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Abstract

This article addresses the development of an integrated supplier selection and inventory

control problems in supply chain management by developing a mathematical model for a

multi-echelon system. In particular, a buyer firm that consists of one warehouse and N

identical retailers wants to procure a product from a group of potential suppliers, which

may require different price, ordering cost, lead time and have restriction on minimum and

maximum total order size, to satisfy the stochastic demand. A continuous review system

that implements the order quantity, reorder point (Q, R) inventory policy is considered

in the model. The objective of the model is to select suppliers and to determine the

optimal inventory policy that coordinates stock level between each echelon of the system

while properly allocating orders among selected suppliers to maximize the expected profit.

The model has been solved by decomposing the mixed integer nonlinear programming model

into two sub-models. Numerical experiments are conducted to evaluate the model and some

managerial insights are obtained by performing some sensitivity analysis.

iv



Table of Contents

1 Introduction 1

2 Literature Review 5

3 Problem Definition and Assumptions 10

4 Model Formulation 16

4.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 The Retailer Inventory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 The Warehouse Inventory Analysis . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Illustrative Example and Analysis 27

5.1 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Demand Rate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Long-distance Supplier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



6 Conclusions 41

Bibliography 43

Vita 49

vi



List of Tables

5.1 Parameter values assigned in the experiment . . . . . . . . . . . . . . . . . . 28

5.2 Other parameter settings related to potential suppliers . . . . . . . . . . . . 29

5.3 Decision-making variables solution . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 The optimal policy and expected profit based on different demand rate instance 31

5.5 The optimal inventory policy for selected suppliers in different demand rate

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



List of Figures

3.1 Illustration of the multi-level supplier selection system . . . . . . . . . . . . 11

5.1 Illustration of the trend for inventory policy at the warehouse when supplier

1 and 3 are selected under different instances . . . . . . . . . . . . . . . . . . 33

5.2 Illustration of the impact of delivery lead time variance for a long-distance

supplier: total order quantity purchased from the distant supplier and the

expected profit decrease with the increasing delivery lead time uncertainty . 36

5.3 Illustration of the impact of mean delivery lead time for a long-distance

supplier: total order quantity purchased from the distant supplier and the

expected profit decrease with the increasing mean delivery lead time . . . . . 37

5.4 Illustration of the impact of fixed ordering cost for a long-distance supplier:

total order quantity purchased from the distant supplier and the expected

profit decrease with the increasing fixed ordering cost . . . . . . . . . . . . . 39

5.5 Illustration of the impact of unit price for a long-distance supplier: total order

quantity purchased from the distant supplier and the expected profit decrease

with the increasing unit price . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



Chapter 1

Introduction

In today’s circumstance of the global economic crisis, companies are facing increasing

challenges to reduce operational costs, enlarge profit margins and remain competitive.

People are forced to take advantages of any opportunity to optimize their business process

and improve the performance of the entire supply chain. For most industrial firms, the

purchasing of raw material and component parts from suppliers constitutes a major expense.

For example, pointed out by Hayes et al. (2005) and Wadhwa and Ravindran (2007), it is

expected that more and more manufacturing activities will be outsourced. Hence, among the

various strategic activities involved in the supply chain management, the purchase decision

has critical impacts on costs.

According to Aissaoui et al. (2007), there are six major purchasing decision processes: (1)

’make or buy’, (2) supplier selection, (3) contract negotiation, (4) design collaboration, (5)

procurement and (6) souring analysis. Among all of them, the supplier selection problem has

received great attentions (Jayaraman et al., 1999; Liao and Rittscher, 2007; Weber et al.,
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1991). Generally, the supplier selection problem is to define which supplier(s) should be

selected and how much order quantity should be assigned to each selected supplier. It is

a multi-criteria decision making process depended on a wide range of factors which involve

both quantitative and qualitative ones (such as quality, cost, capacity, delivery, and technical

potential).

Another relevant problem in supply chain management is to determine appropriate levels

of inventory in each echelon. It is important to determine the quantity to order, the selections

of suppliers and the best time to place an order. To derive optimal inventory policies that

simultaneously determine how much, how often, and from which suppliers, typical ordering

costs, purchasing costs, and holding costs should be considered. Although there are plenty of

research for the supplier selection model, only limited studies focused on the inventory control

policies integrated with supplier selection, especially under stochastic demand. However,

considering the cost issue, supplier selection decision is actually highly correlated with some

major logistics issues within a company such as inventory (stock level, delivery frequency,

etc.) Incorporating the decisions to schedule orders over time with the supplier selection may

significantly reduce costs over the planning horizon (Aissaoui et al., 2007). For example in

the recent article (Mendoza and Ventura, 2010), the authors studied both supplier selection

and inventory control problems under a serial supply chain system. A mathematical model

was proposed to determine an optimal inventory policy in different stages and allocate proper

orders to the selected suppliers. This paper extended the contributions to the research for

the integration of supplier selection and inventory control problems in multi-level systems.

However, the mathematical model built in this paper was based on a stationary inventory
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policy with a constant demand. Moreover, the constant lead time, no backorder allowed and

the same order quantity for different suppliers were assumed in the paper. These assumptions

could be restrictive in reality, and it may not be appropriate to order the same quantity each

time from different suppliers due to the different ordering cost and replenishment lead time.

Thus, according to some more literature reviews given in Section 2, the decision model for

supplier selection and inventory control policies in multi-level supply chain system requires

further studies.

