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ABSTRACT 

 

 

Complexation between proteins as part of biological electron transfer 

reactions is driven by precise interactions that are often characterized by short 

lifetimes, weak affinities and high turnover rates. These complex interactions are 

difficult to study structurally in physiologically relevant oxidation states due to 

their transient nature and/or large molecular sizes. One such protein complex in 

the cytochrome P450 family of enzymes that is of great interest to researchers 

due to its prototypical nature is the Putidaredoxin (Pdx)- cytochrome P450cam 

(CYP101) electron transfer complex that is involved in hydroxylation of D-

camphor in the bacterium Pseudomonas putida. While the individual protein 

structures for Pdx and CYP101 have been known for several years in both 

oxidized and reduced states, high-resolution structural information for the Pdx-

CYP101 complex is still lacking in either oxidation state. This structural 

information is critical to not only determine the electron transfer pathway between 

the two proteins in this complex, but also to explain the role of Pdx as an effector 

in substrate turnover. 

In this study, a solution NMR approach utilizing long-range distance 

restraints derived from paramagnetic relaxation effects is used to obtain 

structures of the Pdx-CYP101 complex in both substrate-bound oxidized and a 

catalytically competent reduced form. Key redox-dependent structural and 

dynamic differences between the two complexes have been characterized which 

provide insights into the mechanism of effector activity of Pdx.   
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CHAPTER I  

INTRODUCTION AND BACKGROUND 

1.1 Electron Transfer in Biological Systems 

 Biological electron transfer (BET) is a vital process for all life. Signal 

transduction, energy transformation, and cell growth all depend on the spatial 

and temporal control of BET for maintaining homeostasis (1). Frequently, BET 

manifests as a specific sequence of tightly regulated protein shuttles that rely on 

precise redox partner recognition in order to prevent “short circuits” (2). Requisite 

short lifetimes, weak affinities, and high turnover rates often characterize the 

protein-protein interactions in BET systems. Complexation between proteins is 

therefore optimized to achieve transient lifetimes on the order of milliseconds (3). 

Communication  through multiple specific binding sites commonly allow electron 

transport proteins to relay between two components of a cascade (4). Structural 

features such as low geometric complementarity and poor packing density tend 

to define these interactions, and allow for the necessary balance between 

promiscuity and discrimination. Unfortunately, the features that enable efficient 

protein electron transfer such as fast dissociation rates and complicated 

molecular surfaces, also make them difficult to study, particularly from a 

structural perspective.  

1.2 Cytochrome P450s 

A prominent example of an enzyme system reliant on efficient BET for 

functionality is that of cytochrome P450. As a ubiquitous super family of heme-

containing monoxygenases, P450s stereo- and regio-specifically target a diverse 

range of organic, hydrophobic substrates for the incorporation of one atom of 

molecular oxygen into a relatively inert carbon site according to the general 

reaction scheme in Eq. (1): 

  

                         RH + O2 + 2e- + 2 H+    →   R-OH + H2O                                   (1) 
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The two electrons required for the monoxygenation are initially donated from 

NAD(P)H, and depend on a series of protein-protein interactions for efficient 

delivery to the P450 catalyst (5). With some exceptions, two classes of electron 

relay systems have been defined for cytochrome P450s that are largely divided 

along their prokaryotic or eukaryotic origins. Class I prokaryotic systems involve 

three soluble and cytosolic proteins in a cascade that begins with a NADH-

dependent FAD-binding reductase (FdR). FdR transfers an electron to a [2Fe-2S] 

ferredoxin (Fdx) which ultimately reduces the P450. Alternatively, the class II 

eukaryotic system most commonly involves only two membrane bound 

constituents; the P450 and a diflavin NADPH-Cytochrome P450 reductase 

(CPR). Depending on its subcellular localization, eukaryotic P450s can be 

accompanied by another reducing partner cytochrome b5 which synergistically 

cooperates with CPR to improve catalytic efficiency (6-8). 

 By hydroxylating substrates, P450s increase their polarity and effectively 

solubilize them for downstream conjugation or excretion. While the most common 

chemistry performed by P450s is the hydroxylation of aliphatic and aromatic 

hydrocarbons; they are capable of myriad reactions, including but not limited to: 

alkene and arene epoxidation, oxidative deamination, dehalogenation, and 

decarboxylation (9). These reactions enable a variety of physiological processes 

such as; xenobiotic degradation, steroidogenesis, fatty acid metabolism, and the 

activation of procarcinogens.  

 Their leading role in the phase I bio-transformation of ~90% of 

pharmaceuticals makes them the focus of two major concerns in clinical 

pharmacology, drug-drug interactions and polymorphism pharmacokinetics (7). 

With such a remarkable breadth of substrates and a profound commercial 

relevance, much work in P450 research has gone into explaining the catalytic 

mechanism and basis for ligand recognition. A better understanding of inter-

individual variations and the structural basis for ligand promiscuity will ultimately 

aid in the early computational phases of drug discovery, and facilitate prediction 

of drug interactions (10). Pharmaceutical companies are spending close to 50 
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billion dollars annually on the research and development of new drugs. With a 

return of now less than 1 approved drug per billion dollars spent, it is evident that 

computationally predicting strong drug candidates in early developmental stages 

is a critical and lucrative endeavor (11). 

 P450s maintain a unique and highly conserved architecture across all 

domains of life. Despite having relatively little sequence homology, in many 

cases as little as 20%, a common topological scaffold is pervasive throughout the 

family. The core P450 structure contains around 13 α-helices (A-L) and four β-

sheets (I-IV) with the most conserved regions consisting of a four-helix bundle 

(D,E,I, and L) that line the active site, along with two β-sheets (I,II) that are 

thought to help form the hydrophobic access channel (Fig. 1.1) (12). The relative 

orientation of these secondary structure domains around the prosthetic heme 

moeity are faithfully constructed to orchestrate the heme-thiolate chemistry 

required for activating molecular oxygen, orientating the substrate, and binding 

redox partners (13). On the other hand, regions farther from the heme are found 

to contain more variation, and intuitively, it is these regions that are implicated in 

substrate recognition. Through a comparative analysis of amino acid and coding 

nucleotide sequences Gotoh recognized six substrate recognition sites (SRS) 

across mammalian and bacterial species that includes: 1) the B’ Helix, 2) the C-

terminal end of  Helix F, 3) the N-terminal half of Helix G, 4) the N-terminal half of 

Helix I, (5) the β3 region and 6) a central region of β5 (Fig. 1.1) (14). 

 Originally discovered in 1958 in rat liver microsomes as an unknown 

carbon monoxide binding pigment, cytochrome P450s received their name due to 

the signature 450-nm optical absorbance peak when reduced and carbon 

monoxide bound. Five years later, the hemoprotein nature and monooxygenase 

function of P450s was illuminated (12). Today the main thrust of P450 research 

is on the human enzymes involved in xenobiotic detoxification, drug metabolism, 

and the biosynthesis and metabolism of lipids and steroid hormones. Yet, the 

enormous amount of research that has gone into the bacterial enzyme P450cam 
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remains primarily responsible for elucidating the remarkably powerful catalytic 

properties of this ubiquitous protein family. 

1.3 The Putidaredoxin (Pdx)-Cytochrome P450cam (CYP101) 

Electron Transfer System 

 In the bacterium Pseudomonas putida, two-protein BET shuttles enable 

cytochrome P450cam (CYP101) to regio- and stereo-specifically hydroxylate D-

camphor, its primary carbon source. This phase I biotransformation of D-

camphor requires 2 electrons in discrete transfer events (2). An FAD-containing, 

NADH-dependent oxidoreductase, putidaredoxin reductase (PdR) initiates the 

cascade by abstracting an electron from NADH, and then a [2Fe-2S] ferredoxin 

putidaredoxin (Pdx), shuttles electrons between PdR and CYP101 (15). Since 

1987, when CYP101 became the first P450 with a high resolution x-ray structure, 

it has been the paradigm for P450 structure-function studies (16), with the PdR-

Pdx-CYP101 relay serving as a prototypical system for investigating the context 

of electron transfer between redox partner proteins in catalytic mechanisms. By 

2004, all three components of the CYP101 electron transfer system had x-ray 

structures resolved, and more recently structures have become available for the 

protein partners in complex, except for one that involves the final electron 

transfer to CYP101 (17, 18) . Because the two electrons required for camphor 

catalysis are donated separately, two distinct redox environments constitute the 

Pdx-CYP101 interaction. The first transfer involves the reduction of the ferric Fe 

[III] heme in camphor bound CYP101 (CYP101o), to the ferrous Fe [II] state 

(CYP101r). After oxygen binds, another electron is transferred from Pdxr to oxy-

CYP101r which enables camphor catalysis. While CYP101’s first electron can 

come from any agent with a suitable redox potential it is remarkably demanding 

in its requirement that Pdx alone donate the second electron, and be present for 

substrate turnover (19). It is well documented that as electrons move through the 

relay system of CYP101 (Fig.1.2), redox potential, as well as structural and 

dynamic modulation of the protein partners critically regulate redox partner 
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recognition. However, the enormous amount of molecular, biophysical, and 

kinetic data collected since early 1970s is still insufficient to explain the exact Pdx 

effector mechanism that couples the final electron transfer and substrate turnover 

events (2, 15, 20-22). Therefore, the complex structure between reduced Pdx 

(Pdxr) and CYP101r is crucial to provide structural insights on this enigmatic 

effector activity.  

1.4 Effector Mechanism in the Pdx-CYP101 complex 

In the early 1970s, it was demonstrated that CYP101 did not hydroxylate 

camphor without the presence of its protein redox partner Pdx. Furthermore, D-

camphor hydroxylation lost stereo-specificity resulting in substrate uncoupling 

and the production of superoxide anions (23, 24). The fidelity for Pdx has since 

been confirmed through numerous failed attempts to use strong reducing agents 

and homologous ferredoxins, such as adrenodoxin and terpredoxin, to complete 

efficient catalytic turnover (19, 21). Interestingly, cytochrome b5 has been 

identified as another competent effector for CYP101 catalysis, however it lacks 

the potency of Pdx, with a Kd three orders of magnitude higher (25). Pdx thus 

serves as an obligate effector in the substrate hydroxylation cycle of CYP101. 

 Two schools of thought pervade on the actual mode of effector activity. 

