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ABSTRACT 

     Cdc28 is the main cyclin-dependent kinase (CDK) directing the yeast cell cycle. Besides cyclin 

binding, Cdc28 requires phosphorylation by Cak1 (CDK-activating kinase) to achieve full activity. 

In previous work, our laboratory isolated carboxy-terminal cdc28CST mutants that display high 

temperature sensitivity and chromosome instability. These phenotypes are suppressed by increasing 

the copy numbers of Cak1 in its catalytically active or inactive form. The cdc28CST mutants are also 

extremely sensitive to changes in Cak1 integrity and dosage. These results indicated that besides 

the activating phosphorylation by Cak1, the interaction between Cak1 and the carboxyl terminus of 

Cdc28 is important to maintain stable and active Cdc28 complexes. In this thesis, I discuss recent 

results that suggest that Cdc28 is highly dependent on Cak1 levels, even in wild type cells. Because 

actively growing cells require cycles of high CDK activity, we hypothesize that this can be 

achieved only by maintaining an optimum Cdc28:Cak1 ratio. We found that alteration of this ratio 

by increasing Cdc28 copy numbers is deleterious, but this effect is suppressed by concomitant 

increase of the copy numbers of Cak1 (catalytically active or inactive). We found that there is a 

very good correlation between active cell growth and Cak1 levels. Based on these results we 

propose the following model:  When cells sense depletion of nutrients and must cease dividing, 

Cak1 is degraded to alter the Cdc28:Cak1 ratio leading to quick inactivation of Cdc28. According 

to this model, Cak1 functions as an assembly factor for Cdc28 CDK complexes coordinating 

nutrient availability and cell growth in yeast. 
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Regulation of Cyclin-Dependent Kinases 

          

Cyclin-dependent kinases (CDKs) are the main cell cycle regulators in all eukaryotes. Only one 

CDK, Cdc28, is necessary for cell cycle progression in the budding yeast Saccharomyces cerevisiae 

(Fig. 1). Activation of Cdc28 requires association with the Cks1/Suc1 subunit (16) and one of nine 

different cyclins, and phosphorylation of Thr169 in the T-loop (30).  Negative regulation is provided 

by the binding of inhibitors and phosphorylation at the amino-terminal lobe by the Swe1 kinase (29).  

Cdc28 is expressed constitutively throughout the cell cycle but its activity is regulated by the identity 

of the bound cyclin subunit:  Cyclins Cln1-3 promote progression through G1, and B-type cyclins 

(Clb 1-6) activate S-phase and mitosis. The abundance of these cyclins is regulated via 

transcriptional and ubiquitin-dependent proteolysis (2, 30).    

 

     CDKs are highly conserved enzymes at both the structural and functional levels. For example, 

human Cdk1 and Cdk2 are 60 – 65% identical to fission yeast Cdc2 and budding yeast Cdc28 (10). 

In 1996, Russo et al. revealed the mechanism of CDK activation via analysis of the crystal structure 

of the Cdk2-cyclin A complex (34). After binding with cyclin A, Cdk2 activity is partially increased. 

Cyclin A binding induces conformational changes in the Cdk2 active site that leads to exposure of 

Thr160 in the activation loop (Thr169 in Cdc28), allowing its phosphorylation by the CDK-

activating kinase CAK. This phosphorylation induces additional 80-300 fold activation (30) by 

promoting more Cdk2-Cyclin A contacts that stabilize the complex and also affects substrate binding 

(Fig. 2) (33).  

 

Classes of CDK-activating kinases CAK  
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Fig. 1. Cdc28 is the main cyclin-dependent kinase (CDK) regulating the cell cycle in yeast.  To 

promote cell-cycle progression, Cdc28 associates with a particular cyclin (Cln1-3 or Clb1-6) that 

confers substrate specificity and localization cues to the complex. To allow cells to exit from mitosis, 

Cdc28 is inactivated mainly via degradation of the mitotic cyclin Clb2. 
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Fig. 2. Structural model of a CDK-cyclin complex.  The CDK subunit is shown in blue, the cyclin 

subunit in gray, and the Cks1/Suc1 activator in dark yellow. The residue phosphorylated by the CAK 

enzymes is indicated by the green star (Thr169 in Cdc28), and the activation or T-loop is shown in 

green. The binding sites of ATP and the peptide substrate are also indicated. The PSTAIRE helix 

(red) is present in most CDKs and functions in cyclin binding (34). 
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     There are two classes of CAKs: monomeric Cak1 from budding yeast and the trimeric complex 

(Cdk7/cyclin H/MAT1) from vertebrates. CDK activation via phosphorylation by CAKs has two 

alternative pathways: Cdk7/cyclin H/MAT1 phosphorylates CDKs that are already associated with 

cyclins, and Cak1 phosphorylates monomeric Cdc28. These two CAKs also have different 

localizations and roles. Cdk7/cyclin H/MAT1 localizes to the nucleus but Cak1 localizes mainly in 

the cytoplasm (22). The trimeric CAK is also involved in transcription as part of the transcription 

factor II-H complex, which phosphorylates the C-terminal domain (CTD) of the large subunit of 

RNA polymerase II. In S. cerevisiae, Kin28 is the most similar to Cdk7 with 47% identity and the 

binding partner of Kin28 is Ccl1, which is related to cyclin H. Like the trimeric CAK, Kin28 and 

Ccl1 are subunits of the transcription factor II-H complex and Kin28 is the CTD kinase, but it does 

not possess CAK activity (6). 

