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ABSTRACT 
 

Recent technological advances in automatic data acquisition have created an ever 

increasing need to extract meaningful information from huge amount of data. 

Multivariate predictive models have become important statistical tools in solving modern 

engineering problems.  The purpose of this thesis is to develop novel predictive methods 

based on latent variable models and validate these methods by applying them into 

spectral data analysis.  

 

In this thesis, hybrid models of principal components regression (PCR) and partial least 

squares regression (PLS) is proposed. The basic idea of hybrid models is to develop more 

accurate prediction techniques by combining the merits of PCR and PLS. In the hybrid 

models, both principal components in PCR and latent variables in PLS are involved in the 

common regression process.   

 

Another major contribution of this work is to propose the robust probabilistic multivariate 

calibration model (RPMC) to overcome the drawback of Gaussian assumption in most 

latent variable models.  The RPMC was designed to be robust to outliers by adopting a 

Student-t distribution instead of the Gaussian distribution. An efficient Expectation-

Maximization algorithm was derived for parameter estimation in the RPMC.  It can also 

be shown that some popular latent variables such as probabilistic PCA (PPCA) and 

supervised probabilistic PCA (SPPCA) are special cases of the RPMC. 
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Both the predictive models developed in this thesis were assessed on the real-life spectral 

data datasets. The hybrid models were applied into the shaft misalignment prediction 

problem and the RPMC are tested on the near-infrared (NIR) dataset. For the 

classification problem on the NIR data, the fusion of the regularized discriminant analysis 

(RDA) and principal components analysis (PCA) was also proposed.  The experimental 

results have shown the effectiveness and efficiency of the proposed methods.    
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1 Introduction 

Recent technological advances in automatic data acquisition have created an ever 

increasing need to extract meaningful information from huge amounts of data. 

Researchers face larger data sets with more variables and more observations. Traditional 

statistical methods fail to work in many cases mostly because of the increase in the 

number of variables compared to the number of observations. These small sample size 

problems (SSS), in which the number of variables exceeds the number of observations, 

present many mathematical challenges.  One of the notorious problems is so-called 

“curse of dimensionality” where performance degrades exponentially as a function of 

dimensionality (Hastie, 2001).  These big challenges are bound to give rise to new 

theoretical developments. 

 

Latent variables, also called hidden variables, are variables that are not directly observed 

but are rather inferred from other variables that are directly measured. One advantage of 

using latent variables is that it reduces the dimensionality of the data. A large number of 

observable variables can be simplified by latent variables to represent an underlying 

concept, making it easier to understand the data. In this sense, they serve the same 

function as theories do in science. At the same time, latent variables are link observable 

data in the real world to symbolic data in the modeled world. In the sense of 

dimensionality reduction, latent variable models include any rank-reduced techniques 

such as principal components regression (PCR) and partial least squares regression 

http://www.answers.com/topic/variable-1
http://www.answers.com/topic/dimensionality-reduction
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(PLS). In the statistics community, there also exists a narrower definition of latent 

variable models (Everitt,1984). 

 

In this thesis, hybrid models of PCR and PLS are proposed. Discussions and debate often 

arise as to the relative merits of these two approaches when applied to data come from 

real industrial applications, but neither method is clearly superior. PLS is generally 

regarded as being superior to PCR in prediction. However, a few cases have shown that 

PCR can give better prediction results than PLS. What is more, there were no theoretical 

studies which suggest that one method should predict better than the other (Wentzell et 

al, 2003). PCR and PLS have their unique strength and weakness although they are very 

similar in some ways. The goal of this work is to combine the strengths of PCR and PLS 

in order to develop more accurate prediction techniques.  

 

Moreover, based on the specific definition of latent variable models in the statistics 

community, a robust probabilistic multivariate calibration model (RPMC) was developed 

in this thesis. Most latent variable models exploit the Gaussian assumption about the 

noise because the nice analytical property of Gaussian distributions often yields tractable 

algorithms for linear Gaussian models. A major limitation of them, however, is their 

sensitivity to outliers. This is easily understood by recalling linear Gaussian regression 

models in which maximization of likelihood function is equivalent to finding the least-

squares solution, whose lack of robustness is well known. The RPMC is designed to be 

robust to outliers by adopting a Student-t distribution instead of the Gaussian distribution.  
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In addition, the fusion of the regularized discriminant analysis (RDA) and principal 

components analysis (PCA), denoted by RDA+PCA, is presented for dealing with near-

infrared data. To the best of our knowledge, no previous work has been done in exploring 

RDA+PCA on NIR applications.   

 

This thesis work consists of three major parts: hybrid models of PCR and PLS, the robust 

probabilistic multivariate calibration (RPMC) model and the fusion approach of RDA 

and PCA. In each part, a case study is demonstrated. The thesis is organized as follows: 

Chapter 2 develops hybrid models of PCR and PLS, and gives an example of its 

application to shaft misalignment prediction. Chapter 3 describes several latent variable 

models and introduces the robust probabilistic multivariate calibration (RPMC) model, 

and also gives an example of its application to NIR spectral data analysis.  Chapter 4 

presents the fusion of RDA and PCA for the classification problem, also a NIR 

application. Chapter 5 concludes the thesis with proposing possible future research 

directions.  
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2 Hybrid models of PCR and PLS 

In a data-intensive world, multivariate regression models have become important 

statistical tools in solving modern engineering problems. For many years, researchers 

have sought to develop better regression techniques. Countless methods have evolved in 

an attempt to improve on existing methods. Principal components regression (PCR) 

(Chatterjee, 1977) and partial least squares (PLS) (Wold, 1966) are two of the most 

popular multivariate regression tools. The relative strengths of these two approaches are 

often discussed and debated, but no clear conclusion has been reached. PLS is generally 

regarded as being superior to PCR in prediction. However, a few case studies have shown 

that PCR can give better prediction results than PLS. Furthermore, theoretical studies do 

not suggest that one method should predict better than the other (Wentzell, 2003). PCR 

and PLS have their own unique strength and weakness although they are very similar in 

some regards.  