In this paper, we consider both supplier selection and inventory control problems in a

serial supply chain system. A two-echelon distribution system with a central warehouse and

N retailers is considered to procure from a set of suppliers. The supplier selection process

is assumed to occur in the first stage of the serial supply chain, and the decision is made

by a single decision maker (i.e., centralized control) who wants to reduce the total cost

associated with the entire supply chain. Capacity, ordering cost, unit price, holding and

backorder cost are considered as the criteria for the supplier selection. For the inventory

control policy, a continuous review system which applies the order quantity, reorder point

(Q, R) policy is adopted to determine the inventory level held at each echelon of the supply

chain. The objective of the proposed integrated model is to coordinate the replenishment

decision with the inventory at each echelon while properly selecting the set of suppliers

which meets capacity restrictions. Thus, a mixed integer non-linear programming (MINLP)

model is established to determine the best policy for the supplier selection and replenishment

decisions.
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The main contribution of this paper is to develop a multi-echelon inventory model for

supplier selection problem under stochastic demand. To the authors’ best knowledge, existing

literature does not provide any model similar to the one proposed in this article. The

remainder of this article is organized as follows. In Section 2, previous work related to

the supplier selection is summarized. In Section 3, we present our problem definition and

assumptions. In Section 4, the development and formulation of the proposed multi-echelon

inventory model with supplier selection is presented. We implement the model by conducting

some numerical experiments in Section 5. Finally, a summary of our work and an outlook

on future research directions are presented in Section 6.
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Chapter 2

Literature Review

The supplier selection problem has attracted great attentions of a number of researchers

who proposed various decision models and solutions. Some previous review works for these

decision methods have been presented in the literature. Weber et al. (1991) classified 74

related articles published from 1966 to 1990 which have addressed supplier selection problems

based on different criteria and analytical methods. It was found that price, delivery and

quality were the most discussed factors. Later in 2000, Degraeve et al. (2000) adopted

the concept of Total Cost of Ownership (TCO) as a basis for comparing supplier selection

models. They illustrated their model through a case study, and concluded that from

a TCO perspective, mathematical programming models outperformed rating models and

multiple item models generated better results than single item models. Recently, Ho et al.

(2010) surveyed the literature of the multi-criteria decision making approaches for supplier

evaluation and selection based on 78 international journal articles gathered from 2000 to

2008, which were classified based on the applied approaches and evaluating criteria. They
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observed that price or cost is not the most widely adopted criterion. Instead, the most

popular criterion used for evaluating the performance of suppliers is quality, followed by

delivery, price or cost, and so on. For some other review articles of the supplier selection

problems, please refer to Aissaoui et al. (2007) and de Boer et al. (2001). The following part

of this section summarizes the contribution in the literature related to this paper.

Various types of mathematical programming models have been formulated for the supplier

selection problem, such as linear programming, mixed integer programming and multi-

objective programming. We first review some papers which adopted linear programming.

Ghodsypour and O’Brien (1998) proposed an integration of an analytical hierarchy process

and linear programming to consider both qualitative and quantitative factors in choosing

the best suppliers and placing the optimum order quantities. Later in (Talluri and

Narasimhan, 2003), a unique approach called ’max-min’ for vendor selection was proposed

by incorporating performance variability into the evaluation process. The authors built two

linear programming models to maximize and minimize the performance of a supplier against

the best target measures. Ng (2008) developed a weighted linear program for the multi-

criteria supplier selection problem with the goal to maximize the supplier score, and studied

a transformation technique to solve the proposed model without an optimizer.

As for the mixed-integer programming technique, Kasilingam and Lee (1996) proposed a

mixed-integer model to select vendors and determine the order quantities based on the quality

of supplied parts, the cost of purchasing and transportation, the fixed cost for establishing

vendors, and the cost of receiving poor quality parts. Talluri (2002) studied a buyer-seller

game model for evaluating alternative supplier bids with multiple performance criteria. To
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select an optimal set of bids by matching demand and capacity constraints, a binary integer

programming formulation was developed to determine the optimal set of suppliers. In (Hong

et al., 2005), the model which can determine the optimal number of suppliers, and the optimal

order quantity so that the revenue could be maximized was built in a mixed-integer linear

programming formation, followed by three steps: preparation, pre-qualification, and final

selection. Recently, Hammami et al. (2012) developed a mixed-integer programming model

for the supplier selection problem that takes into account of inventory decisions, inventory

capacity constraints, specific delivery frequency and a transportation capacity based on

multiple products and multiple time periods.

Due to the multi-criteria nature of the supplier selection problem, more and more

researchers began to adopt multi-object programming since 2005. Narasimhan et al. (2006)

developed a multi-objective model to choose the optimal suppliers and determine the optimal

order quantity, which considered the following criteria: cost minimization, transaction

complexity minimization, quality maximization and delivery-performance maximization. Xia

and Wu (2007) studied the situation of price discounts on total business volume and proposed

a multi-objective mathematical model to minimize total purchase cost, reduce the number

of defective items, and maximize total weighted quantity of purchasing. The model was

also built to simultaneously determine the number of suppliers to employ and the order

quantity allocated to these suppliers in the case of multiple sourcing, multiple products,

with multiple criteria and with supplier’s capacity constraints. In (Demirtas and Ustun,

2009), to evaluate the suppliers and to determine their periodic shipment allocations given a

number of tangible and intangible criteria, a two-stage mathematical approach was proposed
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by a multi objective mixed integer linear programming model. Most recently, Amid et al.

(2009) formulated a multi-objective model in adopting a fuzzy weighted additive and mixed

integer linear programming method to consider the imprecision of information and determine

the order quantities. The problem focused on minimizing three objective functions: the net

cost, the net rejected items, and the net late deliveries, while satisfying capacity and demand

requirement constraints.