Besides S. cerevisiae’s Cak1, other momoneric CAK activities have been reported in S. pombe 

(Csk1), C. albicans (Cak1), and A. thaliana (Cak1At). Interestingly, these monomeric enzymes share 

several properties: All these monomeric CAKs phosphorylate cyclin-free CDKs, as does Cak1 in 

budding yeast (40). 

 

Cak1 is an unusual kinase and has various functions  

 

     Most protein kinases have a glycine loop characterized by the motif GXGXXG (where X is any 

amino acid), located near the amino terminus of the kinase domain (Fig. 3). The glycine residues 

provide flexibility and help the loop to fold over the nucleotide, thereby stabilizing the ATP molecule. 

In 1996, Solomon and colleagues compared the amino acid sequences of Cak1 with other kinases, 

finding that Cak1 lacks a glycine loop.  
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Fig. 3. Sequence comparison of Cak1 with Cdk7 (human [hs]), Kin28 (S. cerevisiae [sc]), and 

Csk1 (S. pombe [sp]). The GXGXXG motif is indicated in red. The invariant lysine residue is 

indicated in green. Residue Asp179 (shown in orange) is critical for magnesium binding and its 

mutation abolishes catalytic activity (cak1-KD). Mutation of residue Asp226 (in blue) to Ala causes 

temperature sensitivity in yeast (cak1-23). The residues shown in a black background are present in 

all four kinases, and the ones in gray are present in three or two of the sequences.  
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     Cak1 also contains non-conservative replacements at 4 of 15 highly conserved amino acid 

positions in protein kinases. Interestingly, Cak1 is not affected by either mutation or deletion of this 

region (11).  Another highly conserved feature of protein kinases is the invariant lysine residue, 

located carboxy-terminal to the glycine loop within the ATP-binding pocket (Lys31 in Cak1). This 

residue is required for activity, and interacts with the α- and β- phosphates of ATP to ensure proper 

alignment of the triphosphate chain.  In contrast, Cak1 functions even with a truncation of its first 31 

amino acids, including the glycine loop and Lys31(5, 17). Therefore, Cak1’s nucleotide-binding 

pocket differs significantly from that of most other kinases and its identification remains pending. 

 

     Cak1 has various functions.  Besides phosphorylating Cdc28, Cak1 is involved in spore wall 

morphogenesis (41), and phosphorylation of the Kin28, Bur1, and Ctk1 CDKs that regulate 

transcription as CTD-kinases. Cak1 also interacts functionally with Paf1 and Ctr9, the two 

components of the PAF1 elongation complex required for histone modifications, and with the protein 

phosphatase Ssu72 via Ctk1 and Bur1 (14). However, Cak1 is only essential for phosphorylating 

Cdc28 (39), as demonstrated by the isolation of cdc28 mutants harboring several substitutions 

including Thr169Glu that remain viable in the absence of Cak1 (7, 8).  

 

Mutagenesis of the carboxyl terminus of Cdc28 

 

     In wild type cells, treatment with microtubule toxins such as benomyl or nocodazole, or presence 

of non-functional kinetochores leads to activation of the spindle assembly checkpoint (1). 

Kinetochores are large protein complexes that assemble at centromeric regions and serve as the site 

of attachment for the spindle microtubules. Accordingly, their correct function is critical to facilitate 

separation and segregation of the duplicated chromosomes (43).  The role of the spindle assembly 
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checkpoint is to prevent spontaneous chromosome loss by coordinating the assembly and 

disassembly of the mitotic apparatus, and the timing of separation of the duplicated chromosomes 

(27). Our laboratory has previously established a role for CDKs in spindle assembly checkpoint 

regulation via the isolation of cdc28 mutants that are defective in the checkpoint response (24, 25). 

These mutants show chromosome instability and enhanced benomyl sensitivity similar to checkpoint 

mutants. Residues Arg287 and Arg288 in the carboxyl terminus of Cdc28 were substituted in some 

of the mutants, which led our attention to the region. Introduction of more substitutions at the 

carboxyl terminus of Cdc28 led to stronger phenotypes (cdc28-CIN1: Arg287Ser, His292Glu, 

Pro293Leu, Tyr294Ile, Phe295Stop) (24). These data suggest a critical role for the carboxyl terminus 

of Cdc28 that may contribute to the checkpoint response. Furthermore, while sequence alignments of 

several CDKs show that their carboxyl termini are highly conserved (Fig. 4) (25), a specific function 

has not been reported for this region.  

To further investigate the role of the carboxyl terminus of Cdc28 in maintaining chromosome 

stability, we searched for mutations in Cdc28 that enhance the temperature sensitivity of the 

kinetochore mutant ctf13-30 (32) (see Table 1 for a description of all mutants used in these studies). 

The reasoning behind this screen was that cells harboring defective kinetochores rely for viability on 

pathways that prevent progression through mitosis (such as the spindle assembly checkpoint). If a 

component of one such pathway were non-functional, the ctf13-30 mutant cells would progress 

through mitosis with lethal consequences. 