 

Fang et al. (Fang, 2005) proposed hybrid models of PCR and PLS to combine the merits 

of PCR and PLS in order to develop more accurate regression models.  The key of hybrid 

models is that the linear transformed vector could be either a principal component (PC) or 

a latent variable (LV). In this chapter, Fang et al.'s idea is extended by exploring some 

properties of hybrid models, introducing conceptual examples, and applying the hybrid 

models to sample datasets. One of the challenging issues in hybrid models is that the 

optimal hybrid model may be chosen by comparing a vast number of candidates, which 

makes exhaustive search infeasible. In order to overcome this problem, I propose the 
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nn yy ,,,, 1 xx1 ⋅⋅⋅ m
i R ×∈ 1x

modified sequential forward floating search (SFFS) (Pudil, 1994) to choose the best 

hybrid model.  The modified SFFS method seems particularly effective because the 

optimal hybrid models with different number of components show small differences in 

combination and the SFFS just searches for the next optimal model in the neighborhood 

space of the current optimal one. Small sample size problems most likely benefit from a 

hybrid approach because in hybrid models, PCs can greatly decrease the multicollinearity 

of the data and at the same time LVs utilize information from the response variable.  

 

2.1 PCR and PLS regression 

This section gives an overview of these two techniques in the same framework. Only 

single response regression problems are considered in this chapter. Given a calibration set 

of data , , ( ) ( ) ∈iy R , the prediction problem is to construct 

some function  such that f ( )if x  approximately equals  and the function generalizes 

well on future data. Each data point  is represented as the i

iy

ix th
  row in the data matrix . 

The i

X

th response is denoted by . Assuming that both  and  have been scaled to 

have means 0, n denotes the number of points, and m denotes the dimensionality of the 

data, so 

iy ix iy

mnR ×∈X and .  1×∈ nRy
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2.1.1 Principal component regression 

Principal component regression comprises two steps. The first is to construct a linear 

projection mapping of the data using standard principal component analysis. PCs are 

usually computed by the singular value decomposition on . The iX th PC  can be 

derived by the objective function (1):  

iw

( )i
i

w
wX

i

varmax       s.t                                  (1) 1=ii ww T

where  represents the residual after (i-1) times. The residual  is updated by (2):   iX iX

iXttXX T
ii

ii −=+1        (2) 

where  denotes the iit th  PC scores (the projected data on the ith  principal component). 

Letting  and , then  can be calculated iteratively until the remaining 

components are deemed to be from noise or not to contain useful information.   

XX1 = yy1 = iw

    

The second step of PCR is to find the final regression coefficients S  by minimizing the 

least squares error between the projected data  and the response .    T y

                                                    ( ) yTTTS T1T −
=                                                         

(3) 

In PCR, selecting a lower dimensional subspace for the mapping restricts the set of 

possible regression functions, thus limiting the capacity of the resulting function from 

overfitting the data. Therefore, PCR can perform well in ill-posed problems. Especially 

when selecting the first principal components, PCR can greatly decrease the 

multicollinearity of ill-posed data (Bennett, 2003). 
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2.1.2 Partial least squares regression 

PLS is a supervised technique and performs a linear mapping between score vectors on 

latent variables. The only difference of PLS1 (single response PLS model) from PCA is 

the objective function (4) by which the ith
 latent variable  is computed (note that the iiw th 

PC  is derived by the objective function (1)):  iw

( )y,wX i
i

wi

covmax     s.t.                                           (4) 1=ii ww T

where  represent the residual after (i-1) times. The residual  is updated by the same 

way with PCA:   

iX iX

                                                                                                                                 (5)                         iT
ii

ii XttXX −=+1

where  denotes the iit th
  LV scores (the projected data on the ith

  latent variable). Let  

 and , then the final regression function  can be built in the same way with 

PCA (Geladi, , 1986).  

XX1 = yy1 =

 

Similar to PCR development, PLS also builds a mapping of the data to a p(<m) 

dimensional space and thus limits the capacity of the resulting function from overfitting 

the data. Unlike PCA, PLS utilizes both the input and the response data,  and  

respectively, to form the mapping to a lower dimensional space.  

X y
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2.2  Hybrid models of PCR and PLS  

2.2.1 Illustration of hybrid models 

Section 2.1 has shown that both PCR and PLS1 can be formulated in a similar iterative 

way. The difference between them is in the objective functions. If the various objective 

functions are involved in a common iterative procedure, the properties of both PCR and 

PLS can be combined. Thus, the idea of constructing hybrid models of PCR and PLS 

consists of two steps. The first is to calculate PC and LV alternatively in iterative steps. 

In this way, the orthogonal decompositions are mixed with PCs and LVs. Based on these 

orthogonal decompositions, the original input data is mapped into a new subspace. The 

second step is to make the final regression function by minimizing the least-squares error 

between the projected data and the response y. The key of hybrid models lies in that the 

projected vector in every orthogonal decomposition could be either a principal 

component or a latent variable. Like PCR and PLS, when the number of components in a 

hybrid model reaches the number of original predictor variables, the hybrid model is 

equivalent to the ordinary least-square (OLS) regression technique. 

 

As shown in Figure  1, for the 3-dimensional data (dots), PCR sequentially calculates the 

first three principal components PC1, PC2 and PC3. By contrast, a hybrid model of PLS 

and PCR may not calculate PC2 after getting PC1, but in the space orthogonal to PC1, the 

first latent variable LV2 may instead be calculated (the number 2 indicates that the 

computation is in the second iterative step).    
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Figure 1 A possible hybrid model with the sequence PC1LV2 

Thus a hybrid model of PCR and PLS is generated by a combination of PCs and LVs. 

Different combinations create different hybrid models. Here a sequence is used to denote 

a hybrid model. For example, the sequence PC1-LV2 represents the hybrid models 

illustrated by Figure 1. The number following PC or LV means how many iterative steps 

(components) have already been calculated. 

 

2.2.2 A conceptual example 

Figure 2 is a 2-class dataset (red and blue dots) in 3-dimensional space. Because the data 

in each class seem to be distributed around a straight line, the data suffers the small 

sample problem (SSS) effect. Now the regression function (here for a classification 

problem) can be constructed using 2 variables. Figure 3 shows the data in a 2-d PC space. 