Although the supplier selection decision is closely related with inventory model,

Hammami et al. (2012) indicated that only a few of models incorporated the inventory

management related issues. Here we want to point out some recent papers from the inventory

control perspective. In (Haq and Kannan, 2006), the authors developed an integrated

supplier selection and multi-echelon distribution inventory model. The inventory cost

considered in this paper was just based on deterministic demand in a given time period so that

no inventory control policies are required to be considered. Similar inventory management

models can also be found in (Demirtas and Ustun, 2009; Hammami et al., 2012; Mendoza

and Ventura, 2010). Moreover, Awasthi et al. (2009) developed a mathematical model for

a single firm with fixed selection cost and limitation on minimum and maximum order size

under stochastic demand. Then Zhang and Zhang (2011) extended their work to implement

a newsvendor inventory model based on such a problem. The inventory models considered

in these two articles were only based on a single period of time intended for short term

planning. Yang et al. (2011) extended their work on multiple items and solved the problem

by Genetic Algorithm, which also considered a single period with a salvage value at the

end of the selling season. Obviously, a single-period problem does not necessarily consider
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any inventory policy for continuous replenishment over an infinite planning horizon. More

importantly, currently literature showed litter work on multi-stage systems, where only focus

on the performance of a single buyer. Nonetheless, the inventory policies in supply chain

management not only impact a single stage but also will affect the whole supply chain. These

are the basic motivations of this research.
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Chapter 3

Problem Definition and Assumptions

We model the supplier selection and order quantity allocation problem based on a two echelon

inventory system. We assume the inventory decision is made by a single decision maker (i.e.,

centralized control), who wants to purchase a single product from a set of potential suppliers.

Figure 3.1 depicts a serial supply chain system under considering of three levels, where raw

materials and products flow sequentially through the supply chain to satisfy the customer

demand. A single warehouse replenishes its inventory from a set of S selected suppliers with

given lead times. It is assumed that all the suppliers in this identified set at level 1 satisfy

the buyer’s qualitative criteria (service, delivery, maintenance, etc.) and the final decision

will be made based on the item price, fixed ordering cost and the inventory cost regarding of

choosing the particular supplier. The warehouse then supplies the items to N independent

identical retailer, where demand occurs based on a Poisson process, and all stockouts are

considered as backorders. Therefore, supplier selection and purchasing costs only occur at
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the warehouse, while the product is transferred through the entire system, incurring costs

like inventory costs, backorder cost, etc.

1

……

Level 2: Warehouse

Level 1: Supplier

1

2 J

2 N

……Level 3: Retailer

3

Figure 3.1: Illustration of the multi-level supplier selection system

The above supply chain system is assumed to implement the continuous review (Q,

R) policy for the inventory system at the warehouse and the retailer. Hence, when the

demand occurs at the retailer, it is satisfied from the retailer’s available stock. Otherwise,

the demand is backordered. Under this policy, the inventory position is checked continuously,

when it declines to the reorder point R, a batch size Q is ordered at the warehouse. The

inventory position is defined as the on hand inventory plus stock on order minus the number
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of outstanding backorders. After an order is placed with the warehouse, an effective lead time

L takes place between placing the order and receiving it. After receiving the replenishment

order, the outstanding backorders at the retailer are immediately satisfied based on a first-

come-first-serve (FCFS) policy.

For the warehouse, the retailer replenishment orders are satisfied if the on-hand inventory

at the warehouse is greater than or equal to the retailer’s order size. That is, a partial

replenishment of an order at the warehouse is not allowed here. This is a reasonable

assumption when we consider a fixed order cost k connected to each transport from the

warehouse to the retailer. The inventory policy is followed as the same at the warehouse, i.e.,

the continuous review (Q, R) policy. We also adopt the widely-used two-echelon inventory

system assumption, that is the batch size and reorder point of the warehouse are the integral

number of that of the retailer (such as in (Axsäter, 2003; Bodt and Graves, 1985)). According

to Chen and Zheng (1997), this integer-ratio order policy can facilitate quantity coordination

among different facilities, and simplify packaging, transportation and stock counts. When

the warehouse receives the replenishment order from the selected suppliers, any outstanding

backorders are also fulfilled according to the FCFS policy.

In addition to determine the inventory policy for the warehouse and the retailer, we will

not model any inventory process at the supplier. Instead, the decision maker should replenish

the inventory for the warehouse and the retailer from different suppliers by performing a

selection process so as to determine which supplier to be selected, the total expected quantity

that are to be procured from the selected suppliers, and the frequency in which the orders are

to be received. We assume that each supplier locates in different places, then prices, selection
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costs, transportation costs, and replenishment lead times are diverse from each other. Define

S different suppliers, for each supplier, let Oj be the fixed ordering cost each time (i.e.,

selection cost, transportation cost, etc.), and pj be the price of one item from this supplier.

Moreover, µj and vj are respectively denoted as the mean and variance of transition time

from each supplier j to the warehouse, which is assumed to be known in advance. Supplier

j has limited maximum capacity Mj and a restriction of the minimum total order size mj if

the supplier is selected. The objective of the proposed model is to coordinate the purchase,

holding, backorder, and capacity in order to maximize the expected profit.

Before we introduce the mathematical model, we now define the notations that are used

throughout the paper as the following:

Constants

S: number of suppliers

N : number of retailers

T : number of time span, in days

λr: demand rate at the retailer per day

L: replenishment lead time between the warehouse and the retailer, in days

pj: net purchase cost per unit from supplier j

h: holding cost per unit per day

b: backorder cost per unit per day

k: retailer’s fixed ordering cost per order

r: selling price per unit at the market

13



Oj: warehouse’s fixed ordering cost per order for supplier j

µj: mean replenishment lead time between supplier j and the warehouse, in

days

vj: variance of replenishment lead time between supplier j and the

warehouse, in days2

mj: minimum total order size of supplier j during T time units

Mj: maximum total order size of supplier j during T time units

Decision Variables

yj: binary variable, set to be 1 if supplier j is selected

xj: expected total ordering quantity from supplier j, in units

Qrj, Rrj: retailer’s order quantity and reorder point if supplier j is chosen,

in units

Qwj, Rwj: warehouse’s order quantity and reorder point if supplier j is

chosen, in units of retailer batches

Random Variables

tj: expected time to purchase orders from supplier j, in days

λw: demand rate at the warehouse per day

Ur: retailer’s retard time, in days

Irj(R,Q): expected on-hand inventory at retailer during the time supplier

j is chosen, in units

14



Iwj(R,Q): expected on-hand inventory at warehouse during the time

supplier j is chosen, in units of retailer batches

Brj(R,Q): expected backorders at retailer during the time supplier j is

chosen, in units

Bwj(R,Q): expected backorders at warehouse during the time supplier j is

chosen, in units of retailer batches
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Chapter 4

