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Abstract

As concern about the environment has grown in recent years, alternatives in the automotive indus-

try have become an important topic for researchers. One alternative being considered is electric

vehicles, which utilize electric motors. DC/AC inverters and DC/DC power converters control these

electric motors. A logic circuit is needed to power these converters; however, the logic generators

inherently operate at a voltage too low to power the motors. A device known as the gate driver

is the interface between the logic generators (or microcontroller) and the power devices (power

converter). The gate driver provides the power needed to drive the power devices. Circuits are

susceptible to voltage and temperature changes though. For this reason, protection circuits must be

implemented as an integral part of the gate driver circuits. The Under Voltage Lock Out (UVLO)

circuit provides important detection of under voltage conditions in the power supply thus prevent-

ing malfunctions. There are multiple power supplies in the gate driver circuit, and it is important

to monitor all of these supplies for both surges and reductions in power. If the power supply should

drop below the threshold (nominally 80%) there could be issues in the gate driver’s functionality.

Since the gate driver will be located under the hood of a hybrid electric vehicles, operating tem-

peratures can reach extremely high values. For this reason, circuit designs must provide reliable

operation of the circuits in an extreme environment.
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Chapter 1

Introduction

1.1 Under Voltage Lock Out Circuits

Electric vehicles utilize battery sources and electric motors to decrease the need for petroleum-

fueled transportation. They also need several electronic components to make the transition of

energy from battery to drive system. An important design consideration for any electronic circuits

powered by batteries is how the system behaves in conditions when the supply voltage dips to a

level that may cause undesired operations for other critical circuits [1]. Control circuitry provides

under voltage lock out (UVLO) to ensure protection against supply voltages that have not been

stabilized [2]. Under voltage lock out circuits are used to monitor the power supply to circuits whose

functionality is critically based on the supply voltage. Often times, a UVLO will use a reference

voltage for comparison with the supply voltage. The environmental conditions of the UVLO are

very important to consider. Since the gate driver is placed in close proximity to an automotive

engine, the operating temperature of the circuit has a very large range. For this reason, a look at

high temperature devices is important.

1.2 Outline of the Thesis

Relevant literature is reviewed including electric vehicles, gate driver circuits, high temperature

electronics, and other UVLO circuits. Next, the overall UVLO circuit topology and the individual

UVLO circuits are discussed. Also the comparators within each UVLO circuit are reviewed. Finally,

simulations and test results prove that the UVLO is functional and meets the needed requirements.
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Chapter 2

Literature Review

2.1 Electric Vehicles

Due to high demand and rising cost of petroleum, the demand for electric vehicles or vehicles with

high-power electric motor drives will increase in the near future. The electronics within an electric

car must be reliable at high temperatures and need to be low-cost. Three technologies are being

considered for a greener automotive industry. First, the leading technology is the hybrid-electric

vehicle (HEV) because of its better performance and fuel economy. HEVs use internal combustion

engines (ICEs) along with electric motors to improve the performance of the vehicle. Figure 2-1

illustrates the topology of a HEV system. Next, plug-in-hybrids (PHEV) use rechargeable battery

packs but can only travel short distances due to the lack of ICEs. Finally, fuel-cell vehicles (FCV)

generate their own electricity and could someday completely replace ICEs [3].

Figure 2-1: Typical Topological Arrangement of A Series/Parallel HEV [3]
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2.2 Gate Drivers

Gate driver circuits can be used with microcontrollers in a HEV system. The ON and OFF

operations of the power switch control the flow from the source to the load of the power converter.

The ON/OFF efficiency directly impacts the performance of the system. Usually, these pulses are

generated by a microcontroller, but it is unable to meet the power requirements needed to drive

the gate of the power switch. This is due to the lack of current driving capability to charge and

discharge the gate capacitance fast enough to minimize the switching losses. Previous research has

not developed a gate driver circuit that can meet both the temperature needs as well as the drive

needs for the power switch.

A block diagram of the gate driver circuit meeting both temperature and power requirements

is displayed in Figure 2-2. This circuit has seven critical building blocks, namely a half-bridge

high-voltage output stage (transistor pair MH and ML), low-side and high-side buffers, an on-chip

bootstrap capacitor based charge pump, constant current bias low-side to high-side level shifters,

a temperature independent dead-time controller, an edge detection circuit, and an input stage [4].

VDD is a 5V source that comes from the output of a voltage regulator; it is actually a voltage swing

of VSSH LV + 5V. VSSH LV is the lower rail for the low side of the gate driver and is connected

on board to VSS HV . VOP PLUS is the output of the charge pump that powers the high side of

the gate driver. VOP is the output of the gate driver. Notice the UVLO input along with the

other protection devices. The gate driver was implemented in a 0.8-micron, 2-poly, and 3-metal

Bipolar-CMOS-DMOS (BCD) on Silicon-on-Insulator (SOI) process. Previous versions have been

tested and were successful at the ambient temperature of 200◦C.

The input stage of the gate driver uses a digital network to compare the logic input and the

protection circuits (temperature sensor, UVLO, and short circuit detector). If any of these signals

is zero (indicating a fault in the system), the output of the gate driver will be ‘low’ and the power

switch will be turned OFF. On the high-side of the gate driver, there is a charge pump as well as

an S/R latch and the buffer circuit. In the charge pump, there is a bootstrap capacitor (CB) that

establishes the voltage VOP PLUS . The input of the S/R latch comes from the bias level shifter.

