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The identification and confirmation of protein interactions significantly challenges the 

field of systems biology and related bio-computational efforts. The identification of 

protein-protein interactions along with their spatial and temporal localization is useful for 

assigning functional information to proteins. Fluorescence microscopy is an ideal method 

for assessing protein localization and interactions as a number of techniques and reagents 

have been described. Historically, data sets obtained from fluorescence microscopy have 

been analyzed manually, a process that is both time consuming and tedious. The 

development of an automated system that can measure the location and dynamics of 

interacting proteins inside a live cell is of high priority. This paper describes an 

automated image analysis system used to identify an interaction between two proteins of 

interest.  These proteins are fused to either Green Fluorescent Protein (GFP) or DivIVA, 

a bacterial cell division protein that localizes to the cell poles. Upon induction of the 

DivIVA fusion protein, the GFP-fusion protein is recruited to the cell poles if a positive 

interaction occurs.  

 

There were many problems that came into the picture during the development for an 

automated system to identify these positive interactions. There were basic segmentation 



Abstract 
 

 - vii - 

and edge detection problems and the problems caused by inclusion bodies (will be 

discussed in the sections to follow). Different known procedures to obtain thresholds, and 

edges were evaluated and the apt ones for our analysis were implemented.  A proper flow 

of advanced image processing and feature extraction algorithms was laid out. These steps 

were used to analyze the datasets of acquired images. Various methods applied are 

discussed in detail. The experiments conducted along with the results generated are 

discussed extensively. A statistical feature set used to quantify the image based 

information and to aid in the determination of a positive interaction is developed.   

  

Various image processing and feature extraction algorithms used to analyze fluorescence 

microscopic images were also applied to Atomic force microscopic images with a few 

modifications. There was a basic problem of uneven background noise and this was 

removed using a common procedure that is used to remove uneven illumination in DIC 

images. These AFM images were analyzed and quantized using numerical descriptors 

defined during the analysis of fluorescent microscopic images. 
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Introduction 
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This thesis is the result of work in the field of quantitative automated image analysis of 

fluorescence and atomic force microscopic images. Focus was channeled towards 

development and implementation of robust algorithms for quantitative feature extraction 

enabling the automated image analysis of various cells and their structure.  

1.1. Motivation 

Knowledge of the cell its structure and its functionality forms the basic motivation of the 

field of biotechnology. A “proteome” is defined as the total set of proteins expressed in a 

given cell at a given time and ‘Proteomics’ refers to the science and the process of 

analyzing and cataloging all the proteins encoded by a genome. Functional and location 

proteomics with their high content information is revolutionizing current research in the 

post genomic era [Dav 04]. A Protein is characterized by its structure, sequence, 

expression level, activity and location. The location of a protein in particular is pretty 
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useful in understanding its function. An area of protein characterization that is still in its 

fledgling stages but likely to be extremely useful in the post-genomic era is that of 

protein sub-cellular localization that essentially describes the location within a particular 

cell type where one finds a given protein. The organelle where the protein is located gives 

a context for it to carry out its role. Each organelle provides a different biochemical 

environment that influences the associations that a protein may form and the reactions 

that it may carry out. Thus the knowledge of such data could be invaluable to us. 

 

The identification of protein-protein interactions along with spatial and temporal 

localization data is vital for assigning functional information to proteins. There are 

greater than 30,000 genes of the human genome and they are speculated to give rise to 

about 1x106 proteins through a series of post-translational modifications and gene 

splicing mechanisms [Pen 03]. Majority of them are expected to operate in concert with 

other proteins in complexes and networks to orchestrate the myriad of processes that 

impact cellular structure and function. Implications of these studies are based on the 

premise that the function of unknown proteins may be discovered if captured through 

their interaction with a known protein target of known function. 

 

Undertaking a comprehensive study of protein localization and interactions typically 

involves the analysis of huge datasets of images. Historically, these datasets have been 

analyzed manually, a process that is found to be highly biased, time consuming and 
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inconsistent. Thus the explosive need for automated approaches to experimentally 

identify positive protein-protein interactions and localizations is exposed. The motivation 

is thus to develop software with generic algorithms to automatically quantify and analyze 

image based information. 

1.2. Objective  

The objective of work leading to this thesis was to automate the process of identifying 

positive interactions between two proteins of interest in fluorescence microscopic images. 

These proteins are fused to either Green fluorescent protein (GFP) or DivIVA, a bacterial 

cell division protein that localizes to the cell poles [Din 02] . Upon induction of the 

DivIVA fusion protein, the GFP-fusion protein is recruited to the cell poles if a positive 

interaction occurs. This included the use of existing algorithms in image analysis and 

when required, the development of a sequential combination of techniques to obtain 

satisfying results. 

 

A significant part of the algorithm development was devoted to various preprocessing 

steps used to define cell boundaries and segment them from background. This appended 

with advanced feature extracting algorithms were used to assemble a complete chain of 

processing steps to obtain an automated system capable of identify positive protein 

interactions in fluorescent microscopic images. The same algorithms with minor 
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modifications were used to extract quantitative attributes of a specimen under study from 

atomic force microscopy images. 

1.3. Contribution 

The current thesis works contributions are focused in the field of automated image 

analyses for fluorescent microscopic images and atomic force microscopic images. 

Contributions pertaining to the specific research are as follows: 

• Using the Differential interface contrast (DIC) image to define cell contours and 

corresponding localized image enhancement of the fluorescence image. 

• Successful statistical feature extraction. 

• Identify and quantify positive protein localization spots. 

• Extending the same algorithm with a few modifications to images from other 

modalities (AFM). 

• A logical way of avoiding the problem of inclusion bodies in automating the 

process for this specific case. 

 

Combinations of various known techniques are employed to obtain image based 

statistical parameters attributing the specimen under study.  
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1.4. Thesis outline  

The thesis is organized as follows: chapter 1 consists of the basic objective, motivation 

and contribution of this thesis. Chapter 2 gives a brief background for the work done with 

a focus on the basic biology required to understand the work and the different types of 

microscopy and some amount of detail on digital image analysis. It is followed by 

chapter 3 that describes the various method employed in the work and the materials used 

for the same (will elaborate after writing the chapter). Chapter 4 contains the results 

observed during various stages of the work and is followed by chapter 5 giving 

concluding remarks that includes the discussion of results and future work in the field. 
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Background 
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2.1. The cell   

The structure and composition of living organisms vary vastly, from a single celled 

bacterium to complex multi-cellular organisms with differentiated cell types and 

interconnected organ systems. There are myriad systems that act in concert with each 

other to produce and sustain a living organism.  Because cells are the ‘basic units of life’, 

the study of cells, cytology, can be considered one of the most important areas of 

biological research. Though we have known about cells for over three centuries, we are 

still discovering new structures and molecules in them. The knowledge of these various 

organelles and their respective functions has been the cynosure of much research in the 

last few decades.  
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Figure 2.1. An animation of the cell [Hus 95] 

 

Figure 2.1 illustrates the various parts of a cell. Information required by a living cell to 

exist resides inside the “nucleus” of every cell. These instructions tell the cell what role it 

is to play in the body. They are in the form of a molecule called the De-oxyribonucleic 

acid (DNA) that acts like a blueprint with a set of instructions. A DNA strand is made of 

letters which form words and which in turn form sentences. Such sentences are “genes”. 

Genes are instruction manuals for the body as they contain the directions for building all 

the proteins that essentially make our body function. Study of genes, Genomics, has 

gained high prominence as it allows a means of constructing biological pathways by 

integrating information in order to identify key components within those pathways. Each 
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DNA fragment is one gene and each gene has a specific instruction to carry so as to 

produce a protein. 