Model Formulation

4.1 Mathematical Model

In this section, the model of supplier selection and order quantity allocation under multi-

echelon inventory system with stochastic Poisson demand is presented. Let xj be the

expected total ordering quantity from the supplier j and yj be a binary variable, where

yj = 1 means that supplier j is selected. Recall that each selected supplier j should satisfy

the capacity constraint, as a result, we may select different sets of suppliers when demand

rate at the retailer changes. The system is considered based on time span T . At this time,

we assume the demand rate at the retailer is constant. Moreover, at any moment, only one

supplier is asked to provide the replenishment orders, i.e., no order splitting is considered

every time the warehouse places the order. If there are multiple suppliers which are selected

in the final decision, each supplier is assumed to serve the warehouse separately for some

continuous time. We denote tj as the time for supplier j, which is the expected time to
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purchase orders from supplier j. Thus, following one selected supplier (supplier a) that

finishes its service time (ta), the warehouse may place the order from another one (supplier

b) with some additional time (tb).

The no-order-splitting assumption represents the cases where the warehouse places orders

from different suppliers one after another, and won’t order the same product from different

suppliers at the same time. The reason to make this assumption is mainly due to the fact

that the different supplier lead time and ordering cost could require diverse (Q, R) policies

for both the warehouse and the retailer. However, it is untrackable and impractical to apply

different (Q, R) policies for different suppliers at the same moment. More specifically, to

apply the order-splitting assumption, the retailer may need to implement the same (Q, R)

policy no matter which supplier is selected. Moreover, it is still unclear that in which way

(adopt this assumption or not) the system could be more efficient. Thus, we want to study

the no-order-splitting situation first, and another model which violates this assumption will

be considered in our future research.

The objective function of the proposed model consists of several parts to maximize the

total expected profit. The first part is used to calculate total sale income. The second term

corresponds to the purchasing cost incurred by all the units purchased from selected suppliers.

The third part accounts for the total holding and backorder cost. The last term represents

the fixed ordering cost for both echelons. The insights of the model is to examine the trade-

offs among price, ordering, holding, and backorder costs to choose the best supplier(s) and

decide the ordering policy. Based on the above discussed assumptions and variables, the
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following mathematical model is designed:

Maximize C =
S∑

j=1

rxj−
S∑

j=1

pjxj−
S∑

j=1

tj[h(Irj+QrjIwj)+b(Brj+QrjBwj)]−
S∑

j=1

(
xj

QwjQrj

Oj+
xj
Qrj

k).

Subject to
S∑

j=1

tj ≤ T, (4.1)

mjyj ≤ xj ≤Mjyj j = 1, . . . , S, (4.2)

xj = Nλrtj j = 1, . . . , S, (4.3)

Rrj ≥ −Qrj j = 1, · · · , S, (4.4)

Rwj ≥ −Qwj j = 1, · · · , S, (4.5)

Qrj, Qwj ≥ 0 j = 1, · · · , S, (4.6)

Qrj, Rrj, Qwj&Rwj : Integers j = 1, · · · , S, (4.7)

yj ∈ {0, 1} j = 1, . . . , S. (4.8)

Constraint (4.1) ensures that the total expected time to purchase orders from all selected

suppliers should be no longer than the time span T . Constraint (4.2) defines the capacity

constraint for the selected suppliers. As for constraint (4.3), it ensures the expected ordering

quantity from supplier j should satisfy the expected demands at the retailer during its

supplying period. For standard cost structures (i.e., linear holding and backorder costs), it
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can be shown that the optimal R satisfies R ≥ −Q. Therefore, it is assumed to satisfy in

equations (4.4) and (4.5), which can limit the computation efforts. Additionally, constrains

(4.6) and (4.7) are necessary, since there is no partial or fractional requests during the whole

process and the minimum allowable size is zero.

The mathematical model requires calculations of the expected inventory and backorder

level for the warehouse and the retailer. We primarily elaborate the calculations in the

following parts of this section.

4.2 The Retailer Inventory Analysis

Since the calculation for all the selected suppliers is identical, for notational ease, we ignore

the supplier’s subscript j for the notations in this section. The following analysis is identical

for all the different supplier cases.

The retailer inventory position decreases with demand, and when the level reaches Rr,

an order of Qr is placed at the warehouse. Recall that in the steady state, the inventory

position is uniformly distributed over (Rr + 1, Rr + 2, · · · , Rr +Qr). Under a (Q, R) policy,

the expected on-hand inventory for retailers is modeled as:

Ir =
Qr + 1

2
+Rr +Br − E[Dr], (4.9)

where E[Dr] is the retailer’s expected demand during the delay time. The delay time consists

of two parts: the replenishment lead time between the warehouse and the retailer, and
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the time between placement of an order by the retailer and the release of a batch by the

warehouse. The first part is denoted as L, which is assumed to be deterministic. While

the second part is usually called as the retard time, which is due entirely to the warehouse

stockout. We denote the retard time for the retailer as Ur. It is given as follows: the

number of arrival orders in the waiting system is precisely the warehouse’s backorders, and

the sojourn time is equal to the retailer’s retard time (Svoronos and Zipkin, 1988). Thus,

the expected retard time at the retailer is calculated as

E[Ur] =
QrBw

Nλr
, (4.10)

then we have

E[Dr] = λr(L+
QrBw

Nλr
). (4.11)

To simplify the calculation, as illustrated by (Hopp and Spearman, 2001), we adopt

normal approximation for the retailer’s demand during the delay time. It is worth to note

that even though the demand process is Poisson process, the demand during the delay time

for the retailer does not exactly follow the Poisson distribution, due to the variability of the

retard time. In this paper, we ignore the variability of the retard time, and approximate the

variance of the retailer’s expected demand during the delay time to be the same as its mean

value, i.e., V [Dr] ∼= E[Dr].
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Hence, using the normal approximation, expected backorders at the retailer Br can be

computed as follows :

Br =
1

Qr

[β(Rr)− β(Rr +Qr)], (4.12)

β(x) =
σ2

2
{(z2 + 1)[1− Φ(z)]− zφ(z)}, (4.13)

z =
x− θ
σ

, (4.14)

where Φ and φ represent the cdf and pdf of the standard normal distribution, respectively.

