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ABSTRACT 

The adverse effects of wear has continually plagued the operation of the 

TV A 20 MW Atmospheric Fluidized Bed Combustion Pilot Plant. Wear has 

caused serious problems in all aspects of the pneumatically fed below-bed coal 

feed system. This has given rise to the development of high wear resistant 

designs of f eedline splitters, turning sections, and feed nozzles. 

Wear testing of PVC feedline system components was conducted at The 

University of Tennessee to determine the wear characteristics of different 

designs. PVC was chosen for the feedline system component material to 

accelerate the wear testing results. A series of similar tests were conducted 

to determine the merit of the wear resistant designs. While the testing was 

limited in scope due to size, material, and operating constraints, the general 

wear characteristic test results have proven to be valuable in assessing new 

wear resistant designs. 

For long radius PVC bend wear testing, the wear rate was found to be 

proportional to the cube of the transport velocity. A change in solids mass 

now rate also had a significant effect on the wear rate of the bends, about one 

half the effect of a change in transport velocity. 

Wear testing of a standard 45 degree PVC wye showed that a 50 fold 

increase in the life of the wye compared to a long radius bend can be 

expected. 

Two PVC floating valve caps with different recess depths were subjected 

to similar wear tests. It was found that a recess depth increase from 0.25 to 

0.43 inches improved the wear resistance of the valve cap by a factor of six to 

seven. 
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Testing of a new 1:3 PVC feedline splitter design showed that the new 

splitter design was very resistant to wear. Testing also showed there was a 

relationship between the splitter's exit f eedline lengths and the split equality. 

With equal exit f eedline lengths, the . split equality can be expected to be 

within � 5 percent. 

Two new steel f eedline splitters were designed for replacement of the 

feedline splitters currently used at the TVA Pilot Plant: a 1:3 splitter design 

for compartments A-D, and a 1:6 splitter design for the modified recycle 

system. The 1:6 recycle splitter design was installed in the recycle system, 

and after 486 hours of operation, it has shown great promise. The 1:6 recycle 

splitter has not plugged, and more significantly, has not shown any observable 

signs of wear. 
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CHAPTER 1 

INTRODUCTION 

Background 

1 

The production of energy from available energy sources has become of 

most vital interest to the United States (U.S.). The U.S. energy sources and 

growth are shown in Table 1.1 [1,2]. There are some trends worthy of mention 

indicated from this table. From 1850 to 1880, the primary source of energy 

was wood. Coal became the primary source of energy in 1890, and was 

replaced by oil in 1950. Oil has remained the primary source of energy, and it 

was not until the energy crisis of the mid 1970's that this nation recognized the 

significant impact of our large dependence on foreign oil. Since that time, 

there has been an extensive effort to reduce that dependence by employing 

nationally available fuels. The U .s. has one of the largest reserves of solid 

fossil fuels (coal) in the world [3]. In 1971, the U .s. was the second largest 

producer of coal in the world [3]. With large coal reserves, coal is the most 

likely near-term alternative fuel. 

The use of nuclear energy in the U.S. has risen in the past two decades, 

but stringent Nuclear Regulatory requirements and operating problems have 

escalated the cost of this energy source. No new nuclear plants have been 

ordered by utilities in the last 10 years, indicating a definite anti-nuclear 

trend. In 1979, the total energy supplied by nuclear energy w� only 3.5 

percent. It is predicted that this percentage will rise to around 10 percent by 

1990, when nuclear plants currently under construction come on line. This is 

still a very small total percentage, leaving coal as the best near-term energy 

source for both growth needs and for replacement of oil fired power plants. 



1850 

1860 

1870 

1880 

1890 

1900 

1910 

1920 

1930 

1940 

1950 

1960 

1970 

1975 

1979 

Wood 

- -

90.7 

83.5 

i 73.2 
i 57.0 

: 35.9 

: 21.0 

10.7 

0 

0 

0 

0 

I 0 
I 

i 0 
I 0 
I 

I 0 

Table 1.1 

U.S. Energy Sources and Growth 

1850 - 1979 (Percents) 

i· 
I 

Coal Oil Gas , Hydro: Nuc-
i lear ! 

