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Abstract 

 

The impacts of urbanization have modified natural watersheds and stream hydraulic, 

hydrologic, and geomorphic processes that have lead to geomorphic and ecological 

disturbances in natural stream systems.  These alterations have resulted in channel 

incision and the loss of channel-scale hydraulic characteristics responsible for initiating 

and maintaining pool-riffle bedforms, which are capable of supporting diverse biological 

stream ecosystems.  Through the use of FLOW-3D, a 3-dimensional computational fluid 

dynamics model, three scenarios of an urban, incised, and channelized stream were 

simulated to characterize the turbulent, hydraulic structure during bankfull discharge.  

The simulations were conducted with trees inhibiting bankfull flow (representing the 

channel’s current state), trees removed from the channel, and a restoration design using 

three clusters of the original trees to initiate flow acceleration-deceleration regions.  

These simulations suggested that hydraulic processes found to initiate and maintain pool-

riffle sequences can be restored to impaired urbanized channels for which these processes 

have been lost.  This research can be applied to stream restoration design in hopes to 

establish less invasive procedures that can promote the development and maintenance of 

natural stream processes.  If the natural processes can be restored to the channel, it is 

likely the project will have a higher degree of success in the future of the stream system.  
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Chapter 1:  Introduction 

The effects of urbanization on natural stream morphology and habitat are a growing 

concern.  Impacts from urbanization modify the natural watershed and stream hydraulic, 

hydrologic and geomorphic processes by altering the landscape, modifying vegetation 

and soil characteristics, and introducing impervious surfaces and drainage (Palhegyi et al. 

2003).  Urban changes to watersheds lead to greater peak flows and increased frequency 

storm events, resulting in hydraulic and hydrologic changes that can initiate channel 

incision (Doerfer and Urbonas 2003).  An effect of channel incision is the disconnection 

between the stream and its floodplain, leading to simplified streambed morphology 

(Schwartz and Herricks 2005A).  Unlike simple streambeds, complex pool-riffle 

sequences provide a variety of hydraulic flow patterns and structural environments able 

to support diverse ecosystems (Bombardelli et al. 2000, Sear and Newson 2004, 

Rodriquez et al. 2000).  The flow and substrate diversity seen in natural channels with 

pool-riffle streambed morphology diminishes in the incised streams (Sear and Newson 

2004, Schwartz and Herricks 2005A). 

 

Channel incision occurs when there is an imbalance between sediment transport and 

sediment supply that alters channel morphology through bed and bank erosion (Bledsoe 

et al. 2002).  Incision is especially evident in channels disturbed by urbanization and 

channelization, a straightening and shortening of a stream.  When a channel is 

straightened, hydraulic changes occur.  The total energy available to the channel 

increases overall and is coupled with increases in the velocity magnitude (Rychborst 

1980, Booker et al. 2000).  This causes instability in the system, resulting in erosion by 
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means of channel incision as riffles erode and pools aggrade (Rychborst 1980, Schwartz 

and Herricks 2005A, MacRae 1996).  Other hydraulic changes historically recognized in 

incised channels are decreases in energy slope, decreases in upstream water surface 

elevations, increases in lateral and longitudinal flow patterns, increases in downstream 

water surface elevations, and increases in sediment loads downstream of the channel 

incision and straightening (Rychborst 1980). Channels with these characteristics have 

diminishing bank stability and are synonymous with Stage III streams in the Channel 

Evolution Model (Simon 1995).  Prior to bank failure, woody vegetation and root 

structure occupy the banks and provide temporary stability and decrease bank erosion 

(Simon 1995).  While the woody vegetation aids in bank protection, it modifies 

turbulence structure and decreases lateral kinetic energy along the banks, therefore, 

possibly contributing to the destruction of the pool-riffle sequence within these channels.  

 

Pool-riffle sequences are the dominant macro-bedforms in alluvial channels of 

intermediate slope (Sear and Newson 2004, Gregory et al. 1994, Richards 1976).  The 

sequences routinely occur between 5 to 7 channel widths in succession in both sinuous 

and non-sinuous channels, and are strongly influenced by width to depth ratios (Keller 

and Melhorn 1978, Gregory et al. 1994, Dietrich 1987).  Pool-riffle bed morphology 

controls hydraulic patterns, which in turn control bed scour, sediment transfer and 

deposition in streams, playing an important role in the geomorphic characteristics of the 

channel (Heritage and Milan 2004).   
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Equally important, pool-riffle sequences offer a variety of flow fields and substrates that 

provide an environment capable of supporting a diverse biological ecosystem (Sear and 

Newson 2004, Schwartz 2002, Rhoads et al. 2003).  Naturally, there is an acceleration of 

flow over riffles and a deceleration within pools.  Riffles tend to support benthic macro-

invertebrate populations and small fish, while pools can support larger fish and provide 

critical habitat during low flows (Thompson 2002).  Complexities in morphological 

character, including heterogeneous distributions in bed substrates, provide adequate cover 

for protection from predators and high flow events (Thompson 2002, Schwartz and 

Herricks 2005).  Together, these characteristics make pool-riffle sequences dominant 

features in stream restoration.  Although the pool-riffle sequence is well understood for 

its importance to stream health and aquatic habitat, little is known about the lack of 

maintenance in pool-riffle sequences within incised channels.   

 

There are many theories supporting the maintenance of pool-riffle sequences that stem 

from sedimentological and hydraulic based processes.  It has been proven that these 

process-based theories cannot stand alone to explain the maintenance of pool-riffle 

sequences in every case, while on the other hand, literature has supported pool-riffle 

maintenance through a combination of both, process and hydraulics (Dietrich 1987, Sear 

and Newson 2004).  Phase shifts are process-based and begin when bar height is 

gradually decayed by lower flows, scouring fine sediment from riffles and depositing it 

into pools (Wilkinson et al. 2004).  Conversely, higher flows scour pools and buildup 

riffles, increasing riffle height and maintaining pool depth (Wilkinson et al. 2004).  

Similarly, velocity reversals center on sediment transport capacities, increasing during 
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high flow and decreasing in low flows (Wilkinson et al. 2004).  As these are major 

contributions to pool-riffle maintenance, the hydraulic characteristics of the stream 

provide the actual work necessary for the preservation process (Dietrich 1987).  The 

continuously changing velocity patterns, as flow increases over riffles and decreases in 

pools, are primary hydraulic characteristics within pool-riffle sequences, but helical flow 

patterns govern hydraulic maintenance (Dietrich 1987).  Helical flow patterns are caused 

by velocity profiles, pressure gradients, free-surface elevations, and near-bed shear 

stresses (Dietrich 1987, Rychborst 1980).  These flow patterns are 3-dimensional regimes 

that are seen in both sinuous and non-sinuous channels.   

 

The concepts governing helical flow are most obvious in sinuous channels, but are also 

experienced in straight channels.  Dietrich offers a comprehensive description of helical 

flow within a stream bend, while Figures 1.1 and 1.2 help to visualize the patterns.  

Stream bends result in centrifugal forces acting in cross-channel patterns.  These forces 

are counter-balanced by a cross-channel slope of the free surface, causing a cross-channel 

pressure gradient.  Near surface flow is conveyed outward against the opposing pressure 

gradient, while slower, near bed velocities are turned inward.  Within straight channels, 

alternate bar development influences the cross-stream and near bed velocity distributions, 

invoking helical flow patterns (Dietrich 1987).  Near bed shear stresses also play 

important maintenance roles as they increase in pools when discharge approaches 

bankfull levels (Booker et al. 2000).  During low flow conditions riffles experience the 

high near bed shear stresses while bed shear stresses decrease in pools (Booker et al.  
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Figure 1.1:  Helical flow patterns occurring in a sinuous channel (Tuysuz 2002). 
 

 
 

Figure 1.2:  Helical flow patterns experienced in a channel bend (Smith and Stopp 1978).
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2000).  Similarly, there are consistent observations of progressive declines in bed 

roughness as flow increases (Sear and Newson 2004).  Overall, the complexity of the 

special patterns of near-bed velocities and boundary shear stresses decline as flow 

increases (Booker et al. 2000).  This information can be a valuable resource when 

evaluating stream restoration techniques. 

