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ABSTRACT 

Maximal oxygen uptake (VO2max) is regarded as the gold standard for assessing aerobic fitness.  

In 1923, A.V. Hill et al. proposed that VO2max represents the maximal ability of the body to take 

in and consume O2 during strenuous exercise.  Recently, however, controversy has arisen over 

the issue of whether a leveling off, or "plateau" in VO2 is necessary to verify attainment of 

VO2max.  Purpose: To compare two different VO2max protocols and determine if both protocols 

show direct evidence of an upper limit on O2 transport capacity.  Methods: Nine runners (18-35 

years old) completed a continuous graded exercise test (CGXT), followed by a discontinuous 

graded exercise test (DGXT). The CGXT consisted of gradually increasing treadmill running 

speed to the point of volitional exhaustion; the highest speed attained was labeled the peak 

treadmill speed.  Over the next several days, participants ran at 80%, 90%, 100%, 105%, and 

110% of peak treadmill speed for 10 minutes, or until volitional exhaustion was reached.  

Results: All participants (n=9) achieved a "VO2 ceiling" (or upper limit) on the DGXT, while only 

44% (n=4) achieved a "VO2 plateau" on the CGXT. There was no significant difference between 

the VO2max obtained from a CGXT (57.4 ± 2.6 mL*kg
-1

min
-1

) and DGXT (60.0 ± 3.1 mL*kg
-1

min
-1

).  

There was no difference between maximal oxygen uptake (VO2max) measured at 90%, 100%, 

105%, and 110% of PTV (p>0.05). However, the highest VO2 recorded at 80% PTV was 

significantly lower than that recorded at all other velocities (p<0.05).  Conclusion: The VO2 

ceiling effect on a DGXT is inherently different than the VO2 plateau effect on a CGXT.  In this 

study, a ceiling was always seen on the DGXT, but a plateau was not always seen on the CGXT.
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PREFACE 

"Bernard of Chartres used to say that we are like dwarfs on the shoulders of giants, so that we 

can see more than they, and things at a greater distance, not by virtue of any sharpness of sight 

on our part, or any physical distinction, but because we are carried high and raised up by their 

giant size." 

  

 --John of Salisbury, 1159 
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Chapter 1 

Thesis Introduction 

VO2max is defined as the highest rate at which the body can take in and consume oxygen, 

measured during strenuous exercise [1]. VO2max is widely accepted as a measure of aerobic 

fitness, and is linked to reduction in all-cause mortality and cardiovascular disease [2-4]. In 

addition, it is considered and important factor in athletic performance of middle- and long-

distance events. The concept of maximal oxygen intake (VO2max) can be traced back to the work 

of Hill and Lupton in 1923 [5]. In performing a discontinuous graded exercise test (DGXT), Hill 

and Lupton made several key observations that formed the Hill and Lupton VO2max paradigm, 

which is still considered to be valid by most researchers. 

 

The central tenets of the Hill and Lupton paradigm are as follows [6]: 

1. There is an upper limit to oxygen intake 

2. There are inter-individual differences in VO2max 

3. A high VO2max is a pre-requisite for successful distance running 

4. VO2max is primarily limited by the circulatory and/or respiratory system 

 

Attainment of VO2max must be confirmed by criteria established through rigorous research. 

Among those criteria is the VO2 plateau. A VO2 plateau signifies that, beyond a certain point, 

further increases in work rate fail to elicit further increases in VO2. The VO2 plateau has been 

cited as a criterion for attaining VO2max during a continuous graded exercise test (CGXT), by 
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several authors [7-17]. However, Day et al. [10] have shown that the lack of a VO2 plateau on a 

CGXT does not necessarily invalidate a VO2max test.  In their study, Day et al. found that 

participants lacking a VO2 plateau had an equal VO2max when validated with a supramaximal 

test. 

According to Noakes [18] , the presence of a VO2 plateau during a CGXT is essential to 

demonstrate an upper limit to oxygen intake.   A plateau represents evidence that the upper 

limit to the oxygen intake has been reached. Because of the low prevalence of plateau during a 

CGXT, Noakes has questioned the entire VO2max paradigm [18-32] set forth by Hill and Lupton 

[5]. He has maintained that, “…it is now established beyond doubt that the ‘plateau 

phenomenon’ is not a prerequisite for the identification of the ‘true VO2max’ in a majority of (but 

not all) subjects…we must now conclude that, according to the Hill model, the achievement of a 

‘limiting’ cardiac output causing skeletal muscle anaerobiosis cannot be the exclusive reason 

why all subjects terminate maximal exercise. The prediction of the Hill model allow no other 

conclusion” [23], In more recent years, Noakes has acknowledged that VO2max exists, but he 

claims that it is limited by a "central governor" in the central nervous system, which limits the 

recruitment of skeletal muscles at high work rates [19, 22-32]. 

We believe that part of the confusion over the VO2 plateau phenomenon results from the 

fact that the work Hill and Lupton [5]was based upon DGXTs, but most researchers today use 

CGXTs.  The origin of the term "plateau" probably originated from Taylor et al. [33] who also 

used a DGXT protocol, but their results are not applicable to CGXT protocols. As modern 
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treadmills and metabolic measurement carts became available, researchers switched to using 

CGXTs, without rigorously examining whether the VO2 plateau concept still applied. 

By closely mirroring Hill and Lupton’s protocol, we sought to determine whether taking 

runners to higher speeds than those achieved at the end of a CGXT would yield further 

increases in VO2.  There were 3 hypotheses in this study: 

1. There is not a statistically significant difference between VO2max values achieved on a 

CGXT and DGXT protocol. 

2. Having subjects run at supramaximal speeds does not result in further increases in VO2, 

beyond those seen at the end of a CGXT. 

3. All participants display a VO2 "ceiling" (or upper limit) on a DGXT, but not all participants 

display a plateau on a CGXT. 
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Chapter 2 

Review of Literature 

 

VO2max: Determinants and testing criteria 

 

Maximal oxygen uptake is considered the “gold standard” for measuring cardiovascular 

fitness [34-35]. VO2max is a major determinant of performance in any aerobic endurance activity 

[36-39].  In addition, prospective observational studies demonstrate that high levels of VO2max 

are associated with lower rates of cardiovascular disease and all cause mortality [2-3, 40-43]. 

There is individual variance in cardiovascular fitness with clinical populations of individuals with 

cardiovascular, metabolic, and pulmonary disease having the lowest values, and elite 

endurance athletes having the highest values. In the sections that follow, the physiological 

determinants of VO2max will be discussed, as well as the various methods for measuring VO2max. 

VO2max is the product of maximal cardiac output and arteriovenous oxygen difference 

[1]. Alterations in either of these variables will be associated with alterations in VO2max. The 

next section will discuss the physiological variables associated with these features.   

 

Pulmonary Features 

 

In healthy individuals, the pulmonary system typically does not limit VO2max. As 

predicted by Hill et al. [44], desaturation of arterial blood fails to occur during strenuous 
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exercise based on the observation that the subjects have ”never, even in the severest exercise, 

shown any signs of cyanosis”, but also states that it would be dangerous to assume that arterial 

desaturation never occurs during strenuous exercise, as it could occur in those with high 

maximum cardiac output, due to the rapid movement of blood through pulmonary capillaries.  

Though not confirmed by Hill himself, other researchers have found conditions that can 

cause arterial desaturation and limit VO2max in healthy populations. Powers et al. [45] showed 

that elite athletes (VO2max mean = 70.1 ml*kg
-1

*min
-1

) experienced significantly greater arterial 

desaturation during maximal exercise compared to the recreational athletes (VO2max mean = 

56.5 ml*kg
-1

*min
-1

). This arterial desaturation can be remedied with hyperoxic conditions (26% 

inspired O2 gas concentration), resulting in a significant increase of VO2max (6.7%) when 

compared to normoxic (21% inspired O2 gas concentration) conditions. Unlike the elite athletes, 

the recreational athletes showed no difference in VO2max or O2 saturation between hyperoxic 

and normoxic conditions. 

Dempsey et al. [46] also showed that elite athletes are more likely to undergo arterial 

desaturation during maximal work, compared to individuals with normal fitness. Given the large 

difference in cardiac output between these two populations (40 vs. 25 L*min
-1

), Dempsey et al. 

hypothesized the decreased time for diffusion of atmospheric oxygen to venous blood may be 

too short to allow an equilibrium to be established between the PO2 in the alveoli and the 

pulmonary capillary blood.  Thus, arterial desaturation occurs and this limits the VO2max of elite 

athletes. 
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In addition, high altitude is known to decrease arterial concentration, and thus VO2max. 

Due to the decreased atmospheric PO2 at high elevations, the oxygen gradient that drives 

diffusion of O2 from the alveoli into the pulmonary capillaries is reduced. Cymerman et al. [47] 

showed a decreased arterial saturation and greatly decreased VO2max, as a result of a decrease 

in arterial oxygen content.   

Aside from elite athletes and high altitudes, pulmonary features play little to no part in 

limitations of VO2max in healthy populations. 

 

Cardiac Output 

 

Cardiac output refers to the rate at which the heart pumps blood through the body (i.e. 

the systemic circulation). Maximal cardiac output is a central factor affecting VO2max; it is equal 

to the product of heart rate and stroke volume. Cardiac output has been proven to be a limiting 

factor of VO2max [1, 35, 48]. 

During maximal exercise, approximately 80-90% of arterial blood is re-directed to the 

working muscles [1]. In a study by Andersen and Saltin [48], , the quadriceps muscle group was 

isolated and exercised at work rates ranging from 10W to 60W . By cuffing the quadriceps just 

below the knee and measuring changes in the circumference of the quadriceps upon releasing 

the cuff, the researchers were able to determine blood flow to the quadriceps during exercise. 

The results showed that mean muscle VO2peak was 0.8 L/min for 2.3 kg of mass in the 

quadriceps. This calculates to a relative VO2 of 347 ml*kg of active muscle
-1

*min
-1

, which far 
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exceeds the muscle's rate of oxygen uptake during maximal, whole body exercise. This suggests 

that blood flow to exercising skeletal muscle is limited by the finite amount of cardiac output, 

which is not an issue during exercise of isolated muscle groups. 

Saltin [35] measured VO2max during various exercises, including cycling, running, arm 

cranking, and cycling plus arm cranking. Seven subjects completed a DGXT to measure VO2max 

using VO2 measurements over 60 seconds. Cycling alone and cycling plus arm ergometry 

yielded a VO2max of 4.23 and 4.24 L/min of O2, respectively (p=0. 50). However, there was a 

significant difference (p<0.001) between the VO2max of arm cranking alone (3.27 L/min) and 

cycling alone (4.66 L/min) in the 3 subjects that completed both these exercises. Combining 

arm-and-leg cycling failed to increase the VO2 to amounts equal to the sum of the VO2 of both 

activities. Thus, increasing the amount of muscle mass used (beyond a certain point) does not 

increase VO2max for that exercise, suggesting that a central factor, not the amount of muscle 

mass recruited, limits VO2max. 

Saltin [49] demonstrated the limitations of cardiac output when comparing blood flow 

of single leg knee extensions versus two-legged cycling in nine healthy men. Saltin used the 

method previously described [48] to measure blood flow to a limb cuffing the leg just below the 

knee. During single-leg knee extensions, a work rate of 45 to 75 watts was maintained for 10 

minutes, and no leveling off of whole body oxygen uptake could be detected with an increase 

of work rate. In a representative subject, the cardiac output during single-leg knee extensions 

was about 12 L/min, and 25 mL*kg of active muscle
 -1

*min
-1

, while the cardiac output during 

two-legged bicycling was 20 L/min and about 8 mL*kg of active muscle
 -1

*min
-1

. This 
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corresponds to a 67% increase in cardiac output with a 70% decrease in the cardiac output per 

kg of working muscle. In addition, doubling the muscle mass used from single-leg knee 

extensions to two-legged bicycling caused a 67% increase in VO2 rather than a 100% increase. 

This strongly suggests that VO2max is limited by the maximal cardiac output. 

In 1977, Secher et al. [50] performed testing examining the effects of adding arm to leg 

exercises. Seven young male subjects were recruited. Subjects performed two, 20-minute bouts 

of exercise separated by an hour of rest. Each bout began with 10 minutes of either arm 

exercise (38-62% of VO2max for arm exercise) or leg exercise (58-78% of VO2max for leg exercise) 

and ended with 10 minutes of arm plus leg exercise (71-83% of VO2max for arm plus leg 

exercise). The results showed that adding sufficient arm exercise (accounting for 40% of VO2 for 

combined exercise) to leg exercise caused a reduction in blood blow without a change in mean 

arterial blood pressure, while adding leg exercise to arm exercise decreased mean arterial 

blood pressure. The authors concluded that oxygen supply to a large muscle group is limited by 

vasoconstriction, when another large muscle group is exercising simultaneously. If the amount 

of exercising muscle mass increases, vasoconstriction will occur to allow redirection of the 

limited cardiac output of the body. 

Maximal cardiac output is affected by maximal heart rate, left ventricular dimensions, 

and blood volume. These factors are discussed in detail below. 
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Maximal Heart Rate 

 

Maximal heart rate is affected by age and genetic factors, more so than training [1]. Two 

Fitness tests on 31 male and 35 female subjects administered 20 years apart showed a 

reduction in VO2max by 20% and a reduction in maximal heart rate by 12-15 beats with great 

individual variability [51], linking age-reduced VO2max with decreased maximal heart rate. 