The output of the S/R latch feeds into the buffer circuit. This buffer circuit drives one input of the

output stage.

3



Figure 2-2: Gate Driver Circuit Topology[4]
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On the low-side of the gate driver there is a dead-time controller, an edge detector, two bias level

shifters, and a buffer. The dead-time controller ensures the complementary ON/OFF operation of

the output stage through ‘inp L’ and ‘inp H’ with dead-time injection between them. The edge

detector outputs a ‘Set’ and a ‘Reset’ signal depending on the input ‘inp H’. These ‘Set’ and ‘Reset’

signals then feed into the two bias level shifters. Bias Level Shifter 1 outputs a voltage level shifted

copy of the ‘inp H’ (S) signal, and Bias Level Shifter 2 outputs a voltage level shifted copy of ‘inp H’

(R), both feeding to the S/R latch in the high-side. The output ‘inp L’ is fed into a buffer that

drives the output stage. The output stage is an all-NMOS transistor half-bridge that handles the

large drive requirement of the driver circuit. In order to safely create a reliable output stage, many

45V devices are connected in parallel. The buffer circuits on the high-side and low-side of the gate

driver drive the large capacitances at the gate terminals of the switch transistors.

Many devices depend on an accurate power supply for correct functionality. The gate driver of

an electric car is one of the devices that need a dependable power source. For this reason, protection

circuits like short circuit protection and under voltage lock out circuits are implemented as part of

the gate driver circuit.

2.3 High Temperature Devices

Extreme environment devices have to withstand high temperatures. People are often surprised

to hear about MOS circuits operating at temperatures exceeding 250◦C. Devices operating in

that range are not widely known because commercial vendors rarely provide information about

components beyond the military range (125◦C typically), a very small percentage of the IC market

has a demand for high temperature circuits, and textbooks typically lack information about the

behavior of MOSFET parameters at high temperatures [5].

Tests have been performed on standard circuit topologies at room temperature (25◦C) and

250◦C. Test results of the large signal parameter effects conclude that the magnitude of the threshold

voltage decreases by approximately 0.5V as the temperature is increased. The average effective

mobility is reduced by half. The leakage currents are increased by 5 orders of magnitude [5]. Test

results of the small signal parameter effects conclude that the transconductance is reduced by half

as the temperature is increased to 250◦C. The body-effect conductance is also reduced by half.

The leakage conductance increases by 5 orders of magnitude and the junction capacitance increases

5



anywhere from 5% to 50% [5].

While some applications work with commercial components, others have had to accomodate

much larger temperature ranges. For space exploration, temperatures can range anywhere from

-220◦C to 470◦C. The maximum working temperature for semiconductors can be estimated from

their intrinsic carrier density, which depends on the bandgap of the material [6]. For high voltage

devices on silicon (Si) with a voltage source below 100V, the theoretical limit is 250◦C as discussed

above. Silicon-on-Insulator (SOI) devices are capable of operating up to 300◦C [6]. This tempera-

ture characteristic makes SOI a great option for the gate driver designers. The ability of the SOI

chip to operate at such high temperatures is due to its inherently low leakage current and immunity

to latch-up [3]. The low leakage current is an effect of the buried insulator layer. One option for

circuits that need to operate across a large temperature range is to create a reconfigurable chip.

Reconfigurable chips provide a platform for a large number of topologies to be programmed. When

one topology deteriorates at high temperatures, the higher temperature topology takes over [6].

Reconfigurability was not an option for the gate driver’s UVLO on account of space constraints.

One of the more crucial problems in electronics is the reliability of the devices at high temper-

atures. Operating at high temperature reduces the performance and greatly shortens the lifespan

of the electronics [7]. Often times, high power electronics are needed in space exploration rovers,

similar to the gate driver project’s high power devices. High power devices usually operate at higher

current densities and higher internal electric fields [7]. There are limited comprehensive high tem-

perature studies, however there have been studies on the degradation of devices as a function of

temperature. Usually, this will indicate the lifetime of the devices at normal operating conditions

and predict high temperature results. Most of the high temperature studies have focused on com-

pound semiconductors devices because of their higher bandgap. Compound devices such as Gallium

Arsenide (GaAs) FETs, high electron mobility transistors (HEMT), pseudomophic HEMT, wide

bandgap semiconductor devices such as SiC and GaN FETs, and hetero-junction bipolar transistors

(HBTs) have replaced the standard Silicon devices for high temperature applications [7].

Power Electronics need to be able to operate at high temperatures, at high power levels, and in

extreme environments [8]. Power devices will generate heat during the switch-mode. Wide bandgap

devices will outperform Si and GaAs devices in switching performance by an order of magnitude

at high temperatures. Devices fabricated with Si and GaAs technology will fail arising from hot

spots generated by switching in the electronics. Si devices will fail when the junction temperature
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exceeds 200C [8]. Wide bandgap semiconductors are excellent for these applications because of

their excellent thermal conductivity and large breakdown fields. Some examples would be Silicon

Carbide (SiC) and Gallium Nitride (GaN). Both of these materials are also known to have high

breakdown field strength, and large energy bandgap while GaN possesses high carrier mobility [8].