 

Modern approaches suggest that the creation of pool-riffle habitat is one of the most 

important criteria for evaluating the success of channel restoration projects (Thompson 

2002, Sear and Newson 2004, Emery et al. 2003, Schwartz and Herricks 2005A).  The 

current problem exists that there are not adequate design criteria for the development and 

maintenance of pool-riffle streambed morphology.  While it is common to construct pool-

riffle bedforms within stream restoration projects, it does not necessarily restore the 

sustainable hydraulic functioning needed to maintain these bedforms (Emery et al. 2003, 

Gaboury 1997).  Characterizing the hydraulic properties of flow over pool-riffle 

sequences in open channels is critical for understanding sediment transport and 

morphological evolution processes of unaltered streams, and therefore, is relevant to 

stream rehabilitation and management (Cao et al. 2002). 

 

The objective of this research is to characterize the turbulence structure experienced by 

an urban, incised stream in order to understand the hydraulics associated with pre-bank 

failure conditions of Stage III channels and the degradation of pool-riffle sequences.  

Beaver Creek in north Knox County, Tennessee, has been impacted by urban sprawl 

within its watershed.  The stream has been channelized, incised, and separated from its 
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floodplain.  Trees that were once part of the floodplain interrupt bankfull flows, causing 

increases in bank roughness.  Mass bank-failures have not yet occurred due to the 

cohesive properties of the soil in this region and the elaborate root systems of the 

vegetation lining the banks.  According to the Channel Evolution Model, the banks will 

ultimately fail as lateral erosion exceeds the bank stability threshold and cause 

considerable degradation within this section of channel, further degrading the quality of 

the stream as a whole (Simon 1995).  Additionally, this research supports a hydraulic 

design approach for stream restoration with the goal to test an ecohydraulic design that 

initiates and provides natural maintenance of pool-riffle sequences.   
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Chapter 2: Literature Review 

Channel Evolution 

Alluvial channels react to physical and hydrologic disturbance by altering their 

geomorphic, sedimentologic, and hydraulic properties in order to create and follow the 

path of least resistance (Palhegyi et al. 2003, Simon 1995).  These reactions are 

systematic in nature and have been categorized in channel evolution models in order to 

help recognize and understand channel responses to impacts from urbanization and 

changing environments (Simon 1995, Bledsoe et al. 2002).  Simon (1995) has 

documented six different evolutionary stages of channel development and has 

summarized the findings in the Channel Evolution Model, see Figure 2.1.  The evolution 

of the Beaver Creek research site has followed Simon’s Channel Evolution Model with 

evidence of the first three stages of development.   

 

Stage I is evident within the research site only when considering the entire domain of 

Beaver Creek in Knox County.  Some sections of the stream upstream of the research site 

are still in the pre-disturbed stage, characterized by stable bars, convex top-bank shape, 

high flow lines relative to the top of the bank, and vegetated banks down to the flow lines 

(Simon 1995).  Stage II has occurred through channelization, evident in the linear bank 

surfaces, similar riparian species and age, and separation between the stream and its 

floodplain (Simon 1995).  The sections of channel in and around the research site are 

currently experiencing the pinnacle of the Stage III evolutionary process, with signs of 

severe incision and increasing bank instability.   
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Figure 2.1:  Models of  (A) channel evolution and (B) bank-slope development for disturbed alluvial channels (Simon and Hupp 
1986).
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Stage III is considered the degradation stage and is prominent in urbanized watersheds 

(Simon 1995, Bledsoe et al. 2002).  Channel incision is the dominant characteristic within 

Stage III channels and is evident through heightening and steepening of the banks, 

erosion of alternate bars, riparian vegetation is high on the banks relative to the flow 

lines, and the flow lines are lower relative to the top of the bank (Simon 1995).  Overall 

stream power is increased in incised channels, changing their sediment transport and 

sediment supply characteristics (Bledsoe et al. 2002, Rychborst 1980).   

 

Sediment transport and supply are directly related to properties of flow hydraulics, 

streambed and bank material compositions, and upstream sediment contributions 

(Langendoen 2000, Julien 1998, Sturm 2001).  The stability of the bed and banks of an 

alluvial channel can be determined through the threshold of sediment movement (Sturm 

2001).  This threshold of motion is most often linked to the Shields parameter and is most 

easily defined in terms of critical shear stress, cτ .  Critical shear stress is described as a 

function of the following variables: 

( )μργγτ ,,,1 ssc df −=  

where sγ -γ  is the submerged specific weight of the sediment, sd  is the sediment grain 

size, ρ  is the fluid density, and μ  is the dynamic viscosity of the fluid.  These terms can 

be linked through dimensional analysis and expressed as: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

− v
du

f
d

sc

ss

c *
2γγ

τ
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in which cu*  is the critical value of the shear velocity and is equal to ( ) 2/1/ ρτ c , while the 

kinematic viscosity, v , is equal to ( )ρμ / .  This equation cannot be solved directly, but 

critical shear stress and velocity can be solved for iteratively.  Once a particle reaches the 

threshold of motion, if the stream velocity is greater than the fall velocity of the particle, 

the sediment will be transported downstream.  The fall velocity of sediment is defined by 

Sturm (2001) as the terminal speed of a sediment grain in water at a specified 

temperature in an infinite expanse of quiescent water.  An expression has been developed 

for fall velocity based on a spherical particle defined by: 

( )

D

ss

f C

gd
w

1/
3
4

−
=

γγ
 

where fw is the fall velocity, g is the acceleration due to gravity, and CD is a drag 

coefficient related to the sphere.  Similar to the equation for the threshold of motion, this 

equation cannot be solved explicitly because CD is a function of Particle Reynolds 

Number, Rep )/(Re vdw sfp = .  To make an iterative solution easier to solve, CD vs. Rep 

diagrams have been developed.  The plot shown in Figure 2.2 was developed from a best-

fit equation by White (1974) and expressed as: 

4.0
Re1

6
Re
24

+
+

+=
pp

DC  

The sediment movement equations support the theory that increased shear stresses and 

velocities experienced in incised channels encourage sediment erosion and transport.  In 

natural alluvial stream systems, sediment transport and deposition are necessary  
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Figure 2.2:  Coefficient of drag for spheres (CD) relative to Particle Reynolds Number 
(Rep), based on the best-fit equation from White, 1974 (Sturm 2001). 

Particle Reynolds Number, Rep 
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conditions for meander initiation, however they are the effects of some original cause, 

like high flow events, but not the cause itself (Rhoads and Welford 1991).  

 

Macro-bedforms 

Pool and riffle macro-bedforms are created from mobile beds in alluvial channels and 

have been discovered in both straight and meandering channels with heterogeneous bed 

material (Knighton 1998).  Pools have been defined as topographically low areas 

produced by scour, which generally contain relatively fine grained bed-material, whereas 

riffles are topographically high areas produced by the accumulation of relatively coarse 

grained bed-material (Gregory et al. 1994).  The variation in bed material between pools 

and riffles suggest local sorting mechanisms (Knighton 1998).  They also exhibit distinct 

channel and flow geometries, where riffles tend to be wider and shallower at all stages of 

flow (Knighton 1998).  Furthermore, a significant property of pool-riffle geometry is the 

recurrent spacing of successive pools or riffles at a distance of 5 to 7 times the channel 

width (Knighton 1998, Keller and Melhorn 1978).  

 

Considerable research has been done to define the relationship between pool-to-pool, or 

riffle-to-riffle spacing, and channel width (Dietrich 1987).  The most extensive data set 

for this research comes from Keller and Melhorn, 1978, who found pool-to-pool spacing 

ranging from 1.5 to 23.3 channel widths, with an overall mean of 5.9 channel widths 

(Knighton 1998).  Further research has supported this spacing trend, with inter-pool or 

inter-riffle spacing ranging from 5 to 7 channel widths.  The regularity of the pool-riffle 
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sequence has sometimes led to its definition as a single bed-form at times referred to as 

the bar unit (Dietrich 1987).   