Although PC1 and PC2 keep most of the information from the original data, neither of 

them is able to separate the data into 2 classes correctly.  
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x y

z 

 

Figure 2 Two-class data in the 3-d space 

 
  

 

   PC1 

PC2 

Figure 3 The Two-class data projected into 2-

d PCs space 

 

Figure 4 shows the data in a 2-d LVs space. One can see that both LV1 and LV2 have 

good discriminating ability. However, the projected data seem very "crowded".  Figure 5 

shows the data in a 2-d hybrid model space.  One can see that LV1 can make the 

projected data well separated and beyond that, PC2 keeps much of the variance in the 

original data. It can be seen from these plots that hybrid models benefit from both 

advantages of PCA and PLS. The data projected in this way can produce a better 

predictive model for a regression or classification problems.  
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LV2 

LV1 

PC2 

 

Figure 4 The Two-class data projected into 2-

d LVs space 

 

Figure 5 The 2-class data projected into a 

hybrid model space (LV1PC2) 

 

2.2.3  Basic algorithm                 

If the number of predictor variables to retain is k, there could be 2k different hybrid 

models. Note that among all possible combinations of PCs and LVs, the pure PCR or 

PLS models are also included, such as the combination of PC1-PC2-PC3 or LV1-LV2-

LV3 in case of k=3. One effective way to choose the optimal hybrid model is based on 

minimum cross validation (CV) error (Stone, 1977). The idea behind CV is to recycle 

data by switching the roles of calibration and validation samples. Based on the sample 

data available, different CV methods can be selected, including hold-out, k-fold, and 

leave-one-out (LOOCV) methods.  
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In order to evaluate the predictive performance of every hybrid model, each different 

combination of components would be denoted by a different integral value, called the 

determinant, of a sequence. In this study, a binary numeral system is used to calculate the 

determinant. In a combination sequence, PC and LV are replaced by 0 and 1, 

respectively. Thus, every sequence can be represented by a binary number 

, where 1221 bbbbb kkk L−− { }1,0∈ib . The determinant of a sequence is computed by 

converting the binary number to a decimal number. For example, the sequence LV1-PC2-

LV3 is denoted by (101)2 and thus its determinant is 6.  

 

Below is the algorithm for constructing the optimal hybrid model of PCR and PLS. For 

convenience of presentation, hold-out cross validation is adopted in this algorithm flow. 

The only parameter of the algorithm is k, the number of components to retain.  

Input: calibration input  and response X y , validation input  and response z  V

Output: the optimal hybrid regression model 

1. For j = 0  to ( -1)       { k2

2. = (j)1221 bbbbb kkk L−− 2        

           /*  convert j to a binary string  

3. For i=1 to k    { 

4. If =0  ib

Then ( , ) = PCA( )         iw it iX
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/* calculate the first PC  and scores based on the calibration input residual 

 

iw it

iX

 iXttXX T
ii

ii −=+1

              /* update the calibration input residual 

       Else  ( , ) = PLS( , iw it iX y )    

      /* calculate the first LV and scores based on the calibration input 

residual  and response 

iw it

iX y  

 iT
ii

ii XttXX −=+1

      /* update the calibration input residual 

         } 

5.          ( ) yTTTS T1T −
=

/*  construct the least-square regression                         

model based on the calibration projected data  and response T y   

6. Calculate the validation projected data Q . Note that the validation data  has to 

be projected into the subspace  using the same mapping as the calibration data 

did  

V

w

7. Qwzerror −=                        

/* using the model calculated by step 5 to calculate the cross-validation error on the 

validation data 

          }       

8. Choose the optimal regression model with the minimum cross-validation error 
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2.2.4 Model selection 

In SSS problems, few components contain most of the information in the data. The 

possible maximum value of k (denoted by D) could be small. In these cases, all the (2D+1-

2) possible combinations of PCs and LVs are actually examined for choosing the optimal 

model. However, in some other cases (although they are unusual), when D is large, there 

are too many possible hybrid models. It can be regarded as a combinatorial optimization 

problem. Some random optimization techniques are currently popular for solving this 

kind of problem, such as genetic algorithm, simulated annealing algorithm and ant colony 

optimization (Engelbrecht, 2002). However, sometimes they fail to provide a stable 

solution. In this chapter, the SFFS algorithm in feature selection has been extended to 

choose the best hybrid model. Floating search was originally developed for feature 

selection problems. It has been proven that floating search can provide a near-optimal 

solution to a combinatorial feature selection problem at an affordable computational cost 

(Jain, 1997). The model selection problem here is different from feature selection in 

classification problems. In feature selection for classification, the order of features chosen 

does not matter as long as the same features have been chosen, but in model selection for 

hybrid models, different combinations of components produce different regression 

models. Thus, the original SFFS algorithm for feature selection in the classification has to 

be modified to suit model selection of hybrid models. The modified SFFS algorithm is 

shown as follows.  
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Input: 

Y ={yj | yj  { } kj ,...,1, =∈ LVjPCj, } 

Output: 

BBk={ | } 1221 bbbbb kkk L−− Y∈jb

Initialization: 

BB0 := ; j =0; (In practice one can begin with j=10 after using exhaustive search to get 

an optimal hybrid model B

Φ

10) 

Termination: 

Stop when j equals the number of components required  

Step 1(Inclusion) 

)(maxarg:
1

bBb jLOORMSE
yb j

+=
+∈

+  

BBj+1:=Bj+ ; j:=j+1;  +b

Step 2 (Conditional exclusion) 

)(maxarg: bBb jLOORMSE
Yb

−=
∈

−  

If  then )()( 1−
− >− jj BLOORMSEbBLOORMSE

BBj-1:=Bj- ; j:=j-1;  −b

go to Step 2 

else  

go to Step1; 

(LOORMSE is a function to evaluate the LOOCV RMSE of the selected model.) 
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The modified SFFS seems particularly effective because the optimal models with 

different k seem not to have much difference in solution structures (combinations). The 

modified SFFS searches for the solution in the neighborhood space. Therefore, it is 

highly possible that the modified SFFS can easily find the next optimal solution based on 

the current one.  