 

Fig. 4. The carboxyl termini of CDKs are highly conserved.  Cdc28 is from S. cerevisiae, Cdk1, 

Cdk2, Cdk4 and Cdk6 are human CDKs, and Cdc2 is from S. pombe (25). 
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Table 1. Mutants used in this study 

 

 
Name 

 
Definition 

 
Reference 

cdc28-cst8 High chromosome instability, sensitive to high temperatures and 

microtubule inhibitors (Ala290Gly His292Leu Pro293Ala 

Gln296Ser) 

(25) 

cdc28-cst2 High chromosome instability, sensitive to high temperatures and 

microtubule inhibitors (Ala290Gly Ile292Lys Pro293Ser 

Tyr294Ser Ser298Pro) 

(25) 

mad1 Spindle checkpoint component, high sensitivity to microtubule 

inhibitors (mad1-181 allele, mutation unknown) 

(18, 38) 

mad2 Spindle checkpoint component, high sensitivity to microtubule 

inhibitors (deletion) 

(24) 

cdc28-T169A Inactive, lethal, unphosphorylatable by Cak1 (Thr169Ala) (23) 

ctf13-30 Kinetochore component.  Temperature sensitive and high 

chromosome loss (Lys146Glu) 

(9, 32) 

cak1-KD Catalytically inactive, mutation in magnesium binding site 

(Asp179Asn) 

(5) 

cak1-23 Cak1 temperature sensitive mutant allele (Asp226Asn) (12) 
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For the screen, codons 282, and 287 through 298 in CDC28 were randomly mutated via PCR (shown 

in boldface in Fig. 4). Six mutants were isolated that bypass the mitotic arrest yielding unbudded 

cells, multiply-budded cells, and cells that appear anucleate (25). These mutants show high rates of 

chromosome loss therefore, we called this mutant cdc28CST (defective in maintenance of 

chromosome stability). Sequence analysis showed multiple mutations, ranging from 4 to 7 of the 13 

carboxy-terminal residues, particularly in residues Ile291 and Pro293 (Fig. 5) (25). Based on the 

human Cdk2 structure, the mutated residues in the cdc28CST mutants localize to the solvent-accessible 

surface but distant from the binding sites of ATP, substrate peptide, cyclin and Cks1 (4, 33, 37).  

 

cdc28CST mutants exhibit microtubule inhibitor sensitivity 

 

     The cdc28CST mutants show temperature sensitivity forming only microcolonies at high 

temperatures, and at 25°C, the cells are slightly larger than those of wild type. On the other hand, 

when treated with benomyl, wild type cells arrest in mitosis and as they recover and/or the effect of 

the drug diminishes, most cells are able to divide slowly and form colonies. Spindle assembly-

checkpoint mutants fail to arrest and enter anaphase with incomplete spindles, causing chromosome 

missegregation and cell death (26). As expected, the cdc28CST mutants are sensitive to benomyl to 

levels comparable to those of the checkpoint mutants mad1 and mad2 (27) (Fig. 6). 

 

High copy numbers of Cak1 suppress the temperature sensitivity of the cdc28CST mutants 

independently of Cak1’s catalytic activity.   

 

     We hypothesized that the temperature sensitivity of the cdc28CST mutants might derive from 

impaired interaction with a regulator. To attempt identification of this regulator(s), we performed  
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Fig. 5. Carboxy-terminal cdc28CST mutants harbor multiple substitutions. The diagram shows 

the CDC28 chromosomal locus with the residues altered in the isolated mutants.  Also shown is the 

insertion site of the marker His3MX6, which allowed selection of the transformants (25). 
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Fig. 6. Carboxy-terminal cdc28 mutants are sensitive to the microtubule inhibitor benomyl and 

high temperatures.  Wild type and mutant strains were serially diluted and aliquots from each 

dilution were spotted on three different plates containing rich media only, or supplemented with the 

microtubule inhibitor benomyl (12.5 µg/ml).  Mad1 and Mad2 are two main components of the 

spindle assembly checkpoint and in their absence, cells become “mitotic-arrest deficient” and 

sensitive to benomyl. The plates were incubated for 2 – 3 days at the temperatures indicated in the 

figure.  The plate containing benomyl was incubated at 25 °C (25). 
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a dosage suppression screen based on the temperature sensitivity of the mutants. cdc28-cst2 and 

cdc28-cst3 strains were transformed with a high copy plasmid genomic library and analyzed for 

enhanced thermoresistance.  Several plasmids harboring CAK1 were found to suppress the 

temperature sensitivity of both cdc28CST mutants. 

      

     Chun and Goebl described and characterized several cak1 point mutants. One of the mutations in 

the residue responsible for coordinating a magnesium ion at the active site, Asp179Asn (Fig. 3), 

caused Cak1 to be catalytically inactive (Cak1-KD) (5). We used this mutation to test whether 

Cak1’s catalytic activity is essential for the suppression of the cdc28cst mutants. Besides the wild type 

and the cdc28CST strains, we also used a temperature sensitive cak1-23 mutant as a control 

(Asp226Ala, Fig. 3).  The strains were transformed with high copy plasmids harboring CAK1 or 

cak1-KD. Interestingly, we found that overexpression of cak1-KD suppressed all of the cdc28CST 

mutants and as expected, did not complement cak1-23 (Fig. 7) (25). Based on these preliminary data, 

we concluded that Cak1’s role regulating Cdc28 function not only involves phosphorylation of 

Thr169, but also binding to its carboxyl terminus (Fig. 8).  