---

9.3 I 0 0 0 0 

16.4 0.1 0 0 0 

. 26.5 0.3 0 0 0 

41.1 1.9 0 0 0 
i 
57.9 2.2 3.7 0.3 0 

71.4 2.4 2.6 2.6 0 

: 76.7 6.1 
•; 3.3 3.2 0 
I 

. 78.4 13.5 : 4.2 3.9 0 

. 61.2 26.5 8.8 3.5 0 
,, 

:1 52.S 32.3 ; 11.4 I 3.8 0 

38.0 39.7 I 18.1 j 4.2 0 

22.7 145.1 28.5 3.7 0 
I 

I 18.9 · 44.2 32.6 4.0 0.4 

1 18.1 '46.3 28.2 ! 4.6 2.7 
I ! 

· 19.6 47.4 25.4 4.0 3.5 
I 

2 

Total , Ave. Quad . Growth 
(1015 %/yr 
BTU) I 

I 

2.4 

3.2 3.0 

4.0 2.3 

5.0 2.4 

7.0 3.4 

9.6 3.2 

16.6 
I 

5.6 
I 19.8 1.8 
I 

22.3 1.2 

23.9 0.7 

34.0 3.6 

44.6 2.7 

66.8 4.1 

70.7 -2.3 

78.2 -0.2 
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The supply of low sulfur coal (less than 1 percent sulfur) is becoming 

diminished while the recovery cost is increasing. The low sulfur coal is 

concentrated in the Western U.S., thus a large transportation cost is involved 

to use this coal in the Eastern U.S. The Eastern U .s. does have an abundant 

supply of high sulfur coal, but the use of this coal presents other significant 

environmental and associated financial problems. More publicity has recently 

been given to acidic precipitation (acid rain) resulting from sulfur dioxide 

emissions from power plants. Legislation is now pending which would require 

the utilities to substantially reduce the amount of sulfur dioxide stack 

emissions. The methods currently used to remove sulfur dioxide from stack 

emissions are costly. Wet scrubbers, for example, are quite expensive and 

result in a wet sludge waste product that has no value and presents extremely 

costly disposal problems. 

One remaining alternative for the utilization of fligh sulfur coal is in the 

development of new technologies. The most promising, near-term, technology 

to the emission problem is fluidized bed combustion. In this scheme, the boiler 

bed contains a 3-4 foot layer of crushed limestone particles into which a fuel 

(coal) is continually fed. Preheated air is forced up through the bed making 

the bed behave like a boiling fluid, hence the term fluidized. The air not only 

mixes the fuel throughout the bed but provides the oxidization source 

necessary for combustion. 

The fluidized bed combustion concept is not new. The first documented 

report of a fluidized bed used for combustion was patented in 1928 by Fritx 

Winkler [41. Some fluidization developments followed, but it was not until the 

early 1960's that research efforts were renewed by the British Coal Utilization 

Research Association and the Central Electricity Generating Board in Great 
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Britain. About the same time, the firm of Pope, Evans, and Robbins of the 

U.S. began fiuidized bed work directed to the combustion of coal for power 

generation. These efforts have grown to the present day operation of a 20 

Megawatt (MW) Atmospheric Fluidized Bed Combustion (AFBC) Pilot Plant 

cosponsored by the Tennessee Valley Authority (TV A) and the Electric Power 

Research Institute, Inc. Basically, this atmospheric fiuidized bed operates at a 

pressure very slightly above atmospheric pressure. The operation of the 20 

MW AFBC Pilot Plant began June, 1982. TVA is currently involved in the 

research, development, and design of a 160 MW AFBC demonstration facility. 

The purpose of this facility is to demonstrate the effectiveness of a utility 

sized AFBC plant which, if successful, would lead to commercialization of 

fiuidized bed technology. 

The increased interest of AFBC stems principally from the following 

potential advantages: 

1. Sulfur dioxide control without the use of fiue gas desulfurization. 

2. Low nitric oxide emissions. 

3. Expanded range of acceptable coal quality, enabling combustion of 

high sulfur coals not currently burned in conventional boilers (e.g. 

initial testing at the 20 MW AFBC Pilot Plant was with low cost, 

high sulfur (4.2 percent), Kentucky Number 9 coal [5]). 

