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ABSTRACT 

Human noroviruses (HNoVs) are considered the leading cause of acute non-bacterial 

gastroenteritis worldwide. Effective chemical disinfectants to inactivate HNoVs are needed. 

Since HNoVs cannot be cultivated in the lab, cultivable surrogates, feline calicivirus (FCV-F9) 

and murine norovirus (MNV-1), are used to determine inactivation using infectivity plaque 

assays. This study aimed to:  1) determine the ability of benzalkonium chloride (BAC) and 

potassium peroxymonosulfate (KPMS) to inactivate FCV-F9 and MNV-1 in vitro using 

suspension and carrier tests under clean and simulated dirty (5% fetal bovine serum) conditions 

over 1 h at room temperature; 2) determine inactivation of FCV-F9 and MNV-1 in suspension 

and carrier tests over 1 h at room temperature by sodium metasilicate (SMS). In suspension tests, 

BAC caused 1.94 and 2.59 log reductions of low and high FCV-F9 titers after 1 h, respectively. 

MNV-1 at low and high titers was reduced by > 3 and 1.47 logs with BAC after 1 h, respectively. 

KPMS at 5 and 10 mg/mL reduced low titers of both viruses to non-detectable levels within 30 s. 

High FCV-F9 titers were non-detectable after 2 min with 5 mg/mL and within 30 s with 10 

mg/mL of KPMS. KPMS at 5 mg/mL had little effect against high titers of MNV-1, but caused a 

4.61 log reduction after 5 min with 10 mg/mL of KPMS. Using clean carrier tests, KPMS at 5 

and 10 mg/mL reduced both tested viruses at low titers after 30 s and only high FCV-F9 titers 

after 10 min to undetectable levels. MNV-1 at high titers were reduced to non-detectable levels 

after 15 min with 10 mg/mL KPMS. BAC reduced low titers of both viruses to undetectable 

levels after 1 h using carrier tests with no significant reduction of high titers even after 2 h. The 

antiviral effect of both chemicals decreased under simulated dirty conditions. Both viruses were 

reduced within 15 s by 5% and 10% SMS using suspension tests. FCV-F9 and MNV-1 at high 
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titers were reduced to undetectable levels after 2 min and 15 s, respectively with 2% SMS. 

KPMS and SMS appear suitable for the rapid control of HNoV transmission.  
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CHAPTER I 

 LITERATURE REVIEW 

 

Introduction 

 Foodborne illnesses are regarded as leading public health concerns worldwide as causes 

of morbidity and mortality. It is estimated that foodborne diseases cause approximately 9.4 

million illnesses, 55961 hospitalizations, and 1351 deaths in the United States each year 

associated with 31 known pathogens (Scallan et al., 2011). The causative agents of foodborne 

illness include viruses, bacteria, parasites, toxins, metals, and prions (Mead et al., 1999). Among 

them, viruses are currently considered the leading cause of foodborne illnesses, responsible for 

59% (5.5 million) of foodborne disease cases (Scallan et al., 2011).  

Enteric viruses that can be transmitted by foodborne or waterborne routes include human 

caliciviruses (noroviruses, sapoviruses, vesiviruses and lagoviruses), hepatitis A and E virus, 

human enteroviruses (poliovirus, coxsackie A and B, echovirus, enterovirus serotypes 68-71), 

astroviruses, other small round viruses, parvoviruses, and rotavirus (Sair et al., 2002). From an 

epidemiological perspective, the agents that are responsible for the most common cause of acute 

viral gastroenteritis around the world are human noroviruses. Current estimates are that human 

noroviruses are responsible for approximately 3.2 million (58%) illnesses, 14,550 (26%) 

hospitalizations and 287 (11%) deaths annually in the U.S. alone (Scallan et al., 2011). However, 

these figures can be considered as an underestimate due to the disease being under-reported and 

cases frequently undetected or outbreaks being uninvestigated. Therefore, it is imperative to 

develop effective inactivation strategies to control human norovirus spread and prevent their 

outbreaks in food processing and nosocomial environments.  
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Human Norovirus and its Surrogates 

Human norovirus was first discovered by Albert Kapikian in 1972 using immune electron 

microscopy (IEM) of stool samples collected from a 1968 outbreak of gastroenteritis in Norwalk, 

Ohio, USA (Kapikian et al., 1972). Since then, the so-called “Norwalk virus” began to be 

significantly recognized. Norovirus, the prototype member of small round structured viruses 

(SRSVs), belongs to the family Caliciviridae based on the genetic sequencing work (Jiang et al., 

1993; Xi et al., 1990). Currently, this family is comprised of four genera: noroviruses 

(represented by Norwalk-like viruses, having Norwalk virus prototype strain), sapoviruses 

(represented by Sapporo-like viruses, having Sapporo virus prototype strain), vesiviruses 

(represented by vesicular exanthema of swine virus and feline calicivirus) and lagoviruses 

(represented by rabbit hemorrhagic disease virus and European brown hare syndrome virus), the 

former two genera being significant to human epidemic gastroenteritis (D’Souza et al., 2007; 

Sair et al., 2002).  

The genus norovirus is comprised of a genetically diverse group of non-enveloped, 

single-stranded, positive sense RNA viruses. These viruses are icosahedral in shape with a 

diameter of 27 to 35 nm; and buoyant density of 1.33-1.41 g/cm3 in CsCl (Kapikian et al., 1972). 

The norovirus capsid protein consists of 180 capsid protein molecules possessing a molecular 

weight ranging from 59,000 to 65,000 Da (Jiang et al., 1993; Kapikian et al., 1996). The 

norovirus genome consists of three open reading frames (ORF) to encode structural and non-

structural proteins. ORF1 possesses the longest nucleotides and encodes the non-structural 

proteins (RNA dependent RNA polymerase); ORF2 encodes the viral capsid protein; and ORF3 

encodes a small polypeptide conjectured to package the genome into virions (Donaldson et al., 

2008; Jiang et al., 1993).  



3 

 

Based on the sequencing analysis of the RNA-dependent RNA polymerase region and 

capsid protein region, noroviruses are classified into five genogroups. Genogroups (G) I, GII and 

GIV are associated with human infections and responsible for foodborne illness outbreaks; they 

are represented by the prototype Norwalk virus, prototype Snow Mountain agent and prototype 

Ft. Lauderdale virus, respectively. The other genogroups, GIII and GV are associated with animal 

infections, represented by prototype, bovine enteric calicivirus and prototype murine norovirus, 

respectively (D’Souza et al., 2007). Among human infecting genogroups, GII is predominant, 

responsible for the most human norovirus outbreaks. As reported previously, approximately 73% 

of human norovirus illnesses are caused by GII viruses (Zheng et al., 2006). The emerging of 

virulent strains including GII.4 can cause deaths in the elderly and immune-compromised 

(Siebenga et al., 2010). Norovirus genogroups can be further subdivided into genotypes, also known 

as genoclusters. Currently, GI is comprised of eight genotypes and GII has at least seventeen 

genotypes (Zheng et al., 2006).   

Human noroviruses, in a similar manner to other enteric viruses, can be transmitted by the 

fecal-oral route or by direct contact with an infected person as well as by consuming 

contaminated food or water or touching contaminated surfaces (Kukkula et al., 1999; Weinstein 

et al., 2008). Aerosolized vomitus is another transmission mode for human noroviruses 

(Patterson et al., 1997). The difficulty in controlling the spread of human noroviruses is due to 

their high primary and secondary attack rate, environmental stability and low infectious dose 

(Caul, 1994; D’Souza et al., 2006; Liu et al., 2009). Outbreaks associated with human 

noroviruses have occurred in a variety of closed settings, including healthcare facilities, 

restaurants, cruise ships, schools, hotels, and other institutional settings (CDC, 2011), as 

evidenced by the environmental persistence of human noroviruses. Further, the survival of 
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human noroviruses in human gastrointestinal tract indicates their persistence in the presence of 

degrading enzymes and extreme pH environments (Sair et al., 2002). Previous studies have 

shown that human noroviruses can be detected on food-contact surfaces for up to 7 days at room 

temperature; can persist at temperatures ranging from freezing to 60oC (30 min); at pH 2.7 for 3 

h at room temperature in stool; with treatment of 20% ether for 18 h at 4oC; and resistant to low 

concentrations of chlorine (3.75-6.25 mg/L) (D'Souza et al., 2006; D’Souza et al., 2007; Dolin et 

al., 1972; Patel et al., 2009; Teunis et al., 2008). The infectious dose of human noroviruses is 

quite low; only 10 infectious units can cause disease. The incubation period of human norovirus 

infection is typically 12-48 h and characterized by mild to severe gastroenteritis with symptoms 

include vomiting, nausea, diarrhea, and abdominal pain. The duration of the infection may last 

12-72 h; however, fecal viral shedding can be extended for several more days (Grohmann et al., 

1981; Cliver et al., 2002; D’Souza et al., 2007). Although, HNoV infection itself is self-limiting 

in healthy individuals, they can be life-threatening to the elderly and immune-compromised 

(Donaldson et al., 2010; Siebenga et al., 2009).  

To date, the major hurdle for gaining a better knowledge of human noroviruses lies in the 

fact that human noroviruses cannot be cultivated in cell culture. Therefore, cultivable surrogates 

are needed to study the basic pathology of human noroviruses, explore the environmental 

stability of these viruses and determine the efficacy of various control strategies. Several 

cultivable enteric caliciviruses within the Caliciviridae family have been utilized as human 

norovirus surrogates, including feline calicivirus (FCV-F9), murine norovirus (MNV-1), canine 

calicivirus (a vesivirus) (Mochizuki et al., 1993), Tulane virus (Farkas et al., 2008) and porcine 

enteric calicivirus (a sapovirus) (Guo et al., 1999). Currently, the most widely used surrogates 

are FCV-F9 and MNV-1, which are genetically similar to norovirus because they all belong to 
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the Caliciviridae family. FCV-F9 is positioned in the Vesivirus genus, causing acute oral and 

upper respiratory tract disease in feline populations, typically cats (Green et al., 2000; Radford et 

al., 2007). This virus has been extensively utilized as a surrogate for human norovirus as a model 

of evaluating viral persistence and reduction due to its ease of culture and quantification. 

However, unlike human norovirus, FCV-F9 is transmitted by the respiratory instead of the fecal-

oral route (Green et al., 2001). Further, this virus is more vulnerable to environmental stresses, 

being sensitive to low pH and elevated temperatures as well as chemical treatments (D'Souza and 

Su, 2010; Doultree et al., 1999; Slomka and Appleton, 1998). MNV-1, a recently cultivable 

surrogate for human norovirus, belongs to the Norovirus genus, which indicates more 

morphological and genetic similarity to human noroviruses; this virus is currently the only 

norovirus known in literature that is amenable to cell culture (Wobus et al., 2006). MNV-1 can 

infect and replicate in mice. Like human norovirus, this virus is transmitted via the fecal-oral 

route. Further, MNV-1 shares many biochemical and genetic characteristics with human strains, 

including size, shape and buoyant density (Wobus et al., 2006). With such similarities, MNV-1 

shows considerable promise as a surrogate for human noroviruses. However, there are 

differences. MNV-1 binds to sialic acid on the host cell surface as a receptor, while human 

norovirus recognizes the histoblood group antigens (HBGAs) (Taube et al., 2009); and the two 

viruses have different clinical manifestations for MNV-1 does not cause diarrhea or vomiting 

(Karst et al., 2003). Thus, an effective animal model is still being investigated. Recently, Tulane 

Virus has been cultivated in the laboratory and is considered an alternate surrogate to MNV-1 by 

some investigators (Li et al., 2012; Tan and Jiang, 2010). This enteric virus was isolated from 

stool samples of captive juvenile rhesus macaques, which can replicate in vitro in monkey cell 

lines (Farkas et al., 2008). Tulane virus has a diameter of 36 nm and a buoyant density of 1.37 
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g/mL; and most importantly, this virus recognizes human HBGAs as a receptor (Farkas et al., 

2010). However, Tulane virus belongs to a new calicivirus genus separate from 

the Norovirus genus and the pathogenicity of Tulane virus in rhesus macaques remains unknown 

(Farkas et al., 2008). Further, Hirneisen and Kniel compared the behavior of MNV-1 and Tulane 

virus and concluded that MNV-1 is a better surrogate for HNoV, as MNV-1 is more pH (2.0 to 

10.0) stable, more resistant to chlorine treatment at 2 ppm and more persistent in tap water at 4 

oC (Hirneisen and Kniel, 2013). Overall, the infectivity studies of surrogates can be used to gain 

a better understanding of human noroviruses; however, they cannot always model human strains. 

Hence, it is necessary to use caution when interpreting the results of surrogates. Feeding and 

challenge studies are deemed more suitable by some investigators.  

Chemical Inactivation of Human Norovirus surrogates 

To control the spread of human noroviruses and their emerging virulent forms, control 

strategies have been evaluated including heat inactivation, non-thermal methods, chemical and 

natural bioactives as alternates. Since human noroviruses can be transmitted via the fecal-oral 

route, human excretions including stool and vomit can be the main source of human norovirus 

environmental transmission. The titer of viral particle shed in the feces can be as high as 108 /g 

(Atmar et al., 2008). Therefore, it is imperative to implement control measures to interrupt the 

transmission of human noroviruses. The use of chemical disinfectants can be considered as an 

effective intervention strategy to prevent transmission of human noroviruses from contaminated 

surfaces (Barker et al., 2004).  
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Chlorine:  

Chlorine is an important chemical applied as a disinfectant to kill microorganisms in 

drinking water and swimming pools. Chlorine is the active ingredient of store-bought household 

bleach, which normally contains 5.7% available chlorine. The dosage typically used is 4 ppm for 

disinfecting water.  

The antiviral activity of free chlorine is proposed to occur by damaging the capsid as well 

as RNA (McDonnell and Russell, 1999). Li and others (2002) reported that chlorine at 10 or 20 

mg/L concentration could completely inactivate hepatitis A virus (HAV) after 30 min of 

exposure in a cell culture model. Using an enzyme-linked immunosorbent assay, the 

disappearance of antigenicity was observed after chlorine treatment/inactivation, which indicates 

that chlorine may target nucleic acids rather than capsid proteins. It was reported that the 

inactivation of HAV was due to the damage of the 5’ nontranslated regions (5’NTR), as 

evaluated by long-overlap RT-PCR (Li et al., 2002). Furthermore, Baert and others (2009) 

suggested that FCV, MS2 and HAV react similarly to chlorine because a similar decline was 

observed among FCV, MS2 and HAV (Baert et al., 2009). Allwood and others (2004) observed 

2.9 log reductions of both FCV and MS2 on leafy vegetables treated with 200 ppm chlorine after 

2 min of exposure (Allwood et al., 2004). Similarly, Casteel and others (2008) found that 

produce treated with 20 ppm chlorine for 10 min enabled a reduction of at least 1.7 log PFU/mL 

HAV and MS2 (Casteel et al., 2008).  

Chlorine was found to be effective against viruses based on the dose, contact time, and 

the type of viruses (Table 1.1). FCV was reduced by 2.9 log10 PFU/mL on lettuce after a 2 min 

treatment with 15 ppm chlorine, while MNV-1 was reduced by 1.4 log10 PFU/mL under the same 
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experimental conditions (Fraisse et al., 2011). Chlorine at 200 ppm reduced FCV-F9 at low titers 

(~5 log PFU/mL) on produce to undetectable levels after a short contact time of 15 s or 30 s, but 

only ≤1.4 log reduction of high titers (~7 log PFU/mL) (Su and D’Souza, 2011). MNV-1 reached 

lower reductions compared to FCV-F9 at both low and high titers under the same treatment and 

contact time with a 2~3 log-PFU reduction and <1.3 log-PFU reduction, respectively (Su and 

D’Souza, 2011).  Using a surface test, 5000 ppm of chlorine was found to almost completely 

inactivate FCV-F9 at both low titers (~5 log PFU/mL) and high titers (~7 log PFU/mL) after 30 s 

or 1 min contact time, respectively at room temperature (D’Souza and Su, 2010). Duizer and 

others (2004) suggested that chlorine at concentration of ≥3000 ppm could completely inactivate 

FCV-F9 after a 10 min exposure at room temperature (Duizer et al., 2004). Kitajima and others 

(2010) found that MNV-1 was inactivated by more than 4 logs after 120 min and 0.5 min contact 

time with initial free chlorine concentration of 0.1 and 0.5 mg/L, respectively (Kitajima et al., 

2010). The findings were similar with Belliot and others (2008), with inactivation of MNV-1 by 

>4 log after treatment with 0.26% chlorine after a 0.5 min contact time (Belliot et al., 2008). 

Using a suspension test, 0.3 ppm of free chlorine was found to reduce partially purified FCV-F9 

by >4.6 logs after a 5 min exposure (Urakami et al., 2007). However, Doultree and others (1999) 

observed a 5 log reduction in the infectivity of FCV-F9 after 1 min of exposure to a 

concentration of 5000 ppm free chlorine (Doultree et al., 1999). It is generally recognized that 

relatively higher concentrations of chlorine are needed to inactivate human norovirus surrogates 

on the surfaces. For example, Whitehead and McCue (2010) found that FCV-F9 with 100 ppm 

chlorine for 1 min resulted in <2.3 log reduction, but was reduced by >3 log with 1,000 ppm 

chlorine after the same exposure time (Whitehead and McCue, 2010). The results were similar to 

the reports by Jimenez and Chiang (2006). They observed a 3.2 log reduction treated by 100 ppm 
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chlorine and a 6.6 log reduction by 1,000 ppm chlorine after 10 min (Jimenez and Chiang, 2006). 

Gulati and others (2001) reported that, after a range of 1-10 min of exposure to different 

concentrations of chlorine, a <1 log reduction was observed by <800 ppm chlorine, while a 3.4 

log reduction with 5000 ppm chlorine was observed (Gulati et al., 2001). Similarly, Doultree and 

others (1999) found that <500 ppm and 5000 ppm of chlorine resulted in a <3 log and 5 log 

reduction, respectively after 1 min of contact time (Doultree et al., 1999). Fewer studies have 

been conducted with MNV-1. Girard and others (2010) observed that MNV-1 was completely 

inactivated by 3000 ppm free chlorine after both 5 min and 10 min exposure, as determined by 

infectivity assay, but with a 4 log reduction using real time RT-PCR (Girard et al., 2010).  