The first model espoused by the Poulos group is localized to the heme binding 

pocket and essentially supposes that a Pdx “push” induces structural changes 

which couples electron transfer and O2 activation to proton transfer (26). This 

model suggests that Pdx binding on the proximal face of the heme transmits a 

mechanical displacement which terminates at Leu358, tilting the heme bound 

oxygen molecule in order to better position it for protonation by Thr252. A 

convincing mutagenesis study discovered that the L358P mutant 

spectroscopically mimics the effects of Pdx binding at the active site (27). The 

mutant was catalytically competent in the presence of artificial electron donors 

suggesting it functionally simulated the effector coupling mechanism of Pdx.  
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Figure 1.1.The Conserved P450 Topological Scaffold. Two P450s from bacterial (A, CYP101) 
and mammalian (B, CYP2C9) hosts showing similar overall architecture with the most conserved 
regions in red and the substrate recognition sites in green. The heme is shown in black and 
respective substrates in magenta. 

A

B
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Figure 1.2. The Biological Electron Transfer System of P450cam. The biological electron 
transfer system used by cytochrome P450cam (CYP101) for catalysis of its native substrate, 
camphor. Putidaredoxin reductase (PdR) and putidaredoxin (Pdx) protein shuttles are shown and 
deliver two electrons to CYP101 in subsequent steps. The catalytic cycle of camphor 
hydroxylation in CYP101 is shown with the various oxidation states and ligand binding steps 
indicated. The effector binding step is indicated by the shaded second electron transfer from Pdx 
to CYP101. The kinetically trapped CO-bound CYP101 used for the reduced complex 
experiments in this study is indicated by . Pdx

r 
is still able to bind CO-CYP101

r 
, however no 

electron is transferred and it does not continue in the catalytic pathway towards camphor 
hydroxylation. 
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Crystallizing L358P highlighted further structural rearrangements in the active 

site (28). Here it was shown that this mutant was capable of sufficiently widening 

the I-helix in order to accommodate the highly ordered catalytic water molecules 

critical for proton shuttling and O2 cleavage. If these changes observed in the 

L358P mutant faithfully emulate the Pdx-CYP101 complex, they suggest that Pdx 

binding couples electron transfer to substrate turnover by thermodynamically 

favoring the necessary conformation for O2 activation.  

 The second model, championed by the Pochapsky group, broadens the 

scope of effector activity. In this model, it is theorized that effector binding 

transmits a global modulation of the conformational ensemble, effectively 

selecting for a subset of conformations that promote catalysis by preventing O2 

uncoupling (superoxide and hydrogen peroxide formation) and loss of substrate 

prior to turnover (29). Supported by a series of 15N HSQC spectra with and 

without Pdx (and other competent effectors i.e. cytochrome b5) bound, the group 

identified networks of dynamic residues distal to the Pdx binding site in SRS 

regions, known to be critical for substrate gating, which were perturbed 

structurally and dynamically upon effector binding. Recently, this model was 

elaborated when it was shown by NMR and mutagenesis studies that Pdx 

binding induces a Ile88-Pro89 trans to cis isomerization event which was credited 

for propagating conformational changes that appropriately reorient camphor in 

the active site for stereospecific oxidation (30, 31). Aided by molecular dynamic 

simulations, it was proposed that the isomerization event initiates structural 

changes throughout the protein that ultimately regulate active site volume. In 

these simulations, the trans isomer conformation was shown to be 30% larger, 

providing evidence for how Pdx could enhance catalytic efficiency by converting 

CYP101 to the cis conformer and sterically protect against transient substrate 

loss (32). Collectively, this evidence compelled them to postulate that Pdx 

binding forces selection of a closed subset of conformations that synchronizes 

binding and catalysis by preventing loss of substrate prior to uncoupling. These 

distinct models both place Pdx effector activity within the framework of allosteric 
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regulation, but the first maintains a more rigid structural definition localized to a 

mechanical switch in the active site while the second expands the allosteric effect 

into globally modulated distributions of conformational populations. 

1.5 Redox Modulation in the Pdx-CYP101 complex 

Redox dependent structural and dynamic modulation has been observed 

in both CYP101 and Pdx individually (20-22, 33). Both proteins have been shown 

via NMR to globally attenuate their dynamic activity across all probed time 

regimes post-reduction (22, 33). The Pdxr-CYP101r-CO complex has a six fold 

stronger affinity than the Pdxo-CYP101o-O2 complex and attenuation of dynamic 

amplitudes is considered a likely method of increasing the complex affinity by 

decreasing or prepaying the entropic cost of binding (22). In other words, 

reduction selects for a fraction of the conformational substates populated by the 

oxidized protein.  A G40N mutation in the [2Fe-2S] binding loop slowed the 

conformational exchange process in oxidized Pdx (Pdxo) adequately for detection 

of peak doublets by 15N-1H HSQC NMR. This spectroscopic method is sensitive 

to conformational exchange on the micro-milli second timescale, and doublets 

can be interpreted as distinct conformational substates in this regime. Pdxr 

showed a degeneracy of the doublets suggesting it occupied only one of the 

conformational substates (21). Moreover, NMR hydrogen-deuterium exchange 

experiments, which monitor secondary structure motions on the milli-second and 

greater timescales, found slower exchange rates in CYP101r indicating lower-

amplitude dynamics exist  in the slower time regimes as well (22). Notably, the 

biggest differences were found in regions implicated in substrate access and Pdx 

binding. This evidence collectively suggests that dynamic redox regulation in the 

Pdx-CYP101 interaction works through a conformational selection mechanism 

which thermodynamically favors the distribution of populations predisposed for 

binding; effectively expediting the encounter complex search. 

Few major rearrangements of secondary structure are observed in either 

Pdx or CYP101 upon reduction, and superimposing their redox crystal structures 
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results in RMSD values of 1.05 Å and 0.15 Å, respectively (Fig.1.3). Attenuation 

of dynamic amplitudes upon reduction is nevertheless concomitant with subtle 

structural reorganization in Pdx. According to an X-ray crystallographic study, Tyr 

33 and Asp 34 initiate a Cys45-Ala46 peptide bond flip that facilitates a new, 

strengthened hydrogen bonding network between the sulfurs of the metal center 

and the surrounding amide and hydroxyl groups. It is thought that by stabilizing a 

tightened conformation about the shifted [2Fe-2S] metal center, Pdx constructs a 

distinctive structural patch with a charged ring and hydrophobic core that 

facilitates molecular recognition between Pdx and CYP101 (20).  

Interestingly, mutagenesis studies demonstrate unique roles for specific 

residues on Pdx in each oxidation state (34). Differential affinity (Kd) and electron 

transfer (KET) effects between the ferric and ferrous binding events of Pdx 

mutants D38A and W106A suggest structural differences among the two redox 

complexes may exist. Likewise, significant NMR backbone amide spectral 

perturbations in residues distal to the Pdx binding interface on  CYP101, 

considered a signature of effector activity when complexed to Pdxr, are not 

witnessed to the same extent in complex with Pdxo (35).  Unique electron transfer 

pathways or binding sites between redox states could account for these 

observations, and further emphasize the importance of structurally characterizing 

their differences in order to elucidate the mechanism of redox modulated binding 

and effector activity. 
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Figure 1.3.Superimposed redox structues of Pdx and P450cam. Superimposed NMR solution 
structures of a) Pdx (PDB ID: 1YJJ and 1YJI) and crystal structures of b) CYP101 (PDB ID: 2CPP 
and 3CPP) in the oxidized Fe [III] (green) and reduced Fe [II] (blue) states. The RMSD for the 
oxidized and reduced Pdx and CYP101 structures are 1.05 Å and 0.15 Å respectively.  

.  
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Figure 1.4.Structure of the Pdx
o
-CYP101

o
 complex. Cartoon representation of the solution 

NMR structure of the Pdx
o
- CYP101

o 
complex determined with residual dipolar coupling (RDC) 

and paramagnetic relaxation enhancement (PRE) restraints by Zhang et al. (17). 
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1.6 Structure Determination of the Pdx-CYP101 Complex 

While considerable kinetic, biochemical and biophysical work has been carried 

out over the last five decades to investigate the nature of the Pdx -CYP101 

interaction, a detailed structural interpretation of the functionally relevant Pdxr-

CYP101r complex still remains elusive. The structure of this complex will likely 

provide significant insight on the effector activity of Pdx. However, the transient 

lifespan of the Pdx-CYP101 interaction, and most electron transfer protein-

protein interactions, complicates co-crystallization as a means of complex 

structure determination. To date, the only co-crystal structures resolved for a 

P450-redox partner complex required chemical cross-linking (36, 37), a less 

physiologically relevant solution (18, 38). This method was used in the case of 

PdR-Pdx from the CYP101 electron transport system, as well as the AdR-Adx 

complex from a separate P450 system, and more recently, the Pdx-P450cam 

complexes in the oxidized and reduced form. However, the authors acknowledge 

restricting mobility of the protein partners can functionally impair the interaction 

as well as distort the native binding interface. Perhaps a more relevant, in 

solution approach for solving electron transfer complexes in fast exchange is 

offered by the pronounced effects of paramagnetic centers in NMR spectra (17, 

39-41). The effects which manifest in NMR spectra as line shape and intensity 

changes offer translational information that is obtainable at long ranges. 

Traditional methods of protein structure determination by NMR rely on almost 

complete resonance assignment of the protein residues and utilize distance 

restraints limited to 5 Å based on the nuclear Overhauser effect (NOE). 

Furthermore, NOE’s are confounded by line broadening and spectral overlap in 

large protein complexes with slow tumbling times (42). On the contrary, 

paramagnetic effects such as relaxation enhancement (PRE) and pseudo-

contact shift (PCS)  can yield resonance intensity (peak height) and chemical 

shift changes within 15-40 Å of the paramagnetic center (43). Due to these 

advantages, site-directed paramagnetic spin labeling has become an attractive 

approach for protein structure determination in solution. 
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Recently, our group solved the Pdxo-CYP01o complex structure using 

NMR with a combined residual dipolar coupling (RDC) and paramagnetic 

relaxation enhancement (PRE) approach (Fig.1.4) (17). Yet, the more 

physiologically relevant redox state of the complex, where CYP101 is in a state 

poised to accept the second electron for substrate turnover, and Pdx exerts its 

effector activity, is the reduced Fe [II] state of both partners (Fig.1.2). It is difficult 

to trap this state due to its short-lived nature when bound to oxygen, and 

therefore to keep both proteins in the reduced Fe [II] state, the reaction cycle is 

competitively inhibited with carbon-monoxide as is often used to mimic the oxy-

Fe [II] interaction (44). 

To determine unequivocally if redox-dependent dynamic modulation alters 

the mode of binding, we have designed a NMR-based strategy to resolve the 

reduced complex structure employing a similar PRE/RDC methodology to the 

one used for the oxidized complex, albeit with some important modifications. 