Additionally, θ and σ are the mean and standard deviation of the demand during the delay

time. Note here for equation (4.13), it defines the continuous analog to the second-order loss

function β(x). Thus, substituting θ and σ in the above equations, Br can be computed in a

function based on the variables Qr, Rr, and Bw.

4.3 The Warehouse Inventory Analysis

To calculate the expected inventory level and backorder level at the warehouse, the demand

process at the warehouse need to be analyzed first. Recall that the demand process at each

retailer is Poisson process, and the replenishment order for the warehouse is Qr each time.

However, the interval between any two orders is stochastic and depends on Qr. Hence,

the demand process at the warehouse is a superposition of the retailer’s ordering processes.

Specifically, it is a superposition of independent renewal processes (i.e., the time between

orders from each retailer are independent and identically distributed random variables),

each with an Erlang interrenewal time with Qr stages and rate per state λr (also can see
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(Deuermeyer and Schwarz, 1981)). Therefore, under the assumption of identical retailers, it

is straightforward to get the demand rate at the warehouse:

λw =
Nλr
Qr

. (4.15)

When considering the multi-echelon problem, to determine the effective demand pattern

at the upstream is always a difficult task. For this problem, it is almost impossible to find

an exact distribution for the demand process at the warehouse. However, Ganeshan (1999)

showed that when N is greater than 20, the Poisson process is an excellent approximation for

the warehouse demand pattern. In our research, N is always a sufficient large number in each

scenario, so that each retailer’s order arrives approximately according to a Poisson process.

This assumption is fairly reasonable, since for large retail corporation like Wal-Mart, the

distribution center usually servers more than 20 stores.

Because of the independence of the superimpose process, given the mean and variance of

the warehouse replenishment lead time µ and v, we can compute the mean and variance of

the warehouse demand during the replenishment lead time as

E[Dw] = µλw =
Nλrµ

Qr

, (4.16)

V [Dw] = µλw + vλ2w =
Nλrµ

Qr

+
N2λ2rµ

2v

Q2
r

. (4.17)
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Then we can obtain Iw similar to equation (4.9):

Iw =
Qw + 1

2
+Rw +Bw − E[Dw]. (4.18)

Due to the assumption of Poisson demand process at the warehouse when N is sufficient

large, we also approximate the warehouse’s demand during the lead time as normal

distribution. This is a reasonable approximation since this approximation improves as the

rate of Poisson distribution increases, while the rate at the warehouse is sufficient large. This

approximation is also used in the literature, such as in (Al-Rifai and Rossetti, 2007). Then

equations (4.12) to (4.14) can also be adopted to calculate the expected backorder level Bw

at the warehouse. It is not hard to find out Bw is a function of Qw, Rw, and Qr.

4.4 Solution Procedure

The above multi-echelon supplier selection optimization model is a large-scale non-linear

integer optimization problem. Considering the case of five potential suppliers, the model

then may contain 30 integer decision variables, which takes a lot of computational time to

solve. Moreover, the inventory analysis of each echelon requires to model and solve both

echelons simultaneously. In order to model the warehouse, the retailer’s order batch size

must be decided as a priori. On the other hand, the retailer’s calculation requires a known

expected number of backorders at the warehouse. Thus, each echelon of the system is tightly

connected with each other, and the model is difficult to solve in an efficient way.
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Before we move forward, the following proposition gives some properties of the optimal

decision.

Proposition 1. In an optimal solution, at most one supplier may not satisfy the following:

xj ∈ {0}
⋃
{mj, Mj}.

Proof. Assume that in an optimal solution, the suppliers a and b satisfy the condition ma <

xa < Ma and mb < xb < Mb respectively, so that the condition of Proposition 1 is violated.

Denote IBj = h(Irj +QrjIwj)/Nλr + b(Brj +QrjBwj)/Nλr, and Kj = Oj/QwjQrj + k/Qrj.

Then IBj and Kj are independent from xj. The objective function for C can be expressed

as
∑S

j=1 rxj −
∑S

j=1(pj + IBj +Kj)xj.

Without loss of generality, for suppliers a and b, we assume that pa + IBa + Ka <

pb + IBb +Kb. Also let ϑ = min{xb −mb,Ma − xa}, x′a = xa + ϑ, x′b = xb − ϑ, and x′j = xj,

∀j 6= a, b. Then
∑S

j=1(pj +IBj +Kj)x
′
j ≤

∑S
j=1(pj +IBj +Kj)xj. Since

∑S
j=1 x

′
j =

∑S
j=1 xj,

(x′1, x
′
2, ..., x

′
S) would not violate constraint (4.1). Thus we have C ′ ≥ C. This means

(x′1, x
′
2, ..., x

′
S) is a better solution for this model, which violates the assumption. Continue

this process till at most one supplier supplies neither minimum nor maximum. This completes

the proof.

As mentioned in the proof of the above proposition, the expected inventory and backorder

level at the warehouse and the retailer are independent from the expected total ordering

quantity xj. This implies that the model can be solved with two decomposed levels: one

(Model 1) is to solve the optimal (Q, R) policy for each potential suppliers with the objective

to minimize the expected holding, backorder and ordering cost; the other (Model 2) is to
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choose the best suppliers with larger profit and allocate the expected order time for different

suppliers. We now express the models as the following:

Model 1 : Since the (Q, R) policy applied by different potential suppliers is independent

with each other, we formulate the optimization problem based on a single supplier j as

minimizing the total unit system cost, denoted as Ej, which includes inventory, backorder

and ordering cost as follows:

Minimize Ej = h(Irj +QrjIwj) + b(Brj +QrjBwj) + (
Nλr

QwjQrj

Oj +
Nλr
Qrj

k).