A 1984 study by Ades et al. [52] examined the effect of large and small doses of both 

pindolol and propranolol (β-adrenergic blocking drugs) on treadmill exercise. Compared to 

placebo, all drugs decreased exercise duration (p<0.001), but the drug or drug dosage did not 

make a difference in reducing the exercise duration. Though the differences in heart rate and 

blood pressure varied with dosage for each drug, both showed an increase in the rate-pressure 

product, indicating a compensation for lower maximal heart rate via increased stroke volume. 

Joyner et al. [16] examined the effects of beta-blockade in 11 trained (VO2max of 63.3 

mL*kg
-1

*min
-1

) and 11 untrained (VO2max of 44.5 mL*kg
-1

*min
-1

) male subjects. The subjects 

performed two walking treadmill tests to exhaustion prior to any treatment. Subjects were 

administered a placebo, propanolol, or atenolol for 1 week then tested using the same 

treadmill protocol. All subjects were tested under all three treatments. Both the trained and 

untrained individuals experienced a significant decrease in VO2max with beta-blockade 

compared to placebo. Trained individuals decreased from 63.3 mL*kg
-1

*min
-1

(placebo) to 59.3 

mL*kg
-1

*min
-1

 (atenolol) or 56.2 mL*kg
-1

*min
-1

 (propanolol). They also experienced a significant 

reduction in maximum heart rate from 184 bpm (placebo) to 150 bpm (atenolol) or 143 bpm 
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(propanolol). These results were mirrored in the untrained group. They experienced a 

significant decrease in VO2max from 44.5 (placebo) to 42.6 (atenolol) or 41.6 (propanolol), and a 

significant reduction in maximum heart rate from 197 bpm (placebo) to 149 bpm (atenolol) or 

144 bpm (propanolol). The significant drop in maximum heart rate was accompanied by a 

lower, but still significant, drop in VO2max. 

In a review by Tesch [53], administration of beta-blockers in patients, healthy and 

trained subjects causes a 30-35% reduction in maximal heart rate, 5 to 15% reduction in VO2max 

and an increase in maximal stroke volume. The decrease in maximal heart rate will affect 

VO2max, but the relative decrease in VO2max will be less than the relative decrease in maximal 

heart rate. Thus, acute reductions in maximal heart rate in an individual, due to 

pharmacological treatment, will cause reductions in VO2max. 

Administration of beta-blockade is shown to reduce VO2max by reducing maximum heart 

rate. This shows that central factors—specifically maximal heart rate—have direct effects on 

VO2max. The reduction of VO2max from these studies is usually less than the magnitude of the 

reduction in maximum heart rate, suggesting a compensatory increase in stroke volume. 

 

Left Ventricle Dimensions 

 

Blomqvist and Saltin [54] reviewed several articles showing a correlation between high 

levels of VO2max and increased heart size and volume. Total heart size was not correlated with 
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VO2max, but left ventricular volume (LVV) was correlated. Endurance athletes demonstrated a 

higher stroke volume to heart volume ratio than power-trained athletes [55]. 

During training, the left ventricle increases in thickness. Ehsani et al. [56] used 

echocardiography to estimate left ventricle wall thickness in 8 competitive swimmers who 

underwent a 9-week training program. In the same study, they followed 6 runners who 

discontinued training for 3 weeks. The swimmers increased left ventricle end-diastolic 

dimension from 48.7 mm to 52.0 mm (p<0.005) and VO2max from 52 to 60 ml*kg
-1

*min
-1

 

(p<0.005) over the 9 weeks of training. The detrained running group decreased left ventricular 

end diastolic thickness from 51 mm to 46.3 mm and VO2max from 62 ml*kg
-1

*min
-1

 to 57 ml*kg
-

1
*min

-1
 over the 3 weeks of detraining. 

The increased left ventricular volume after training allows the heart to maintain the 

same cardiac output at rest, with fewer beats per minute.  Typically, endurance trained athletes 

often demonstrate sinus bradycardia (heart rate <60 beats/min) at rest.  This increased 

efficiency also allows a person to maintain a work rate with a reduced heart rate response 

compared to the pre-trained state [57-58]. A study of 253 subjects showed a “minimal” 

decrease in resting heart rate (1.9 to 3.4 beats per minute) accompanying 20 weeks of 

endurance training [59]. However, a separate study showed that athletes in the peak of their 

training are more likely than a sedentary control group to exhibit resting sinus bradycardia [57]. 

This suggests that the increased left ventricular volume allows for a lower heart rate at rest. 

 

Blood Volume and Blood Doping 
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Blood volume is shown to increase with endurance training. A review study done by 

Sawka et al. [60] analyzed 18 reports on the effects of endurance training on blood volume and 

found a 10% increase in blood, plasma, and erythrocyte volume within 30 days of endurance 

training. The same review showed significant correlation (p<0.05) between total blood volume 

and VO2max (r=0.65 to r=0.92 depending on the study) [60]. 

A 1994 study by Davy et al. [17] examined if aging causes a decrease in total blood 

volume. Blood volume was measured in 7 young non-obese (24.7 years of age) and 7 older 

(66.1 years of age) men matched for body mass index and physical activity. Trained subjects 

were excluded due to a possible masking effect on blood volume. Younger adults were shown 

to have significantly more blood (6.2L vs. 4.7L), plasma (3.7L vs. 3.0L), and erythrocyte (2.5L vs. 

1.8L) volume than older men. Younger men also had significantly higher VO2max (48.7 vs. 32.4 

mL*kg
-1

*min
-1

), suggesting a link between age-related changes in VO2max with reduction in total 

blood volume. 

Blood doping (the act of removing, storing, and then reinfusing blood), is shown to 

increase VO2max. Glenhill’s review [61-62] of several blood doping articles show that a reinfusion 

of  900 to 1350 mL of blood increases VO2max by 4 to 9%, respectively , compared to control 

groups (injected with saline) that showed no increase. In the 1970s, Ekblom et al. [63] 

conducted the first study to show that blood doping increases VO2max.  They also showed that 

loss of 800 and 1200 mL of blood corresponded to a 13 and 18% drop in hemoglobin 

concentration and VO2max, respectively. Upon re-infusing the blood (which had been frozen and 
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stored for a couple of months while the subjects produced new red blood cells), there was a 

13% increase in hemoglobin concentration and 9% increase in VO2max. Correlation between 

blood loss and VO2max was r=0.97.  

 

Arterio-venous oxygen difference 

 

The arterio-venous oxygen difference refers to the difference in the oxygen content (ml 

of O2 per 100 ml blood) between the arteries and veins. It is an indirect measure of oxygen 

extraction at the cellular level.  In most people of normal fitness level, the arterial hemoglobin 

is almost completely saturated with oxygen, even during maximal exercise [64]. 

A study done by Ekblom et al. [65] measured arterio-venous oxygen difference in 7 

college-age males before and after 16 weeks of endurance training. The training consisted of 

cross-country running 3 times a week that was: (a) dash (30-60 second sprint repeated 5-10 

times with 2-3 minutes rest between each sprint), (b) interval (70-75% of maximum speed for 3-

6 minutes with 3-4 minutes of rest between each run), or (c) distance running (45-75 minutes of 

continuous running). Arterial concentration was measured during maximal cycling (6-minute 

cycle to exhaustion) using two catheters placed into the antecubital vein. The results 

demonstrated an increase in their arterio-venous oxygen difference during maximal exercise, 

from 138 to 143 mL/liter and an increase of VO2max from 3.12 L/min to 3.5 L/min. Though not as 

significant as other factors such as blood volume and maximal heart rate, an increase in arterio-

venous oxygen difference has been linked to increases in training-induced VO2max. 
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Capillary Density 

 

Capillary density in the peripheral skeletal muscles affects VO2max in several ways: it 

increases mean transit time for oxygen exchange in working muscles [49], and decreases 

peripheral resistance. 

Tesch et al. [66] conducted a study in 1984 showing that endurance athletes 

demonstrate increased capillary density. Taking muscle tissue samples from 8 elite 

weight/power lifters, 8 endurance athletes, and 8 non-athletes, myofrillar ATPase, NADH-

tetrazolium reductase, and amylase-periodic acid-Schiff were used to determine fiber type 

distribution and capillary density. The number of capillaries per mm
2
 of muscle fiber in 

untrained individuals (306 capillaries per mm
2
) was significantly greater than power/weight 

lifters (199 capillaries per mm
2
) and significantly lower than endurance athletes (401 capillaries 

per mm
2
). This was the first study linking endurance training to increased capillary density. 

Brodal et al. [67] took muscle biopsies from the lateral part of the quadriceps in 12 

untrained (VO2max of 72.0 mL*kg
-1

*min
-1

) and 11 untrained (VO2max of 51.3 mL*kg
-1

*min
-1

) 

young men and examined capillary density using ATPase staining. Compared to untrained men, 

the trained men had significantly more capillaries per mm
2
 (821 vs. 585) and capillaries per 

fiber (2.49 vs. 1.77). 

Ingjer and Brodal  [68] examined the capillary density of the quadriceps femoris in 11 

young women. Five were endurance trained (62.1 ml*kg
-1

*min
-1

) and 6 were untrained (43.9 

ml*kg
-1

*min
-1

). The endurance trained athletes had significantly higher capillaries per fiber ratio 
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(1.69 vs. 1.11) and greater capillaries per mm
2
 (404 vs. 301) compared to the untrained group. 

This provides a link between capillary density and VO2max that exists in females, as well as 

males. 

Andersen and Henriksson [69] showed that endurance training increases capillary 

density. Taking 5 subjects, and training them on a cycle ergometer for 40 minutes a day at 80% 

of VO2max for 8 weeks, Andersen and Henriksson measured capillary density and muscle fiber 

composition before and after training using amylase-PAS method and myofribrillary ATPase. A 

16% increase in VO2max (49.0 to 56.6 mL*kg
-1

*min
-1

) was accompanied by a 20% increase in 

capillaries per mm
2
 (329 to 395), which was increased across type I, type IIa, and type IIb fibers. 

Capillary density is related to the VO2max increase caused by training. 

In his J.B. Wolffe lecture in 1986 [70], Dempsey noted that these capillary density 

adaptations exceed the adaptations of the lung capillary density during training. Training-

induced increases capillary density in skeletal muscle increases the total cross-sectional surface 

area of the capillaries, allowing more blood to interact with the mitochondria, and allowing the 

muscles to maintain sufficient arterio-venous oxygen difference even at high rates of blood 

flow.   

 

Skeletal Muscle Respiratory Capacity 

 

Training increases both the mitochondrial density and concentration of mitochondrial 

enzymes [71]. Endurance training studies show that an increase in VO2max is generally coupled 
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with increases in succinate dehydrogenase (SDH), phosphofructokinase [72], lactate 

dehydrogenase, monocarboxylate transporters (MCT) 1 and 4 [73], and mitochondrial density 

[74]. Although not as important as cardiac output in determining the VO2max, the increased 

enzyme activity increases the rate of oxygen utilization within the cell and helps to create the 

oxygen pressure gradient between pulmonary capillary blood and the mitochondria necessary 

to maintain arterio-venous oxygen difference. 

Although mitochondrial density is associated with increased fitness, a 2.2 fold increase 

of these mitochondrial enzymes is normally associated with a 20 to 40% increase in VO2max [75]. 

Holloszy and Coyle have reinforced this by showing that individuals with identical VO2max will 

actually show two-fold differences in mitochondrial density [76-77]. Despite that possibility that 

skeletal muscle respiratory factors do not affect VO2max, Holloszy and Coyle [76] observed in a 

study of runners done by Costill [78] that the succinate dehydrogenase levels of elite runners 

were 2.5 times greater than untrained controls. 

Saltin et al. [79] demonstrated the effects of peripheral limitations on VO2max. Thirteen 

male participants completed 4 to 5 training sessions per week over 4 weeks of training. Each leg 

was trained differently. One leg was always trained for sprint or endurance, and the other leg 

was trained oppositely or not at all. Muscle samples of the quadriceps were sampled before 

and after training and assayed for SDH and myofibrillar ATPase. Compared to baseline, VO2peak 

tests on the trained leg demonstrated a 27% increase in VO2max while the untrained leg 

demonstrated a 7% increase in VO2max. In addition, SDH activity increased in trained legs 

compared to untrained leg, and lactate was “only continuously released from the [untrained] 
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leg”. The authors concluded that training increases local adaptations that affect the metabolic 

response to exercise. 

Klausen et al. [80] examined the effects of 8 weeks of single-leg cycle ergometer training 

on maximal single-leg and double leg fitness. Six healthy young males showed a 19% VO2max 

increase in single-leg exercise and an 11% increase in double leg testing. In addition, heart rate 

during submaximal single-leg exercise dropped 11% while it dropped 2% during submaximal 

two-leg exercise. This implies that specificity of training can affect both the VO2max and cardiac 

adaptations to training. 

 

Protocols for measurement of maximal oxygen uptake 

 

 

Discontinuous vs. Continuous Protocols 

 

Graded exercise tests (GXT) can be classified as either continuous (CGXT) or 

discontinuous (DGXT). CGXT are more commonly used today [9-10, 12-14], while DGXT were 

more common in VO2max studies done in the 1950s and 1960s [5, 33, 81-84].  

A DGXT consists of working at a constant load (e.g. running at a single speed or cycling 

at a fixed wattage) until steady-state VO2 (or an "apparent steady state" - i.e. leveling off of VO2 

at a supra-maximal work rate) is achieved. That steady state value is the VO2 for that workload. 