Instead of using the conventional nitroxy MTSL paramagnetic spin label as done 

in the case of oxidized complex, an S-cysteaminyl-EDTA metal chelating spin 

label was conjugated to Pdx. This allowed for coordination of long range 

paramagnetic metals such as Gd3+ and Tb3+ that can tolerate reducing 

conditions. Additionally, an innovative photochemical reduction method was used 

to circumvent the problem of disulfide bond cleavage between the protein and 

chelating tag. Ultimately, this report provides a detailed structural interpretation of 

the reduced Fe [II] Pdxr-CYP101r and the oxidized Fe [III] Pdxo-CYP101o electron 

transfer complexes. Characterizing these complexes will help explain how 

oxidation state modulates binding to CYP101, as well as provide structural 

insights into how reduction enables Pdx to serve CYP101 as an allosteric 

effector. 
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CHAPTER II  

CHARACTERIZATION OF REDOX-DEPENDENT CHANGES IN 

PDX AS A RESULT OF COMPLEX FORMATION 

2.1 Protein Expression 

Pdx and CYP101 were expressed and purified using methods described 

previously (35). Chemically competent E. Coli BL-21 cells (New England Biolabs) 

optimized for protein expression containing a pET or pUC expression vector 

(Clonetech) with a CYP101–His6-tag fusion or Pdx protein gene insertion 

respectively, were inoculated into 50 mL of sterilized LB medium from 15% 

glycerol stocks stored at -80 oC, and allowed to grow at 37 oC with shaking at 250 

rpm until the optical density at 600 nm (O.D.600) reached 0.5-0.6. The cell culture 

was then divided in half and 25 mL aliquots were centrifuged at 5,000 rpm for 15 

min. The supernatant was discarded and the pellet was resuspended in 1 liter of 

defined media (M9) containing the following ingredients: 7 g Na2HPO4; 3.5 g 

KH2PO4; 0.5 g NaCl; 4 g L-Dextrose; 1 g NH4Cl or unlabeled NH4Cl; 0.102 g 

MgSO4, 0.0057 g FeCl3;  0.0165 g CaCl2; 0.005 g Thiamine; and 1 mL of a Trace 

Elements solution containing the following in g/L: 5 Na2EDTA; 0.5 FeCl3; 0.05 

ZnCL2; 0.01 CuCl2; 0.01 CoCl2.6H2O; 0.01 H3BO3; 1.6 MnCl2.6H2O. For 15N 

isotopic labeling, 15NH4Cl was used instead of unlabeled NH4Cl. Kanamycin or 

ampicillin antibiotics were added at a working concentration of 50 µg/mL in order 

to place selective pressure on the cells carrying the pET or pUC vector which 

carried the resistance respectively. The culture was allowed to grow until it 

reached an O.D.600 of 0.8- 1.0, at which point protein expression was induced 

with 1 mL of 0.5M Isopropyl β-D-1-thiogalactopyranoside (IPTG). Additionally, 

when expressing CYP101, 35 mg/L of the heme precursor, delta-aminolevulinic 

acid hydrochloride, was added at the point of induction to aid in maximizing heme 

biosynthesis for incorporation by CYP101. The cells were harvested 4-5 hrs post-

induction by centrifuging at 5,000 rpm for 15 min. The supernatant was 
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discarded; the pellet was weighed and then stored at -80 oC for future protein 

extraction. 

2.2 Protein Purification  

For both CYP101 and Pdx, 10 g of harvested cell pellet was transferred 

into 50 mL of protein buffer containing the following compounds in g/L: 0.04 

K2HPO4; 0.01 KH2PO4; 0.05 KCl; 0.3 camphor and resuspended via stirring until 

the solution was homogenized. Cell lysis was then performed by sonication. In 

order to separate the cell debris from the soluble intracellular components, 

centrifugation of the lysed cell solution was executed twice at 13,000 rpm for 15 

min and the supernatant saved from each run.  At this point, the reducing agent, 

dithiothreitol (DTT) was added at 1 mM concentration to increase protein stability. 

The crude CYP101 supernatant was passed through a cobalt metal affinity 

column (Talon Metal Affinity Resin, Clontech Laboratories) for the purposes of 

capturing CYP101 via the His6-tag. Subsequently, the cobalt column was washed 

with 50 mL of protein buffer to help reduce non-specific binding. CYP101 was 

then eluted with 5 0mL of protein buffer containing 125 mM imidazole. The Pdx 

purification, as also the next step in CYP101 purification, began by passing the 

protein solution through an anion exchange Q Sepharose Fast Flow column (GE 

Healthcare Lifesciences).  With either protein bound to the resin, 50 mL of buffer 

was passed over the anion exchange column to reduce non-specific binding 

before the protein was eluted by increasing the KCl concentration to 300 mM. 

Either protein was then concentrated using Amicon Ultra centrifugal filters 

(Millipore, 10,000 MW) before final purification using size exclusion 

chromatography performed on an AKTA FPLC system. The concentration of 

CYP101 or Pdx was calculated through Eq. (2) 

 

                                Α391orA325= εβc                                     (2) 
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where A = the absorption intensity at the characteristic wavelength (391 nm for 

CYP101 and 325 nm for Pdx), ε= the molar extinction coefficient in mM-1 cm-1, β 

= path length of the cuvette (1 cm), and c = concentration in mM. The protein 

was considered >95% pure when the ratio of A391/A280 or A325/A280 exceeded 1.4 

or 0.6 for CYP101 and Pdx respectively (29). The protein samples were then 

concentrated using Amicon Ultra centrifugal filters (Millipore, 10,000 MW) and 

their final concentration measured as described above before being used for 

NMR experiments. 

2.3 Redox-Dependent Changes in Pdx monitored by solution 

NMR spectroscopy 

A number of studies have demonstrated that oxidation state influences the 

binding of Pdx to CYP101; yet to date, no exhaustive characterization of the 

redox-dependent NMR spectral changes arising in Pdxr upon complexation with 

CYP101r has been reported. Heteronuclear NMR is an effective way of 

qualitatively monitoring structural and dynamic changes quickly between various 

conditions. Standard 15N-1H HSQC spectra capture a resonance “fingerprint” of 

the protein backbone that provides both chemical shift, δ (structural) and 

linewidth, λ (dynamic) observables at single residue resolution (45). Chemical 

shift or resonance frequency is a reflection of the chemical environment of atomic 

nuclei, and therefore changes in chemical shift Δδ between different conditions 

provide insight into structural perturbations. Linewidth (λ), or width of a peak at 

half height, is a second observable present in 15N-1H HSQC spectra which 

contains information on the dynamics of the residue over the micro to millisecond 

time regimes. Since λ receives contributions from dynamic activity over a broad 

range of timescales, and little correlation has been established between the 

magnitude and direction of Δδ with the nature of the structural change, only 

qualitative inference can be made concerning the rate of change between 

various time regimes and the conformational modification (45). 
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To initially probe if Pdx effector activity and/or binding to CYP101 is redox 

dependent, and confirm consistency between this and previous investigations, 

15N-1H HSQC spectra were collected at 30oCfor Pdx in both its Fe [III] and Fe [II] 

oxidation states. 15N-1H HSQC spectra were also collected, for Pdxo in complex 

with CYP101o and Pdxr in complex with CYP101r, at a 1:2 molar ratio of 

Pdx:CYP101, with a final Pdx concentration of 50 µM. Of the 106 residues in 

Pdx, assignments are available for 78 backbone amides as well as side chain 

assignments for Trp106 and Arg83. Resonance assignments for CYP101r, 

Cyp101o and Pdxo were obtained from the Biological Magnetic Resonance Bank 

(BMRB) managed by the University of Wisconsin at www.bmrb.wisc.edu with the 

accession numbers 5759, 17415, and 4154 respectively. Due to the 

paramagnetism of Fe [III] and Fe [II] in the [2Fe-2S] metal cluster, residues within 

8 Å of the Fe-S metal center are severely broadened and largely unassigned in 

both redox states. Pochapsky’s group has previously reported the redox-

dependent spectral changes in Pdx and CYP101 alone, as well as the changes 

occurring in CYP101r in complex with Pdxr (21, 29, 33). Here we detail the 

spectral changes in Pdxr as a result of CYP101r binding. Additionally, titrations of 

Pdx were conducted with CYP101 in both oxidation states to calculate 

dissociation constant (Kd) values as a prelude to the complex structure 

determination. 

To deconvolute the changes occurring either due to reduction or binding to 

CYP101, spectral comparisons of Pdx were done under each condition. 

Specifically, 15N-1H HSQC spectra were collected for Pdx in both oxidized and 

reduced states first. Redox-dependent spectral changes for Pdx observed in 

these spectra are mostly similar to those reported previously by Lyons et al (33), 

except for a few differences. The chemical shift and line broadening profiles of in 

our spectra agree well with the ones reported by Lyons et al. with the largest 

spectral changes occurring between residues 27-29 of Helix D, 71-78 of Helix G, 

and residues 104-106 at the C-terminus. Other changes were also noted which 

went unreported in the earlier studies. This could be a result of additional 

http://www.bmrb.wisc.edu/
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resonance assignments since the original study as also a more detailed analysis 

of the observed spectral changes. Interestingly, some of the newly observed 

changes were for residues that may have functional significance. For example, 

Asp 34 was found to have a drastic upfield shift in its 15N resonance along with a 

more moderate upfield shift in Tyr33. This difference is particularly notable in light 

of an X-ray crystallography study on the redox-dependent structural 

reorganization of Pdx which suggested that Tyr 33 and Asp34 transmit the redox 

signal by initiating a reconfiguration of the hydrogen bonding networks 

throughout the protein (20). Furthermore, certain other residues that were 

previously reported to broaden beyond detection (e.g. Leu71), were now 

observed, perhaps due to increased sensitivity of peaks in our spectra. On the 

other hand, resonances for several residues that were previously reported 

broadened beyond detection following reduction were also broadened out in our 

experiments including those for Leu23, Val50, Met70, and Ile88 (Fig. 2.1 a and 

b). The similarity of results suggests that our experimental methodology is 

consistent with that employed previously by other groups.  