These materials would be a better option if a designer wants higher temperature and higher power

than Si technology. For these reasons the gate driver project and UVLO were fabricated using

BCD-on-SOI.

2.4 Other UVLO Circuits

Since electronic circuits are becoming more and more dependent on battery powered sources, a

need for power monitoring has become prevalent. The UVLO is not a new device, and several

varied implementations exist. There are a few criteria that are important to consider when picking

out the correct UVLO for a project. First, the supply voltage range and the threshold at which

the UVLO triggers a fault is very important. Also, the temperature range of operation should be

taken into account.

Several UVLO circuits were reviewed and considered in the initial design of the UVLO. First,

consider the CMOS UVLO design shown in Figure 2-3. The circuit is fabricated in a 0.5µm n-well

process. This UVLO concept consists of an inverter pair and a hysteresis controller. The hysteresis

controller is simply a resistor voltage divider controlled by an NMOS switch. The hysteresis control

output is the input to the first inverter. The inverter pair is powered from a pre-regulator [1]. This

UVLO is able to monitor a 5V supply. The UVLO outputs a fault at 3.75V, which is a threshold

of 75%. Since temperature was not mentioned it is assumed that the circuit operates at room

temperature of 25◦C.

Another UVLO reviewed is shown in Figure 2-4 and Figure 2-5. The UVLO is used in a Switch

Mode Power Supply (SMPS) that provides low power consumption for multi-mode applications.

This system was fabricated in 1.5µm BCD technology. The UVLO in this system monitors VDD

and prevents the system from turning ON until VDD exceeds 10V. After the systems turns ON,

it will turn OF again if VDD drops below 7V. This UVLO uses a bandgap reference circuit with

an output of 2.65V to supply the VREF input [9]. This UVLO is designed to monitor a 10V

supply. The UVLO outputs a fault at 7V, which is a threshold of 70%. Since temperature was not

7



mentioned, it is assumed that the circuit operates at room temperature (25◦C). This is the second

UVLO without a temperature range mentioned.

Finally, the UVLO in Figure 2-6 is reviewed. This circuit was only simulated; it was never

fabricated. This UVLO is used in a system for DC-DC conversion. The UVLO monitors the

voltage of the bandgap, thus reducing the temperature sensitivity to threshold voltage. However,

the output of the UVLO will change as VDD is altered. A sampling cell is formed from R3, R4, and

R5. R3 is approximately equal to R5. For control of the sampling cell’s ratio a transistor, M1 is

used. A comparator cell is built using bipolar transistors and two resistors, R1 and R2. A current

mirror is created from M2 and M3. Finally, two inverters are on the output for filtering. The

zero temperature coefficient compensative point is set at room temperature (25◦C). The threshold

voltage decreases as the temperature deviates from 25◦C. The threshold voltage has a negative

temperature coefficient if the temperature is above 25◦C [10]. The possible temperature range for

the system to operate within is -40◦C to +85◦C. This UVLO is designed to monitor a 3.5V supply.

The UVLO outputs a fault at 2.6V, which is a threshold of approximately 74%.

Figure 2-3: CMOS UVLO Circuit - Hoque [1]
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Figure 2-4: Diagram of UVLO System - Hong [9]

Figure 2-5: Detailed schematic of UVLO in UVLO System - Hong [9]
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Figure 2-6: Diagram of UVLO - Fanglan [10]

Unfortunately, the next two UVLO circuits discussed do not have topology figures; however,

their characteristics are very important for comparison. First, the UVLO was designed for a Dual

In-Line Package transfer molded Intelligent Power Module (DIP-IPM) developed by Mitsubishi

Electric for home appliance motor control. This UVLO was especially significant for comparison

because its application is so close to the project being presented. The unit contains six insulated-

gate bipolar transistors (IGBTs), free wheeling diodes for the three phase motor drive, a High

Voltage Integrated Circuit (HVIC), and a Low Voltage Integrated Circuit (LVIC). When the control

voltage supply drops below the under-voltage level, the IGBTs are turned OFF. Also, a fault is

asserted to the system [11]. This UVLO is designed to monitor a 15V supply. The UVLO outputs

a fault at 13.5V, which is a threshold of 90%. This is an impressive threshold percentage, well

above most of the other UVLO. The gate driver UVLO did not need this large threshold, but was

still capable of meeting this threshold. The temperature range of operation for this circuit is -20◦C

to +100◦C. This range is not large enough to meet the requirements for the gate driver UVLO.

Lastly, a UVLO used for switched mode PWM based DC-DC converters for communications,

automobile, computer and aerospace applications was reviewed. The UVLO for this system facili-

tated safe starts upon power up [12]. This UVLO is designed to monitor an 8V supply. The UVLO
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outputs a fault at 7V, which is a threshold of 85%. However, the system is designed to monitor a

16.5V supply. The system outputs a fault at under voltage (UV) level 0f 10.5V, which represents

a threshold of 65%. The temperature range of operation for this circuit is -25◦C to +85◦C. It was

important to review this UVLO because the threshold was also a good standard for the gate driver

UVLO. However, the temperature range is very small for the gate driver’s design.