 

     In this thesis, I describe recent results that suggest that maintaining an optimum Cdc28:Cak1 ratio 

is crucial in actively growing cells.  Alteration of this ratio by increasing the copy number of the 

CDC28 gene by one or two causes slow growth in wild type cells. This defect is suppressed by 

concomitant increase of the copy numbers of Cak1 (catalytically active or inactive), indicating that 

Cdc28 depends on Cak1 binding to remain active and stable. These data suggest that one mechanism 

by which yeast cells regulate their division rates is by allowing presence of high Cak1 levels only 

when high CDK activity is required. Supporting this model, we have also found that only actively  
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Fig. 7. High copy numbers of catalytically active or inactive CAK1 suppress the temperature 

sensitivity of the cdc28CST mutants. The panels show wild type, and temperature sensitive cak1 and 

cdc28CSTmutants transformed with empty high copy plasmid control (“—”), and plasmids harboring 

wild type CAK1 or the catalytically inactive allele cak1-KD (kinase dead).  Cultures of similar 

densities were serially diluted, aliquots spotted, and plates incubated at the indicated temperatures 

(25).   
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Fig. 8. Preliminary model. (a) Cak1 binds to the carboxyl terminus of Cdc28 functioning as an 

assembly factor that stabilizes the CDK complexes to ensure presence of high kinase activity. (b) 

Inability of Cak1 to bind to Cdc28 because of mutations in Cdc28 results in unstable complexes and 

overall low CDK activity. 
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growing cells display high Cak1 protein levels, and that these levels dramatically decrease as 

nutrients are depleted and cells cease dividing. 
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Plasmids and yeast strains 

 

     All procedures use cells of the W303 genetic background. Plasmids harboring cdc28-T169A and 

the cak1-23 strain were gifts from M. Solomon (Yale University) (23). pGAL1>GST-CAK1, CAK1 

and cak1-KD plasmids were provided by K. Chun and M. Goebl (Indiana University) (5). We use the 

“>” symbol to indicate the promoter that controls expression of a gene or fusion. 

     Analysis of the effect of altering copy numbers was performed using high or low copy plasmid 

vectors.  High copy plasmids are derived from the endogenous 2µ plasmid, which can accumulate up 

to ~60 – 100 copies per cell.  Low copy plasmids harbor centromeres (CEN) that allow tight 

segregation during cell division and are usually present in 1 – 2 copies per cell (36). 

     Plasmids pGAL1>CDC28, pGALS>CDC28, and pGAL1>CAK1 (without epitope tags) were 

constructed by amplifying the respective sequences using pFA6a-kanMX6-pGAL1 and genomic 

DNA as templates. The flanking restriction sites were designed as SalI and BamHI. To make the 

pGAL1>CDC28 and pGALS>CDC28 constructs, the GAL1 and GALS promoter regions were 

amplified using the SAL1GAL1FW and SAL1GALSFW primers respectively, and the CDC28RV 

primer. The CDC28 open reading frame (ORF) was amplified using primers CDC28FW and 

CDC28BamHI. These two polymerase chain reaction (PCR) fragments were then fused together via 

their overlapping 25 bp ends using the outer most forward and reverse primers. The final fusion-PCR 

products were cloned into pRS315 (CEN LEU2, CDC28 plasmids).  

A similar strategy was used to construct the pGAL1>CAK1 and pGALS>CAK1 plasmids. The GAL1 

or GALS promoter region was amplified using the SAL1GAL1FW or SAL1GALS, and the CAK1RV 

primers. The CAK1 ORF was amplified using CAK1FW and CAK1BamHI primers. The final fusion-

PCR products were cloned into pRS316 (CEN URA3, CAK1 plasmids). 
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Determination of transformation efficiencies 

 

     Wild type, cdc28-cst2, and cdc28-cst8 cells were first transformed with pRS202 (2µ URA3) 

plasmids harboring no insert, CAK1, or cak1-KD. Single colonies were obtained on glucose plates 

lacking uracil, grown in selective media, and normalized by measuring OD600nm. Using suspensions 

of identical cell densities, a second transformation was performed with CEN TRP1 plasmids 

harboring CDC28-HA or cdc28-T169A-HA, using the same amounts of DNA. After the final 

transformation, cells were briefly sonicated to disrupt aggregates. Numbers of cells were determined 

by manual counting using a hemacytometer. After normalization of cell densities, suspensions were 

serially diluted 5-fold with water and spotted onto media lacking uracil or both uracil and tryptophan. 

Plates were incubated for 2 to 4 days at 25 °C. 

 

Effects of overexpressing CDC28 and cak1-KD in wild type and the cak1-23 mutant 

 

     Wild type and cak1-23 mutant strains (12) were co-transformed with a low copy CEN LEU2 

plasmid harboring no insert ("—") or GALS>CDC28, and a high copy URA3 plasmid harboring no 

insert ("—") or cak1-KD. After transformations, single colonies from each of the combinations were 

grown on glucose plates lacking both leucine and uracil to select for presence of both plasmids.  

These cultures were then grown in similar selective media containing 2% raffinose for 3 - 4 days at 

25 °C until saturation, to ensure similar cell densities.  Cultures in raffinose allowed derepression of 

the GAL promoter. Saturated cultures were serially diluted (3 fold), and spotted onto plates lacking 

uracil and leucine and containing either glucose (GAL promoters OFF), or 2% galactose and 2% 

raffinose (GAL promoters ON). The plates were incubated at 25 and 30 °C for 2-3 days.   
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     cak1-KD was overexpressed in cak1-23 and wild type cells. Cells were co-transformed with high 

copy URA3 plasmid harboring empty vector and low copy CEN LEU2 plasmid harboring 

GAL1>cak1-KD using the same strategy as above. The plates were incubated at 25 and 32 °C for 2 - 

3 days.   