It is believed that the effect of chlorine on inactivating human norovirus surrogates is 

readily decreased by organic matter. For instance, Poschetto and others (2007) observed that 

FCV-F9 was reduced by >5 log with 4500-5000 ppm of free chlorine after 15 min contact time 

without feces, while with feces, a 4 log reduction was observed with 5500 ppm after the same 

exposure time (Poschetto et al., 2007).  

Although chlorine is effective against viruses, it may create harmful disinfection by-

products including trihalomethanes, which is dangerous to life and health, and produces 

unfavorable sensory effects. Chlorine can also bleach food and carcinogenic byproducts can be 

formed by the interaction of chlorine with organic matter (Dunnick and Melnick, 1993). Hence, 

alternate disinfectant methods are being sought. 

Alcohols:  

 Ethanol is a commonly employed sanitizer and disinfectant used in the general 

concentration range of 70%-75%. The mechanism of its antiviral activity is proposed to occur by 
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denaturing capsid proteins and dissolving the lipids of the enveloped viruses (McDonnell and 

Russell, 1999). Ethanol at 70% concentration has been evaluated most frequently by 

investigators for its efficacy against human norovirus surrogates. However, no conclusive 

suggestions/recommendations have been reached, as there are variable results against non-

enveloped viruses (Table 1.2). A few studies have reported that ethanol has a strong effect 

against FCV-F9 and MNV-1. For example, Di Martino and others (2010) found that 70% ethanol 

was able to inactive FCV-F9 by >4 log PFU/mL after a 10 min exposure, as evaluated by nested 

RT-PCR (Di Martino et al., 2010). Malik and others (2006), using tissue culture infectious dose 

50 (TCID50), showed that 70% and 90% ethanol were most effective at killing 99% of FCV-F9 

after 1 min of exposure (Malik et al., 2006). Similarly, Gehrke and others (2004), using 

quantitative suspension assays, suggested that 67% ethanol had a high degree of efficacy on 

decontaminating FCV-F9 after 1 min contact time (Gehrke et al., 2004). Macinga and others 

(2008) found that, using an infectivity assay, 70% ethanol could inactivate FCV-F9 by ≥4.75 

log10 PFU/mL after a 30 s contact time (Macinga et al., 2008). Belliot and others (2008) found 

that MNV-1 was significantly inactivated (>4 log PFU/mL) by 60% ethanol after 30 s exposure, 

as evaluated by plaque assays and real-time RT-PCR (Belliot et al., 2008). Similarly, Magulski 

and others (2009) observed ≥4 log reduction on MNV-1 with 50% ethonal after 5 min of 

exposure using an infectivity assay (Magulski et al., 2009). Park and others (2010), using plaque 

assays, also suggested that ≥70% ethanol was able to inactivate MNV-1 by >3.6 log with contact 

times ranging from 1 min to 5 min (Park et al., 2010).  

On the other hand, many studies showed that ethanol was ineffective against HNoV 

surrogates. For example, D’Souza and Su (2010) using plaque assays found that treatment with 

70% ethanol was not effective in reducing the infectivity of both FCV and MNV at low (~5 log 



11 

 

PFU/mL) or high (~7 log PFU/mL) titers after 30 s or 1 min contact times (D'Souza and Su, 

2010). Park and others (2010) reported that 70% ethanol resulted in a 2.6 log reduction in FCV 

after 5 min exposure (Park et al., 2010). The findings of Duizer and others (2004) were similar, 

with FCV being inactivated <2 log after an 8 min exposure to 70% ethanol, and a 3 log-reduction 

after a 30 min exposure, as evaluated by infectivity plaque assays (Duizer et al., 2004). Doultree 

and others (1999) also reported that FCV was not significantly inactivated (1.25 log) at ethanol 

concentrations of 75% with a contact time of 1 min (Doultree et al., 1999), which were similar to 

the reports by Whitehead and McCue’s (2010), with FCV being reduced approximately 1.3 logs 

after 1 min of exposure to 60-75% ethanol (Whitehead and McCue, 2010).  Lages and others 

(2008), using fingertips, found that ethanol concentrations of 99.5% was more effective (≥1 log 

reduction) than 62% ethanol (<1 log reduciton) against FCV-F9 with contact times of 30s or 2 

min, respectively (Lages et al., 2008).  

Other alcohols, including 1-propanol and isopropanol, were also used to reduce FCV-F9 

and MNV-1 (Table 1.2 and 1.3). For example, Gehrke and others (2004) reported that 50% to 

70% of 1-propanol was effective at inactivating FCV-F9 within 30 s, using a quantitative 

suspension assay. They found that 1-propanol at concentrations of 60% was the most effective, 

and 50% and 70% of 1-propanol could reduce FCV-F9 by 4 log units (Gehrke et al., 2004). 

Using a surface test, Magulski and others (2009) reported that MNV-1 was inactivated ≥4 logs 

after a 5 min exposure to 30% 1-propanol, as evaluated by an infectivity assay (Magulski et al., 

2009).  

Isopropanol was shown to be effective at inactivating FCV-F9 and MNV-1(Belliot et al., 

2008; Gehrke et al., 2004; Malik et al., 2006; Park et al., 2010), although reports by Park and 

others (2010) showed almost no reduction of FCV-F9 by 50%, 70% or 90% of isopropanol after 
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1 min or 5 min exposure, as determined by plaque assays (Park et al., 2010). Other studies 

suggested that isopropanol has a high degree of efficacy in decontaminating FCV-F9. For 

instance, Gehrke and others (2004) found that 58% of isopropanol was most effective against 

FCV-F9 after 1 min of exposure, as evaluated by a quantitative suspension assay (Gehrke et al., 

2004). Similarly, Malik and others (2006) reported that using TCID50, 40% to 60% isopropanol 

was most effective, which could kill 99% of FCV-F9 within 1 min (Malik et al., 2006). 

Compared to FCV-F9, MNV-1 showed more resistance to isopropanol. Park and others (2010) 

reported that ≥70% of isopropanol reduced the infectivity of MNV-1 by ≥2.6 log units after 5 

min contact time, as evaluated by plaque assay (Park et al., 2010). Belliot and others (2008) 

observed >3.8 log reduction of MNV-1 after 30 s exposure to 60% isopropanol, as determined by 

infectivity assay (Belliot et al., 2008). Using surface testing, Magulski and others (2009) found 

that 60% isopropanol inactivated MNV-1 by 3.02 log units after 5 min contact time using 

infectivity plaque assays (Magulski et al., 2009).  

Glutaraldehyde 

Glutaraldehyde is an organic compound used to disinfect medical and dental equipment 

and also used as a preservative in industrial cleaning agents. Glutaraldehyde has been studied as 

a disinfectant agent against food-borne viruses and surrogates, including hepatitis A virus 

(HAV), rotavirus, FCV-F9 and MNV-1.  

Glutaraldehyde at low concentration has been shown to inactivate food-borne viruses. 

Passagot and others (1987) reported that a > 3 log10 reduction was achieved after 30 min of 

exposure using 0.10% glutaraldehyde and within only 3 min using 0.50% glutaraldehyde against 

HAV using TCID50 assays (Passagot et al., 1987). Mbithi and others (1990) found that 2% 
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glutaraldehyde reduced HAV by 99.9% after 1 min of exposure on contaminated stainless-steel 

disks (Mbithi et al., 1990). Jean and others (2003) observed that disinfectant containing 5% 

glutaraldehyde plus 10% quaternary ammonium was effective in inactivating HAV in solution 

after a 5 min of contact time, which could reduce HAV by 7.25 logs at the final concentration of 

3,000 ppm (Jean et al., 2003). Lloyd-Evans and others (1986) reported that 2% glutaraldehyde 

was also effective against human rotavirus (Lloyd-Evans et al., 1986). Glutaraldehyde was also 

found to effectively inactivate human norovirus surrogates, FCV-F9 and MNV-1. Using surface 

tests, D’Souza and Su (2010) found that 2% glutaraldehyde effectively inactivated both FCV-F9 

and MNV-1 at both low (~5 log PFU/mL) and high (~7 log PFU/mL) titers after 30 s or 1 min 

exposure times (D'Souza and Su, 2010). Malik and others (2006) reported that, after a range of 1 

to 10 min exposure to 2.6% glutaraldehyde, FCV-F9 was inactivated by more than 99.99% 

(Malik et al., 2006). Similarly, Magulski and others (2009) observed a ≥4 log reduction of 

MNV-1 treated by 2500 ppm glutaraldehyde within 5 min exposure time (Magulski et al., 2009). 

Furthermore, there were no significant differences in virus reduction under either dirty or clean 

conditions. Using suspension tests, Doltree and others (1999) observed complete inactivation of 

FCV-F9 with 0.5% glutaraldehyde after 1 min contact time (Doultree et al., 1999).  

Benzalkonium chloride:  

Benzalkonium chloride (BAC) belongs to the quaternary ammonium compound (QAC) 

group, which have been widely utilized in hand sanitizers (Moadab et al., 2001) and disinfectants 

for hard surfaces (Gradel et al., 2004) as well as for pharmaceutical preservatives (Marple et al., 

2004) due to its effectiveness in decontaminating a broad spectrum of bacteria, viruses and fungi 

in solutions (Bastiani et al., 1974; Belec et al., 2000; Jira et al., 1982). BAC at low 

concentrations is reported to be non-irritating, non-toxic, and non-corrosive to food contact 
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surfaces and thus can be safely used as a disinfectant in the food industry as a readily-used 

antimicrobial agent. As quaternary ammonium compounds are surface acting agents, the antiviral 

mechanism of BAC may have been due to the alterations in the surface components at, or 

adjacent to the attachment site, which interacts with the receptor on the surface of the host cell 

(Wood and Payne 1998).  

BAC at 512 ppm (0.512 mg/mL) is reported to be effective against methicillin-resistant 

Staphylococcus aureus (MRSA), Campylobacter, Salmonella, Escherichia coli O157:H7, 

Listeria monocytogenes and Pseudomonas aeruginosa after an exposure of 5 min in both 

suspension and surface tests (Riazi and Matthews, 2011). In addition to bacteria, studies have 

also shown that BAC has antiviral activity against canine coronavirus (Pratelli, 2007), respiratory 

syncytial virus, adenovirus, herpes simplex virus hominis type 2 and cytomegalovirus (Belec et 

al., 2000). In suspension tests, in the presence of organic load, BAC effectively inactivate 

enveloped viruses herpes simplex virus type 1 and human immunodeficiency virus type 1, as 

well as the non-enveloped human coxsackie virus at the concentration of 0.2% w/v after 1 min 

with initial viral titers of 106-107 PFU/TCID50 or syncytia-forming assay (SFU) (Wood and 

Payne 1998).  

Su and D’Souza (2012) reported that BAC at 0.2, 0.5, and 1 mg/mL reduced FCV-F9 and 

MNV-1 at low (~5 log10 PFU/mL) titers to undetectable levels after 2 h at room temperature in 

suspension tests; and high (~7 log10 PFU/mL) titers of FCV-F9 was reduced by 2.87, 3.08, and 

3.25 log10 PFU/mL and high titer MNV-1 was reduced by 1.55, 2.32, and 2.75 log10 PFU/mL 

with BAC at three concentrations, respectively (Su and D’Souza, 2012).  
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Organic acids:  

Organic acids, including lactic acid, tannic acid, and peroxyacetic acid, have been used 

for inactivating human noroviruses and human enteroviruses and their surrogates. The acid 

mediated mechanisms leading to a loss of infectivity have not been completely understood, 

which is believed to result from the alterations of the virus capsid and nucleic acid (Cliver, 2009; 

Salo and Cliver, 1976). However, whether the antiviral effect was derived from the decrease in 

pH or the type of acid is still not clear. It appears that the inactivation of non-enveloped viruses 

is due to the denaturation of capsid proteins due to the decrease in pH (Rodger et al., 1977)  

Using suspension tests, Straube and others (2011) found that D, L-lactic acid at the 

concentration of 0.3% (PH 3.4-3.5) and 0.4% (PH 3.2-3.3) could cause significant titer 

reductions of FCV-F9 after 7 days of exposure at 20°C (Straube et al., 2011). Using an organic 

acid-based disinfectant containing 55 to 60% formic acid and 7% glyoxylic acid, Poschetto and 

others (2007) observed a ≥5 log10 reduction of FCV-F9 after 15 min contact time, estimated by 

cell culture or a 2 to 3 log10 reduction after 15 min or 60 min as determined by RT-PCR 

(Poschetto et al., 2007). However, the disinfectant efficacy was strongly reduced by the presence 

of fetal bovine serum (FBS) or feces. Baert and others (2009) reported that 250 mg/L 

peroxyacetic acid could obtain an additional 1-log reduction for MNV-1 on shredded iceberg 

lettuce, and its efficacy was not influenced by the presence of organic materials (Baert et al., 

2009). Fraisse and others (2011) found that 100 ppm of peroxyacetic-based biocide effectively 

inactivated FCV-F9 by 3.2 log units and MNV-1 by 2.3 log units on the lettuce leaves after 2 

min of contact time, as estimated by cell culture (Fraisse et al., 2011). Whitehead and McCue 

(2010) reported that one acid-based bathroom disinfectant containing 2.5% citric acid (pH 2.0) 

could reduce FCV-F9 by >3.17 log10 reduction after 1 min of exposure (Whitehead and McCue, 
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2010). Recently, Zhang and others (2011) found that tannic acid derived from Chinese medicinal 

herbs as an inhibitor in binding to histo-blood group antigens (HBGAs) receptors, which 

indicated that tannic acid may be a promising antiviral against HNoVs (Zhang et al., 2011). Su 

and D’Souza (2012) reported that tannic acid at 0.2 mg/mL reduced low titers (~5 log10 

PFU/mL) of FCV-F9 by 1.95 log and <1 logs of high titers (~7 log10 PFU/mL) of FCV-F9 after 2 

h of contact time at room temperature. They also reported that gallic acid at 0.1, 0.2, and 

0.4 mg/mL reduced low-titers of FCV-F9 by 2.50, 2.36, and 0.86 log10 PFU/mL, respectively 

with little effect against high-titer FCV-F9 under the same exposure time (Su and D'Souza, 

2012). Oh and others (2012) demonstrated that gallic acid in black raspberry (BRB) juice did not 

show any antiviral activity against FCV-F9 or MNV-1, though BRB exhibited high efficacy 

against these viruses. Acetic acid is the typical acid used with chitosan and is known to have 

antibacterial activity (Oh et al., 2012). Acetic acid has been found to be effective against bacteria 

such as Salmonella Typhimurium, Enterobacter sakazakii and Listeria monocytogenes (Alvarez-

Ordonez et al., 2009; Back et al., 2009; Vasseur et al., 1999). Davis and others (2012) found that 

chitosan dissolved in 1% acetic acid reduced phiX174 by 1.19-1.29, MS2 by 1.88-5.37, FCV-F9 

by 2.27-2.94, and MNV-1 by 0.09-0.28 log10 PFU/mL, respectively after incubation for 3 h at 37 

°C (Davis et al., 2012). Malic acid is a dicarboxylic acid which was first isolated from apple 

juice. Malic acid at 10% combined with 1% thiamine dilauryl sulfate was found completely 

inactivated E. coli O157: H7 on 10g of inoculated alfalfa seeds (Fransisca et al., 2012). Malic 

acid combined with citric acid and sodium laruryl sulfate showed antiviral activity against 

rhinovirus (Hayden et al., 1985). Humic acid is a principle component of humic substances, 

which naturally occurs as decomposed constituents of soil. Ansorq and Rochus (1978) found that 

humic acids inhibited Staphylococcus epidermidis, S. aureus, Streptococcus pyogenes, S. 
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Typhimurium, P. vulgaris, E. cloacae, P. aeruginosa and C. albicans (Ansorg and Rochus, 

1978). Certain modified forms of humic acid have also shown antiviral activities against herpes 

simplex and human immunodeficiency viruses (Klocking et al., 2002; Schneider et al., 1996; 

Van Rensburg et al., 2002).  

Electrolyzed water 

Electrolyzed water (aka electrolyzed oxidizing water or EOW) is produced from the 

electrolysis of water containing sodium chloride. This procedure generates a solution of sodium 

hypochlorite, which is the active ingredient in household bleach. EOW has been applied in the 

food industry and agriculture due to its environmentally friendly nature, high efficiency, and no 

adverse side effects. EOW is believed to destroy the outer cellular membrane, increase the 

membrane permeability and decrease the activity of key enzymes due to its physical and 

chemical properties, including low pH, high oxidation-reduction potential, high dissolved 

oxygen and free chlorine (Koseki et al., 2001; Kuira and others 2002; Len et al., 2000; Liao et 

al., 2007; Park et al., 2004; Zeng et al., 2010). However, there is still no definite conclusion on 

the disinfection targets/and mechanisms of EOW.  

The acidic form of EOW was found to effectively inactivate food-borne pathogens on the 

food surfaces, including Escherichia coli, Staphylococcus aureus, Salmonella and Listeria 

monocytogenes. Park and others (2006) observed 2.41 and 2.65 log CFU reductions per lettuce 

leaf of E. coli O 157:H7 and L. monocytogenes respectively using acidic electrolyzed water (AC-

EW) (45 ppm residual chlorine) after 3 min of exposure time at 22℃ (Park et al., 2006). Koseki 

and others (2003) reported 4.6 and 4.4 log CFU/g reductions of E. coli O 157:H7 and S. 

Typhimurium respectively with the treatment of spot inoculated lettuce surfaces using 40 ppm 



18 

 

AC-EW for 1 min (Koseki et al., 2003). Guentzel and others (2008) showed that dip treatment of 

inoculated spinach and lettuce surfaces with 20 and 50 ppm AC-EW for 10 min resulted in 2.14 

to 4.97 log CFU/g reductions of E. coli, S. Typhimurium, and L. monocytogenes (Guentzel et al., 

2008). Park and others (2008) reported that E. coli O 157:H7, S. Typhimurium, and L. 

monocytogenes were reduced below the detection limit (0.7 log) after a 3-min treatment of AC-

EW (~37.5 mg/L) at room temperature on the surfaces of lettuce and spinach (Park et al., 2008).  