Proteins are responsible for every function of a cell and are very small and are usually 

difficult to see even with the best microscopes around. Specific machinery inside the cell 

reads a gene and creates a ribonucleic acid (RNA) every time there is a need to produce a 

protein. RNA moves from nucleus to cytoplasm and where the protein manufacturing 

machinery - Ribosome, reads the message and produces a protein as per the specifications 

sent out by the gene. Thus to make one protein, we need a number of other highly 

specialized proteins and thus the humungous number of proteins. 

The identification of protein-protein interactions along with spatial and temporal 

localization data is vital for assigning functional information to proteins. There are 

greater than 30,000 genes of the human genome and they are speculated to give rise to 

about 1x106 proteins through a series of post-translational modifications and gene 

splicing mechanisms [Pen 03]. Majority of them are expected to operate in concert with 

other proteins in complexes and networks to orchestrate the myriad of processes that 

impact cellular structure and function. Implications of these studies are based on the 

premise that the function of unknown proteins may be discovered if captured through 

their interaction with a known protein target of known function. 
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2.2. Microscopy 

2.2.1. Fluorescence microscopy 

The fluorescence emitted when a cell exposed to fluorescent dyes tagged to biologically 

active contents of it, like the proteins, is a very handy tool to observe and analyze various 

reactions and interactions. This is called fluorescence microscopy, and the study of 

protein interactions is a field where this procedure becomes very useful and is gaining a 

high priority [Dav 04] . 

 

The first compound light microscope, invented by Zacharias Jansen in 1595, has gone 

through enormous evolution. The modern light microscope is a versatile instrument for 

microscopic analysis. The construction of the first epi-illuminated fluorescence 

microscope by Ploem, made the light microscope a useful instrument for fluorescence 

microscopy. Figure 2.2 illustrates a schematic of a wide-field fluorescence microscope. 

 

When fluorescent molecules absorb a photon of a specific energy for an electron in a 

given orbital, the electron rises to a higher energy level which is a highly unstable state 

for an electron. Thus, it tries to come back to the ground state by releasing energy in the 

form of light and heat. This emitted light is fluorescence. In this procedure, cells are 

tagged with a fluorescent dye like the Green Fluorescent Protein (GFP) and then 

illuminated with filtered light. Light emitted from the dye is viewed using a filter. Thus,  
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Figure 2.2. Schematic diagram of conventional wide-field fluorescence 
microscope [Kem 99] 

 

specific parts of a cell can be viewed by tagging them with specific fluorescent dyes 

allowing for a quantitative evaluation of multiple parts simultaneously. In epi-

illumination, the illumination of the sample and the detection of its emitted fluorescence 

light are done using the same objective lens. This strongly reduces penetration of 

illumination light in the detection light path, which makes the detection of the weak 

fluorescence light feasible. A strong characteristic of the epi-fluorescence microscope is 

its wide-field illumination, which enables the simultaneous imaging of the entire focal 

plane. Modern scientific grade fluorescence microscopes are excellent tools for acquiring 

microscopic images of two dimensional samples with a discriminating power of well 

below one micrometer. The wide-field illumination turns out to be a major drawback of 
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the microscope. Since the whole sample is illuminated simultaneously, it will not only 

excite fluophores in the focal plane but also in the out-of-focus regions of the sample as 

well. When a fluorescence sample is illuminated with light of the proper wavelength (in 

the absorption spectrum of the fluorescence molecules), it emits light of a longer 

wavelength. This emitted light can then be detected using, for example, a CCD camera. A 

camera will acquire a two-dimensional image of the emitted light intensity. The 

acquisition of both the in-focus and out-of-focus light, results in poor resolution of a 

conventional wide-field fluorescence microscope along the optical axis which, can be 

overcome by various de-convolution techniques [Nee 03]. 

 

2.2.2. Atomic force microscopy 

AFM has found extensive use in many areas of cell and molecular biology as it is one of 

the most powerful tools for determining the surface topology of bio-molecules at a sub-

nanometer resolution [Jur 96]. Unlike X-ray crystallography and electron microscopy 

(EM), the AFM allows bio-molecules to be imaged not only under physiological 

conditions, but also while biological processes are at work. AFM operates by measuring 

attractive or repulsive forces between a tip and the sample [Bin 86]. In its repulsive 

"contact" mode, the instrument lightly touches a tip at the end of a leaf spring or 

"cantilever" to the sample. 
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Figure 2.3.  Atomic force microscope schematic [Mic 03] 

 

As a raster-scan drags the tip over the sample, some sort of detection apparatus measures 

the vertical deflection of the cantilever, which indicates the local sample height. Thus, in 

contact mode the AFM measures hard-sphere repulsion forces between the tip and the 

sample. Figure 2.3 illustrates a schematic of an Atomic force microscope. 

 

In non-contact mode, the AFM derives topographic images from measurements of 

attractive forces; the tip does not touch the sample [Alb 91]. An AFM can achieve a 

resolution of 10 pm, and unlike electron microscopes, can image samples in air and under 

liquids. 
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2.3. Literature review - automated sub-cellular localization  

The technique used to develop applications such as sub-cellular protein localization of 

late is drawn from the fields of fluorescence microscopy, pattern recognition and machine 

learning. The goal is to develop methods that allow for the numerical description and 

subsequent classification of the patterns found in fluorescent light microscope images of 

cells. Such images are obtained by labeling one or more sub-cellular structures with 

fluorescent dyes and then collecting images of the resulting pattern of fluorescence using 

a microscope, which in turn leads to the problem of describing these patterns in a way 

that is acquiescent to further processing [Bol 97]. 

 

There are quite a few advantages of automated sub-cellular localization. The most 

important being that the quantitative description of images facilitates standardization that 

was not previously possible. An immediate comparison of a new pattern with many 

existing patterns from the database so constructed could be of immense potential. The 

same goes with studying protein-protein interactions. We would be in a better position to 

obtain an insight into the complex protein interaction and localization mechanisms with 

such a system at our disposal. 

 

Initially, Zernike moments [Zer 34] and Haralick texture [Har 79] features were used to 

quantify images, as they were invariant to translation and rotation of the cells within the 

filed of view. They would also serve as a completely general set of descriptors and allow 
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adding additional image classes without redesigning the basic feature set. The 

classification system then used with the features was a classification tree, as implemented 

in S-Plus (Mathsoft Seattle, WA USA) tree() function. This implementation was based on 

Classification and Regression Trees (CART) and the second classifier was back 

propagation neural network and was implemented using PDP++. The image feature data 

were separated into distinct training and test sets so as to assess the performance of the 

two classifiers. The classification tree had an accuracy of 69% [Jur 96] [Bol 97] and the 

back propagation network was accurate to about 84% [Jur 96] [Bol 97]. Chinese Hamster 

Ovary (CHO) cells were used for experiments in [Jur 96] [Bol 99]. 

 

When the above procedure was applied to a larger number of patterns in HeLa cells, 

many of the patterns could not be distinguished. Then in [Bol 01], a set of new features 

were added to the existing list to address the challenge of distinguishing all major classes 

of localization patterns. Various image processing routines were carried out using various 

MATLAB functions but the single cells still are isolated by manually defined polygons. 

The new feature set that was added comprised of morphological and statistical features. 

Classification was carried out by using back-propagation neural networks (BPNN) using 

the NETLAB (http://www.ncrg.aston.ac.uk/) scripts for MATLAB. The mean and 

standard deviation of the training data were used to normalize the train and test sets. One 

of the most vital steps in pattern recognition is an appropriate choice of features to 

represent an image. In an attempt to optimize the same, a subset of features was selected 
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from the available ones by employing the stepwise discriminant analysis [Jen 77] using 

the STEPDISC function of SAS (SAS Institute, Cary, NC, USA). Neural networks were 

chosen owing to the failure of other approaches including linear discriminant analysis, 

decision trees, and k-nearest neighbor classifiers. The classifier so described in [Bol 01] 

was able to correctly recognize 83% of previously unseen cells and 98% accuracy on 

homogeneously prepared cells. 

