2.1 39726, 1 .33255 ,6.28349,50.68, .537753, .04222, .026293 
2.507475 , 1 .551 41 2,9.353262,59.47, .592025 , .0421 64, .026087 
1 .  706241 , .947396,5 .029805 ,48. 7, .54501 6, .035036, .01 9454 
2.865797, 1 .51 409, 1 0.80947,64.05 , .6031 29, .044743 , .023639 
1 .  71 9725 , 1 .0961 47,4.406821 ,64.08, .539254, .026837, .01 71 06 
2.1 98967, 1 .046781 , 7.231 61 1 ,52.1 2, .61 371 2 , .0421 9, .020084 
2.498284, 1 .281 373,8.477494,54.54, .541 342, .045806, .023494 
1 .1 73077, .641 856,2.562446,44.22, .5661 76, .026528, .01 451 5 
1 .838921 , 1 .021 1 71 ,5 .395404,46. 71 , .521 257, .039369, .021 862 
1 .883901 , 1 .021 597,5.699509,43.1 8, .582255; .043629, .023659 
2.1 08535 , 1 .073635 ,5.9771 93 ,50.8, .53539, .041 507, .021 1 35 
2.202062, 1 .205004,5.691 583 ,50.3 , .550584, .043779, .023956 
2.242349, 1 .467086,8.909859,56.61 , .  7681 1 6, .03961 , .02591 6 
2.044639, 1 .6341 68,6.1 40026,59.63 , .457055 , .034289, .027405 
1 .  758358, 1 .1 74968,5 .098974,48.26, .44481 6, .036435 , .024347 
2.260039, 1 .420491 , 7.635546,55 .1 1 , .505327, .041 01 , .025776 
2.328531 , 1 .38278,6.261 51 8,56.51 , .384844, .041 206, .02447 
2.1 78393, 1 .41 7591 ,6.325777,49.1 4, .505922, .04433 , .028848 
1 .882675 , 1 .1 34993,6.589205 ,55 .1 1 , .550388, .0341 62, .020595 
1 .  776991 , 1 .01 81 91 ,5 .1 72038,46.54, .51 865 , .0381 82, .021 878 
1 .3751 26, .634988,3 .1 78887,56.84 , .577941 , .0241 93, .01 1 1 71 
2.451 003 , 1 .21 644, 7.4051 81 ,56.68, .480882, .043243 , .021 462 
2.1 95582, 1 .381 901 ,8.21 5304,53.31 , .6621 21 , .041 1 85 , .025922 
1 .65571 8, 1 .075471 ,4. 7501 1 4,45.89, .504488, .03608, .023436 
2.1 1 0975 , 1 .2291 82, 7.281 331 ,52.36, .628763, .04031 7, .023476 
1 .699976, 1 .077463,5 .493503,45.44, .658692, .03741 1 , .02371 2 
2.1 80376, 1 .437789,6.802545 ,56. 7, .491 279, .038455 , .025358 
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1..800057, 1.089596,5.048204,45.59, .548561,.039484, .0239 
1. 924359, .954528,5. 680894,46.2, .57326, .041653,.020661 
1.893817, 1.622241,4.037877,47.57, .423077,.039811,.034102 
1. 96544, 1.188232, 6.024456,46.43,.497504,.042331,.025592 
2.074734, 1.411227,5. 657011,46.85,.475214,.044285, .030122 
2.02444, 1.277161,5.661897,47.39, .471664,.042719, .02695 
1.594325, .97854,4.919271,47.12,.481361, .033835,.020767 
1.862917, 1.180765,5.310053,44.57,. 698113,.041798, .026492 
2.057062, 1. 678639,6.977345,47.24,. 7, .043545, .035534 
1.645694, 1.064198,4.234937,45.59, .493934,.036098,.023343 
2.008806, 1.065021, 7.228691,50. 72, .59661,.039606,.020998 
2.004213, 1.071271, 6.233149,48. 76, .660194, .041104,.02197 
1.969608, 1.201379,6.284705,54.1, .598985,.036407,.022207 
1.980047, 1.37889,4.861254,50.03,.394612,.039577, .027561 
1.888199, 1.149783,5.59195,47.98, .585977,.039354, .023964 
1. 67975,.852833,4. 690781,44.57, .56, .037688, .019135 
2.126917, 1.14888, 6.291123,46.1,. 654511,.046137, .024921 
1.872873, .945659,5.163135,48.28,.459364,.038792, .019587 
1 .405029, . 6667 44,4.053687, 55 .44, . 739264, .025343, .012026 
1. 964929, 1.091797,5. 675743,48.2, .564982, .040766,.022651 
2.252998, 1.303195,7.719185,56.59, .494799,.039813, .023029 
.924566,. 623341, 1 .907959,46. 11, .399194, .020051, .013519 
1. 77499, 1.359648, 6.064914,54.5, .645469,.032569, .024948 
2.193221, 1.349554,5.184924,52.24, .440068, .041984, .025834 
1. 987808, 1.231198, 6.29426,45.5, .642994, .043688, .027059 
2.028146, 1.078616,6. 74769,55.09,.547965, .036815, .019579 
1.393873, . 771775,2. 764116,49.35,.515845, .028245,.015639 
2.036792, 1.253761,5. 717107,44.91,. 628866, .045353, .027917 
2.043101, 1.195477, 7. 711037,52.38,. 630368,.039005, .022823 
1.534063,.827177,3.895787,56.56,.562874, .027123, .014625 
1.530089, .801054,3.877672,45.58, .561497,.033569,.017575 
1. 978249, 1.117348, 6.363347,44.85,.788913,.044108, .024913 
1. 758517, 1.107138,5.89388,42.59,. 623552,.041289,.025995 
1.923455, 1.894855,5.613641,42.83,.542955, .044909,.044241 
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