Subject to

Rrj ≥ −Qrj, (4.19)

Rwj ≥ −Qwj, (4.20)

Qrj, Qwj ≥ 0, (4.21)

Qrj, Rrj, Qwj&Rwj : Integers. (4.22)

Note in this model Irj, Iwj, Brj and Bwj can be formulated as the equations discussed in

section 4.2 and 4.3. For simplicity, we ignore those equations in this mathematical model.

Model 2 : After achieving the minimized cost value Ej for each possible supplier, the

mathematical model described in section 4.1 can be updated to a simplified model by
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substituting Ej in the objective function as follows:

Maximize C =
S∑

j=1

rxj −
S∑

j=1

pjxj −
S∑

j=1

tjEj.

Subject to
S∑

j=1

tj ≤ T, (4.23)

mjyj ≤ xj ≤Mjyj j = 1, . . . , S, (4.24)

xj = Nλrtj j = 1, . . . , S. (4.25)

Model 1 is a non-linear integer optimization model with two pairs of (Q, R) decision

variables to be solved. While model 2 is an integer programming model which is easy to

solve. Apparently, this decomposition makes the multi-echelon supplier selection model to

be solved in a more efficient way, since the sub-models provided above reduce the scale of

the problem. Thus, we implement a solution procedure which can be summarized as the

following steps: (1) for each potential supplier j, solve Model 1 to achieve best (Qrj, Rrj)

and (Qwj, Rwj) values with the minimized values of Ej; (2) given the values of Ej for all

potential suppliers, calculate the optimal supplier selection policy.
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Chapter 5

Illustrative Example and Analysis

In this section, the numerical experiments are conducted with the proposed mathematical

model. The model is coded in GAMS Integrated Development Environment, and solved

by Knitro commercial package for mixed integer nonlinear model (Model 1) and Cplex for

integer programming model (Model 2), in a desktop computer with an Intel Core(TM) 2

CPU(2.00 GHz) and 4GB RAM. The main purpose for the experiments in this section is to

show the solvability and the effectiveness of the model and to demonstrate how to adopt the

model for supplier selection decision making in different scenarios.

5.1 Parameter Setting

In this section, the system is simulated quarterly (i.e., T = 90), since the demand rate

usually doesn’t change a lot during a season. As mentioned earlier, the number of retailer is

assumed to be a sufficient large number; we set N to be 20. There are six potential suppliers
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Table 5.1: Parameter values assigned in the experiment

Parameter T N λr r h b k L

Value 90 20 10 100 1 3 100 1

to be chosen, which may locate in different regions of the world. As a result, we study the

supplier selection problem based on one firm which consists of one warehouse and twenty

identical retailers, and faces Poisson demands with the same arrival rate at the retailer. The

demand rate is set to be 10 units per day. Moreover, we set the product’s selling price r to

be 100. The unit holding cost and backorder cost for both the warehouse and the retailer

are assumed to be 1 and 3 respectively. The fixed ordering cost from the warehouse to

each retailer is considered as 100. Also the deterministic replenishment lead time from the

warehouse to the retailer is set to be 1 (day). All the parameters are summarized in Table

5.1.

Table 5.2 shows additional data for each potential supplier. It is assumed all the suppliers

satisfy the buyer’s qualitative criteria, and own various purchasing price, fixed ordering

cost, total expected order size constraint, and lead time. Two types of potential suppliers

are considered: short-range suppliers (supplier 1, 2, 3, and 4) and long-distance suppliers

(supplier 5 and 6). As illustrated in Table 5.2, the long-distance suppliers charges less unit

purchasing cost, but requires more fixed ordering cost, and larger variability of the replenish

lead time.
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Table 5.2: Other parameter settings related to potential suppliers

Supplier candidate j 1 2 3 4 5 6

Price (pj) 83 85 82 87 78 78
Fixed ordering cost (Oj) 2000 1200 800 500 3500 4500
Min. total order size (mj) 1500 1000 2700 700 3700 4000
Max. total order size (Mj) 9200 10100 8100 21300 12920 13200
Mean of supplier lead time (µj) 3 2 5 2 6 7
Variance of supplier lead time (vj) 0.2 0.5 0.5 0.1 1.5 2.0

5.2 Results Analysis

According to the above parameter settings, Table 5.3 displays the final selection decision.

The optimal inventory policy for each level and the selected supplier order allocation along

with the total expected profit are also presented. Under such settings, supplier 1, 3 and 4

are selected. Recall that the decision to choose a supplier or not depends not only on the

cost structures (i.e., unit cost, fixed ordering cost, inventory cost, and backorder cost), but

also on the restriction for the minimum and maximum total expected order sizes. In this

particular example, although the unit purchasing cost of the long-distance suppliers (supplier

5 and 6) is the least, nothing is ordered from them because of the high ordering cost and

large variance of the replenishment lead time. Conversely, supplier 1 is selected due to its

low lead time value and variation. Furthermore, supplier 4 is also chosen because of its low

minimum total expected ordering quantity.

The model we built mainly focuses on the expected values for the selected suppliers. It

does not intend to calculate the accurate quantity to make orders from the selected suppliers,

but can indicate the priority to select suppliers. Since our model is based on stochastic
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Table 5.3: Decision-making variables solution

Final selection list Supplier 1 Supplier 3 Supplier 4

Expected total order (xj) (units) 9200 8100 700
Expected ordering time (tj) (days) 46.0 40.5 3.5
Warehouse policy (Qw, Rw) (units of Qr) (23, 7) (21, 20) (12, 5)
Retailer policy (Qr, Rr) (units) (50, 1) (51, 3) (50, -1)
Total profit ($/quarter of a year) C = 148734.6

demands, in the real scenarios, the total order size and order time from selected suppliers

may not necessarily be the expected values calculated in Table 5.3. For instance, according to

the results displayed in this table, supplier 1 and 3 own higher priority to be ordered since the

expected order quantity reaches its upper limit of the capacity. In stochastic demand cases,

we need to purchase from supplier 1 and 3 until the total order size reaches its maximum

value, and the total order size from supplier 4 will depend on the real time demand. Hence,

x4 = 700 is only an expected value, and it implies that supplier 4 is the last choice to choose

when supplier 1 and 3 are available.