 

Later, in [Hua 02], a pattern analysis method to compare sets of fluorescence microscope 

images was developed essentially to evaluate the differences in protein sub-cellular 

distribution in an objective fashion. They presented a method for quantifying changes in 

sub-cellular protein distributions and applied a standard statistical test to determine the 

significance of those changes. In that work, the same set of features discussed previously 

were used to compare two sets of images (e.g. before and after treatment with a drug) 

with the task being to determine if these matrices were statistically different. A 

multivariate statistical approach called the Hotelling T2-test was used for the above 

defined purpose. The system so developed in [Roq 02], was able to distinguish between 

two sets of images that were previously indistinguishable by visual analysis and also 

could identify situations in which two patters showing the same distribution. 

 

A Protein Sub-cellular Image Database (PSLID) was described in13 that collects and 

structures 2-D through 5-D fluorescence microscope images, annotations, and derived 
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features in a relational schema. Image interpretation was achieved using Sub-cellular 

Location Features that have previously shown capable of recognizing all major sub-

cellular structures and of resolving patterns that cannot be distinguished by eye. The 

paper used previously devised numerical descriptors to compare and classify protein 

patterns. The previous work was incorporated into PSLID 

(http://murphylab.web.cmu.edu/) to provide a comprehensive application incorporating 

relational database machine learning and statistical inference. It was an example of 

applying data mining on top of a relational database and achieving query interpretation. 

 

An improved set of numeric features for describing images that are fairly robust to image 

intensity binning and spatial resolution was described in [Mur 03]. The features were 

used to train neural networks and were validated by the fact that they can accurately 

recognize all major sub-cellular patterns with accuracy higher than those reported earlier. 

The features were subsequently used to create a Sub-cellular location trees that group 

similar proteins and provide a systematic framework for describing the same. 

 

Results obtained for multi-cell images were described in [Hua 04], thus suggesting a 

classification technique for sub-cellular patterns in tissue images. Since texture features 

essentially represent repetitive local patterns in an image, they are invariant of the 

number of cells and should also work for partial cells.  
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2.4. Image analysis 

The human visual system is quite complicated as it has a continuous transfer of 

information between the system itself and the brain. An image captured by the eye is sent 

to the brain for analyzing the same. The brain analyzes and interprets data from the 

image. The field of machine vision deals with the development of a system to replicate 

the above described one. The visual system can make excellent qualitative and 

quantitative judgments from a field of view. To develop a system with similar attributes 

along with actual numerical descriptors accentuating the quantitative judgments made by 

it is the basic driving force for the work described in this thesis. For example, a human 

visual system can count the number of cells in a given microscopic image and probably 

identify positive protein interactions with some amount of pre determined knowledge. 

How do we make a machine do the same for us? 

 

A digital image represents an image as an array of numbers. It could be a two-

dimensional array like an ordinary gray scale picture, or a three-dimensional array like a 

stack of images combined together to give volume information.  There can be a four-

dimensional image with a time series of images with the fourth dimension being the time 

itself. There are images that represent wavelengths like the color image that comprises of 

three different images in three channels: the red, green and the blue channel, 

corresponding to the fact that the human eye retina has three cones to sense color. 
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Though higher dimensions are not common, the use of three-dimensional images has 

become quite a common feature in the field of fluorescence microscopy.  

 

Each element of a 2D array is called a ‘pixel’ (short form for picture element) and the 

corresponding terminology for a 3D image is a ‘voxel’ (volume picture element). The 

process of manipulating an image is called image processing where the input image is 

changed to suit the needs for a particular analysis. The basic difference between an image 

processing system and an image analyzing one is in their outputs as the former gives out 

an improved image and the latter has a set of numerical data attributing the input image.  

There are various image analysis problems but often, most of them share common 

formulations and solutions although the specific algorithm used maybe quite different. 

The methodology employed remains mostly consistent, including in general six 

processing stages: sample preparation, image acquisition, image pre-processing, image 

segmentation, feature extraction, pattern classification, and evaluation.   
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This chapter gives an overview of the various methods employed throughout the work 

leading to this thesis. The basic inevitable steps for any image analytic system include, 

sample preparation, image acquisition, image restoration / image pre-processing, 

segmentation, feature extraction and pattern recognition.  Figure 3.1 shows different 

blocks of an automated image analytic system. 

 

3.1. Sample preparation and image acquisition 

Careful planning and selection of imaging modalities and staining methods can 

significantly reduce complexity of the image analysis procedure that follows. Procedures 

that could avoid redundant or disturbing background can be very vital. 
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Figure 3.1. A flow chart for automated image analysis 
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Most of the work in this thesis was done on fluorescent images of Escherichia coli. 

Escherichia coli strain BL21-DE3 (Invitrogen, Carlsbad, CO) was co-transformed with 

two compatible vectors encoding pairs of potentially interacting proteins from R. 

palustris fused to either DivIVA or green fluorescent protein (GFP). The R. palustris gene 

products tested in this study includes GroES1 (RPA1141), GroES2 (RPA2165), GroEL1 

(RPA1140), and GroEL2 (RPA2164) [Lar 04].  For this assay, expression of the DivIVA 

fusion protein is tightly regulated by an arabinose inducible promoter [Guz 95] and the 

GFP fusion protein is expressed constitutively from a T7 promoter. Co-transformed cells 

were grown for at least 6 hours at 30˚C or 37˚C in LB medium containing 50 µg/ml 

ampicillin and 15 µg/ml chloramphenical to maintain plasmid selection and then imaged 

using a Leica SP2 confocal laser scanning microscope to determine the localization 

pattern of the GFP-fusion protein. After assessment of the baseline pattern of GFP 

localization, arabinose was added to the medium to a final concentration of 0.2% to 

induce expression of the DivIVA-fusion protein. The cells were incubated for an 

additional hour at 30˚C or 37˚C.  Following induction of the DivIVA-fusion protein, the 

cells were imaged again to determine if a change in the pattern of GFP-fusion protein 

localization occurred.  If the GFP-fusion protein is recruited to the cell poles following 

expression of the DivIVA-fusion protein, the data is interpreted as showing a positive 

interaction between the two proteins of interest. Images were acquired using Leica 

Confocal Software (LCS). 
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To stain cell membranes, E. coli cells were grown in liquid LB medium as described 

above. Approximately 15 minutes prior to harvesting the cells, 200 ng/ml FM5-95 

(Molecular Probes, Eugene, OR) was added directly to the culture to stain the 

membranes.  The cells were then harvested by centrifugation, washed two times with 

phosphate buffered saline, and prepared for microscopy. A set of fluorescent and its 

corresponding differential interference contrast (DIC) images are then acquired. 

 

3.2. Image preprocessing / restoration 

This step is where we tend to employ various image processing algorithms to help us 

interpret the images acquired in a better fashion. These steps try and reduce imperfections 

caused during image acquisition procedures leaving a better looking image for further 

segmentation procedures whose complexity is pretty much proportional to the amount of 

distortions or noise present in the image. Figure 3.2 illustrates a flow chart with basic 

image processing steps. 

 

Preprocessing steps typically include simple yet effective techniques such as smoothing 

and histogram based processing (e.g. Histogram equalization), or complex algorithms 

such as de-convolution to reduce the effect of smoothing. Background subtraction is 

usually a vital step of this procedure as it helps narrowing down the region of interest 

(ROI). 
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Figure 3.2. Flow chart describing the various image processing algorithms 
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The algorithm implemented in this thesis uses processed and consequently labeled DIC 

images to identify ROI in the fluorescent images. Since the DIC images are essentially 

used to mark ROI (area corresponding to cells) in fluorescent images, we needed to 

define cell boundaries in it. From observation, it was evident that the DIC images were 

slightly blurred and the gradients along cell boundaries needed some amount of 

enhancement in order to extract their boundaries using segmentation procedures. For this 

purpose, the DIC images underwent a de-convolution followed by a histogram 

equalization procedure.  

