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ABSTRACT 
 

 
The main purpose of this study was to perform a heat release analysis in order to 

formulate a heat-release model for a common-rail diesel engine. The fundamental idea of 

the model is to describe the observed physical processes with empirical formulas based 

on the experimental data.  

A Fiat 2.4Liter common rail engine was used in the tests. A rotary incremental encoder 

with 0.1° resolution was coupled to the crankshaft pulley with a special adapter. The 

engine was operated at a number of different speeds and load conditions. Cylinder 

pressure data was recorded using a high-speed data acquisition system.  The data 

acquisition was done at variable sampling speeds; encoder signal at every 0.1° dictated 

the sampling speed for data-acquisition. Cylinder pressure data was logged for 100 cycles 

at each operating condition. This raw data was averaged and used for further analysis. 

The actual rate of heat-release/crank angle was evaluated using the first law of 

thermodynamics. The heat release data was modeled using Weibe functions. Two such 

functions were used: one to describe the pilot burning and the other to describe the main 

burning stage of the combustion process. The coefficients and parameters in the model 

were adjusted to match the observed heat release diagram. Actual cylinder pressure 

versus crank angle traces were compared with predicted cylinder pressure versus crank 

angle traces for verification of the technique. 
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CHAPTER I 
INTRODUCTION  

 

1.1 Brief History of Diesel Engine 

In 1892, German Engineer Rudolf Diesel proposed in his patent the concept of a 

compression-ignition engine [1]. He suggested that combustion might be initiated by 

injecting liquid fuel into air solely heated by compression. In his initial experiments, he 

injected coal dust into a cylinder containing air that had been compressed. Later on, he 

turned to liquid fuel and achieved success with what we now call diesel fuel. 

Rudolf Diesel built and ran the first diesel engine at the Augsburg Maschinenfabrik (now 

known as MAN) in 1894 [2]. The single cylinder engine was used to power stationary 

machinery. The engine operated at 26.2% efficiency, a very significant improvement on 

the 20% achieved by the best gasoline engines of that time [1]. 

1.2 Fundamentals of Diesel Engine  

As described by Heywood [3], diesel engines have been divided into two basic categories 

according to their combustion chamber design: 

(1) Indirect injection (IDI) engines: In IDI engines the combustion chamber is 

divided into two regions, a pre-chamber and a main chamber. The fuel is injected 

into the “pre-chamber” which is connected to the main chamber via a passage or 

one or more orifices.  

(2) Direct injection (DI) engines: DI engines have a single open combustion chamber 

into which fuel is directly injected. 
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1.2.1 Combustion in Diesel Engine 

Combustion in diesel engines has been described in detail by Heywood [3]. According to 

Heywood, in a diesel engine air is compressed in the combustion chamber during the 

compression stroke, which greatly increases its temperature and pressure. In to this highly 

compressed and heated air, diesel fuel, which is at high pressure after compression in a 

fuel pump, is injected in the liquid state. The liquid fuel droplets absorb/extract heat from 

their surroundings and vaporize quickly. The temperature of the thin layer of air 

surrounding the droplet reduces but its temperature is again raised by heat transfer from 

the main bulk of air. As soon as this vapor and the adjacent air reach the auto-ignition 

temperature and the local air fuel ratio is within the combustible range, ignition takes 

place. Once ignition has taken place and flames are established, the thermal energy 

available for further evaporation is enhanced by that released by combustion. Thus, there 

is a delay period before ignition can take place. The initial fuel droplets meet air whose 

temperature is only a little above their self-ignition temperature and they ignite after 

ignition delay. The subsequent fuel droplets find air already heated to much higher 

temperatures by the burning of initial droplets and therefore their ignition delay is much 

shorter. 

1.2.2 Stages of Combustion 

The various stages of combustion as described by Heywood [3] are shown in Fig 1: 

(1) First stage or the ignition delay period: This is the period between the start of fuel 

injection into the combustion chamber and the apparent start of combustion. This delay 

period is calculated by comparing the pressure diagrams of the fired and unfired cycle. 
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The point where the slope of the p-θ diagram of the fired cycle deviates from the unfired 

cycle is taken as the point where combustion begins. During this period, some fuel is 

added but not ignited. This is the short preparatory phase.  

(2) Second stage or pre-mixed combustion phase: In this stage, combustion of the fuel 

that has mixed with air, is above self-ignition temperature, and has the required air/fuel 

ratio takes place during the first few degrees of crankshaft rotation. This stage is 

characterized by high heat release. About one-third of the heat is evolved during this 

period. 

(3) Third stage or mixing-controlled combustion phase: Once the fuel and air that pre-

mixed during the ignition delay have been consumed, the burning rate is controlled by the 

rate at which mixture becomes available for burning. The rate of burning is thus primarily 

dependent on the fuel vapor and air mixing process. The heat release rate reaches a lower 

peak in this phase and the rate decreases as the phase progresses. This stage is also called 

diffusion burning. 

(4) Fourth stage or late combustion phase: Heat release continues at a lower rate during 

the expansion stroke. One of the possible reasons for heat release is that, some fuel 

energy is still present in soot and fuel-rich combustion products, and that fuel energy can 

be released. It’s also possible that a small fraction of fuel is unburned. The final burnout 

process is slow because the temperature of the cylinder gases falls during expansion. 
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1.2.3 Heat Release Analysis 

W.T.Lyn [4] has described the combustion process as a link between the design and final 

aspects of engine performance in his pioneering research. According to Lyn, for a given 

engine specification, the performance of an engine is uniquely determined by the manner 

in which fuel is introduced into the combustion chamber, which in turn is determined by 

the design of the fuel injection equipment. Injection characteristics are defined by the 

following four items: 

• Injection Timing 

• Injection Period 

• Shape of Injection Rate Diagram 

• Spray Distribution  

• Spray Droplet Size Distribution 

The indicated efficiency for a given engine configuration is uniquely determined by the 

shape and magnitude of the cylinder pressure diagram, which in turn depends on the rate 

of heat release and heat transfer through the combustion chamber wall. Figure 2 shows 

the aspects of engine performance and the corresponding research area. 

1.3 Common-Rail Engines 

Common-rail engines are direct injection diesel engines with “Common-rail” fuel 

injection system. Common-rail engines use a common pressure accumulator called the 

rail and all the injectors are fed from this rail. Common-rail engines have the advantage 

of being able to control the injection pressure independent of the engine speed and load. 

Common-rail systems with electronically controlled fuel injection also have a provision 
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for pilot injection, which has an important bearing on emissions. 

Diesel engine researchers have always tried to come with up a flexible fuel-injection 

system that will allow control of: 

• Start of injection 

• Fuel quantity injected 

• Injection pressure 

• Injection shaping 

In 1978, Bosch [5] came up with an electronically controlled accumulator injection 

system (Common Rail Injection System). This system was successful in meeting all the 

above stated goals. 

The key elements of a common rail injection system are: 

(a) High-pressure (controllable) pump 

(b) Fuel rail with pressure sensor 

(c) Electronically controlled injectors and 

(d) Engine management system 

Figure 3 shows the common rail set up for the Fiat engine used for experiments. 
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1.3.1 Operating Principle 

As discussed by Stumpp and Ricco [6], in a common-rail engine, a feed pump delivers 

the fuel through a filter unit to the high-pressure pump. The high-pressure pump delivers 

fuel to the high-pressure accumulator (the rail). The injectors are fed from this rail. The 

injectors inject fuel into the combustion chamber when the solenoid valve is actuated. 

The fuel volume between the high-pressure pump and the injectors serves as an 

accumulator. This helps to dampen oscillations initiated by the pulsating delivery of the 

high-pressure pump. A pressure sensor measures the fuel pressure in the rail. Its value is 

compared to the desired value stored in the electronic control module (ECM). If the 

measured value is different from the desired value, an overflow orifice on the high-

pressure side of the pressure regulator is opened or closed. The overflow fuel returns to 

the tank. The injector opening and closing is controlled by the ECM. The duration of 

injection, fuel pressure in the rail and the flow area of the injector determine the injected 

fuel quantity. 

1.3.2 Components 

The main components, as discussed by Stumpp and Ricco [6] are: high-pressure fuel 

pump, injector, accumulator, pressure sensor and ECM 

a) High Pressure Pump 

The high-pressure pump is usually a radial piston pump. The working of high pressure 

pump is shown in Figure 4. A cam on its drive shaft displaces three pistons in succession. 

The pistons are held to the eccentric by the springs and each piston draws fuel via a 

corresponding inlet valve. The drawn fuel is delivered via a check valve to the rail when 
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Figure 4. High-pressure fuel pump [6] 

the piston is lifted The inlet valve of one piston can be opened by a solenoid. In this way, 

the quantity of the high-pressure fuel delivered can be matched to the demand.  

A safety valve is also located in the fuel feed of the high-pressure pump. The piston of 

this valve closes an orifice in the inlet to the high-pressure pump when there is low fuel 

pressure. With high fuel pressure the orifice is open. 

b) Injector 

The injector consists of: 

� A multi-hole nozzle with a spring, pressing the nozzle neddle to its sealing seat, 

� A control piston P 

� An orifice Z feeding fuel to the control piston 

� An orifice A being opened or closed by a solenoid valve. 