Although AFBC offers these advantages, it also has some engineering 

development problems associated with its design and operation. The most 

significant problem is the development of a reliable and effective coal feeding 

system [6] • This problem will be considered in detail in this report. 
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Coal and Limestone Feeding in a Fluidized Bed 

Ther� are three major types of coal and limestone feeding systems for a 

fluidized bed boiler. They are overbed feeders, in-bed feeders, and below-bed 

feeders. 

An in-bed feeder system was one of the first concepts tested. A needle 

design was used at the Rivesville, West Virginia facility, but continuous 

plugging problems plagued the feed system over its four year operating life 

and was terminated in 1982. 

The TV A 20 MW Pilot Plant is equipped to use either the below-bed or 

over-bed feed systems. For the over-bed feed system, coal and limestone are 

gravimetrically fed through two spreaders, similar to spreaders in stoker-fired 

boilers. In the below-bed feed system, the coal and limestone are mixed in 

proper ratios and pneumatically transported and enter the bed through feed 

nozzles that penetrate the fluidization grid plate located at the base of the 

bed. One objective of the TVA 20 MW AFBC Pilot Plant is the determination 

of relative advantages and disadvantages of both the below-bed and over-bed 

· feed concepts. This report will concentrate on problems and solutions 

associated with the below-bed feed system. 

Combustion in a Fluidized Bed 

Limestone particles are placed in the fluidized bed in order to reduce 

sulfur dioxide emissions. Much of the sulfur dioxide released from the burning 

coal is captured by the calcium oxide (lime) resulting in the production of 

calcium sulfate (gypsum). Gypsum is a dry solid that can be easily handled and 
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can be used in land reclamation, building material, and agriculture 

applications. Sulfur retention rates of 90 percent have been reached with both 

the below-bed and over-bed feed system with washed coal at the TVA 20 MW 

AFBC Pilot Plant [7] • 
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CHAPTER 2 

TVA 20 MW AFBC BELOW-BED COAL FEEDING SYSTEM 

Introduction 

The TVA 20 MW AFBC Pilot Plant became operational in June 1982, and 

since that time the below-bed coal and limestone feed system has logged 

several thousand hours. In that length of time, several significant problems 

have arisen that warrant a redesign effort. Before identifying those problems, 

a brief description of the below-bed feed system will be given. 

TV A 20 MW Pilot Plant Description 

The coal and limestone below-bed feed system of the TVA 20 MW AFBC 

facility is shown in Figure 2.1 [8] . It is designed to deliver coal and limestone 

to the fluidized bed in proper quantities to maintain desired power output and 

to achieve a high sulfur retention. The brief description of the below-bed feed 

system that follows is taken from two TVA documents [5,8] . 

The coal/limestone below-bed feed system consists of five individually 

controlled feed trains, reference Figure 2.1. The active area of the fluidized 

bed (during normal operation) has 216 square feet, divided into four individual 

compartments A, B, C, and D. One feed train serves each compartment and 

incorporates a feedline splitter to split the main feedline into three feedlines. 

The fifth feed train serves the starting system that has 72 square feet of bed 

area. The startup system services eight feed points, thus requiring a feedline 

splitter that divides the now into eight feedlines. 
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Crushed coal (V4 inch X O  inch top size) or crushed limestone (1/8 inch X 

O inch top size) is fed from the yard to a tripper conveyor to fill any of five 

coal and limestone silos. There are five adjacent pairs of one coal and one 

limestone silo each. Each pair of silos feed a gravimetric feeder, that transfer 

a predetermined coal to limestone weight ratio into the inlet hopper of a 

Fuller-Kinyon (F-K) pump. The F-K pumps introduce the coal and limestone 

mixture into the pneumatic transport piping and also provide a positive seal 

against th� transport system pressure. The F-K pumps use a screw to advance 

the material to the discharge end of the pump. The material enters the 

windbox chamber through a napper valve which forms a seal to reduce reverse 

air now. As material is discharged into the windbox chamber, a compressor 

injects air into the windbox chamber through nozzles located below the 

material entrance. The air entrains the coal and limestone mixture, thus 

conveying it through a transport line connected to the discharge of the 

windbox chamber. The coal and limestone mixture enters an initial horizontal 

run of 3 inch schedule 80 transport piping at the F-K pump discharge, 

elevation 44 feet. After this horizontal run, the transport piping turns 

vertically downward through 90 degree elbows to a 2 foot elevation. After the 

second 90 degree elbows, the piping runs horizontally for about 31 feet. 