 

De-convolution is a procedure to recover an image from its degraded observation by 

assuming a priori knowledge of the type of degradation and blind de-convolution obtains 

and estimate of the original image without assuming and prior knowledge of the method 

of degradation. This by itself is a huge area of research and has many complex algorithms 

dedicated to it [Nee 04]. Since this de-convolution step in our algorithm is used to just 

enhance the edge based information in the images, a Lucy-Richardson [Luc 79] [Ric 72] 

filter provided by MATLAB was used over more complex approaches. This de-

convolution restores an image that was degraded by convolution with a point-spread 

function (PSF). The type of degradation occurred during image acquisition from the 

microscope is assumed to a particular value and the process of de-convolution is carried 

out. The algorithm is based on maximizing the likelihood of the de-convolved resultant 
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image being an instance of the original image under Poisson statistics. In our case, the 

PSF is assumed to be Gaussian with a mask size of 3-by-3 and a sigma of 0.5. 

De-convolution was followed by a contrast adjusting technique, popularly known as 

histogram equalization. Though simple, it could lead to interesting results in many cases. 

It employs a monotonic, non-linear mapping that reassigns intensity values of pixels in 

the input image such that the output image contains a uniform distribution of intensities. 

This, results in a flat histogram with the dynamic range of grayscale intensities stretched 

over the entire spectrum of 0-255 for an 8-bit image. Thus the small intensity difference 

along the boundaries is enhanced and made obvious. The process of histogram 

equalization is illustrated in Figure 3.3. 

 

3.3. Image segmentation 

The segmentation problem has been present since the beginning of image analysis, where 

one tries to find object boundaries within an image. Segmentation in image processing is 

considered to be one of the most important and also one of the most difficult tasks. In this 

section we describe in detail, some of the methods considered during our work and 

discuss briefly a few other methods that are pertinent to Cytometry. Segmentation 

techniques can be classified into region-based and edge-based ones where edge-based 

methods try and connect boundaries or edges of objects to create enclosed regions and 

region-based methods find connected regions of foreground and split these up into  



Materials and Methods 
 

 - 26 - 

 

Figure 3.3. Histogram equalization  

  

 

individual objects. Segmentation is basically the act of separating an image into 

foreground and background, where the edge-based methods trace a border between the 

two and the region based ones try to find a property that separates the two in a well-

behaved manner. A concert of edge-based and region-based methods can be aptly applied 

in some cases to obtain good segmentation results. The imaging conditions and the 

staining methods employed could play a vital role in selecting a segmentation technique 

thus making the ‘optimum method’, highly image dependent.  
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Since the DIC images have a high contrast along the cell boundaries, edge-based methods 

are used to segment cells from the background and since the protein localization spots 

within fluorescent images display a significant difference from their background, region-

based segmentation is applied. Images with fuzzy borders but significantly varying 

objects and background, divert our attention towards a region-based segmentation 

algorithm and thresholding is one such application. 

 

3.3.1. Thresholding  

A simple thresholding operation can most of the times achieve this separation of an 

image into foreground and background. Despite (or perhaps, due to) its simplicity, 

thresholding can be a very powerful method to separate foreground from background but 

the choice of the threshold itself remains a challenge. In the simplest case everything in 

the image that is brighter or darker than the threshold belongs to the object and the rest 

belongs to the background. This is called a global threshold; however, the use of local 

thresholds is typically more sensitive to noise. Any feature, for example, color, texture or 

shape, that essentially separates the field of view into foreground and background can be 

employed to perform the function of thresholding. 

There are quite plenty of methods that can help us decide on a specific threshold, none of 

them being perfect in all circumstances. There are the popular histogram-based methods 

[Ros 83] [Sez 85], but other methods incorporating spatial information[Pal 89] and 

various other parameters [Kap 85] [Tsa 85] of the image are also quite common. The 
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most popular ways to threshold an image is to find a minimum in the histogram that 

corresponds to the most stable point. That is, moving the threshold up or down will affect 

a minimum number of pixels at that point. This is apt when there is just one global 

minima in the histogram of an image but problems galore in the presence of more than 

one minima or if there is no significant minimum (uni-modal). The problem of more than 

one minimum can be solved in a relatively easier fashion by iterative smoothing until 

only one minimum remains or to directly pick the deepest minimum in some sense. The 

second problem is much more difficult to solve with the use of different transformations 

applied to the data in such a way that the histogram is no longer uni-modal, but this 

method also increases the instability of the threshold point. There are other common 

methods as that of Otsu [Ots 79] or the equivalent iterative version proposed by Ridler 

and Calvard [Rid 78]. These methods split the histogram into two parts, so that the 

threshold is located in the middle between the means of the two classes. This works well 

if the distribution is made up of two classes of equal variance which usually does not 

happen that often. But in our case as the de-noised fluorescence image contains two 

distinct peaks (background (0) and GFP), the algorithm works pretty well and thus has 

been employed to obtain corresponding binary threshold images (Figure 3.4). 

 

3.3.2. Edge based methods 

There are various edge-based segmentation techniques that have been proposed and like 

the thresholding algorithms, none is optimum for all kinds of images. One such edge  
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a. 

 

b. 

 

Figure 3.4.  De-noised GFP image and its histogram 

a. De-noised GFP image  b. Histogram (observe the background is made zero) and fore ground is the 
remaining pixels 

 

detectors is the Canny edge detector [Can 86]. It initially identifies candidate edge pixels 

through a set of edge-detection criteria; the image is convolved with two square masks  

(highpass filter), producing estimates of the horizontal and vertical components of the 

brightness gradient at every pixel. The intensity gradient at each pixel location can then 

be estimated by taking the linear combination of these directional values, providing an 

estimated magnitude and direction. For all pixels, “non-maximum suppression'' based on 

the gradient magnitude is performed by exploring in the direction of steepest gradient. A 

pixel is kept as a possible edge point only if it has a larger gradient than its neighbors 

located in the direction closest to that of the gradient, and than its neighbors located in the 

opposite direction. The remaining local maxima belong to one-pixel-wide edge segments. 



Materials and Methods 
 

 - 30 - 

Thresholding based on gradient magnitude is then performed on these points. Any point 

above a high threshold is kept, as well as any segment connected to it which consists of 

points above a lower threshold, reducing the probability of subdividing a segment whose 

magnitude fluctuates near the high threshold. A Canny edge detector is used to identify 

the edges of individual cells in our algorithm.  

 

Edge-based methods are built on differences or derivatives, in the image thus making 

them more sensitive to noise. A purely edge-based method faces the problem of 

connecting edges to form connected boundary of objects and thus is often combined with 

region based methods, to distinguish between the object and the background.  

Another method of segmentation starts with connected edges and then try to find their 

correct position, as is done, e.g., when using snakes [Kas 88] or active shape models [Coo 

95]. The time complexity of these segmentation algorithms is a primary factor in deciding 

to opt for the apt one and it is the main reason why we did not pursue with iteratively 

refined active shape models or active contours, which tend to be orders of magnitude 

slower than the more direct methods that we have applied. 

 

3.3.3. Connected component labeling  

Once the foreground has been separated from the background, the next step in 

segmentation is that of object identification or labeling the region of interest (ROI). But 
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before this, the image foreground needs to be processed so as to avoid stray pixels from 

getting labeled as individual objects and the contours have to be smoothened.  

 

Morphological operators 

Morphology is an image processing technique based on shapes of objects observed in an 

image. The value of each pixel in the output image is based on a comparison of the 

corresponding pixel in the input image with its neighbors. The size and shape of the 

neighborhood is defined as a structuring element. This can take many different shapes, 

e.g. disk, diamond, rectangle, line, etc. This structuring element can be used to construct 

a morphological operation that is sensitive to its specific shape and size in the input 

image. There are a number of operations that are used. A few of them are erosion, 

dilation, opening, closing, etc.  