 

Pool-riffle sequences spaced 5 to 7 channel widths have been found in all types of 

streams, from sand and gravel beds, to bedrock and boulder-bed courses (Knighton 

1998).  Even in channels disturbed by channelization, the inter-riffle distance generally 

falls within the range of 5 to 7 channel widths (Gregory et al. 1994).  However, with a 

wide variety of disturbances, negatively impacted streams do not always conform to the 5 

to 7 width guidelines (Gregory et al. 1994).  Gregory et al. further suggest that more 

research should be conducted on establishing the relationship between pool-riffle spacing 

and channel width for particular types of influence on the channel environment in order 

to define the degree to which each channel conforms to the 5 to 7 channel width spacing.  

The accurate scale at which pool-riffle sequences occur is needed for further investigation 

into the processes that form and maintain these bedforms. 

 

Hydrodynamics 

Mechanisms that produce flow oscillation in straight channels are based on 

hydrodynamic theories of meander initiation (Rhoads and Welford 1991).  In straight, 

erodible channels, the initial motion of bed material occurs parallel to the stream banks, 

causing scour holes to develop rapidly along the bed.  The material is scoured at regular 

intervals occurring along alternate sides of the channel.  The eroded sediment is deposited 

downstream in fan-shaped bars that overlap in a regular pattern forming alternate bars, 

Figure 2.3 (Dietrich 1987).  Rhoads and Welford (1991) continue by trying to explain the 
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Figure 2.3:  The morphology of single-row alternate bars in straight channels.  Shaded areas are below reach-averaged bed elevation, 
arrows indicate patterns of flow, and heavy arrows mark position of the thalweg (Rhoads and Welford 1991). 
 



 16

initial development of the alternating bars in straight channels using the research 

available at the time of the publication.  The formation of alternate bars during low values 

of excess shear stress and high width to depth ratios suggests that low-flow dictates the 

phenomenon.  This has been observed in channels consisting of coarse, heterogeneous 

bed material.  However, when armoring has occurred, this phenomenon ceases at low 

values of excess shear stress and 3-dimensional flow regimes dominate the process of 

alternate bar initiation. 

 

Periodically reversing helical flow patterns have consistently been recognized as a 

fundamental characteristic of flow in meandering rivers and have recently been 

conceptualized as a mechanism for initiating periodic, alternating bed deformation of the 

channel bed and banks (Rhoads and Welford 1991, Dietrich 1987).  Continuing with the 

Rhoads and Welford (1991) research, they have linked the occurrence of helical flow 

patterns in straight channels to anisotropic turbulence initiating bed scour at recurring 

intervals.  Both gradual and abrupt variations in boundary roughness have been found to 

produce helical flow in straight channels.  Models have been constructed with channels 

consisting of coarse materials lining the center and finer materials along the banks to 

produce contra-rotating, surface convergent, circulation cells along opposite sides of the 

channel further producing helical patterns.  Other theories use low-velocity, high vorticity 

eddies shed continuously from wall boundaries into the outer region of flow.  These 

eddies form a horseshoe shaped flow regime moving up along the banks and toward the 

center of the channel surface.  If these flow regimes develop along both banks, twin 

surface convergent helical flow patterns result.  When these helical flow patterns occur at 
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regular intervals, they may be capable of transporting sediment laterally across the 

channel to produce alternate bars.  Instability, caused by rising stage flood events within 

the flow regime, could provide cell asymmetry and periodic reversal.  These dominant 

circulation patterns may eventually lead to alternating bars and a meandering thalweg.  

This metamorphosis from a straight channel has been theorized in the bar theory and 

starts as infinitesimal harmonic perturbations in the bed that grow at various rates to 

ultimately create a meandering stream.  Dissimilarities among theories stem from 

variations in hydrodynamics, channel morphology, and sediment properties.   

 

The theories developed to account for meander initiation and alternate bar formation have 

been supported by laboratory and/or field research.  Many of these theories are case-

specific and criticized for generating non-repeatable results in varying channels.  Rhoads 

and Welford (1991) concluded that a universal theory of meander initiation had not 

emerged and that it is likely that a combination of theories can explain the occurrence.  In 

this thesis research, the hypothesis of incessant incision due to stream bank stability does 

not allow the formation of alternating bars at the Beaver Creek research site.  With 

greater shear stresses occurring at the bed, channel incision will progress until a threshold 

is reached and the erosive properties of the bank exceed that of the bed and its increased 

shear stress combined.    

 

The banks along the research site are resistant to erosion, in part due to the cohesive 

properties of the bank material and the structured vegetation and root systems covering 

the banks.  The soils around the research site, as well as the Tennessee Valley region, are 
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high in clay and are more cohesive than those high in sand (Coduto 1998).  Cohesive 

properties of clays cause particles to bond and resist hydraulic erosion, while further bank 

stability is achieved when root systems are combined with cohesive soils (Simon and 

Thomas 2002, Simon and Collison 2002).  Soils are generally strong in compression but 

weak in tension, whilst root fibers are strong in tension and weak in compression forming 

a matrix for the bonding soil (Simon and Collison 2002, Coduto 1998).  In addition to 

providing a structural matrix, the riparian vegetation also helps to lower pore pressure, 

additionally increasing the strength of the streambank (Simon and Collison 2002).  This 

increased stability not only resists erosion but also allows the trees to remain low enough 

on the bank to participate in bankfull discharges.   These trees increase turbulence along 

shores dissipating energy and stunting the progression of the channel evolution process.   

 

Turbulence 

Turbulence is best characterized as highly disordered and chaotic fluid motion over a 

wide range of length scales and frequencies (Ziaei et al. 2005).  In turbulent flow, an 

individual particle will follow a very irregular and erratic path, with no two particles 

having identical or even similar paths, causing its behavior to be stochastic in nature 

(Franzini and Finnemore 1997, Keshavarzi et al. 2005).  The structure of fully developed 

turbulent flow consists of a hierarchy of eddies and vortices of various sizes and disorders 

(Ziaei et al. 2005, Yalin 1992, Keshavarzi et al. 2005).  The nature of the eddies and 

vortices is best described in a quote from L. F. Richardson’s Whether prediction by 

numerical process, as “big whorls have little whorls, which feed on their velocity; and 

little whorls have lesser whorls, and so on to viscosity…” (Keshavarzi et al. 2005).  
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Although a great deal of research has been conducted on the bursting process and 

coherent structure of turbulence, little is still agreed upon its detailed mechanism (Yalin 

1992).  However, their general patterns have been summarized and well explained in 

detail by Yalin (1992). 

 

Yalin (1992) defines turbulence as a living entity consisting of birth, life, and death.  

Previous theories stressed the importance of the large eddies that break down in an 

energy cascade and give rise to smaller eddies.  It wasn’t until researchers discovered the 

bursting process, which proved that the largest eddies started as much smaller eddies 

produced near flow boundaries.  In fact, the closer to the boundary the eddy is born, the 

smaller its initial size.  Immediately after its generation, the eddy is carried upward and 

conveyed downstream.  The upward velocity decreases while the size of the eddy 

increases, due to coalescence and engulfment.  The eddy continues to grow until it 

contacts the boundary layer, when it is destroyed, giving rise to the next eddies in 

succession.  This process of eddies originating, growing, being destroyed, and therefore 

giving rise to new eddies is known as the bursting process. 

 

Yalin gives an excellent explanation of the bursting process starting at the fluid element.  

Figure 2.4 is an illustration of a fluid element, A, subjected to shear stresses τ  at P.  If 

the value of τ  is sufficiently large, instead of deforming into a highly strained 

parallelogram shown as B, the element chooses to roll up into an eddy, which can be 

considered the path of least resistance for the element.   
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Figure 2.4:  A fluid element, A, subjected to shear stresses τ  at P (Yalin 1992). 
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Yalin then simplifies the growth and destruction of the newly formed eddy, as shown in 

Figures 2.5 and 2.6.  The eddy e is formed by both high and low velocity fluids.  It travels 

upward in the low velocity region, just alongside the region of high velocity, growing in 

size as it progresses in the trajectory s.  The displacement of fluid mass as e moves along 

s instigates circulatory motions within the low velocity regions, expressed as e’ and e”.  