Another set of 90 degree elbows redirects the now vertically upward toward 

the feeclline splitters at the 16.5 foot elevation. Downstream of the splitter 

are numerous 2 inch schedule 80 pipe bends that direct the coal/limestone 

mixture to the feed ports at the 35 foot elevation. 
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Recycle System Design 

The Pilot Plant is equipped for the reinjection of small particle char 

material into the fluidized boiler to improve combustion efficiency, sulfur 

retention, and bed inventory. Char is removed from multitube cyclone type 

dust collectors and collected in hoppers that empty into a rotary feeder. The 

char is directed to a F-K pump that operates as previously described. The F-K 

pump discharges into a 5 inch schedule 80 f eedline that transports the recycle 

material to the recycle splitter. The original recycle splitter divided the 

entering transport air and solids feed into three exit feedlines. As with the 

compartment A-D feed systems, the recycle system consisted of numerous 

bends to direct the now to the feed ports. A redesign of the recycle system 

was conducted, and is described in Chapter 7. 

Operating Problems 

Since June of 1982, numerous operating problems have developed with 

the below-bed feed system. The most common operating problem is associated 

with wear. Coal and limestone particles are an extremely abrasive medium 

when pneumatically transported at velocities of 60 to 90 feet per second 

(ft/sec). Wear has therefore adversely effected nearly every component of the 

below-bed feed system, resulting in an unreliable and wiacceptable feed 

system. Every steel feed system component that restricts or redirects the 

coal/limestone mixture has experienced severe wear problems. The wear of 

the numerous bends, feed nozzles, and feedline splitters has become a serious 

problem and will be outlined in following chapters. 
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CHAPTER 3 

STATEMENT OF THE PROBLEM 

The current severe wear experienced in the TV A 20 MW AFBC Pilot 

Plant of turning sections (any long radius elbow), feed nozzles, and f eedline 

splitters must be minimized to insure a reliable pneumatic solids feed system. 

This is a necessity for a successful continued operation of a utility sized plant. 

A more clever design of these feed system components that would signifi­

cantly reduce wear is the subject of this report. The basic design concepts 

presented can be used in any pneumatically conveyed solids system that 

utilizes these components. However, the specific designs presented are 

intended for replacement of those components currently in use in the TVA 20 

MW AFBC facility. The feed system . component designs were sized to meet 

both the physical and operational parameters used in the pilot plant. We�r 

characteristic tests were conducted to determine the success or failure of 

initial design concepts. From these test results, designs of feed nozzles and 

f eedline splitters for both compartments A-D and recycle feed systems were 

performed. These designs will be presented along with recommendations for 

the corresponding feed piping systems. The requirements for the design of the 

feed system components will be outlined in each respective chapter. 
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CHAPTER 4 

UNIVERSITY OF TENNESSEE FLUIDIZED BED TEST FACILITY 

An experimental atmospheric fluidized bed test facility designed by 

Henry [9] and Knox [IO] was constructed at UT and is illustrated in Figure 4.1. 

It is a cold (non-burning, ambient temperature) facility constructed to 

primarily study the fiuidization and feeding characteristics of below-bed feed 

systems. The facility is vertically arranged over three floors. The design 

specifications, operating controls, procedures, and systems are detailed by 

both Henry (9] and Knox [IO] . 

The majority of testing performed did not require all the operating 

capabilities of the facility, and o�y the primary systems used will be briefly 

described. The transport air system was supplied by an air compressor which 

serves the building. The transport air is remotely controlled with a pressure 

regulator. The transport air system consists of a pressure relief valve, a now 

measurement orifice, and various control valves. The orifice now meter was 

designed according to ASME standards and is installed in the transport air 

system to measure air now rates prior to picking up any solid material. The 

differential pressure across the orifice was measured using a water 

manometer. 

For all wear tests, limestone was used as the solids medium. A nominal 

0.125 inch top size double screened limestone was used. The limestone sieve 

size was stated as 6 by 16, i.e., all material retained on a number 6 sieve or 

passing a number 16 sieve was removed. After several hours of operation, the 

erosion of limestone particles was evident . from a sieve analysis shown in 
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Table 4.1. Fresh limestone was therefore periodically added to the base 

system; hence, the limestone sieve analysis shown in Table 4.1 should be 

representative of the particle sizes for any given wear test. The 

experimentally determined average bulk density of the limestone used was 98 

lbm/ft3. The true, or particle, density of the limestone was determined by a 

water displacement method to be 163 lbm/ft3, agreeing closely to published 

data [11] . 