 

In practice, similar to the approach mentioned in the exhaustive search,  the value of k is 

not specified while the maximum value D is specified. All the possible optimal hybrid 

models with different k below D will be compared. This becomes possible because of the 

high efficiency of the SFFS algorithm. A common "best possible" value of k for hybrid 

models is expected to be between that for PCR and that for PLS. Therefore, one way to 

specify D in practice could be to take the maximum of them.  

 

2.2.5 Case study: shaft misalignment prediction 

Having shown the effectiveness of the hybrid models on a conceptual example, the 

proposed approach can be tested on motor shaft misalignment data accrued from a real 

industrial mechanical process. A shaft transmission system is one of the most 

fundamental parts of rotary machinery. Shaft misalignment measures how far apart the 

two centerlines are away from each other. Such shift in centers can be in parallel position, 

when the centerlines of the two shafts are parallel with each other, but at a constant 

distance apart, in angular position, when the centerlines are at an angle to each other, or a 

combination of these positions (Piotrowski, 1995), as shown in Figure 6.  Recent studies  
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Figure 6 An illustration of parallel, angular, and  

combined misalignment conditions (Omitaomu, 2006) 

 

indicate that there is a measurable change in the input power frequency spectrum of an 

electric motor for different shaft alignment conditions (Hines, 1999). Thus, the purpose 

of this research is to develop the optimal hybrid model to predict electric motor shaft 

alignment conditions based on the motor's power frequency spectrum.  The problem can 

be stated as a multivariate regression problem in which the number of predictors greatly 

exceeds the number of observations.  

 

Data was obtained from Oak Ridge National Laboratory Advanced Motor. A detailed 

description on the data collection was included in Omitaomu's work (Omitaomu, 2006).  

The time domain waveform data for the motor is shown in Figure 7. There are some 

differences in the power time domain for each alignment condition, such as different 

frequency components and some very small differences in magnitude. Advanced signal 

processing techniques were then used to transform the raw voltage and current data into 

the power time waveform. Therefore, for this analysis the input data is the power   

Parallel Angular 

Combined 
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Figure 7 Part of raw data in time domain 

 

Figure 8 Typical FFT for an alignment 

condition 

  

frequency spectrum and the response data is the misalignment condition. Figure 8 is a 

plot of the frequency spectrum input data for one of the misalignment conditions. The 

response data ranges from 0 to 50 mils (1mil= 2.540 × 10-5 m) for the parallel offset and 

from 0 to 15 mils for the angular offset. The sizes of the entire input set and response set 

are 50×3000 and 50×2 respectively. The condition number of the input data is 

6.1246e+093, so it is a typical ill-posed problem. The objective then is to use the optimal 

hybrid model of PCR and PLS to predict the misalignment condition based on the power 

frequency spectrum. Although the response data has two variables, parallel misalignment 

and angular misalignment, they were predicted independently in this experiment. 
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PCR and PLS algorithms were used to determine the parameter K, the number of 

predictors. Because only 50 observations were available, leave-one-out cross validation 

(LOOCV) was used for accurately evaluating the prediction performance of regression 

models.Both PCR and PLS achieve minimum LOOCV MSEs with the number of 

predictors at 9 (see Figure 9 and Figure 10). Furthermore, the first 9 PCs can explain the 

99.64% variance of the input data. For the angular response, similar results were 

produced. Therefore, the number of predictor variables to retain in hybrid models was 

specified as 9. Although the original input data has a large number of variables (i.e. 

3000), most data information is actually contained in many fewer components (i.e. 9). 

Thus, the proposed algorithm with exponential complexity appears to be computationally 

efficient.  

 

 

Figure 9 LOOCV MSEs with PCR for 

parallel misalignment condition 

 

Figure 10 LOOCV MSEs with PLS for 

parallel misalignment condition
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With K specified as 9, the proposed algorithm was performed on the misalignment data. 

Figure 11 and Figure 12 are the plots of LOOCV MSEs with different hybrid models for 

parallel and angular conditions, respectively. In the plots, the optimal regression models 

with minimum MSE are represented by points with red circles around them. The optimal 

model for the parallel condition is that with a determinant of 75 equivalent to binary 

001001011. Therefore the corresponding combination sequence of PCs and LVs is PC1-

PC2-LV3-PC4-PC5-LV6-PC7-LV8-LV9. The optimal prediction model for angular 

condition is that with a determinant of 99 whose corresponding combination sequence is 

PC1-PC2-LV3-LV4-PC5-PC6-PC7-LV8-LV9 (001100011).  Note that in the plots, the 

points whose determinants are equal to 0 is the PCR model and determinant 511 is the 

PLS model. It can be seen that the optimal hybrid models outperform PCR and PLS in 

both parallel and angular misalignment prediction conditions.            

 

 

Figure 11 LOOCV MSEs with different 

hybrid models (K=9) for parallel conditions 

 

Figure 12 LOOCV MSEs with different 

hybrid models (K=9) for angular conditions 
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Table 1 contains all the experimental results when K ranges from 1 to 10. These 

experimental results validate that the optimal hybrid models achieve the best prediction 

results when K is 9. Table 1 also shows that the optimal hybrid model predicts more 

accurately than PCR and PLS when K is greater than 3. This suggests that the proposed 

approach may be particularly useful for complex prediction tasks that need more 

predictors. In addition, the MSEs for angular offset are much smaller than the MSEs for 

parallel offset, which implies that modeling the parallel offset is more difficult, at least 

for the given calibration data.    