Slightly acidic electrolyzed water (SAEW) was also reported to be effective towards 

inactivating these food-borne pathogens. Issa-Zacharia and others (2010) reported that SAEW 

containing 23 mg/L available chlorine effectively reduced the population of E. coli, S. aureus, 

and Salmonella spp. by 5.1, 4.8, and 5.2 log CFU/mL, respectively after 60 s of treatment (Issa-

Zacharia et al., 2010).  However, the efficacy of AC-EW could be decreased by the presence of 

organic matter. Park and others (2009) evaluated the effects of bovine serum on the bactericidal 

activity of AC-EW on E. coli, S. Typhimurium, and L. monocytogenes inoculated surfaces of 

green onions and tomatoes. They showed that AC-EW (~37.5 mg/l available chlorine 

concentration) treatment alone achieved the reductions below the detection limit (0.7 log CFU/g) 

after 3 min, whereas the bactericidal activity decreased with the increase of bovine serum 

concentration (Park et al., 2009).  

EOW was also studied for the removal of inoculated human norovirus from the surfaces 

of raspberries and romaine lettuce by a simple wash. Tian and others (2011) found that an AC-

EW wash enhanced the binding of HNoV to raspberries and lettuce with only ~7.5% and ~4% of 

HNoV removed, respectively (Tian et al., 2011).  
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Ozone:  

Ozone is a powerful oxidizing agent, which has been used as a disinfectant for killing 

microorganisms in air and water sources. Ozone applications in the food industry typically 

include decontamination of product surfaces and water treatment (Kim et al., 1999). The 

mechanism of inactivation of viruses may be due to both viral RNA and capsid protein 

destruction (Kim and others, 1999). Roy and others (1981) believed that damage to the viral 

nucleic acid was the major cause of poliovirus 1 inactivation by ozone (Roy et al., 1981). This is 

supported by the report of Shin and Sobsey (2003), which showed that virus reductions of 

poliovirus 1and coliphage MS2 exposed to ozone were similar as evaluated by both RT-PCR and 

infectivity assays (Shin and Sobsey, 2003). However, others suggested that ozone actually 

targets the capsid protein. Kim and others (1980) found that ozone breaks the protein capsid into 

subunits, which leads to the inactivation of bacteriophage f2 (Kim et al., 1980). This is evidenced 

by the study of Lim and others (2010), who reported that ozone at 1 mg/liter (at pH of 7 or 5.6 

and temperature of 20℃ or 5℃) effectively inactivated more than 99% of MNV-1 within 2 

min, as measured by plaque assays, but RT-PCR assay significantly underestimated the 

inactivation of MNV-1 (Lim et al., 2010).  

Ozone has shown its efficacy on the inactivation of norovirus surrogates, including FCV-

F9 and MNV-1. Hirneisen and others (2011) observed >6 log TCID50/mL of FCV reduction in 

water and ~2 log TCID50/mL on green onions and lettuce after 5 min of 6.25 ppm ozone 

treatment. MNV-1 inoculated onto these produce items produced a >2 log reduction after 1 min 

of exposure, as determined by plaque assay (Hirneisen et al., 2011). Hudson and others (2007) 

reported that ozone gas, at the level of 20-25 ppm, was able to reduce the concentration of 
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infectious FCV by a factor of more than 103 within less than an hour of exposure (Hudson et al., 

2007).  

Hydrogen peroxide:  

Hydrogen peroxide (H2O2) is also a strong oxidizer, which is often used as a bleaching or 

cleaning agent. Hydrogen peroxide has shown to be effective against enteric viruses and their 

surrogates. For example, Li and others (2011) found that liquid H2O2 (L-H2O2) at concentrations 

of 2.1% inactivated MNV-1 and coliphage X174 on stainless steel discs by approximately 4 log10 

units within 10 min, whereas for Bacillus fragilis Phage B40-8, 15% of L-H2O2 was needed to 

obtain a similar reduction in 10 min, with only a <1 log10 unit reduction after 5min of exposure 

to 2.52% of Vaporized H2O2 was achieved for the tested model viruses (Li et al., 2011). Tuladhar 

and others (2011) reported that hydrogen peroxide vapor at 127 ppm completely inactivated 

poliovirus, rotavirus, adenovirus and murine norovirus after 1 h treatment at room temperature 

on carriers (Tuladhar et al., 2011). Bentley and others (2011) observed a 4 log reduction on all 

tested surfaces within 20 min of exposure to 30% (w/w) H2O2 vapour. The reduction was 

achieved most rapidly on vinyl flooring (10 min), while the longest was observed on stainless 

steel (20 min). For glass, ceramic tile and plastic surfaces, the desired reduction titer was reached 

within 15 min (Bentley et al., 2011). Malik and others (2006) found that a combination of 2% 

sodium bicarbonate with 2% hydrogen peroxide killed FCV-F9 by 99.00% in 1 and 3 min, and 

99.68% of the virus was killed after 10  min contact time on stainless steel coupons (Malik and 

Goyal, 2006).  
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Potassium monosulfate:  

Potassium monosulfate (KPMS) is widely used as a powerful oxidizing agent. Currently, 

KPMS is routinely used in swimming pools against Escherichia coli to keep the water clean and 

safe (Anipsitakis et al., 2008). It has also been used as a mist in veterinary hospitals to 

decontaminate S. aureus and S. Typhiumurium by >99.9999% with the concentration of 4% for 

30 min exposure time after misting was completed (Patterson et al., 2005). In a 6-year study, 

KPMS at concentrations of 1 and 10 mg/mL completely inactivated S. aureus, MRSA and 

Pseudomonas aeruginosa after 10 and 2 min exposure times, respectively and no significant 

variation in resistance to KPMS was observed during the period of the study (Giacometti et al., 

2005). However, only a few studies reported the application of KPMS for viral inactivation. The 

KPMS-based product Virkon S was shown to completely inactivate the poultry enteric mortality 

syndrome (PEMS)-associated astrovirus in an embryo model (Schultz-Cherry et al., 2001). Also, 

KPMS was shown to completely inactivate FCV after 10 min of exposure (Eleraky et al., 2002). 

However, this study used only FCV from animal isolates and not the HNoV surrogate strains 

FCV-F9 or MNV-1. 

Solomon and others (2009) reported that Virkon at 1% containing 5 mg/mL KPMS 

reduced FCV-F9 from 4-5 log10 PFU/mL to undetectable levels after 10 min (Solomon et al., 

2009). Su and D’Souza (2012) reported that KPMS at 5, 10, and 20 mg/mL reduced high and 

low titers of FCV-F9 and low titers of MNV-1 to undetectable levels, while high titers of MNV-

1 were reduced by 0.92 and 3.44 log10 PFU/mL with KMPS at 5 and 10 mg/mL, respectively 

after 2 h at room temperature (Su and D’Souza, 2012). 
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Trisodium phosphate  

Trisodium phosphate (TSP) is considered a generally recognized as safe (GRAS) 

chemical by the Food and Drug Admiminstration (FDA: Lindsay 1985), which has a pH of 12 in 

a 1% solution. TSP has shown efficacy against a wide range of pathogens, including E. coli 

O157: H7, Salmonella, poliovirus 1 and bacteriophages. Jerzy and others (2003) reported that 

significant reductions of bacteriophage MS2 and Poliovirus 1 were obtained by using 1.0% TSP 

solution on strawberries (Jerzy et al., 2003). TSP has also been evaluated as a detergent against 

norovirus surrogates, including FCV-F9 and MNV-1. D’Souza and Su (2010) reported that 5% 

TSP effectively inactivated high titers of MNV-1 and FCV by ≥6 log PFU/mL, and with a 5 log 

reduction of low viral titers after 30s or 1 min of contact time. TSP at 2% inactivated high titers 

of FCV by ≥6 log PFU/mL, but only a 1.05 log reduction for MNV-1 after 1 min exposure., 

while1% TSP reduced FCV by ~2.65 log PFU/mL, with no reduction of high titers of MNV-1 

(D'Souza and Su, 2010). Su and D’Souza (2011) found that 2% and 5% TSP reduced low titers 

of FCV to undetectable levels after 15 s or 30 s. Low titers of MNV-1 was reduced by ~2 - 3 log 

PFU/mL by 2% TSP and to undetectable levels by 5% TSP. High titers of FCV and MNV-1 

were reduced by > 5 or ~ 2- 3.4 log PFU/mL with 2% TSP, respectively, and to undetectable 

levels with 5% TSP (Su and D'Souza, 2011).  

Sodium metasilicate:  

Sodium metasilicate is a highly soluble chemical with the pH of a 1% solution ranging 

from 12.5 to 13.0. Sodium metasilicate is USDA FSIS approved as a processing aid and can be 

used as an antimicrobial component of marinades for meat and poultry products up to 2% by 

weight of the marinades and as a carcass rinse or spray on raw beef carcasses, subprimals, and 
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trimmings up to 6% in solution (USDA FSIS, 2011). Sodium metasilicate has been effective 

against E. coli O157: H7 and Salmonella both in vitro and in beef trimmings (Carlson et al., 

2008; Geornaras et al., 2012; Pohlman et al., 2009; Weber et al., 2004), Campylobactor jejuni 

and Salmonella Typhimurium in fresh chicken breast meat (Sharma et al., 2012a, b). Weber and 

others (2004) found that sodium metasilicate at 0.6% (pH 12.1) resulted in complete inhibition of 

E. coli O157: H7 after 5 to 10 s exposure in water at room temperature (Weber et al., 2004). 

Carlson and others (2008) reported that 4% sodium metasilicate (23oC, pH 12.94) reduced E. coli 

O157: H7 and Salmonella by ~1.9 and ~ 2.6 log CFU/mL, respectively from inoculated beef 

hides following a 30 s- spray- 2 min- dwell- 30 s - water rinse procedure (Carlson et al., 2008). 

Pohlman and others (2009) demonstrated that E. coli and Salmonella Typhimurium were reduced 

by ~1 log to ≥1.5 log CFU/mL, respectively, treated with 4% sodium metasilicate from 

inoculated beef trimmings (Pohlman et al., 2009). Geornaras and others (2012) compared the 

efficacy of sodium metasilicate against E.coli O157:H7 and 6 non-O157 Shiga toxin-producing 

E. coli (nSTEC) serogroups suggesting similar effectiveness. The initial pathogen counts were 

decontaminated by 1.3 to 1.5 log CFU/cm2 from inoculated beef trimmings after immersion for 

30 s in solution of 4% sodium metasilicate (pH 12.5) (Geornaras et al., 2012). Adler and others 

(2011) observed that brine solution containing 2.2% sodium metasilicate immediately reduced 

E.coli O157:H7 by ≥2.4 log CFU/mL (0 h) (Adler et al., 2011).  

Sodium metasilicate has also been evaluated for efficacy against viral pathogens, 

including human rotaviruses and vesicular stomatitis viruses (Springthorpe et al., 1986; Wright, 

1970). Springthorpe and others (1986) tested the efficacy of 69 commercial and 7 non-

commercial disinfectant formulations against human rotaviruses and found that the efficacy of 

quaternary ammonium-based disinfectant formulations was greatly improved by adding 0.5 to 
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5% sodium metasilicate. They believed that quaternary ammonium compounds and sodium 

metasilicate may act in an additive or synergistic manner to inactivate human rotaviruses 

(Springthorpe et al., 1986). However, Wright (1970) demonstrated that sodium metasilicate at 

5% (pH 12.1) was not viricidal against vesicular stomatitis virus after 10 min contact time 

(Wright, 1970).  

Natural antimicrobial extracts:  

As the global consumer’s demand for natural ingredients to reduce pathogenic 

microorganism from foods is steadily increasing, the investigation of the effectiveness of 

potential natural antimicrobials is necessary. Some natural extracts such as Cranberry juice and 

cranberry proanthocyanidins, Black raspberry juice, Grape seed extract, Pomegranate juice and 

pomegranate polyphenols, Hibiscus sabdariffa have shown antibacterial and antiviral activities.  

Cranberry extracts have been reported to have antibacterial activity against E. coli O157: 

H7, Salmonella Typhimurium, Listeria Monocytogenes, Helicobacter pylori and Staphylococcus 

aureus (Matsushima et al., 2008; Nogueira et al., 2003; Wu et al., 2008). In addition to 

antibacterial property, they have also shown antiviral activity against reovirus, bacteriophages 

T4, phiX-174 and MS2, rotavirus, influenza virus and human norovirus surrogates (Lipson et al., 

2007; Su et al., 2010a; Su et al., 2010b; Weiss et al., 2005). The mechanism of cranberry extracts 

on the antimicrobial activity has not been well established. Wu and others (2008) believed that 

both low pH and phenolics may cause the antibacterial effect by observing cell wall and cell 

membrane damage treated with cranberry concentrate, which may make bacteria vulnerable to 

cranberry concentrate (Wu et al., 2008). Similarly, cranberry extracts may injure the viral capsid 

structure or viral nucleic acid to interfere with viral replication. Su and others (2010a) reported 
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that FCV-F9 at ~ 5 log10 PFU/mL was reduced to undetectable levels after 1h of exposure to 

cranberry juice (CJ) (pH 2.6) or 0.15, 0.30, and 0.60 mg/mL cranberry proanthocyanidins (PAC) 

at room temperature. MNV-1 was reduced by 2.06 log10 PFU/mL with CJ, and 2.63, 2.75, and 

2.95 log10 PFU/mL with the three tested PAC solutions, respectively (Su et al., 2010a). In  

another time- dependent study by these investigators, FCV-F9 at low viral titers was  reduced by 

~5 log10 PFU/mL within 30 min treated by CJ (pH 2.6 and pH 7.0) and the two PAC solutions 

(0.15, 0.30 mg/mL). MNV-1 titers were decreased similarly with CJ at pH 2.6 or 7.0. In most 

cases, viral reduction within the first 10 min of treatment accounted for 50% of the total 

reduction (Su et al., 2010b).  

Pomegranate juice and pomegranate polyphenols exhibited a wide range of antioxidant, 

anticancer, anti-inflammatory and antimicrobial properties (Braga et al., 2005; Haidari et al., 

2009; Kotwal, 2008; Lee et al., 2010; Neurath et al., 2005; Prashanth et al., 2001; Reddy et al., 

2007). Pomegranate extracts have shown antibacterial activities against Salmonella 

Typhimurium, Staphylococcus aureus, E. coli, and Bacillus subtilis (Braga et al., 2005; 

Prashanth et al., 2001). They are also reported to have antiviral properties against influenza virus, 

HIV-1, poliovirus, herpes virus, poxvirus, and human norovirus surrogates (Haidari et al., 2009; 

Jayaprakasha et al., 2006; Konowalchuk and Speirs, 1976; Kotwal, 2008; Neurath et al., 2005; 

Su et al., 2010c, 2011). These antiviral effects were attributed to the high content of polyphenols, 

which were believed to act directly on the viral particles to block the attachment of the viruses to 

the cell receptors (Haslam, 1974). Pomegranate juice and pomegranate polyphenols were shown 

to cause 2.56, 1.32, and 0.32 log reduction for low titers of FCV-F9, MNV-1, and MS2, 

respectively, after treatment by pomegranate juice for 1 h at room temperature. The effects were 

decreased using high titers of three tested viruses. Pomegranate polyphenols at 8, 16, 32 mg/mL 
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were shown to reduce both low and high titers of FCV-F9 to undetectable levels within 1 h. 

MNV-1 at low titers was reported to be reduced by 1.30, 2.31, and 3.61 log10 PFU/ mL and at 

high titers by 1.56, 1.48, and 1.54 log10 PFU/mL with three tested concentrations of PP, 

respectively, after 1 h by these investigators (Su et al., 2010c). According to the time-dependent 

study carried out by Su and others (2011), PJ and PP were found as rather rapid acting, resulting 

in � 50% reduction within the first 20 min of treatment for all tested viruses. FCV-F9 and MNV-

1 at titers of ~ 5 log10 PFU/mL were reduced by 3.12 and 0.79 log10 PFU/mL, respectively, using 

PJ within the first 20 min. Titer reductions of 4.02 and 0.68 log10 PFU/mL with 2 mg/mL PP and 

5.09 and 1.14 log10 PFU/mL with 4 mg/mL PP were reported by these investigators for FCV-F9 

and MNV-1, respectively, after 20 min (Su et al., 2011).   

Hibiscus sabdariffa are prepared as hot and cold beverages worldwide, and is classified 

as a GRAS  ingredient for the food industry (CDC 2006). In addition, aqueous extracts of 

Hibiscus sabdariffa have been used in folk medicine in the treatment of hypertension (Odigie et 

al., 2003; Olaleye, 2007; Wang et al., 2000). Hibiscus anthocyanins, a group of phenolic natural 

pigments present in calyces, have been found to have cardioprotective, hypocholesterolemic, 

antioxidative and heaptoprotective effects in animals (Chen et al., 2003; Jonadet et al., 1990; 

Wang et al., 2000). Moreover, the aqueous extracts were reported the presence of hibiscitrin, 

gossypitrin, sabdaritrin, flavonol glycosides and some organic acids including citric, malic, 

tartaric and ascorbic (Ali et al., 2005; Cowan, 1999; Tsai et al., 2002). Aqueous extracts of H. 

sabdariffa have exhibited a wide range of antimicrobial properties against Pasteurella, 

Pseudomonas, Proteus, Streptococcus, P. aeruginosa, Lactobacillus sp., Bacillus sp., 

Corynebacterium sp., Salmonella, Escherichia coli O157:H7 And Listeria monocytogenes (Oboh 

and Elusiyan, 2004; Pliego, 2007; Sharaf et al., 1966). The mode of action includes phenols that 
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inhibit metabolic enzymes of the cells leading to their inability to reproduce. The phenolic 

compound, anthocyanins, extracted from Hibiscus sabdariffa were suggested to complex with 

nucleophilic amino acids of the cell wall, resulting the loss of function (Cowan, 1999; Tsai et al., 

2002). However, phenols may not be the only compound responsible for all the antimicrobial 

activities of Hibiscus sabdariffa. Roman (2006) found that rifamycine, a precursor of the 

antibiotic rifampicin, was present in Hibiscus sabdariffa extracts (Roman 2006).  