Constant load tests are repeated until the subject fails to show an increase in VO2 with an 

increase in workload (referenced as a plateau, which will be discussed later)[5, 33, 75, 79, 85], 

or failed to complete the workload for a duration [33]. The highest VO2 achieved is considered 
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the VO2max. This protocol typically requires the subject to repeat multiple tests separated by 

rest, usually a day or more in length. 

A CGXT consists of a single continuous test. In it, the work rate or exercise intensity is 

gradually increased (usually at 1-minute intervals) until the participant reaches volitional 

exhaustion. The highest VO2 achieved during any 15-, 30-, or 60-s period is termed the VO2max. 

The test usually lasts between 8 and 20 minutes, from start to finish. 

 

Validity of CGXT compared to DGXT 

 

Studies show that DGXT and CGXT yielded equally valid VO2max measurements [86-91]. 

Stamford [86] studied VO2max values of 10 males subjects using various DGXT and CGXT 

treadmill tests. Each participant was administered a DGXT, 2 CGXTs (test-retest), and 2 constant 

load tests. The DGXT was performed first to establish a maximal work rate. The DGXT consisted 

of running 7.0 mph for 3 minutes, resting 10 minutes, and then increasing the treadmill incline 

by 2.5% for each successive 3 minute run. The test was completed when subject could not 

complete the 3 minute run. Both CGXT were identical to the DGXT, but the stages were 2 

minutes instead of 3 and there was no rest between the bouts. The constant load tests were 

run at the speed and peak incline from the DGXT, and 2.5% increased incline. The results of 

each test yielded VO2max of 50.14 (DGXT), 49.58 (best of either CGXT), 49.30 (constant load at 

peak incline), and 49.41 (constant load at peak incline plus 2.5%) ml*kg
-1

*min
-1

 (p>0.05). Even 
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with the variance in protocol and supramaximal intensity, all protocols yielded equal VO2max 

results.  

Shephard et al. [87] studied 24 Canadian males varying greatly in fitness (VO2max 30 to 

65 ml*kg
-1

*min
-1

) across CGXT and DGXT in treadmill, bicycle, and step modes of exercise 

administered in a randomized order. The treadmill exercise consisted of running uphill at speed 

of 5 to 6 mph and slopes of 1% to 18%. Bicycle ergometer exercise was performed at 60 to 90 

revolutions per minute with varying workloads. Step mode exercise consisted of a single 18-

inch step climbed with two paces at a rate of 80 to 140 paces per minute. The CGXT and DGXT 

were performed by predicting the participants work rate at VO2max based on the physiological 

response of a respective submaximal work rate. DGXT was a constant load at 110% of predicted 

maximum work rate, and further bouts were adjusted in light of the participant’s performance, 

while the CGXT was set at 90% to 100% of the predicted maximum work rate and increased 

slightly every 2 minutes. The VO2max was not significantly different between CGXT (3.84 L/min) 

and DGXT (3.74 L/min), regardless of whether it was a treadmill, bicycle, or step exercise test. 

Washburn and Seals [90] examined CGXT and DGXT in arm cranking in 20 males 

subjects. The CGXT portion increased power every minute, while the DGXT increased power 

every two minutes with one minute of rest. Initial power and power increases were identical 

between the DGXT and CGXT. The initial power for arm cranking was estimated from the 

assumption that the VO2peak of arm cranking is equivalent to 60% of the participant’s treadmill 

VO2max, and the participant would reach VO2max by the fifth stage. Order of days was 

randomized, and no significant differences were found between the VO2peak in the CGXT (33.8 
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ml/kg/min) and DGXT (34.2 ml/kg/min). DGXT and CGXT yield equivalent VO2peak in arm 

cranking as well. 

More recent studies have verified this finding. Duncan et al. [11] compared the VO2max 

values from a the DGXT protocol used by Taylor et al. [33], and the CGXT protocol used by 

Stamford [86]. In the 10 males subjects tested, the VO2max of the DGXT (56.8 mL*kg
-1

*min
-1

) 

was not significantly different from the CGXT (55.8 mL*kg
-1

*min
-1

). These results concur with 

Stamford [86]. 

Day et al. [10] performed a cycling CGXT on 71 participants. The protocol consisted of 

pedaling at 20W with an increase of 5W every 20, 15, or 12 seconds until the participant could 

not maintain a cadence of 60 revolutions per minute. Day et al. then followed up with 6 of the 

participants to perform a DGXT at varying supramaximal and maximal loads. Results showed 

that the VO2max of the CGXT (4.50 L/min) did not vary significantly from the DGXT (4.51 L/min). 

Rossiter et al. [12] performed a cycling CGXT on 7 subjects followed by a 5-minute 

recovery at 20W, and then a constant load cycling bout at 95% or 105% of their peak work rate 

during the CGXT. The following constant load bout was similar to the bout of a DGXT that would 

be near or at VO2max. The results showed no significant difference between the VO2max of the 

CGXT (4.3 L/min), the 105% of peak work rate bout (4.3 L/min) and the 95% of peak work rate 

bout (4.1 L/min). 

The validity of VO2max measurements between a DGXT and CGXT equally valid. 
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Various Exercise Modes 

 

Research has shown that measured VO2max is affected by the amount of muscle mass 

recruited during exercise. For this reason, various exercise modes will yield different VO2max 

values, depending on the amount muscle mass being used.  Taylor et al. [33] showed that 

VO2max derived from a treadmill VO2max test increased from 4.0 to 4.2 L/min when arm 

ergometry was added.  

McArdle et al. [92] tested 15 male students across several different exercise tests. They 

performed a treadmill and cycling CGXT; treadmill and cycling DGXT; Mitchell, Sproule and 

Chapman treadmill test; and a Balke treadmill test. They found that Balke, CGXT, and DGXT 

treadmill protocols yielded a VO2max that was 10-11% higher (p<0.01) than a cycling protocol, 

with no significant difference between the DGXT and CGXT cycling VO2max values. 

Hermansen and Saltin [93] conducted a study that supported the findings of McArdle et 

al. [92]. They tested 55 male subjects ranging from 18 to 68 years of age. The participants 

completed a bicycling DGXT based on Astrand and Saltin’s [81] protocol and a treadmill DGXT 

based on Taylor et al.’s protocol [33]. The resulting VO2max values for bicycling, level treadmill 

running, and incline treadmill running were 4.34, 4.48, and 4.68 L/min (p<0.01 compared to 

bicycling), respectively. They concluded that inclined running yields a higher VO2max than 

bicycling due to the usage of more muscle during exercise. 

Astrand and Saltin [82] compared VO2max in various exercises (sitting cycling, supine 

cycling, simultaneous leg and arm work, running on a treadmill, skiing, swimming, and arm 
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work) in seven subjects. VO2max was 15% lower in seated cycling compared to supine cycling, 

and 30% lower in arm ergometry than in cycling. Thus, the greater the difference in muscle 

mass recruitment, the greater the differences in measured VO2max. In addition, even if the 

working muscle mass is equivalent, the method of work may affect VO2max, as demonstrated by 

the difference between seated and supine cycling. 

Buchfuhrer et al. [94] tested 12 “normal men” by administering a cycling and treadmill 

CGXT, and found that VO2max values measured on treadmill running were 6% higher compared 

to cycling.  Bergh et al. [95] had 10 males perform VO2max tests with cycling, cycling plus arm 

cranking, and treadmill running. Running yielded the highest VO2max (4.44 L/min) which was 

significantly greater than cycling (4.12 L/min), but not significantly greater than cycling plus arm 

cranking (4.40 L/min). These were all significantly greater than arm cranking alone (VO2max of 

3.01 L/min). They concluded that VO2max relies on the exercising muscle mass to a certain 

extent. 

However, there are certain exceptions to the fact that running yields higher VO2max than 

cycling. If an athlete is particularly well trained in one exercise mode, he or she can achieve 

relatively high VO2max (compared to other modes) despite differences in muscle mass usage. For 

example, Stromme et al. [96] took 37 athletes (24 cross country skiers, 8 rowers, and 5 cyclists) 

and administered VO2max tests using both their respective sport and treadmill incline protocol. 

The 5 cyclists achieved a VO2max on the cycle test that was about 5-10% higher than uphill 

running. All other athletes achieved VO2max in their respective sport that was higher than during 
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uphill running, ranging from 2.5 to 6.0% higher. The cycling result contrasts with previous 

studies showing that running elicits a VO2max value that is 10% higher than cycling. 

Magel et al. [97] trained 15 college-age male recreational swimmers in swimming for 10 

weeks. Training consisted of 1 hour of practice 3 days per week. The first week was one set of 

ten 50-yard swims and five 100-yard swims. After the second week, 200- and 300-yard swims at 

maximum speed were added. After the fourth week, 300, 400, and 500 yard swims were added 

increasing the volume from750 yards to 2000 yards over the course of the training. Prior to the 

training, the participants completed treadmill (VO2max of 4.05 L/min) and swimming (VO2max of 

3.44 L/min) VO2max tests. After training, their VO2max from the swimming test (3.82 L/min) 

increased significantly, but their VO2max on the treadmill test (4.11 L/min) did not. By training 

specifically for swimming, the participants’ VO2max during swimming became relatively higher, 

and therefore VO2max measurements would vary depending on the training of the exercise 

mode being tested. 

Pechar et al. [98] enrolled 60 college age men, and randomly assigned them to 8 weeks 

of bicycle ergometer training, 8 weeks of treadmill training, or a no-training control group. 

Before and after training, they administered cycling and treadmill VO2max tests. The largest gains 

in cycle VO2max were seen in the bicycle-trained group, and the largest gains in treadmill VO2max 

were seen in the run-trained group.  However, the bicycle-trained group showed significantly 

lower improvements in their treadmill VO2max compared to their cycling VO2max. This indicates 

that training for a specific activity will yield greater improvements in VO2max, with that specific 

exercise mode. Again, training causes relative increases in the trained exercise mode with little 
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change to other exercise modes. Aside from the exercise mode itself, the amount of training in 

the mode will affect the measured VO2max. 

A 1974 study by Secher et al.[99] compared VO2max of 16 subjects performing running, 

cycling, arm, leg, and combined arm plus leg work. The VO2max for arm ergometry was on 

average 85% of the VO2max achieved during leg exercise, while the VO2max of arm-plus-leg 

exercise was 99% to 117% of the VO2max achieved during leg exercise. The authors suggest that 

when two muscle groups are combined for exercise, the increase in oxygen uptake is 

proportional, but not equal to, the respiratory capacity of each muscle group individually. By 

increasing the amount of muscle used, the VO2max of the test will increase. 

In 1984, Nagle et al. [100] tested the relative contributions of the arms and legs in 

eliciting VO2max. 10 healthy non-arm-trained males performed CGXTs for arm only, leg only, 10% 

arms/90% legs, 20% arms/80% legs, and 30% arms/70% legs. The results showed that 10% 

arms/90% legs elicited significantly greater VO2max than 100% legs, 100% arms and 30% 

arms/70% legs. The authors concluded that the significantly lower VO2max during exercise with 

the legs alone was caused by a reduction in the active muscle mass, while during 30% 

arms/70% legs, the cause of the lower VO2max was excessive arm loading and insufficient leg 

loading. Depending on the distribution of work, VO2max can be affected by the relative division 

of work between muscle groups. 

Altering the amount of muscles used during an exercise will affect the VO2max, with 

greater muscle usage yielding higher VO2max (to a point). In addition, the specificity of training 

to certain exercise modes will affect the measured VO2max. 
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Criteria for achieving maximal oxygen uptake 

 

Because maximal exercise tests rely on the participant to voluntarily work to maximal 

effort, there is a need for objective criteria to validate VO2max measurements. If a participant 

failed to give a maximal effort, the VO2max measurements would be underestimated, and the 

results of that test would be invalid. Without proper criteria for validation, the results of a 

VO2max test could actually be submaximal, and therefore, invalid. 

 

VO2 Plateau 

 

The operational definition of a VO2 plateau can be ambiguous, as Howley et al. [101] 

observed. The assumption is that at the final intensity of a CGXT, VO2 will be identical to the 

stage before it, yielding a perfectly flat slope. However, this type of a “true plateau” does not 

usually occur. The final stage may demonstrate an increase in VO2 ranging from no increase to 

the same increase as seen on the previous stage. As a result, one must choose a cut-point for 

the increase in VO2 that will constitute a VO2 plateau. The criterion for VO2 plateau was 

established in 1955 by Taylor et al. [33], and determined to be an increase less than 150 ml/min 

with an increase of 2.5% incline at 7 mph on a treadmill. Their reasoning was that the standard 

increase between stages was 300 ml/min, and they recognized that there is variability in VO2 

from minute-to-minute, and setting the plateau threshold at no VO2 increase in the last stage 
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would not properly capture the phenomenon.  Thus, a VO2 plateau was operationally defined as 

being less than one-half of the expected increase.  

Despite the VO2 plateau criterion established by Taylor et al. [33], only 20-50% of VO2max 

tests result in a plateau by this definition [7-15]. Thus, although it has been considered by some 

to be a primary criterion for achieving VO2max [16-17, 102-103], the ACSM Guidelines for 

Exercise Testing and Prescription [104] does not recognize it as such. 