 

Table 1 The LOOCV error rates with PCR, PLS and the optimal hybrid model 

PCR PLS Optimal Hybrid ModelK 

Parallel Angular Parallel Angular Parallel Angular 

10 6.3259e-2 1.2564e-3 8.2317e-2 5.6314e-4 3.6479e-3 8.7461e-5 

9 4.5123e-3 3.4315e-4 1.4657e-3 7.4153e-5 2.5559e-4 5.5223e-6 

8 1.2684 3.5749e-2 1.0361e-2 1.0129e-4 9.3247e-4 1.2479e-5 

7 4.3695 1.9654 9.8621e-2 9.1476e-4 5.2947e-3 9.5514e-5 

6 91.237 2.2143 0.1579 6.3471e-3 1.2568e-2 3.2694e-4 

5 98.865 9.9176 0.3214 1.0874e-2 0.0974 6.3247e-3 

4 96.364 27.3695 1.8694 6.3727e-2 1.6987 0.8591e-2 

3 227.68 25.9873 1.5697 0.1458 20.317 2.3697 

2 235.41 25.416 3.1843 1.5147 41.585 8.1211 
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2.3 Conclusion 

In this chapter, a new multivariate regression tool has been proposed. It aims to develop 

more accurate prediction models by benefiting from the advantages of both PCR and 

PLS. The results from the case study suggest the potential for improvement of prediction 

accuracy for SSS problems. Future research will include creating nonlinear hybrid 

models because many engineering problems have nonlinear properties. A possible 

solution is based on the Kernel Trick (Scholkopf, 1998), which has been proven as an 

efficient approach to deal with nonlinear problems. Kernel PCR and Kernel PLS have 

been proposed recently and can achieve good prediction results (Rosipal, 2001). Thus, it 

is expected that Kernel hybrid models of PCR and PLS could work well on some 

nonlinear cases.  
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3 Robust Probabilistic Multivariate Calibration 

In this chapter, a robust probabilistic multivariate calibration (RPMC) model is proposed 

based on the specific definition of latent variable models in the statistics community 

(Everitt, 1984). The RPMC was intended to overcome the lack of robustness of the linear 

Gaussian models by adopting the Student-t distribution as the distribution of noises and 

latent variables instead of Gaussian distribution. It turns out that the RPMC includes 

some latent variable models as special cases, such as probabilistic PCA (PPCA) and 

supervised probabilistic PCA (SPPCA).  

 

3.1 Latent variable models 

A latent variable model is a statistical model that investigates the dependence of a set of 

observed variables on a set of latent variables (Everitt, 1984). The most well-known 

latent variable model is factor analysis, which was initially developed by psychologists.  

Recently, it has been found that many popular multivariate statistical techniques are 

closely related to latent variable models. These include vector quantization, independent 

component analysis models (ICA), Kalman filter models and hidden Markov models 

(HMMs) (Roweis, 1999).  The general latent variable model has the following form:  

( ) ( ) ( )p p h d= ∫x x |θ θ θ                                     

where [ ]1, , T
Mx x=x K represents the observable variables and [ ]1, , T

Pθ θ=θ K the latent 

variables. The number of latent variables, P, is usually much less than the number of 

observable variables, M. In essence all latent variable models assume that  have a joint x

http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Latent_variable
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)

( )i

probability distribution conditional on θ , denoted by . Based on some 

assumptions, we can infer the density functions, p and h from the known or assumed 

density of  to discover how the manifest variables depend on the latent variables. The 

key assumption of latent variable models is that of conditional independence, i.e., the 

observable variables are independent of one another given the values of latent variables. 

In other words, the observed interdependence among the observable variables totally 

comes from their common dependence on the latent variables; once the latent variables 

are fixed, the behavior of the observable variables is essentially random. Mathematically, 

this can be expressed as:  

(p x |θ

x

1

( ) ( )
M

i

h p x d= ∫x |θ θ
=
∏θp  

 

3.2 Probabilistic PCA  

Principal component analysis (PCA) is a widely used statistical tool in chemometrics. 

While PCA originates from the analysis of data variances, it was recently expressed as 

the maximum likelihood solution for a generative latent variable model, which is called 

Probabilistic PCA or PPCA (Tipping et al, 1999b):  

x x xμ ε= + +x W t     

where P∈ℜt  are latent variables, xW  is a PM ×  matrix called factor loadings, and 

xε defines a noise process. Additionally, we have parameters xμ which allow non-zero 

means for the data. In this probabilistic model, latent variables t are conventionally 
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Iassumed as a standard Gaussian distribution, i.e., , and ( , )Nt 0� xε  takes an isotropic 

Gaussian form as .     2( , )x xNε σ0 I�

 

The maximum likelihood solution of xW  is given as 

�
1

2 2(x P P x Pσ= Ε −W U I R)                                                 (6) 

where PU  is the matrix of the  principal eigenvectors of the sample covariance matrix P

1

1 ( )( )
N

T
x i x i x

i
S

N
μ μ

=

= − −∑ x x , P P
P

×∈E �  is the diagonal matrix of the corresponding 

eigenvalues, P P
PI ×∈�  is the -dimensional unit matrix, and  is an arbitrary P R P P×  

orthogonal matrix.   

 

It can be shown that PCA is a limiting case of PPCA as . In other words, PCA is 

recovered when the covariance of the noise becomes infinitesimally small and equal in all 

directions. This probabilistic formulation provides additional advantages over 

conventional PCA as discussed in Bishop's work (Tipping, 1999b), such as a principled 

way of handling missing values, a fast EM learning procedure and the availability of a 

Bayesian treatment.    