Based on the current literature, the aims of this research were to (1) investigate the 

antiviral activity of benzalkonium chloride at 0.32 mg/mL and KPMS against human norovirus 

surrogates over 1 h at room temperature using suspension and carrier tests and (2) determine the 

ability of sodium metasilicate to inactivate human norovirus surrogates at RT over 1 h for 

application in the food industry and prevent human noroviral transmission. 
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Table 1.1： Examples of studies using chlorine against FCV-F9 and MNV-1 

 
 

NR= Not Reported  
qRT-PCR= Quantitative reverse transcription- polymerase chain reaction 
TCID50= Tissue culture infectious dose 50%  
ss = stainless steel; ls = lettuce and strawberry 

Viruses Concentration Contact time Initial titer Reduction in log10 

PFU/mL 

Method Reference 

FCV-F9 15ppm (lettuce) 

 

3,000ppm (suspension) 

 

200 mg/L= 200 ppm 

(lettuce and pepper) 

5,000ppm (surface) 

 

300 ng/mL= 0.3ppm (suspension) 

100ppm, 1000ppm (surface) 

 

100, 1000 ppm (surface) 

 

200, 400, 800, 5000ppm (stainless 

steel, lettuce and strawberry) 

 

100, 250, 500, 1000 and 5000 ppm 

(suspension) 

4500-5000 ppm (suspension) 

5500 ppm 

 

5000 ppm (fecally soiled stainless 

steel surface) 

2 min 

 

10 min 

 

15 s or 30 s 

 

30 s or 1 min 

 

5 min 

1 min 

 

10 min 

 

1-10 min 

 

 

1 min 

 

15 min 

15 min 

 

1.9 min 

107 TCID50/mL 

 

2 x 105~ 1 x 106 

TCID50/mL 

~5 log10 PFU/mL 

~7 log10 PFU/mL 

~5 log10 PFU/mL 

~7 log10 PFU/mL 

2.6 x 106 TCID 

NR 

 

NR 

 

NR 

 

 

NR 

 

NR 

NR 

 

NR 

2.9  

 

>5 log units 

 

To undetectable levels 

≤1.4 

~5 

>6 

>4.6 log units 

<2.27, >4.2 

 

3.2, 6.6 

 

<800 ppm <1 (ss) 

5000 ppm 3.4 (ss) 

800 ppm 1.5 (ls)  

<500 ppm <3 

5000 ppm 5 

Without feces: >5  

With feces:  3 

 

3 

Plaque assay and 

qRT-PCR 

RT-PCR and 

qRT-PCR 

Plaque assay  

 

Plaque assay 

 

TCID50 

Plaque assay 

 

Plaque assay 

 

Plaque assay 

 

 

TCID50 

 

Plaque assay and 

RT-PCR 

 

Plaque assay 

Fraisse et al. 2011 

 

Duizer et al. 2004 

 

Su and D’Souza, 

2011 

D’Souza and Su 

2010 

Urakami et al. 2007 

Whitehead and  

McCue, 2010 

Jimenez and Chiang, 

2006 

Gulati et al., 2001 

 

 

Doultree et al., 1999 

 

Poschetto et al., 2007 

 

 

Park and Sobsey, 

2011 
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Table 1.1：Examples of studies using chlorine against FCV-F9 and MNV-1 (Continued)  

Viruses  Concentration  Contact time Initial titer Reduction in log10 

PFU/mL 

Method Reference  

MNV-1 15ppm (lettuce) 

 

0.1 mg/L 

0.5 mg/L 

0.26%= 2600 ppm 

 (suspension) 

200mg/L (lettuce and 

pepper) 

3000ppm (surface) 

 

5000ppm (fecally soiled 

stainless steel surface) 

2 min 

 

120 min 

0.5 min 

0.5 min 

 

15 s or 30 s 

 

5 min or 10 min 

 

3.2 min 

3 x 106 TCID50/mL 

 

NR 

NR 

NR 

 

~5 log10 PFU/mL 

~7 log10 PFU/mL 

NR 

 

NR 

1.4 

 

>4 

>4 

>4 

 

2~3 

<1.3 

Complete inactivation 

4 

3 

Plaque assay and qRT-

PCR 

Plaque assay and real-

time RT-PCR 

Plaque assay and real-

time RT-PCR 

Plaque assay 

 

Plaque assay and real-

time RT-PCR 

Plaque assay 

Fraisse et al. 2011 

 

Kitajima et al. 2010 

 

Belliot et al. 2008 

 

Su and D’Souza 

2011 

Girard et al., 2010 

 

Park and Sobsey,  

2011 

 
NR= Not Reported  
qRT-PCR= Quantitative reverse transcription- polymerase chain reaction 
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Table 1.2: Examples of studies using ethanol, 1-propanol and 2-propanol against FCV-F9 and MNV-1 

 

 
NR= Not Reported  
qRT-PCR= Quantitative reverse transcription- polymerase chain reaction 
TCID50= Tissue culture infectious dose 50%  
  

Viruses Chemical Concentration Contact time Initial titer Reduction in  log10 

PFU/mL 

Method Reference 

FCV-F9 

 

 

 

 

Ethanol 70% 

70% 

 

70% 

 

70% and 90% 

 

67% 

 

70% 

75% 

60% (surface) 

 

50% or 70% 

99.5%, 62% (fingertips) 

10min 

30min 

 

30s or 1min 

 

1min 

 

1min 

 

30s 

1min 

1min 

 

5min 

30s or 2min 

4.5 log10 PFU/mL 

2 x 105~ 1 x 106 

TCID50/mL 

~5 log10 PFU/mL        

~7 log10 PFU/mL 

107 TCID50/mL 

 

NR 

 

NR 

~5 log10 PFU/mL 

NR 

 

NR 

NR 

>4 

3 

 

Not effective 

 

Most effective, killing 

99% of FCV 

Most effective 

 

≥4.75 

1.25 

1.3 

 

≥2.2 

≥1, <1 

nested RT-PCR 

RT-PCR and qRT-PCR 

 

Plaque assay 

 

TCID50 

 

Plaque assay 

 

Plaque assay 

TCID50 

Plaque assay 

 

Plaque assay 

Fingerpad and Plaque 

assay 

Martino et al. 2010 

Duizer et al. 2004 

 

D’Souza and Su,  

2010 

Malik et al. 2006 

 

Gehrke et al. 2004 

 

Macinga et al. 2008 

Doultree et al. 1999 

Whitehead and 

McCue 2010 

Park et al., 2010 

Lages et al. 2008 

MNV-1  70% 

          

70%, 90% 

60% 

 

50% (surface) 

30s or 1min 

 

5min 

30s, 1min or 

3min 

5 min 

~5 log10 PFU/mL 

~7 log10 PFU/mL 

NR 

NR 

 

NR 

   0 

 

      ≥3.6 

      >4 

 

       ≥4 

Plaque assay 

 

Plaque assay 

Plaque assay and RT-

qPCR 

Plaque assay 

D’Souza and Su. 

2010 

Park et al., 2010 

Belliot et al. 2008 

 

Magulski et al. 2009 



42 

 

Table 1.2: Examples of studies using ethanol, 1-propanol and 2-propanol against FCV-F9 and MNV-1 (Continued) 

Viruses Chemical Concentration Contact time Initial titer Reduction in 

log10 PFU/mL 

Method Reference 

FCV-F9 1-propanol 50% and 70% 

60% (suspension) 

30s 

30s 

NR 4 

Most effective 

Plaque assay Gehrke et al. 2004 

MNV-1  30% (surface) 5 min NR ≥4 Plaque assay Magulski et al. 

2009 

FCV-F9 2-propanol 40% to 60% 

 

50%, 70% or 90% 

58% (suspension) 

1 min 

 

1 min or 5 min 

1 min 

107 TCID50/mL 

 

NR 

NR 

most effective, 

killing 99%  

almost no 

reduction 

Most effective 

TCID50 

 

Plaque assay 

Plaque assay 

Malik et al. 2006  

 

Park et al., 2010 

Gehrke et al. 2004 

MNV-1  ≥70%  

60%  

 

60% (surface)  

5 min 

30 s, 1 min or 3 

min 

5 min 

NR 

NR 

 

NR 

>2.6 

3.86 (30 s), >4 

 

3.02 

Plaque assay 

Plaque assay and 

qRT-PCR 

Plaque assay 

Park et al., 2010 

Belliot et al. 2008 

 

Magulski et al. 

2009 

 
NR= Not Reported  
qRT-PCR= Quantitative reverse transcription- polymerase chain reaction 
TCID50= Tissue culture infectious dose 50%  



43 

 

Table 1.3: Examples of studies using glutaraldehyde against FCV-F9 and MNV-1 
 

 

 
NR= Not Reported  
qRT-PCR= Quantitative reverse transcription- polymerase chain reaction 
TCID50= Tissue culture infectious dose 50%  
  

Viruses Concentration Contact time Initial titer Reduction in  log10 

PFU/mL 

Method Reference 

FCV-F9 2% (surface) 

 

0.5% (suspension) 

2.6% (fabrics and carpets) 

30 s or 1 min 

 

1 min 

1-10 min 

~5 log10 PFU/mL 

~7 log10 PFU/mL 

~5 log10 PFU/mL 

NR 

≥4 

≥6 

~5 

>99.99% 

Plaque assay 

 

Plaque assay 

TCID50 

D’Souza and Su 

2010 

Doultree et al. 1999 

Malik et al., 2006 

MNV-1 2% (surface) 

 

2500ppm (stainless steel) 

30 s or 1 min 

 

5 min 

~5 log10 PFU/mL 

~7 log10 PFU/mL 

NR 

≥4 

≥6 

≥4 

Plaque assay 

 

Plaque assay 

D’Souza and Su 

2010 

Magulski et al., 2009 
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Table 1.4: Examples of studies using organic acids against FCV-F9 and MNV-1 

 

 
NR= Not Reported  
qRT-PCR= Quantitative reverse transcription- polymerase chain reaction 
RT-PCR= Reverse transcription- polymerase chain reaction 
 

  

Viruses Chemical Concentration Contact time Initial titer Reduction in  log10 

PFU/mL 

Method Reference 

FCV-F9 Formic acid and 

glyoxylic acid 

Peroxyacetic acid 

(lettuce leaves) 

Citric acid 

 

Tannic acid  

 

Gallic acid 

55~60% (FA) + 7% (GA) 

 

100 ppm 

 

2.5% 

 

0.2 mg/mL 

 

0.1, 0.2, and 0.4 mg/mL 

15 min 

15 min or 60 min 

   2 min 

 

1 min 

 

2 h 

 

 

NR 

 

NR 

 

NR 

 

~5log10PFU/mL 

~7log10PFU/mL 

~5log10PFU/mL 

~7log10PFU/mL 

≥5 

2 to 3 log units 

3.2 

 

>3.17 

 

1.95 

<1 

2.50, 2.36 and 0.86 

Little effect 

Plaque assay 

RT-PCR  

Plaque assay 

 

Plaque assay 

 

Plaque assay 

 

 

Poschetto et al., 2007 

 

Fraisse et al., 2011 

 

Whitehead and 

McCue, 2010 

Su and D’Souza, 

2012 

MNV-1 Peroxyacetic acid 

(lettuce leaves) 

100 ppm           2 min NR 

 

2.3 Plaque assay 

 

Fraisse et al., 2011 
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Table 1.5: Examples of studies using ozone and hydrogen peroxide against FCV-F9 and MNV-1 
 

 
NR= Not Reported  
qRT-PCR= Quantitative reverse transcription- polymerase chain reaction 
TCID50= Tissue culture infectious dose 50%  
 
 

  

Viruses Chemical Concentration Contact time Initial titer Reduction in  log10 

PFU/mL 

Method Reference 

FCV-F9 Ozone 6.25 ppm (water) 

6.25 ppm (produce) 

20- 25 ppm  

5 min 

 

< 1 h 

NR 

 

NR 

>6 log TCID50/mL 

~2 log TCID50/mL 

>3 

TCID50 

 

qRT-PCR and 

plaque assay 

Hirneisen  et al. 

2011 

Hudson  et al. 

2007  

MNV-1  1 mg/liter  

6.25 ppm (produce) 

2 min 

1 min 

NR 

NR 

>99% 

   >2 log TCID50/mL 

TCID50 

TCID50 

Lim et al. 2010 

Hirneisen  et al. 

2011 

FCV-F9 Hydrogen 

peroxide 

V- H2O2 30% (w/w) 

(carriers) 

20 min NR 4    Plaque assay Bentley et al. 2011 

MNV-1  L-H2O2 2.1% (stainless 

steel) 

V- H2O2 2.52% V- H2O2 127 

ppm (carriers) 

10 min 

5 min 

1 h 

NR 

 

NR 

~4  

<1  

To undetectable levels 

Plaque assay 

Plaque assay 

Plaque assay 

Li et al. 2010 

 

Tuladhar  et al. 

2012 
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Table 1.6: Examples of studies using trisodium phosphate against FCV-F9 and MNV-1 
 
 

NR= Not Reported  

Viruses Concentration Contact time Initial titer Reduction in  log10 

PFU/mL 

Method Reference 

FCV-F9 1% 

2% 

5%  

1% 

2% 

5% 

2% 

5% 

2% 

5% 

30 s or 1 min 

1 min 

 

 

 

 

15 s or 30 s 

~ 7 log10 PFU/mL 

 

 

~ 5 log10 PFU/mL 

 

 

~ 7 log10 PFU/mL 

 

~ 5 log10 PFU/mL 

 

             ~ 2.65 

≥6 

≥6 

               ~ 5 

        ~ 5 

        ~ 5 

>5 

To undetectable levels 

To undetectable levels 

To undetectable levels 

Plaque assay 

 

 

 

D’Souza and Su, 2010 

 

 

MNV-1 1% 

2% 

5% 

1% 

2% 

5% 

2% 

5% 

2% 

5% 

30s or 1 min 

1 min 

 

 

 

 

15 s or 30 s 

 

 

 

~7 log10 PFU/mL 

 

 

~ 5 log10 PFU/mL 

 

 

~ 7 log10 PFU/mL 

 

~ 5 log10 PFU/mL 

0 

                1.05 

≥6 

1.69 

~ 5 

~ 5 

~ 2 – 3.4 

To undetectable levels 

~ 2 - 3 

To undetectable levels 

Plaque assay 

 

 

 

 

 

Plaque assay 

 

D’Souza and Su, 2010 

 

 

 

 

 

Su and D’Souza, 2011 
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Table 1.7: Advantages, disadvantages and applications of disinfectants reviewed in this chapter  

Chemicals Advantages Disadvantages Applications References 

Chlorine 

Low cost; easily 

available; broad 

spectrum against 

bacteria, viruses, 

fungi, algae and 

mycoplasmas 

Bleach food; 

carcinogenic 

byproducts; 

inactivated by 

organic matter 

rapidly; caustic to 

tissues and 

equipment; skin 

irritation; potential 

safety problems 

Household cleaning products; 

public sanitation, disinfection 

and antisepsis 

Allwood et 

al., 2004 

Alcohols 

Effective against 

gram-positive and 

gram-negative 

bacteria 

Long contact time 

required; not 

effective against 

some viruses and 

bacterial spores; 

evaporate quickly 

Skin antiseptic; alcohol-based 

hand sanitizers 

D’Souza and 

Su, 2010 

Glutaraldehyde 

Non corrosive to 

metal; effective 

against bacteria, 

viruses, fungi, 

spores and parasites; 

remains effective in 

the presence of 

organic matter 

Toxic to human and 

animals; long 

contact time; must 

be used in a well 

ventilated area 

Disinfecting medical and dental 

equipment; industrial water 

treatment; preservertive 

Doltree et al., 

1999 
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Table 1.7: Advantages, disadvantages and applications of disinfectants reviewed in this chapter 

(Continued)  

Chemicals Advantages Disadvantages Applications References 

Benzalkonium 

chloride 

Non-irritating to 

skin; not corrosive; 

has been used for 

decades in hospital 

environment 

Slow- acting; not 

effective against 

gram-negative 

bacteria or spores 

Non-alcohol-based hand 

sanitizers; hard surface 

disinfectants;  surgical 

instrument sterilizing solutions; 

clinical settings disinfectants; 

pharmaceutical preservatives 

Moadab et 

al., 2001 

Organic acids 

Less reaction with 

organics; wider pH 

range; no toxic 

residues 

Not effective against 

spores 

Disinfecting surfaces; red meat 

carcass spray; fruits and 

vegetables 

Fraisse et al., 

2011 

Electrolyzed 

water 

Kill spores and many 

viruses and bacteria; 

On-site production 

of disinfectant; can 

be applied directly 

on fresh food 

products 

Lose potency fairly 

quickly; equipment 

costly 

Disinfectant on food contact 

surfaces, fruits and vegetables 

Koseki et al., 

2001 

Ozone 

Broad spectrum 

against bacteria, 

viruses and fungi 

Inactivation by 

organic matter; 10 

ppm can be harmful 

to human health 

Sanitizers; process water; 

products (fruits, vegetables and 

juices); gas (control mold in 

storage) 

Kim et al., 

1999 
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Table 1.7: Advantages, disadvantages and applications of disinfectants reviewed in this chapter 

(Continued) 

Chemicals Advantages Disadvantages Applications References 

Hydrogen 

peroxide 

A valuable 

bleaching, cleansing 

and deodorizing 

agent; no toxic 

residues 

not effective against 

viruses, bacterial 

spores, fungal 

spores, 

Cryptosporidia, 

Giardia, 

mycobacteria; 

damaging to tissues; 

moderately 

corrosive; 

ineffective in the 

presence of organic 

matter 

Skin antiseptic; disinfectant; 

chemical sterilant 
Li et al., 2011 

Potassium 

peroxymonosulf

ate 

Fast- acting Corrosive Pool and spa disinfectants 
Anipsitakis et 

al., 2008 

Trisodium 

phosphate 

Approved by FDA 

to be a GRAS 

chemical; 

Relatively high cost 

compared to 

chlorine 

Cleaning agent; approved for 

treatment of beef carcasses 

 