 

Erosion: The output pixel value is determined as the minimum of all the pixels lying in 

the neighborhood (defined by the structuring element) of the input pixel in the input 

image. That is, in a binary image if any of the pixels in the defined neighborhood of the 

input pixel is 0, the output pixel value is set to 0. It is essentially computed by taking the 

minimum of a set of differences.  

 

Dilation: The output pixel value is determined as the maximum of all the pixels lying in 

the neighborhood (defined by the structuring element) of the input pixel in the input 
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image. That is, in a binary image if any of the pixels in the defined neighborhood of the 

input pixel is 1, the output pixel value is set to 1. It is basically computed by taking the 

maximum of a set of sums. 

Erosion and dilation are dual operators but in general are not the inverse operation of 

each other.  

 

Opening and closing: As can be understood from Figure 3.5, erosion shrinks and image 

and dilation expands the same. The process of opening or closing and image are used to 

smooth object contours, but in different approaches. Opening is basically defined as the 

dilation of an eroded function (image in our case) and it tends to smooth the object 

contour by breaking down narrow isthmuses and eliminates thin protrusion. The closing 

operation is basically defined as the erosion of a dilated function and tends to fuse narrow 

breaks, long thin gulfs and typically fills gaps in the contour. All these operations are 

again based on the neighborhood defined by the structuring element.  

 

Experiments with these morphological operators and the obtained results are illustrated in 

Figure 3.5. The operation of closing is used to complete the cell contours and these are 

filled using a binary fill option in MATLAB. This binary image is then labeled using a 

labeling function provided by MATLAB as bwlabel [Har 92] that tags independent 

groups of objects in the image with a unique label. This works on the principle of 

neighborhood similar to the region growing technique, as it tags the neighboring (4 or 8  
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Figure 3.5. Morphological operations 

a. Given input image  b. Structuring element (disk radius = 3) c. Erode operation
 d. Dilate operation  e. Closing operation f. Opening operation 

1 

Origin a. b. 

c. d. 

 
f. 

 
e. 



Materials and Methods 
 

 - 34 - 

neighborhood) pixels with the same label. A fresh label is assigned to the next set of 

neighbors while scanning the entire image. The morphological operators are also used to 

improve the de-noised GFP image. The GFP image often contains background noise 

(Figure 3.6.a), which can be removed by considering just the area occupied by the cell 

(Figure 3.6.b). This is obtained from the corresponding labeled DIC image as explained 

above. Now, the fluorescent image is devoid of any background noise and an automated 

global threshold described above is applied on the de-noised fluorescence image to obtain 

its binary image. The same set of morphological operators of opening and closing were 

used to remove any speckle noise that might be present in the de-noised, binary GFP 

image. This binary fluorescent image was then subsequently labeled to identify 

localization spots as positive objects. 

 

 
a. 

 

b. 

 

Figure 3.6.  GFP image de-noising 

a. GFP fluorescence image before De-noising  b. GFP fluorescence image after De-noising 
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3.4. Feature extraction 

A list of relevant features that can be obtained from fluorescence microscopic images of 

cells is described in [chap 2 ref 9]. Features relevant to this study were selected and 

include:  

• Number of cells in an image - This is calculated by counting the number of 

labels obtained from the DIC image using the function bwlabel provided in 

MATLAB.   

• Area occupied by individual cells - This is calculated by counting the number of 

pixels under each filled contour label. 

• Perimeter of individual cells - This is calculated by counting the number of 

pixels under each edge label. 

• Diameter of individual cells - Diameter is calculated as the value of the greatest 

eccentricity, i.e. longest distance between any two points in an edge image as 

shown in Figure 3.7. 

• Roundness factor - This feature quantifies the shape of an object (the cell) with 

respect to a circle. It is calculated as follows, 

( ) π42 −areaperimeter  
………  (1) 

 

• Center of gravity (COG) of cells and center of fluorescence (COF) of GFP 

localization - These features use a common equation stated as follows, 
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Figure 3.7. Diameter 
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where i is the cell count, x and y are the coordinates for COG of the object (in our 

case, a labeled cell), I i(r,c) is the image intensity at the location (r,c) and Ai is the 

area of the i th cell. These are used to localize fluorescence within the cell. 

• Distance of GFP localization regions from the COG of the cell - This feature is 

obtained by calculating the Euclidean distance between the COG and COF’s 

within the cell which provides us with another qualitative measurement with 

respect to the orientation of the GFP-fusion protein localization sites within the 

cell. 

• Percentage area occupied by protein clusters within each cell - This is 

calculated from the ratio of areas of GFP-fusion protein localization sites within 

a cell and that of the cell itself.  It is given as follows, 

cell  theofArea 

 cella   withinsites onlocalizati GFP ofArea 
occupancy area  Percentage =  

P Q 
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• Number of regions of GFP-fusion protein localization within each cell - This is 

the feature that quantifies the success of the co-localization. It is extracted by 

treating each cell as an individual entity and labeling the sites of GFP-fusion 

protein localization within it. This gives the number of localization sites within 

each cell. Ideally, this number would be 2 for our test system. The possibility of 

other values is discussed in the next section.  

• Percentage of cells with desired localization regions within an image - This 

feature calculates the percentage of cells that display the desired GFP-fusion 

protein localization pattern using the number of cells, the number of 

localization sites within each cell, and their respective distances from the center 

of gravity of the cell to determine the result. 

 

 

3.5. Pattern recognition 

3.5.1. Positive localization spots 

This is an integral part of an automated image analysis system, where features extracted 

by using the above procedures are put to use to identify patterns. The pattern pertinent to 

the current experiment is observing two localization spots, one at each pole of the cell. 

This is the ideal case and should be identified as positive localization. A third localization 

spot at the centre of the cell is observed during the process of cleavage of the cell and this 

has to be considered as a positive interaction too. This simple pattern can be marred by 
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confusion when more than two or three localization spots are identified within the 

boundaries of a single object (cell or cells??) at different orientations.  

The task is thus to identify the number of localization spots and their location within the 

cell. The case of two localization spots is easily identified as a positive interaction, but in 

the case of three localization spots, there is some amount of ambiguity. Three localization 

spots within a cell can illustrate that the cell is undergoing the process of cleavage and 

can be considered as a positive interaction or there could be more than one cell in the 

labeled object overlapping each other or there could be a possibility of the cell being out 

of focus during image acquisition procedure. Thus, additional information supporting the 

decision of a positive or a negative interaction has to be obtained. Upon observation, it 

was found that cells that undergo the process of cleavage tend to have a higher roundness 

factor as compared to the normal ones. This criterion was used to ascertain the presence 

of a positive interaction in the case of 3 identified localization spots.  

Distance from the center of cell t the centre of GFP localization spots was used as a 

metric to identify location of these spots within the cell.  

 

Number of regions of GFP-fusion protein localization within each cell is obtained by 

treating each cell as an individual entity and labeling the sites of GFP-fusion protein 

localization within it. This gives the number of localization sites within each cell. As 

discussed above, ideally this number would be 2 for our test system.  
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3.5.2. Inclusion bodies1 

The presence of inclusion bodies in the sample is an experimental problem that can be 

inherent to the biological system under study. However, it acts as a hurdle to automating 

the process of image analyses. A unique, logical method of avoiding the problem of 

inclusion bodies due to GFP-fusion protein over expression in bacterial cells is 

implemented here. It is achieved by identifying the presence of inclusion bodies in the 

sample before induction of the DivIVA-fusion protein by acquiring a set of images (DIC 

and fluorescence) before induction. These images go through the same set of image pre-

processing, segmentation and feature extraction procedures discussed above. The 

percentage area occupied by the localized fluorescence within each cell is calculated, 

which after experimentation and observation was found to be less than 60% for images 

with inclusion bodies. If inclusion bodies are present before induction of the DivIVA- 

fusion protein, the sample is not analyzed further. The flow of procedure followed to test 

for the presence of inclusion bodes is given in Figure 3.8.Sample test images with and 

without inclusion bodies are shown in Figure 3.9. 