2 0xσ →
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K∈�

3.3 Supervised PPCA 

As each data observation is not only associated with input x , but also with output 

, unsupervised learning such as PCA or PPCA may be not able to 

project the data into useful subspaces. Many supervised learning methods have been 

proposed to make use of output information, such as principal component regression 

(PCR), partial least square (PLS) and linear discriminant analysis (LDA). Based on latent 

variable models, supervised probabilistic PCA (SPPCA) was recently introduced (Yu, 

2006). Like PPCA, SPPCA utilizes the key point of latent variable models that all the 

observations are conditionally independent given the latent variables.  In SPPCA, the 

observed data (

1[ , , ]T
Ky y=y K

, )x y is generated from a latent variable model as:  

x x xμ ε= + +x W t  

y y yμ ε= + +y W t  

Again a unit isotropic Gaussian distribution is assumed for the –dimensional latent 

vectors and for the error terms 

P

t xε  and yε , i.e., , , 

. It is shown that the maximum likelihood solution of 

( , )Nt 0� I

y

2( , )x xNε σ0 I�

2( , )y Nε σ0 I� xW  and  are 

given by  

yW

�

�

1
2

1
2

( )

( )

x x M P P

y y K P P

σ

σ

= Ε −

= Ε −

W U I

W U I

R

R
                                            (7) 

where ( )M KU U  contains the first M (or last ) rows of eigenvectors of the normalized 

sample covariance matrix S  for centered observations{ }

K

1
( , ) N

i i i=
x y ,  
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2

2

1 1

1 1

xx x
x x y

yx yy
y x y

σ σ σ

σ σ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

S S

S
S S

y

, 

P P
P

×∈E �  is the diagonal matrix of the corresponding eigenvalues, P P
PI ×∈�  is the -

dimensional unit matrix, and  is an arbitrary 

P

R P P×  orthogonal matrix.  The projected 

latent variable  for centered new input ∗t ∗x is given by  

( ) ( )
1 11
2

1 T T
P P M M P P M

xσ

−−∗ ∗⎡ ⎤= − + −⎣ ⎦t R E I U U E I U xT  

It is easy to check that (7) degrades to (6) when 0K = . In other words, PPCA is a special 

case of SPPCA. When , SPPCA explains not only intra-covariance of inputs 0K > xS  

and intra-covariance of output , but also the inter-covariance between input and 

output, 

yS

xyS  and .  In contrast to SPPCA, PCA only explains the covariance of inputs, 

and PLS finds the maximal covariance between inputs and outputs, but ignores the intra 

covariance of either inputs or outputs.  

yxS

 

3.4 Student-t distribution 

Both PPCA and SPPCA take advantage of the Gaussian assumption about noise based on 

the fact that the convolution of two independent Gaussian distributed quantities is also 

Gaussian distributed. This nice analytical property of Gaussian distributions often yields 

tractable algorithms for linear Gaussian models. A major limitation of them, however, is 

their sensitiveness to outliers. This is easily understood by recalling the linear Gaussian 
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regression models in which the maximization of likelihood function is equivalent to 

finding the least-squares solution, whose lack of robustness is well known (Svensen, 

2004). 

 

Several approaches have been proposed to address the limitation of Gaussian models. 

Most methods rely on robust estimation, particularly M-estimation (Huber, 1981).  M-

estimation assumes that the data are heavy tailed distributed instead of normally 

distributed. Consequently, maximum likelihood solutions are more robust to outliers.  

 

In this section, a robust multivariate calibration approach is developed based on latent 

variable models whose components have a Student distribution, also known as t-

distribution, 

( ) / 21/ 2 2

/ 2

( / 2 / 2) | |( | , , ) 1
( / 2)( )

v d

d

dS νμ ν
ν νπ ν

− +
⎛ ⎞Γ + Δ

Λ = +⎜ ⎟Γ ⎝ ⎠

Λx  

where  

1

0
( ) z yz y e

∞ − −Γ = ∫ dy  and  is the squared Mahalanobis distance.  )()(2 μμ −Λ−=Δ xx T

 

The t-distributions have heavier tails compared to the exponentially decaying tails of a 

Gaussian (see Figure 13). They are commonly used in robust regression (Langer, 1989). 

Previous work has been done to increase the robustness of PPCA and PCCA by replacing 

Gaussian distributions with t-distributions (Cedric, 2006, Bach, 2005). They have also 
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Figure 13 Illustration of heavy tail Student-t distribution 

been shown to be effective in the computer vision and mixture modeling (Svensen, 

2004).   

 

3.5 Robust probabilistic multivariate calibration model 

Instead of taking a Gaussian distribution on the latent variables in SPPCA, I choose a 

Student-t distribution because I assume that outliers in the original data space will also be 

outliers in the latent variable space. In addition, I assume that the noise is also drawn 

from a Student-t distribution. Consequently, this leads to the following probabilistic 

model, 

( ) ( )
( ) ( )
( ) ( )

2

2

| , ,

| ,

| ,

i i P

i i x i x x M

i i y i y y K

p S

p S

p S

ν

,

,

μ σ ν

μ σ ν

−

−

=

= +

= +

t t 0 I

x x W t I

y y W t I
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dθ

In contrast to the Gaussian, there is no close form solution for maximizing likelihood 

under this model. However, there exists an alternative representation of a t-distribution in 

terms of latent variable models. In particular, we can write it as an infinite mixture of 

scaled Gaussians (Liu, 1995), 

0
( | , , ) ( | , ) ( | / 2, / 2)S N Gμ ν μ ν ν

∞
Λ = Λ∫x x θ θ                          (8) 

Based on the latent variable model definition (8) of the Student-t distribution, we can 

define an tractable robust probabilistic multivariate model: 

1

( ) ( | , )
2 2

( | ) ( | , )

( )

i i

i i i i P

v vp G

p N

p N −

=

=

i i i i i i

θ θ

t θ t 0 θ I

z | t ,θ ) = (z | Wt + u,θ Φ

 

where  

( )
2

2

0
, , ,

0
x xx

i i i
y yy

μ σ
μ

μ σ
⎛ ⎞⎛ ⎞ ⎛

= = Φ = =⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

WI
z x , y W

WI
⎞
⎟
⎠

d

 

The log likelihood of the whole observation is  

1
log ( ) ( ) ( )

N

i i i i i i
i

L p p p
=

= ∑ ∫ x | t y | t t t  

When both input and output are observed, the posteriori distribution of given as 

( ) ( )( | ) ( | ) ( ) ( | , )
2 2

T
i i

i i i i i i
M Kp p p G μ μ νν − − ++ +

∝ =
z A zθ z z θ θ θ  

where  1 T− ≡ +A WW Φ

1 1( | , ) ( | , ) ( | ) ( | ( ), )T
i i i i i i i i i i ip p p N μ− −∝ =t z θ z t θ t θ t B W Φ z θ B−  

where 1T
P

−≡ +B W Φ W I  
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The sufficient statistics needed to update the parameters in the M-step are then given by  

( ) ( )i T
i i

M K
v

ν
μ μ

+ +
=

− −
θ

z A z +
 

( ) ( )log ( ) log( )
2 2

T
i i

i
vM K μ μνψ − − ++ +

= −
z A zθ  

where ( ).ψ  denotes the digamma function. 