Reviewing these other UVLO circuits helped with design of the UVLO circuit used for the gate

driver. The threshold voltage is typically around 80%. The temperature range depends on the

application, but few if any met the needed temperature range for the gate driver. Also, few circuits

were able to meet the voltage range needed for the gate driver (10V, 20V, and 30V).
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Chapter 3

Design Approach

3.1 UVLO Circuits

Monitoring the supply voltage is not an easy task when observing and powering from the same

voltage supply. As with most digital circuitry, the threshold or the operating point of the device

will drop as the supply voltage drops. In cases such as Schmitt triggers, the output will change as

the supply voltage drops. Developing or finding circuits that will operate within the threshold can

be difficult.

The under voltage lock out system presented in Figure 3-1 displays three individual UVLO

circuits with an OR gate to the outputs. The first UVLO is powered from VDDH to VSSH and

monitors VDDH to VSSH . The second UVLO is powered from VDDH to VSSH and monitors VDD

to VSS . The third UVLO is powered from VDD to VSS and monitors VDD to VSS . The first two

under voltage lock out circuits use a comparator with hysteresis. The first UVLO circuit utilizes

the circuit topology shown in Figure 3-2. The third UVLO circuit utilizes the circuit topology

shown in Figure 3-3. The second UVLO circuit is a hybrid of the first and the third circuits. All of

the outputs are OR-ed together as shown. The dotted blue lines represent off-chip connections or

board-level connections. Having the outputs of each circuit come off-chip allows the user to have

the option to monitor the individual supplies or both supplies simultaneously. Also, this option

allows the designer to check the functionality of the individual UVLO circuits.

The UVLO 1 design shown in Figure 3-2 monitors VDDH to VSSH power voltages of 30V, 20V,

or 10V. This circuit uses a comparator with hysteresis. The resistors (R1 and R2) are actually a

12



Figure 3-1: UVLO System Topology for Gate Driver

Figure 3-2: UVLO 1 : VDDH to VSSH Circuit Topology
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network of resistors in a resistor bank. This gives the user the option to select a needed resistance

from the bank depending on the magnitude of VDDH to VSSH . The voltage (VREF ) is set between

6-7 V by a resistor and a zener diode.

The UVLO 3 design shown in Figure 3-3 monitors the 5V swing from VSS to VDD. This 5V

supply could come from a voltage regulator or be sourced off-chip. Also, the reference voltage

(VREF = 2.4V) can come from a bandgap reference (BGR) circuit on-chip or an off-chip source.

The circuit contains a low-voltage comparator with hysteresis and an inverter. These circuits were

designed to be as temperature independent as possible considering their natural circuit properties.

Since the voltage source is always a 5V supply, a resistor bank is not needed for this circuit. This

saves a lot of space on-chip. The resistors were set to 10KΩ. This resistance value was chosen

because it met both the area and the current requirements.

UVLO 2 is a hybrid of UVLO 1 and UVLO 3. Figure 3-4 displays the circuit topology for

UVLO 2. The high-voltage comparator from UVLO 1 is used, however the 5V swing is monitored.

This allows for the circuit to be powered by a different source than the one it is monitoring. Since

it is monitoring the 5V swing, the inputs for the comparator are the same as the inputs for UVLO

3. There are two resistors and a reference voltage (VREF = 2.4V). Since UVLO 2 is powered from

the high voltage supply but monitors the low voltage supply, it relies on UVLO 1 monitoring the

high voltage supply. Through simulation, as the high voltage drops it has minimal effects on the

functionality of UVLO 2, so minimal that it can be neglected.

3.2 UVLO 1 and UVLO 2 Comparator Circuit

Typically, comparators determine if an input voltage is above or below a reference voltage. The

comparator has two inputs: a reference voltage and a measured voltage. If the measured voltage is

larger than the reference voltage then the output will be ‘high’ (logic ‘1’). If the measured voltage

is less than the reference voltage then the output will be ‘low’ (logic ‘0’). With the analog inputs

and the digital output, the converter approximates the function of an analog-to-digital converter.

The comparator has internal hysteresis and a clamping circuit on the output to limit the output

voltage swing (Figure 3-5). Comparators with hysteresis are needed if there is a noisy signal [13].

When using hysteresis, it is important to know that the input threshold changes as a function of the

output. Hysteresis also prevents rapid switching in the circuit. The hysteresis for the comparator
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Figure 3-3: UVLO 3: VDD to VSS Circuit Topology

Figure 3-4: UVLO 2: VDD to VSS Circuit Topology
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Figure 3-5: Comparator Circuit Topology

is shown in Figure 3-6

There are two types of feedback in this circuit. There is negative current-series feedback due

to the common-source node connection of transistors M1 and M2. There is also positive voltage-

shunt feedback from the gate-drain connections of transistors M10 and M11. Since there are two

forms of feedback, the dominant feedback will dictate the feedback of the comparator. Hysteresis

needs positive feedback. If β10
β3

<1, then negative feedback dominates and there is no hysteresis. If
β10
β3

> 1, then positive feedback dominates and hysteresis is present [13]. This makes the sizing of

transistors in the input stage very important.

The hysteresis switching points(VTRP
+ and VTRP

−) are calculated using the following method.