 

 

 

 

 

                                                 
1 Intracellular protein aggregates that are usually observed in bacteria upon protein over expression. 
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Figure 3.8. Chart describing the flow of procedure for testing the presence 
of inclusion bodies 

 

 

 

 

 

 

 

Image processing and 
segmentation 

Feature extraction, 
area of GFP inside cells 

Sample preparation and 
image acquisition 

A 

YES 

A 

NO 

Test for 
inclusion bodies 

 

Induce cells and 
acquire images 



Materials and Methods 
 

 - 41 - 

a. 

 

b. 

 

c.  

  
 

Figure 3.9. Visual similarity between image of a positive interaction and 
inclusion bodies 

a. Cells with GFP-fusion protein localization at the poles corresponding to a  positive protein-protein 
interaction  b. Cells displaying inclusion bodies before induction   c. Cells showing cytoplasmic GFP-

fusion protein localization before induction 
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3.6. Background separation for AFM images 

A typical AFM image (Figure 3.10.a) contains background features that can easily be 

mistaken for valid object features. A simple but effective technique that employs 

morphological operators is used to estimate the background (Figure 3.10.b) of the image 

and subtract the same.  

 

A structuring element (disc with radius = 10) that is bigger (too large a structuring 

element gives a very poor estimate of the background and a very small element gives rise 

to a dark image after background subtraction) than the object of interest is defined. An 

opening operation as described in the previous sections is carried on the image using the 

defined structuring element. This gives a rough estimation of the background and this 

image is subtracted from the original to obtain an image devoid of background noise. 

This image is again opened using a small structuring element (disc shaped with radius = 

1) to clear noise (Figure 3.10.d).  

 

Once the background and foreground (object of interest) are separated, the objects of 

interest have to be properly marked and labeled. A simple thresholding function, as 

described in section 3.3.1 can be used to obtain a binary image with desired objects.  
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(a) Given AFM image of E.Coli 

spheroplasts (cells with their outer wall 
enzymatically digested away) 

 

(b) Gray scale image of the given image 
 

  
(c) Estimated background of the image (b) Background subtracted and opened 

image 

Figure 3.10. AFM image background estimation and removal 

 



Materials and Methods 
 

 - 44 - 

Different objects from this binary image are labeled with unique numbers using the 

connected component labeling operation described in section 3.3.3. This labeled image is 

used as an input for further feature extraction algorithms describe in the previous sections 

where simple morphological features are calculated from the labeled binary image. 
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The previous chapter dealt with the details of different strategies used in the work of this 

thesis. This chapter discusses the implementation of the strategies mentioned, and 

analyzes the obtained results. The various experiments considered and the involving 

discussion along with the criteria of selecting one method over another are laid out in this 

chapter.  

 

4.1. Experimental image dataset 

Once the sample is prepared, it is placed on a glass slide and it is mounted on to the 

optical Leica microscope fitted with a 64x objective lens. An appropriate field of view 

with the desired specimen is selected by browsing through the slide using the stage 

movement knobs provided. We can then zoom in or out using the software provided by 

the microscope and adjust the focus while viewing the field of view for clarity which is 

defined by the user’s discretion. Once the focus is set, it is usually locked and the 
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brightness of the fluorescence image or the contrast of the DIC image can be adjusted to 

appropriate values as per the user’s discretion. There are no fixed values as they vary 

over the field of view with respect to the GFP expression level or the focal plane etc. The 

Lieca Confocal Software (LCS) provides us with a fluorescent and its corresponding DIC 

image.  

 

The experiments are carried on a set of images comprising of fluorescent and 

corresponding DIC image. In fluorescence microscopy, the DIC images are usually not 

vital but in our approach, the DIC images play a very important role in defining the 

boundaries of the cell. Thus, care has to be taken during the acquisition of these images to 

provide them with good contrast as the parameters used in edge detection depend on the 

contrast level of the DIC images. The essential information obtained from the DIC image 

is the cell shape and its boundary that can identify the contour of a cell and thereby 

making the analysis of its corresponding fluorescence image localized to those contours.  

 

Since the person acquiring images may not be the same one analyzing the data, there is a 

need for defining an ideal DIC image to help reduce the complexity in the analyses 

domain. There are no fixed parameters to define an ideal DIC image but there are a few 

guidelines that can be followed so that the consequent processing part is made easy. 

Clumps of cells are avoided while choosing the field of view as there would be hundreds  
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a. 

 

b. 

 

Figure 4.1.  DIC images 

a. DIC image with adjoining cells but evident edge information that can be easily extracted   

b. DIC image with adjoining cells but marred edge information that is very difficult to extract 
 

of cells in the sample under view and most importantly, the boundaries of cells in the 

DIC image should be clearly visible. Figure 4.1 illustrates an example for a usable and an 

unusable DIC image. Once a good contrast image is obtained, a high threshold can be 

applied to achieve useful edge information.  

 

4.2. Performance metrics 

The basic idea of our analysis is to identify positive localization patterns (one GFP 

localization spot at each of the poles) in each cell after inducing them. Ideally there have 

to be one at each pole of the cell but often, this is not the case.  Quite a few cells in the 
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field of view could be out of focus and thus display just one spot or no spots at all. The 

number of cells with positive localization patterns was calculated using the developed 

automated system and the same was obtained from the observations of an expert.  

 

From the test images that were analyzed, the percentage of positive interactions 

calculated by our automated system was in close agreement with the observations of an 

expert. The percentage of positive interactions is defined as the ratio of number of cells 

with positive localization patterns (localization spots, one at each pole) to the total 

number of cells in the image. 

 

4.3. Experimental steps 

The edge feature from the DIC images becomes difficult to extract when there are 

overlapping cells and cells that lie in close proximity to each other. The occlusion 

problem caused by overlapping cells is compromised by avoiding such images during the 

acquisition period. Cells in close proximity were distinguished from each other as the 

DIC images typically gave a thick boundary and thus the inner contour of the boundaries 

were used to isolate cells from each other. Once the boundaries are extracted, the 

fluorescence image is used to identify and label the sites of GFP localization. A common 

problem with fluorescent images is the presence of background signal. 

 

Each image processing step described in the previous chapter has a specific application 



Discussion – Analysis of Results 
 

 - 49 - 

and a reason behind its application in our analysis. The experiments and logic leading the 

choice of these methods are discussed in this section. 

 

4.3.1. Preprocessing 

The purpose of DIC images in our analysis as stated above is to identify cell contours in 

the spatial domain. Most of the images require some kind of preprocessing to enhance 

edge information. There are various methods for various kinds of images.  De-

convolution and histogram equalization of the DIC image were found to be useful for 

obtaining sharp edge features. De-convolution by itself is a major field of research and 

improved techniques that output very sharp fluorescent images from dull, blurred ones 

are available, but often are quite expensive. Since this step in our analysis is applied to 

merely enhance the ability of DIC images to output better edges, simple and effective de-

convolution algorithms offered by MATLAB as built in functions were considered. From 

the list of available de-convolution functions in MATLAB, both blind de-convolution and 

Lucy-Richardson algorithms worked well on the test images and had similar outputs, 

whereas regularized and Wiener de-convolution gave rise to poor resultant edge 

information (Figure 4.2). Lucy-Richardson was selected for our analyses as it processed 

images much faster than blind de-convolution algorithm. This step is followed by 

histogram equalization which basically stretches the grayscale values of the DIC image 

over the entire dynamic range (0-255 for an 8 bit image). 
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a. 

 

b. 