According to the authors, the deactivated solenoid valve closes the orifice A on the top of 

the control piston. The fuel pressure from the rail works on the top of the control piston 

via the throttle Z, thus the fuel pressure exerts a force in addition to the nozzle spring in  
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Figure 5. Injector [6] 

 

closing the nozzle. When the solenoid is energized, the orifice A opens. This reduces the 

pressure on the control piston and the nozzle is opened. Afterwards when the solenoid 

valve is de-energized, the pressure exerted on the control piston raises and the injector 

closes. Figure 5 shows the details of the injector described. 

c) Accumulator 

The fuel trapped between the check valves in the high-pressure pump and the injector 

nozzle seat works as an accumulator. The trapped volume has an optimum value. A 

smaller volume results in large pulsations of fuel pressure whereas a larger volume 

increases the response time of the pressure during transient conditions. 
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d) Pressure Regulator 

The pressure regulator varies the pressure in the accumulator. A solenoid acts as a ball 

overflow valve. Increasing current in the coil of the solenoid increases the solenoid force, 

raising the fuel pressure. The overflow fuel returns to the tank.                                                                    

e) Electronic Control Unit (ECU) 

The ECU controls all the important functions of the fuel injection system: 

• Based on the engine operating conditions, the ECU evaluates the desired value of 

the fuel pressure. The ECU sends a signal to the pressure regulator if the desired 

fuel pressure is different from the measured fuel pressure. 

• The solenoid valves of the injectors are controlled according to accelerator pedal 

position and operating information of the engine. 

• The solenoid valve of the high-pressure pump is switched according to the engine 

operating information. 

• The electric fuel pump is switched on/off by the ECM. 

1.3.3 Advantages of Using Pilot Injection in Common Rail Engine 

Pilot injection or pre-injection has been described by Manfred et al [8] as a means to 

optimize the emission behavior and reduce noise of direct injection diesel engines. 

According to the authors, the combustion process should have the following 

characteristics to achieve noise-free combustion with low exhaust emissions and they 

have divided the combustion process into three following phases: 

Phase I: Beginning of Combustion—In this phase, only a small amount of fuel should be 

burnt to limit NOx and soot formation. 
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Phase II: Through end of Injection—Sufficient mixture of fuel and air should be available 

to reduce secondary soot formation. 

Phase III: After end of injection—Intensified mixture of the residual air and the 

combustion gases in order to oxidize soot.  

The authors found that pilot injection allows the diesel engine combustion in the above-

mentioned way. The amount of fuel burnt in the first phase is lower in comparison to the 

conventional process since only pilot injection fuel is burnt in the beginning of the 

combustion. Pilot injection reduces the average combustion temperature due to reduced 

pre-mixed combustion and slower combustion during diffusion. 

Soot formation is also effected by pilot injection. This was explained by examining the 

flame area fraction [9]. The author has shown that there is a direct relationship between 

flame area and smoke. If more pilot flame exists, when the main injection starts the 

interference of already formed soot with the main injection spray may cause poor mixing 

of the main spray and poor oxidization of the pilot combustion soot. The author also 

suggests optimizing pilot quantity and increasing the interval between the end of the pilot 

and the start of the main injection as a mean to reduce the flame area and hence the soot. 

 According to Manfred et al [8], the main reason for the reduction in combustion noise is 

the decrease of ignition delay due to the higher temperature at the start of the main 

injection. Long [9] has also explained this phenomenon in his paper. According to Long 

[9], longer ignition delays result in more mixture and stronger pre-mixed combustion if 

other conditions remain same. From this it can be clearly noted that pilot injection helps 

to shorten the ignition delay of the main injection and contributes to a reduction of 

 13



combustion noise by controlling the pre-mixed combustion. However, it should be noted 

that pilot injection has it’s own ignition delay. Therefore, if the pilot quantity is too large 

the combustion noise of the pilot will become dominant.  

1.3.4 Rail Pressure Maps 

Cam driven injection systems build injection pressure for each injection. Thus, fuel 

metering and the pressure build-up are linked. The injection pressure results from the 

metered fuel quantity being pushed through the nozzle orifice by the injection piston with 

a velocity proportional to the engine speed. 

However, in common rail systems fuel metering and pressure build-up are independent 

and the injection pressure is chosen as a function of engine parameters resulting in 

improved performance of the engine. Figure 6 shows the comparison of a conventional 

fuel injection system and a common rail injection system. 

 

 

CR=Comma rail 
PLI=Pump Line  
        Injector 
EUI=Electronic Unit 
         Injector 

 
Figure 6. Rail Pressure variation with speeds in different Fuel Injection 
Systems [7] 
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The advantages and disadvantages of common rail and a conventional fuel injection 

system are listed in Table1. 

 
Table 1. Comparison of Conventional and Common-Rail fuel injection system. [11] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fuel injection 

System 

Advantages Disadvantages 

Conventional 

• Proven technology. 

• Variable injection Timing. 

• Fuel injection 

pressure dependent 

on engine speed.  

Common-Rail 

• Variable injection timing. 

(pilot and main) 

• Fuel pressure independent of 

engine speed. 

• Constant fuel pressure at 

nozzle during injection period. 

• Post injection also possible 

• Good spray quality of fuel. 

• Higher cost 

compared to the 

conventional system 
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CHAPTER II 
EQUIPMENT 

 
2.1 Engine Dynamometer 

 A water brake dynamometer (Manufacturer: Clayton Mfg Co Rating: 200HP at 

2100rpm) was used to conduct the experiments. The output torque was displayed on an 

Omega model DP25-S strain gauge panel meter that displays the torque to 1ft-lb. ±

2.2 Cylinder Pressure Transducer 

 One glow plug was modified and used as an adapter for a cylinder pressure transducer. 

In this adapter, the pressure sensor was integrated into the shell of the glow-plug. The 

resulting package has identical displacement characteristics to the original plug and 

allows for direct pressure readings without cylinder head modifications in the engine. 

 An Optrand cylinder pressure sensor was used for cylinder pressure measurements. This 

sensor has been described in detail by Wlodarczyk Marek et al [13]. According to the 

author, the fiber optic sensor consists of three basic components: a sensing head directly 

exposed to combustion pressure, a fiber optic strand, and an opto-electronic module 

containing all the sensor’s optical and electronic components.  

                                                                

Figure 7. Cylinder Pressure Sensor [13]. 
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Table 2. Cylinder Pressure Transducer Specifications [13] 

  SPECIFICATIONS:  

 Pressure Range 0~200 bar 

 Temperature coefficient of sensitivity +/-0.03%/°C 

 Output Signal 0.5~5V Analog 

 

 

 

 

The sensor head consists of a metal housing with a welded sensing diaphragm, a fiber 

holding ferrule, and two fibers bonded inside the ferrule. The details of the sensor are 

shown in Figure 7. The sensing diaphragm is the most critical element of the sensor. It 

has to be as small as possible so that the embedded sensor occupies a very small amount 

of space in the device into which it is integrated. To ensure durable operation the present 

sensor uses a hat-shape diaphragm with varying thickness across its diameter. The 

diaphragm material is a high strength alloy (Inconel). The specifications of cylinder 

pressure transducer are shown in Table 2 

2.3 Test Engine 

  All the tests were performed on a Fiat 2.4L. Refer to Table 3 for a complete description 

of the engine. For performing tests on this engine, the dynamometer cell was equipped 

with an external overflow cooling tower to provide adequate cooling for tests at high 

speed and high loads. A larger capacity intercooler was used. The cooling technique used 

was to keep the intercooler dipped in a water tank [12]. 
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Table 3. Technical data for Fiat Engine (Fiat Technical Service Manual) 

ALFA ROMEO DIESEL ENGINE 

Type  Diesel, 4 stroke 

Cooling system  Water Cooled 

Intake system  
Turbocharged, inter-cooled, with un-cooled 

EGR 

Fuel system  Bosch Radialjet Common Rail Fuel Injection

Displacement Liter 2.387 

Stroke mm 90.4 

Bore mm 82 

Connecting Rod Length mm 150 

Injection System  Common Rail System 

Compression Ratio  18.45:1 

Cylinder Configuration  In-Line 

Number of Cylinders  5 

Max Power  100kW @ 4200 RPM 

Max Torque  304.2 Nm @ 2000RPM 
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2.4 Data Acquisition System 

A high-speed portable Wavebook/516* model was used for data acquisition. The major 

characteristics of the system are: 

• Up to 1-MHz sampling with 12 bit or 16-bit resolution, 8 differential inputs 

• Single & multi-channel analog triggering with programmable level and slope  

• Digital TTL-level and pattern triggering  

• Pulse trigger 

• External clock 

• Eight or sixteen 1-MHz digital inputs  

The data was logged on to a Pentium Pro desktop computer.  Waveview* software that 

was provided as part of Wavebook* system was used for data acquisition. The sampling 

was done at a variable sampling rate using an external clock. The encoder signal 

(obtained every 0.1° CA) was used for deciding the sampling rate. The same signal was 

also used to trigger the sampling. Therefore, we have exactly one sample point 

corresponding to every 0.1° CA. The acquisition configuration (Figure 8,9 and 10) used 

for the data acquisition with the Wavebook* software is: 

• Pre-trigger = 0 

• Post-trigger = 720000 (100cycles) 

• Rate = External (same as the 0.1° CA encoder signal) 

• Triggering = Channel 1 Analog (same as the 0.1° CA encoder signal) 

* Wavebook, Waveview, Wave book/516 are trademarks of IOTECH Inc. 
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Figure 8. Acquisition Configuration Settings 

 

              

CtrLo=Counter 
turned on for 
RPM 
measurement 

Figure 9. View of Configuration Sheet 
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Instantaneous 
RPM 

Encoder 
Index Signal 

    Figure 10. Screen Showing Instantaneous RPM and Encoder Index Signal 
 

2.5 Crank-Angle Encoder 

 The engine crank angle position was accurately determined using a rotary incremental 

encoder (Manufacturer: Gurley Precision Instruments). It is important to understand each 

mechanical position is not uniquely defined in a rotary incremental encoder. Absolute 

encoders on the other hand have a unique value (voltage, binary count, etc) for each 

mechanical position.  