1 1( )T
i i μ− −= −t B W Φ z  

1 TT
i i i i i i

−= +θ t t B θ t t  

Then, in the M-step, the mean vector is updated by   

1

1

( )
N

i i i
i

N

i
i

μ =

=

−
=
∑

∑

θ z W t

θ
 

The factor loading matrices are updated by 

1

1 1
( ( ) )(

N N
T T

i i i i i i
i i

μ )−
= =

= −∑ ∑W θ z t θ t t  

The variance matrices are updated by 

2 2

1

2 2

1

1 { || || 2 ( ) { }

1 { || || 2 ( ) { }

N
T T

x i i i i x i i i i x
i
N

T T
y i i i i y i i i i y y

i

N M

N K

σ μ μ

σ μ μ

=

=

= − − − +
×

= − − − +
×

∑

∑

θ x θ x W t tr θ t t W W

θ y θ y W t tr θ t t W W

}

}

T
x

T

 

Finally, the ML solution of ν  is calculated by solving the following equation: 

1

11 log( ) ( ) { log } 0
2 2

N

i i
iN

ν νψ
=

+ − + −∑ θ θ =  
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3.6 Case study: prediction of green moisture content and density of 

solid wood  

In this experiment, RPMC was assessed as a possible method for predicting the moisture 

content and density of solid red oak wood (response variables). The data was collected by 

the near infrared (NIR) spectrometer. A detailed description of the data collection is 

contained in Defo et al. (In press). The dataset used in this analysis were collected in a 

similar manner; however, the actual wood samples used were different and a different 

near infrared spectrometer was used (A. Taylor pers. comm.). 

 

Figure 14 shows the NIR data of the 45 samples with 275 different wavelengths. The 

total samples were divided into a calibration dataset with 30 samples and a validation 

dataset with 15 samples. Table 2 summarizes the mean error rates for PLS, SPPCA and 

RPMC on the calibration and validation datasets respectively. The number of components 

was chosen as 10. 

 

The experimental results in Table 2 show that RPMC and SPPCA predicted much better 

than conventional PLS in both responses.  RPMC performed slightly better than SPPCA 

in both cases, which indicates that the dataset may contain certain outliers.   
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Figure 14 NIR data profile of 45 samples 

Table 2  Mean square errors for prediction of moisture content (y1) and basic density content (y2) 

by PLS , SPPCA and RPMC 

 PLS SPPCA RPMC 

Calibration  31.6504 22.9949 23.0228 y1 

Validation    75.2048 33.9409 19.7674 

Calibration 2887.1 2814.3 2859.8 y2 

Validation    8038.5 3778.7 3615.4 
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3.7 Conclusions 

In this chapter, a robust probabilistic multivariate calibration (RPMC) model was 

developed. The RPMC was intended to overcome the lack of robustness of the linear 

Gaussian models by adopting the Student-t distribution as the distribution of noises and 

latent variables instead of the Gaussian distribution. In contrast to the linear Gaussian 

models, there is no close form solution for the linear Student-t model. Based on the latent 

variable model Student-t distribution, an efficient EM algorithm was derived for 

parameter estimation. The experimental results show the promise of RPMC for NIR–

based quantification problems. 

 

 

 

 

 

 

 

 

 



 

 - 35 -  

4 The Fusion Approach of RDA and PCA 

In this section, the fusion approach of the regularized discriminant analysis (RDA) and 

the PCA is presented. The proposed method was motivated by the idea to overcome the 

curse of dimensionality using PCA. As introduced in the section 2.1, PCA is a powerful 

statistical tool to reduce the dimensionality of the high-dimensional data. After PCA is 

performed on the original data, conventional techniques are expected to work well on the 

reduced- rank data.  In addition, a classification problem based on NIR spectral data is 

also demonstrated. To the best of our knowledge, no previous research has been 

conducted applying RDA+PCA into NIR spectral data analysis. 

 

4.1 Regularized discriminant analysis  

Linear discriminant analysis (LDA) and the related Fisher's linear discriminant (Fisher, 

1936) are used in statistics to find the linear combination of features which best separate 

two or more classes of object or event. It searches for a set of projection vectors onto 

which the data points of the same class are close to each other, while requiring data 

points of different class to be far from each other. Quadratic discriminant analysis (QDA) 

is closely related with LDA, while its decision boundaries are approximated by quadratic 

equations.  

  

Regularized discriminant analysis (Friedman, 1989), a compromise between LDA and 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Features_%28pattern_recognition%29
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^

QDA, allows one to shrink the separate covariance as LDA toward a common covariance 

as in LDA. The regularized covariance matrices have the form 

^ ^
( ) (1 )k kα α αΣ = Σ + − Σ  

where  is the pooled covariance matrix as used in LDA. Here 
^
Σ [0,1]α ∈  allows a 

continuum of models between LDA and QDA, and need to be specified. When 1α = , 

RDA is equivalent to LDA, and when 0α = ,  RDA is equivalent to QDA. 

 

4.2 RDA+PCA 

Unfortunately, in many classification tasks, 
^
Σ  is typically singular, due to the fact that 

the number of the samples is much smaller than the dimension of the sample space, i.e., 

the so-called Small Sample Size (SSS) problem. In this chapter, we intend to overcome 

this problem by integrating PCA into RDA. The approach, called RDA+PCA, is the 

method that performs feature extraction in two sequential stages: in PCA+RDA, the NIR 

samples are projected to a PCA subspace in the first stage, and then RDA is applied 

secondly; in RDA, the NIR samples are firstly projected to the range space of between-

class matrix SB through QR-decomposition, followed by RDA in the second stage. 