Lindsay 1985 

Sodium 

metasilicate 

Approved by USDA 

FSIS to be used in 

food; no adverse 

effect in food 

Relatively high cost 

compared to 

chlorine 

Processing aid as an antimicrobial 

in marinades for meat products; a 

carcass rinse or spray on beef 

carcasses, subprimals, and 

trimmings 

USDA FSIS, 

2011 
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Panel A 

 

 

Panel B 

 

 

Panel C 

 
 

Figure 1.1: Chemical structures of disinfectants evaluated in this work. Panel A- benzalkonium 

chloride; Panel B- potassium peroxymonosulfate; Panel C- Sodium metasilicate 
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Abstract 

Human noroviruses, the major cause of acute nonbacterial gastroenteritis worldwide, are 

easily transmitted via person-to-person and contaminated food-contact surfaces. This research 

determined inactivation of human norovirus surrogates, feline calicivirus (FCV-F9) and murine 

norovirus (MNV-1), by benzalkonium chloride (BAC) and potassium peroxymonosulfate 

(KPMS) over 1 h at room temperature using suspension and carrier (stainless-steel coupons) 

tests.  Virus recovery after triplicate treatments was evaluated using infectious plaque assays and 

compared to controls. In suspension tests, 0.32 mg/mL BAC caused 1.94 and 2.59 log PFU/mL 

reductions of FCV-F9 at low and high titers after 1 h, respectively; and > 3 and 1.47 log 

reduction of MNV-1 at low and high titers, respectively. KPMS at 5 and 10 mg/mL reduced both 

viruses at low titers within 30 s and high titers of FCV-F9 to undetectable levels after 2 min and 

30 s, respectively. KPMS at 5 mg/mL had little effect against high titers of MNV-1, though 10 

mg/mL KPMS caused a 4.61 log reduction after 5 min. Using carrier tests, KPMS at 5 and 10 

mg/mL reduced both viruses at low titers after 30 s.  High titers of FCV-F9 and MNV-1 required 

10 mg/mL KPMS for 10 and 15 min, respectively for complete inactivation. Carrier tests with 

0.32 mg/mL BAC reduced low titers of both viruses to undetectable levels after 1 h without 

significant reduction of high titers even after 2 h; simulated dirty conditions showed decreased 

viral reduction. These results indicate that KPMS causes viral reduction within short contact 

times, while BAC requires longer contact.   
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Introduction  

Human noroviruses (HNoVs) are considered as the most common cause of acute non-

bacterial gastroenteritis in the world, that are currently responsible for approximately 90% of 

non-bacterial enteric outbreaks (Scallan et al., 2011; Siebenga et al., 2009; Lindesmith et al., 

2003). These viruses can be transmitted via contaminated water, food, surfaces, or through direct 

contact with infected persons (Goodgame et al., 2006). HNoVs are quite persistent in the 

environment being detected on food-contact surfaces for up to 7 days at room temperature 

(D'Souza et al., 2006; Liu et al., 2009). They can persist in water and foods, such as marinated 

mussels, lettuce, green onions, strawberries and ready-to-eat products for several days (Bidawid 

et al., 2004; Green et al., 1998, 1999; Hewitt and Greening, 2004). Although, HNoV infection 

itself is self-limiting in healthy individuals, they can be life-threatening to the elderly and 

immunocompromised (Siebenga et al., 2009; Donaldson et al., 2010). HNoV outbreaks result in 

economic losses from product recalls or public health costs, as well as loss of labor due to 

inability of employees to report to work. Outbreaks related to cruise-ships, nursing homes, and 

elderly care facilities continue to be reported annually (Cheesbrough et al., 2000; Anderson et al., 

2001; Center for Disease Control and Prevention, 2002; Scallan et al., 2011).  

Since HNoVs cannot be cultivated in the lab, cultivable surrogates including feline 

calicivirus, FCV-F9 and murine norovirus, MNV-1, are used to determine efficacy of 

inactivation using infectivity plaque assays. Currently, chemical disinfectants that are utilized for 

HNoV decontamination include chlorine, sodium hypochlorite (household bleach), 

glutaraldehyde, and other quaternary ammonium compounds (Jimenez and Chiang, 2006; Jean et 

al., 2003; Solomon et al., 1998). These chemicals are reported to be effective on contact surfaces 

against FCV-F9 and MNV-1 (Park and Sobsey, 2011; Duizer et al., 2004; D’Souza and Su, 



54 

 

2010). However, some of the disadvantages of these chemicals include their corrosive nature that 

can cause damage to equipment including rust and staining of surfaces and are harmful during 

handling. Also, carcinogenic byproducts can be formed by the interaction of chlorine with 

organic matter (Dunnick and Melnick, 1993). Therefore, it is important to explore alternative 

chemical disinfectants to effectively inactivate HNoVs that have a broad range of antimicrobial 

activity against nosocomial infections. 

Benzalkonium chloride (BAC) is a chemical that has been used in hospital environments 

for surface disinfection and decontamination against a wide range of pathogenic bacteria. BAC at 

512 ppm (0.512 mg/mL) is reported to be effective against methicillin-resistant Staphylococcus 

aureus (MRSA), Campylobacter, Salmonella, Escherichia coli O157:H7, Listeria 

monocytogenes and Pseudomonas aeruginosa after an exposure time of 5 min in both suspension 

and surface tests (Riazi and Matthews, 2011). In addition to bacteria, studies have also shown 

that BAC has antiviral activity against canine coronavirus (Pratelli, 2007), respiratory syncytial 

virus, adenovirus, herpes simplex virus hominis type 2 and cytomegalovirus (Belec et al., 2000). 

Potassium peroxymonosulfate (KPMS) is another chemical that is routinely used in swimming 

pools to keep the water clean, and is effective against Escherichia coli after 1 h at a dose of 25 

ppm (0.025 mg/mL) (Anipsitakis et al., 2008). Previous studies have also shown its effectiveness 

against veterinary isolates of FCV and the poultry enteritis mortality syndrome-associated 

astrovirus (Eleraky et al., 2002; Schultz-Cherry et al., 2001). Therefore, routinely used chemical 

disinfectants for bacterial disinfection in these facilities may also have the potential to inactivate 

HNoVs and/or HNoV surrogates to prevent their spread.   

With the alarming increase in HNoV outbreaks and their emerging virulent forms such as 

GII.4 that are known to cause death in the elderly and immune-compromised (Siebenga et al., 
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2010), it has become imperative to implement improved control strategies in high risk areas 

including hospitals, elderly-care facilities, cruise-ships, and the food environment.  

Previously, using suspension tests, it was shown that BAC (0.2, 0.5, and 1 mg/mL) and 

KPMS (5, 10, and 20 mg/mL) can reduce the titers of FCV-F9, MNV-1, and bacteriophage MS2 

after 2 h at room temperature (Su et al., 2012). In this study, the time-dependence effects of 

benzalkonium chloride (BAC at 0.32 mg/mL) and potassium peroxymonosulfate (KPMS at 5 

and 10 mg/mL) against FCV-F9 and MNV-1 over 1 h at room temperature were compared in 

vitro using suspension tests and carrier tests on stainless-steel coupons under clean and simulated 

dirty conditions. The infectivity after treatment was evaluated by using infectious plaque assays 

and compared to control (water-treated) viruses.  

 

                                                            Materials and Methods 

Virus Stocks  

Feline calicivirus (FCV-F9) and its host, Crandell Reese Feline Kidney (CRFK) cells, 

were obtained from American type culture collection (ATCC) (Manassas, VA). Murine 

norovirus (MNV-1) was kindly provided by Dr. Skip Virgin (Washington University, St. Louis, 

MO), and its host, RAW 264.7 cells were obtained from the University of Tennessee cell culture 

collection. Viral stocks were obtained as previously described using their respectively confluent 

cell lines in 175cm2 flasks (D’Souza et al., 2011; Su et al., 2011). Viral titer was quantified using 

infectious plaque assays as described below.  
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Chemicals and Treatments  

Benzalkonium chloride (BAC), obtained from MP Biomedicals (Illkirch, France), was 

diluted with sterile de-ionized water to reach a concentration of 0.32 mg/mL and then filter-

sterilized with a 0.2 μm filter (Fisher Scientific, GA, USA). Potassium peroxymonosulfate 

(KPMS) (Tokyo Chemical Industry Co., Japan) was prepared in sterile de-ionized water to reach 

final concentrations of 5 and 10 mg/mL and filter-sterilized with a 0.2 μm filter (Fisher 

Scientific, GA, USA).  

For the suspension test, one volume (167 µl) of BAC and KPMS were mixed with an 

equal volume of FCV-F9 or MNV-1 at high and low titers of ~7 log10 PFU/mL and ~5 log10 

PFU/mL to obtain a final concentration of 0.16 mg/mL BAC or 2.5 mg/mL and 5 mg/mL KPMS, 

respectively, and incubated for specific time intervals of 0, 5, 10, 15, 30 and 60 min at room 

temperature (22oC). For the carrier test, stainless steel coupons sterilized by autoclaving were 

used as a surface model (fomite). Under clean conditions, MNV-1 and FCV-F9 were inoculated 

on sterile coupons at high and low titers of ~7 log10 PFU/mL and ~5 log10 PFU/mL and allowed 

to dry for 1 h at room temperature in a BioSafety Level 2 hood.  After drying, the coupons were 

treated with BAC or KPMS and sampled at specific time intervals of 0, 5, 10, 15, 30 and 60 min 

at room temperature (RT). Heat-inactivated fetal bovine serum (5% FBS, HyClone Laboratories, 

Inc, Logan, Utah) was added into the virus stocks to simulate an organic load to test the efficacy 

of chemicals against HNoV surrogates in the presence of dirty conditions using the same 

procedures as described above for clean conditions.  

Sterile water was used as non-treated controls to test the viral recovery and to compare 

with treated samples. All the chemical treatments were neutralized after their appropriate 

treatment contact times by serially diluting the virus-chemical mix in Dulbecco’s Modified 
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Eagle’s Medium/Ham’s F-12 (HyClone Laboratories, Inc, Logan, Utah) containing 10% heat-

inactivated FBS followed by serial dilutions in DMEM-F12 containing 2% FBS and plaque 

assayed as described below.  

 

Plaque Assays for FCV-F9 and MNV-1  

Serial dilutions (0.5 mL) of control and treated viruses were inoculated onto the confluent 

CRFK cells for FCV-F9 and RAW 264.7 cells for MNV-1 in 6-well plates, and incubated for 2.5 

h at 37℃ in a CO2 incubator. Plaque assays were performed as previously described (D’Souza et 

al., 2006; D’Souza et al., 2009; Su et al., 2011). Briefly, overlay medium containing 0.75% noble 

agar (Sigma-Aldrich, St. Louis, MO) was added to each infected or control well and incubated 

for 2~3 d at 37oC under 5% CO2. Finally, overlay media containing neutral red (Sigma-Aldrich, 

St. Louis, MO) was added for visualization of plaques after incubation.  

 

Statistical Analysis  

All treatment and controls were replicated thrice in duplicate. A one-way analysis of 

variance (ANOVA) was used to test for differences in means of plaque counts among treatments 

and means were analyzed using a completely randomized design at p<0.05 in SAS program 

(version 9.3, SAS Institute, Cary, NC, USA).  If statistically significant differences were found 

using the ANOVA, the Tukey’s Post Hoc test was used to analyze differences in means between 

treatments.  
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Results 

Reduction of FCV-F9 and MNV-1 by 0.32 mg/mL BAC in suspension tests  

BAC at 0.32 mg/mL concentration for 5, 10 and 15 min contact time caused <1 log10 

PFU/mL reduction for FCV-F9 and MNV-1 at low titers, with ~1 log10 PFU/mL of reduction 

after 30 min, and with greater reduction of 1.94 log10 PFU/mL or ≥3 log10 PFU/mL for FCV-F9 

and MNV-1, respectively, after 1 h at RT. Using high viral titers, FCV-F9 and MNV-1 were 

reduced by ~1 log10 PFU/mL after 10 min of exposure time. FCV-F9 titer was reduced by 2.59 

log10 PFU/mL after 1 h, while a 1.47 log reduction was observed for MNV-1 at RT (Table 2.1).  

 

Reduction of FCV-F9 and MNV-1 by 5 and 10 mg/mL KPMS in suspension tests 

FCV-F9 and MNV-1 were undetectable after exposure to 5 or 10 mg/mL of KPMS after 

10 min (data not shown). Therefore shorter contact times for 0, 30 s, 1 min, 2 min and 5 min 

were further evaluated at the same concentrations of KPMS. Low titers of FCV-F9 and MNV-1 

were undetectable within 30 s. However, KPMS at 5 mg/mL reduced high titers of FCV-F9 by 

≥5 log10 PFU/mL after 2 min, but caused little reduction (~0.5 log) of high titers of MNV-1 after 

5 min of exposure time. Increasing the concentration of KPMS to 10 mg/mL for 30 s of contact 

time resulted in ≥5 log10 PFU/mL reduction for high titers of FCV-F9 and also had a significant 

effect on high titers of MNV-1 resulting in a 4.61 log reduction after 5 min at RT (Table 2.2).  

 

Reduction of FCV-F9 and MNV-1 by 0.32 mg/mL BAC in clean coupon tests  

Since little reduction was achieved in the suspension test after 1 h of exposure and it is 

generally recognized that chemical efficacy is higher in suspension than carrier tests, longer 

contact times for BAC at a concentration of 0.32 mg/mL on stainless steel coupons were needed 
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for testing. Low titers of FCV-F9 and MNV-1 were reduced to undetectable levels after 1 or 2 h 

of exposure at RT. High titers of FCV-F9 were reduced by 1.45 and 1.05 log10 PFU/mL with the 

treatment of BAC after 1 h and 2 h, respectively. However, lower reductions of ~0.7 log10 

PFU/mL for high titers of MNV-1 were achieved after 1 or 2 h of exposure to 0.32 mg/mL of 

BAC at RT (Table 2.4).  

 

Reduction of FCV-F9 and MNV-1 by 5 and 10 mg/mL KPMS in clean coupon tests  

KPMS at 5 and 10 mg/mL concentrations reduced FCV-F9 and MNV-1 at low titers to 

undetectable levels within 30 s contact time. KPMS at 10 mg/mL concentration reduced high 

titers of FCV-F9 and MNV-1 by 1.92 and 1.56 log10 PFU/mL after 5 min, respectively; and 

complete inactivation was obtained after 10 min and 15 min for FCV-F9 and MNV-1, 

respectively. Lowering the concentration of KPMS to 5 mg/mL for 5 min of contact time only 

resulted in a <1 log reduction for high titers of FCV-F9 and MNV-1. FCV-F9 at high titers were 

reduced to undetectable levels after 10 min of exposure time to 5 mg/mL KPMS, while only 2.46 

log10 PFU/mL reduction was reached for MNV-1 after 1 h at RT (Table 2.3a).  

 

Reduction of FCV-F9 and MNV-1 by 0.32 mg/mL BAC in dirty coupon tests  

The effect of BAC at 0.32 mg/mL concentration was decreased significantly on FCV-F9 

and MNV-1 titer reduction after 1 or 2 h contact times under dirty conditions. Almost no 

reduction was observed on high titers of FCV-F9 and MNV-1 after 2 h of contact time. 

Furthermore, <0.5 log10 PFU/mL reduction was observed on low titers of FCV-F9 and MNV-1 

after 1 or 2 h of exposure (Table 2.5).  
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Reduction of FCV-F9 and MNV-1 by 5 and 10 mg/mL KPMS in dirty coupon tests  

KPMS at 5 mg/mL for 2 min effectively inactivated low titers of FCV-F9 and reduced 

MNV-1 to undetectable levels (Table 2.6). FCV-F9 at high titer was reduced to undetectable 

levels after 15 min of exposure time by 5 mg/mL of KPMS. High titers of MNV-1 were reduced 

by 2.29 logs after 1 h of contact time at RT, which was similar to the clean condition carrier 

tests. Increasing the concentration of KPMS to 10 mg/mL reduced FCV-F9 and MNV-1 at low 

titers to undetectable levels after 1 min and 30 s, respectively. High titers of FCV-F9 were 

reduced to undetectable levels after 10 min. However, the effect of KPMS on high titers of 

MNV-1 was decreased compared to the clean conditions, where only a 2.52 log10 PFU/mL 

reduction was achieved after 15 min of contact time and complete reduction was observed only 

after 1 h of exposure at RT (Table 2.3b).  

 

Discussion 

In this study, the effect of 0.32 mg/mL BAC and 5 and 10 mg/mL KPMS on the titer 

reduction of FCV-F9 and MNV-1 was evaluated. The virus reduction was found to be related to 

the contact time, contact surfaces, the type of virus and chemical disinfectant used. Generally, 

longer contact times resulted in increased reductions for both tested viruses. BAC required 

longer contact times to effectively inactivate both viruses, while KPMS was found to be a fast-

acting agent causing rapid reduction of viral titers within short contact times. Both chemicals had 

decreased efficacy for both tested viruses using the stainless-steel coupon tests compared to 

suspension tests that could be attributed to the interference of the physical properties of the 

surface with contact between the microorganisms and disinfectants (Best et al., 1988). Not 
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surprisingly, the effect of both chemical disinfectants was decreased in the presence of organic 

loads.  