Two output functions channel A and the index, from the encoder, were recorded along 

the cylinder pressure and fuel injection timing data. The encoder had a resolution of 0.1°. 

The crank angle resolution is defined as the crank angle interval at which the pressure 

data is measured. The main advantages of increasing the crank angle resolution are [14]: 

1. The bandwidth is increased allowing a higher resolution of cylinder pressure 

variations to be obtained. This is especially useful in diesel engines, which have 

relatively high rates of pressure rise and heat release. 
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2. It increases the accuracy of identifying the crank angle position at which a certain 

absolute or rate of change of parameter occurs e.g. the crank angle position 

corresponding to the maximum cylinder pressure. 

Increasing the crank angle resolution had additional advantage in this particular study 

because this allowed easier observation of the pilot injection. However, it is important to 

note that crank angle resolution is different from the calculation crank angle resolution. 

The calculation crank angle resolution is defined as the interval over which the 

calculation of the derived parameter like pressure rise rate and heat release rate is made. 

The calculation crank angle resolution for most parameters was 1° CA. 

2.6 Fuel Injection Signal 

The fuel injection signal was measured with a DC Current Sensor using the set-up as 

shown in Fig 11. Any rapid change in the injector current produces an induced emf. The 

DC Current sensor placed around the injector had a large number of turns which ensured 

that the induced output voltage is of the order of 0~1Volt. 

The complete experimental setup is shown in Figure 12. The cylinder pressure sensor and 

DC current sensor were mounted on the first cylinder. The encoder was mounted on the 

crankshaft pulley using an adapter and a flexible coupling. Figure 13 shows the wiring 

diagram for the data acquisition system. 0.1° CA signal from the encoder goes to the 

external clock and the analog trigger thus ensuring that we have only one data point every 

0.1° CA. Four signals; cylinder pressure, fuel injection, 0.1° CA and index signal were 

taken to the signal-conditioning unit. The data acquisition was done using Waview* 

software that accompanied the data-acquisition system. 
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From ECM
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Current
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     System   

Current Sensor
showing internal windings

 

                

Figure 11. Principle for Fuel Injection Signal Measurement  
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CHAPTER III 
PROCEDURE 

 

3.1 Heat Release Analysis 

In analyzing the combustion process, the principle diagnostic tool is the pressure versus 

crank angle curve. In addition to combustion, cylinder pressure is also affected by the 

changes in the volume of combustion chamber due to piston travel, heat transfer to the 

walls and blow-by. Therefore, in order to examine the combustion process it is necessary 

to relate each of the above to pressure rise and to separate the effect of combustion from 

the other effects. This type of data reduction is referred to as “Heat Release Analysis”.  

This is done using the first law of thermodynamics. 

The system of interest (shown in Figure 14) when analyzing the thermodynamics of 

combustion is the gas trapped in the combustion chamber during compression, 

combustion, and expansion process. The first law of thermodynamics for this system 

states 

  dU WQ δδ −=               (3.1)  

 
System 
boundary 

hblow-by 

δQht 

δW 

hinjdmf 
 

 

 

 

 

Figure 14. System boundary for combustion chamber for heat-release analysis  
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where, is the change in internal energy, dU Qδ is the heat added to the system and Wδ is 

the mechanical work done by the system. 

The internal energy of the gas in the combustion chamber can then be expressed using the 

molar specific internal energies according to (assuming complete combustion) 

  ∑== )(),,,,,( 2222 TunTnNOnHnCOnOHnCU iiyxU     (3.2) 

              (3.3) ∑+= iiv dnudTnCdU

 If the crevice effects are ignored and the gas composition inside the combustion chamber 

is assumed constant then applying ideal gas equation of state, 

  pdVpVd
R
CQ v

+= )(δ             (3.4) 

Since crank-angle resolved measurements of p are already available, the above equation 

can be rewritten in crank angle dependent form 

α
α

αα d
dVp

d
pVd

R
C

d
dQ v )()(

+=            (3.5) 

The above equation can be integrated to give cumulative net heat release. 
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This equation can be further simplified using finite sum instead of a continuous integral. 
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=
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i

j
jjii

v
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R
CQ

0
00 )()(          (3.7) 

For the analysis, γ (ratio of specific heats) was assumed to be a function of temperature 

alone and is given by 

 27



285 10110635.1 TT −− ×+×−=γ           (3.8) 

Equation (3.7) was used as the final equation that is used to evaluate heat release at 

various crank-angles. 

Heat Transfer Effects 

Heat Transfer affects the engine performance, efficiency and emissions [3]. If the heat 

transfer to the combustion chamber walls increases, the average combustion gas 

temperature and pressure will decrease, and the work/cycle transferred to the piston will 

decrease. Thus, both specific power and the efficiency are affected by engine heat 

transfer.  

The term Q denotes the net heat transfer across the system boundary (assuming heat that 

is released from the fuel crosses system boundary). It is the difference between the 

apparent gross heat-release rate and the heat transfer to the walls. 

n

dt
dQ

dt
dQ

dt
dQ wallchn

−=              (3.9) 

where, 

dt
dQn = Apparent net heat release rate 

dt
dQch = Apparent gross heat release rate 

dt
dQwall = Apparent rate of heat transfer to the walls 

Heat transfer between the cylinder gases and the cylinder wall takes place during the 

entire engine cycle. During the intake and the early part of the compression stroke, heat is 
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transferred from the cylinder walls to the gases, but during the combustion and the 

expansion stroke heat is transferred from the gases to the cylinder wall.  

The rate of heat transfer can be calculated as,  

 )( gasw
wall TTAh

dt
dQ

−−=              (3.10) 

The in-cylinder heat transfer coefficient varies with position and time. For the analysis, 

here only the variation with time/crank angle is considered as emissions are not being 

considered. The heat transfer to the wall has in general both a convective and a radiation 

component for diesel engines [3].  

The heat-transfer coefficient can be estimated from Annand’s [15] heat transfer 

correlation. 

 ( ) ( 447.0Re wall
wall

TT
TT

C
B
kah −

−
+






= )         (3.11) 

where, 

B is the cylinder bore diameter in meters, T is the working fluid temperature in Kelvin, 

is the wall temperature in Kelvin, a is constant from 0.25~0.8 andwallT σ576.0=C  

where . 4281067.5 −−−×= KWmσ

Re is the Reynolds number of the working fluid  

 
µ

ρVd
=Re                  (3.12)  

where,  

V is the mean piston speed in meters per second, is the bore diameter in meters, d ρ is the 

density of the fluid in , and3−Kgm µ  is the dynamic fluid viscosity in  .11 −− sKgm
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The mean piston speed is calculated from the engine speed 

                  (3.13)  LNV 2=

where, is the engine speed in revolutions per second and = engine stroke in meters. N L

Annand [15] has approximated Prandtl Number as 0.7. Therefore, 

  
7.0
.µCpk =   where          (3.14) 645.07.10702.4 T−×=µ

  
γ/11−

=
RCp   where      (3.15) 285 10110635.1 TT −− ×+×−=γ

3.2 Analysis of Cylinder Pressure Data 

Cylinder pressure data were averaged over N cycles because average of N measurements 

is more reliable estimator of the average pressure at that crank angle than any individual 

cycle measurement [16].  Secondly, the engine itself is an averaging device, which 

responds to the mean values of air and fuel flows by generating mean indicated power. 

Therefore, it is appropriate to use the mean of many cycles. The number of consecutive 

cycles to be used for averaging is found by considering the variability inherent in the data 

and the accuracy required. To ensure with the confidence level of 99.9% that the sample 

mean was within 3% of population mean, sample average was based on 100 cycles. (Fig 

34) 

The following parameters were evaluated from the cylinder pressure plots: 

1. Pmax and the °CA(θmax) corresponding to Pmax  

2. Rate of change of pressure versus °CA 

3. IMEP of each cycle. 

4. Work done during each cycle 
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5. Heat released versus °CA 

6. Rate of heat released versus °CA 

7. COV of IMEP (defines the cyclic variability in indicated work per cycle) 

IMEP variation is studied as it directly influences drivability. According to Heywood, [3] 

an IMEP variation of more than 10% leads to poor drivability.  

Engine cylinder pressure is a fundamental engine variable, necessary for nearly any type 

of engine and combustion analysis. As described earlier for a given engine, geometry the 

indicated efficiency is decided by the cylinder pressure trace [4]. Once we have a 

cylinder pressure trace, then the next thing evaluated is the rate of change of pressure and 

the peak pressure. This is so because combustion noise is directly related to rate of 

change of pressure and the peak cylinder pressure [17].  