  

Protein extract preparations and Western blotting 

 

     To examine Cak1 protein levels as cells grow and nutrients become limited, wild type cells 

expressing a GST-Cak1 fusion under the control of the GAL1 promoter were grown in media 

containing 2% raffinose. Cells were diluted, treated with 2% galactose and aliquots collected in a 

time course for 34 hours. Cells were centrifuged and the pellets washed twice with 1X PBS 10% 

glycerol (PBSgly), and kept at -80 °C until use. Cells were disrupted in PBSgly containing 1mM 

phenylmethane sulfonylfluoride and 1x protease inhibitor cocktail (Roche) by vortexing with glass 

beads for 10 min at 4 °C. Suspensions were then centrifuged for 30 min at 4 °C to obtain the clear 

supernatant. Protein concentrations were determined using the Bradford method (ADV01 reagent 

from Cytoskeleton Inc). Aliquots containing 100 µg proteins were separated in 12% SDS-PAGE gels.  

     Two strategies were implemented to avoid non-specific proteolysis of Cak1 during sample 

processing: Use of a strain lacking vacuolar proteases due to deletion of the pep4 gene, and 

preparation of the protein extracts under denaturing conditions (13). pep4::kanMX6 cells were 

transformed with pGAL>GST-CAK1, or empty pEG(KG)His vector expressing only GST as control. 

Cells were grown in 2% raffinose containing media, diluted, and treated in 2% galactose. Aliquots 

were collected at 3 hour intervals for 24 hours. Frozen pellets were resuspended in 20% 

trichloroacetic acid and vortexed with glass beads for 10 min. Pellets were collected by 

centrifugation, washed with 90% acetone three times, mixed with sample buffer, briefly sonicated to 
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facilitate suspension, and boiled for 5 min. Aliquots containing 50 or 10 μg of proteins (GST-Cak1 or 

GST expressing cells, respectively) were used for Western blotting. 

     In all cases after SDS-PAGE, the separated proteins were transferred to nitrocellulose membranes. 

Equal loading was confirmed by staining the membranes using the MemCode kit from Pierce and/or 

using an anti-Adh1 antibody (1:20000, Calbiochem). The MemCode kit allows reversible staining 

proteins on membranes and according to the manufacturer, has a sensitivity of up to 25 ng. Cak1 was 

detected using polyclonal anti-Cak1 antibodies (1:4000, provided by P. Kaldis, NCI), or a 

monoclonal anti-GST antibody (1:5000, Novagen) when expressed as a GST fusion. Cdc28 was 

detected using a polyclonal anti-PSTAIRE antibody (1:2500, Santa Cruz), which also recognizes the 

Pho85 CDK (top band in shown blots). Horseradish peroxidase -conjugated goat anti-mouse IgG or 

anti-rabbit IgG antibody and Super-Signal Substrate (Pierce) were used for detection.  
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The cdc28CST mutants are highly sensitive to changes in Cak1 integrity and dosage. 

 

     In previous studies, we found that increasing dosages of CAK1 suppress both the temperature 

sensitivity and chromosome instability of the cdc28CST mutants (25). Since Cak1 and Cdc28 proteins 

interact, a corollary of this hypothesis is that disrupting Cak1 function would have a deleterious 

effect in the cdc28CST mutants. First, we tested for genetic interactions between the cdc28CST and 

cak1 mutations (cak1-4, cak1-17 and cak1-23). Haploid cells harboring both mutations could not be 

obtained, suggesting that a combination of cdc28CST and cak1 mutations results in inviable cells 

(synthetic lethality). Furthermore, similar synthetic effects were observed when the chromosomal 

copy of CAK1 was modified to express carboxy-terminal fusions with 13-Myc or 3-HA.  Presence of 

these epitope tags in an otherwise wild type cell caused only mild growth defects.  

 

     Interestingly, the cdc28CST mutants also loose viability when transformed with plasmids harboring 

cdc28-T169A, an unphosphorylatable (thus inactive) allele in which Cak1's target residue Thr169 has 

been substituted for Ala. For these studies, wild type and the cdc28CST mutant strains were 

transformed with plasmids harboring no insert, wild type CDC28 or cdc28-T169A.  These are 

centromeric plasmids (1-2 copies per cell) and carry a TRP1 marker for selection. There was no 

difference between wild type and cdc28CST mutants when transformed with empty vector or wild type 

CDC28 plasmids; however, transformation efficiencies of the cdc28CST mutants significantly 

decreased when transformed with cdc28-T169A (Fig. 9).  These results suggest that 

unphosphorylatable cdc28-T169A binds to and sequesters Cak1, thereby lowering its overall dosage 

and causing a dominant negative effect only in the cdc28CST mutants. To examine if the deleterious 

effect in the cdc28CST mutants expressing cdc28-T169A is due to titration of Cak1, the assay was 

repeated in the presence of high copy numbers of CAK1 (Fig. 10). 
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Fig. 9. Only cdc28CST mutants harboring the cdc28-T169A plasmid show reduced 

transformation efficiency. Wild type and cdc28CST mutants were transformed under identical 

conditions, with either empty vector or the same vector harboring wild-type CDC28 or the 

unphosphorylatable allele cdc28-T169A. The transformation mixes were spread on medium lacking 

tryptophan and the plates were incubated at 25 °C for 3-4 days.   
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Fig. 10. High-copy numbers of CAK1 or cak1-KD suppress the deleterious effects of a plasmid 

harboring cdc28-T169A in the cdc28CST mutants. The mutants were first transformed with high 

copy URA3 plasmids carrying no insert “—”, wild type CAK1, or cak1-KD.  Single colonies of these 