This has led some investigators to use the term VO2peak instead of VO2max to describe the 

key outcome variable resulting from a maximal GXT.  VO2peak refers to the highest VO2 attained 

during a graded exercise test, without regard to whether an individual achieves a plateau, or 

any of the secondary criteria for attainment of VO2max.  For example, most of the research on 

maximal exercise testing in children uses VO2peak instead of VO2max, due to the difficulty in 

showing evidence of a VO2 plateau in children [105].  VO2peak is also commonly used to describe 

the results of maximal GXTs using smaller muscle groups (e.g. arm cranking or one-legged 

cycling). 

 

Blood lactate 

 

Blood lactate is an indicator of relative exercise intensity. High levels of blood lactic acid 

are associated with recruitment of fast-twitch muscle fiber, elevation in plasma epinephrine 

concentrations, and reduction in liver blood flow [101].  
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Astrand [106] established a criterion value for blood lactic acid levels 3 minutes 

following a maximal GXT. Out of all of the participants in the study, roughly 50% of them 

demonstrated a VO2 plateau. Of those who did, the onset of the plateau was correlated to 3 

minutes post-exercise lactate concentrations of 7.4-8.4 mM, while the blood lactate values 3 

minutes post-exercise for the whole test ranged from 6.7 to 10.1 mM. However, the 

participants in Astrand's study were children ranging from 14-18 years of age, and so the results 

can only be applied to that group.  

Other investigators have used a blood lactate of 7.3 mM [107-108] or 5.5 mM [109]. 

Also, other researchers have demonstrated lower blood lactate values during maximal testing, 

however they also used a single supramaximal test [110] or a CGXT [111] compared to the 

DGXT used by Astrand [106]. The criterion for blood lactate concentrations should be set after 

considering both the test and population being studied. 

 

Respiratory Exchange Ratio 

 

Respiratory exchange ratio (RER) is the ratio of the carbon dioxide production to oxygen 

consumption, measured at the mouth. It is mathematically computed by dividing VO2 /VCO2. 

Although the body produces CO2 as a result of metabolism, it is also produced by buffering 

hydrogen ions (produced by lactic acid) with bicarbonate anions, resulting in CO2 and H2O 

formation. Thus, RER can be used as an indirect measure of lactic acid accumulation, and this 

was confirmed by Wasserman et al. [112]. Issekutz et al. [107, 113] established RER ≥ 1.15 as a 
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criterion for achieving  VO2max. By following excess CO2 and lactic acid concentrations pre to 

post exercise, they determined a linear relationship between the excess CO2 and lactic acid 

concentrations [107]. Following up on this, Issekutz et al. [113] determined from a sample of 32 

untrained subjects, all achieved a maximum RER of 1.15.  

However, other research has shown that RER ≥ 1.15 is not achievable by everyone. 

Robinson [110] suggested that this criteria was reasonable for those aged 20 to 60 years, 

however younger participants could not achieve this RER. Cunningham et al. [111] showed that 

sixty-six, 10-year old hockey players could not achieve an RER >1.10 on a maximal treadmill 

exercise test. Sidney and Shephard [114] also demonstrated that men and women aged 60 to 

83 who gave a “good effort” showed low prevalence of RER ≥ 1.15 (20% in women and 37% in 

men) during maximal treadmill GXT’s. Though RER of 1.15 is an established criterion for 

attainment of VO2max from previous studies, an RER of 1.10 would be more appropriate for 

general populations 

 

Maximal Heart Rate 

 

Maximal heart rate is predicted by the ACSM as 220 minus age in years [104]. This 

criterion is problematic because the standard deviation of this estimate is ±11 beats/min [115]. 

ACSM [104] suggests using it as a secondary criterion rather than a primary criterion for this 

reason.  
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Robergs and Landwehr [116] present the origins and subsequent basis of information 

for this age-predicted equation. One of the original works by Astrand et al. [106] measured 

heart rate during maximum exercise testing of 225 subjects (4 to 33 years of age), and found 

significant correlation (r=0.43), but also considerable variation (standard deviation = ±11 

beats/min). The most common citation of age-predicted maximal heart rate is derived from Fox 

et al. [117], who estimated the equation from 35 data points and no regression. Fox et al. 

states: 

 

“…no single line will adequately represent the data on the apparent decline of 

maximal heart rate with age. The formula maximum heart rate=220–age in years defines 

a line not far from many of the data points…” [117]  

 

Tanaka et al. [118] conducted a meta-analysis of studies that have examined changes in 

maximal heart rate with age. They found that the ACSM equation (220-age) was accurate in the 

early decades (20 and 30), but it under-estimated maximal heart rate in older individuals. These 

variations were not affected by gender or training state. In fact, Robergs and Landwehr [116] 

examined the origins of the 220-age and determined that it was based more on subjective and 

anecdotal information rather than on rigorous research. Tanaka et al. [118] suggested 208 – 

0.7*age in years as a more accurate estimate of heart rate based on age. 
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Rating of perceived exertion 

 

Rating of perceived exertion (RPE) is a subjective measure of exercise intensity [1].  It 

was developed by Gunnar Borg, a Swedish psychophysiologist [119]. The scale takes into 

account personal fitness level, environmental conditions, and general fatigue levels [120]. 

Ratings of perceived exertion can be affected by psychological factors, mood states, 

environmental conditions, exercise modes, and age, which can reduce its practicality [121]. 

Based on ACSM guidelines [104], RPE must be standardized to minimize 

misinterpretation. The following paragraph should be read to the participant: 

 

“During the exercise test we want you to pay close attention to how hard you feel the 

exercise work rate is. This feeling should reflect your total amount of exertion and 

fatigue, combining all sensations and feelings of physical stress, effort, and 

fatigue. Don’t concern yourself with any one factor such as leg pain, shortness of 

breath or exercise intensity, but try to concentrate on your total, inner feelings of 

exertion; be as accurate as you can” [104] 

 

 Two RPE scales are commonly used today: the original category scale, which goes from 

6 (“very, very light”) to 20 (“very very hard”); and the revised or category ratio scale which goes 

from 0 (“Nothing at all”) to 10 (“extremely strong”). A study of 28 healthy young adults showed 

that the Borg scale correlated closely (r=0.90) with VO2max percentages and max heart rate 

percentages [122]. This data was repeated again at high workloads with equivalent success 

[123]. Typically, the criterion for RPE is >18 for original category scale, or >9 for the category 

ratio scale.  
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In summary, few of the criteria listed here can absolutely verify, beyond the shadow of a 

doubt, that a participant has attained VO2max. Thus, over the past 5-10 years, exercise 

physiologists have begun to move away from using the aforementioned primary and secondary 

criteria. Presently, the only true method of verifying that VO2max has been attained is to retest 

the person at a supramaximal work rate. Rossiter et al. [12] did precisely this by having subjects 

perform a CGXT on the cycle ergometer, allowing a short 5-minute recovery, then taking 

subjects to 105% of the peak work rate achieved during the CGXT. This verifies the attainment 

of VO2max using the same principle as a VO2 "ceiling" during a DGXT.  Both of these show that 

further increases in work rate will not yield further increases in VO2.  

 

The VO2 Plateau 

 

Validity of the VO2 plateau concept 

 

Despite the continued use of VO2 plateau as a criterion for the attainment of VO2max, 

several recent studies have shown that lack of VO2 plateau prevalence does not invalidate a 

CGXT. 

The low prevalence of VO2 plateau in CGXT’s is best shown in a study performed by Day 

et al. [10] . Seventy-one male subjects aged 19 to 61 performed a CGXT bike incremental ramp 

exercise test. The intensity was increased by 5W every 12, 15, or 20 seconds—depending on 

the fitness of the subject—to volitional exhaustion (unable to maintain cadence of ≥60 rpm).  
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After completing the CGXT, 38 of the 71 subjects completed a constant-load exercise at 90% of 

the peak work rate achieved in the CGXT. Then, 6 of the 38 subjects completed 5 more 

constant-load tests at varying submaximal, maximal, and supramaximal workloads. To test for 

the presence of a VO2 plateau, a linear regression was fit to the “main portion” VO2 response, 

which excluded the first 4 minutes and last 3 minutes. The first 4 minutes were excluded 

because the beginning of a CGXT demonstrates a steep increase of VO2 from rest (called the 

fast portion), and including it in the VO2 response creates an artificially high VO2 increase. The 

last 3 minutes were considered the “tail portion” to appraise the VO2 plateau.  

A line of best fit was drawn for the main portion and extended through the tail portion. 

A VO2 plateau was present if the tail portion deviated from the line of best fit enough to 

consider the tail portion significantly different than the main portion. The results showed that 

of the 71 participants, 12 individuals (17%) achieved a plateau, 40 individuals (56%) showed no 

linear variance, and 19 individuals (27%) showed an increase in VO2 uptake. In addition, when 

38 of the subjects performed a constant load test-to-exhaustion at 90% of the peak work load 

they showed a “ceiling” effect, in which their highest VO2 did not exceed their VO2peak from 

their cycling test. 

Following up on this study Rossiter, et al. [12] again examined the validity of the VO2 

plateau. Seven male adults performed a CGXT cycle ergometry protocol (increase 20W/min) 

until exhaustion, recovered for 5 minutes at 20W, then performed a constant load test at 105% 

of the final work rate achieved in the ramp incremental protocol. By doing this, they tested 

whether the lack of a plateau in the CGXT would yield a difference in peak VO2 between 
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constant load and ramp incremental tests. Despite the fact that none of the seven participants 

achieved a VO2 plateau by methods previously described [10], VO2peak was not significantly 

different between the CGXT and 105% constant load tests. The authors concluded that the 

presence of a plateau is not necessary to attain the VO2peak, showing that a plateau is not 

necessary for reaching VO2max.  

 

Criticism by Noakes of the VO2 plateau phenomenon and its implications 

 

Since 1987, Timothy Noakes M.D. has been critical of the entire concept of VO2max as it 

was understood by Hill and Lupton, citing the low prevalence of VO2 plateau as a reason for 

this.  

His book Lore of Running [20] has criticized both the foundation and concept of VO2max. 

 

 “On the basis of certain assumptions that were probably incorrect [21], Hill and 

Lupton postulated that shortly before the individual reached maximum work capacity, 

or running speed, the rate of oxygen consumption reached a plateau and did not 

increase further. Although able to exercise a little harder the athlete took up no 

more oxygen. At this point the athlete was said to have reached maximum oxygen 

consumption…However, modern studies suggest that only approximately half of all 

tested subjects show true plateaus in oxygen consumption during maximal exercise; in 

the remainder no such plateaus are present, and the factors that determine these 

subjects’ maximal exercise performances are presently unclear. I have suggest that 

factors related to muscle not the cardiovascular system (and thus not oxygen 

transport) limit the maximal exercise performance of these persons[21]…This would 

explain the observations by Lydiard and Gilmour [124] and Pirie [125] that the 

distance runners who are fastest over the shortest distances will also be the fastest 

at all longer distances, including the ultramarathon… Obviously, these ideas are 

quite heretical, and it will be some time before they are either proven to be 

incorrect or are accepted by the international community of exercise physiologists” 
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Since then, Noakes has continued to criticize the VO2max paradigm of Hill and Lupton [5] 

in his scientific publications. His maximal exercise testing of 43 marathon and ultra-marathon 

runners showed that peak treadmill velocity predicted running performance better than 

VO2max [19], suggesting that VO2max was irrelevant altogether in predicting performance. In 

1996, Noakes delivered the J.B. Wolffe Memorial lecture [18], and again criticized Hill and 

Lupton’s work: 

 

“Hill and Lupton concluded that the constant VO2 they measured at the fastest running 

speed (16km/h in Fig. 1) represented an apparent, not a true, steady state. The basis 

for this conclusion was a circular argument based on Hill’s subconscious model 

explaining fatigue during exercise (Fig. 2). For Hill began with the subliminal 

premise that fatigue during exercise is caused by an oxygen deficiency…Not only did 

Hill et al. [5] fail to measure concurrently either the oxygen debt or muscle or 

blood lactate levels during these subsequent studies, they also failed to subject 

their hypothesis to the accepted process of refutation. For the next logical study 

would have been to measure Hill’s VO2 when he ran at a speed faster than 16km/h. 

Their hypothesis would have been supported if the VO2 at that higher speed was either 

the same or lower than that measured at 16 km/h” 

 

Afterwards, Noakes entered into a debate concerning an article published by Bassett 

and Howley [6] titled, “Maximum oxygen uptake: ‘classical’ versus ‘contemporary’ viewpoints”.  

In it, he continues to criticize the work of Hill and Lupton [22]. In 2008, he published two works 

that call into question both the work of Hill and Lupton, and the concept of VO2max [23-24]. The 

articles titled “Testing for maximum oxygen consumption has produced a brainless model of 

human exercise performance” [24] and “How did A V Hill understand the VO2max and the 

‘plateau phenomenon’? Still no clarity?” [23] 

At this point, Noakes introduced a new theory to refute the A. V. Hill paradigm: the 

central governor theory (CGT) [23]. Previously he had argued that peak treadmill velocity (PTV) 
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predicted marathon performance better than VO2max, and thus factors that affect PTV (including 

the percentage of type II muscle fibers) were the real determinants of VO2max.  If only an 

individual could run faster, Noakes argued, his VO2max would go higher.  In 2008, Noakes began 

to propose the CGT, which he claimed incorrectly had first been proposed by A.V. Hill.  (In fact, 

he called it the Noakes-Hill theory.) The CGT states that aerobic performance is limited by the 

central nervous system's recruitment of skeletal muscle fibers, rather than by cardiac factors 

previously explained. The purpose of the central governor is to prevent ischemia of the heart 

during maximal exercise. 