From the cylinder pressure data next step is to calculate the heat release characteristics. 

Engine designers have often tried to correlate performance variables such as brake 

specific particulates and NO to heat release rate. It has been suggested by John Abraham 

et al [18] that greater the proportion of heat released during the premix phase of diesel 

combustion, the greater the NO and the greater proportion of heat released during 

diffusion phase, the greater the particulates. A greater overall rate of heat release rate 

leads to lower particulates and greater NO and vice versa. Figures 15 to 30 show the 

cylinder pressure traces, rate of change of pressure and heat release characteristics for 

1500 RPM and loads between 25% and 55%. Figure 31 and 32 give the details of 

calculated values of temperature and heat transfer coefficient at 1500 RPM and 25% load 
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Cylinder Pressure Data and Analysis: 1500 RPM and 25% load 
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Figure 15. Averaged Smoothed Cylinder Pressure versus °CA (1500 RPM and 
                  25% load) 
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Figure 16.  Rate of Change of Pressure versus °CA (1500 RPM and 25% load) 
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Figure 17. Normalized Heat Released versus °CA (1500 RPM and 25% load) 
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Figure 18. Normalized Rate of Heat Release versus °CA (1500 RPM and 25% load) 
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Cylinder Pressure Data and Analysis: 1500 RPM and 35% Load 
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Figure 19. Averaged Smoothed Cylinder Pressure versus °CA (1500 RPM and 
                  35% load) 
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Figure 20. Rate of Change of Pressure versus °CA (1500 RPM and 35% load) 
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Figure 21. Normalized Heat Released versus °CA (1500 RPM and 35% load) 
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Figure 22. Normalized Rate of Heat Release versus °CA (1500 RPM and 35% load) 

 

 

Cylinder Pressure Data and Analysis: 1500 RPM and 45% load 
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Figure 23. Averaged Smoothed Cylinder Pressure versus °CA (1500 RPM and 
                  45% load) 
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Figure 24. Rate of Change of Pressure versus °CA (1500 RPM and 45% load) 
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Figure 25. Normalized Heat Released versus °CA (1500 RPM and 45% load) 
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Figure 26. Normalized Rate of Heat Release versus °CA (1500 RPM and 45% load) 
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Cylinder Pressure Data and Analysis: 1500 RPM & 55% load 
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Figure 27. Averaged Smoothed Cylinder Pressure versus °CA (1500 RPM and 
                  55% load) 
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Figure 28. Rate of Change of Pressure versus °CA (1500 RPM and 55% load) 
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Figure 29. Normalized Heat Released versus °CA (1500 RPM and 55% load) 

               
160 180 200 220 240

-0.01

0

0.01

0.02

0.03

0.04

0.05

CA (degrees)

N
or

m
al

iz
ed

 R
at

e 
of

 H
ea

t R
el

ea
se Speed = 1500 RPM

Load = 55%      

 
Figure 30. Normalized Rate of Heat Release versus °CA (1500 RPM and 55% load) 
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Figure 31. Calculated temperature (K) versus °CA (1500 RPM and 25% load) 
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Figure 32. Heat Release Coefficient (h) versus °CA (1500 RPM and 25% Load) 
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Figure 33.    Pmaxmean versus load at various speeds                                                                                 
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Figure 35. Cylinder Pressure versus °CA for 200 cycles (1500 RPM and 50% Load) 
 

                                    

Figure 36. 0.1°CA Signal from the Encoder (from Oscilloscope) 

 

 

 

 42



Figure 35 shows the cylinder pressure data acquired for 200 consecutive cycles and 

Figure 36 shows the 0.1°CA encoder signal as seen in the oscilloscope. 

Instantaneous Engine Speed: As mentioned earlier the external clock of the 

WaveBook/516 was used for data recording. The Wavebook has a 32 bit internal counter 

that calculates and reports the external clock’s period. This permits the instantaneous 

speed of the engine to be calculated (Fig 37). The counter channel was configured in 

“Channel Configuration Spreadsheet” by turning the CtrLo in on position 

The instantaneous engine speed can be used as a diagnostic tool. One method of detecting 

engine misfire is to examine variations in the instantaneous engine speed. Real-time 

identification of the misfiring cylinder is especially important in the case of gasoline 

engines because misfiring may adversely affect the catalytic converter. Real-time misfire 

detection can be done in the following way: When an engine is operating correctly, the 

instantaneous speed has a typical shape and regularity. This is measured and recorded. 

However, when the engine is misfiring the frequency distribution changes and this allows 

misfire detection. 
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Figure 37. Instantaneous engine speed versus °CA 
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CHAPTER IV 
MODELING AND ANALYSIS 

 

4.1 Heat Release Analysis-Combustion Process Modeling 

A variety of simulation models is used to predict the combustion process in diesel 

engines. These models range from simple empirical zero-dimensional models to highly 

sophisticated three-dimensional models. Empirical zero-dimensional models are used 

when the prediction of output performance is the main criteria. Three-dimensional 

models are used to provide results that are strongly affected by local conditions such as 

soot or NOx; in other words, when the prediction of emissions is the target.  

For empirical zero-dimensional modeling, the heat release approach is commonly used. 

In this, the thermal effects of combustion, rather than the process itself are modeled. 

Expressions are developed which correlate the gross heat release rate to the cylinder 

pressure trace using first law of thermodynamics. The generated heat release data can be 

presented using mathematical tools such as Weibe functions. These models consist of 

coefficients whose values need to be determined experimentally. The models can be 

verified by comparing the predicted cylinder pressure with the experimentally obtained 

cylinder pressure. The heat-release model should include: 

a) An empirical or analytical description of ignition delay, 

b) An expression for the heat released during the pre-mixed phase, 

c) An expression for the heat released during the diffusion phase 
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4.1.1 Ignition Delay Modeling 

The ignition delay is defined as the time between the start of injection and the apparent 

start of combustion. It would be justified to distinguish the ignition delay of pilot 

injection from the ignition delay of the main injection when split injection is 

implemented [19]. The ignition delay is modeled with an Arrhenius type of correlation.  

The three important variables to be taken into account for ignition delay modeling are 

mean temperature, mean pressure and load. Engine load is given in terms of the 

percentage of maximum torque output. 

( ) )/exp( TmdPma cbφτ =            (4.1) 

where, τ = Ignition delay in Crank Angles. 

      φ  = Load (in percentage) 

           = Mean Cylinder Pressure mP

           = Mean Combustion Chamber Temperature. mT

            and  are the constants to be determined cba ,, d

For the ignition delay of the main combustion, it may be noted that fuel injection is not 

terminated during the ignition delay period and affects the ignition process.  

4.1.2 Premixed and Diffusion Burning Modeling 

In a common-rail diesel engine, the pilot injection burning was approximated as 

premixed combustion and the main injection burning was approximated as diffusion 

burning. The total heat released is the sum of heat released during the premixed and the 

diffusion phase. Weibe functions were used to describe the heat released in both the 
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premixed and the diffusion phases. Heat Release curves has an essentially universal 

dimensionless curve [3]. This s-shaped curve is often represented by the Weibe function: 
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where, 

θ  is the crank angle, 0θ  is the start of combustion, θ∆ is the total combustion duration 

and a and m are adjustable parameters which fix the shape of the curve. 

4.1.3 Derivation of Pressure versus Crank Angle for Finite Heat Release 

The differential first law for this model for a small crank angle change, dθ, is:  

dUWQ =∂−∂               (4.3) 

Using the following definitions, Q∂ =heat release, PdVW =∂  and , results 

in  

dTmCdU v=

dTmCPdVQ v=−∂              (4.4) 

The ideal gas equation is PV = mRT, so 

( VdPPdV
R

mdT +=
1 )             (4.5) 

and 

( VdPPdV
R
CdU v

+= )             (4.6) 

The first law now becomes 

( VdPPdV
R
CPdVQ v

+=−∂ )            (4.7) 
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Further reducing the equation:  

θθθ d
dPV

R
C

d
dVP

R
CQ vv

=





 +−

∂
∂ 1           (4.8) 

Using R = Cp-Cv and γ = Cp/Cv, , the energy equation after rearrangement becomes:  

θθ
γ

θ d
dV

V
PQ

Vd
dP

−
∂
∂−

=
1              (4.9) 

If we know the pressure, P, volume, V, 
θd

dV , the heat released gradient,
θ∂

∂Q , we can 

compute the change in pressure, 
θd

dP . Thus explicitly solving the equation for pressure as 

a function of crank angle.  

First, the volume, V and 
θd

dV  have to be defined. From the slider-crank model, we have a 

definition for cylinder volume, V. Both terms are only dependent on engine geometry. 

[ )sincos1
21

22 θθ −−−++
−

= RRV
r
VV dd ]       (4.10) 

where, V  is the displacement volume, d r is the compression ratio, θ  is the instantaneous 

crankangle position (θ =0 is at TDC) and R is the ratio of the connecting rod length to the 

crank radius. 

So taking the derivative with respect to the crank angle, θ, results in:  










−
+=

θ

θθ
θ 22 sin

cos1sin
2 R

V
d
dV d           (4.11) 

Equation (4.8) was solved using a MATLAB program provided by Dr. Al Kornhauser. 
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Figure 38. Various Stages of Combustion in Common-Rail Engines 

Figure 38 shows the various stages of combustion in common rail diesel engine. This 

figure was plotted for each of the engine operating condition analyzed to determine the 

values of the pilot and main injection ignition delay. 