If transistor M1’s gate is tied to ground and transistor M2’s gate input has a negative voltage

applied; then M1, M3, M10 are ON and M2, M4, M11 are OFF. All the current (ISS) will flow

through M1 and M3 and the voltage at the output is ‘high’. As the input voltage of M2 increases

a part of the current (ISS) will flow through M2. Continuing to increase the input voltage, the

current i2 will eventually be equal i10 [13].

i10 =
(W/L)10

(W/L)3
· i3 = i2 (3.1)
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Figure 3-6: Comparator Hysteresis - Positive Switching Point (VTRP
+ ), Negative Switching Point

(VTRP
− )

i2 = Iss − i1 where (i1 = i3) (3.2)

i3 =
Iss

1 + (W/L)10
(W/L)3

(3.3)

VGS1 =
�

2i1
β1

�1/2

+ VT1 (3.4)

VGS2 =
�

2i2
β2

�1/2

+ VT2 (3.5)

VTRP
+ = VGS2 − VGS1 Positive Trip Point (3.6)

Eventually, the increase of input current will cause the comparator to switch states, and the

current through M2 eclipses the current through M10. With the majority of the current flowing

through M2, the current then also flows through M4. This turns ON M11 and turns OFF M3,

M10, and M1. The circuit then reaches the point where i1 equals i11 and the negative trip point

can be calculated [13].
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i11 =
(W/L)11

(W/L)4
· i4 = i1 (3.7)

i4 =
i5

1 + (W/L)11
(W/L)4

= i2 (3.8)

i1 = i5 − i2 (3.9)

VTRP
− = VGS2 − VGS1 Negative Trip Point (3.10)

The differential input stage needs an output stage for reasonable voltage swing and output

resistance. The circuit becomes a differential-to-single-ended converter because of the output stage

design [13]. The output of the comparator is buffered before sending the signal to the padframe.

Notice the high-voltage transistors at the input stage of the comparator.

3.2.1 Clamping of the Output

Since the output of the comparator will input into another gate, the output voltage is 0-5V. Without

this clamping circuit, the output voltage would swing rail-to-rail [14]. The original network plays

a game of balance. After altering one side of the output, the other leg of the comparator circuit is

changed to balance the system again. (Figure 3-7)

The transistors on the output stage are sized in a 10-to-1-to-1 ratio to set the clamping. The

other series transistors are level shifters 1-to-1-to-10 [14]. Notice the high-voltage devices used at

the input stage. These devices are 45V devices and are needed because of the large voltage swing.

The Vgs is approximately 5.5V so the output stage does not need to be composed of high-voltage

devices.

3.3 High-Voltage Current Source

The current source shown in Figure 3-8 is used in the high-voltage comparator. This is a self-biasing

current source. The current source ISS has very little temperature dependence and is approximately

23 micro-Amperes (Figure 3-9). The start-up circuit consists of six PMOS transistors connected
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Figure 3-7: Clamping the Output of the Comparator [14]

Figure 3-8: Current Source [15]
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Figure 3-9: Comparator Current ISS vs. Temperature

in series with a gate-to-drain connection to both a 5V NMOS and a 45V NMOS transistor. The

resistor sets the current through P2, N2, and N5. The current is then mirrored through P1, N1,

and N4. Notice the sizing of the NMOS transistors. Through sizing of these transistors and the

value of the resistor, the current is set as needed [15]. This allows for a simple redesign of the

current source and implementation in the low voltage comparator. The resistance is reduced and

the multipliers of the transistors are also reduced to get approximately 10 micro-Amperes from the

new current source.

3.4 UVLO 3 Low-Voltage Comparator Circuit

The comparator used in UVLO 3 is presented in Figure 3-10 [16]. The low-voltage comparator is

powered from the VDD-VSS voltage swing. This comparator has internal hysteresis through the

gate-drain connections of M3 and M4, similar to the high-voltage comparator. It also requires a

current source (Ib=10uA).
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Figure 3-10: Low-Voltage Comparator Circuit Topology [16]
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Chapter 4

Simulation and Test Results

4.1 Simulation Results - Schematics

It is important to keep a standard for measurement of the schematic simulation, layout simulation,

and experimental testing. Figure 4-1 displays the standard of measurement used on the UVLO

circuit. This measured point is the switching point where there is a fault in the system.

Figure 4-1: Measuring the Output of the UVLO
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4.1.1 Simulating the UVLOs individually

Since the user has the option to utilize each of the UVLOs individually, it is important to simulate

each UVLO and measure its output. This will also allow for the designer to determine the perfor-

mance of each of the UVLO circuits work before sending the signals into the OR gate. Using the

standard of measurement mentioned before, the following results were found for UVLO 1 (Table

4.1), UVLO 2 (Table 4.2), and UVLO 3 (Table 4.3). Displayed in these tables are the measured

value of the switching point, the simulation temperature, and the percentage of the measured sup-

ply (input). The measured switching point is divided by the supply voltage to find this percentage

(Equation 4.1).