The interface between e” and the region of high velocity acts as a high shear zone and a 

region of instability.  Together these secondary circulatory motions act opposite one 

another to form an ejection motion from m to e.  The high velocity fluid continues to be 

capable of overtaking the eddy in the gap formed between the eddy and the free surface.  

The continual upward displacement and growth of the eddy weakens the ejection force 

while reducing the gap between the eddy and the free surface.  This causes the high 

velocity fluid to suddenly change its configuration and pass under the eddy, known as the 

sweep.  Following the sweep, the high velocity region widens and interacts with e’, 

reducing the velocity.  This causes the flow around the eddy to be neutralized, while the 

eddy continues to grow in size.  Figure 2.6 shows the events as the eddy progresses in the 

neutralized flow and becomes a macroturbulent eddy E, characterized by the eddy size 

being nearly equal to the flow thickness, h.  The macroturbulent eddy continues to grow 

until it interacts with the free surface.  This interaction causes the eddy to deflect 

downward toward the bed, resulting in the disintegration of the eddy.  The disintegration 

progresses through an energy cascade, where there is a successive break up into smaller 

and smaller eddies until it is dissipated through viscous friction.  The disintegration of the 

eddy signifies the disappearance of stress relief in the fluid at that location.  
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Figure 2.5:  The development and growth of an eddy with high and low velocity flow 
regions (Yalin 1992).
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Figure 2.6:  The destruction process of a macroturbulent eddy (Yalin 1992).
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Yalin continues the discussion of turbulent eddies, pointing out that the growth rate of the 

turbulent eddies occurs in a distinct pattern in the direction of flow.  Observation of 

several turbulent flows, Figure 2.7, result in a burst length, l, being approximately equal 

to the tan θ , and equal to 1/6 the distance in the flow direction, x.  Normalizing this 

observation to a burst-forming eddy, the expression can be written as: 

hL 6≈  

This indicates that the burst length, L, is approximately equal to six flow depths, h.  Note 

the significance of the burst length in comparison to the bar unit, being 5 to 7 channel 

widths.  Assuming accuracy sufficient for macroturbulent eddies and channels with large 

friction factors, the burst forming eddy being conveyed downstream can be identified 

with an average period, T.  The relationship in terms of an average flow velocity, v , can 

be expressed as: 

6≈=
h

vT
h
L  

Similar to the patterns of burst length, burst width, L’, has been defined as being 

approximately equal to two flow depths, based on observations in natural channels and 

experimental data.  These patterns are only reasonable for large-scale patterns and are 

expressed as: 

hL 2'≈ , which can also be stated as LL
3
1'≈ . 

Yalin further pieces together successive periods of the bursting process in a vertical 

sequence in order to illustrate a possible relationship between macroturbulent bursting 

processes and alternating bedforms, as shown in Figure 2.8.
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Figure 2.7:  Examples of several turbulent flows illustrating the growth rate in terms of θ  (Yalin 1992). 
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Figure 2.8:  The bursting processes in a vertical sequence to illustrate a possible 
relationship between macroturbulent bursting processes and alternating bedforms (Yalin 
1992).   
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Pool-riffle Maintenance for Stream Restoration Design 

Stream hydrodynamics, bed and bank morphology, and turbulence are interrelated in 

processes that initiate and maintain pool-riffle sequences.  Continually associated with 

natural, non-impacted streams, the importance of the pool-riffle habitat is well recognized 

for its role in habitat and biodiversity; however, the means by which these sequences are 

initiated and maintained are not well understood.   With steady, and sometimes 

exponential human population increases, urbanization and urban sprawl has resulted in 

negatively impacted streams, destroying pool-riffle habitats and abolishing processes 

capable of initiating and maintaining these systems.  Channel restoration projects, which 

have increased in number across the country to try to restore habitat and natural processes 

within these stream systems, have had varying degrees of success (Brown 2000, 

Niezgoda and Johnson 2005, Sear and Newson 2004, Thompson 2002).  

 

Much of the successes of stream restoration projects rely on their individual design goals.  

When focused on restoring habitat and process, the creation of pool-riffle sequences is 

one of the most important criteria for evaluating the success of the channel restoration 

projects (Thompson 2002).  There are several design mechanisms used to achieve 

simulated pool-riffle habitat in channel restoration.   

 

Brown (2000) summarizes these design techniques in two groups: the grade control group 

and the flow deflection/concentration group.  The grade control structures are designed to 

maintain a desired streambed elevation.  Rock vortex weirs, rock cross vanes, step pools, 

log drops, and v-log drops are examples of some of the structures often used to attain the 
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grade desired.  The flow deflection/concentration designs are used to change the direction 

of flow, to concentrate flow to protect eroding banks, redirect flows in meanders, or 

enhance pool-riffle habitats.  Common design features to these approaches include wing 

deflectors, log vanes, rock vanes, J-rock vanes, cut off sills, and linear deflectors.  These 

design groups make up a design technique commonly referred to as the morphologically-

based natural channel design method (Brown 2000, Niezgoda and Johnson 2005).   

 

These morphological, or form-based design methods focus on restoring or recreating 

natural channel characteristics (Brown 2000, Niezgoda and Johnson 2005).   The natural 

channel characteristics are often gauged from reference streams reflecting predisturbed 

conditions, which may suggest that stream behaviors can be predicted from their 

appearance (Niezgoda and Johnson 2005).  Niezgoda and Johnson summarize a number 

of assumptions often overlooked and involved in this type of design method: 

• the reference channels used to develop the design equations are stable channels 

that have completely adjusted to their load. 

• the bankfull discharge is assumed to be the channel forming discharge. 

• sediment loads in the channel to be designed and the reference channel fall 

within a similar range.  

• climate and geology (physiography) of the channels are similar. 

• sediment load in the design channel is unchanging or that the stabilized channel 

is resilient to change. 

• process and stream function can be inferred from the current form of the stream. 
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Complicated hydraulic concerns are often left out of stream restoration designs.  Scour 

and fill dynamics, channel stability, flow resistance, and roughness at cross sections are 

often unique to each project and difficult to predict (Niezgoda and Johnson 2005, Rhoads 

and Welford 1991).  Urban streams differ from natural streams in that they typically have 

highly altered water and sediment flow regimes and are constrained both laterally and 

longitudinally by infrastructure (Niezgoda and Johnson 2005, Schwartz and Herricks 

2005B). Similarly, design parameters such as bankfull discharge obtained from regional 

curves may be unreliable due to dynamic hydrology and urbanization (Niezgoda and 

Johnson 2005).  Although there have been many successes in stream restoration, there are 

also many failures. 

 

Numerous stream restoration projects fail when the designed channel continues to adjust 

to the dynamic urbanizing watershed conditions (Niezgoda and Johnson 2005, Thompson 

2002).  There are many examples of failures in morphologically-based restoration designs 

that attempted to reestablish or recreate natural channel geometry in urban streams 

without accounting for changing environment and hydrodynamics (Niezgoda and 

Johnson 2005).  Brown (2000) reported in a study of the performance of over 24 different 

restoration practices, that projects that attempted to reestablish or recreate natural channel 

geometry in urban streams had the highest tendency to fail.  Likewise, many of the 

rehabilitated features are sedimentologically too homogeneous and well sorted to mimic 

natural riffles (Sear and Newson 2004).  There is a need for more rigorous design, 

performance, and installation criteria to ensure functional attributes, which vary among 

stream systems and ecosystems (Sear and Newson 2004, Schwartz et al. 2001). 
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Much of the problem in stream restoration today is the lack of research on improving 

design criteria (Wade et al. 2002, Schwartz et al. 2003).  There has been an 

overwhelming request for structured monitoring and evaluation techniques and plans for 

stream restoration projects.  The evaluations of projects to date have seen local successes 

and failures.  Many of the successes have been short-term studies of the return of habitat 

structure, increases in target species abundances, and increases in biodiversity (Brown 

2000, Garboury 1997, Sear and Newson 2004, Thompson 2002).  Few studies have 

documented the long-term responses (Thompson 2002).  The future success of stream 

restoration design relies on increased research, field evaluation, and models to produce 

tangible design parameters and methods to approach channels on an individual basis and 

assure greater success.  