Determination of the pilot injection and main injection ignition delay: The fuel injection 

signal has two distinct parts: one corresponding to pilot injection and the second 

corresponding to the main injection. The positions (in crank angles) where these two 

parts attain their maximum for the first time is noted as the beginning of the pilot and the 

main injection. Similarly, the normalized heat release rate diagram has two parts: one 
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corresponding to the pilot burning and the second corresponding to the main burning. The 

position (in crank angles) for the peak of the first part is taken as the apparent pilot 

injection combustion starting point. The difference (in crank angles) between the pilot 

injection beginning point and the pilot injection combustion beginning point is the pilot 

injection ignition delay in crank angles. The same procedure was repeated to find the 

main injection ignition delay in crank angle.  

In the normalized heat release plot, it can be seen that the pilot burning curve shows a 

sudden rise and after being flat for some crank angles begins to go down. The point at 

which it begins to go down is noted as the end-point of pilot combustion. The same 

procedure is adopted to find the end-point of main combustion 
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CHAPTER V 
RESULTS and CONCLUSION 

Conclusion 

The following are the conclusions based on the this research: 

• A combustion data acquisition system was developed and successfully tested, using 

generic hardware components available. This setup can record cylinder pressure data 

every 0.1°CA at a variable sampling speed. The setup also has provision for recording 

the fuel injection signal for one injector. 

• MATLAB programs were developed as part of the research to conduct heat release 

analysis.  

• Based on the heat release analysis a two Weibe function, heat release model has been 

proposed. Preliminary analysis has shown that the predicted cylinder pressure trace is 

close to the actual cylinder pressure trace. 

The ignition delays for engine conditions of 1500 RPM and between 25% and 55% load 

were evaluated using the fuel injection, heat release/CA and rate of heat release versus 

CA data for both the pilot and the main injection as listed in Table 3 and Table 5. 

Subsequently, least-square method was used to evaluate the constants (Table 4 and 6). 

The data has been presented graphically in Figures 39 and 40. As described earlier, the 

Weibe function was used to model pre-mixed and diffusion burning. The comparison of 

actual versus predicted heat release is shown for 1500 RPM at different loads in Figures 

41 to 54. Table 7 gives the calculated duration of main and pilot burning. 

 

 50



 

               Table 3. Pilot Injection Ignition Delay for different loads 

Load 

(%) 

Calculated 
Pilot Injection 
Ignition Delay 

(CA) 

Pm
(Bars) 

Tm  
(K) 

Predicted 
(CA) 

25 13 19.95 529.89 11 

30 13 19.88 527.86 11 

35 12 19.98 530.52 11 

40 12 19.83 526.51 11 

45 12 19.41 533.69 11 

50 14 17.38 495.04 18 

55 13 17.8 507.00 15 

     

The parameters a, b, c and d were found to be: 

               Table 4. Constants for pilot injection ignition delay expression   

a b c d 

2.4 -0.2 -1.02 2700 
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                  Table 5. Main injection Ignition delay for different loads 

Load 

(%) 

Calculated 
Main 

Injection 
Ignition Delay

(CA) 

Pm  
(Bars) 

Tm  
(K) 

Predicted 
(CA) 

25 6 47.83 776.71 6 

30 6 49.41 801.40 5 

35 5 50.81 823.97 4 

40 5 51.92 842.07 4 

45 5 52.66 853.94 4 

50 3 53.72 872.29 3.5 

55 3 54.75 892.57 3 

                    

The parameters a, b, c and d were found to be: 

                  Table 6. Constants for main injection ignition delay expression 

a b c d 

2.4 -0.2 -1.02 2800 
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Calculated versus Predicted Ignition Delay
for Pilot Injection
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Figure 39. Calculated versus Actual Ignition Delay for Pilot Injection 

 

Calculated versus Predicted Ignition Delay 
for Main Injection
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Figure 40. Calculated versus Predicted Ignition Delay for Main Injection 
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Actual versus Predicted Heat Release
 (Premixed Burning)
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Figure 41. Actual versus Predicted Heat Release (Premixed Burning-1500 RPM and 
                  25% Load) 
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Figure 42. Actual versus Predicted Heat Release (Diffusion Burning-1500 RPM and  
                  25% Load) 
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Actual versus Predicted Heat Release
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Figure 43. Actual versus Predicted Heat Release (Premixed Burning-1500 RPM and 
                  30% Load) 
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Figure 44. Actual versus Predicted Heat Release (Diffusion Burning-1500 RPM and 
                   30% Load) 
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Predicted versus Actual Heat Released
 (Premixed burning)
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Figure 45. Actual versus Predicted Heat Release (Premixed Burning-1500 RPM and 
                   35% Load) 
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Figure 46. Actual versus Predicted Heat Release (Diffusion Burning-1500 RPM and 
                   35% Load) 
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Predicted versus Actual Heat Released
 (Premixed burning)
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Figure 47. Actual versus Predicted Heat Release (Premixed Burning-1500 RPM and 
                  40% Load) 
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Figure 48. Actual versus Predicted Heat Release (Diffusion Burning-1500 RPM and 
                  40% Load) 
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Predicted versus Actual Heat Released
 (Premixed burning)
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Figure 49. Actual versus Predicted Heat Release (Premixed Burning-1500 RPM and 
                  45% Load) 
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Figure 50. Actual versus Predicted Heat Release (Diffusion Burning-1500 RPM and  
                  45% Load) 

 58



Predicted versus Actual Heat Released
(Premixed Purning)
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Figure 51. Actual versus Predicted Heat Release (Premixed Burning-1500 RPM and 
                  50% Load) 
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Figure 52. Actual versus Predicted Heat Release (Diffusion Burning-1500 RPM and  
                  50% Load) 

 59



Predicted versus Actual Heat Released
(Premixed Purning)
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Figure 53. Actual versus Predicted Heat Release (Premixed Burning-1500 RPM and 
                  55% Load) 
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Figure 54. Actual versus Predicted Heat Release (Diffusion Burning-1500 RPM and 
                  55% Load) 
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      Table 7. Duration for Pilot and Main Burning  

 

 

 

 

 

 

 

 

 

 

Load 

(%) 

Duration of pilot 

Burning 

Duration of main 

Burning 

25 10 23 

30 14 25 

35 12 30 

40 15 25 

45 15 33 

50 14 32 

55 15 31 

Expression for Heat Release: 

Qtotal = Qpilot + Qmain 

Qpilot =(1.28*φ  +34.1392)* ( )       (5.2) )))(*5exp(1 3.1τ−−

Qmain=(102.68 )*         (5.3) ϕ00332.0e ))(*5exp(1( 3.1τ−−

Where, load=φ and τ is duration of combustion 
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Plot for Actual versus Predicted Pressure for various conditions 
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Figure 55. Actual versus Predicted Pressure (1500 RPM and 35% Load) 
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Figure 56. Actual versus Predicted Pressure (1500 RPM and 40% Load) 
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Actual versus Predicted Pressure
 (1500 RPM and 45% Load)
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Figure 57. Actual versus Predicted Pressure (1500 RPM and 45% Load) 
 

Actual versus Predicted Pressure 
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Figure 58. Actual versus Predicted Pressure (1500 RPM and 50% Load) 
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Actual versus Predicted Pressure (1500 RPM and 55% 
Load)
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Figure 59. Actual versus Predicted Pressure (1500 RPM and 55% Load) 
 

Figure 55 to 59 show that predicted pressures are close to the actual pressure. 

Reccomendations 

Data Acquisition: The cylinder pressure data was recorded in MAT file format. 

Readings for 100 cycles occupied 16.4 MB as compared to 400KB using binary file 

format. Suitable MATLAB program may be developed where data can be used in Binary 

file format. 
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Figure 60. 3-D Plot showing Pressure versus Crank Angle for all the 100 cycles 
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Table 8. Cylinder Pressure Data Analysis (1500 RPM and 25%, 50% Load) 

 1500 RPM and 25%load 1500 RPM and 50%load 

Cycle No. Pmax     
(bar) 

θ° CA 
ATDC 

Work 
(Joules) 

IMEP 
(bar) 

Pmax    
(bar) 

θ° CA 
ATDC 

Work 
(Joules) 

IMEP 
(bar) 