% efficiency =
switching point

supply voltage
× 100 (4.1)

The output from a transient sweep for UVLO 1 is seen in Figure 4-2. Figures 4-3 and 4-4

shows the output from a transient sweep for UVLO 2 and UVLO 3. These results display the fast

switching times of the individual UVLO circuits. It is important to take the switching time into

account. If the voltage drops quickly, the UVLO needs to react quickly. The UVLO operates and

switches fast enough for the gate driver circuit. Notice the output signals in Figures 4-3 and 4-4

have spikes on either side of the “fault” or “high” state. This is due to the fact that the output

signal wants to swing from 0-5V. However, the output signal can only swing as high as the power

supply voltage. This would then raise the question about why UVLO 2 has this issue since it is

powered from the high voltage supply. While UVLO 2’s comparator circuit is powered from the

high voltage supply and should give a clean 0-5V swing, the signal from the comparator is buffered

before connecting to the pin. This buffer is a low-voltage buffer and will cause this spiking result

for UVLO 2. This low-voltage buffer can be replaced with a high-voltage buffer and can eliminate

the spiking effect. Since the gate driver circuit really only needs a signal to surpass 2.4V to be

considered to be in a fault state, these spikes really do not effect the performance of the UVLO

with the gate driver. Therefore, a low-voltage buffer is fine for this design.

4.1.2 Simulating the UVLOs with the OR Gate

The three UVLO circuits were OR-ed together in order to obtain a single output. Measurements

need to be made at the output of this OR gate in case it adversely affects the signal. Effects on the

23



Table 4.1: Output from UVLO 1 - Schematic
VDDH Output where VDDH Faults
30V 27◦C 23.61 79%

200◦C 27.2 90%
20V 27◦C 16.03 80%

200◦C 17.94 90%
10V 27◦C 8.55 86%

200◦C 9.32 93%

Table 4.2: Output from UVLO 2 - Schematic
VDDH Output where VDD Faults
30V 27◦C 4.48 90%

200◦C 4.43 89%
20V 27◦C 4.48 90%

200◦C 4.41 88%
10V 27◦C 4.44 89%

200◦C 4.39 88%

Table 4.3: Output from UVLO 3 - Schematic
VDD Output where VDD Faults
5V 27◦C 4.42 88%

200◦C 4.34 87%
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Figure 4-2: Output of UVLO 1 - Transient Simulation (Room Temperature)
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Figure 4-3: Output of UVLO 2 - Transient Simulation (Room Temperature)
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Figure 4-4: Output of UVLO 3 - Transient Simulation (Room Temperature)
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signal could come from the OR gate’s temperature dependance and speed of switching capabilities.

Since the output of the UVLO circuit will travel off chip, to the board, then back on the chip to

the input of the OR gate, there will be variations in the measured experimental data and simulated

data. These results are compiled in Table 4.4. Figure 4-5 displays the transient output from the

OR Gate.

Figure 4-5: Output of OR Gate - Transient Simulation (Room Temperature)
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Table 4.4: UVLO with OR Gate - Output of OR Gate - Schematic
VDDH Output where VDD Faults Output where VDDH Faults Output where VDD and VDDH Faults
10V 27◦C 4.61 92% 27◦C 8.83 88% 27◦C 4.64 93%

27◦C 9.2 92%

200◦C 4.59 92% 200◦C 9.57 96% 200◦C 4.68 94%

200◦C 9.39 94%

20V 27◦C 4.52 90% 27◦C 16.55 83% 27◦C 4.52 90%
27◦C 18.3 92%

200◦C 4.53 91% 200◦C 18.25 91% 200◦C 4.65 93%

200◦C 18.3 92%

30V 27◦C 4.59 92% 27◦C 24.16 81% 27◦C 4.57 91%
27◦C 27.43 91%

200◦C 4.53 91% 200◦C 28.23 94% 200◦C 4.6 92%

200◦C 27.04 90%

29



4.2 Simulation Results - Layout

Its important to simulate the layout of the circuits because these simulations take into account

parasitics. The methods of measurement for the simulated layout were identical to that of of the

schematics (Figure 4-1).

4.2.1 Simulating the UVLOs individually

The following tables were generated by measuring the outputs from each UVLO circuit layout. By

comparing the layout results to the schematic results, the effects of the parasitics on the UVLO

circuit become obvious. The trigger points are shifted causing the switching from the hysteresis to

happen at lower voltages. This in turn lowers the efficiency of the UVLO’s functionality. Notice

the drop in percentages in the Tables 4.5, 4.6, and 4.7.

Table 4.5: Output from UVLO 1 - Layout
VDDH Output where VDDH Faults
30V 27◦C 23.22 77%

200◦C 26.94 90%
20V 27◦C 15.73 79%

200◦C 17.69 88%
10V 27◦C 8.51 85%

200◦C 9.24 92%

Table 4.6: Output from UVLO 2 - Layout
VDDH Output where VDD Faults
30V 27◦C 4.39 88%

200◦C 4.36 87%
20V 27◦C 4.39 88%

200◦C 4.35 87%
10V 27◦C 4.38 88%

200◦C 4.33 87%

Table 4.7: Output from UVLO 3 - Layout
VDD Output where VDD Faults
5V 27◦C 4.43 89%

200◦C 4.34 87%
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4.2.2 Simulating the UVLOs with the OR Gate

The three UVLO circuits were OR-ed together in order to obtain a single output. Again, the

measurements need to be made at the output of this OR gate in the case there is an effect on the

signal due to the OR gate. Parasitics do have some effect on the results as shown in Table 4.8.
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Table 4.8: UVLO with OR Gate - Output of OR Gate - Schematic
VDDH Output where VDD Faults Output where VDDH Faults Output where VDD and VDDH Faults
10V 27◦C 4.54 91% 27◦C 8.67 87% 27◦C 4.6 92%