transformants were then grown in media lacking uracil, and subjected to a second transformation 

with single copy TRP1 plasmids carrying either wild type CDC28 or the cdc28-T169A allele.  The 

cell densities in the transformation mixes were normalized and the obtained suspensions serially 

diluted.  Aliquots from each of the dilutions were then spotted on media lacking uracil or both uracil 

and tryptophan.  Pictures were taken after 2- 3 days incubation at 25 °C. 
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First, the cdc28CST mutants were transformed with high copy URA3 plasmids carrying no insert, wild 

type CAK1, or catalytically inactive cak1-KD. Selected transformants were then normalized and 

subjected to a second transformation with the same amount of CEN TRP1 plasmid carrying either 

wild type CDC28 or cdc28-T169A. The final transformation mixes were normalized for cell densities 

and serially diluted 5-fold. Cells were spotted on media lacking uracil ("-U") or both uracil and 

tryptophan ("-UW"). Plates were incubated at 25 °C for 2 - 3 days. Similar growth on the -U plates 

confirmed that equal numbers of cells were spotted. On the -UW plates, we examined the 

transformation efficiencies for the CDC28 and cdc28-T169A plasmids. High copy numbers of either 

CAK1 or cak1-KD increased the transformation efficiencies in the cdc28CST strain ~ >10-fold.  These 

results suggest that Cak1 titration causes the deleterious effects due to expression of 

unphosphorylatable Cdc28 in the cdc28CST mutants. 

 

Maintenance of Cdc28:Cak1 ratio is crucial for normal growth in wild type cells 

 

     In the course of these studies we noticed that wild type cells consistently exhibited low 

transformation efficiencies with single-copy plasmids harboring either CDC28 or cdc28-T169A. The 

number of colonies for these transformations was 3- to 5- fold lower than in the empty vector 

controls. We found that the lower transformation efficiencies were suppressed by high copy numbers 

of CAK1 or cak1-KD (Fig. 11). This result suggests that maintenance of an optimum Cdc28:Cak1 

ratio is required to support active cell growth. Cdc28 complexes are stable and exhibit highest CDK 

activity only in the presence of optimum Cak1 levels. Accordingly, alteration of this ratio by 

increasing copy numbers of Cdc28 results in formation of unstable complexes because Cak1 levels 

become limited. In these conditions, a competition then ensues between stable and unstable Cdc28  
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Fig. 11. Wild type cells show a deleterious growth effect with a CEN plasmid carrying CDC28 

or cdc28-T169A, but this effect is suppressed by increasing CAK1 or cak1-KD copy numbers. 

Wild type cells were sequentially transformed as indicated in Fig. 10 
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for activators such as cyclins and/or Cks1, causing an overall lowering of CDK activity and thus 

affecting growth rates and viability.  

 

To further investigate the effect of altering the Cdc28:Cak1 ratio, we implemented a strategy that 

combines use of inducible promoters and a cak1 mutant that exhibits low Cak1 protein levels: To 

overexpress Cdc28 and Cak1, we used the inducible GAL1 promoter and its weaker derivative GALS 

(20). To estimate the protein levels achieved when using these promoters, we transformed wild type 

cells with plasmids that allow overexpression of Cdc28 under the control of the GAL1 or GALS 

promoter (pGAL1>CDC28 or pGALS>CDC28). The respective transformants were grown overnight 

in raffinose and treated with galactose for 6 hours. Protein extracts were prepared and analyzed by 

western blotting using an anti-PSTAIRE antibody (Fig. 12). Under these conditions, we estimated 

that the Cdc28 levels were at least two times higher when using the GAL1 promoter (quantified by 

Image J soft program).  

 

     For these studies, we also included the cak1-23 mutant, which exhibits significantly lower Cak1 

protein levels than the wild type strain at both permissive and restrictive temperatures (Fig. 13). Wild 

type and cak1-23 strains were grown overnight at room temperature and then shifted to 34 °C. 

Aliquots were taken at the indicated times, and protein extracts prepared and analyzed by western 

blotting using a monoclonal anti-Cak1 antibody. To confirm equal loading, the membrane was 

stripped and treated with an anti-Adh1 antibody (Adh1 is constitutively expressed and is one of five 

alcohol dehydrogenases in yeast (28)).  

 

     To examine the effect of overexpressing Cdc28 in a regulated manner, we compare growth rates 

of wild type and cak1-23 expressing varying levels of Cdc28 (Fig. 14).  We transformed the strains 
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Fig. 12.  Overexpression of Cdc28 using the GAL1 and GALS promoters in wild type cells. 

Levels of Cdc28 protein were determined by Western blot analysis using an anti-PSTAIRE antibody. 

Immediately after transfer, membranes were stained using the “MemCode” reagent (Pierce) to 

confirm equal loading and uniform and complete transfer. The molecular weight of Cdc28 is 34 kDa. 
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Fig. 13.  Lower Cak1 levels in the cak1-23 mutant at both permissive and restrictive 

temperatures. Overnight cultures at 25 °C of wild type and cak1-23 were shifted to 34 °C and 

aliquots taken at the indicated times. Protein extracts were prepared and loaded onto 10% SDS-

PAGE gels.  The separated proteins were transferred to nitrocellulose membranes which were stained 

reversibly first, and then processed for sequential Western analysis with anti-Cak1 and anti-Adh1 

antibodies. The molecular weight of Cak1 is 44 kDa and that of Adh1 is 36 kDa. 
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Fig. 14.  Overexpression of Cdc28 is deleterious in the cak1-23 mutant.  Wild type and cak1-23 

transformants harboring the indicated plasmids were grown under non-repressive conditions for the 