 

4.3 Case study: wood preservative identification 

In this experiment, the RDA+PCA approach was applied to a classification problem. The 

task was to correctly differentiate preservative treatments on wood using NIR signal data. 
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A description on the data collection technique is included in Defo et al. (In press). 

However, the dataset provided for this analysis has not been previously published (A. 

Taylor pers. comm.). 80 samples were prepared and the data are shown in Figure 15. 

Among them, 20 were treated with a borates wood preservative (from the 21st sample to 

the 40th sample), denoted as the “target”, while other 60 were treated with different 

borate-based products, denoted by “non-target”.  The whole dataset is divided into two 

parts, i.e., a calibration set and a validation set. The predictive model was created with the 

calibration set and subsequently the model was verified with the validation dataset. The 

dataset was evenly divided in the way illustrated in Figure 16, where k is the number 

chosen in each data section for calibration purposes. 

 

Figure 15 NIR data profile of 80 samples 



 

 - 38 -  

 

{ { { { { { {

non-target target non-target non-target

C C C CV V V V

| k | 20 - k || k | 20 - k || k | 20 - k || 2k | 40 - 2k |
6474864748647486447448

123  

C: Calibration Set  V: Validation Set 

Figure 16 Dataset partition with variable k 

 

4.3.1  Classification results 

RDA+PCA was applied to the dataset with two different experimental settings:  

1. k is fixed as 15 and α  ranging from 0.1 to 0.9;  

2. α  is fixed as 0.9 and k is changed from 13 to 19.  

 

The experimental results are shown in Figure 17 and Figure 18, respectively. When 

0.8α=  or 0.9, the classification error rate was 0. As discussed in the section 4.1, when α   

is close to 0, RDA is going towards QDA; when α  is close to 1, RDA is going towards 

LDA. The experimental results with a large α  value suggest that the RDA is almost 

equivalent to LDA. When the sample size (k) of the calibration set was incrementally 

increased, the sample size of validation set was correspondently decreased. 

Consequently, we can see from Figure 18 that the prediction results were improved, 

which indicates RDA+PCA could achieve good performance when sufficient calibration 

data are available.   
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Figure 17 “Target” classification by RDA+PCA on the validation dataset with different α (α =0.1, 

…, 0.9) and fixed k (k=15). 0="Target", 1="Non-target". 
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Figure 17  continued 
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Figure 18 “Target” classification by RDA+PCA on the validation dataset with different k 

(k=13,…,19) and fixed α (α =0.9). 0="Target", 1="Non-target". 
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Figure 18 continued 

Table 3 contains the misclassification results on the validation dataset obtained by 

conventional PLS. In contrast to the RDA+PCA, the PLS+PCA cannot achieve perfect 

discrimination results on the data, no matter how much training data is available. 

  

4.4 Conclusion 

In this chapter, the fusion approach of RDA and PCA is presented. The proposed 

approach achieved highly accurate classification results on the illustrated example, which 

shows potential to be a good solution to the SSS problem.   By recalling the procedures of 

PCR, PLS and hybrid models discussed in chapter 2, one can see similarity between those 

approaches and RDA+PCA. Both of them consist of two steps: the first is to simplify the 

original data by certain dimensionality reduction techniques; the second is to perform 

regression or classification analysis based on the reduced-rank data. Following this line 

of research, it is possible to propose other multivariate predictive models for SSS 

problems.  
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Table 3 The number of misclassifications by conventional PLS with different K 

K 13 14 15 16 17 18 19 

Misclassification 7 6 5 4 3 2 1 
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5 Conclusions 

In this thesis, certain multivariate predictive approaches based on latent variable models 

were proposed to attack the small sample size (SSS) problem, one of the most 

challenging problems in the data mining area. The proposed methods were validated by 

the case studies with spectral data, which belong to the class of SSS problems.  

 

The proposed approaches include hybrid models of PCR and PLS and the fusion 

approach of RDA and PCA built on the generalized definition of latent variable models. 

They have much in common in that both of them consist of two steps as discussed in 

Section 4.4: dimensionality reduction and then conventional regression/classification 

procedures. Their major difference exists in the dimensionality reduction component, 

where hybrid models perform a mix of PCA and PLS and the latter only projects the data 

by pure PCA.  The hybrid models of PCR and PLS show satisfactory performance when 

applied to a regression problem. The RDA+PCA was assessed on a classification 

problem. Although either of RDA or PCA is widely used in chemometrics, the fusion of 

them is rarely explored in this area. The case study showed that the proposed approach 

can achieve 100% prediction accuracy if sufficient data are available. In contrast, the 

conventional PLS approach showed poor performance on the dataset. 

 

By the narrower definition of latent variable models in the statistics community, the 

robust probabilistic multivariate calibration (RPMC) model was developed in this thesis. 

The RPMC was intended to overcome the lack of robustness of the linear Gaussian 



 

 - 45 -  

models by adopting the Student-t distribution as the distribution of noises and latent 

variables instead of the Gaussian distribution. It turns out that the RPMC includes some 

latent variable models as special cases, such as probabilistic PCA (PPCA) and supervised 

probabilistic PCA (SPPCA). 

  

All the proposed methods in this thesis are basically linear predictive models, which 

could work particularly well on data that have inherently linear or near-linear properties. 

Many engineering problems present highly nonlinear patterns, or even chaos. Therefore, 

much emphasis of future research could be placed on building nonlinear models.  A 

possible solution is based on the Kernel Trick (Scholkopf et al, 1998), which has been 

proven an efficient approach to deal with nonlinear problems. Kernel PCR and Kernel 

PLS have been proposed recently and achieve good prediction results (Rosipal, 2001). 

Thus, it is expected that the Kernel hybrid models of PCR and PLS could work well on 

some nonlinear cases.  Furthermore, a Kernel version of the RPMC is also possible 

because one important observation in the dual solution is that all the calculation involving 

input data X can be done via inner product, e.g., in the Gram matrix K we have 

. This motivates us to consider non-linear RPMC where we first map the data 

into a new feature space (via, e.g., basis functions), and then perform PCA in that space 

with a proper definition of inner product.   

'
ij i jK = x x
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