1 49.3 11.2 185.4 3.9 62.0 12.6 337.6 7.1 
2 50.2 10.6 179.1 3.8 62.4 12.2 339.8 7.1 
3 49.7 10.9 179.2 3.8 62.1 12 333.3 7.0 
4 49.3 11.6 173.6 3.6 62.5 12.6 331.0 6.9 
5 50.1 10.3 193.3 4.0 61.9 12.5 341.0 7.1 
6 50.3 10.2 180.5 3.8 62.9 12.4 352.4 7.4 
7 49.2 10.8 186.5 3.9 61.6 12.1 338.0 7.1 
8 49.8 10.3 183.7 3.8 62.2 12.7 334.7 7.0 
9 49.2 11.8 178.5 3.7 61.0 12.4 327.5 6.9 
10 48.9 10.9 187.3 3.9 62.4 12.5 324.3 6.8 
11 49.6 11.3 172.7 3.6 61.6 13 339.6 7.1 
12 49.6 10.9 192.8 4.0 61.9 12.2 341.0 7.1 
13 50.2 10.5 183.1 3.8 61.8 12.6 340.8 7.1 
14 49.7 12.2 190.3 4.0 62.5 12.5 338.3 7.1 
15 49.5 10.4 172.2 3.6 62.4 12.6 333.8 7.0 
16 49.1 10.5 179.4 3.8 62.4 12.3 340.1 7.1 
17 49.1 10.2 177.3 3.7 61.8 12.6 332.1 7.0 
18 49.1 10.7 186.1 3.9 62.0 12.1 337.6 7.1 
19 49.3 11 169.4 3.5 61.9 12.5 336.6 7.1 
20 48.9 10.5 182.9 3.8 62.2 12.6 338.4 7.1 
21 49.0 10.5 180.2 3.8 61.3 12.7 334.9 7.0 
22 49.5 11.6 181.6 3.8 62.5 12.6 351.4 7.4 
23 49.4 10.8 177.0 3.7 62.1 12.6 334.2 7.0 
24 49.2 11.5 182.5 3.8 62.2 13.2 340.8 7.1 
25 50.1 10.8 186.0 3.9 62.1 12.4 328.9 6.9 
26 49.6 11.1 186.4 3.9 62.7 12.4 341.6 7.2 
27 49.0 10.2 151.1 3.2 61.6 12.8 331.1 6.9 
28 49.0 11.8 190.0 4.0 61.8 13 333.7 7.0 
29 49.4 10.9 178.2 3.7 61.9 12.3 336.4 7.0 
30 49.9 10.3 171.4 3.6 60.9 12.9 336.9 7.1 
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Table 8 Continued 

 1500 RPM and 25%load 1500 RPM and 50%load 

Cycle No. Pmax   
    (bar) 

θ° CA 
 ATDC 

Work  
(Joules) 

IMEP 
 (bar) 

Pmax    
  (bar) 

θ° CA 
 ATDC 

Work 
 (Joules) 

IMEP 
 (bar) 

31 49.3 10.8 180.7 3.8 61.8 13.1 335.4 7.0 
32 49.8 10.6 186.5 3.9 62.0 13.3 335.5 7.0 
33 49.7 10.8 171.7 3.6 61.6 13.1 305.3 6.4 
34 48.7 10.4 185.3 3.9 61.7 12.7 306.9 6.4 
35 49.2 11.1 184.0 3.9 62.0 12.2 340.9 7.1 
36 49.2 11 189.6 4.0 62.9 12.4 339.1 7.1 
37 49.5 10.7 177.9 3.7 61.8 12.7 330.3 6.9 
38 49.8 11 173.3 3.6 62.1 13.2 330.5 6.9 
39 48.7 11.3 185.5 3.9 62.1 12.6 319.5 6.7 
40 49.2 10.6 170.8 3.6 62.3 11.9 332.8 7.0 
41 49.7 11 186.5 3.9 62.2 12.2 327.8 6.9 
42 48.9 10.9 180.9 3.8 62.1 12.7 328.7 6.9 
43 49.3 10.8 183.6 3.8 63.2 12.9 341.1 7.1 
44 48.6 11.7 175.3 3.7 62.0 12.3 339.2 7.1 
45 49.6 10.7 171.5 3.6 62.2 12.3 336.1 7.0 
46 49.3 11.1 183.3 3.8 61.6 12.2 333.3 7.0 
47 49.7 10.9 187.5 3.9 62.0 13 333.0 7.0 
48 49.9 10.8 185.8 3.9 61.3 12.7 302.4 6.3 
49 50.4 11.4 154.8 3.2 61.7 12.6 313.4 6.6 
50 49.3 11.3 176.8 3.7 61.9 12.9 342.4 7.2 
51 49.4 11 183.0 3.8 62.0 12.5 340.7 7.1 
52 49.4 11 178.8 3.7 61.9 12.7 329.3 6.9 
53 49.3 11.3 182.0 3.8 62.7 12.6 340.8 7.1 
54 49.9 10.8 175.6 3.7 61.8 12.3 333.6 7.0 
55 50.3 11.2 179.8 3.8 62.7 12.6 340.9 7.1 
56 49.4 10.7 178.1 3.7 61.8 12.6 311.8 6.5 
57 50.0 10.4 187.7 3.9 61.5 12.5 337.2 7.1 
58 48.3 10.7 165.8 3.5 62.4 12.6 342.4 7.2 
59 49.5 11.2 152.7 3.2 62.3 13 340.7 7.1 
60 49.3 11.2 178.5 3.7 61.3 11.9 327.6 6.9 
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Table 8 Continued 

 1500 RPM and 25%load 1500 RPM and 50%load 

Cycle No. Pmax     
  (bar) 

θ° CA 
 ATDC 

Work  
(Joules) 

IMEP 
 (bar) 

Pmax    
  (bar) 

θ° CA 
 ATDC 

Work 
 (Joules) 

IMEP 
 (bar) 

61 49.6 11.3 177.5 3.7 62.8 12.5 332.4 7.0 
62 49.2 11 182.5 3.8 61.5 12.7 325.6 6.8 
63 49.1 11.1 186.8 3.9 61.5 12.6 330.5 6.9 
64 48.7 10.6 162.2 3.4 61.9 12.9 334.3 7.0 
65 49.9 10.9 190.1 4.0 61.6 12.4 332.6 7.0 
66 48.9 10.9 178.2 3.7 61.3 12.9 334.1 7.0 
67 50.0 10.8 162.7 3.4 62.2 12.3 344.2 7.2 
68 48.9 10.9 173.7 3.6 61.5 12.4 311.0 6.5 
69 49.3 11.4 182.6 3.8 62.5 12.3 340.7 7.1 
70 49.2 11.3 174.5 3.7 62.0 12.5 338.8 7.1 
71 48.9 11.6 187.3 3.9 61.9 12.4 340.2 7.1 
72 49.8 10.6 146.5 3.1 61.8 12.9 337.4 7.1 
73 49.5 10.5 170.2 3.6 62.4 12.3 338.0 7.1 
74 49.7 10.6 154.2 3.2 61.4 12.8 333.4 7.0 
75 49.8 10.6 164.4 3.4 61.7 12.3 337.3 7.1 
76 50.2 10.8 183.7 3.8 61.8 12.1 335.9 7.0 
77 48.8 10.4 190.5 4.0 62.0 12 322.8 6.8 
78 49.4 10.3 179.0 3.7 61.4 13 314.8 6.6 
79 49.1 10.6 184.2 3.9 62.8 12.6 343.2 7.2 
80 49.9 10.6 184.1 3.9 62.0 12 333.4 7.0 
81 48.8 10.6 187.3 3.9 62.1 12.7 335.0 7.0 
82 49.6 11 178.2 3.7 61.8 12.7 329.1 6.9 
83 49.1 11 145.3 3.0 61.6 12.3 336.4 7.0 
84 51.0 10.6 177.0 3.7 62.8 13.1 338.0 7.1 
85 49.3 11 175.6 3.7 62.3 12.7 344.8 7.2 
86 49.6 11.4 182.3 3.8 62.2 12.6 339.1 7.1 
87 50.0 10.7 174.9 3.7 62.2 13.2 342.3 7.2 

50.0 11.1 183.3 3.8 61.8 12.3 338.5 7.1 
89 49.1 10.4 156.7 3.3 61.8 12.8 333.1 7.0 
90 49.0 11 190.3 4.0 62.5 12.6 342.9 7.2 

88 
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Table 8 Continued 

 1500 RPM and 25%load 1500 RPM and 50%load 

Cycle No. Pmax     
  (bar) 

θ° CA 
 ATDC 

Work  
(Joules) 

IMEP 
 (bar) 

Pmax    
  (bar) 

θ° CA 
 ATDC 

Work 
 (Joules) 

IMEP 
 (bar) 

91 48.6 10.7 182.8 3.8 62.0 12.3 337.1 7.1 
92 49.4 10.8 180.6 3.8 62.2 12.4 341.9 7.2 
93 49.7 10.8 178.6 3.7 62.1 12.6 331.1 6.9 
94 49.7 10.2 186.1 3.9 61.9 12.8 333.4 7.0 
95 50.0 10.6 177.6 3.7 61.9 12.9 334.5 7.0 
96 49.9 10.6 190.9 4.0 62.1 12.2 332.5 7.0 
97 49.1 11.1 176.6 3.7 61.8 12.7 335.9 7.0 
98 49.5 10.8 179.3 3.8 62.7 13.1 342.4 7.2 
99 49.3 10.6 176.9 3.7 62.3 13 340.3 7.1 
100 49.6 10.6 185.3 3.9         
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Table 9. Cylinder Pressure Data Analysis (1800 RPM and 25%, 50% Load) 

 1800 RPM and 30%load 1800 RPM and 50% load 

Cycle No. Pmax    
(bar) 

θ°CA 
ATDC 

Work 
(Joules) 

IMEP 
(bar) 

Pmax     
(bar) 

θ°CA 
ATDC 

Work 
(Joules) 

IMEP 
(bar) 