GAL1 and GALS promoters, until saturation.  The saturated cultures were serially diluted and aliquots 

from each of the dilutions spotted on selective media containing glucose (promoter OFF) or galactose 

(promoter ON).  Plates were incubated at 25 °C for 2 - 3 days. 
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with plasmids harboring no insert, pGAL1>CDC28, or pGALS>CDC28. The transformants were 

grown to saturation in raffinose, serially diluted (2-fold) and 5-µl aliquots were spotted on either 

glucose- or galactose- containing media. Plates were incubated at 25 °C. While the effect in wild type 

cells was minimal, the cak1-23 mutant was extremely sensitive to overexpression of Cdc28, in a 

dosage dependent manner (note the lower growth in cells transformed with pGAL1>CDC28). 

 

     We next investigated whether high copy numbers of the non-complementing cak1-KD allele 

suppress the deleterious effect caused by overexpression of Cdc28 in cak1-23. We co-transformed 

cak1-23 cells with the 2µ URA3 plasmid harboring cak1-KD, and either empty LEU2 vector control 

or pGALS>CDC28 (Fig. 15). Transformants harboring the indicated plasmids were grown to 

saturation in raffinose-containing media lacking leucine and uracil. To examine growth rates, 

saturated cultures were serially diluted (3-fold) and aliquots spotted on the indicated media 

containing either glucose or galactose.  Plates were incubated at 23 °C or 30 °C. We found that 

increasing copy numbers of cak1-KD using the 2µ plasmid resulted in minor suppression (evident 

only at the permissive temperature 23 °C). The increase in copy numbers is limited by the replication 

of the 2µ plasmid (up to ~60 – 100 copies) and under these conditions, expression of Cak1-KD 

causes no obvious effect on growth of cak1-23 (top panel).  We suspected that the higher expression 

levels that can be achieved with the GAL promoters (up to ~200 fold) might cause a dominant 

negative effect.  We tested this possibility and as shown in the lower panel, overexpression of cak1-

KD using the GAL1 promoter shows a clear deleterious effect even at 25 °C.  

 

     Therefore, we cannot rule out a compound effect in these cells that prevent the observation of a 

suppressing effect due to increased numbers of cak1-KD in cak1-23 cells overexpressing Cdc28.   

Clarification of this issue will need the isolation of cak1 mutants that are not able to bind to Cdc28,  
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Fig. 15. Compound effect in cak1-23 overexpressing Cdc28 and/or cak1-KD.  cak1-23 cells were 

transformed with the indicated plasmids and the respective transformants grown in selective media 

containing raffinose.  Saturated cultures were serially diluted and aliquots from each dilution spotted 

on media lacking leucine and uracil and containing either glucose or galactose. Plates were incubated 

for 2 – 3 days at the indicated temperatures. 
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which will allow us to study independently the catalytic and binding roles of Cak1.  

 

Cak1 is subjected to proteolysis when cells cease dividing 

      

     Kaldis et al. reported that Cak1 is stable in actively growing cells, but becomes unstable when 

cells enter stationary phase (22). To learn more about how Cak1 levels are regulated, we follow Cak1 

protein levels in wild type cells growing in rich media for up to 48 hours. These preliminary studies 

showed that Cak1 levels decrease dramatically after cells reach an OD600nm >4.0, and Western blot 

analysis also revealed bands of smaller size that showed increasing intensity as the time course 

progressed.  

 

     To confirm these results, we used wild type cells expressing GST or a GST-Cak1 fusion under the 

control of the GAL1 promoter (tag at the amino terminus). Cells were grown overnight in selective 

media containing raffinose, cultures were diluted to OD600nm 0.3, and galactose added to 2% (“0”) 

(Fig. 16). Aliquots were taken at the indicated times. Cak1 levels were determined by Western 

blotting using both anti-Cak1 and anti-GST antibodies. GST-Cak1 levels clearly show a decrease 

between the 9 h and 23 h time points. To check the possibility of non-specific proteolysis of Cak1, 

we used cells lacking PEP4, one of the major vacuole proteases (21) and prepare the protein extracts 

under denaturing conditions. Under these conditions, we observed a decrease in Cak1 protein levels 

from the 15 hour time point, as growth in both cultures started slowing down and reaching a plateau 

in growth rates (Fig. 17).  
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Fig. 16. Cak1 is subjected to proteolytic degradation as cells cease dividing. Aliquots were taken 

at the indicated times from asynchronous cultures of cells expressing GST-Cak1 under the control of 

the GAL1 promoter (“0”, time at which galactose was added to start induction of expression). The 

different panels show the results of sequential Western blot analyses of the same membrane with the 

indicated antibodies. The molecular weight of GST-Cak1 is 68 kDa but in our system, the fusion 

protein consistently migrates below our 62 kDa marker (identity confirmed with both monoclonal 

and polyclonal antibodies). 
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Fig. 17. Cak1 protein levels decrease when cells reach stationary phase.  

pep4::kanMX6 cells transformed with empty vector or pGAL1>GST-CAK1 were grown in selective 

media containing 2% galactose. Aliquots were taken at the indicated times. (a) Extracts containing 50 

or 10 µg of total proteins were separated by SDS-PAGE and analyzed by Western blotting using 

monoclonal anti-GST antibody. (b) Growth rates were inferred measuring OD600nm at each time point. 
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 CHAPTER IV-Discussion 
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     In previous work, our laboratory identified a number of cyclin-dependent kinase cdc28 mutants 

defective in mitotic regulation that accordingly, exhibit sensitivity to microtubule inhibitors and 

chromosome loss. Several of the mutations were found to localize to the carboxyl terminus of Cdc28 

(residues Arg287 and Arg288), which led us to undertake further studies of this region. The carboxyl 

termini of CDKs are highly conserved but had not been previously implicated in any essential 

function. Mutations in the last 12 amino acids of Cdc28 were found to cause temperature sensitivity 

and high chromosome instability. Six cdc28CST alleles were isolated and characterized. These data 

suggested an essential role for the carboxyl terminus of Cdc28 during mitotic progression.     