Considering the optimal (Q, R) policies of each selected supplier displayed in Table 5.3,

it is not surprising to find out that the retailer’s ordering quantity among different selected

suppliers are very similar. The main reason for this is that the replenishment quantity Qr

affects cycle stock (i.e., inventory that is held to avoid excessive replenishment costs), and the

demand rate, retailer’s fixed ordering cost, and the replenishment lead time at the retailer

are fixed no matter which supplier is chosen. Even the retard time may vary for different

supplier, it only affects safety stock (i.e., inventory held to avoid stockouts), which determines

the reorder point Rr. While for the warehouse’s inventory policy, different suppliers adopt
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Table 5.4: The optimal policy and expected profit based on different demand rate instance

Instance Demand rate Expected ordering quantity Optimal profit CPU time
(λr) (xj) (units) (C) ($) (seconds)

1 10 x1 = 9200, x3 = 8100, x4 = 700 148734.6 3.47
2 15 x1 = 9200, x2 = 9700, x3= 8100 245937.1 3.42
3 20 x1 = 9200, x2 = 10100, x3 = 8100, x4 = 8600 341029.9 3.18
4 25 x1 = 9200, x2 = 10100, x3 = 8100, x4 = 17600 437324.8 3.29
5 30 x1 = 9200, x2 = 10100, x3 = 8100, x4 = 21300, x5=5300 534539.2 4.13

diverse (Q, R) strategies since they face different lead time and fixed ordering cost which

require to maintain different safety stock and cycle stock.

5.3 Demand Rate Analysis

To study the scenarios under different demand rate, we solve four additional problem

instances based on different value of λr, i.e., λr = 15, 20, 25, and 30. In this paragraph, all

the parameters remain the same as the settings in section 5.1 except for the retailer’s demand

rate. The demand rate value and the optimal policy for each instance are summarized in

Table 5.4. It is obvious that the expected profit increases due to the increase of demand. As

the demand rate increases, more suppliers are selected since the lower cost suppliers reach

their maximum capacity. This implies that we should order up to capacities of the suppliers

with lower costs when we selected at least two suppliers as supply partners. This also confirms

the correctness of Proposition 1. Moreover, for all the instances, the long-distance suppliers

own the least priority to be selected even though their unit price is smaller. This indicates

that the demand rate doesn’t influence a lot to the cost structure of the suppliers, and the
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long-distance suppliers here take more system costs which prevent them to be selected. The

table also displays the CPU times to solve the problem for each case. The time is an average

value based on 10 times run. For this case with six potential suppliers, it is possible to solve

the model with the commercial software package in a short amount of time.

Table 5.5 displays the optimal inventory policy in different instances, which directly

corresponds to Table 5.4. Clearly, even if the same suppliers are selected in different

instances, their optimal inventory policies vary a lot. The retailer’s replenishment order

quantity and reorder point increase notably due to the increment of demand. This is

authentic since larger demand requires more cycle stock and safety stock to maintain low

cost. Based on the running instances, it can also be observed that the retailer’s order

quantity in each instance is almost the same among different selected suppliers. However,

the retailer’s reorder point may vary among different supplier, especially for the selection

of long-distance supplier (supplier 5) in instance 5. This is because long-distance supplier

owns larger replenishment lead time variance which needs to hold more safety stock to avoid

stockouts.

To clearly display the changes of (Q, R) policy at the warehouse for different instances,

Figure 5.1 is created to display the (Q, R) policy at the warehouse when supplier 1 and 3

is selected under different instances. Note in this figure, the values of order quantity and

reorder point at the warehouse are based on the units of retailer’s order quantity. It is

undoubted to observe the increasing trend in both the order quantity and reorder point due

to the increment of demands. It can also be inspected that Rw changes more considerable

than Qw.
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Table 5.5: The optimal inventory policy for selected suppliers in different demand rate
instances

Instance Selected suppliers (j) Retailer (Qr, Rr) (units) Warehouse (Qw, Rw) (units of Qr)

1 1 (50, 1) (23, 7)
3 (51, 3) (21, 20)
4 (50, -1) (12, 5)

2 1 (64, 3) (23, 9)
2 (62, 3) (20, 6)
3 (62, 8) (22, 25)

3 1 (71, 7) (25, 12)
2 (70, 8) (21, 8)
3 (73, 13) (23, 30)
4 (71, 5) (12, 9)

4 1 (80, 11) (25, 14)
2 (81, 11) (21, 9)
3 (80, 19) (24, 35)
4 (81, 8) (12, 10)

5 1 (87, 16) (26, 16)
2 (86, 16) (22, 11)
3 (87, 25) (25, 39)
4 (88, 12) (13, 11)
5 (88, 42) (51, 51)

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

W
a

re
h

o
u

se
 i
n

v
en

to
ry

 p
o

li
cy

 

Instance 

Supplier 1- Q Supplier 1- R Supplier 3- Q Supplier 3- R

Figure 5.1: Illustration of the trend for inventory policy at the warehouse when supplier 1
and 3 are selected under different instances
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5.4 Long-distance Supplier Analysis

In this paragraph, we want to analyze the issue when selecting low-cost long-distant suppliers.