Again in 2008, Noakes published a letter to the editor of Medicine and Science in Sports 

and Exercise [25] proposing his CGT in response to a study showing that supramaximal tests 

yielded identical VO2max values to a CGXT [126], Noakes stated that even at 130% of VO2max the 

muscular forces generated  and muscle fiber recruitment are less than those generated by a 

maximal voluntary contraction. Thus, he reasons, our performance is regulated by a "central 

governor" that limits motor unit recruitment, rather than by the maximal cardiac output.  

Although Noakes is correct in the assumption that forces generated during maximal volitional 

contraction are higher than those created at 100% of VO2max, the primary fuel during a single 

contraction at 100% MVC is ATP/CP. This energy system is intrinsically different than the 

systems that are used during supra-maximal, high-intensity exercise at 110-150% VO2max. 

Later in 2008, Noakes published another letter to the editor of European Journal of 

Applied Physiology [29]. Noakes claims that the purpose of the central governor is not to 

protect the heart from ischemia (despite previously stating that was the reason for a central 
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governor). He then finished by saying, “The point of course is that the brain could always 

choose to continue the exercise bout by increasing the extent of muscle recruitment until 100% 

of all available motor units were active. But clearly it chooses not to adopt that strategy”. 

Noakes finished the year with another letter to the editor of European Journal of Applied 

Physiology [32] again describing his view of the central governor. 

In 2009, the Journal of Applied Physiology published a point-counterpoint debate 

between Noakes [30] and BT Ekblom [127] with commentary by RJ Shephard [128], WG Hopkins 

[129], C. Foster and A. Lucia [130], JA Calbet [131], J. Gonzalez-Alonzo, SP Mortensen [132] and 

numerous letters written by other researchers. Noakes titled his piece “Maximal oxygen uptake 

is/is not limited by a central nervous system governor”.  

Noakes claimed that, contrary to popular teaching, maximal oxygen uptake is limited by 

a “central governor” rather than the ability of the cardiac system to deliver oxygen to working 

muscles. In it, Noakes claims that a central governor prevents the body from reaching maximal 

exertion because doing so would cause myocardial damage, which is in direct contradiction to 

his letter to the editor in the previous year [29], which stated “The [central governor model] 

does not predict, as Brink-Elfedoun et al. [133] incorrectly claim: ‘To prevent the heart muscle 

from becoming ischemic…”. He finished the point/counterpoint still espousing his CGT [31]. 

Ekblom’s elegant and short final argument in the debate stated,  

“If the aim of a Central Governor mechanism was to prevent the heart from myocardial 

ischemia during maximal exercise, why use a complicated system of “peripheral” 

regulations—a system we know can fail in different environments? A more secure system 

for prevention would have been concentrated directly on the initiation of the heart 

beat. There are direct and indirect possibilities through the autonomic nervous 

system or even an intramyocardial feed back system. But there are no such signs. 

Therefore, the overwhelming results from many observations are that the healthy heart 
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is the bottle neck for VO2max with good reserve capacity of the heart muscle without 

risk of heart failure and hypoxic damage.”[127] 

 

Aside from Noakes and Marino, all other respondents to the point/counterpoint refuted 

the CGT and its tenets. Noakes has continued to publish reviews and letters endorsing the CGT, 

with five articles published between 2009 and 2011 [26, 28, 134-135].  In addition to directly 

supporting the CGT, he has been listed as a secondary author on other papers that endorse this 

idea. 

In 2009, Swart et al. [134] performed exercise tests with methylphenidate, and found 

that those who were administered methylphenidate (a psychostimulant used in treatment of 

ADHD) cycled 32% longer before achieving fatigue (defined as cycling at 70% of original power 

output). They concluded that exercise is “highly regulated” by the central nervous system. 

Later in 2009, Noakes co-authored another paper published in the British Journal of 

Sports Medicine, concluding that mechanisms of peripheral fatigue could not be explained by 

physiological factors [135], hinting at an inhibition from the central nervous system. 

In a reply to an article by Roy Shephard [26], Noakes stated “Furthermore, to advance 

the case for the [central governor model], I now include evidence from more than 30 studies, 

which, in my opinion, can only be interpreted according to a model of exercise regulation 

where the [central nervous system], acting in an anticipatory manner, regulates the exercise 

behavior by altering skeletal muscle recruitment…”. Our body will react “in anticipation” to 

expected workloads, such as athletes who—despite training daily under high heat conditions—

fail to present with heat stroke more often. He cites the several psychological factors that can 

affect performance of an athlete. Noakes criticizes the science community as a whole of being 
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unwilling to accept his ideas, and he believes that over time his work will be accepted. He 

claims, “First they say that what you claim is wrong. Second, they say that what you claim is 

true but irrelevant. Finally they say that what you say is true but ‘we have always known it’ ”. 

His most recent work pushes to abandon the entire A.V. Hill paradigm altogether [27].  

His results are summarized in the following paragraph. 

 

“The cardinal weakness of the Hill model is that it allows no role for the brain in 

the regulation of exercise performance. As a result, it is unable to explain at least 

6 common phenomena, including (i) differential pacing strategies for different 

exercise durations; (ii) the end spurt; (iii) the presence of fatigue even though 

homeostasis is maintained; (iv) fewer than 100% of the muscle fibers have been 

recruited in the exercising limbs; (v) the evidence that a range of interventions 

that act exclusively on the brain can modify exercise performance; and (vi) the 

finding that the rating of perceived exertion is a function of the relative exercise 

duration rather than the exercise intensity” 

 

Over the past 15 years, Noakes has been highly critical of the VO2max paradigm of Hill 

and Lupton [5].  Despite a substantial body of scientific evidence that supports the classical 

model, Noakes rejects the central tenets of the VO2max model. 

 

VO2 Plateau: DGXT versus CGXT Protocols 

 

Older studies in the 1920’s to 1960’s [5, 33, 81-82] established the VO2 plateau criterion 

based on the results of DGXTs, and these studies showed that the vast majority of subjects 

displayed a VO2 plateau. More recent studies, however, have used CGXTs and have found that 

only about one -quarter to one-half of subjects display a VO2 plateau. 
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Taylor, Henschel, and Buskirk [33] completed a DGXT on a large sample, and established 

the criterion measure for VO2 plateau. Their protocol used a series of discontinuous 3-minute 

runs, and they only collected expired air between 1:45 and 2:45. Each time, the participant ran 

at steeper inclines until they could not maintain exercise for the full 3-minute duration or they 

demonstrated a VO2 plateau (when the treadmill grade was increased, they failed to 

demonstrate an increase of > 150 ml/min compared to the previous stage,). Of 115 

participants, 108 demonstrated a VO2 plateau using this DGXT. 

Earlier studies [5, 33, 81-82] used a DGXT, consisting of several constant-load tests over 

a number of days. With a DGXT, the participant runs at a constant speed until steady state is 

achieved, and once that steady state is achieved, that is considered the VO2 demand for that 

workload. However, at supra-maximal speeds the subject will only attain an "apparent steady 

state"; the VO2 levels off but the oxygen requirement exceeds the oxygen consumption so 

metabolic steady-state cannot be achieved.  By plotting the workload on the X-axis, and the 

corresponding VO2 on the Y-axis, you create a data point. After resting for a period of time, the 

participant will perform another constant load test at a higher intensity. This continues until the 

participant performs a test where the workload increases but the VO2 does not. Taylor et al. 

[33], which first established the plateau criterion, ran subjects at 7 mph for 3 minutes on the 

first visit, then the next visit would increase the incline by 2.5%. The incline would be increased 

for every visit until the subject showed a VO2 increase that was less than 150 ml*kg
-1

*min
-1

 or 

could not complete the full 3 minutes, assuming that to be the stage to yield a VO2 plateau. 
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Earlier tests used a DGXT because a CGXT would have been nearly impossible to 

perform with equipment at that time. Hill and Lupton [5] used a grass track with a timer calling 

out splits to the subject, relying on the runner’s experience to maintain a certain average pace 

over the bout. Without a treadmill, they could not gradually increase the velocity every minute, 

as required by a CGXT. In addition, metabolic carts were not available. So in order to examine 

the VO2 kinetics during the run, the participant would have to repeat the run several times with 

one Douglas bag for a 30-second portion of the run. For example, when running at 9.9 miles per 

hour for 8 minutes, the subject would run at this speed and open up a valve to breath into the 

Douglas bag for 0:15 to 0:45, before switching the valve to breath into the atmosphere. The 

participant would have to repeat the run, but open the valve from 1:15 to 1:45. This was 

repeated several times until enough data could give an accurate picture of the VO2 kinetics. 

Taylor et al. [33] had access to a motorized treadmill, and even with this tool, 

performing a CGXT still would have been challenging and time-consuming.  They measured a 

single Douglas bag for each constant-speed run (from 1:45 to 2:45). With each of their 

participants performing 2 to 4 constant load runs, this demanded two to four bags per subject. 

To perform a CXGT would have required 1 Douglas bag for each stage, which could be as few as 

8, or as many as 20 depending on the protocol. A CGXT could require as many as 12 different 

stages, depending on the fitness of the subject. That would demand 12 different Douglas bags 

to be used for a single test, and 12 different gas analyses, which would be incredibly time 

consuming for results from a single test. As a result, the use of the DGXT during this time was 
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not necessarily because it was the most valid or appropriate method, but rather because it was 

easier to do with the equipment available during that time. 

Once the methods and technology (treadmills, oxygen measuring devices, and other 

exercise equipment that could have an adjustable workload) became available, tests were done 

to compare the validity of the DGXT to CGXT [13, 86-91]. Since it was shown that they both 

yield the same values for VO2max, researchers switched over to using a CGXT because it takes far 

less time and fewer visits to complete.  Reasearchers failed to realize that notion of a VO2 

plateau developed by Taylor et al. [33] on a DGXT cannot be applied to the CGXT protocols. 

 

The origin of the VO2 plateau from the work of Hill, Lupton, and Taylor et al. 

 

The first recorded instance of VO2max testing came from Hill and Lupton [5] when Hill 

described the concept of VO2max  by saying, "however much the speed be increased beyond this 

limit, no further increase in oxygen intake can occur".   This described the notion of an upper 

limit (or "ceiling") during a DGXT. Although Hill and Lupton never tested this hypothesis 

(because they did not push the participant to supra-maximal speeds), it was inferred that 

running at higher speeds would not increase the VO2 once you reached VO2max. Hill and Lupton 

never used the word “plateau” to describe the phenomenon, and "ceiling" is a more 

appropriate term to use to describe the upper limit on VO2 on a DGXT. 

Based on the work by Taylor et al. [33], VO2 plateau was established as a criterion 

measure for attainment of VO2max on DGXT protocols. Given the high prevalence of the plateau 
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among Taylor et al.’s population, it was reasonable to believe that the presence of a plateau 

could be used to verify the attainment of a maximal effort. Thus, the VO2 plateau criterion was 

established for DGXT.  

 

The difference between a VO2 plateau and a VO2 ceiling 

 

The DGXT and CGXT are very different exercise protocols. Normally, the result of a DGXT 

is illustrated using a graph of time on the x-axis vs. VO2 on the y-axis.For each constant-speed 

stage, a line graph is constructed, and several of these are overlaid onto the same graph.  Once 

the subject reaches a work-rate where increases in exercise intensity fail to elicit any further 

rise in VO2, they have hit their upper ceiling (VO2 max). Figure 1 represents an example of this. 

In contrast, a CGXT does not rely on constant load tests, but rather a single incremental 

exercise bout. The data are normally illustrated using a graph of work rate or speed on the x-

axis, versus VO2 on the y-axis. The  lack of a VO2 plateau does not necessarily mean that the 

participant has chosen to terminate the test prematurely (i.e. before attaining VO2max), and thus 

invalidate the attainment of VO2max.This is why Day et al. [10], after finishing the CGXT, had the 

participant complete another constant-load test at a work rate 105% of the highest work rate 

achieved during the CGXT.  If the VO2 on the supra-maximal effort failed to elicit a higher VO2, 

then they could correctly conclude that the VO2max had been reached.  Rossiter et al. [12] 

repeated these results in 7 participants who, despite showing no VO2 plateau on a CGXT, failed 

to increase VO2 at a work rate 105% of the highest one achieved during the CGXT. 
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The key difference in CGXT and DGXT protocols is the capacity to work at supramaximal 

intensities during the test. During a CGXT, the participant is already fatigued when they 

approach VO2max and therefore are unable to continue running at supramaximal speeds. 

Contrarily, during a DGXT, the participant begins each run without fatigue and can run at 

supramaximal speeds long enough to achieve steady-state VO2 at VO2max. [insert chart showing 

an overlay of CGXT and DGXT]. In the example of subject X, the oxygen requirements at certain 

speeds were identical, but the DGXT continued to higher speeds than the DGXT. As a result the 

plateau phenomenon and ceiling phenomenon are different. 

Whereas a CGXT will terminate at or near VO2max, a DGXT actually attempt to measure 

the VO2 response at intensities beyond VO2max. The ceiling of the DGXT accounts for 

supramaximal intensities that will fail to increase the VO2 with increased work rate, but the 

CGXT plateau occurs near VO2max without necessarily reaching supramaximal speeds. 



44 

 

Chapter 3 

Abstract 

Maximal oxygen uptake (VO2max) is regarded as the gold standard for assessing aerobic fitness.  

In 1923, Hill et al. proposed that VO2max represents the maximal ability of the body to take in 

and consume O2 during strenuous exercise.  Recently, however, controversy has arisen over the 

issue of whether a leveling off, or "plateau" in VO2 is necessary to verify attainment of VO2max.  