Binding studies of Pdx with CYP101 in each oxidation state were 

performed next to map redox-dependent spectral changes in Pdx upon 

complexation with CYP101. An interesting observation made from these 

experiments was that many of the same residues in Pdx perturbed here as a 

function of oxidation state are also perturbed in the complex between Pdx and 

CYP101, and are likely present at the complex interface (17). In a previous study 

which studied the oxidized complex by NMR, the most dramatic changes taking 

place for backbone amide resonances were reported at residues 28-32 (helix D) 

and 104-106 (C-terminus) in Pdx, which are the same regions that are also 

affected in a redox-dependent manner. The spectral changes found in our 

investigation of the oxidized complex are generally in good agreement with those 

reported earlier (Fig.2.2a and 2.2b) (17). Therefore, consistency and 

reproducibility with previous data allowed us to perform an accurate comparison 

of the spectral differences in Pdx within the reduced and oxidized complex.  
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Differences in chemical shift perturbations for Pdx between the oxidized 

and reduced complexes were observed at all three experimentally accessible 

interfacial regions, Helix D, Helix G, and the C-terminus (Fig.2.2c). In addition to 

these differences, resonances for backbone residues on helix G (71 and 74) and 

the C-terminal Trp106 were severely broadened or disappeared completely in the 

reduced complex (Fig.2.2d) which suggests a change in the dynamic properties 

for these residues. Interestingly, Asp34 which was suggested as the structural 

switch in H-bond re-networking, as well as other residues shown via X-ray 

crystallography (7-9, 33-35) to partake in the new H-bond network, exhibit 

significantly different resonance frequencies (Fig.2.1a and 2.1b). Taken together, 

this data corroborates the redox-dependent conformational dynamics model 

where Pdx reduction selects for a tightened conformational subset where 

residues at the docking interface are likely rearranged and better positioned for 

binding with CYP101, making it feasible for them to form differential contacts 

compared to the oxidized complex. However, in line with the dynamic model, it is 

also possible that changes in the reduced complex are more intense simply as a 

result of tighter binding with dynamically attenuated CYP101 (Fig. 2.2c and 2.2d). 

. 
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Figure 2.1. Spectral Changes for Pdx upon reduction and CYP101 binding. 
15

N-
1
H spectral 

changes observed for Pdx upon reduction [a) and b)]; and in response to CYP101
r
binding [c) and 

d)]. Cartoon representations of the Pdx backbone from the perspective of the CYP101 binding 
interface are color coded to show distribution of secondary structural features perturbed. Dotted 
lines represent threshold cutoff for large vs. small changes. a) Large spectral changes between 
Pdx

o 
and Pdx

r
 are shown in blue, while smaller changes are shown in orange; b) 

15
N chemical 

shift changes Δδ = (Pdx
o
-Pdx

r
)
2
 plotted versus residue number in Pdx. Red bars indicate severe 

or complete broadening for that residue; c) Large spectral changes between Pdx
r 
and Pdx

r
-

CYP101
r
 are shown in magenta, whereas smaller changes are shown in orange; d) 

15
N chemical 

shift changes Δδ = (δPdx
r
-δPdx

r
-CYP101

r
)
2
 plotted versus residue number in Pdx. Red bars 

indicate severe or complete broadening for that residue. 
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Figure 2.2. Spectral Changes for Pdx upon Binding CYP101 in each Redox State. 
15

N-
1
H 

spectral changes observed for Pdx
o
 upon binding CYP101

o 
[a) and b)]; for Pdx

r
 binding to 

CYP101
r
 [c) and d)]. Cartoon representations of the Pdx backbone from the perspective of the 

CYP101 binding interface are color coded to show distribution of secondary structural features 
perturbed. Dotted lines represent threshold cutoff for large vs. small changes. a) Large spectral 
changes between Pdx

o 
and Pdx

o
-CYP101

o
 are shown in magenta, whereas smaller changes are 

shown in orange; d) 
15

Nchemical shift changes Δδ = (δPdx
r
-δPdx

r
-CYP101

r
)
2
 plotted versus 

residue number in Pdx. Red bars indicate severe or complete broadening for that residue; c) 
Large spectral changes between Pdx

r 
and Pdx

r
-CYP101

r
 are shown in magenta, whereas smaller 

changes are shown in orange; d) 
15

Nchemical shift changes Δδ = (δPdx
r
-δPdx

r
-CYP101

r
)
2
 plotted 

versus residue number in Pdx. Red bars indicate severe or complete broadening for that residue. 
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2.4 Titrations of CYP101rand CYP101o with Pdxr and Pdxo for 

estimation of binding affinity (Kd values) in the redox complexes 

As a prelude to structure determination of the oxidized and reduced 

complexes, it is important to characterize the relative affinity of the complexes 

which would facilitate structural data analysis of the complexes. Thus, binding 

affinities in the form of Kd values were estimated for the oxidized and reduced 

complexes under the experimental conditions identical to those employed for 

structural measurements. A series of seven 15N, 1H TROSY-HSQC spectra were 

acquired to follow the chemical shift perturbations of NH coupled pairs in 

CYP101 during titrations of Pdxr and Pdxo with CYP101r and CYP101o, 

respectively. In each oxidation state, titrations were conducted at 250 C in 40 mM 

TRIS-HCl buffer (pH 8.0) containing 40 mM KCl with a final CYP101 

concentration of 50 µM. Aliquots of Pdx in the same buffer were added to yield 

final molar ratios (Pdx/CYP101) of: 0, 0.25, 0.5, 0.75, 1, 2 and 3. Measuring the 

change in Hz for 1H chemical shifts δ during titrations, allowed for estimation of 

the dissociation constant (Kd) for the complex in each oxidation state using 

Eq.(3): 

 

     (       ) {         [(        )
         ]

 
  ⁄ }           (3) 

 

where δ0 and δmax are the chemical shifts of the free and saturated forms of 

CYP101 respectively, and mo and po are the nominal concentrations of CYP101 

and Pdx, respectively (46). Kd and δmax values were estimated using the non-

linear regression analysis software SigmaPlot. Five well resolved 15N-1H 

resonances were monitored in both redox complexes and the 1Hδ versus protein 

concentration fits yielded values for δmax and Kd. Accurate modeling of the 

distance restraints requires knowledge of the free and bound fractions of protein 

alone and in complex. Calculation of the concentration of free and bound protein 

fractions was accomplished with Eq. (4) (46): 
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                                                                                                               (4) 

 

where δo is the observed chemical shift at a particular molar ratio, δfis the 

chemical shift in complete absence of ligand, δb is the chemical shift completely 

saturated with ligand, and Xf and Xb are the percentage of protein free and bound 

respectively. Using the above equation, the bound fraction of CYP101 was 

estimated to be ~60% and ~70% in the oxidized and reduced complexes 

respectively, assuming a 1:1 ratio of Pdx:CYP101. 

Titrations of CYP101o and CYP101r with Pdxo and Pdxr, respectively 

yielded sequential chemical shift changes until CYP101 was considered 

saturated (Fig.2.3). Non-linear fits of δ as a function of Pdxo and Pdxr 

concentration for the five selected resonances yielded Kd values 24.3   12 µM 

and 9.9   5 µM for the oxidized and reduced complexes, respectively (Fig.2.4). 

While these values are in reasonable agreement with literature values published 

previously and correctly denote a higher affinity for the reduced complex; the 

magnitude of the affinity difference between the oxidized and reduced complex is 

lower than expected. Whereas a ~2.5 fold change in binding affinity is reported 

here, other groups reported ~6  fold change (1). This could be due to variations in 

the experimental buffer conditions between the two studies, or the unreliability of 

randomly selecting peaks as metric for binding affinity. Whether or not these 

differential binding affinities are responsible for the chemical shift and broadening 

profile differences observed between the two redox complexes is difficult to 

determine, and this possibility, although unlikely, cannot be ruled out.  
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Figure 2.3. Titration of Pdx with CYP101 to determine Kd values. Overlay of representative 
peaks in the 

15
N-

1
H TROSY spectra for CYP101 when titrated with Pdx. A) CYP101

o
 titrated with 

Pdx
o 
and B) CYP101

r
 titrated with Pdx

r
. Titration experiments were used to determine binding 

affinities (Kd values) for the oxidized and reduced complex. The peaks are color coded based on 
Pdx:CYP101 molar ratios present in each titration: 0.0 (red), 0.25 (blue), 0.5 (green),1.0 
(maroon),  2.0 (gold), and 3.0 (black). 
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Figure 2.4.Fitting of Kd values to the titration data in oxidized and reduced Pdx-CYP101 
Complex. Plot of normalized chemical shift perturbations as a fraction of δmax for amide 
resonances in A) CYP101

o
and B) CYP101

r
 as a function of Pdx

r
and Pdx

o
 titrant concentrations 

respectively. Dissociation constant (Kd) values of 9.9± 5 µM and 24.3± 12 µM were calculated for 
the reduced and oxidized complexes respectively. 
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CHAPTER III 

SPIN LABELING AND REDUCTION METHODOLOGIES FOR 

PARAMAGNETIC STUDIES 

3.1 Use of Paramagnetic spin labels in protein NMR structural 

studies 

Paramagnetic spin labeling is quickly becoming a method of choice for protein 

structural studies. Traditional NMR structural methods such as nuclear 

Overhauser effect  and scalar couplings rely on interactions over a very short 

range (5 Å), and consequently have difficulty relating structural elements at 

distant sites (43, 47). Because these methods rely on near complete resonance 

assignments, their shortcomings are magnified in large proteins or protein 

complexes where peak overlap makes complete resonance assignment nearly 

impossible. Therefore, these methodologies remain insufficient for resolving 

protein structures in a timely manner. The pronounced effect of paramagnetism 

on surrounding nuclear spins, and hence NMR observables, offer a promising 

alternative for NMR structure studies. Originating at an unpaired electron, with a 

magnetic moment almost three orders of magnitude larger than protons, the 

paramagnetic effects operate over long distances, and can be exploited for 

translational restraints (48). It is critical that the unpaired electron be provided by 

an inert molecule that remains stable under biological conditions. Certain organic 

radicals, most frequently nitroxides, and a bevy of metal ions such as Mn2+, Fe2+, 

Cu2+, Ti3+, Ni2+, Co2+, and lanthanides, offer these unpaired electrons and are 

well suited for protein NMR investigation. 

Several paramagnetic effect-based strategies have been developed into 

methods for protein NMR structural studies including: paragmagnetic relaxation 

enhancement (PRE) for distance restraints, as well as, pseudo-contact shifts 

(PCS) for both distance and orientational constraints. In PRE, nuclear-electron 

coupling enhances nuclear relaxation rates R1 and R2 in an r-6 distance 

dependent manner (Eq.6). As a result peak intensities are attenuated by 
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increasing linewidths (λ) according to      . PCS confers both peak intensity 

and chemical shift changes that rely again on the distance, but also on 

orientation of the paramagnetic center in relation to the target nuclei. In the 

presence of paramagnetic metals with fast relaxing electron spins, PCS modifies 

spectrum observables in accordance with an r-3 distance dependence, as well as 

the polar coordinates of the nuclear spin r, θ, φ with respect to the anisotropic 

magnetic susceptibility tensor (Δ tensor) (43, 48). 