Current chemical disinfectants routinely used include alcohols including ethanol, 1-

propanol, and 2-propanol, glutaraldehyde and sodium hypochlorite. Using suspension tests, 70% 

ethanol was most frequently tested by investigators, but without any conclusive suggestions on 

its effectiveness against HNoV surrogates (Martino et al., 2010; Malik et al., 2006a; Park et al., 

2010; D’Souza and Su, 2010; Duizer et al., 2004; etc.). Iso-1-propanol at 50% and 70% was 

reported to have >4 log reduction after 30 s of contact on FCV-F9, whereas 2-propanol was 

effective only after 3 min of contact time (Gehrke et al., 2004). In another study, 1-propanol at 

only 30% was shown to be the most effective virucidal agent among the three alcohols tested on 

stainless steel for MNV-1 with 99.99% reduction, followed by (50-55%) ethanol and then (60%) 

2-propanol (Magulski et al., 2009). Furthermore, this study showed the efficacy of 1000 ppm 

peracetic acid and 2500 ppm glutaraldehyde to inactivate 99.99% of MNV on the carriers within 

5 min of exposure time (Magulski et al., 2009). Using surface disinfection tests, 70% ethanol 

was reported to be ineffective against high as well as low titers of MNV-1 and FCV-F9 after 1 

min of contact time (D’Souza and Su, 2010). In comparison to ethanol, the results reported with 

BAC show higher effects though requiring longer contact time of 1 h. Typical sodium 

hypochlorite wash solutions were reported to be effective only at >300 ppm for HNoV 

inactivation, where complete inactivation of FCV-F9 was reported at chlorine levels of 3,000 

ppm (or higher) after 10 min at room temperature (Duizer et al., 2004). On the other hand, 2% 

glutaraldehyde was found to effectively reduce FCV-F9 and MNV-1 by ~6 log10 PFU after 30 s 

and 1 min of contact time, while 10% household bleach containing 5000 ppm free chlorine 

resulted in effective reductions of FCV-F9 by >6 log10 PFU/mL in 1 min, but failed to 
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completely inactivate MNV-1 (D’Souza and Su, 2010). These results are consistent with reports 

showing that MNV-1 is a sturdy and resilient virus, resistant to most treatments and processing 

conditions compared to FCV-F9.  One surface disinfection test was carried out on fabrics and 

carpets, to show that an activated dialdehyde-based product containing 2.6% glutaraldehyde 

could reduce more than 99.99% of FCV in 1-10 min on all types of material tested (Malik et al., 

2006b).  

Recently, Japanese investigators found that 1000 µg/mL copper iodide nanoparticles had 

an extremely high antiviral activity reducing FCV by 7 orders of magnitude after 1 h of contact 

time (Shionoiri et al., 2012). Furthermore, investigators suggested tannic acid derived from 

Chinese medicinal herbs inhibited binding to histo-blood group antigens (HBGAs) receptors in 

HNoVs, which indicated tannic acid a promising antiviral (Zhang et al., 2012). A novel MNV 

strain, MT30-2, was isolated from the feces of mice in Japan and two antiseptics, povidone-

iodine and sodium hypochlorite, revealed strong virucidal activity against MNV, which 

inactivated MNV at low concentrations and in short exposure time (Matsuhira et al., 2012).  

Quaternary ammonium compounds (QAC) have been studied as disinfectants against 

human NoVs and its surrogates including FCV-F9 and MNV-1. Previous studies using 

commercial cleansers that contain the active ingredient n-alkyl dimethyl benzyl ammonium 

chloride at 0.08%, showed less than 1 log of reduction for MNV-1 was obtained after 10 min at 

RT (Girard el at., 2010), and similar results were reported by others showing that QAC 

disinfectants were not effective against FCV-F9 (Doultree et al., 1999; Eleraky el at., 2002). 

Another commercial disinfectant with 1:10 final concentrations of QAC showed no reduction 

against FCV after 1 min (Doultree et al., 1998). QAC disinfectants containing 0.14% BAC was 

also shown to be ineffective at virolysis of human GII.4 norovirus (Nowak el at., 2011). 
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Similarly, our study showed that both high and low titer of FCV-F9 and MNV-1 reached ≤1 

log10 reduction by treatments with 0.32 mg/mL BAC after 10 min at RT, but required longer 

exposure/contact times for improved effects. 

BAC belongs to the QAC group, which have been widely utilized in hand sanitizers 

(Moadab et al., 2001) and disinfectants for hard surfaces (Gradel et al., 2004) and as 

pharmaceutical preservatives (Marple et al., 2004) due to its effectiveness in decontaminating a 

broad spectrum of bacteria, viruses and fungi in solutions (Bastiani et al., 1974; Belec et al., 

2000; Jira et al., 1982). BAC at low concentrations is reported to be a non-irritant, non-toxic, and 

non-corrosive to food contact surfaces and thus can be safely used as a disinfectant in the food 

industry as a readily-used antimicrobial agent. However, studies showed that BAC requires 

longer exposure time to inactivate non-enveloped viruses. Furthermore, in our study, longer 

incubation times resulted in higher reduction irrespective of initial titers. Therefore, longer 

contact times could be explored to estimate the effectiveness of BAC in decontaminating HNoV 

surrogates. However, the long contact time of 1 h may not be suitable for all applications.  

Recently, alternatives including trisodium phosphate (TSP) and hydrogen peroxide vapor 

(HPV) are being studied as antiviral sanitizers. TSP at the concentrations of 1%, 2% and 5% 

were tested on surfaces and produce. It appears to be suitable for titer reductions of FCV, MNV-

1 and MS2 bacteriophage on surfaces, and FCV and MNV-1 on produce. Studies showed that 

higher concentration of TSP resulted in higher titer reduction with short contact times (30 s and 1 

min) and 5% TSP achieved similar efficacy to 5000 ppm chlorine (D’Souza and Su, 2010; Su 

and D’Souza, 2011). Though, the adverse effects of high concentrations of alkaline treatments 

such as TSP on the environment, if any, may need to be explored. HPV appears to be a 

promising virucide, showing that poliovirus, rotavirus, adenovirus and murine virus can be 
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completely inactivated by 127 ppm HPV for 1 h at room temperature on stainless steel and 

framing panel carriers (Tuladhar et al., 2012). Human norovirus GII.4 appeared to be most 

resistant to HPV treatment, with a reduction of 0.5 log10 PCR units on stainless steel carriers. 

Furthermore, their study indicated that low levels of feces (1%) did not significantly influence 

the effectiveness of HPV (Tuladhar et al., 2012). However, the initial cost of the equipment to 

generate HPV may be a limiting factor for some small scale industries or communities.  

Therefore, other commonly used sanitizers and disinfectants need to be evaluated to 

determine their effectiveness against human noroviruses. KPMS is widely used as a powerful 

oxidizing agent. Currently, KPMS is routinely used in swimming pools against Escherichia 

coli to keep the water clean and safe (Anipsitakis et al., 2008). It has also been used as a mist in 

veterinary hospitals to decontaminate S. aureus and S. Typhiumurium by >99.9999% with the 

concentration of 4% for 30 min exposure time after misting was completed (Patterson et al., 

2005). In a 6-year study, KPMS at concentrations of 1 and 10 mg/mL completely inactivated all 

the bacteria-S. aureus, MRSA and Pseudomonas aeruginosa after 10 and 2 min exposure times, 

respectively and no significant variation in resistance to KPMS was observed during the period 

of study (Giacometti et al., 2002). However, only a few studies report the application of KPMS 

for viral inactivation. The KPMS-based product Virkon S was shown to completely inactivate 

the poultry enteric mortality syndrome (PEMS)-associated astrovirus in an embryo model, while 

quaternary ammonium or benzalkonium chloride-based products had no effect against the virus 

(Schultz-Cherry et al., 2001). Also, KPMS was shown to be effective against veterinary isolates 

of FCV (Elarky et al., 2002).  

In our study, KPMS at 5 mg/mL and 10 mg/mL reduced both viruses at low titers within 

30 s and high titers of FCV-F9 after 2 min with 5 mg/mL while within 30 s with 10 mg/mL of 



65 

 

KPMS to undetectable levels. High titers of FCV-F9 were reduced to undetectable levels after 2 

min of treatment with 5 mg/mL KPMS. This is consistent with earlier research showing that 

KPMS completely inactivated FCV after 10 min of exposure (Eleraky et al., 2002). However, 

this study used only FCV from animal isolates and not the FCV-F9 strain or MNV-1. KPMS 

appears to be a more suitable disinfectant among the tested chemicals. Though KPMS is fast-

acting, it could be corrosive to surfaces and equipment as a strong oxidative disinfectant, which 

may not be proper for use in hand sanitizers. The applicability of KPMS as an alternative 

strategy to decontaminate foodborne viruses on food contact surfaces (stainless steel) and under 

soiled conditions was investigated in this study as well.  

Solomon and others (2009) reported that 0.8 mg/mL QAC reduced FCV by 1.9 log10 

PFU/mL after 10 min of exposure, while Virkon at 1% containing 5 mg/mL KPMS reduced FCV 

from 4-5 log10 PFU/mL to undetectable levels after 10 min (Solomon et al., 2009). In 

comparison, our results showed that 5 mg/mL KPMS reduced FCV from ~6 log10 PFU/mL to 

undetectable levels after 2 min; and 0.32 mg/mL BAC decreased FCV at ~ 4 log10 PFU/mL by 

1.9 log10 PFU/mL after 1 h. Su and D’Souza (2012) reported that BAC at 0.2, 0.5, and 1 mg/mL 

reduced FCV-F9 and MNV-1 at low (~5 log10 PFU/mL) titers to undetectable levels after 2 h at 

room temperature in suspension tests; and high (~7 log10 PFU/mL) titers of FCV-F9 were 

reduced by 2.87, 3.08, and 3.25 log10 PFU/mL and high titers of MNV-1 were reduced by 1.55, 

2.32, and 2.75 log10 PFU/mL, respectively. KPMS at 5, 10, and 20 mg/mL reduced high and low 

titers of FCV-F9 and low titers of MNV-1 to undetectable levels, while high titers of MNV-1 

were reduced by 0.92 and 3.44 log10 PFU/mL with KMPS at 5 and 10 mg/mL, respectively after 

2 h at room temperature (Su and D’Souza, 2012). In comparison, our study showed that BAC at 

0.32 mg/mL reduced FCV-F9 and MNV-1 at low (~5 log10 PFU/mL) titers by 1.94 and ≥3.14 
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log10 PFU/mL after 1 h at room temperature in suspension tests, respectively; and FCV-F9 and 

MNV-1 at high (~7 log10 PFU/mL) titers were decreased by 2.59 and 1.47 log10 PFU/mL, 

respectively after 1 h. KPMS at 5 and 10 mg/mL reduced both low and high titers of FCV-F9 

and MNV-1 to undetectable levels after 1 h  

Since HNoV is transmitted via fecal-oral route, human excretions such as vomit and 

stools can be the major sources of transmission of HNoV in the environment. Therefore, in 

previous studies, simulated natural conditions have been carried out by adding organic 

compounds into the virus stocks to determine the effect of disinfectants against HNoV and its 

surrogates. In one study, investigators simulated field conditions using an organic acid, an 

aldehyde, a halogen compound, and a peroxide as chemical disinfectants to show that the 

efficacy of disinfectants against FCV and noroviruses could be greatly reduced in the presence of 

organic impurities (25% feces) (Poschetto et al., 2007). However, another study showed that 

organic loads (0.3% BSA plus 0.3% erythrocytes) did not change the effectiveness of the 

biocides (Magulski et al., 2009). In our study, the effect of both chemicals against FCV-F9 and 

MNV-1 decreased under simulated dirty conditions (5% FBS). BAC at 0.32 mg/mL reduced low 

titers of FCV-F9 and MNV-1 by <0.5 log10 PFU/mL under dirty conditions, while undetectable 

levels were achieved under clean conditions after 1 or 2 h exposure time at RT. Moreover, BAC 

resulted in 1.45 and 1.05 log reductions against high titers of FCV-F9 after 1 and 2 h, 

respectively, and ~0.7 log reduction against high titers of MNV-1 after 1 or 2 h under clean 

conditions. However, almost no reduction of FCV-F9 and MNV-1 at high titers after 1 or 2 h 

was observed under dirty conditions. The effect of KPMS at 5 and 10 mg/mL was diminished 

somewhat in the presence of organic loads where 5 mg/mL of KPMS reduced FCV-F9 and 

MNV-1 at low titers to undetectable levels within 30 s and after 2 min under clean and dirty 
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conditions, respectively. KPMS at 10 mg/mL showed no difference against FCV-F9 at both high 

and low titers and MNV-1 at low titer under clean or dirty conditions; however, effects 

significantly decreased against high titers of MNV-1, resulting in complete inactivation after 15 

min and 1 h under clean and dirty conditions, respectively.  

Conclusion 

This study provides data on alternative methods for HNoV surrogate reduction. Further 

studies using higher concentrations of BAC may be necessary to determine the efficacy of its 

antiviral effects against HNoV surrogates for use in food processing, hospital or industrial 

settings. Our results with KPMS show its strong potential for application in decontaminating 

enteric viruses in a rapid and effective manner, though caution is advised as it is a strong 

oxidizing agent.  
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Table 2.1: Reduction of low and high titers of FCV-F9 and MNV-1 at room temperature by 0.32 mg/mL benzalkonium chloride (BAC) 
using suspension tests.  

 
FCV-F9 (log10 PFU/mL) at Low 

titer 
MNV-1 (log10 PFU/mL) at Low 

titer 
FCV-F9 (log10 PFU/mL) at High 

titer 
MNV-1 (log10 PFU/mL) at High 

titer 

Contact time 
(min) 

Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction 

Control 4.66±0.13A 0.00 4.41±0.17A 0.00 6.42±0.14A 0.00 6.24±0.06A 0.00 

5 4.10±0.17B 0.56 4.09±0.25AB 0.32 5.76±0.09B 0.66 5.40±0.31AB 0.84 

10 4.04±0.06B 0.62 3.84±0.21BC 0.57 5.39±0.08C 1.03 5.33±0.32AB 0.91 

15 3.85±0.15BC 0.81 3.68±0.24CD 0.73 5.16±0.09C 1.26 5.01±0.36B 1.23 

30 3.55±0.09C 1.11 3.35±0.12D 1.06 4.43±0.10D 1.99 4.93±0.46B 1.31 

60 2.73±0.25D 1.94 <10E ≥3.41* 3.83±0.09E 2.59 4.77±0.39B 1.47 

 
Different letters denote significant differences when compared within each column alone (p<0.05).  
*Indicates inactivation values at the detection limit of the assay since BAC fixed the cell monolayers after 1 log serial dilution but not 
the lower dilution of the virus-treatment combination.  
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Table 2.2: Reduction of FCV-F9 and MNV-1 at high titers by potassium peroxymonosulfate (KPMS) at 5 and 10 mg/mL at room 
temperature in suspension tests.  
 

 
FCV-F9 (log10 PFU/mL) with 5 

mg/mL KPMS 
MNV-1 (log10 PFU/mL) with 5 

mg/mL KPMS 
FCV-F9 (log10 PFU/mL with 10 

mg/mL KPMS 
MNV-1 (log10 PFU/mL) with 10 

mg/mL KPMS 
Contact 

time 
(min) 

Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction 

Control 6.41±0.15A 0.00 6.45±0.12A 0.00 6.00±0.08A 0.00 6.16±0.07A 0.00 

0.5 3.71±0.06B 2.70 6.04±0.10B 0.41 <10B ≥5.00* 3.98±0.10B 2.18 

1 2.10±0.19C 4.31 5.87±0.20B 0.58 <10B ≥5.00* 2.91±0.15C 3.25 

2 <10D ≥5.41* 5.98±0.05B 0.47 <10B ≥5.00* 2.48±0.16D 3.68 

5 <10D ≥5.41* 5.97±0.09B 0.48 <10B ≥5.00* 1.55±0.23E 4.61 

 
Different letters denote significant differences when compared within each column alone (p<0.05).  
*Indicates inactivation values at the detection limit of the assay since KPMS fixed the cell monolayers after the first-log serial dilution 
but not the lower dilutions of the virus-treatment combination.  
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Table 2.3: Reduction of FCV-F9 and MNV-1 at high titers on clean (a) and dirty (b) sterile stainless-steel coupons (carrier tests) by 5 
mg/mL and 10 mg/mL potassium peroxymonosulfate (KPMS) at room temperature.  
a.  

 
FCV-F9 (log10 PFU/mL) with 5 

mg/mL KPMS 
MNV-1 (log10 PFU/mL) with 5 

mg/mL KPMS 
FCV-F9 (log10 PFU/mL) with 10 

mg/mL KPMS 
MNV-1 (log10 PFU/mL) with 10 

mg/mL KPMS 
Contact 

time (min) 
Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction 

Control 7.51±0.08A 0.00 5.83±0.07A          0.00 7.51±0.08A 0.00 5.83±0.07A 0.00 

0.5 7.25±0.06AB 0.26 5.79±0.03A 0.04 6.36±0.07B 1.15 5.02±0.18B 0.81 

1 6.95±0.09B 0.56 5.69±0.07AB 0.14 6.40±0.05B 1.11 5.12±0.04B 0.71 

2 6.86±0.11B 0.65 5.58±0.13B 0.25 5.70±0.18B 1.81 4.44±0.08B 1.39 

5 7.03±0.14B 0.48 5.16±0.09C 0.67 5.59±0.40B 1.92 4.27±0.23B 1.56 

10 <10C ≥6.51* 4.19±0.06B 1.64 <10C ≥6.51* 3.11±0.06B 2.72 

15 <10C ≥6.51* 4.18±0.10B 1.65 <10C ≥6.51* <10C ≥4.83* 

30 <10C ≥6.51* 3.63±0.12C 2.20 <10C ≥6.51* <10C ≥4.83* 

60 <10C ≥6.51* 3.37±0.21C 2.46 <10C ≥6.51* <10C ≥4.83* 

 
Different letters denote significant differences when compared within each column alone (p<0.05).  
*Indicates inactivation values at the detection limit of the assay since KPMS fixed the cell monolayers after the first-log serial dilution 
but not the lower dilutions of the virus-treatment combination.  
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Table 2.3: Reduction of FCV-F9 and MNV-1 at high titers on clean (a) and dirty (b) sterile stainless-steel coupons (carrier tests) by 5 
mg/mL and 10 mg/mL potassium peroxymonosulfate (KPMS) at room temperature (Continued).  
b.  