1 60.8 12.7 238.5 5.0 76.2 12.9 375.5 7.9 
2 61.4 13.1 243.4 5.1 71.2 13.1 330.4 6.9 
3 61.0 12.5 240.3 5.0 72.2 12.9 360.6 7.6 
4 61.7 12.9 244.2 5.1 71.0 14.8 380.2 8.0 
5 60.5 13.1 240.6 5.0 70.3 14.8 384.1 8.0 
6 62.1 13.0 238.3 5.0 69.7 13.7 376.6 7.9 
7 60.8 12.4 237.7 5.0 70.4 14.5 385.0 8.1 
8 60.9 11.9 238.6 5.0 70.3 14.5 376.3 7.9 
9 60.8 13.0 241.7 5.1 71.2 14.5 391.8 8.2 
10 60.5 12.9 240.8 5.0 70.0 14.5 380.6 8.0 
11 60.7 12.7 233.7 4.9 71.2 14.4 386.3 8.1 
12 60.8 12.5 244.6 5.1 71.2 14.1 378.1 7.9 
13 62.1 13.4 234.7 4.9 72.3 14.1 382.2 8.0 
14 60.9 12.4 238.5 5.0 71.5 13.7 381.6 8.0 
15 61.6 13.5 240.6 5.0 71.0 14.6 392.6 8.2 
16 60.7 12.5 232.8 4.9 70.7 13.4 377.7 7.9 
17 60.0 13.7 238.8 5.0 70.6 14.4 387.9 8.1 
18 61.1 13.0 245.2 5.1 69.8 14.9 383.6 8.0 
19 60.7 12.9 237.9 5.0 69.0 14.7 383.6 8.0 
20 62.6 12.1 229.5 4.8 69.8 14.8 379.1 7.9 
21 60.1 13.1 241.3 5.1 71.2 14.6 390.7 8.2 
22 61.0 12.6 233.3 4.9 71.4 13.2 380.8 8.0 
23 60.4 11.9 237.9 5.0 73.2 14.4 391.8 8.2 
24 60.7 12.7 229.7 4.8 73.0 13.5 376.3 7.9 
25 61.2 13.1 241.7 5.1 73.9 14.4 389.6 8.2 
26 62.0 12.1 240.9 5.0 72.6 14.1 384.3 8.1 
27 62.0 12.8 243.8 5.1 72.7 14.0 394.1 8.3 
28 60.5 12.6 239.5 5.0 71.6 14.4 383.0 8.0 
29 60.9 12.5 240.8 5.0 73.0 13.7 379.8 8.0 
30 60.4 13.0 230.7 4.8 73.3 14.1 388.8 8.1 
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Table 9 Continued 

 1800 RPM and 30%load 1800 RPM and 50% load 

Cycle No. Pmax    
   (bar) 

θ°CA 
 ATDC 

Work 
 (Joules) 

IMEP 
 (bar) 

Pmax   
    (bar) 

θ°CA  
ATDC 

Work  
(Joules) 

IMEP 
 (bar) 

31 61.0 11.9 236.1 4.9 72.4 14.1 389.1 8.1 
32 59.5 13.2 235.7 4.9 71.2 14.8 374.9 7.9 
33 60.0 12.9 241.4 5.1 72.2 14.6 378.9 7.9 
34 60.7 13.1 239.6 5.0 70.4 14.6 382.0 8.0 
35 61.1 12.7 243.3 5.1 69.8 14.7 377.5 7.9 
36 60.6 13.1 229.8 4.8 69.3 15.9 389.6 8.2 
37 60.0 12.9 234.9 4.9 68.0 14.8 376.7 7.9 
38 60.4 13.2 233.5 4.9 67.2 14.9 386.1 8.1 
39 60.8 11.8 237.7 5.0 68.3 15.3 377.4 7.9 
40 61.4 12.7 227.7 4.8 68.3 14.7 387.9 8.1 
41 61.7 12.6 241.6 5.1 68.4 14.3 380.6 8.0 
42 60.7 13.1 237.3 5.0 70.9 14.4 393.5 8.2 
43 60.7 12.7 243.8 5.1 72.0 14.0 385.7 8.1 
44 60.5 12.1 229.3 4.8 72.2 14.2 393.2 8.2 
45 61.5 12.6 243.1 5.1 72.3 13.1 370.1 7.8 
46 61.6 13.9 234.4 4.9 72.3 13.5 380.1 8.0 
47 61.4 13.8 239.5 5.0 71.2 13.3 360.7 7.6 
48 61.8 12.5 235.6 4.9 70.7 12.6 345.0 7.2 
49 60.0 12.9 236.9 5.0 71.7 13.6 366.4 7.7 
50 60.3 12.1 231.5 4.8 73.4 14.0 365.0 7.6 
51 60.1 12.3 229.4 4.8 72.4 14.7 373.4 7.8 
52 60.3 12.1 228.5 4.8 71.9 13.5 377.9 7.9 
53 60.4 13.0 233.3 4.9 71.7 13.9 377.1 7.9 
54 62.0 13.6 233.7 4.9 71.5 13.6 383.0 8.0 
55 61.2 12.5 236.6 5.0 70.8 14.6 381.9 8.0 
56 61.1 12.0 241.3 5.1 70.5 13.3 387.2 8.1 
57 63.1 13.0 241.9 5.1 71.7 13.7 378.2 7.9 
58 60.7 12.6 245.2 5.1 72.3 14.1 389.9 8.2 
59 61.7 12.2 244.2 5.1 70.3 14.2 380.1 8.0 
60 61.3 11.5 246.6 5.2 71.2 14.3 389.7 8.2 
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Table 9 Continued 

 1800 RPM and 30%load 1800 RPM and 50% load 

Cycle No. Pmax    
   (bar) 

θ°CA 
 ATDC 

Work 
 (Joules) 

IMEP 
 (bar) 

Pmax   
    (bar) 

θ°CA  
ATDC 

Work  
(Joules) 

IMEP 
 (bar) 

61 61.6 12.8 243.3 5.1 70.6 13.0 373.5 7.8 
62 61.4 13.3 240.1 5.0 68.9 15.1 378.2 7.9 
63 60.7 12.9 238.8 5.0 68.9 14.9 380.5 8.0 
64 61.3 12.2 238.1 5.0 67.5 14.8 381.1 8.0 
65 60.7 12.5 235.2 4.9 66.3 15.6 381.5 8.0 
66 61.0 12.7 240.4 5.0 65.0 14.9 384.0 8.0 
67 60.8 13.6 233.4 4.9 63.7 16.1 387.5 8.1 
68 61.7 12.4 242.2 5.1 63.4 15.9 388.2 8.1 
69 60.4 11.6 233.4 4.9 66.2 14.9 382.6 8.0 
70 61.5 12.1 242.1 5.1 68.0 14.7 396.8 8.3 
71 60.8 11.5 233.2 4.9 71.7 14.3 387.2 8.1 
72 59.6 13.8 239.9 5.0 72.8 13.7 394.2 8.3 
73 60.1 12.8 236.1 4.9 72.9 13.6 376.0 7.9 
74 60.1 12.8 241.4 5.1 72.9 13.4 374.0 7.8 
75 61.4 11.6 236.7 5.0 72.4 13.3 337.8 7.1 
76 60.9 11.9 236.3 4.9 71.3 12.6 338.3 7.1 
77 59.7 13.1 232.6 4.9 75.5 12.6 359.0 7.5 
78 61.7 12.4 245.2 5.1 74.0 14.5 369.3 7.7 
79 61.5 12.4 232.1 4.9 74.3 14.1 380.3 8.0 
80 61.3 13.3 238.2 5.0 71.1 13.3 361.1 7.6 
81 62.0 11.5 236.2 4.9 69.9 14.5 371.3 7.8 
82 61.8 11.9 241.4 5.1 71.9 13.9 381.1 8.0 
83 60.3 11.8 238.9 5.0 70.5 14.3 379.6 8.0 
84 60.9 12.6 242.0 5.1 71.2 14.3 383.5 8.0 
85 60.6 12.7 230.5 4.8 69.9 14.1 389.0 8.1 
86 61.2 13.6 238.6 5.0 70.5 14.4 371.1 7.8 
87 60.8 12.8 235.6 4.9 71.8 14.4 385.8 8.1 
88 60.9 13.3 236.8 5.0 72.3 14.7 382.9 8.0 
89 61.4 12.2 237.7 5.0 72.8 14.1 389.5 8.2 
90 60.8 12.6 238.8 5.0 73.4 13.6 385.7 8.1 
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Table 9 Continued 

 1800 RPM and 30%load 1800 RPM and 50% load 

Cycle No. Pmax    
   (bar) 

θ°CA 
 ATDC 

Work 
 (Joules) 

IMEP 
 (bar) 

Pmax   
    (bar) 

θ°CA  
ATDC 

Work  
(Joules) 

IMEP 
 (bar) 

91 61.1 12.4 232.0 4.9 72.6 13.5 388.3 8.1 
92 60.1 12.9 239.4 5.0 70.9 14.2 383.9 8.0 
93 60.1 13.0 240.0 5.0 71.7 14.6 385.0 8.1 
94 60.2 13.0 239.7 5.0 70.2 14.2 374.4 7.8 
95 60.8 12.7 236.1 4.9 70.6 14.6 380.9 8.0 
96 59.9 12.5 242.7 5.1 68.4 14.8 375.6 7.9 
97 62.3 12.0 236.1 4.9 67.5 14.9 391.8 8.2 
98 60.9 11.7 235.1 4.9 68.4 15.1 375.3 7.9 
99 60.1 12.0 241.2 5.1 69.1 14.7 395.8 8.3 
100 60.6 12.8 240.5 5.0 69.3 13.6 374.4 7.8 
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Matlab Programs Used 

Program 1 

%the.m% 

%% this matlab file plots the pressure v/s crankangle curve from  
%% the Data recorded by Wavebook in MAT format. 
 