As a result of numerous physiologically relevant metal ions having 

paramagnetic properties, native paramagnetic centers are frequently found in the 

structures of metal binding or metalloproteins, and have been exploited in NMR 

experiments for structure elucidation (41, 49). The paramagnetic Fe [III] iron in 

the heme prosthetic group of CYP101 only has an influential sphere of ~8 Å, 

prohibiting sufficient distance restraints for complex studies. Therefore, a non-

native paramagnetic spin label must be introduced on the surface of Pdx to 

investigate the Pdx-CYP101 complex. 

Conjugation of a site directed spin label is garnering more attention as a 

method of expanding the application of paramagnetic structural studies to a 

larger number of proteins and protein complexes (41, 50). Thiol-based spin 

labeling utilizing disulfide chemistry is the most commonly employed conjugation 

technique as cysteine is the only amino acid able to participate in these reactions 

(51). 

During the structure determination process of the oxidized CYP101o-Pdxo 

complex, a conventional nitroxy spin label in the form of MTSL was conjugated to 

Cys73 on Pdx. Its use in the reduced complex environment is precluded by the 

fact that the paramagnetism of nitroxy and other common spin labels can easily 

be lost through reduction of its unpaired electron. An added complication is the 

fact that the disulfide bond conjugation is also susceptible to reduction cleavage. 

Consequently, to utilize the paramagnetic labeling strategy in both oxidation 

states of the Pdx-CYP101 complex, we had to address each of these problems. 
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3.2 Site Specific Labeling of Pdx with Metal Chelator tag 

The S-cysteaminyl-EDTA metal chelating tag, capable of conjugating to 

the same lone, surface exposed Cys73 on Pdx, offers an alternative to the 

nitroxy spin label since it is not inherently paramagnetic but rather becomes 

paramagnetic upon the coordination of a variety of paramagnetic metal ions. 

Multiple advantages are derived from metal chelater spin labels compared to 

traditional nitroxy ones (52), but most importantly for the aims of this study; the 

variety of different metals with unique paramagnetic properties offered a suite of 

paramagnetic centers capable of resisting reduction, and inert with respect to 

biological systems. 

Generally following the procedures described by Pintacuda et al. (2004) 

and Gaponenko et al. (2002), a thiol-reactive EDTA moiety was introduced at the 

lone, native, solvent exposed cysteine (Cys73) on Pdx (52, 53). Pretreatment of 

Pdx with 1mM DTT was necessary for reducing all free cysteine thiol groups. 

Following this preparation, the sample was extensively dialyzed with 40 mM Tris 

buffer (pH 8.0) containing 40 mM KCl using an Amicon Ultra centrifugal filter 

(Millipore, 10,000 MW) to remove any excess DTT. Removing all of the DTT 

through extensive dialysis was critical for high-yield derivations.  Subsequently, 

S-(2-pyridylthio)-cysteaminyl-EDTA (Toronto Research Chemicals) was added to 

the protein solution at ten-fold excess and allowed to incubate overnight in the 

dark at 4 oC. Excess label and by-products were removed by dialysis prior to 

conjugation verification or metal addition. 1H-15N HSQC NMR analysis of 15N 

labeled Pdx revealed that >95% of the protein was modified without any major 

structural perturbations. Minor chemical shift changes occurred for 5 residues 

including C73 that did not exceed 0.15 ppm in either dimension of the HSQC 

spectrum, suggesting the native protein conformation remained intact (Fig.3.1). 

Different metal salts (GdCl3, MnCl2, and TbCl3) were coordinated to EDTA-

conjugated Pdx by adding them at 1.25 times the protein concentration to initiate 

metal coordination to the EDTA site on S-cysteaminyl-EDTA-conjugated Pdx 

(Pdx-EDTA). Uncoordinated metal ions were then removed through extensive 
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dialysis with 40 mM Tris buffer containing 40 mM KCl and 2 mM camphor. Metal 

ions such as Gd3+ and Mn2+ were used to coordinate the EDTA tag for 

quantitative PRE measurements, since they don’t have fast relaxing electrons 

which can cause undesirable pseudocontact shifts in addition to broadening of 

resonances. 

 Conjugating Pdx with the EDTA spin label at Cys73 should not impair the 

ability of Pdx to form native complex with CYP101 in either oxidation state since 

it did not significantly alter the structure of Pdx as evidenced by marginal 

changes in the chemical shifts of the resonances in Pdx. Furthermore, Cys73 

while being actively involved in Pdx docking to PdR, has little to no role in the 

Pdx-CYP101 interaction (54) and therefore, in our opinion, modification of this 

residue does not compromise the formation of a physiologically relevant complex 

between CYP101 and Pdx. The structures for both oxidized and reduced 

complexes determined using the spin label methodology here should provide a 

faithful representation of these structures in solution. 

3.3 Photochemical Reduction of CYP101 and Pdx 

Sodium dithionite is a well-established reducing agent for Fe-based 

electron transfer metalloproteins (55). It and other established protein reducing 

agents (i.e. chromosulfate, DTT, beta-mercaptoethanol) all operate via a sulfur-

based moiety which for our purposes was an impediment to EDTA spin label 

derivation. Finding an agent/s with sufficient redox potential for Pdx and CYP101 

reduction, with minimal pH effects, and one that is also inert with respect to 

disulfide bonds was a formidable challenge. While using the native BET protein 

shuttle pathway from from PdR to Pdx to CYP101 remained an option, it was 

considered a last resort due to the detriments of protein instability, slower ET 

rates, and a crowded protein environment. Fortuitously, some data was available 

on a photosensitizing proflavine based synthetic pigment system that was 

capable of photochemically initiating electron relay in the P450cam system (56).  
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Figure 3.1. Spectral Changes in Pdx
o
 upon EDTA Spin Label Conjugation. Overlay of

 15
N-

1
H 

HSQC spectra of Pdx
o
 with (black) and without (red) the EDTA metal chelating label conjugated 

to Cys 73. Blue circles indicate the 5 peaks with their corresponding residue assignment that are 
perturbed consistently upon conjugation. 
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Figure 3.2.Spectral changes in Pdx after spin label conjugation and reduction. Overlay of 
15

N-
1
H HSQC spectra of Pdx

r 
with (black) and without (red) the EDTA metal chelating label 

conjugated to Cys73. The same resonances perturbed in the oxidized spectra were also 
perturbed post-reduction indicating that reduction did not affect the stability of the conjugation. 
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After extensive testing and optimization, this method was employed to reduce 

Pdx tagged with the EDTA metal chelator as well as CYP101. 

Reduced CO-bound CYP101-Pdx samples were prepared in the following 

manner - A method outlined by Greenbaum, which describes using a synthetic 

pigment system electron donor as alternative pathway to the endogenous 

putidaredoxin reductase (PdR), was a guideline for our reduction (56). In 3 

separate 4 mL vials; H2O with 2 mM camphor, pure D2O, and a photochemical 

stock containing: 100 µM proflavine (MP Biomedicals), 2 mM methylviologen 

(ACROS Organics), and 10 mM NADH (Research Products International) were 

degassed by N2 gas purging for at least 1 hr. Pdx and CYP101 samples were 

degassed separately in 4 mL vials by layering N2 for a minimum of 2 hr. Each 

protein sample consisted of 150 µL of protein at 0.1 mM concentration and 

combined to obtain a final NMR volume of 300 µL and a final protein 

concentration of 0.05 mM. Carbon monoxide (CO) was dissolved into degassed 

H2O by purging for at least 15 minutes and then layered over the degassed 

CYP101 solution for an additional five minutes. All vials were sealed with parafilm 

and transferred to an anaerobic chamber where the components were mixed. 25 

µL of the photochemical pigment stock and 10 µL of D2O were added to both the 

Pdx and CYP101 solutions. The CYP101 and Pdx protein solutions were then 

mixed before using the 2 mM camphor H2O stock to bring the final volume to 300 

µL. The final sample was anaerobically transferred to the NMR sample tube 

(Shigemi), and the NMR tube sealed. Placing the NMR sample under a generic 

fluorescent, 1500 lumen white light initiated the electron transfer by 

photosensitization of proflavine.  After 10 minutes of irradiation, the sample 

visibly appeared blue and the proteins were assumed to be completely reduced. 

Reduction of methyl viologen results in a blue-shift, which allowed us to visibly 

monitor loss of oxygen availability, indicating a fully reduced environment in the 

sample. 

Comparing the15N-1H Pdx spectral differences between conjugation and 

reduction conditions allowed us to determine unequivocally that photochemical 
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reduction did not interfere with spin labeling (Fig.3.2), unlike results from sodium 

dithionite reduction. In addition to not cleaving disulfide bonds, the proflavine 

based synthetic pigment electron relay system was considerably less detrimental 

to the protein compared with dithionite, most likely due to its advanced oxygen 

scavenging capacity and subdued pH effects. Stability assays confirmed CYP101 

was stably reduced for over 56 hrs (data not shown).  Superimposing the 15N-1H 

HSQC-TROSY spectrum of CYP101r reduced by the traditional reducing agent 

sodium dithionite and with that of CYP101 reduced by the photochemical 

reduction system illustrates that no significant differences exist between the two 

reduced structures (Fig.3.3). Ultimately, the conditions imposed here including: 

the paramagnetic label derivation, metal coordination, and photochemical 

reduction are unlikely to alter a faithful representation of the native interaction 

between CO-CYP101r-Pdxr. 
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Figure 3.3. Spectral Comparison of Photochemical and Dithionite Reduction methods. 
Superimposed 

15
N-

1
H spectra of CO-bound CYP101

r
 reduced with methylviologen (red) and 

sodium dithionite (black). No major changes are observed between the two spectra indicating 
reducing equivalency between the agents. 
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CHAPTER IV  

DERIVATION OF DISTANCE RESTRAINTS FOR STRUCTURAL 

CHARACTERIZATION OF THE PDX-CYP101 COMPLEX 

The magnitude of paramagnetic influence is dependent on multiple 

properties of the paramagnetic compound such as, the number of unpaired 

electrons, the electron spin correlation time τe, the rotational correlation time, and 

the magnetic moment (57). Therefore, distance calculations have to be tailored to 

the parameters of a specific paramagnetic center. To determine the actual 

broadening range for different paramagnetic metals, and decide which would be 

most useful for the Pdx-CYP101 complex investigation, broadening effects were 

calibrated using the reduced 15N-1H HSQC spectra of Pdxr-EDTA coordinated 

with Gd3+ and Mn2+. This exercise confirmed that Gd3+ had the largest sphere of 

influence, with resonances <20 Å broadening beyond detection. Broadening due 

to Mn2+ coordination was distributed across a similar set of peaks but with a 

smaller magnitude (data not shown). Since a multitude of new resonances 

appear in the diamagnetic Fe [II] heme-CYP101r spectrum, and more than double 

the amount of resonance assignments are available, it was inferred that the 

larger influence of Gd3+ would be best suited for the measurement of most 

restraints. 