 
FCV-F9 (log10 PFU/mL) with 5 

mg/mL KPMS 
MNV-1 (log10 PFU/mL) with 5 

mg/mL KPMS 
FCV-F9 (log10 PFU/mL) with 10 

mg/mL KPMS 
MNV-1 (log10 PFU/mL) with 10 

mg/mL KPMS 
Contact 

time (min) 
Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction 

Control 7.98±0.03A 0.00 5.85±0.09A          0.00 7.98±0.03A 0.00 5. 85±0.09A 0.00 

10 2.71±0.08B 5.27 4.59±0.03B 1.26 <10B ≥6.98* 3.51±0.09B 2.34 

15 <10C ≥6.98* 4.43±0.09BC 1.42 <10B ≥6.98* 3.33±0.06B 2.52 

30 <10C ≥6.98* 4.26±0.02C 1.59 <10B ≥6.98* 2.83±0.13C 3.02 

60 <10C ≥6.98* 3.56±0.13D 2.29 <10B ≥6.98* <10C ≥4.85* 

 
Different letters denote significant differences when compared within each column alone (p<0.05).  
*Indicates inactivation values at the detection limit of the assay since KPMS fixed the cell monolayers after the first-log serial dilution 
but not the lower dilutions of the virus-treatment combination.  
 
 
 
 



77 

 

Table 2.4: Reduction of FCV-F9 and MNV-1 at high titers on clean sterile stainless-steel coupons 
by 0.32 mg/mL BAC at room temperature.  
 

FCV-F9 (log10 PFU/mL) MNV-1 (log10 PFU/mL) 

Contact time 

 
Recovered titer Reduction Recovered titer Reduction 

Water 1 h 7.88±0.05A 0.00 5.60±0.12A 0.00 

1 h 6.43±0.08B 1.45 4.84±0.11BC 0.76 

Water 2 h 6.78±0.32B 0.00 5.41±0.33AB 0.00 

2 h 5.73±0.05C 1.05 4.71±0.24C 0.70 

 

Different letters denote significant differences when compared within each column alone 
(p<0.05).  
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Table 2.5: Reduction of FCV-F9 and MNV-1 at high and low titers on sterile stainless-steel coupons with 5% FBS (dirty condition) by 
0.32 mg/mL BAC at room temperature.  
 

 
FCV-F9 (log10 PFU/mL) at Low 

titer 

MNV-1 (log10 PFU/mL) at Low 

titer 

FCV-F9 (log10 PFU/mL) at High 

titer 

MNV-1 (log10 PFU/mL) at High 

titer 

Contact time 

(min) 
Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction 

Water 1 h 6.03±0.02A 0.00 4.38±0.07A 0.00 8.14±0.06A 0.00 5.90±0.08A 0.00 

1 h 5.85±0.18AB 0.18 4.17±0.06B 0.21 8.14±0.03A 0.00 5.01±0.04C 0.89 

Water 2 h 6.10±0.03A 0.00 4.40±0.08A 0.00 8.19±0.05A 0.00 5.99±0.06A 0.00 

2 h 5.56±0.11B 0.54 3.94±0.08C 0.46 8.01±0.02B 0.18 5.62±0.02B 0.36 

 
Different letters denote significant differences when compared within each column alone (p<0.05).  
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Table 2.6: Reduction of FCV-F9 and MNV-1 at low titers on dirty carrier tests by 5 and 10 mg/mL potassium peroxymonosulfate 
(KPMS) at room temperature.  
 

 
FCV-F9 (log10 PFU/mL) with 5 

mg/mL KPMS 
MNV-1 (log10 PFU/mL) with 5 

mg/mL KPMS 
FCV-F9 (log10 PFU/mL) with 10 

mg/mL KPMS 
MNV-1 (log10 PFU/mL) with 10 

mg/mL KPMS 
Contact 

time (min) 
Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction Recovered titer Reduction 

Control 6.03±0.07A 0.00 3.67±0.09A          0.00 5.93±0.09A 0.00 3.67±0.09A 0.00 

0.5 4.09±0.06B 1.94 1.76±0.31B 1.91 2.43±0.09B 3.50 <10B ≥2.67* 

1 3.72±0.04C 2.31 1.46±0.22B 2.21 <10C ≥4.93* <10B ≥2.67* 

2  <10C ≥5.03* <10C ≥2.67* <10C ≥4.93* <10B ≥2.67* 

 
Different letters denote significant differences when compared within each column alone (p<0.05).  
*Indicates inactivation values at the detection limit of the assay since KPMS fixed the cell monolayers after the first-log serial dilution 
but not the lower dilutions of the virus-treatment combination. 
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Abstract 

Sodium metasilicate is USDA FSIS approved as a processing aid for meat and poultry 

products with known antibacterial properties and anti-rotaviral activity. However, its efficacy 

against human noroviruses, the leading cause of non-bacterial gastroenteritis, has not been 

reported. Concentration-dependent effects of sodium metasilicate at 2%, 5%, and 10% against 

cultivable human norovirus surrogates, (feline calicivirus (FCV-F9) and murine norovirus 

(MNV-1)), at room temperature for up to 1 h using both suspension and carrier tests were 

evaluated. Each virus at high (6~8 log10 PFU/mL) or low (4~6 log10 PFU/mL) titers was mixed 

with equal volumes of sodium metasilicate and incubated for 15 s, 30 s, 1 min, 2 min, 5 min, 10 

min, 15 min, 30 min and 1 h. Each treatment was replicated thrice, recovered viruses were 

plaque assayed in duplicate, and data was statistically analyzed. Virus reduction by 5 and 10% 

sodium metasilicate was rapid, with complete reduction within 15 s for both tested viruses at 

both titers using suspension tests.  FCV-F9 and MNV-1 at high titers were reduced to 

undetectable levels with 2% sodium metasilicate after 2 min and 15 s, respectively; with 

complete reduction of  both viruses at low titers within 15 s. For carrier tests, under dry 

conditions, complete reduction of FCV-F9 at high titers was achieved by 2 and 5% sodium 

metaslicate after 10 min and 15 s, respectively; high titers of MNV-1 were reduced to 

undetectable levels by 2% sodium metasilicate after 2 min; and complete reduction of both tested 

viruses at low titers were observed within 15 s.  This research shows the potential application of 

the processing aid sodium metasilicate as a 2% solution for the control of human norovirus 

transmission.  
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Introduction 

Human noroviruses are non-enveloped, single-stranded RNA viruses that belong to the 

Caliciviridae family. They are currently considered the leading cause of foodborne illness 

outbreaks worldwide. In the United States, over half of the foodborne disease outbreaks reported 

by the Centers for Disease Control and Prevention from 2006 to 2008 were attributed to human 

noroviruses (Scallen et al., 2011; Siebenga et al., 2009; CDC, 2011). The difficulty involved in 

controlling human norovirus outbreaks are due to their ease of transmission, high attack rates, 

environmental stability and low infectious doses of 10 to 100 viral particles (Caul, 1994; 

D'Souza et al., 2006; Liu et al., 2009). The virus can be transmitted by person to person, or via 

the fecal-oral route (Goodgame et al., 2006). In addition, people may be infected by consuming 

contaminated food or water and touching inanimate objects contaminated with the virus. 

Outbreaks have occurred in a variety of closed settings, including long-term care and other 

healthcare facilities, restaurants and catered events, cruise ships, schools, hotels, and other 

institutional settings and also involve ready-to-eat food items that do  not undergo further 

processing before consumption (CDC, 2011). The symptoms include nausea, vomiting, diarrhea 

and abdominal pain. Although the infection is self-limiting, the emerging virulent strains can be 

life-threatening to the elderly and the immuno-compromised (Siebenga et al., 2009; Donaldson et 

al., 2010).  Routine sanitation and hygienic practices need to be followed to prevent outbreaks. 

Commonly used sanitizers including chlorine containing compounds have been found to be 

efficacious for surface decontamination (D’Souza and Su, 2010).  

Sodium metasilicate is a commonly used USDA FSIS approved processing aid in the 

food industry that is highly soluble with the pH of a 1% solution ranging from 12.5 to 13.0 

(Sharma et al., 2012a). It is approved for use as an antimicrobial component of marinades for 
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meat and poultry products at up to 2% by weight of the marinades and also as a carcass rinse or 

spray on raw beef carcasses, subprimals, and trimmings at up to 6% in solutions (USDA FSIS, 

2011). Sodium metasilicate has been shown to be effective against foodborne bacterial pathogens 

including Escherichia coli O157: H7 and Salmonella species both in vitro and in beef trimmings 

(Carlson et al., 2008; Geornaras et al., 2012; Pohlman et al., 2007; Weber et al., 2004), and also 

Campylobacter jejuni and Salmonella Typhimurium in fresh chicken breast meat (Sharma et al., 

2012a, b). Weber et al. (2004) found that sodium metasilicate at 0.6% (pH 12.1) resulted in 

complete inhibition of E. coli O157: H7 after a 5 to 10 s exposure in water at room temperature 

(Weber et al., 2004). Carlson et al., (2008) reported that 4% sodium metasilicate (23oC, pH 

12.94) reduced E. coli O157: H7 and Salmonella by ~1.9 and ~ 2.6 log CFU/mL, respectively 

from inoculated beef hides following a 30 s- spray- 2 min- dwell- 30 s - water rinse procedure 

(Carlson et al., 2008). Pohlman et al. (2009) demonstrated that E. coli and Salmonella 

Typhimurium were reduced by ~1 log to ≥1.5 log CFU/mL, respectively, after treatment with 

4% sodium metasilicate on inoculated beef trimmings (Pohlman et al., 2009). Geornaras et al. 

(2012) found similar effectiveness of sodium metasilicate against E.coli O157:H7 and 6 non-

O157 Shiga toxin-producing E. coli (nSTEC) serogroups. After immersion for 30 s in a solution 

of 4% sodium metasilicate (pH 12.5), initial pathogen counts were found to be reduced by 1.3 to 

1.5 log CFU/cm2 on inoculated beef trimmings from an initial count of 3 to 4 log CFU/cm2 

(Geornaras et al., 2012). Adler et al. (2011) observed that brine solution containing 2.2% sodium 

metasilicate immediately reduced E.coli O157:H7 by ≥2.4 log CFU/mL at 4 or 15 oC(Adler et 

al., 2011).  

Besides these foodborne bacterial pathogens, sodium metasilicate has also been evaluated 

for its efficacy against viral pathogens, including human rotaviruses and vesicular stomatitis 
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viruses (Springthorpe et al., 1986; Wright 1970). Springthorpe et al. (1986) tested the efficacy of 

69 commercial and 7 non-commercial disinfectant formulations against human rotaviruses and 

found that the efficacy of quaternary ammonium-based disinfectant formulations was greatly 

improved by adding 0.5 to 5% sodium metasilicate, being effective against human rotaviruses. 

They believed that quaternary ammonium compounds and sodium metasilicate may act in an 

additive or synergistic manner to inactivate human rotaviruses (Springthorpe et al., 1986). 

However, information is currently lacking on the antiviral activity of sodium metasilicate against 

human norovirus surrogates in vitro. The objective of this study was to determine the ability of 

2%, 5%, and 10% sodium metasilicate to inactivate human norovirus surrogates, FCV-F9 and 

MNV-1, in suspension and using carrier tests (stainless steel coupons) at room temperature.  

 

Materials and Methods 

Virus stocks and cell lines: Feline calicivirus (FCV-F9) and its host, Crandell Reese 

Feline Kidney (CRFK) cells, were obtained from American type culture collection (ATCC) 

(Manassas, VA). Murine norovirus (MNV-1) was kindly provided by Dr. Skip Virgin 

(Washington University, St. Louis, MO), and its host, RAW 264.7 cells were obtained from the 

University of Tennessee cell culture collection. Viral stocks containing ~6 log10 PFU/mL of 

MNV-1 and ~8 log10 PFU/mL of FCV-F9 were obtained as previously described using their 

respectively confluent cell lines in 175cm2 flasks (D’Souza et al., 2011; Su et al., 2011).  

Chemicals: Sodium metasilicate obtained from MP Biomedicals (Solon, OH, USA) was 

dissolved in de-ionized water and then filtered through 0.2μm filters (Fisher Scientific, GA, 

USA) to reach concentrations of 10% (w/v), 5% (w/v), and 2% (w/v).  
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Treatments: For suspension tests, one volume (167μl) of sodium metasilicate was 

mixed with the same volume of virus to reach final concentrations of 5% (w/v), 2.5% (w/v), and 

1% (w/v) and incubated for 15 s, 30 s, 1 min, 2 min, 5 min, 10 min, 15 min, 30 min and 1 h at 

room temperature. Sterile de-ionized water was used as a control to compare with the treated 

samples. At each time point, treatments were neutralized by serially diluting in Dulbecco’s 

Modified Eagle’s Medium/Ham’s F-12 (DMEM, HyClone Laboratories, Inc, Logan, Utah) 

containing 10% heat-inactivated Fetal Bovine Serum (FBS, HyClone Laboratories, Inc, Logan, 

Utah), followed by serial dilutions in DMEM containing 2% heat-inactivated FBS.  

For the carrier test, stainless steel coupons sterilized by autoclaving were used as a 

surface model (fomite) to simulate natural conditions. MNV-1 and FCV-F9 were inoculated on 

sterile coupons at high and low titers and allowed to dry for 1 h at room temperature in a 

BioSafety Level 2 hood. After drying, the coupons were treated with 2% sodium metasilicate for 

various time intervals from 0, 15 s, 30 s, 1, 2, 5, 10, 15, 30 and 60 min at room temperature (RT). 

Plaque Assays: Treated samples and controls were inoculated onto the confluent CRFK 

cells for FCV-F9 and RAW 267.4 cells for MNV-1 in 6-well plates, and incubated for 2.5 h at 37

℃ under 5% CO2. Then overlay media containing 0.75% (w/v) noble agar was added to each 

well and incubated for 2 to 3 days at 37℃ in a CO2 incubator. Finally, neutral red (Sigma-

Aldrich, St. Louis, MO) containing overlay media was added and incubated for 3 to 24 h  to 

visualize the plaques.  

Statistical Analysis: All treatments and controls were replicated three times in 

duplicates. A one-way analysis of variance (ANOVA) was used to test for differences in means 

of plaque counts among treatments and means were analyzed using a completely randomized 
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design at p<0.05 in SAS program (version 9.3, SAS Institute, Cary, NC, USA).  If statistically 

significant differences were found using the ANOVA, the Tukey’s Post Hoc test was used to 

analyze differences in means between treatments.  

Results 

Effect of 5 and 10% sodium metasilicate against FCV-F9 and MNV-1 at high and 

low titers in suspension tests: Both 5 and 10% sodium metasilicate reduced high and low titers 

of FCV-F9 and MNV-1 to undetectable levels within 15 s at room temperature (data not shown).  

Effect of 2% sodium metasilicate against FCV-F9 and MNV-1 in suspension tests: 

Sodium metaslicate at 2% reduced FCV-F9 at low titers and MNV-1 at both high and low titers 

to undetectable levels within 15 s at room temperature. The reduction caused by 2% sodium 

metasilicate on high titers of FCV-F9 in suspension tests are shown in Table 3.1. FCV-F9 at high 

titers were reduced by 5.42, 6.02, and 6.18 log PFU by 2% sodium metasilicate after 15 s, 30 s, 

and 1 min, respectively; and complete reduction was observed after 2 min contact time at room 

temperature.  

Effect of 2% sodium metasilicate against FCV-F9 and MNV-1 in carrier tests: Low 

titers of FCV-F9 and MNV-1 were reduced to undetectable levels within 15 s at room 

temperature using stainless steel coupons. The effects of 2% sodium metasilicate on high titers of 

FCV-F9 and MNV-1 in carrier tests are shown in Table 3.2. Compared to the titer reduction of 

the tested viruses at high titers in suspension tests, the titer reduction of FCV-F9 and MNV-1 in 

carrier tests appeared to be slightly lower, where 2% sodium metasilicate decreased the FCV-F9 

at high titers by 2.28, 3.19, 3.59 and 4.80 log10 PFU/mL, respectively after 30 s, 1 min, 2 min and 

5 min of exposure time. High titers of MNV-1 were decreased by 1.04 and 2.02 log10 PFU/mL 
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after 30 s and 1min, respectively with 2% sodium metasilicate. FCV-F9 and MNV-1 were 

reduced to non-detectable limits (based on the detection limit of the plaque assays 1 log10 

PFU/mL) by 2% sodium metasilicate after 10 min and 2 min of contact times at room 

temperature, respectively.  

Discussion 

In the present study, the effect of sodium metasilicate at concentrations of 2%, 5%, and 

10% on inactivation of FCV-F9 and MNV-1 was evaluated. Sodium metasilicate was found to 

cause rapid reduction in titers of the tested human noroviral surrogates. FCV-F9 and MNV-1 at 

low titers were reduced to undetectable levels within 15 s by 2% sodium metasilicate in both 

suspension and carrier tests at room temperature. Complete reduction of FCV-F9 and MNV-1 at 

high titers was achieved by 2% sodium metasilicate after 2 min and within 15 s in suspension 

tests, respectively. In carrier tests, high titer FCV-F9 and MNV-1 were reduced to undetectable 

levels after 10 min and 2 min at room temperature, respectively. Increasing the concentrations of 

sodium metasilicate to 5 and 10% were found to reduce FCV-9 and MNV-1 at high titers to 

undetectable levels within 15 s in both suspension and carrier tests. The results revealed the 

potential suitability of using sodium metasilicate to prevent the transmission of human noroviral 

outbreaks. 

Chemicals other than sodium metasilicate used include trisodium phosphate (TSP), a 

common household cleanser, which is also an alkaline detergent with the pH of 12 in 1% 

solution, and considered as GRAS by the FDA (Lindsay 1985). TSP is reported to be effective 

against a wide range of pathogens, including E. coli O157: H7, Salmonella, Poliovius 1 and 

bacteriophages. Jerzy and others (2003) reported that significant reductions of bacteriophage 
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MS2 and poliovirus1 were obtained using 1.0% TSP solution on strawberries (Jerzy et al., 2003). 

D’Souza and Su (2010) reported that 5% TSP effectively inactivated high titers of MNV-1 and 

FCV-F9 by ≥6 log PFU/mL, and with ~ 5 log reduction of low viral titers after 30s or 1 min 

contact time. TSP at 2% were found to  inactivate high titers of FCV-F9 by ≥6 log PFU/mL, but 

only a 1.05 log reduction for MNV-1 after 1 min was obtained. TSP at 1% was also reported to 

reduce FCV-F9 by ~2.65 log PFU/mL, while no reduction was observed for high titers of MNV-

1 (D'Souza and Su, 2010). In this study, sodium metasilicate at the lower concentrations of 2% 

appears to be more effective than TSP for the titer reduction of these human noroviral surrogates.  