27◦C 9.18 92%

200◦C 4.57 91% 200◦C 9.44 94% 200◦C 4.65 93%

200◦C 9.31 93%

20V 27◦C 4.49 91% 27◦C 16.49 82% 27◦C 4.51 90%
27◦C 18.25 91%

200◦C 4.52 90% 200◦C 18.19 91% 200◦C 4.63 93%

200◦C 18.15 91%

30V 27◦C 4.54 90% 27◦C 24.29 81% 27◦C 4.52 90%
27◦C 27.38 91%

200◦C 4.52 90% 200◦C 28.18 94% 200◦C 4.59 92%

200◦C 26.9 90%
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4.3 Post Fabrication Test Results

Testing of the UVLO chip started with DC testing at room temperature. Figure 4-6 displays the test

set-up. The test board was created out of polyimide, allowing for testing at temperatures greater

than 300◦C. High temperature wires with banana plugs were created to bring power supplies into

the temperature chamber. Also, SMA connectors and cables were used to bring measurements off

the board at both room temperature and higher temperatures.

It was very convenient that test points were brought off-chip, allowing for debugging of the

circuit. First, the UVLO 1 VREF TEST POINT measures the voltage produced by the resistor and

zener diode connection in VREF for UVLO 1 (Figure 3-2). The second test point, UVLO2 TEST

POINT, measures the output from the voltage divider in UVLO 2 (Figure 3-4). The third test

point, UVLO3 TEST POINT, measures the output from the voltage divider in UVLO 3 (Figure

3-3). Another convenience is the option to use an off-chip source for VREF and VDD. Through

a board level selection these sources can either come from another circuit on the chip or from an

external source.

Figure 4-6: UVLO Test Set-up
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4.3.1 Testing the UVLOs individually

Measurements were taken at the outputs of the individual UVLO circuits. Table 4.9 displays the

output from UVLO 2 and Table 4.10 displays the output from UVLO3. These tables are similar

to that of the simulated measurements. They show measured values at room temperature and at

200◦C. By taking measurements at these points, it can be seen how temperature affects the overall

stability and efficiency of the circuit.

Unfortunately the VREF in UVLO 1 is not functioning properly, causing it to be impossible

to obtain reasonable results from UVLO 1. VREF is dependent on the resistor R3 and the zener

diode. The zener diode is not correctly biased and therefore will not turn ON. Forcing current

though the zener diode would force it to turn ON but could damage the rest of the chip. The input

VREF should be around 6-7 V, but is measured in the millivolt range. Since this input is so low,

the output of the UVLO is always high. For this reason the UVLO is disconnected from the system

for further measurements. Fortunately, the board level connections between the UVLOs and OR

Gate allow for the UVLO to be taken out of the overall system.

Figures 4-7 and 4-8 show the output from a DC sweep of VDD for UVLO 2 and UVLO 3. The

input supply voltage VDD is swept from 3V to 5V and back down to 3V. From the output results,

the simulated and the measured hysteresis switching points (or trigger points) are found. This

figure displays the results for both room temperature and elevated temperatures. These results

were very encouraging. The simulated and measured results were very similar. Knowing that there

would be some shifting in the hysteresis from simulation to post-fabrication testing, a conservative

circuit was designed. Setting the hysteresis “high” allows for some shifting due to parasitics. The

design goals were still met (80% threshold).

Figures 4-9 and 4-10 show the output from a transient sweep for UVLO 2 and UVLO 3 at

Table 4.9: Output from UVLO 2 - Post Fabrication
VDDH Output where VDD Faults
30V 27◦C 4.70 94%

200◦C 4.69 94%
20V 27◦C 4.70 94%

200◦C 4.69 94%
10V 27◦C 4.70 94%

200◦C 4.68 94%
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Table 4.10: Output from UVLO 3 - Post Fabrication
VDD Output where VDD Faults
5V 27◦C 4.86 97%

200◦C 4.85 97%

Figure 4-7: Output of UVLO 2 - Hysteresis Switching Points are Found from these Results
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Figure 4-8: Output of UVLO 3 - Hysteresis Switching Points are Found from these Results
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Figure 4-9: Output of UVLO 2 - Transient Measurement (A) Input Voltage, (B) Output Voltage

Figure 4-10: Output of UVLO 3 - Transient Measurement (A) Input Voltage, (B) Output Voltage
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Figure 4-11: Output of UVLO 2 - Transient Measurement - Switching Point 1

room temperature. These results are comparable to the simulated results displayed in Figures 4-3

and 4-4. These results show how fast the individual UVLO circuits are able to switch states. It is

important that the UVLO is able to react quickly to a drop in voltage before damage is caused to

the circuit. Also, it is important for the UVLO to quickly switch states when the supply recovers.

Figures 4-11 and 4-12 display a closer look at the measured times and voltages at the switching

points for UVLO 2. Figures 4-13 and 4-14 display the measured times and voltages at the switching

points for UVLO 3. These transient measurements were used to generate the values for Tables 4.9

and 4.10 at both room temperature and higher temperatures. The oscilloscope results at higher

temperatures were not displayed because their switching point values were listed in the tables.