4.1 Calculation of Distance Restraints from Paramagnetic 

Relaxation Enhancement (PRE) 

Distances from the NMR nucleus to the paramagnetic center were derived 

using a method developed by Battiste and Wagner (58). Because the total peak 

volume remains constant after paramagnetic relaxation enhancement (PRE), 

changes in peak heights (intensities) can be used to measure line broadening 

indirectly from the observed PREs. A ratio of peak intensities was taken to 

calculate paramagnetic contribution (R2sp), to the observed relaxation rate, R2 

through Eq. (5): 
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Where Ipara and Idia are measured intensities of 15N-1H HSQC-TROSY peaks with 

and without the presence of a paramagnetic center respectively, t is the total 

polarization transfer time (~9 ms) and R2 is the intrinsic diamagnetic transverse 

relaxation rate for each amide estimated from the peak width of reduced 

diamagnetic spectra (59).  R2 was estimated for each assigned peak from the 

linewidth (Hz) at half height (Δυ1/2) in the diamagnetic spectra using R2=πΔυ1/2. 

Subsequently, R2sp values were converted into distances using Eq (6): 
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Where r is the distance between the electron of the spin label and nuclear spins, 

τc is the estimated global correlation time (~20 ns) of the protein complex from 

the Stokes Einstein equation, ωh is the Larmor frequency of proton nuclear spin 

and K is the constant 8.61x10-32 cm6s-2  (59). 

15N-1H HSQC-TROSY spectra of CYP101 and Pdx-EDTA tag chelated to 

Gd+3 in complex with the unlabeled partner were acquired for both oxidation 

states, and experiments were run in tandem with control samples that 

lackedGd3+. Intensities were measured for assigned residues, and ratios of the 

paramagnetic (metal) and diamagnetic (no metal) samples (Fig.4.3) were 

converted into paramagnetic rate enhancements (R2sp) through a linear fit of Eq. 

(5). Distance restraints were derived through a linear fit of Eq (6). The 

relationship between intensity ratio and distance (Å) then gives a meaningful 

range of distance measurements between 21-34 Å (Fig. 4.1). For residues that 

disappear completely, an upper bound of 20 Å was used in the docking process. 

Distances from the spin label to various backbone amides in Pdx within the 

paramagnetic sphere of influence of Gd+3 were calculated (Appendix Table 1.) 
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based on the observed PREs and found to be in good agreement with distances 

calculated for the very same residues from the crystal structure of Pdx (Fig.4.2). 

This excellent correlation allowed us to move forward with calculating the Pdx-

CYP101 complex distance restraints using a similar methodology. 

For structure determination of the complex, it was assumed that the 

complex is in fast exchange on the NMR time scale since only one set of 

CYP101 resonances was observed in the spectrum. As explained in chapter 3, it 

was calculated that approximately 70% of the reduced protein concentration is 

bound to its partner at any moment assuming a 1:1 ratio in the sample, and a 1:1 

binding stoichiometry. Therefore, the observed PRE, R2obs, represents only a 

fraction (F) of the actual PRE, R2sp, such that R2obs = FR2sp, with F=0.7 and 

F=0.6 for reduced and oxidized complex respectively.  It was necessary to 

correct the experimentally determined PREs by 1/F before using R2sp in the 

distance calculations. 

4.2 Analysis of PRE-derived Distance Restraints 

The 15N-1H HSQC-TROSY of CYP101o and CYP101r in complex with Pdxo 

and Pdxr yielded 39 and 95 peaks respectively, which met the 0.85 ratio 

threshold for further consideration to be used as distance restraints in the 

docking simulations (Fig. 4.3). The 0.85 threshold was used for two reasons. 

First, as demonstrated by the curve in Fig. 4.1, small changes in ratios measured 

to be >0.85 lead to large differences in the distance calculation. Therefore, 

assuming some degree of experimental error, ratios >0.85 offer the least 

accurate measurements. Secondly, previous groups report the best agreement 

with known three-dimensional structures using the 0.85 cutoff (58). The fewer 

number of significantly broadened peaks in the oxidized complex was a function 

of the fewer visible resonances and available assignments in the paramagnetic 

state Fe [III] state. Peaks within 8 Å of the heme broadened beyond detection 

and additional spectral overlap in CYP101o complicates the assignment process. 
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 Overall however, broadening patterns between the oxidized and reduced 

complex spectra were remarkably similar suggesting that the binding site for the 

two redox states is the same (Fig.4.5). As expected, there is strong evidence for 

1:1 binding stoichiometry, and the peaks observed to broaden drastically, agree 

well with those residues known to be within or near the Pdx binding site on the 

proximal face of CYP101 (Fig. 4.4). Interestingly, one region of CYP101 did 

consistently show differential broadening profiles between the oxidized and 

reduced complexes. The SRS-1 region surrounding and including B’ Helix 

between residues 84-96 was significantly less broadened for every available 

resonance in the reduced complex, resulting in longer distances for these 

resonances (Table 4.1 and 4.2). This region is known to be dynamically involved 

in substrate gating, and these differences could have profound implications for 

the redox-dependent Pdx effector mechanism.  
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Figure 4.1. Correlation Plot for converting Intensity Ratios to Distances. Varying intensity 
ratios of (Ipara/Idia) were converted into distances using the theoretical equations (5) and (6) in the 
text. 
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Table 4.1 Distance restraints calculated for CYP101r from experimentally 

measured PREs 

Residue no. Measured (Å)a 

38 28.5 

77 20.0 

78 20.0 

84
 

26.2 

85 26.4 

91 27.9 

92 29.9 

93 27.5 

99 24.9 

119 27.2 

120 27.2 

208 31.5 

226 29.2 

227 25.1 

230 20.0 

233 27.2 

234 27.0 

235 27.3 

236 28.3 

247 27.2 

296 29.0 

298 26.2 

300 26.4 

305 28.8 

306 24.1 

307 26.9 

309 27.1 

310 25.2 

312 25.4 

314 26.7 

331 32.2 

345 30.8 

347 27 

351 29.3 

359 24.2 
 

a
Distances are measured from the intensity ratios calculated for the HN backbone amide 

resonances of 
15

N labeled CYP101
r 
in complex with spin labeled Pdx

r
-EDTA- Gd

3+
. All distance 

measurements were docked with bounds of ± 4 Å. 
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Table 4.2 Distance restraints calculated for CYP101o from 

experimentally measured PREs 

Residue no. Measured (Å)a 

54 30.4 

67 30.5 

68 26.8 

70 25.1 

80 20.0 

82 20.0 

84 25.5 

85 22.4 

92 28.3 

93 26.6 

94 26.8 

96 27.0 

101 20.0 

123 26.4 

167 30.5 

217 30.4 

230 20.0 

243 27.1 

245 31.0 

305 25.0 

306 23.6 

307 26.8 

308 28.1 

309 24.1 

312 27.0 

326 29.2 

330 29.4 

348 26.6 
 

a
Distances are measured from the intensity ratios calculated for the HN backbone amide 

resonances of 
15

N labeled CYP101
o  

in complex with spin labeled Pdx
o
-EDTA- Gd

3+
. 

 
All distance 

measurements were docked with bounds of ± 4 Å. 

 

 

 

 



 

 43 

 

Figure 4.2.Correlation between back calculated and PRE measured distances. Plot of the 
correlation between back-calculated distances from the reduced Pdx crystal structure and 
distances calculated from experimental PRE measurements in the reduced Pdx-CYP101 
complex. Experimental distances were calculated by applying the theoretical conversion 
equations (5) and (6) in the text to the PRE intensity ratios measured using Pdx

r
 –EDTAsl-Gd

3+
. 

The correlation coefficient was ~99% for residues between 20-34 Å from the paramagnetic 
center. Error bounds of ± 4Å were applied to every measurement. 
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Figure 4.3.PRE Intensity Ratios measured for Reduced and Oxidized CYP101. Intensity 
Ratios of various

15
N-

1
H resonances in the CYP101 TROSY spectra are plotted versus residue 

number for the reduced (A) and oxidized (B) Pdx-Cyp101 complexes. A value of 0.85 was used 
as the maximum threshold for inclusion in our distance calculations and is shown by dashed 
lines. Absence of bars indicates no assignments were available at the sequence position or 
spectral overlap prevented accurate quantification. 
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Figure 4.4. Paramagnetic Broadening between the oxidized and reduced complexes. 
Regions of 

15
N-HSQC-TROSY spectra of CYP101

r 
(A,B) and CYP101

o
 (C,D) bound to Pdx

r
 –

EDTA and Pdx
o
-EDTA respectively, without (A,C,E,G) and with (B,D,F,H) Gd

3+ 
coordinated. 

Specific residue numbers are indicated with labels. Residue 230 on the proximal face of CYP101 
is shown broadening beyond detection in both the reduced (A,B) and oxidized (C,D) spectra. Both 
oxidized and reduced complex spectra were processed similarly and the contour levels are the 
same between them.  

A B

C D
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Figure 4.5 .Differential Paramagnetic Broadening between the oxidized and reduced 
complexes. Regions of 

15
N-HSQC-TROSY spectra of CYP101

r 
(A,B) and CYP101

o
 (C,D) bound 

to Pdx
r
 –EDTA and Pdx

o
-EDTA respectively, without (A,C) and with (B,D) Gd

3+ 
coordinated. 

Specific residue numbers are indicated with labels. Residue 85 at the B-C Loop exhibits 
differential broadening between the reduced (E,F) and oxidized (G,H) spectra. Both oxidized and 
reduced complex spectra were processed similarly and the contour levels are the same between 
them.  
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Several peaks outside of the immediate vicinity of the binding site demonstrated 

significant broadening, and therefore, it was necessary to delineate ambiguous 

PRE contributions arising from non-specific binding, free metal, flexibility of the 

EDTA spin label, and the conformational search for the binding site. To calibrate 

non-specific broadening from metal, free metals were added to solution as 

controls in separate experiments with each 15N-labeled protein without the EDTA 

spin label conjugation. Using these control experiments, non-specific PRE effects 

from just the free metal in solution were delineated from specific metal effects 

(data not shown). Localized broadening at sites distant from the primary 

interaction site that could complete the coordination sphere for Gd3+ without 

coordinating to the EDTA tag were identified during these experiments and 

supposed to arise from non-specific metal binding residues on the surface of 

CYP101 (e.g. Glu152-Glu156). Calibration of the non-specific PRE effects in this 

manner allowed us to quickly determine if non-EDTA coordinated excess metal 

was free in solution during our complex experiments, helped identify non-specific 

binding sites, and reduced the possibility of mistakenly including these 

contributions in the distance calculations. 