The mechanism of antibacterial activity of TSP is believed to be due to a combination of 

high pH (~12), ionic strength and detergent effects that can cause cell wall and membrane 

disruption of Gram-negative foodborne pathogens (Mendonca et al., 1994; Sampathkumar et al., 

2003; Yuk and Marshall, 2006). However, the mechanism of virucidal activity has not been 

elucidated. The mechanism of antimicrobial effect of sodium metasilicate could be similar to 

TSP in that they are both strongly alkaline. Further research is needed to explore the antiviral 

mechanism of action.   

The application of sodium metasilicate in food industry can be broader than TSP, as 

sodium metasilicate has been approved to be directly added in food as a processing aid to wash 

fruits, vegetables, and nuts. It can also be applied in poultry and meat products as an 

antimicrobial (US FDA 2003). Furthermore, previous studies have shown that sodium 

metasilicate can maintain the quality of fresh commercial poultry, having no negative effects on 

sensory, physical or chemical characteristics. These investigators found that 1-4% sodium 

metasilicate did not adversely affect sensory characteristics, color, texture or pH of fresh 
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commercial chicken breast meat at 4oC after 9 days (Huang et al., 2011). Pohlman et al.,  (2009) 

also reported little impact of sensory odor and color characteristics was observed by 4% sodium 

metasilicate in beef trimmings (Pohlman et al., 2009). Additionally, Quilo et al. (2010) revealed 

that better quality were perceived by using 4% sodium metasilicate in beef trimmings, resulting 

in much juicier, lower Warner-Bratzler shear force value for texture, and less cooking loss than 

the control samples (Quilo et al., 2010).  

Besides alkaline chemical treatments, acidic solutions, including lactic acid and 

peroxyacetic acid, also have a long history of commercial use for the inactivation of foodborne 

pathogens. The mode of action of these organic acids and its salts on foodborne bacteria 

pathogens appears to be the result of the diffusion of the undissociated form of the acid into the 

cell, leading to decreasing intracellular pH. In order to sustain the pH inside the cell, ATPase 

pumps out protons at the expense of ATP. Eventually, cells die due to the lack of cellular energy 

(Bogaert and Naidu, 2000). The acid mediated mechanisms leading to a loss of infectivity of 

foodborne viruses has not been completely understood, which is believed to result from the 

alterations of the virus capsid and nucleic acid (Cliver, 2009; Salo and Cliver, 1976). However, 

whether the effect was derived from the decrease in pH or the type of acid is still not clear. It is 

appeared that the inactivation of non-enveloped viruses is due to the denaturation of the capsid 

proteins due to the decrease in pH (Rodger et al., 1977).  

Previous research has shown the effect of lactic acid and peroxyacetic acid against human 

norovirus surrogates. Using suspension tests, Straube et al., (2011) found that D, L-lactic acid at 

the concentration of 0.3% (pH 3.4-3.5) and 0.4% (pH 3.2-3.3) could reach a significant titer 

reduction of FCV-F9 after 7 days at 20°C (Straube et al., 2011). Baert et al., (2009) reported that 

the application of 250 mg/L peroxyacetic acid to washing solution could obtain a supplementary 
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1-log reduction of MNV-1 on shredded iceberg lettuce (compared to tap water), and its efficacy 

was not influenced by the presence of organic materials (Baert et al., 2009). Fraisse et al., (2011) 

found that 100 ppm of peroxyacetic-based biocide effectively inactivated FCV-F9 by 3.2 log 

units and MNV-1 by 2.3 log units on the lettuce leaves after 2 min of contact time, as estimated 

by cell culture (Fraisse et al., 2011).  

Other effective cleansers, including chlorine have been commonly used to disinfect 

foodborne pathogens. Chlorine has been tested for antiviral activity against human norovirus 

surrogates and found to be very effective in inactivating FCV-F9 and MNV-1 in suspension, on 

surfaces, and on produce (Belliot et al., 2008; D'Souza and Su, 2010; Doultree et al., 1999; 

Duizer et al., 2004; Fraisse et al., 2011; Kitajima et al., 2010; Urakami et al., 2007). However, 

due to the corrosive nature of chlorine, bleaching of food and unfavorable sensory effects, it has 

limitations for use. Furthermore, by-products including trihalomethanes may be generated due to 

interaction with organic matters, which can cause carcinogenic products and potential risks to 

public health (Dunnick and Melnick, 1993). Overall, based on the findings of this study, sodium 

metasilicate may be suitable and applicable for the food industry to decrease foodborne human 

noroviral transmission risk. 

Conclusion 

Sodium metasilicate at 2% is found to be very suitable for inactivating human norovirus 

surrogates, FCV-F9 and MNV-1 in both suspension and carrier tests, indicating its potential use 

as an antiviral component for surface disinfection or could be potentially used in marinades. This 

chemical is already approved as a processing aid in meat and poultry products and being fast-

acting has great promise to reduce human norovirus surrogate transmision. The application of 
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sodium metasilicate as an alternative coating or strategy to decontaminate foodborne viruses in 

foods, such as meat and fresh produce, needs to be investigated.  

Acknowledgements 

Funding for this research was provided by the TN Agricultural Experiment Station (UT-

HATCH TEN-00391) and is gratefully acknowledged. The use of trade names does not imply 

endorsement by the University of Tennessee-Knoxville.   



92 

 

References 

Adler, J.M., Geornaras, I., Byelashov, O.A., Belk, K.E., Smith, G.C., Sofos, J.N., 2011. Survival 
of Escherichia coli O157: H7 in meat product brines containing antimicrobials. Journal of food 
science 76, M478-M485. 

Baert, L., Debevere, J., Uyttendaele, M., 2009. The efficacy of preservation methods to 
inactivate foodborne viruses. International journal of food microbiology 131, 83-94. 

Belliot, G., Lavaux, A., Souihel, D., Agnello, D., Pothier, P., 2008. Use of murine norovirus as a 
surrogate to evaluate resistance of human norovirus to disinfectants. Applied and environmental 
microbiology 74, 3315-3318.  

Bogaert, J.-C., and A. S. Naidu. 2000. Lactic acid, p. 613–636. In A. S. Naidu (ed.), Natural food 
antimicrobial systems. CRC Press, Boca Raton, Fla.  

Carlson, B.A., Ruby, J., Smith, G.C., Sofos, J.N., Bellinger, G.R., Warren-Serna, W., Centrella, 
B., Bowling, R.A., Belk, K.E., 2008. Comparison of antimicrobial efficacy of multiple beef hide 
decontamination strategies to reduce levels of Escherichia coli O157: H7 and Salmonella. 
Journal of Food Protection 71, 2223-2227.  

Caul, E. O. 1994. Small structured viruses: airborne transmission and hospital control. Lancet 
343:1240–1242.  

Cliver, D.O., 2009. Capsid and infectivity in virus detection. Food and environmental virology 1, 
123-128. 

D'Souza, D.H., Sair, A., Williams, K., Papafragkou, E., Jean, J., Moore, C., Jaykus, L.A., 2006. 
Persistence of caliciviruses on environmental surfaces and their transfer to food. International 
Journal of Food Microbiology 108, 84-91. 

D'Souza, D.H., Su, X., 2010. Efficacy of chemical treatments against murine norovirus, feline 
calicivirus, and MS2 bacteriophage. Foodborne Pathogens and Disease 7, 319-326. 

D'Souza, D.H., Su, X., Harte, F., 2011. Comparison of reduction in foodborne viral surrogates by 
high pressure homogenization. Journal of Food Protection 74, 1840-1846.  

Donaldson, E.F., Lindesmith, L.C., LoBue, A.D., Baric, R.S., 2010. Viral shape-shifting: 
norovirus evasion of the human immune system. Nature Reviews Microbiology 8, 231-241. 

Doultree, J., Druce, J., Birch, C., Bowden, D., Marshall, J., 1999. Inactivation of feline 
calicivirus, a Norwalk virus surrogate. Journal of Hospital Infection 41, 51-57. 

Duizer, E., Bijkerk, P., Rockx, B., De Groot, A., Twisk, F., Koopmans, M., 2004. Inactivation of 
caliciviruses. Applied and environmental microbiology 70, 4538-4543. 

Dunnick, J.K., Melnick, R.L., 1993. Assessment of the carcinogenic potential of chlorinated 
water: experimental studies of chlorine, chloramine, and trihalomethanes. Journal of the National 
Cancer Institute 85, 817-822. 



93 

 

Fraisse, A., Temmam, S., Deboosere, N., Guillier, L., Delobel, A., Maris, P., Vialette, M., Morin, 
T., Perelle, S., 2011. Comparison of chlorine and peroxyacetic-based disinfectant to inactivate 
Feline calicivirus, Murine norovirus and Hepatitis A virus on lettuce. International journal of 
food microbiology 151, 98-104. 

Geornaras, I., Yang, H., Manios, S., Andritsos, N., Belk, K.E., Nightingale, K.K., Woerner, 
D.R., Smith, G.C., Sofos, J.N., 2012. Comparison of Decontamination Efficacy of Antimicrobial 
Treatments for Beef Trimmings against Escherichia coli O157: H7 and 6 Non‐O157 Shiga 
Toxin‐Producing E. coli Serogroups. Journal of food science 77, 539-544.  

Huang, H., Williams, S., Sims, C., Simmone, A., 2011. Sodium metasilicate affects 
antimicrobial, sensory, physical, and chemical characteristics of fresh commercial chicken breast 
meat stored at 4° C for 9 days. Poultry Science 90, 1124-1133.  

Jerzy, L., Bradley, M.L., Scott, T.M., Mabel, D., Andrew, K., Wei-Yea, H., Bartz, J.A., Farrah, 
S.R., 2003. Reduction of poliovirus 1, bacteriophages, Salmonella Montevideo, and Escherichia 

coli O157: H7 on strawberries by physical and disinfectant washes. Journal of Food Protection 
66, 188-193. 

Kitajima, M., Tohya, Y., Matsubara, K., Haramoto, E., Utagawa, E., Katayama, H., 2010. 
Chlorine inactivation of human norovirus, murine norovirus and poliovirus in drinking water. 
Letters in applied microbiology 51, 119-121. 

Kukkula, M., Maunula, L., Silvennoinen, E., von Bonsdorff, C.-H., 1999. Outbreak of viral 
gastroenteritis due to drinking water contaminated by Norwalk-like viruses. Journal of Infectious 
Diseases 180, 1771-1776.  

Lindsay, R.C. 1985. Food additives. In Food Chemistry, 2nd Ed., (O.R.Fennema, ed.) pp. 629–
687, Marcel Dekker, New York. 

Liu, P., Chien, Y.-W., Papafragkou, E., Hsiao, H.-M., Jaykus, L.-A., Moe, C., 2009. Persistence 
of human noroviruses on food preparation surfaces and human hands. Food and environmental 
virology 1, 141-147. 

Mendonca, A.F., Amoroso, T.L., Knabel, S.J., 1994. Destruction of Gram-negative food-borne 
pathogens by high pH involves disruption of the cytoplasmic membrane. Applied and 
environmental microbiology 60, 4009-4014. 

Pohlman, F., DIAS‐MORSE, P., Quilo, S., Brown Jr, A., Crandall, P., Baublits, R., Story, R., 
Bokina, C., Rajaratnam, G., 2009. Microbial, instrumental color and sensory characteristics of 
ground beef processed from beef trimmings treated with potassium lactate, sodium metasilicate, 
peroxyacetic acid or acidified sodium chlorite as single antimicrobial interventions. Journal of 
Muscle Foods 20, 54-69. 

Quilo, S., Pohlman, F., Dias-Morse, P., Brown, A., Crandall, P., Story, R., 2010. Microbial, 
instrumental color and sensory characteristics of inoculated ground beef produced using 
potassium lactate, sodium metasilicate or peroxyacetic acid as multiple antimicrobial 
interventions. Meat science 84, 470-476. 



94 

 

Rodger, S.M., Schnagl, R.D., Holmes, I., 1977. Further biochemical characterization, including 
the detection of surface glycoproteins, of human, calf, and simian rotaviruses. Journal of 
virology 24, 91-98. 

Salo, R., Cliver, D., 1976. Effect of acid pH, salts, and temperature on the infectivity and 
physical integrity of enteroviruses. Archives of virology 52, 269-282. 

Sampathkumar, B., Khachatourians, G.G., Korber, D.R., 2003. High pH during trisodium 
phosphate treatment causes membrane damage and destruction of Salmonella enterica serovar 
Enteritidis. Applied and environmental microbiology 69, 122-129. 

Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.-A., Roy, S.L., Jones, 
J.L., Griffin, P.M., 2011. Foodborne illness acquired in the United States—major pathogens. 
Emerg Infect Dis 17, 7-15. 

Sharma, C., Williams, S., Schneider, K., Schmidt, R., Rodrick, G., 2012a. Sodium metasilicate 
affects growth of Campylobacter jejuni in fresh, boneless, uncooked chicken breast fillets stored 
at 4 degrees Celsius for 7 days1, 2. Poultry Science 91, 2324-2329. 

Sharma, C., Williams, S., Schneider, K., Schmidt, R., Rodrick, G., 2012b. Sodium metasilicate 
affects growth of Salmonella Typhimurium in fresh, boneless, uncooked chicken breast fillets 
stored at 4° C for 7 days. Poultry Science 91, 719-723. 

Siebenga, J.J., Vennema, H., Zheng, D.-P., Vinjé, J., Lee, B.E., Pang, X.-L., Ho, E.C., Lim, W., 
Choudekar, A., Broor, S., 2009. Norovirus illness is a global problem: emergence and spread of 
norovirus GII. 4 variants, 2001–2007. Journal of Infectious Diseases 200, 802-812. 

Springthorpe, V.S., Grenier, J.L., Lloyd-Evans, N., Sattar, S.A., 1986. Chemical disinfection of 
human rotaviruses: efficacy of commercially-available products in suspension tests. 
Epidemiology and infection 97, 139-161. 

Straube, J., Albert, T., Manteufel, J., Heinze, J., Fehlhaber, K., Truyen, U., 2011. In vitro 
influence of d/l-lactic acid, sodium chloride and sodium nitrite on the infectivity of feline 
calicivirus and of ECHO virus as potential surrogates for foodborne viruses. International journal 
of food microbiology 151, 93-97. 

Su, X., D'Souza, D.H., 2011. Trisodium phosphate for foodborne virus reduction on produce. 
Foodborne Pathogens and Disease 8, 713-717. 

Urakami, H., Ikarashi, K., Okamoto, K., Abe, Y., Ikarashi, T., Kono, T., Konagaya, Y., Tanaka, 
N., 2007. Chlorine sensitivity of feline calicivirus, a norovirus surrogate. Applied and 
environmental microbiology 73, 5679-5682. 

U.S. Food and Drug Administration, Code of Federal Regulations. 2003. Sodium metasilicate. 21 
CFR 184.1769a.  

U.S. Food and Drug Administration, Code of Federal Regulations. 2003. Use of food ingredients 
and sources of radiation. 9 CFR 424.21.  



95 

 

USDA FSIS (United States Department of Agriculture Food Safety and Inspection Service). 
2011. FSIS Directives. Safe and Suitable Ingredients Used in the Production of Meat, Poultry, 
and Egg Products. 7120.1, Revision 5. Accessed Aug. 22, 2011. 
http://www.fsis.usda.gov/OPPDE/rdad/FSISDirectives/7120.1.pdf.  

Weber, G.H., Obrien, J.K., Bender, F.G., 2004. Control of Escherichia coli O157: H7 with 
sodium metasilicate. Journal of Food Protection 67, 1501-1506. 

Weinstein, R.A., Said, M.A., Perl, T.M., Sears, C.L., 2008. Gastrointestinal flu: norovirus in 
health care and long-term care facilities. Clinical infectious diseases 47, 1202-1208. 

Wright, H.S., 1970. Inactivation of Vesicular stomatitis virus by disinfectants. Applied 
microbiology 19, 96-99. 

Yuk, H.-G., Marshall, D.L., 2006. Effect of trisodium phosphate adaptation on changes in 
membrane lipid composition, verotoxin secretion, and acid resistance of Escherichia coli O157: 
H7 in simulated gastric fluid. International journal of food microbiology 106, 39-44. 

 

 

 

 

 

 
 

  



96 

 

 

 

 

 

 

 

 

 

 

 

Appendix  



97 

 

Table 3.1: The effect of sodium metasilicate at 2% on reduction of FCV-F9 at high titer using 
suspension tests at room temperature.  

 

FCV-F9 (log10 PFU/mL) 

Contact time 

 

Recovered titer Reduction 

Control  7.86±0.08A 0.00 

15 s 2.45±0.16B 5.41 

30 s 1.84±0.34BC 6.02 

1 min 1.68±0.23C 6.18 

2 min <10D ≥6.86* 

5 min <10D ≥6.86* 

 

Different letters denote significant differences when compared within each column alone 
(p<0.05).  

*Indicates inactivation values at the detection limit of the assay since sodium metasilicate fixed 
the cell monolayers after the first-log serial dilution but not the lower dilutions of the virus-
treatment combination.  
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Table 3.2: The effect of sodium metasilicate at 2% on reduction of FCV-F9 and MNV-1 at high 
titers using carrier tests at room temperature.  

 

FCV-F9 (log10 PFU/mL) MNV-1 (log10 PFU/mL) 

Contact time 

 

Recovered titer Reduction Recovered titer Reduction 

Control  7.97±0.08A 0.00 5.74±0.11A 0.00 

30 s 5.69±0.17B 2.28 4.70±0.04B 1.04 

1 min 4.79±0.12C 3.18 3.72±0.06C 2.02 

2 min 4.38±0.16D 3.59 <10D ≥4.74* 

5 min 3.17±0.15E 4.80 <10D ≥4.74* 

10 min <10F ≥6.97* <10D ≥4.74* 

15 min <10F ≥6.97* <10D ≥4.74* 

 

Different letters denote significant differences when compared within each column alone 
(p<0.05).  

*Indicates inactivation values at the detection limit of the assay since sodium metasilicate fixed 
the cell monolayers after the first-log serial dilution but not the lower dilutions of the virus-
treatment combination.  
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