4.3.2 Testing the UVLOs with the OR Gate

After taking individual measurements, the two functioning UVLO circuits were connected to the

input of the OR Gate and measurements were taken at the output of the OR Gate. Previously

stated, the OR Gate is needed because the gate driver only accepts one signal from the under voltage

protection circuit. The OR Gate allows for the monitoring of multiple supplies. The experimentally
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Figure 4-12: Output of UVLO 2 - Transient Measurement - Switching Point 2
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Figure 4-13: Output of UVLO 3 - Transient Measurement - Switching Point 1

measured output of the OR Gate is compiled in Table 4.11. Figure 4-15 displays the output from

the OR gate.

These results should follow closely to the most restrictive inputs. For example, the output of

UVLO 3 is more restrictive that the output of UVLO 2 meaning the switching points are at higher

voltages. In this case, the OR Gate results should be very similar to UVLO 3 results. Notice the

slight difference between the simulated and the measured results. These differences may be from

the parasitics on chip and on the board. The output from the OR Gate is only dependent on the

inputs from UVLO 2 and UVLO 3. Since the output of UVLO 1 is always ‘high’ (due to incorrect

VREF ), UVLO 1’s output is not connected into the OR Gate. Figure 4-16 displays the output from

a transient sweep for the OR Gate. Figures 4-17 and 4-18 display a closer look at the switching

points and the measured times and voltages at the switching points for the OR Gate. Notice the

settling time for the output of the OR Gate is close to a micro-second, even with the noise in the

input signal.
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Figure 4-14: Output of UVLO 3 - Transient Measurement - Switching Point 2

Table 4.11: UVLO with OR Gate - Output of OR Gate - Post Fabrication
VDDH Output where VDD Faults
30V 27◦C 4.87V 97%

200◦C 4.85 97%
20V 27◦C 4.87 97%

200◦C 4.84 97%
10V 27◦C 4.86 97%

200◦C 4.84 97%
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Figure 4-15: Output of OR Gate - Hysteresis Switching Points are Found from these Results
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Figure 4-16: Output of OR Gate - Transient Measurement (A) Input Voltage, (B) Output Voltage
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Figure 4-17: Output of OR Gate - Transient Measurement - Switching Point 1

Figure 4-19 displays the simulated DC sweep results from UVLO 1. These are only the simulated

results. However, theoretically the measured results would have been very similar. It is possible to

make this assumption due to the measured results from the other UVLO and OR Gate outputs.

These results met the 80% threshold design goal. There is an obvious difference in room temperature

and higher temperatures at the hysteresis switching points, but this is to be expected. If measured

results were similar to these results they would have been very good.

4.3.3 Testing the UVLO with the Gate Driver

The under voltage lock out circuit needs to operate properly with the gate driver. For this reason,

testing needs to be done to make sure the gate driver is receiving the UVLO’s output and correctly

reacting to it. Remember, if the UVLO detects a fault, namely a drop in the supply voltage below

the threshold, it will output a high signal. The gate driver should then reset the system.
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Figure 4-18: Output of OR Gate - Transient Measurement - Switching Point 2
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Figure 4-19: Output of UVLO 1 - Hysteresis Switching Points are Found from these Results
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Chapter 5

Conclusion

5.1 Thesis Summary

The under voltage lock out circuit is very important for systems that depend on an unstable

voltage supply such as batteries. This UVLO was designed to work as a protection circuit for a

gate driver in a hybrid electric vehicle. Due to its location in the electric vehicle, the temperatures

the electronics reach are beyond that of military grade electronics. This puts them in the extreme

environment electronics group. For this reason, simulation and testing needed to be performed

across a wide temperature range. After extensive testing of the under voltage lock out circuit,

results were encouraging. There were some issues with the reference voltage in UVLO 1. This is

due to the zener diode not turning on properly. However, UVLO 2 and UVLO 3 operated very well

at room temperature and at high temperatures. Since the same comparator was used in UVLO 1 as

UVLO 2 and the results from UVLO 2 were good, theoretically UVLO 1 should operate correctly.

Correcting the issue with reference voltage would allow for future testing.

5.2 Future Work

The next logical steps would be to fully integrate the UVLO into the gate driver. Integration of the

off-chip selection of resistance within the resistor bank in UVLO 1 would be another improvement

to UVLO 1’s layout. Instead of using jumpers on the board to select resistance values, a multiplexer

could be added to the UVLO system forcing an on-chip selection. This would reduce the amount of

pins needed as well as the parasitics. If satisfied with the results of the individual UVLO circuits,
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the outputs of the individual UVLO circuits can be directly connected to the input of the OR

gate without coming off-chip. Since this was the first revision for the UVLO, several test points

were needed. These test points will not be needed on the next run of the UVLO circuit. Finally,

the current the UVLO circuit is a very conservative design. The gate driver does not need such a

conservative circuit. The switching points (or hysteresis points) can be moved according to better

fit needs of the gate driver. This can be done through re-sizing the transistors on the input stage

of the comparator.

There are a few options to resize the hysteresis of the comparator used in UVLO 1 and UVLO

2. Since the hysteresis depends on the ratio between M10 and M3 for the positive switching point,

increasing the multiplier of M10 would move the switching point out. This means that the UVLO

would send a fault at a lower voltage (lower percentage). The negative switching point depends on

the ratio between M11 and M4. By reducing the multiplier of M4, the ratio would also shift the

switching point. The means that the UVLO would fault at a lower voltage. If a more conservative

design is needed, simply the opposite needs to be done and the UVLO will fault at a higher voltage

(larger percentage).
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