 



 31

Chapter 3: Methods 

Study Design 

The focus of this research is to characterize the turbulence structure in bankfull flow 

regimes and design hydraulic alterations to the channel that create helical flow patterns, 

furthermore generating and maintaining pool riffle bedforms.  Three hypotheses have 

been drawn for this study:   

• Channel incision with trees inhibiting bankfull discharge has caused a flow 

regime lacking channel-scale helical patterns. 

• Channel incision without trees inhibiting bankfull discharge has caused a flow 

regime possessing channel-scale helical patterns. 

• Channels with incised streambed morphology and trees inhibiting bankfull 

discharge can be modified to create flow acceleration-deceleration patterns to 

induce channel-scale helical flow patterns. 

These hypotheses will be explored by experimentally modeling a Stage III incised 

channel with FLOW-3D, a 3-dimensional hydrodynamic model, and imposing the three 

bank morphologies and monitoring the flow patterns induced. 

 

The site selection for this research was based on finding a Stage III incised channel with 

cohesive bank material capable of supporting trees obstructing bankfull flow.  The length 

of the channel needed to exceed 14 channel unit-widths in order to naturally develop two 

pool-riffle sequences.  The field data collection comprised a detailed topographic survey 

of the site.  FLOW-3D was used to model three scenarios within the research site: a 
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bankfull event with trees, a bankfull event without trees, and a bankfull event with three 

tree clusters spaced 5 to 7 channel widths apart, based on the restoration design to create 

flow acceleration and deceleration.  

 

Study Area 

Beaver Creek in north Knox County, Tennessee, was selected as the research stream.  

Beaver Creek is recognized as being negatively impacted by urbanization and has been 

the object of recent studies by TDEC, Tennessee Department of Environment and 

Conservation.  The watershed draining to the site is 72 square kilometers and is 

illustrated in Figure 3.1.  The land-use designation is primarily subdivisions and small 

businesses.  Much of the upper watershed is farmland being developed into subdivisions, 

a trend seen throughout the United States.  Figure 3.2 is a GIS land-use map of the 

watershed generated in Arcmap.  The site is a 16-kilometer drive from the University of 

Tennessee and is part of the Knox County Parks and Recreation Department.  It has easy 

access from both banks with a greenway path that has recently been constructed along the 

east bank, providing access without impacting the stream itself.  The west bank is 

bordered by the back of a Food City grocery store and consists of a paved loading dock 

within 15 meters of the stream.  Permission to use the site for research was granted by the 

Knox County Parks and Recreation Department. 

 

The section of channel is a classic Stage III stream based from the Channel Evolution 

Model, Figure 2.1.  It has been channelized and straightened for greater than 200 meters 

long with an average slope of 0.0001 meters/meters.  The section of channel that was  
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Figure 3.1:  Research watershed and site scaled from a Tennessee county map created in 
Arcmap.  The top map highlights Knox County within the state of Tennessee.  The map 
located at the bottom left is the research site watershed boundary and tributaries. The 
illustration in the bottom right is a high-resolution orthoimagery photo of the research 
study area from the USGS Internet website.  The most upstream point of the research site 
is located at coordinates: 

Latitude  36 04 52.34    North 
Longitude 083 55 24.70  West

5-kilometers 200-meters 
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Figure 3.2:  Land-use map of the research watershed generated in Arcmap.  Impermeable 
areas represent housing and small businesses.  The highly impermeable areas represent 
roadways and parking lots. 

1-kilometer 
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surveyed and modeled is 105 meters long and 6.5 meters wide.  It is greater than 2 

reaches long, sharply incised, and has diminished pool-riffle bed morphology.  Trees line 

the channel on both banks and impede flows greater than 1.68 m3/s.  The research site 

during bankfull flow is pictured in Figures 3.3 and 3.4. 

 

Topographic Characterization 

A high-resolution survey of the stream topography was needed to generate the 3-

dimensional hydraulic model.  The survey was taken using a Trimble 3605-DR Total 

Station with TDS Recon data logger.  The site was laid out with 9 benchmarks located at 

equal intervals along two reaches of the stream.  The reference point of the survey was 

placed in an area that will not be disturbed.  The channel was surveyed with an average 

width of 1-meter between cross-sections, starting at the greatest upstream point.  The 

width between cross-sections was decreased when large topographic changes were 

present.  The coordinates of each tree lining the channel were surveyed at the base of the 

tree, while their diameters were manually recorded.  An option within the Trimble Total 

Station allowed the centroid of each tree to be surveyed based on the junction of the x 

and y-plane running through the tree. 

 

The survey data were converted to an EXCEL spreadsheet where the data could be easily 

sorted and further converted to text files.  In order for the data to be imported into 

FLOW-3D, it needed to be in an x, y, and z rectangular coordinate layout.  Each tree was 

produced in FLOW-3D based on its radius and centroid coordinate.  The trees were 

represented as separate subcomponents appearing as symmetric, vertical cylinders.  
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Figure 3.3:  Photo of Beaver Creek research site during bankfull flow (01/14/2005).
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Figure 3.4:  Photo looking down the channel of the Beaver Creek research site during 
bankfull flow (01/14/2005). 
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A Tecplot image of the channel without trees is illustrated in Figure 3.5, and of the 

channel with trees is shown in Figure 3.6.  

 

3-Dimensional Hydrodynamic Model 

FLOW-3D was used for all the modeling applications.  FLOW-3D is a commercial 

Computational Fluid Dynamic (CFD) 3-dimensional (3D) model with a graphical user 

interface.  It is comprised of a pre-processor, finite element mesh generator, and a post-

processor for display of simulations.  

 

FLOW-3D approaches modeling by first dividing the flow region into variable sized 

rectangular cubes, or cells, in a finite element grid, also called a mesh.  Each cell 

represents a control volume.  For each cell, values are retained for basic flow quantities, 

such as velocity, pressure, and density.  The model then uses finite difference 

approximations to the equations of motion to compute the spatial and temporal evolution 

of these values.  Initial boundary conditions are needed to set up original flow 

characteristics on which to base the approximations.  The governing differential 

equations used to calculate the approximations are also established from the initial depth 

and velocity boundary conditions. 

 

The equations of motion used in FLOW-3D are based in terms of Cartesian Coordinates, 

are defined for the fluid velocity components (u, v, w) in the three coordinate directions 

by the Navier-Stokes equations, and maintain the conservation of momentum.  All the 

variables related to the Navier-Stokes equations are located at the centers of the cells in  
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Figure 3.5:  Tecplot image of research site (channel only). 
 

Elevation in Meters
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Figure 3.6:  Tecplot image of research site (channel and trees). 
 
 
 
 
 
 
 
 
 
 

Elevation in Meters 
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the finite element grid except for the velocities, which are located at the faces of the cells.  

All calculations are based on a time-step and total-time, which is designated by the user.  

The Navier-Stokes equations with some additional terms used by FLOW-3D, and listed 

in their User’s Manual are: 

 

where (Gx, Gy, Gz) are body accelerations, (fx, fy, fz) are viscous accelerations, (bx, by, bz) 

are flow losses in porous media or across porous baffle plates, RSOR and the final terms 

account for the injection of mass at zero velocity.  

 

Model Preparation 

Initially, the topographic data were imported into FLOW-3D.  ASCII formatted x-y-z 

data were directly loaded into FLOW-3D as a data file from which a surface was 

interpolated and based within a rectangular volume.  Additional points and boundaries 

were added to the original topographic survey data in order to better represent the 

original channel, Figure 3.7.  Once an acceptable channel was generated, the model was 

rotated -73.1º in order to orient the flow in the x-direction.  The trees along the banks 

were generated as separate subcomponents in the model and represented as symmetric, 

vertical cylinders.  The cylinders were equal in diameter to the base of the tree they 

represented. 
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Figure 3.7:  FLOW-3D interpolated image of the research site (with trees). 