Purpose: To compare two different VO2max protocols and determine if both protocols show 

direct evidence of an upper limit on VO2.  Methods: Nine runners (18-35 years old) completed a 

continuous graded exercise test (CGXT), followed by a discontinuous graded exercise test 

(DGXT). The CGXT consisted of gradually increasing treadmill running speed to the point of 

volitional exhaustion; the highest speed attained was labeled the peak treadmill speed.  Over 

the next several days, participants ran at 80%, 90%, 100%, 105%, and 110% of peak treadmill 

speed for 10 minutes, or until volitional exhaustion was reached.  Results: All participants (n=9) 

achieved a "VO2 ceiling" (or upper limit) on the DGXT, while only 44% (n=4) achieved a "VO2 

plateau" on the CGXT. There was no significant difference between the VO2max obtained from a 

CGXT (57.4 ± 2.6 mL*kg
-1

min
-1

) and DGXT (60.0 ± 3.1 mL*kg
-1

min
-1

).  There was no difference 

between oxygen uptake measured at 90%, 100%, 105%, and 110% of PTV (p>0.05). However, 

the highest VO2 recorded at 80% PTV was significantly lower than that recorded at all other 

velocities (p<0.05).  Conclusion: The VO2 ceiling effect on a DGXT is inherently different than the 

VO2 plateau effect on a CGXT.  In this study, a ceiling was always seen on the DGXT, but a 

plateau was not always seen on the CGXT. 
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Introduction 

 

Maximal oxygen intake (VO2max) is defined as the highest rate at which oxygen can be 

taken in and consumed by the body during strenuous, dynamic exercise [1]. VO2max is widely 

accepted as a measure of aerobic fitness and has been linked to numerous health outcomes [2-

4]. In addition, VO2max is an important determinant of athletic performance in middle- and long-

distance athletic events.  For these reasons, VO2max is widely used in the field of exercise 

science. 

Historically, the concept of VO2max can be traced back to the work of Hill and Lupton [5]. 

Their VO2max paradigm has four central tenets: (1) there is an upper limit to oxygen intake; (2) 

there are inter-individual differences in VO2max; (3) a high VO2max is a pre-requisite for successful 

distance running; and (4) VO2max is primarily limited by the circulatory and/or respiratory 

systems [136].  In addition, their model states that it is possible to exercise at work rates in 

excess of VO2max, by increasing one's reliance on anaerobic metabolism. Thus, once the 

participant reaches a work rate that elicits VO2max, any further increase in work rate will not 

yield a further increase in VO2. This is often referred to as the VO2 plateau phenomenon [5, 9-

10, 12-14, 33, 137-144]. 

For several decades, a VO2 plateau was used as a criterion for the attainment of VO2max.  

However, the use of a VO2 plateau as a criterion during continuous graded exercise tests (CGXT) 

has become problematic. Although several sources list the VO2 plateau as a primary criterion 

for attainment of VO2max [16-17, 23, 33, 83-84, 93, 106], a review of studies in which VO2max was 
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measured showed that most individuals do not show evidence of a VO2 plateau at the end of a 

CGXT [7, 9, 13, 15, 137, 140, 145-146]. 

In addition, some researchers have concluded that the low prevalence of VO2 plateau 

indicates that entire VO2max paradigm proposed by Hill and Lupton [5] is incorrect [18, 20-23, 

147-148].  Noakes et al. [18, 20, 22-27] has argued that since some individuals do not show 

evidence of a plateau during maximal exercise tests, then it cannot be stated that they have 

truly attained their VO2max. This has led them to speculate that if only these individuals could 

run faster, their VO2 would reach higher levels.  As a consequence, Noakes [18-20, 22] has 

stated that VO2max is actually limited by the physiological factors that determine maximal 

running velocity (such as muscle fiber type) or central nervous system factors, rather than the 

physiological factors that limit oxygen transport from the lungs to the mitochondria. 

The classic studies of Hill and Lupton [5] introduced the concept of VO2max , but they 

used different maximal exercise testing protocols than those used currently. VO2max studies in 

the 1920’s used a discontinuous graded exercise test (DGXT), which consisted of several 

constant load tests performed to exhaustion and separated by lengthy rest periods. In contrast, 

modern day researchers typically use a CGXT, in which the exercise intensity is gradually 

increased each minute, until volitional exhaustion is reached. The DGXT protocols yield a higher 

prevalence of VO2 plateau [5, 33, 83-84, 106] than modern CGXT protocols [7, 9, 13, 15, 137, 

140, 145-146]. 
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The purpose of this study was to re-examine the classic work of Hill and Lupton [5], using 

modern-day techniques.  We planned to compare their DGXT protocol to a modern-day CGXT 

protocol. There were 3 hypotheses in this study: 

1. There is not a statistically significant difference between VO2max values achieved on a 

CGXT and DGXT protocol. 

2. Having subjects run at supramaximal speeds does not result in further increases in VO2, 

beyond those seen at the end of a CGXT. 

3. All participants display a VO2 "ceiling" (or upper limit) on a DGXT, but not all participants 

display a plateau on a CGXT. 

 

 

Methods 

 

Participants 

 

Nine runners (7 men, 2 women) were recruited from Knoxville, TN to participate in this 

study.  Eligibility criteria included: 18-35 years of age, running at least 15 miles per week on 

average over the past 6 months, and low risk for cardiovascular disease as defined by 

ACSM/AHA [104]. Prior to participating in the study, participants signed an informed consent 

form that was approved by the university’s Institutional Review Board (Appendix A).   All testing 
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was completed in the Applied Physiology Laboratory in the Health, Physical Education, and 

Recreation Building on the University of Tennessee campus. 

 

Exercise Protocol 

 

During the initial visit, the participant’s weight and body fat were assessed using a 

Tanita BCA-418 bioelectrical impedance analyzer (Tanita, Chiba, Japan) in the morning prior to 

exercise. All but 1 participant ate nothing the morning of the initial visit. Weight was measured 

then recorded to the nearest 0.1 kg and body fat was estimated to the nearest 0.1%. Height 

was measured to the nearest 0.1 cm using a wall-mounted standiometer. Both weight and 

height were measured in light running clothing, without shoes.  

Participants were instructed not to exercise for 24 hours prior to each test. They were 

informed that testing would be vigorous and asked to adjust their personal workouts 

accordingly.  All testing was completed on calibrated treadmill (Quinton Q65 series 90, Seattle, 

WA, USA).  For all tests, the subject first straddled the treadmill belt while the speed was 

brought up to the appropriate setting. Once up to speed, the participant straddled the belt for 3 

minutes while standing oxygen consumption was measured. Once testing began, the 

participant suspended himself or herself above the belt using the handrails. The participant 

then lowered himself or herself onto the belt and began running, releasing the hand rails once 

he or she felt comfortable with the speed.  The bout started when the participant’s foot 

touched the treadmill. 
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On the first day, participants completed a CGXT.  The CGXT protocol began with 

treadmill running at 9.7 kilometers per hour (kph), and speed was increased by 0.8 kph each 

minute until the participant reached volitional exhaustion.  Respiratory gas exchange was 

measured using an Oxycon Mobile [Viasys Healthcare, Hochberg, Germany] device.  The Oxycon 

Mobile is a portable breath-by-breath system which can accurately determine the VE, VO2, 

VCO2, FEO2, and FECO2 of individual breaths [149-150]. The device was chosen for its ability to 

measure VO2 responses during brief high-intensity exercise.  Participants wore a facemask 

(model 7450 V2 Mask, Hans Rudolph, Shawnee, KS) that was held tight by a head strap. The 

facemask fits over the nose and mouth and allows for measurement of ventilation and gas 

fractions.  When the mask was placed on the participant, the participant would cover the 

opening with his or her palm and exhale normally to make sure there were no gas leaks during 

exhalation.  Participants were given verbal encouragement to continue as long as possible, and 

were able to see their speed and time spent exercising on the treadmill. The highest speed 

maintained for 40 seconds or more on the CGXT was considered the peak treadmill velocity 

(PTV). VO2max was determined from the highest measured VO2 for any 15-second period. 

Three more days of testing were performed in a randomized order. On these testing 

days, the participants ran at either (a) 90% and 100%, (b) 105%, or (c) 110% of PTV on the 

CGXT. Testing days were separated by 1 to 6 days of rest. Before each of these trials, 

participants warmed up by running at 80% of PTV for 10 minutes, followed by a 5-minute cool-

down at a self-selected speed and 10 minutes of rest. 
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The 90% and 100% PTV trials began with the previously described warm-up and cool-

down and rest.  The participant ran at 90% of PTV for 10 minutes, followed by a 15-min cool-

down and rest period. On the same day, the participant then completed a second warm-up run 

at 80% of PTV for 3 minutes to sufficiently warm up the body without exhausting it for the final 

bout. After 5 minutes of cool-down and rest, the participant ran at 100% of PTV for 10 minutes 

or until volitional exhaustion was reached. 

The 105% PTV trial began with a warm-up, then after a 5-minute cool-down and rest, 

running at 105% PTV until volitional exhaustion. The 110% PTV trial was identical, except it was 

run at 110% of PTV. 

Participants were allowed to view both speed and duration during the tests, and the 

researchers provided verbal encouragement to give a maximal effort.  At the point of volitional 

exhaustion, the participant grabbed the handrails and straddled the treadmill belt while the 

speed was lowered to 2.0 mph. The participant then completed a cool-down at a self-selected 

pace.  

 

VO2 Plateau Determination 

 

 For the CGXT, we checked for a VO2 plateau by graphing treadmill speed against VO2. 

For plateau determination, the first two velocities (6.0 and 6.5 mph) were excluded. If the 

participant failed to complete a full minute at the final velocity, the VO2 measurements were 

excluded. Because the exercise started from rest, the initial velocities had large increases in VO2 
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for the increases in work rate (i.e. the VO2 increase from rest to 6 mph is much larger than the 

increase from 7 to 7.5 mph). Including them in the analysis would have yielded an artificially 

high VO2 increase, so they were excluded. A plateau was defined by constructing a line of best 

fit for the graph of running speed versus VO2, excluding the first two velocities and peak 

treadmill velocity . We then extrapolated the line of best fit to the peak treadmill velocity.  A 

plateau in VO2 was defined as an increase in the measured VO2 corresponding to less than one-

half of the "expected" increase in VO2. 

 

VO2 Ceiling Determination 

 

For the DGXT, the presence of a VO2 ceiling was determined by examining the VO2max 

values for all 5 of the DGXT trials. If the VO2max of 105% and 110% of PTV were essentially the 

same as the VO2max measured at 100% of PTV, then this demonstrated the presence of a VO2 

ceiling. If the variation between these 3 values for each participant was less than 5% (i.e.- the 

day-to-day coefficient of variation generally associated with VO2max testing [151-153], then they 

were considered to be essentially the same. A variation greater than 5% in these 3 values 

indicates that there is a difference greater than what can be attributed to day-to-day variation. 
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Statistical Analysis 

 

All data were analyzed using SPSS software (v16, SPSS, Insc, Chicago, IL). The VO2peak, 

VO2max, and RER values are presented in 15-second epochs. Comparisons between VO2peak and 

VO2max values for different constant speed runs and CGXT were conducted using a repeated-

measures ANOVA to detect for significant difference between the groups. If significance was 

found (p<0.05), pairwise analysis with Bonferonni adjustments were made to identify which 

protocols or intensities yielded significantly different VO2peak, and VO2max measurements.  

Results 

 

Participant Description 

 

Descriptive statistics of participants are described in Table 1. 

 

Table 1 Physiological characteristics of participants (N=9; 7 males and 2 females) 

Age (years) Height (cm) Weight (kg) BMI (kg/m
2
) Estimated Body 

Fat (%) 

28.7±1.5 175.9±1.9 71.6±2.8 23.0±0.6 14.9±1.7 

* Values are mean ± standard error; BMI = body mass index 

 

Continuous Graded Exercise Test 

 

Four of the 9 participants achieved a plateau on the CGXT, as previously described. 

Figure 1 illustrates an example of a participant who demonstrated a VO2 plateau, while figure 2 

illustrates and example of a participant who failed to demonstrate a VO2 plateau.  
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Discontinuous Graded Exercise Test 

 

All 9 participants demonstrated an "upper ceiling" for VO2 on the DGXT. This ceiling 

prevalence was significantly different from the plateau prevalence (p=0.013). The vast majority 

also achieved secondary criteria for attainment of VO2max [101]. Eight were within 10 beats of 

age-predicted maximal heart rate, and 7 achieved an RER ≥ 1.10 during any of the constant-load 

tests, with 6 of them achieving both criteria. 

The VO2peak, VEpeak, HRpeak, and of the 10-min run at 80% of PTV were significantly lower 

(p<0.05) than all other constant speed runs, indicating that this was clearly a sub-maximal 

effort. The VO2peak, VEpeak, and HRpeak of all other constant speed runs were not significantly 

different from each other, but were all higher than the values achieved at 80% of PTV . The 

105% and 110% of PTV runs had significantly higher RERpeak than 80%, 90%, and 100% of PTV, 

but no other significant differences in these variables were found. These results are displayed in 

Figures 3, 4, 5, and 6. 