In addition to high transportation cost (ordering cost), a long-distance supplier is often

characterized by high delivery lead time and uncertainty. As shown in previous experiments,

high lead time uncertainty results in large safety stock levels so that the expected inventory

level will be high. To study the scenarios when a distant supplier should be selected and

what quantity should be ordered, we conduct the experiments based on parameter changes

in long-distance supplier (price (pj), fixed ordering cost (Oj), mean supplier lead time (µj)

and variance of the delivery lead time (vj) are considered). According to the parameter

settings in section 5.1, we choose one long-distance supplier (supplier 5) to analyze, modify

one parameter once at a time (other parameters remain the same), and want to analyze

the impacts of the parameter on both expected ordering size xj (j = 5) and total expected

revenue C for different values of the demand rate instances (λr = 10, 15, and 20 are adopted

in this paragraph). Since supplier 5 is not chosen in the final decision of these instances,

by doing so, we could examine the threshold value of each parameter to involve this distant

supplier in our final selection.

We first study the scenario when the variance of delivery lead time changes. Figure 5.2

illustrates the changes of expected order quantity of supplier 5 and total expected profit when

its delivery lead time variance varies from 0 to 1.4 under diverse demand rates. Observed in

this figure, one can note that the expected total quantity purchased from the long-distance

supplier decreases with the increasing lead time uncertainty. The figure shows that the
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long-distance supplier should not be selected in some cases, especially when its lead time

is highly uncertain. The right side of figure displays the total expected profit under the

same experimental settings. Clearly, it can be observed that as the variance of long-distance

supplier increases, the expected profit decrease. And when the variance is big enough, the

lead time variance changes will not affect the total expected profit since this long-distance

supplier will not even be chosen.

Keeping variance of lead time constant, Figure 5.3 demonstrates the changes of expected

order quantity and total expected profit when delivery lead time (µ5) varies from 4 to 5.8

under diverse demand rates. Note here the starting point value µ5 = 4 is set due to the

assumption of positive lead time (i.e., when mean and variance of normal distribution are

separately 4 and 1.5, there is less than 0.05% probability that the lead time is negative). As

displayed in this figure, a similar trend can be observed as the one in Figure 5.2, which is

predicable. Comparing the total expected profit values in these two figures, one can note

a lower lead time variance may let us earn more profit than a lower lead time mean. For

instance when demand rate is 20, a low delivery lead time where µ5 = 4 leads to almost

$800000 expected profit, however, a low lead time variance where v5 = 0.4 can result in a

profit more than that.

Keeping variance of lead time constant, it is demonstrated in Figure 5.3 the changes of

expected order quantity and total expected profit when delivery lead time (µ5) varies from

4 to 5.8 under diverse demand rates. Note here the starting point value µ5 = 4 is set due to

the assumption of positive lead time (i.e., when mean and variance of normal distribution

are separately 4 and 1.5, there is less than 0.05% probability that the lead time is negative).
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Figure 5.2: Illustration of the impact of delivery lead time variance for a long-distance
supplier: total order quantity purchased from the distant supplier and the expected profit
decrease with the increasing delivery lead time uncertainty
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Figure 5.3: Illustration of the impact of mean delivery lead time for a long-distance supplier:
total order quantity purchased from the distant supplier and the expected profit decrease
with the increasing mean delivery lead time
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As displayed in this figure, a similar trend can be observed as the one in Figure 5.2, which

is predicable. Comparing the total expected profit values in these two figures, one can note

a lower lead time variance may let us earn more profit than a lower lead time mean. For

instance when demand rate is 20, a low delivery lead time where µ5 = 4 leads to almost

$800,000 expected profit, however, a low lead time variance where v5 = 0.4 can result in a

profit more than that.
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Figure 5.4: Illustration of the impact of fixed ordering cost for a long-distance supplier:
total order quantity purchased from the distant supplier and the expected profit decrease
with the increasing fixed ordering cost
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Figure 5.5: Illustration of the impact of unit price for a long-distance supplier: total
order quantity purchased from the distant supplier and the expected profit decrease with
the increasing unit price
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Chapter 6

Conclusions

In this paper, we study a supplier selection and order allocation problem in a multi-echelon

system under stochastic demand, where a buyer firm that consists of one warehouse and

N identical retailers focuses its attention to analyze both supplier selection decisions and

inventory control policies to optimize the entire system. Capacity, ordering cost, unit price,

holding and backorder cost are considered as the criteria for the supplier selection. A mixed

integer non-linear programming (MINLP) model is proposed to select the best suppliers

and determine a coordinated replenishment inventory policy at each echelon of the supply

chain so that the total expected profit is maximized. To solve the model more efficiently, we

decompose the mathematical model into two sub-models. Our experiments demonstrate the

solvability and the effectiveness of the model. Moreover, we have been interested in some

issues regarding the selection of the long-distance supplier. Thus, some sensitivity analysis

for the long-distance supplier is also conducted.
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There are two limitations for the current work in this paper. First, we have adopted

the no-order-splitting assumption, which requires ordering from a certain supplier for some

continues time span. The reason to make this assumption is mainly due to the different

(Q, R) inventory policy adopted at both the warehouse and retailers for different selected

suppliers. However, observed in our experimental examples in Section 5.3, similar (Q, R)

polices are assigned to the retailer for different suppliers. This implies that it is possible to

apply the order splitting model at the warehouse. Thus, future work may focus on extending

order splitting model at the warehouse and the same ordering policy for the retailer. Second,

to implement the stochastic demand assumption, we mainly focus on calculating the expected

values of the total ordering size and the time. The intention to use these expected values is

not for signing the contract and ordering the computed amount from the selected suppliers,

but for deciding the priorities to select suppliers and estimating the size and time to order

from each supplier. Our model offers more insights to choose suppliers and allocate orders

among the suppliers when considering the integration of both the supplier selection and

inventory control problems in the multi-echelon system under stochastic demand.

There are several directions for the future work. First, as we mentioned above, the order-

splitting model is a good direction to work on. Second, in this paper we assume the (Q, R)

continuous review policy. Future work may consider periodic review system. Moreover, our

model can be extended to consider multiple product and joint replenishment costs. Finally,

since the supplier selection is a typical multi-criteria decision problem, this work could be

extended to multi-objective models where the trade-offs associated with these criteria can

be analyzed.
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