One important characteristic of the limestone was the saltation velocity. 

Saltation velocity is defined as the minimum velocity required to transport 

solid particles. At an operating velocity below saltation velocity, the solid 

particles will settle out of the transport stream. Obviously, it is vital to 

maintain the operating transport velocity safely above the saltation velocity. 

An experimentally determined saltation velocity for limestone could not be 

found in the literature, nor was there a convenient means for measurement of 

the saltation velocity in the UT facility. However, several correlations that 

predict saltation velocity were found in the literature. One paper compared 

statistically the predicted saltation velocity in horizontal transport using the 

accumulated air-solids data of many workers in the field [12]. The analysis 

showed that, of the seven correlations tested, the data was well fitted by the 

correlation of Rizk [13]. Rizk observed that the Froude number at saltation 

varied in a power law relationship with the solids to gas mass flow ratio. 

Using the Rizk correlation, the saltation velocity for limestone was predicted 

to be 35 ft/sec. One major limitation of this correlation was that only uniform 

particle sizes were considered. Only one investigator, Zenz [14], included the 

effect of wide particle distributions. Zenz's correlation is based on the most 

difficult transported particle. Depending on the distribution of particle sizes, 
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this may correspond to either the smallest or largest particle. For the 

limestone size distribution used, this was a 0.125 inch particle size. Zenz also 

includes a factor to account for the wide particle distribution. Using the Zenz 

correlation, the saltation velocity for the limestone used was 40 ft/sec . Since 

this correlation included the effect of wide particle distributions, it was 

considered as the actual sal tation velocity. 

The UT facility was equipped with a Vibra Screw Volumetric Live Bin 

Screw Feeder to inject solid material into the pneumatic feedlines. The feed 

rate of this type of feeder is essentially constant from hopper full to hopper 

empty conditions. The screw discharges to a 2 inch transport feedline. The 

speed of the screw is controlled remotely from the control area on the 

mezzanine. Long duration tests were conducted with limestone to calibrate 

the feeder. The speed of the screw, the test time and weight of limestone 

transported were recorded. The following linear relationship was developed 

from a least squared curve fit method. 

Ms= 42.1 (8) (4-1) 

This relation gives the limestone discharge rate (M8) in lbm/hr as a function of 

the speed of the screw ( 8 )  in rpm. The range of application of this equation is 

from 20 to 7 5  rpm, and air flow rates ranging from 7 5  to 135 cfm. 

The transport air and limestone injection systems were the two primary 

systems utilized for the wear tests. Modifications to the UT facility for the 

wear tests will be discussed where applicable. 
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CHAPTER 5 

TURNING SECTION WEAR TESTS 

Introduction 

Significant erosion of the long radius bends in the solids feed piping has 

been experienced at the TV A 20 MW Pilot Plant. The seriousness of the wear 

problems was clearly demonstrated in a very short time. In fact, the first 

wear failure occurred in a bent pipe turning section downstream of the splitter 

after only 153 hours of operation [5] . This turning section was a 9 1/2 inch 

radius, 48 degree bend fabricated from 2 inch schedule 80 carbon steel pipe. 

This was not an isolated incident, as ultrasonic testing showed appreciable 

thinning in similar feedline elbows signifying other failures would soon occur. 

This rapid occurrence of turning section failures eliminated the reliability 

required of a pneumatic solids feed system in utility sized power plants. It 

was therefore necessary to modify, or replace, the simple pipe bends down­

stream of the splitter with improved wear preventive turning sections. 

TV A, therefore, either modified the existing elbows downstream of the 

splitter by welding wearbacks onto the outside of the elbows or replaced the 

elbows with ceramic lined turning sections. The wearbacks were welded with 

a gap of approximately 1/2 inch between the outside of the feedline bend and 

the inner surface of the wearback. The idea was to produce a buffer area that 

would allow the solids to wear upon themselves and not the metal of the pipe. 