The prevalence of the achievement of criteria for both the DGXT and CGXT are 

presented in Table 2. 
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Table 2. Achievement of criteria on CGXT and DGXT 

Subject Achieved 

plateau 

on CGXT 

Achieved 

ceiling 

on DGXT 

HR within 10 

beats of age-

predicted max 

on CGXT 

HR within 10 

beats of age-

predicted max 

on DGXT 

Achieved 

RER ≥1.10 

on CGXT 

Achieved 

RER ≥1.10 

on DGXT 

Subject 1 Yes Yes No Yes No No 

Subject 2 No  Yes Yes Yes Yes Yes 

Subject 3 No  Yes Yes Yes Yes No 

Subject 4 Yes Yes Yes Yes Yes Yes 

Subject 5 Yes Yes Yes Yes Yes Yes 

Subject 6 Yes Yes Yes Yes No Yes 

Subject 7 No  Yes Yes Yes Yes Yes 

Subject 8 No  Yes No No Yes Yes 

Subject 9 No  Yes Yes Yes No Yes 

Total 

(Percent) 

4  

(44%) 

9  

(100%) 

7  

(78%) 

8  

(89%) 

6  

(67%) 

7  

(78%) 

 

Duration 

 

Among the constant-speed tests, the duration of the runs at 80% of PTV and 90% of PTV 

did not differ from each other, but they were significantly less (p<0.05) from all other run 

durations. None of the bouts at 80% of PTV, as well as 3of the bouts at 90% PTV, were not to 

carried out to volitional exhaustion, but were terminated at 10 minutes. The durations of the 

100% of PTV run and 105% of PTV run were not significantly different from each other, but they 

were significantly different from all other runs (p<0.05). The duration of 110% of PTV was 

significantly shorter than all other runs. These results are displayed in Figure 7.   
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Time course of VO2 response 

 

The time course of the VO2 response for each of the constant-speed runs for each subject can 

be seen in Figures 8 though 16. Comparisons of the mean values for the CGXT and DGXT are 

shown in Table 3. 

Table 3.  Comparison of maximal exercise responses with a continuous and a discontinuous 

graded exercise test protocol (n=9). 

 CGXT DGXT 

VO2max STPD (ml*kg
-1

*min
-1

) 57.7±2.6 60.3±3.2 

VEmax BTPS (L/min) 146±11 155±13* 

RERmax  1.11±0.02 1.15±0.02  

HRmax (beats/min) 186±3.4 186±2.7 

HRmax (% of age-predicted HRmax) 97±1.8 97±1.3 

Duration (seconds) 665±47
 

--- 

Velocity at VO2max (kph) 17.7±0.6 --- 

All values expressed as mean ± standard error 

*Significantly different from CGXT (p=0.011) 

 

For the DGXT, the VO2max, VEmax, and RERmax, we took the highest values reached on any 

of the 5 DGXT bouts to represent the maximal values for the test. 

There was no significant difference in the VO2max between the CGXT or DGXT.  The CGXT 

and DGXT also did not differ on RERmax maximum heart rate, or maximum heart rate expressed 

as a percentage of age-predicted maximum. However, VEmax was significantly higher on the 

DGXT compared to the CGXT. 
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Discussion 

 

All of the participants demonstrated a VO2 ceiling (i.e. an upper limit on VO2, with 

increasing running speeds) during the DGXT. However, only 44% of them showed a VO2 plateau 

during the CGXT, despite the fact that there was no significant difference between the VO2max 

values measured on both protocols. Thus, while the VO2 ceiling on a DGXT appears to be a valid 

criterion for the attainment of VO2max, the lack of VO2 plateau on a CGXT does not invalidate the 

VO2max obtained during such a test.  The presence of the VO2 ceiling in the DGXT shows that, 

contrary to what has been hypothesized by Noakes [18], VO2 will not continue to increase 

indefinitely as velocity increases. 

Our results are in close agreement with those of Snell et al. [154]. In their study, 52 

participants (36 men, 16 women) performed a treadmill CGXT, starting at 8 or 9 miles per hour 

with 0% grade.  The treadmill grade was then increased by 2% every 2 minutes until volitional 

exhaustion ensued. The participants returned for a second day of testing where they ran at the 

same velocity as on the CGXT but with an additional 8% increase in the treadmill incline. The 

results showed no difference between the VO2 of the CGXT and the brief, supramaximal test.  

Thus, they concluded that, on average, CGXT and DGXT protocols yield the same values for 

VO2max. They also confirmed A.V. Hill's hypothesis that at high exercise intensities eventually the 

VO2 reaches a maximal value, beyond which no effort can drive it.  

Stamford’s 1976 study [86] was similar to that of Snell et al. [154] and yielded similar 

results. Ten male subjects completed a DGXT, 2 CGXTs, and 2 constant load tests. The DGXT 
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consisted of running at 7.0 mph for 3 minutes, resting for 10 minutes, and then increasing the 

treadmill incline by 2.5% for each successive 3-minute bout (with 10-minute rests in between).  

The test continued until the subject could not complete the full 3 minutes, and the final 

completed stage was considered the maximal work rate. The CGXT was identical to the DGXT in 

work rate increments, but each stage lasted 2minutes instead of 3 and there was no rest 

between stages. The supra-maximal, constant load test was conducted using the peak speed 

and incline of the DGXT with an extra 2.5% incline added on. The results of the test showed no 

significant difference between the VO2max of each test whether it was DGXT, CGXT, or 

supramaximal. 

Shephard et al. [87] confirmed these findings with a study of 24 Canadian males. The 

participants were administered a CGXT and a DGXT in treadmill, bicycle, and step exercise. Each 

test was preceded by a submaximal warm-up, which was used to estimate the maximal work 

rate during the exercise. In the case of the DGXT, a constant load of 110% of predicted 

maximum work rate was administered, and further bouts were adjusted in relation to the 

participant’s performance. The CGXT began at 90% to 100% of maximal work rate with slight 

increases in work rate every 2 minutes. Regardless of the mode of exercise, there was no 

significant difference between DGXT and CGXT results. Thus, the concurrent validity of the 

DGXT and CGXT has been consistently demonstrated, across several modes of exercise and 

testing protocols. 

The fact that a participant can show a VO2 ceiling on a DGXT, but fail to show a VO2 

plateau on a CGXT indicates that these two events represent different phenomena.  We believe 
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that subjects are more likely to show a "ceiling" or upper limit on VO2 with a DGXT, because at 

the beginning of each stage they are well rested and can summon anaerobic metabolism to a 

greater extent.  This enables them to reach higher exercise intensities than they would with a 

CGXT, thus increasing the likelihood that they will attain supra-maximal running speeds where 

the oxygen requirement far exceeds the subjects VO2max.  Furthermore, the lack of significant 

difference between the VO2max of the CGXT and DGXT is consistent with previous research [13, 

86-91]. 

Day, et al. [10] found that the VO2 plateau only occurs in only a small percentage of 

individuals who perform a maximal CGXT on the cycle ergometer. The methods used by Day et 

al. [10] were meticulous and rigidly controlled. By using a small increment of increase (5W 

every 12-20 seconds) on a cycle ergometer, they were able to show a low-residual linear 

response to the exercise during the “linear portion” (they omitted the first four minutes and 

last three minutes of the CGXT to arrive at the linear portion). Most protocols use larger jumps 

in work rate at 1- or 2-minute intervals, creating more of a “step” shape rather than a “true” 

linear response.  In addition, the breath-by-breath response, which typically exhibits a fair 

amount of “noise”, was normalized by removing errant breaths. Without this tight control, it 

would be much more difficult to determine the presence of a VO2 plateau. Their results clearly 

showed that a relatively small percentage of people (17%) demonstrate a VO2 plateau on a 

CGXT.  Most individuals demonstrate a linear increase in VO2 throughout exercise (56%), while 

some actually demonstrate an acceleration in VO2 response at the end of a CGXT (27%). 
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Rossiter et al. [12] showed that, in addition to the low prevalence of VO2 plateau during 

a cycling CGXT, the lack of VO2 plateau does not invalidate the attainment of VO2max. Seven 

subjects completed a modified cycle ergometer CGXT. They began at 20 W with an increase of 1 

W every 3 seconds until volitional exhaustion was reached. After achieving exhaustion, they 

recovered by cycling at 20W for 5 minutes, and then completed a constant load bout at 105% of 

the peak work rate achieved in the CGXT. After at least 5 days of rest, the protocol was 

repeated, but using 95% of the peak work rate achieved during the CGXT. Results showed no 

significant difference between the VO2 achieved during the CGXT or 105% bout. This was true 

despite the fact that of the 14 tests, only 2 had a “tendency toward a plateau”. This study 

demonstrated that exercising at supramaximal rates does not increase the VO2 above values 

measured on a CGXT. In addition, the lack of a VO2 plateau on a CGXT did not invalidate VO2max 

values obtained during the test. 

Our study confirms the findings of Day et al. [10] and Rossiter et al. [12] by 

demonstrating that a VO2 plateau is not a necessary criterion for attainment of VO2max, and that 

subjecting participants to supramaximal work rates results in them achieving VO2max values that 

are no higher than those achieved on a CGXT. 

Duncan, et al. [11] sought to determine if there was a difference in VO2 plateau and 

ceiling prevalence between CGXT and DGXT. Their DGXT mirrored that of Taylor et al. [33], even 

including the collection of expired respiratory gases in Douglas bags. The participants ran at 7 

miles per hour for three minutes with gas collection between 1:45 and 2:45. Each successive 

test was repeated at the same speed with an incline increased 2.5% from the previous bout. If 
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the participant showed an increase of VO2 less than 150 mL/min, then they were said to have 

demonstrated a plateau.  Duncan et al. used a CGXT that was similar to their DGXT, except that 

it had 1-minute stages rather than 3-minute stages, and there was no rest between each stage. 

Though Duncan et al. showed little difference in VO2 plateau prevalence between protocols (5 

of 10 for CGXT and 6 of 10 for DGXT), this is likely due to premature termination of the DGXT. 

Both Taylor et al. and Duncan et al. failed to show 100% plateau prevalence in the DGXT 

because only bouts of at least 2.75 minutes were included.  Thus, if a participant's final bout 

was 2 minutes and 44 seconds or less it was excluded.  However, in our study, 2 out of 9 (22%)  

participants were not able to run at 100% of PTV for 2.75 minutes, but they were still able to 

attain VO2max within about two minutes, which allowed them to show evidence of  a VO2 ceiling 

on the DGXT. For these individuals, the maximal DGXT protocols of Taylor et al. and Duncan et 

al. would not have included the data from runs at supramaximal running speeds. As a result, 

they would have failed to demonstrate a plateau; not because their body was incapable of 

reaching a plateau during a DGXT, but rather because the supramaximal bouts were excluded. 

This likely explains why some of the participants in the studies of Taylor et al. and Duncan et al. 

failed to show a ceiling effect, while all of the individuals in the present study did. 

Noakes has been an ardent opponent of the VO2 paradigm proposed by Hill and Lupton 

for over a decade. Part of his criticism was based on the fact that there is low prevalence of VO2 

plateau when CGXT are used. In his J.B. Wolffe Memorial lecture [18], Noakes stated, 

 

 “Not only did Hill et al. [5] fail to measure concurrently either the oxygen debt or 

muscle or blood lactate levels during these subsequent studies, they also failed to 

subject their hypothesis to the accepted process of refutation. For the next logical 
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study would have been to measure Hill’s VO2 when he ran at a speed faster than 16 

km/h.” [18] 

 

 

The major purpose of the present study was to conduct the critical experiment that 

would answer this question.  As our results clearly showed, taking subjects to supra-maximal 

speeds (where the O2 requirement exceeded their VO2max) yielded a "ceiling effect" just as Hill 

and Lupton [5] had predicted, not a continued linear increase in VO2 as hypothesized by Noakes 

[18].  Hill and Lupton described in VO2-vs-running speed graph as follows, "oxygen requirement 

rises continuously at an increasing rate, as the velocity increases, attaining enormous 

values…however much the speed be increased beyond this limit, no further increase in oxygen 

intake can occur: the heart, lungs, circulation, and the diffusion of oxygen to the active muscle-

fibres have attain their maximum activity.” 

The DGXT protocol used for the present study closely resembled that of Hill and Lupton 

[5]. They used a protocol designed around changes in running speed, rather than the more 

common practice of increasing percent grade on the treadmill [11, 33].  This procedure was 

used for both the CGXT and DGXT, which meant that the participants reached volitional 

exhaustion while running on a level surface.  Nevertheless, there were some differences 

between our methods and those of Hill and Lupton [5]. First, rather than running around a grass 

track, our participants ran on a motor-driven treadmill so that the speed and environmental 

conditions could be controlled more easily.  Second, we used a portable indirect calorimeter 

system that employs breath-by-breath gas analysis, rather than the Douglas bag method used 

by Hill and Lupton. Lastly we pushed our runners to supra-maximal speeds, while Hill and 
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Lupton did not (at least not in the experiment where they studied the time course in the VO2 

response to running at various speeds).  Our purpose in doing this was to test the validity of Hill 

and Lupton's assertion that “however much the speed be increased beyond this limit, no 

further increase in oxygen intake can occur.” 

Because of the similarities between our protocol and that of Hill and Lupton, the results 

of this study are comparable to Hill and Lupton’s work and can properly validate their results.  

However, it should be noted that several excellent studies have examined the time-course of 

the VO2 response to DGXT protocols on cycle ergometers [5, 10, 12, 33, 81]. One caution, 

however, is that the VO2max values measured during treadmill running are generally 5-10% 

higher than those measured during cycle ergometry, especially for individuals not trained in 

bicycling.  Thus, we sought to examine the VO2 response to DGXT protocol during level running, 

to extend the work of Hill and Lupton. 