Direction 
of flow 
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Finite Element Grid Generation 

A 3-dimensional finite element grid, or mesh, was generated for all regions of flow 

within the research site.  The mesh generator incorporated into FLOW-3D is very user 

friendly.  Once the program is in the mesh generating mode, the procedure for producing 

the mesh consists of left clicking with the mouse and dragging the yellow boundary to 

produce the rectangular mesh block desired.  The boundary seen during this procedure 

represents and establishes the i, j, k ordered minimum and maximum boundaries of the 

finite element grid.  After the boundaries are established, the mesh can be manually 

altered within the menu tree.  This is accomplished by entering changes to the x, y, and z 

properties along with the number of elements in each direction.  Figure 3.8 is an 

illustration of the mesh generating procedure and the parameters within the menu tree.    

 

Although the mesh and mesh boundaries could be easily manipulated, there were some 

considerations when developing the mesh.  Licensing agreement for the version obtained 

required that each flow region needed to occupy less than 200,000 nodes.  Each 200,000-

node region was treated as a separate model, with the results of the previous model acting 

as the input of the current flow region.  FLOW-3D recommends that there be no greater 

than a 1 to 2, or 2 to 1 scaling ratio between mesh blocks.  The elements were made as 

“square” as possible to provide consistency among elements, resulting in fewer scaling 

issues during the calculations.  All of the mesh blocks were produced with the same 

number of elements in each direction, allowing additional consistency between mesh 

blocks, although the volumes being modeled were different.  Likewise, the same mesh  
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Figure 3.8:  FLOW-3D image of the mesh generating process.  The yellow box represents 
the mesh boundaries being generated. 
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parameters were used with each modeling scheme; bankfull with trees, bankfull without 

trees, and bankfull with restoration design applied. 

 

In order for the cylinders, representing the trees, to be included into the model, they were 

required to occupy a minimum of two finite elements.  This established a solid volume 

for the cylinder that could then be incorporated into the flow field.  Because the trees 

were the smallest components in the model, they dictated the resolution of the mesh.  The 

flow region for each individual model was decreased until the cell size was small enough 

to include each of the trees lining the bank.   

 

Hydraulic Criteria and Boundary Conditions 

The initial hydraulic criteria and boundary conditions are input manually along with 

default values built in to the model.  This is a summary of the parameters used.  All of the 

parameters of the model were defined in the International System of Units, which could 

be manually changed within FLOW-3D.  Water at 20º Celsius was used as the single, 

Newtonian, incompressible fluid, selected from a list of several options.  This fluid 

corresponded to a viscosity of 0.001 N s/m2 and a density of 1000 kg/m3.  Gravity was 

user defined for the model as –9.8 m/s2, implying the negative z-direction.        

 

The simulations were run till steady state conditions were met for all three scenarios.  The 

objective of this research was to characterize macro-turbulence structure, as opposed to 

turbulence on a micro-scale, which could be obtained with steady state conditions.  There 

were multiple ways to determine when steady state conditions had been met.  While the 
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simulation was in progress, the “Simulate” window allows the modeler to monitor the 

progress of the run.  The FLOW-3D staff suggested when the “stability limit vs. time” 

and “time step size vs. time” become stable, it is an indicator that steady state conditions 

have been met (Figure 3.9).  This technique proved to be accurate after 10 to 15 seconds 

of stability between these parameters.  Steady state was also verified through a visual 

analysis of the data over the entire time frame of the simulation.  When the change in 

velocity magnitude vs. time became very small, steady state conditions were met.  This 

indicated that turbulence had converged on similar patterns at the scale of this research.  

 

The turbulence closure for the model was selected from five different closure schemes.  

The options available were; Prandtl mixing length, one-equation turbulent energy model, 

two-equation k-e model, renormalized group model (RNG), and a large eddy simulation 

model.  A turbulent mixing length can be manually entered when it applies.  The 

turbulence in this research was scaled to the trees as opposed to the channel.  This type of 

turbulence experiences an energy cascade, which in turn, dictated that the two-equation 

k-e model turbulence closure would be most appropriate for simulating this turbulence 

scheme.  

 

The surface roughness k-value for the channel was manually entered within the 

“Geometry” window in the menu tree.  A common surface roughness was defined for all 

of the subcomponents within component 1 of the geometry menu.  Therefore, the 

surfaces of the trees were defined as the same roughness as the channel itself.  Likewise,  
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Figure 3.9:  A FLOW-3D image of a simulation in progress showing the stabilization of 
the “stability limit vs. time” and “time step size vs. time”, indicating steady state 
conditions.
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the channel bed had the same roughness coefficient as the banks.  This could be altered if 

each geometry component was entered separately, but due to the scale of this research, 

similar roughness coefficients between the subcomponents were not a factor.  The 

roughness coefficient “k” was a value unique to FLOW-3D and is defined below as: 
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where Rh is the hydraulic radius (area / wetted perimeter) and n is defined by values of 

Manning “n”.  The research channel had a value of k = 0.05, Rh = 2.78 meters, and n = 

0.019.  This value of “k” was determined by actual channel characteristics and confirmed 

through comparisons with actual flow properties. 

 

The boundary conditions of the mesh were established under the “Boundary” tab.  

Boundary conditions are established for the minimum and maximum mesh boundaries of 

the x, y, and z-axes.  The only mesh boundaries that changed between models were those 

in the x-direction, which was the direction of flow.  A “Specified velocity” boundary was 

established at the most upstream location.  This allowed the user to specify a uniform 

velocity at this boundary.  However, the uniform velocity boundary was established in 

the channel five meters upstream of the study site.  This allowed the streambed and bank 

roughness to set up a velocity gradient throughout the cross-section before the discharge 

reached the research site.  An “Outflow” boundary was established at all downstream 

boundaries in the x-direction.  Outflow boundaries represent a condition of continuation 

in the channel and flow, and all their related properties at that boundary.  In essence, the 



 49

conditions remained constant if the channel was instantaneously severed at that point.  

“Grid Overlay” mesh boundaries were used at the upstream boundary when continuing a 

flow to a downstream model.  The grid overlay boundary allowed the outflow conditions 

of the downstream boundary of the upstream simulation to begin the upstream conditions 

of the downstream simulation.  This mimicked one continuous channel over several 

different models.  The mesh boundaries in the y and z-directions were set as “Symmetry” 

boundaries.  Symmetry boundaries imply there is no flux of any property across that 

boundary and no shear. 

 

Initial conditions of the model were controlled within the “Initial” tab.  The initial water 

level was set to a height of 1.72 meters.  This depth was computed using HEC-RAS, a 1-

dimensional hydrodynamic model, during a bankfull simulation of the research site.  

Hydrostatic pressure was applied in the z-direction, which was controlled by checking a 

box or specifying a uniform pressure.  The time interval of the solutions was set to 0.05 

seconds within the “Output” tab.  This refers to the change in time for which each 

equation being solved and dictates 20 simulations for each second the model was 

operated. 

 

Post Processing 

FLOW-3D was used for all post-processing.  The post processing was controlled from the 

“Analyze” tab in FLOW-3D.  The data were analyzed as 2 and 3-dimensional displays.  

The output file was selected from the “Open results file” tab.  The 3-dimensional data 

analysis was created with the fraction of fluid representing the entire mesh (Iso-surface) 
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as a solid volume component overlay.  The color variable analysis was displayed in terms 

of velocity magnitude and x, y, and z-velocities.  The times at which the simulation is 

displayed was controlled from the “Time frame” toggle.  Figure 3.10 illustrates the 3-

dimensional analysis window setup for a 10-second velocity magnitude display.  The 2-

dimensional analysis window could be set in terms of the x-y, y-z, or x-z planes.  The 

contour variable was set similar to that of the 3-dimensional set-up with the capability of 

choosing a vector type.  A plain vector type was used in this research.  The x, y, and z 

limits were controlled to display only the areas desired for analysis.  The time frame was 

controlled similar to the 3-dimensional analysis.  The number of cells displaying vectors 

was controlled through the “Advanced” option and entering a “Vector frequency”.  