 

Figure 4.2.  Experiment results with de-convolution 

Edge information (using Canny filter) obtained after restoring the DIC image using 

a. Regularized filter b. Wiener filter 
 

 

Figure 4.3 illustrates the importance of de-convolution and histogram equalization on test 

DIC images during our analysis.  

 

4.3.2. Extracting edges 

The cell boundaries can be visualized by several techniques. We evaluated the use of a 

membrane dye and the DIC image. While both methods worked, the use of DIC images 



Discussion – Analysis of Results 
 

 - 51 - 

  
(a) Given DIC image (b) Edge information without histogram 

equalization 

  
(c) Edge information with histogram equalization and 

without De-convolution  
(b) Edge information with Histogram equalization 

and de-convolution 

Figure 4.3. Edge information (obtained using Canny filter) results from a 
sample DIC image illustrating the importance of histogram equalization 

and de-convolution 
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proved to be more robust for defining the cell outline when examining images of clumped 

cells as shown in Figure 4.4.  The use of images with stained membranes gave a fair 

indication of the cell boundaries for isolated cells. In addition, the use of DIC images had 

the experimental advantage of not requiring an additional incubation step and the 

difference in intensity gradients along the cell outline enabled definition and 

identification of regions for further analyses. In a DIC image, rapid increase of the 

difference in intensity gradient along the inner boundary of cells was used. Thus, as long 

as the inner boundaries of any two cells do not overlap, they can be evaluated 

successfully as two separate cells. Analysis of a DIC image was chosen over the use of 

images of membrane staining dyes to determine cell boundaries after evaluating different 

approaches including the use of active contours and various edge detectors. Effective 

determination of cell boundaries is mandatory for identifying the localization pattern of 

the GFP–fusion protein inside the cell. There are various types of edge detection 

techniques and their suitability often depends on the chosen application. A Canny edge 

detector, a Sobel edge detector and the procedure of active contours that is commonly 

used in the segmentation of images obtained from microscopy, were considered for 

extracting edge information.  

 

There were two major constraints with the active contour approach. The first one was that 

of initializing the snake. Since we intended the entire process to be automated, and most  
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(a) RFP image (b) Edge information from RFP image 

  
(a) DIC image (b) Edge information from DIC image 

 

Figure 4.4. RFP membrane dye image Vs DIC image for an edge detector 
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of the active contour methods described manual initialization of the snakes, it was a 

major set back. Another constraint was that of speed. This method of obtaining cell 

contours produced good results for images with single cells but took nearly 25 seconds on 

an Intel 1.6 GHz processor with a 512 MB RAM. A more complex active contour 

algorithm was required to overcome the problem of isolating individual cells from an 

image containing a group of closely associated cells.  

 

We chose to employ simple edge detectors like the Sobel and Canny filters after the 

preprocessing steps mentioned above as they were simple and faster to implement, on the 

order of 2-3 seconds on the same machine. Some amount of trial and error was done to 

determine the threshold level used in the detectors and care was taken to remove 

unwanted information (weak edges). Of the detectors evaluated, Canny filters were found 

to be the most versatile with respect to our dataset owing to their sensitivity as the Sobel 

filter failed to capture many vital edges and thus was not used in our analysis. 

 

The DIC image shows a thick boundary to the cells, thus producing a ring-like binary 

image. Upon observation that the inner side of the ring led to more consistent boundary 

determination, the weak outer edges were discarded by keeping about 10% of the lowest 

intensity value by using a high threshold in the Canny detector. 
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4.3.3. Morphological operations 

While performing morphological operations, particular attention was taken in choosing 

an appropriate structuring element. The choices of parameters for morphological 

operations that follow are made in accordance with the resolution of images. The shape 

and size of the structuring element is defined by the object features (cell contours) under 

study. The resolution of the image determines the spatial dimensions of objects in an 

image and this, in turn, determines the parameters relating to the structuring element used 

for morphological operations. For this reason, care must be taken while choosing the 

structuring element and its dimensions to avoid overlapping of closely spaced cells in the 

final image. Since these cells possessed smooth corners, a disk shaped structuring 

element was employed and a radius of 3 pixels was chosen, taking into consideration the 

spatial dimensions (in pixels) of the cell. A higher or lower dimension for the structuring 

element would tend to disrupt the information in an image by adding or removing vital 

information, depending on the morphological function employed. 

 

4.3.4. Data structure 

The resultant binary images contain relevant data at specific spatial locations while the 

rest of the image is featureless and can be ignored in further processing steps. This is 

achieved by tabulating spatial coordinates of the various features from the labeled image, 

thereby enhancing the speed of subsequent operations forming a three-dimensional data 

matrix as mentioned in the previous chapter. This saves computational time by ignoring 
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the null values in each image and thus is a vital component of the algorithm. An example 

of the data matrix is shown in Figure 4.5.  

 

4.3.5. Fluorescence images 

As described earlier, fluorescence images undergo a different set of preprocessing steps 

but follow a similar procedure to label images for creation of a data matrix. A unique 

aspect of our algorithm is its ability to discard any bleeding of the fluorescent signal. 

Potential noise derived from background fluorescence in areas near the cell features is 

limited with the use of a data matrix. 

This saves computation time and acts as a simple yet efficient noise limiting technique. 

Inclusion bodies are metabolically inactive materials within the cytoplasm or nucleus of a 

 

Figure 4.5. A sample data structure (3 dimensional 3 column) matrix for n 
labels in an image 

 

x y label 
 
100 20 1 
101 20 1 
100 21 1 
101 21 1 
-- -- 1 
  

label 
 
2 
2 
2 
2 
2 

x y label 
 
500 40 n 
501 40 n 
500 41 n 
501 41 n 
-- -- n 

For n labels in an image 
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cell. In this particular assay, over-expression of the GFP-fusion protein can lead to the 

formation of inclusion bodies.  Unfortunately, these inclusion bodies have a tendency to 

accumulate at the poles of E. coli cells and look very similar to the sites of GFP 

localization associated with a positive protein-protein interaction. Distinguishing 

inclusion bodies from localization sites is important for reducing the number of false 

positive results associated with this assay.  For this reason, experimental testing for 

inclusion bodies was conducted before computationally-based assessment of sub-cellular 

protein localization. 

 

This problem is specific to this particular assay and may not be a consideration for other 

types of cells, labels, or protein localization experiments. Upon the observation of GFP 

localization at the poles in the images taken before induction of the DivIVA fusion 

protein, the sample is presumed to contain inclusion bodies and discarded, thereby 

nullifying its effect in the next stage of the study. At present, this is our best defense 

against misinterpretation of the data caused by inclusion bodies. A set of features that can 

be ascribed to inclusion bodies will be discussed in future work. 

 

The results obtained after morphological and labeling operations are displayed in Figure 

4.6. 
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a. 

 

b.  

 

c. 

 

d. 

 

Figure 4.6. Image processing steps leading to a final pseudo colored image 
from sample DIC and fluorescent images of E. coli cells expressing a GFP-

fusion protein 

(a) Original DIC image;  (b) Original fluorescence image; (c) Cell contours (from DIC image) obtained 
using after morphological operations (d) Identification of GFP-fusion protein localization sites using 

thresholding and morphological operations 
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4.4. Pattern recognition 

In the case of this assay, we know the desired sites of protein localization and have 

designed the algorithm to determine whether the GFP localization occurs at the cell poles 

as expected for a positive protein-protein interaction. Once the number of GFP 

localization sites in each cell is identified, the distance between their respective COF’s 

and COG is calculated and compared with the diameter of the cell. This procedure 

segments the cell into three parts (Figure 4.7) along the diameter, where the first and third 

segments are considered to be the cell poles. The number of segments is limited to three 

due to the small size of bacterial cells and the limits of optical resolution. The presence of 

localized GFP in the first and third segments is considered a positive result (protein-

protein interaction) and other patterns are considered a negative result (no interaction). 

 

 

Figure 4.7. Pseudo colored image of a cell showing it divided into 3 parts 
along its diameter. 