 In conclusion, the results of this study reaffirm the findings of Hill and Lupton [5].  It also 

confirms previous work by Day et al. [10] and Rossiter et al. [12] showing that a VO2 plateau is 

not a necessary criterion for the attainment of VO2max.  Furthermore, it shows that at 

supramaximal running speeds, VO2max values do not exceed those achieved in a maximal CGXT, 

confirming the work of Snell et al. [154] and other researchers. These results strongly refute 

Noakes’ hypothesis that running at speeds beyond 100% of PTV would yield a further increase 

in VO2. Hill and Lupton were absolutely correct in asserting that, “…oxygen requirement rises 

continuously at an increasing rate, as the velocity increases, attaining enormous 

values…however much the speed be increased beyond this limit, no further increase in oxygen 
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intake can occur: the heart, lungs, circulation, and the diffusion of oxygen to the active muscle-

fibres have attain their maximum activity.” 
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Figure 1, Demonstration of VO2 Plateau  
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Figure 2, Demonstration of Lack of VO2 Plateau 
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Figure 3, VO2 Comparison between DGXT and CGXT 

Expressed as mean ± standard error 
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Figure 4, VE Comparisons between CGXT and DGXT 

Expressed as mean ± standard error 
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Figure 5, Heart Rate Comparisons between DGXT and CGXT 

Expressed as mean ± standard error 
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Figure 6, RER Comparisons Between CGXT and DGXT 

Expressed as mean ± standard error 
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Figure 7, Duration of Each DGXT Run 

Expressed as mean ± standard error 
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Figure 8, Subject 1 Time Course of the VO2 Response for Discrete Continuous Speeds 
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Figure 9, Subject 2 Time Course of the VO2 Response for Discrete Continuous Speeds 
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Figure 10, Subject 3 Time Course of the VO2 Response for Discrete Continuous Speeds 
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Figure 11, Subject 4 Time Course of the VO2 Response for Discrete Continuous Speeds 

*Subject 4 had an invalid 110% of PTV run due to equipment malfunction 

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

V
O

2
 (

m
l/

k
g

/m
in

)

Time (s)

VO2 responses for Subject 4

80% of vVO2max

90% of vVO2max

100% of vVO2max

105% of vVO2max



91 

 

 

Figure 12, Subject 5 Time Course of the VO2 Response for Discrete Continuous Speeds 
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Figure 13, Subject 6 Time Course of the VO2 Response for Discrete Continuous Speeds 
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Figure 14, Subject 7 Time Course of the VO2 Response for Discrete Continuous Speeds 
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Figure 15, Subject 8 Time Course of the VO2 Response for Discrete Continuous Speeds 
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Figure 16, Subject 9 Time Course of the VO2 Response for Discrete Continuous Speeds
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APPENDIX A 

 

Screening Questionnaire: 
1. Have any of the following occurred with your father or first-degree 

male relative before age 55, or with your mother or first-degree female 

relative before the age of 65: Myocardial infarction, coronary 

revascularization, or sudden death? 

 Yes   No 

 

2. Do you currently smoke, or quit smoking within the last 6 months?  

 Yes   No 

 

3. Has a doctor ever told you that you have hypertension, systolic blood 

pressure ≥ 140mmHg, diastolic blood pressure ≥90mmHg, or do you 

currently take antihypertensive medications?  

 Yes   No 

 

4. Has a doctor ever told you that you have hyperlipidemia (“High 

cholesterol”) defined as LDL > 130 mg/dL, or been told you have HDL < 

40 mg/dL, or are on lipid-lowering medication? If you have only been 

told total serum cholesterol, has it been >200mg/dL?  

 Yes   No 

 

5. Has a doctor ever told you that you have diabetes, or impaired fasting 

glucose defined as fasting glucose ≥ 100 mg/dL measured on two separate 

occasions?  

 Yes   No 

 

6. What is your height and weight?  

Height (inches):  *0.0254 =  Height (meters): 

Weight (lb.):  /2.2   = Weight (kg): 

Height (meters)*Height (meters)  =  [Height (meters)]
2
: 

Weight(kg) /[Height(meters)]
2
  = BMI:  

Is the participant’s BMI > 30 

 Yes   No 
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7. Do you run at least 15 miles per week on average, and have done so 

over the past 6 months?  

 Yes   No 

 

8. During exercise, do you experience chest discomfort, unreasonable 

breathlessness, dizziness, fainting, or blackouts?  

 Yes   No 

 

9. Do you take heart medications?  

 Yes   No 

 

10. Are you older than 35?  

 Yes   No 

 

If the participant answered “no” to all questions, except question 7, read 

the following text: 

“According to your screening, we have determined that you are eligible to 

participate in the study. We can set up a time with you in which you will 

be able to commit 30 minutes to an hour of your time for your first 

testing” 

 

If the participant answered “yes” to any question, except question 7, read 

the following test: 

“According to your screening, we have determined that it might be unsafe 

for you to participate in this study given the presence of risk factors. 

Thank you for taking the time to contact us.” 

 

         

Participant name 

         

Time and date of first meeting 

     

Date 
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APPENDIX B 
 

Are you a runner?

You can participate in a research study at 

the University of Tennessee, and get a free 

VO2max test and body fat analysis in the 

process!

Requirements

o Run at least 15 miles a week regularly

o Be in good health, and 18-35 years old

o Willing to commit to 4 separate running tests

o Do interval training 1 or more days a week

Interested?

Contact Richie Castle at 

the number below to 

see if you are eligible
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APPENDIX C  

 
 

Research Team Member’s Pledge of Confidentiality 

 

As a member of this project’s research team, I understand that I will be assisting in confidential 

fitness tests. The data and personal information in these fitness tests has been recorded from 

research participants who participated in this project on good faith that their test results and 

personal information would remain strictly confidential. I understand that I have a responsibility 

to honor this confidentially agreement. I hereby agree not to share any information in these 

fitness tests with anyone except the primary researcher of this project, his primary advisor, or 

other members of this research team. Any violation of this agreement would constitute a serious 

breach of ethical standards, and I pledge not to do so. 

 

_____________________________    ________________ 
Research Team Member     Date 
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APPENDIX D 
Recruitment E-Mail 

 

Dear Runner or runners, 

 I would like to invite you to participate in a study for the University of Tennessee looking to 

examine methods of testing aerobic fitness. If you choose to participate, you will receive free body fat, body 

mass index, and VO2max testing. The testing consists of coming to our lab on the University of Tennessee 

campus for four separate days of testing. Testing will take 30 to 60 minutes for each day, and will consist of 

running at various high-intensity speeds to determine VO2max.  

 To be eligible to participate you must be 18 to 35 years of age, healthy, and have been running an 

average of 15 miles a week for the past 6 months. If you would like to participate, please call Richie Castle 

at (865) 974-5091, or email me at rcastle@utk.edu. 

 

Richie Castle, B.S. 

Graduate Student in Exercise Physiology 

University of Tennessee, Knoxville 
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APPENDIX E 
 

INFORMED CONSENT FORM 
TITLE:  Why is there so much confusion about VO2 plateau? A re-examination of the work of A.V. Hill 

 

Investigators:  Richie Castle, B.S.  

      David R. Bassett, Jr., Ph.D. 

 Address: 

 Kinesiology, Recreation, and Sport Studies 
  322 HPER Building 

  University of Tennessee 

  1914 Andy Holt Ave., Knoxville, TN 37996-2700 

 

Phone:  (865) 974-5091 

 

PURPOSE 

You are invited to participate in a research study.  The purpose of this study is to look at your rate of oxygen 

uptake near the end of a maximal exercise test to look for a plateau (i.e. leveling off) in oxygen uptake. You will 

be asked to participate in exercise testing on four separate days, while we study the effects of running speed on 

oxygen uptake.  

 

PROCEDURES 

On four separate days you will be asked to come to the Applied Physiology Laboratory in the Health, 

Physical Education & Recreation (HPER) building. Prior to your participation, you will be screened by 

the primary researcher to determine whether you have any risk factors that prevent you from taking part 

in this study. On the first day of testing, you will perform a maximal treadmill running test to determine 

your aerobic fitness. A researcher will measure your height, weight and body fat. Following these 

measurements you will undergo a maximal exercise test on a treadmill.  This involves running on a 

treadmill until exhaustion while wearing a face mask, a vest housing two portable measurement devices, 

and heart rate monitor.  

 

The next test will consist of a discontinuous exercise test.  The laboratory test will consist of running on 

a treadmill at a single speed, resting, then repeating for faster speeds.  While running, you will wear a 

face mask that will funnel all breathing through a mouth piece and chest harness that will house two 

light devices used in measuring oxygen content.  In addition, the heart rate monitor will be worn around 

your chest. You will run for 10 minutes at a submaximal speed as a warm-up before running at each 

submaximal or maximal speed.  Each 10 minute run will be separated by 15 minutes of rest, and the 

speed will be increased with each successive bout. Each bout will be performed for 10 minutes or until 

you are unable to continue, whichever comes first. The fastest speed will be equal to the fastest speed 

you attained on your first visit. 

 

The final two tests will consist of you running at speeds that are approximately 5% and 10% faster than 

highest speed attained during the first test. Each test will be preceded by a 10 minute warm-up at a speed 

that is approximately 80% of the peak speed attained on the continuous run. The final two tests will be 

performed for 10 minutes until you are unable to continue, whichever comes first.  

Participant initials   

The total time commitment will be approximately 3 hours. One to six days of rest will be allowed 

between tests. 
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BENEFITS OF PARTICIPATION 
By participating in this study, you will learn your current aerobic fitness level (VO2max), body mass index, and 

percent body fat.  

 

RISKS OF PARTICIPATION 
Risks are similar to those experienced during a typical vigorous workout.  Some risks include muscle soreness, 

dizziness, headache, leg discomfort, gastrointestinal discomfort, and a very rare possibility of a cardiac event.  

Sudden cardiac death during exercise among 18 to 35 year old persons could occur, but this is very rare.  

Researchers collecting data will be CPR/AED certified. Falling while running is the most likely injury. During 

running, one person will spot you, and there will be padding at the rear of the treadmill. During any part of the 

test, you may stop for any reason by signaling the researchers, or jumping off and straddling the treadmill belt. If 

the primary researcher feels it is unsafe for you to continue a test, he will terminate the test immediately. The 

University of Tennessee does not "automatically" reimburse subjects for medical claims or other compensation. If 

physical injury is suffered in the course of research, or for more information, please notify Richie Castle at (865) 

974-5091 or rcastle@utk.edu. 

 

CONFIDENTIALITY 
Only the researchers will have access to your test results. All information will eventually be used for a research 

report, however, your private information will not be presented in the report. 

  

CONTACT INFORMATION 

If you have questions or concerns at any time during the course of the testing procedures or after completion of 

the testing procedures, you may contact Dr. David Bassett at (865) 974-8766.  If you have questions concerning 

your rights as a participant, contact the Compliance Section of the Office of Research at (865) 974-3466. 

 

PARTICIPATION 

Your participation in this study is strictly voluntary.  You have the option to withdraw from the study at 

any time without penalty.  If you withdraw from the study, then all data will be given to you or 

destroyed.   

AUTHORIZATION                 
By signing this informed consent form, I am indicating that I have read and understood this 

document and have received a copy of it for my personal records.  I have been given the opportunity 

to ask questions about the research study.  By signing this form I indicate that I agree to serve as a 

participant in this research study. 
 

________________________________ 

Participant’s name 

 

________________________________  ______________ 

Participant’s signature     Date 

 

________________________________  ______________ 

Investigator’s signature    Date 
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Vita 

 
Richie Castle often spends his time wishing that he were Bruce Wayne and unsuccessfully 

picking up women at bars. It has not occurred to him that those two reasons may be linked. 

Although aspiring to become a physician, life dealt him a different hand and he followed 

up on his undergraduate work and pursued a master’s in exercise physiology. Be began the process 

arrogant and ignorant. As he learned more, the adage, “the more you know, the less you realize you 

know,” rang true for him, and he learned the core of humility: no matter how much you know, there is 

always somebody that knows more. 

He was accepted into Nova Southeastern University School of Osteopathic Medicine in 

February of 2011. Before you ask him, no he is not doing it for the money, and no he does not know 

what specialty he wants to do. However, should you ask him, he will be willing to see you as a patient in 

four years. Also, to be honest, he doesn’t really understand the difference between osteopathic and 

allopathic medicine, but supposes he will in a couple of years. 

He loves his mother who died just a day after defending his thesis. It was not unexpected, 

but the timing was. One of his pet peeves is when a person says, “this is the last thing I need right now,” 

about an event that is never advantageous (e.g. when exactly would you need your car to break down?). 

His mother’s death will never be a happy event, but he appreciates that the timing was as good as it was. 

He is incredibly happy to finally become a doctor after several medical school rejections, 

hours of volunteer work, days spent on classes necessary for medical school and unnecessary for 

graduation, and answering the essay question “why do you want to become a doctor” written in ten 

similar but still intrinsically different forms. He is also happy to move. Knoxville is a college town and 

he graduated from college four years ago. Finally, he is happy to submit this monster of a learning 

experience. I’ll close with a quote from my mother’s husband (who enjoys driving for the sake of 

driving), “The thing about taking a trip, is that once I get where I’m going, there is nothing for me to do 

except pack it up and go home. You spend this time thinking the destination is the fun part, then I realize 

it was the drive.” 
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