Importantly, it was subsequently found that high-copy Cak1 suppressed both the temperature 

sensitivity and chromosome instability defects in the cdc28CST mutants, independently of Cak1’s 

kinase activity.  

 

     In recent studies, we found that the cdc28CST mutants are extremely dependent on Cak1 dosage 

and integrity. When cdc28CST mutants are transformed with plasmids harboring cdc28-T169A, an 

unphosphorylatable allele, transformation efficiencies dramatically decrease (Fig. 9). Furthermore, 

the cdc28CST mutants become inviable when the wild type Cak1 allele is substituted with one that is 

temperature sensitive or modified with the addition of carboxy-terminal epitope tags. These results 

support a model in which Cak1 not only phosphorylates Cdc28 but also interacts with its carboxyl 

terminus, functioning as an assembly factor that promotes stabilization of the Cdc28 complexes. 

 

     Importantly, our results also indicate that actively growing yeast cells require maintenance of an 

optimum Cdc28:Cak1 ratio. Increasing CDC28 gene copy numbers by one or two, via transformation 

with a low copy plasmid harboring CDC28, causes low transformation efficiency in wild type cells 

(Fig. 11).  The expression and activity of Cak1 remains constant throughout the mitotic cell cycle; 
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however, Kaldis et al. have found that Cak1 levels decrease when cells enter stationary phase (22). 

Yeast cells arrest at G1 phase when nutrients, including ammonia, sulfate, and carbon sources are 

depleted (3). Sustain arrest due to nutrient depletion causes entry into stationary phase, which allows 

cells to maintain viability for extended periods and resume growth when appropriate nutrients are 

added (42). Our studies confirmed that GST-Cak1 protein levels decrease when cells cease dividing 

and enter into stationary phase, using both monoclonal anti-GST and polyclonal anti-Cak1 antibodies 

(Figs. 16-17). While the particular sensitivities and specificities of the antibodies made the analysis 

cumbersome (different intensities in some of the bands), analysis with both antibodies revealed a 

very good correlation between growth rates and GST-Cak1 protein levels.  

 

     Heideman et al. reported that Cdc28 levels also decrease when nutrients become depleted, but 

cells rapidly start producing Cdc28 when transferred into rich medium (31). Accordingly, we 

hypothesize that Cak1 binds to Cdc28 to ensure presence of high CDK activities when cells sense 

optimum nutrient conditions and are actively growing. When nutrients become depleted and cells 

reach stationary phase, the stability of Cak1 decreases probably due to a specific proteolytic 

mechanism.  Under these unfavorable conditions for growth, lowering of Cak1 levels results in 

instability and inactivation of Cdc28 complexes, and stalling of cell-cycle progression. 

 

Working model: 

Studies on the respective human homologues have indicated a Kd of 48 nM for the Cdk2-cyclin A 

binding (19), and 1.5 μM for that of Cdk2 and Cks1 (35). On the other hand, the laboratories of Erin 

O’Shea and Jonathan Weissman performed a global analysis of protein localization in yeast that 

involved the construction of protein fusions with a tandem-affinity purification tag. Their studies 
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included quantitative Western blot analyses that determine the number of molecules per cell of a 

large fraction of the yeast proteome, in actively growing cells (http:// yeastgfp.ucsf.edu) (15).  

Taking into consideration the binding affinities and copy numbers of each Cdc28, the Cks1 activator, 

the major mitotic cyclin Clb2, and Cak1, we propose that Cdc28 is sequentially activated as indicated 

in Fig. 18.  Given that Cak1 exhibits kinase activity throughout the cell cycle, residue Thr169 in 

Cdc28 is constitutively phosphorylated:  (I) Cdc28 and Cks1 bind with high affinity and are both 

present in high copy numbers that remain constant in actively growing cells (6670 and 8780, 

respectively).  (II) Since cyclins are present in significantly lower numbers (339 for Clb2), for short 

periods of time, and only at specific cell cycle stages, their association to Cdc28~Cks1 occur in a 

subsequent step.  The Cdc28~Cks1~Clb2 complex exhibits high activity but lacks stability.  (III) 

Stabilization of the complex is achieved via Cak1 binding, which ensures maintenance of high CDK 

activity.  (IV) Nutrient depletion forces cells to stop cell-cycle progression and enter stationary 

phase:  Degradation of Cak1 occurs first, and the lowering of Cak1 levels results in instability of the 

Cdc28 complexes.  Because at least Cak1, Cdc28 and cyclins are degraded, this step is irreversible 

and therefore, de novo expression of Cdc28, Cak1, and cyclin subunits are required to resume cell 

proliferation. 
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Fig. 18. Working model: In a role that is separated from phosphorylation of Cdc28, Cak1 

functions as an assembly factor that maintains Cdc28 complexes stable in actively growing cells. 

See text for details. 
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