Blue – Diameter of the cell; Green – Hypothetical lines drawn at 1/3rd distance from either end of the 
diameter; Red – Cell contour from Canny edge detector; White – Center of gravity of the cell 
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A negative result having one or three sites of GFP localization may be interpreted several 

ways.  For example, a cell showing localization in all three segments may be undergoing 

division as DivIVA is known to localize to the medial region of the cell during this stage 

of the cell cycle [16].  Alternatively, this result may occur if multiple cells are 

overlapping each other but have been identified as a single cell. Likewise, localization in 

only one segment may suggest that the cell under observation is slightly out of focus (a 

problem with the image acquisition procedure). This way, cells with GFP localization 

patterns not in the first and third segments are discarded as ambiguous results owing to 

improper segmentation of cells or overlapping of cells. Cells with uniform fluorescence 

in all segments are considered a negative result. The presence of inclusion bodies could 

generate visually positive but technically negative results, also leading to an ambiguity 

and are therefore evaluated before the induction of DivIVA fusion protein expression. 

 

The Roundness factor described in the previous chapter acts as a tool to identify dividing 

cells and other cells displaying ambiguous results. Most cells in these classes display a 

different shape (dumbbell) than non-dividing cells. In such a situation, a dividing cell can 

be identified with a high roundness factor. The roundness factor is calculated using 

values obtained for area and perimeter of the cell as shown in equation 1. Thus, the 

various features extracted are put to use to enhance the quality of interpretation. The 

statistical features extracted from the data using various algorithms discussed in  
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Figure 4.8. Final pseudo colored image  

Final Pseudo colored image showing cell boundaries, cell diameter, sites of GFP-fusion protein 

localization, and cell labels (numbers) at the centers of gravity of each cell. 

 

chapter 3 were used to characterize a pair of sample test images. These results are 

tabulated in Table 1. A final image (Figure 4.8) that represents individual features in 

different color channels is generated by pseudo coloring the target locations. 

 

4.5. AFM image analyses 

Once an AFM image of the sample under study is acquired, it goes through various image 

processing algorithms mentioned in the previous chapter before it can be converted to its  
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Table 1.  Statistical Features of cells shown in Figure 4.8. 
 

Cell 
No. 

Area  Per Diameter 
Thinness 

Ratio 

Number 
of  

GFP 
spots 

COG 

1 1491 148 67 135.433 2 178 114 

2 1461 141 67 128.433 2 131 162 

3 1460 147 66 134.433 2 196 154 

4 1876 167 86 154.433 3 183 225 

5 1270 132 58 119.433 2 160 258 

6 1595 150 71 137.433 3 371 278 

7 1843 177 87 164.433 3 165 311 

8 1872 166 81 153.433 3 385 308 

9 1540 181 89 168.433 0 202 344 

10 1256 143 66 130.433 2 237 336 

11 922 113 56 100.433 2 173 343 

12 1414 142 68 129.433 2 208 398 

13 2163 192 92 179.433 3 432 427 
Area, perimeter and diameter are given in pixels. 

Percentage positive interactions in figure 4.8 – 84.6 (11 out of 13) 

 

corresponding feature space. Segmentation of the region of interest is vital as it defines 

the area of desired objects within the image. There are a number of different features that 

can be extracted from a certain image but not all are necessarily pertinent. The selection 

of a set of pertinent features used to describe an image is by itself a huge task and 

obviously is application dependent. Sample AFM images of Sample AFM image (Figure 

4.9.a) of E.Coli spheroplasts (cells with their outer wall enzymatically digested away) 

and Staphlococcus acquired at the Oak Ridge National Laboratories were used for our 

experiments.  
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a. Given AFM image of Staphlococcus 

 
b, Gray scale image 

 
 

 
c. Background subtracted 

 

 
d. Pseudo colored labeled image 

Figure 4.9. AFM image analysis 
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Table 2.  Statistical Features of the spheroplasts segmented from image 4.9.a  

Object 

No. 
Area (micron2) 

Perimeter 

(microns) 

Diameter 

(nanometers) 
Thinness Ratio 

Center of 

gravity 

(x y) 

1 9.09126 2.43622 950.72 28.43363 136 10 

2 9.56662 2.43622 1010.14 28.43363 16 17 

3 5.46662 1.42608 713.04 11.43363 158 24 

4 7.7246 2.19854 950.72 24.43363 122 62 

5 11.8840 2.73332 1188.4 33.43363 105 76 

6 7.4375 2.25796 950.72 25.43363 130 79 

7 11.11154 2.61448 1069.56 31.43363 87 88 

8 11.40864 2.6739 1128.98 32.43363 72 100 

 

 

Simple morphological and shape defining features like the number of objects in the 

image, individual areas, diameter, perimeter and thinness ratio are calculated in terms of 

the number of pixels. 

 

These numerical descriptors are converted physical quantities and converted to a physical 

quantity (Angstroms) form the raw data generated by the AFM (Table-2). 
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This chapter summarizes basic contributions of the work discussed in this thesis. A 

discussion of future work based on these results is also presented.  

 

5.1. Contributions and conclusions 

Assigning functional information to the large number of proteins is a major concern in 

the field of proteomics. A direction towards that goal is to analyze protein-protein 

interactions, which often involves large sets of fluorescence microscopy images. 

Automated analyses of these large data sets can improve the speed, accuracy, and 

consistency of such analyses and a step towards the development of such a system was 

achieved by this work. A system for quantifying and identifying the location patterns of 

labeled proteins in live cells was successfully developed via algorithms implemented in 

MATLAB. Unique solutions to solve problems due to the ambiguity arising from cells 

undergoing division, adjoining cells, and the problems caused by background 
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fluorescence have been offered. This automated system achieved a percentage of about 

84.6% in identifying the number of cells with positive interactions which was in close 

agreement with the one observed by an expert. A set of statistical descriptors were used 

to quantify the images to allow a provision for content base image retrieval system. AFM 

images were successfully analyzed, and quantified using various image processing and 

feature extraction algorithms developed in this work. The task here was to identify the 

objects of interest and extract statistical information from them and this was achieved 

successfully. 

 

During this work, many problems were encountered and the solutions offered could be 

used to more or less similar image analysis projects. General solutions such as image 

thresholding methods, edge detection techniques and more specific solutions pertaining 

to connected component labeling and unique feature extraction techniques have been 

discussed and can be applied to various kinds of images. All methods developed in this 

work are applicable to real world images. 

 

5.2. Future work 

Work presented in this thesis is by no means a final solution to the problems behind its 

motivation. Results obtained from the work described in this thesis, are the foundation for 

further research focusing on the analysis of unknown protein interactions and setting up a 

database for localization patterns from many other protein-protein interactions. 
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The algorithm developed for this study can be easily extended to other applications 

involving multiple fluorescent labels or other imaging modalities with slight 

modifications. Such an algorithm can also be employed to reduce the size of image 

datasets by selecting those that possess desired features, such as positive interactions or 

specific location patterns. 

 

In future, paths that mix the work done so far with active shape models [Coo 95] and 

those that dig deeper into the connections of digital morphology and statistical descriptors 

would be interesting to tread upon. Automated analyses for AFM images is a field with 

wide scope for research and the work presented in this thesis can be used as the first step 

towards the same. Developing algorithms to extract more vital statistical information 

from AFM images and to fuse such information with that extracted from other channels 

of the AFM is an interesting challenge. Combining these possibilities with the 

opportunity of applying the methods developed in the field of proteomics and the field of 

biomedicine in general seems like an ideal extension of the work done in this thesis. 

 

A paper titled “Automated image analysis of fluorescent microscopic images to identify 

protein-protein interactions” by the author has been selected at the IEEE, Engineering in 

medicine and biology society and also has been short listed for the student paper 

competition. (will add the bioinformatics paper details once we send it out). 
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