Likewise, the vector length was controlled with a scaling factor entered in the main 

window.  The vector frequency and scale were commonly defined for all of the displays 

to produce results that could be easily interpreted.  Figure 3.11 illustrates the 2-

dimensional analysis window setup for a 10-second velocity magnitude display, in the x-

y plane, with plain vectors scaled to a factor of 2.  After completing the analysis set-up, 

the simulation is rendered and displayed in the “Display” window.  

 

The display window has several options for viewing the simulation.  For 3-dimensional 

displays, the image can be rotated, magnified, and viewed from several planes.  A 

snapshot of any image can be saved or an animation can be made over a specified time 

period.  The legend can be displayed anywhere on the screen and there are also options 

for controlling the light and transparency of the image.  Figure 3.12 is an example of a 3-

dimensional display.  The 2-dimensional displays cannot be rotated or magnified,  
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Figure 3.10:  A FLOW-3D image of the 3-dimensional analysis window setup for a 10-
second velocity magnitude display. 
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Figure 3.11:  A FLOW-3D image of the 2-dimensional analysis window setup for a 10-
second velocity magnitude display, in the x-y plane, with plain vectors scaled to a factor 
of 2.   
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Figure 3.12:  A FLOW-3D image of an example of a 3-dimensional display. 
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however it is easy to save an image and create animations.  The vector lengths can also be 

formatted in the display window.  Figure 3.13 is an example of a 2-dimensional display 

in the y-z plane. 
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Figure 3.13:  A FLOW-3D image of an example of a 2-dimensional display in the y-z 
plane. 
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Chapter 4:  Results 

There were three different scenarios for the Beaver Creek research site simulated in 

FLOW-3D.  All of the simulations shared the exact same finite element grid, mean 

discharge, and initial boundary conditions.  The initial conditions were set with a flow 

rate of 1.68 m3/s, 1.72 meters of water height, and 0.4-meters/second velocities in the 

negative x-direction, which is in the downstream direction at the inflow cross-section for 

the modeled reach.  These parameters were estimated using a HEC-RAS simulation of 

the research site in combination with a visual analysis of flow characteristics of an actual 

bankfull flow event. 

 

Channel with Trees 

The first simulation corresponded to the Beaver Creek reach with all of the trees present.  

This simulation represented the current conditions at the research site.  Figure 4.1 

illustrates the y and z-velocities experienced at three different water heights within the 

channel: 1.82 meters, 1.33 meters, and 0.85 meters.  This pattern is consistent for all of 

the y and z-velocity figures.  The y and z-velocities are characterized as being either in 

the positive or negative direction, with red symbolizing positive and blue symbolizing 

negative.  The overall magnitudes of these velocities were small relative to the dominant 

x-velocities.  A Tecplot image of the channel and trees is shown in Figure 4.2 to help 

show the locations of the trees and how they appear in the channel.  The simulated 

velocity magnitudes were captured in y-z cross-sections and shown in Figure 4.3.  The 

twelve cross-sections represented in the figure are irregularly spaced throughout the 

channel and were selected to show dominant flow patterns.  The cross-sections are in  
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Figure 4.1:  Modeled positive and negative y and z-velocities (m/s) in the channel with the trees present.

  
Direction of Flow 
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Figure 4.2:  Tecplot image of the channel with all of the trees present to better illustrate the location of the trees with relation to the 
study site.

Meters 
Elevation in Meters 

  
Direction of Flow 
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Figure 4.3:  Modeled velocity magnitude and velocity magnitude vectors illustrated in y-z 
cross-sections in the channel with the trees present.

  
Maximum Velocity Vector for each cross-section 
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downstream order. Similarly, all of the figures consisting of y-z cross-sections will be 

represented in a consistent fashion.  

 

The FLOW-3D simulation of the channel with the trees present, was visually analyzed 

using the velocity magnitude y-z cross-sections and flow vectors on 1-meter intervals 

downstream, (Appendix-A).  The results showed a lack of channel-scale helical flow 

patterns.  Instead, there were small, local circulation cells that scaled to the turbulence 

caused by the trees.  The circulation cells developed rapidly and then dissipated upon 

approaching downstream trees.  There were frequent, opposing cross-channel flow 

patterns caused by trees set directly across from one another.  The flow would be directed 

toward the center of the channel by the trees and then dissipated when it came together in 

the center.  The circular and cross-stream patterns were mostly confined to the outer 

banks of the cross-sections due to dominant downstream flows within the center of the 

cross-sections.  The y and z-velocities were patchy in nature throughout the channel.  

They varied throughout the water column and demonstrated few distinct patterns. 

 

The FLOW-3D simulation showed zones of high turbulent kinetic energy around the 

trees, Figure 4.4.  Losses of energy due to the turbulence cause decreased flow within the 

areas following the impeding trees.  Instead, the majority of the flow was concentrated 

within a zone in the center of the channel, where the trees were absent and the turbulent 

kinetic energy was small.  This high-velocity zone showed little fluctuation in velocity 

and had a semi-uniform flow distribution.  Although there were low flow regimes within  
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Figure 4.4:  Modeled turbulent kinetic energy diagram of the channel with the trees present.  

 (m2/s3)

Direction of Flow
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the impeding tree region, the flow areas immediately upstream and around the trees 

experienced high velocities, sometimes in excess of 0.82 m/s. 

 

Large-scale heterogeneity in bed-topography, such as channel shape and ledges within 

the streambed, had moderate affects on the flow patterns in the channel with trees.  A 

noticeable immediate depression in the streambed at meter 45 of the channel caused 

moderate changes to the velocity patterns.  Differences between the bed-topography and 

bank-tree structure were difficult to differentiate. 

 
Channel without Trees 

The second scenario was identical to the first, except with all of the trees removed.  This 

simulation was used as a control for the modeling experiment in order to represent flow 

patterns caused by bank and bed roughness only.  Figure 4.5 illustrates the positive and 

negative y and z-velocities in the channel with the trees absent.  The velocity magnitudes 

are represented in y-z cross-sections in Figure 4.6, stressing again that the cross-sections 

have been selected at locations within the research site that show dominant flow patterns 

and are not at regular intervals or similar between scenarios. 

 

The channel with the trees absent was also visually analyzed using velocity magnitude y-

z cross-sections and flow vectors on 1-meter intervals progressing downstream, 

(Appendix-B).  The simulation showed strong, alternating cross-channel flow patterns 

resulting in channel-scale helical flow.  There was obvious channel-scale flow 

acceleration and deceleration throughout the model.  The accelerations and decelerations 
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Figure 4.5:  Modeled positive and negative y and z-velocities (m/s) in the channel with the trees removed. 

  
Direction of Flow 
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Figure 4.6:  Modeled velocity magnitude and velocity magnitude vectors illustrated in y-z 
cross-sections in the channel with the trees removed. 

  
Maximum Velocity Vector for each cross-section 
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were gradual, thus having moderate induction of cross-channel pattern caused by the 

changing velocities.  Again, the y and z-velocities were patchy in nature throughout the 

channel.  They varied throughout the water column and demonstrated few distinct 

patterns.     

 

The majority of the flow was distributed across a greater part of the cross-section.  This 

caused a uniform flow field with the highest velocity zone occurring within the centroid 

of the channel and having lower velocity magnitudes surrounding all sides of the high 

velocity zone.  The vectors across the cross-section were also relatively uniform, 

indicating similar flow patterns.   

 

Large-scale heterogeneity in streambed topography had a strong influence on flow 

patterns.  At meter 42 of the model, a ledge along the channel bank initiated a localized 

high velocity zone.  Likewise, the depression at meter 45 caused strong flow vectors 

toward the bed.  However, the majority of the turbulent kinetic energy produced in this 

simulation was due to bed and bank roughness, therefore appearing to have a great 

influence on the flow regime, Figure 4.7.  

 

Channel with Restoration Design 

The third simulation exhibited a restoration design in which three patches of trees were 

left, spaced 5 to 7 channel widths apart, to initiate flow acceleration and deceleration.  

This simulation was designed to induce helical flow patterns in order to produce and 

maintain pool-riffle bedforms.  Figure 4.8 shows the positive and negative y and z- 
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Figure 4.7:  Modeled turbulent kinetic energy diagram of the channel with the trees absent.
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Direction of Flow
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Figure 4.8:  Modeled positive and negative y and z-velocities (m/s) in the channel with the restoration design implicated.