 One alternate possibility of interpreting some of the PRE effects that are 

far away from the primary interaction site of Pdx and CYP101 is that there may 

be more than one binding site for the two proteins. However, the Pdx-P450cam 

complex is known to be a highly specific interaction. The site-specific 15N-1H 

HSQC broadening profiles on CYP101 and Pdx observed here due to binding of 

the partners, is consistent with other groups also reporting site-specific 

spectroscopic changes for the Pdx-CYP101 complex (60). Moreover, while the 

specific interaction is retained in presence of different metals and other spin 

labels (e.g. MTSL), the non-specific contributions differ considerably between 

them. Hence non-specific PREs are likely contributions from the conformational 

search process, spurious binding sites and excess metals; not from multiple 

protein binding sites. 
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Figure 4.6.Comparison of PRE Broadening Patterns in oxidized versus reduced complex. 
Spectral broadening of CYP101 NH resonances mapped on the structure of CYP101 as a result 
of PREs from the spin label on Pdx in A) oxidized and B) reduced Pdx-CYP101 complex. 
Previously determined individual crystal structures of oxidized and reduced Cyp101 (PDB ID: 
2CPP and 3CPP) are used to depict the paramagnetic broadening patterns. Red residues 
correspond to resonances with extreme broadening (ratios < 0.6). Green residues correspond to 
resonances with moderate broadening (ratios > 0.6 and < 0.8). Yellow residues correspond to 
resonances with slight broadening (ratios > 0.8). Blue residues are either unassigned or have no 
significant broadening (ratios > 0.85). 

 

A

B
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Another factor to consider in distance calculations is the influence of motion on 

PREs, which can be considerable depending on the confinement of the 

paramagnetic center. Rigid paramagnetic centers with respect to the protein 

under investigation are optimal, as they give the most accurate distance 

calculation from a singular, well-defined location. In this study, the EDTA spin 

label was relatively long, raising concerns about its flexibility. To reveal whether 

the label was sampling isotropic motions relative to the protein, pseudo-contact 

shift (PCS) experiments were performed. If the paramagnetic center is sampling 

isotropically the anisotropic Δ tensor component of PCS will average to zero, 

and hence the chemical shift effect averages to zero. Coordinating a metal with 

fast relaxing electrons, such as Tb3+, in place of Gd3+, resulted in small but 

distinguishable contact shifts in the 15N HSQC spectra of Pdx and CYP101 (Fig 

4.6).This indicates sufficient label rigidity and metal confinement for accurate 

PRE measurements. 

PRE distance restraints provide information in only one dimension of a 

three-dimensional coordinate frame and therefore, additional restraints are 

critical for precise structure refinement. PCS on its can be very useful in 

collecting both distance and orientational information, and indeed certain groups 

reported using this same EDTA based metal chelating tag for quantitative PCS 

experimentation (53, 61, 62). However, in our experiments Tb3+ coordination 

resulted in peak doublets of similar intensity (Fig.4.6). Other groups reported the 

same doubling result with this label, and attribute the effect to the possibility of 

two stereoisomers of the EDTA-metal complex (52, 63). Consequently, this 

EDTA spin label gave data that was too difficult to interpret for quantitative PCS 

measurements, and consequently Tb3+ was only used to establish a necessary 

level of confidence in the rigidity of our spin label. 
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Figure 4.7. Spectral Changes induced in Pdx by Pseudo-contact shifts from a Tb
3+

-
coordinated spin label. Region of 

15
N-

1
H HSQC spectra of oxidized Pdx-EDTA-Tb

3+
 

demonstrating the pseudo-contact shifts and peak doubling which occurred as a result of 2 
stereoisomers being present during metal coordination. 
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CHAPTER V 

COMPLEX STRUCTURE CALCULATION AND ANALYSIS 

5.1 Docking of Pdx with CYP101 

To determine the structures of oxidized and reduced Pdx-CYP101 

complexes, the two proteins were docked using the Molecular Operating 

Environment (MOE) software (Chemical Computing Group). Starting coordinates 

for the individual proteins were obtained from the Protein Data Bank, with PDB 

identifiers 2LQD, 1XLN, 3CPP, and 2CPP for Pdxr, Pdxo, CYP101r, and CYP101o 

respectively. The S-cysteaminyl-EDTA metal chelating spin label was built in 

MOE and bonded to Cys73. To model the most likely position of the EDTA spin 

label, Pdx-EDTA was energy minimized using the AMBER99 force field 

parameters designed for proteins. Despite the label having some degree of 

flexibility, the energy minimized position was considered as the average position, 

and was therefore held constant through the remainder of the docking simulation 

(Fig. 5.1). A total of 67 and 62 PRE distance restraints are available for the 

reduced and oxidized complexes respectively. These restraints can be 

categorized into two sets – the first set comprised restraints that were calculated 

from PRE measurements carried out on 15N labeled Pdx in complex with 

unlabeled CYP101, while the second set comprised restraints calculated from 

PRE measurements on 15N CYP101 in complex with unlabeled Pdx. In each 

case, Pdx was tagged with the EDTA chelator bound to Gd3+. For the complex 

structure calculation, only the second set of restraints was used which 

corresponded to 35 for reduced complex and 28 for the oxidized complex (Table 

4.1 and 4.2). Compared to the seven restraints used in determining the initial 

oxidized complex structure (17), this represents a considerable improvement in 

the number of restraints. In addition, a maximum distance of 20 Å between the 

Fe2S2 cluster and the heme was set as a restraint in both complexes. 

During the docking process, initial positioning of Pdx was achieved by 

weighting the distance restraints. First priority was given to the distances 
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between the [2Fe-2S] and the heme prosthetic groups, as well as residues whose 

resonances broadened out beyond detection. Both of these distance restraints 

were set a maximum of 19.99 Å and were never violated.  Each has precedent in 

the literature with <20 Å being the distance between metal cofactors for 

physiologically relevant electron transfer rates, and the distance between NMR 

nuclei and Gd3+for complete resonance broadening (34, 43, 52, 64). Second 

priority was given to residues that had an intensity ratio (Ipara/Idia) between 0.5- 

0.75. These residues were measured to be no more than 28.5 Å from the 

paramagnetic center. Peaks <0.75 were considered not to arise from non-specific 

broadening effects and a strong reflection of the final docked structure. Last 

priority was given to those residues demonstrating intensity ratios >0.75. To 

minimize the contribution of false positives, residues in close proximity that 

shared similar broadening ratios were weighted more heavily across all tiers. For 

all residues within the second and third tiers error windows of ±4 Å were applied. 

For PRE measurements, this error window has been shown to result in the most 

robust structure calculations (17, 58, 65). Docking was continued through manual 

sampling of the conformational space until the best fit between measured and 

calculated restraints was achieved. Removing the label and then energy 

minimizing the interfacial residues gave the final complex structure used in 

analysis (Fig. 5.2 and 5.3). In the final complex structures all residues fell within ± 

4 Å, except for residues 84, 85, 300, 305, and 314 in the reduced complex and 

residues 123 and 217 in the oxidized complex. The large amount of variability 

witnessed in the 300-314 loop region is thought to be due primarily to its 

considerable flexibility.  

 

 

  



 

 53 

 

Figure 5.1.Pdx-CYP101 Complex modeled with the EDTA metal chelating spin label. Cartoon 
representation of the Pdx-Cyp101 complex modeled with the EDTA metal chelating label. Pdx 
(teal) is shown conjugated to the EDTA spin label (green) with Gd

3+ 
coordinated (cyan). Gold 

lines are drawn between Gd
3+

 and amide bonds on the on the Pdx and CYP101 (magneta) 
backbone for residues within the 34 Å broadening range. 
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5.2 Structural Analysis of the Oxidized and Reduced Pdx-

CYP101 complexes 

Disregarding the inherent structural differences that existed in the initial 

starting structures of oxidized and reduced Pdx as also oxidized and reduced 

Cyp101, the final complex structures calculated for both oxidation states are 

quite similar within experimental error (Fig. 5.3 and 5.4). Pdx binds to CYP101 at 

a similar site in both complexes. Also, the binding interface in both complexes is 

similar as well. Three key interactions predicted by previous structural and 

mutagenesis studies formed part of the binding interface in our structures (Fig. 

5.4) (34, 66, 67). Two salt bridges, Asp38 (Pdx)-Arg112 (CYP101) and Arg66 

(Pdx)-Glu76 (CYP101), that are critical for affinity and electron transfer in the 

Pdx-CYP101 complex were observed within the proper distance range to support 

their electrostatic interaction (Fig. 5.5). Additionally, Trp106, the C- terminal 

residue of Pdx shown repeatedly from kinetic and mutagenesis studies to be a 

key modulator of binding and electron transfer was situated next to the 

hydrophobic pocket containing Ala113 on CYP101. It is not clear at this stage 

how Trp106 exerts its influence on this hydrophobic pocket, allowing it to 

modulate the affinity and electron transfer. Further structural analysis is needed 

to discern its role. 