A=input ('Enter A');                  % note enter "A" - case sensitive 
a=A(:,2);                                    % value of all pressures 
a=a-.5;                                       % 0.5V=0psi 
a=a*(1000/(1.51*14.5038));     % conversion from mv to bar.14.5038 is for  
                                                  % conversion from psi to bar.1.51mv/psi 
b=A(:,3);                                   % value of all index 
c=A(:,1);                                    % value of all fuel injection  
 
%%%sub-routine to align TDC%%% 
x=1:14400; 
p1=a(1:14400); 
plot(x,p1)                 % TDC is visually aligned.   
shift=input('Enter value to align TDC');  
%TDC is aligned in such a way that first peak in cylinder pressure curve is at TDC  
%%% sub-routine to align TDC ends.%%% 
 
 
%%% sub-routine for pressure matrix.%%% 
 [m,n]=size(a); 
j=m/7200; 
ind=zeros(3601,1);   % Initialisation Matrix 
for i=1:j; 
    if (shift+7200*(i-1)+1800<m)           
    pre=a(shift+7200*(i-1)-1800:shift+7200*(i-1)+1800);   % recording of 1800 points  
    ind=cat(2,ind,pre);                                                            % on either side of TDC   
end 
end 
p=ind(:,2:end); 
p=p'; 
%%% sub-routine to form pressure matrix ends%%% 
 
%%% sub-routine to ensure that p always has positive value%%% 
[m,n]=size(p); 
for i=1:m; 
    mini=min(p(i,:)); 
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    p(i,:)=p(i,:)-1*mini+.001; 
end 
%%% sub routine ends %%% 
 
pmean=mean(p);            % Calculation of pmean                    
x=1:3601; 
plot(x*.1,pmean) 
pr=p'; 
[pmax,theta]=max(pr);   % Pmax and it's position 
 
 
%%% Injection data matrix%%% 
ind=zeros(3601,1); 
[m,n]=size(c); 
j=m/7200; 
for i=1:j; 
    if (shift+7200*(i-1)+1800<m) 
    preinj=c(shift+7200*(i-1)-1800:shift+7200*(i-1)+1800); 
    ind=cat(2,ind,preinj); 
end 
end 
inj=ind(:,2:end); 
inj=inj'; 
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Program 2 

%%% Program to calculate work done and IMEP for each cycle%%% 
 
 
p=input('enter value of pressure'); % Enter "p". 
                                                       % "p"= pressure matrix obtained by th.m  
 
 
% Calculation of Volume as a function of Crank Angle 
% Cylinder Bore=82mm 
% Stroke=90.4mm 
% Length of Connecting Rod = 150  
% 11.0131 = (150/45.2)^2 
vd=(pi*82^2*90.4)/4; 
vol=0; 
for theta=180:.1:540 
    a=2.2166-.5*(cos(pi*theta/180)+sqrt(11.0131-(sin(pi*theta/180)^2))); %%% refer  
                                                                                                        %www.colostate.edu 
    v=vd*a*0.000000001; 
    vol=cat(2,vol,v); 
end 
vol=vol(:,2:end); 
 
%%%  Calculation Ends %%% 
dvol=diff(vol);               % Volume change for every crankangle 
[m,k]=size(p); 
n=1:m; 
plot(vol,p(n,:),'.')                          % Plotting P-V diagram for all cycles 
p=p(:,2:end);                                 % Note Pressure matrix Changed  
work=p*dvol'*100000                 % Evaluation of work done/cycle 
mep=work/(max(vol)-min(vol))   % IMEP evaluation 
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Program 3 

%% this program takes Pressure matrix formed using "th.m" and averaged,  
%% smoothed pressure data is returned 
 
p=input('value of p');  % enter "p" where is "p" is the  
                                    % pressure matrix formed by th.m  
 
pavg=mean(p);           % pressure data averaged     
 
%%% sub-routine for smoothing pressure data%%% 
 
for j=5:3597; 
psmo(j-4)=((-21*pavg(j-4)+14*pavg(j-3)+39*pavg(j-2)+54*pavg(j-
1)+59*pavg(j)+54*pavg(j+1)+39*pavg(j+2)+14*pavg(j+3)-21*pavg(j+4)))/231; 
end 
 
%%% sub-routine ends%%% 
 
%%% average of 10 points taken.%%% 
[m,n]=size(psmo); 
 
i=0; 
for j=0:10:n-10 
    n1=psmo(j+1:j+10); 
    i=[i,mean(n1)]; 
end 
pdata=i(2:end); 
dp=diff(pdata); 
[i,j]=size(dp); 
x=1:j; 
plot(x,dp) 
 
 %%% Subroutine to ensure that intake pressure is 1 Atm%%% 
if pdata(1)<1 
    add=1-pdata(1); 
    pdata=pdata+add; 
end 
% %% Subroutine ends%%% 
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Program 4 

%%%Heat release analysis is done using this file%%% 
%%Use pdata as the input value for pressure.pdata is evaluated using file avgdata%%% 
%%%the pressure data is averaged,smoothed and average of 10 points is taken%%% 
 
pheat=input('enter value of p "hint=enter pdata"');  %%% enter pdata as input 
 
%%% Volume versus CA calculations repeated%%% 
vol=0; 
vd=(pi*82^2*90.4)/4; 
for theta=181:1:540 
    a=2.2166-.5*(cos(pi*theta/180)+sqrt(11.0131-(sin(pi*theta/180)^2))); 
    v=vd*a*0.000000001; 
    vol=cat(2,vol,v); 
end 
vol=vol(:,2:end); 
dvol=diff(vol); 
 
%%%Sub-routine Ends%%% 
 
%%% specific volume calculation%%% 
vol1=0; 
%% Derivation of Initial Specific Volume%%% 
% assumed intial temperature= 300K 
% assumed initial Pressure= 100,000 N/m2 
% Initial specific volume= 287*300/100,000 =0.861 m3/Kg 
 
spv=0.861; 
for theta=180:1:540 
    spvo=0.861*((1/18.45)+(17.45)/(2*18.45)*(1-(cos(pi*theta/180)))); 
    vol1=cat(2,vol1,spvo); 
end 
spvol=vol1(:,2:end);        
[i,j]=size(pdata); 
spvol=spvol(1:j);   % Ensure that specific volume matrix and pressure matrix 
% are of same size     
%%% specific volume calculation ends.%%% 
 
%%%  Surface Area Calculations%%% 
for theta= 180:1:540 
    area(theta-179)=pi*(0.082)^2*0.5+pi*(0.082)*(0.0904)*0.5*(1-cos((theta)*pi/180)); 
end 
area=area(1:j); 
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%%% Area Caluculations End%%% 
%%% All constants evaluated%%% 
 
for k=1:j 
    t(k)=pdata(k)*spvol(k)*100000/287; 
    gamma(k)=1.338-6*0.00001*t(k)+0.00000001*t(k)*t(k); 
    cvr(k)=1/(gamma(k)-1); %%%%% value of Cv/R actual value instead of 
approximation Cv/R=3.5 
    cp(k)=241.1/(1-(1/gamma(k))); 
    mu(k)=4.702*(1e-07)*(t(k))^(0.645); 
    lambda(k)=cp(k)*mu(k)/0.7; 
    reynold(k)=4.52*0.082/(spvol(k)*mu(k)); 
    h(k)=.35*lambda(k)*(reynold(k))^0.7/0.082+.576*5.67*(1e-08)*(((t(k))^4-
400^4)/(t(k)-400)); 
    qwall_loss(k)=h(k)*area(k)*(t(k)-400)/25;     % Heat Loss is in Watts to convert to  
                                                                             % heat loss/cycle 
end                                               % divide by 25.Engine RPM=1500. therefore  
                                                     % 1cycle=60/1500 secs     
 
%%% Constant Evaluation Ends%%% 
 
 
%%% Sub-routine for rate of heat-release.%%% 
%%% first term evaluation%% 
%%% the pressure data is averaged,smoothed and averaged of 10 points is taken.%%% 
 
%%%%  first term of total heat released.%%% 
pvinit=zeros(1,359); 
[m,n]=size(pheat); 
for i=1:n; 
    qfirst(i)=cvr(i)*(100000*pheat(i)*vol(i)-2.74); 
    pv(i)=100000*pheat(i)*dvol(i); 
end 
 
%%% First term calculation ends%%% 
 
%%% second term of total heat released.%%% 
for i=1:n; 
    qsecond(i)=sum(pv(1:i)); 
end 
 
%%% Second term calculation ends%%% 
q=qfirst+qsecond;  % Total Sum without heat loss to walls 
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[i,j]=size(q); 
x=1:j; 
qtotal=qwall_loss+q; % Total Sum with heat loss to walls 
x=1:359;figure(1);plot(x,q/max(qtotal),x,qtotal/max(qtotal)) 
q=q/max(qtotal); 
qth=diff(q); 
[m,n]=size(qth); 
x=1:n; 
figure(2); plot(x,qth
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