  
Direction of Flow 
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velocities in the channel with the restoration design.  Again, Figure 4.9 is a Tecplot image 

of the channel with the restoration design implicated to better show the tree locations and 

the velocity magnitudes are illustrated in y-z cross-sections in Figure 4.10.     

 

Similarly, the channel with the restoration design intact was visually analyzed using 

velocity magnitude y-z cross-sections and flow vectors on 1-meter intervals progressing 

downstream, (Appendix-C).  The simulation showed strong, alternating cross-channel 

flow patterns resulting in channel-scale helical flow.  The flow acceleration and 

deceleration was controlled by the restoration design, producing acute changes in velocity 

patterns upon entrance and exit of the restoration structure.  The flow accelerations were 

concentrated toward the center of the cross-sections, while the deceleration areas were 

distributed more uniformly.  The rapid changes in velocity patterns initiated strong cross-

channel vectors.  The near bed velocities also exhibited defined, channel-scale 

accelerations and decelerations.  However, the y and z-velocities were still patchy in 

nature throughout the channel, varying throughout the water column and demonstrating 

few distinct patterns. 

 

The majority of the turbulent kinetic energy was recognized within the flow constrictions, 

causing the flow to converge toward the center of the cross-section, Figure 4.11.  

However, bed and bank roughness also revealed moderate turbulent kinetic energy.  The 

large-scale heterogeneity in streambed topography showed high turbulent kinetic energy 

and strongly influenced flow patterns.  Similar to previous results, a ledge along the 
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Figure 4.9:  Tecplot image of the channel with restoration design to better illustrate the location of the trees with relation to the study 
site.
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Figure 4.10:  Modeled velocity magnitude and velocity magnitude vectors illustrated in 
y-z cross-sections in the channel with the restoration design implemented.

  
Maximum Velocity Vector for each cross-section 
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Figure 4.11:  Modeled turbulent kinetic energy diagram of the channel with the restoration design implemented. (m2/s3)

Direction of Flow
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channel bank at meter 42 of the model, initiated a localized high velocity zone while the 

depression at meter 45 produced very large, defined flow vectors toward the bed. 
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Chapter 5:  Discussion of Results 

The results of the FLOW-3D simulations supported the objectives of this research in 

characterizing the turbulent structure within three different scenarios of the Beaver Creek 

research site.  FLOW-3D was capable of establishing steady state flow regimes that 

represented the three scenarios in question.  The simulation of the incised channel with 

trees inhibiting bankfull discharge did not show evidence of channel-scale helical flow 

patterns.  The simulation of the incised channel with the trees removed did possess 

channel-scale helical flow patterns during bankfull discharge.  Likewise, the simulation 

of the channel with three tree clusters spaced 5 to 7 channel widths apart, exhibiting 

channel restoration modifications, showed strong alternating velocities and channel-scale 

helical flow patterns during bankfull discharge. 

 

The FLOW-3D simulation of the channel with trees inhibiting bankfull flow behaved 

much differently than the other two scenarios, as expected.  The trees lining the bank 

produced excessive turbulent kinetic energy, which decreased the total available energy 

for the system.  The turbulence in this channel was scaled to the trees, preventing 

channel-scale helical patterns to develop.  As a result, large circulation cells evolved 

along the banks while the majority of the flow was directed toward the center of the 

channel.  This was the region free from excessive roughness and essentially the path of 

least resistance.  The increased velocities within the center of the channel would be 

expected to further incise the channel in order to create more uninhibited flow field 

(Simon 1995, Palhegyi et al. 2003).  Although the majority of the discharge was directed 

toward the center of the channel, localized high velocity zones were recognized directly 
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around many of the trees.  These localized high velocity zones could induce scour and 

erosion around the trees and increase their rate of failure (Sturm 2001).  The failure of 

these trees would subject the channel to increased sediment loads and decreased stream 

power, causing the channel to progress into a Stage IV channel within the Channel 

Evolution Model, Figure 2.1  (Bledsoe et al. 2002, Rychborst 1980, Simon 1995).    

 

The simulation of the channel with the trees removed displayed results consistent with 

current research in straight, alluvial channels.  The model-developed channel-scale 

helical flow patterns, and flow acceleration-deceleration patterns on a 5 to 7 channel 

width basis (Dietrich 1987, Keller and Melhorn 1978, Rhoads and Welford 1991).  These 

processes are consistent with producing and maintaining pool-riffle sequences (Dietrich 

1987, Rhoads and Welford 1991).  The velocities within this simulation were distributed 

relatively evenly across much of the cross-sections, demonstrating the possibility of 

increased shear stresses at the boundaries, a trait commonly observed in incised channels 

(Bledsoe et al. 2002, Rychborst 1980).  Heterogeneity within the streambed and banks 

exhibited greater releases of turbulent kinetic energy and had strong influences on flow 

characteristics.  These characteristics were also noticeable in the channel with the 

restoration design present.  Likewise, the altered channels revealed very pronounced flow 

vectors into the bed of the depression at meter 45, supporting the theories of increased 

shear stresses in pools during bankfull discharges (Dietrich 1987, Rychborst 1980, Sear 

and Newson 2004, Wilkinson et al. 2004).  The y and z-velocities were very patchy in 

nature throughout all of the channels.  This demonstrated the highly disordered macro-

structure of turbulence due to heterogeneous boundary layers experienced in natural 



 75

channels (Keshavarzi et al. 2005, Yalin 1992, Ziaei et al. 2005).  This lack of uniformity 

was expected within the channel with trees, but more regular patterns were expected in 

the channels without trees and restoration design.  These observations further stress how 

flow regimes are strongly affected by the irregular bed and bank topography commonly 

experienced in natural channels.   

 

The simulation with the restoration design applied to the channel exhibited highly defined 

velocity acceleration-decelerations zones.  These alternating velocity patterns were more 

exaggerated in the channel with the restoration design implemented than in the other two 

models.  These discrete flow fields are apparent in pool-riffle sequences and are capable 

of supporting diverse biological ecosystems (Sear and Newson 2004, Schwartz 2002).  

Likewise, the initiation of cross-channel flow patterns was also more pronounced in the 

channel with the restoration design implemented, and concurred with results of Rhoads 

and Welford’s research in 1991, which showed that abrupt variations in boundary 

roughness produce helical flow in straight channels.  Along the same path, the abrupt 

anisotropic nature of the turbulence in this channel, demonstrated in the turbulent kinetic 

energy diagram, has been connected with processes encouraging bed scour at recurring 

intervals (Rhoads and Welford 1991).  The acute nature of the hydraulic patterns that 

were recognized within the channel containing the implemented restoration design have 

also been demonstrated to initiate and maintain pool-riffle sequences in straight channels 

(Dietrich 1987, Gregory et al. 1994, Knighton 1998, Rhoads and Welford 1991).   
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Many characteristics of the results of the three simulations were consistent with current 

literature.  The simulation of the channel with the trees present had more hydraulic 

differences than the simulations of the other two scenarios.  Although both of the 

modified channels displayed characteristics responsible for the initiation and maintenance 

of pool-riffle sequences, these characteristics were more pronounced in the channel with 

the restoration design implemented.  While these restoration structures initiated defined 

patterns, the hydraulic behaviors varied greatly between the sequences of the tree 

clusters.  The degree and length of the constriction dictated the hydraulic characteristics 

of the stream.  Therefore, future research to characterize the hydraulic affects of differing 

channel constrictions is necessary to optimize the benefits of the restoration design.  The 

fate of successful channel restoration designs requires less invasive techniques that do not 

completely modify the channel geometry and cannot be destroyed by continuously 

changing systems.  The success of these designs should not be determined through trial 

and error, but must be tested beforehand and proven scientifically.  The establishment of 

pool-riffle sequences is the most important criterion for evaluating the success of channel 

restoration projects, so the hydraulic maintenance dictating the sediment transport and 

morphological evolution processes of these sequences should be the most important 

criteria in the channel restoration design (Thompson 2002, Cao et al. 2002).   
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Restoration Design 
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