An interesting observation made from the PRE data comparison of the 

oxidized and reduced complexes was that the SRS-1 region, which includes the 

the B’-Helix, shows differential broadening profile between the oxidized and 

reduced complexes. The distance of the B’-Helix in the SRS-1 region in the 

oxidized complex from the Pdx binding site was consistently measured to be 

shorter than that in the reduced complex, indicating that this region is closer to 

Pdx, implying that it may be sampling an effectively more open conformation in 

the oxidized complex relative to the reduced complex. Unfortunately, distance 

measurements to the F-G loop (which is also part of the SRS-1 region) could not 

be made, since it is not within the 34 Å paramagnetic radius of Gd3+, and 

consequently no PRE data was available for this region. Since the docking 
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method used here is not precise enough to pry out minute structural differences 

between the complexes, the exact nature of these differences at the B’-Helix 

cannot be discerned at this point. However, given the importance of this region in 

substrate binding, it’s likely that these differences have implications for Pdx 

effector activity. It is possible that redox-dependent Pdx binding modulates 

dynamics of this region; favoring change from sampling of an open 

conformational subset in the oxidized complex to a closed conformational subset 

in the reduced complex. This is in line with the Pochapsky model which 

hypothesizes that effector activity promotes a closed subset of catalytically 

competent conformations that prevent substrate loss prior to O2 uncoupling.  
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Figure 5.2.Solution NMR structure of the Pdx
r
-CYP101

r 
complex. Cartoon representation of 

the solution NMR Structure of Pdx
r 

(teal)-CYP101
r 

(magneta) derived from PRE restraints, 
docking, and energy minimization in MOE. The [2Fe-2S] metal cluster (yellow and red) is shown 
docked at the proximal face of the heme (gray) with camphor (orange) bound in the active site. 
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Figure 5.3.Solution NMR structure of the Pdx
r
-CYP101

r 
complex (alternate view). Cartoon 

representation of the solution NMR Structure of Pdx
r 
(teal)-CYP101

r 
(magneta) derived from PRE 

restraints, docking, and energy minimization in MOE. The [2Fe-2S] metal cluster (yellow and red) 
is shown docked at the proximal face of the heme (gray) with camphor (orange) bound in the 
active site. 
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Figure 5.4. Solution NMR structure of the Pdx
o
-CYP101

o 
complex. Cartoon representation of 

the solution NMR Structure of Pdx
o 
(green)-CYP101

o 
(copper) derived from PRE restraints, 

docking, and energy minimization in MOE. The [2Fe-2S] metal cluster (yellow and red) is shown 
docked at the proximal face of the heme (gray) with camphor (cyan) bound in the active site. 
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Figure 5.5.Key interactions in the reduced Pdx-CYP101 Complex. Three key interactions at 
the Pdx

r
-CYP101

r 
interface are observed in the solution NMR structure. Distances are labeled 

between the sidechains of interacting residues and the iron atoms of the metal centers. From top 
to bottom: Trp106 on Pdx in hydrophobic contact with Ala 113 on CYP101, Asp38 on Pdx forms a 
salt bridge with Arg112 on CYP101, and Arg66 on Pdx forms a salt bridge with Glu76 on 
CYP101. 
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5.3 Comparison with Other Structural Studies 

While this manuscript was under preparation, the Poulos group using X-

ray crystallography also solved the structure of the chemically cross-linked 

oxidized and reduced Pdx-CYP101 complex (37). The solution NMR structure 

determined here is in good agreement with the Pdx binding site found in those 

co-crystal structures. Contrary to our findings, the investigators in that study have 

proposed that Pdx binding promotes CYP101 to favor an open conformation in 

the substrate access channel that is critical for catalytic activity. The Pdx effector 

mechanism is therefore linked to a closed to open conformational change that 

establishes a water-mediated H-bond network required for proton-coupled 

electron transfer and O2 activation. These conclusions have to be viewed with 

some skepticism however, since the reduced co-crystal structure is solved with 

the product bound instead of the substrate, lending a certain amount of doubt to 

the validity of the open conformation in the context of the effector mechanism 

that works prior to and during substrate turnover, but not after. It is possible that 

the open conformation is accessed to release the product and the crystal 

structures thus do not provide adequate explanation for how the effector 

mechanism is redox-dependent. Interestingly, in their study, two co-crystal 

structures were published for the oxidized complex; one in which the B’-Helix is 

modeled exactly as in the reduced, and another which fails to model the B’-Helix 

at all, likely due to the large dynamic amplitude in this region. The structure 

lacking a modeled B’-Helix is also seen in the absence of substrate, a state 

known to favor the open conformation (68). A probable explanation for this 

observation is that crystal packing effects between adjacent molecules may favor 

crystallization in an open state. The open conformations in CYP101 trapped in 

these co-crystal structures therefore may not provide an accurate representation 

of changes occurring in response to Pdx effector modulation and need further 

investigation in solution. 

Nevertheless, the data collected here clarifies several aspects with 

regards to redox control of the Pdx-CYP101 interaction. Multiple studies have 
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suggested, based on mutagenesis and computer simulations, that the electron 

pathway or binding site is different between the two electron transfer steps (34, 

67), with a few suggesting that NMR spectral changes observed on the distal 

face of CYP101 were caused by 1:3 or 1:6 aggregates of CYP101:Pdx. It was 

further suggested that Pdxo binding to the substrate access channel stabilized an 

energetically strained conformation of the I-Helix that facilitates faster binding of 

Pdxr before CYP101 uncoupling occurs. Our data definitively precludes the 

possibility of aggregates forming in solution as the source of modifications on the 

distal face of CYP101. If such aggregates are indeed present, broadening 

patterns on CYP101 would have reflected the relevant stoichiometry and 

additionally, more residues at or near the substrate access channel would have 

shown intense broadening. Also, since the PRE measurements for the oxidized 

and reduced complexes converged on the same position it seems highly unlikely 

that significantly different binding sites exist and undermines the proposal of 

different electron transfer pathways. Ultimately, it allows us to set aside the 

possibility that the Pdx effector mechanism acts through a redox dependent 

selection of the binding site, and points towards a mechanism involving redox 

modulated conformational selection on CYP101. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The nature of the Pdx-CYP101 interaction and its role in Pdx effector 

activity has mystified researchers in the P450 area for quite some time. The work 

performed in this thesis is an important first step in answering some fundamental 

questions on how these two proteins interact in a redox-dependent manner. 

Conclusive evidence from this study demonstrates that Pdxo and Pdxr bind to 

same site on the proximal face of CYP101o and CYP101r respectively, with 1:1 

stoichiometry.  Since the Pdx binding site and the complex structures are the 

same between the two redox complexes, redox-dependent effector activity is 

more likely to be the result of redox-modulated conformational dynamics. Given 

these findings, it is unlikely that different electron transfer pathways exist 

between the redox complexes as has been previously speculated. 

An important question still remains in how Pdx binding propagates redox-

dependent changes to the substrate access channel. Although the recent co-

crystal structures argue in favor of an open conformation for both redox states at 

the F-G loop and I-Helix which activates and orchestrates the catalytic 

machinery, the role of dynamics in modulating some of these changes cannot be 

understated. While not definitive, our data supports the conformational dynamics 

model of Pdx effector activity that postulates the Pdx effector mechanism works 

through a redox-modulated selection of a closed subset of conformations. This 

closed conformation is hypothesized to enhance catalysis by preventing 

substrate release prior to electron transport and product turnover. The farther 

distances measured at the B’-helix in the reduced complex structure are 

representative of the closed conformational subset.  

The in-solution PRE measurements have an attribute of reporting on the 

dynamic ensemble of conformations, effectively providing information on the 

average conformational distribution over the entire length of the experiment. 

However, by starting with predetermined three-dimensional individual crystal 
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structures, a severe limitation is placed on the structure calculation by foregoing 

the dynamic ensemble nature of the complex structure. Small conformational 

changes upon binding are also quite difficult to model correctly in silico with the 

small number of PRE restraints that were used in docking the two proteins. 

Deciding whether differences between the measured and calculated distances 

are a result of experimental error or conformational changes becomes an 

ambiguous exercise in this case. The minor changes witnessed in the 15N HSQC-

TROSY spectra of CYP101 before and after binding of Pdx, indicate no major 

secondary structure changes take place, and the recent crystal structures 

corroborate this observation. Therefore, trying to capture the subtle 

conformational differences and in particular, the dynamic differences, that, in all 

likelihood, define the Pdx effector mechanism may require a more sensitive 

method than PRE. 

There are some additional ways in which this complex structure model can 

be improved. One possibility is to include orientational information in the structure 

calculation, to refine the relative orientation of the two proteins, which currently is 

only a rough approximation. Orientational restraints in the form of residual dipolar 

couplings (RDC) can be experimentally measured and used in concert with a 

more sophisticated structure calculation program such as the HADDOCK docking 

simulation software (69), which can incorporate both PRE and RDC data. This 

has already been shown as a feasible approach in the structural modeling of the 

oxidized complex and can be extended to the reduced complex by modification 

of parameter and topology files for the metal cofactors in the reduced state of 

each protein. Efforts are currently ongoing in our group to collect these 

orientational restraints and utilize them in such a structure calculation protocol. 

Incorporation of RDCs is bound to increase the accuracy of the local structure 

and provide a means to elucidate the minute conformational differences that exist 

between the oxidized and reduced complexes in solution. More importantly, 

measurement of orientational constraints in multiple alignment media would 

enable us to measure even the dynamic changes that accompany these 
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conformational changes, since RDCs are sensitive to atomic motions on all 

timescales.  

Uncovering the effector mechanism will likely require a better 

characterization of the dynamic differences between the two redox complexes. 

Such dynamic characterization is particularly important for perturbations upon 

complexation of highly dynamic regions such as the B’-Helix and the F-G Loop, 

that are observed in both our NMR study and the co-crystal structures (29). 

Conformational exchange in these secondary structures is expected to occur on 

the micro-millisecond timescales (70). Apart from the RDC measurements, 

chemical exchange experiments based on CPMG sequences can also provide 

helpful dynamic information on motions occurring in the micro- millisecond time 

regime (45). These experiments should also allow collecting dynamic information 

on regions inaccessible to our PRE experiments. If we can determine the exact 

nature of the conformation in each redox state for the complex in solution i.e. 

open or closed, then it may be possible to comprehensively describe the redox-

modulated conformational changes propagated throughout CYP101 due to 

effector binding with the help of molecular dynamics (MD) simulations. These 

simulations have the potential of capturing differences in the conformational 

sampling of various states within the subtle secondary structure motions in the F-

G Loop and B’-Helix that are responsible for substrate gating. Extracting redox-

modulated exchange rates in these regions could provide compelling evidence in 

support of the conformational dynamics model of Pdx effector activity. 
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Table 1. PRE Measurements for Pdxr and back calculated distances from 

Pdxr crystal structure (PDB I.D. 1XLQ) 

Residue no. Measured (Å) Calculated (Å) 

3 32.8 34.8 

4 32.9 33.7 

6 30.3 31.4 

7 29.7 31.8 

8 30.3 31.9 

9 31.5 30.4 

18 32.5 31 

21 32.3 30.7 

22 28.4 27.9 

31 32.5 33.4 

33 29.4 30.1 

35 28.2 28.3 

51 27.5 26.1 

52 25.2 23.7 

53 24.9 24.8 

54 29.4 28.1 

56 31 29.4 

58 30.7 30.6 

58 29.7 28.2 

59 29.8 29.4 

60 30.6 29.1 

62 28.3 27.5 

63 24.6 22.7 

78 23.5 19.1 

79 22.6 21 

81 24.1 22.4 

83 24.4 20.5 

90 31.2 29.3 

89 28.2 27.3 

103 25.5 25.6 

105 23.7 21.8 

106 22.6 20.4 
 

a
Distances are measured from the intensity ratios calculated for the HN backbone amide 

resonances of 
15

N labeled Pdx
r 
conjugated with EDTA spin label and coordinated to Gd

3+
. Error 

bounds of ± 4Å were applied to every measurement. 
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