The wearback modification did not perform as well as expected; ultrasonic 

testing revealed that these elbows were near failure after less than 200 hours 

of operation. The wearback elbows were then discarded and replaced with 
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ceramic lined turning sections. By April 1983, after about 700 hours of 

operation, none of the ceramic lined elbows had failed and showed little 

evidence of wear. However, the success of the ceramic lined turning sections 

to date is not viewed as a permanent solution to this type of f eedline wear 

problem since the cost of each turning section is expensive. A great number 

of turning sections would be required in a full scale plant, thus escalating this 

cost. The development of an economically attractive method for turning the 

solids flow that would minimize wear to the turning section and adjoining 

piping is a highly desirable goal. An operating period of 8000 hours (91 percent 

availability for a year) would be a satisfactory goal. 

In order to design a feed system to reach these goals, it is important to 

identify the mechanisms of erosion of a surface by a stream of solid particles. 

There has been some dispute concerning the mechanisms of erosion when a 

ductile metal is eroded by solid particles. Finnie [15] proposed that the 

primary erosion mechanism is by cutting, which is the result of a sharp 

cornered projectile machining a chip of material from the target surf ace. This 

theory evolved from the machining process on lathes and has been both 

quantitatively and qualitatively successful [16] . But, not all eroding particles 

are angular and not all impacts give rise to detached chips of material. 

A second theory proposed by Neilson and Gilchrist (17] identified erosion 

by surface melting. After a particle impinges a surface, some of its kinetic 

energy is lost. Most of this energy is transformed into plastic deformation and 

then into heat within the surface. If this heat is generated quickly and within 

a small volume, the temperature there can reach the melting point. Surface 

material can then be removed more easily due to its much reduced cohesive 

strength. 
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A third theory was proposed by Bitter [18] , who assumed that the removal 

of material from a surface occurs by the joint action of two mechanisms: 

cutting, which only occurs when the projectile strikes the target at grazing 

incidence; and deformation wear, which predominates at normal impingement. 

Bitter was careful to point out that deformation wear is characterized by 

repeated bombardment. Probably some combination of these three erosion 

theories actually occur in the Pilot Plant. 

Several operating parameters of a pneumatically fed solids system have 

been shown to effect the wear rate of a surface. Finnie [19] showed the strong 

dependence between particle velocity and wear rate. Finnie eroded an 

annealed low-carbon steel with silicon carbide grains. For particle velocities 

ranging between 125 and 250 ft/sec, the wear rate was shown to be propor­

tional to the square of the particle velocity. 

Andrews [16] showed that a relationship existed between the solids mass 

now rate and the wear rate of a surface. The general conclusion was that for 

an increase in the solids mass now rate, the wear rate also increased. 

The particle size and shape have . also been proven to effect the wear 

rate. The results of Sheldon and Finnie [20] showed that for the range of 

particle sizes tested (10-3 to 10-l inch), the wear rate steadily increased with 

an increase in the particle size. The shape of the particle also has an effect 

on the wear rate. It is clear that sharp angular particles will produce more 

erosion than spherical particles if all other properties are the same. This is 

confirmed by one of the earliest tests in the literature [21] , in which it was 

noted that for sandblasting a surface, "sharp" sand gave four times the wear of 

"round" sand. 
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It should be recognized that these opera ting parameters in the TV A 20 

MW AFBC facility are relatively fixed. The minimum operating transport 

velocity is determined by the saltation velocity of the solids medium. The 

total solids mass fiow rate is determined by the load demand of the facility. 

Load control in an AFBC facility is maintained by slumping individual 

compartments as required. Thus, the solids mass now rates of the active 

compartments are relatively stable. The coal feed stock used in the Pilot 

Plant for below-bed feeding is a crushed coal of a 1/4 inch maximum particle 

size. Thus, the size and shape of the coal particles are relatively fixed 

parameters. With relatively constant operating parameters, one remaining 

alternative to reduce the wear of the feedline piping system is through the 

development of high wear resistant turning sections. Wahl and Hartstein [22] 

describe a German patent to protect pipe bends that carry high abrasive 

materials. In this design, air is blown tangentially along the outside of the 

bend. Tests apparently showed that the life of a normal bend would be 

improved by a factor of twelve. Using a normal bend life of 200 hours, the air 

injection scheme could bring the total bend life to around 2500 hours, but this 

would still be far below the goal of 8000 hours. The use of air injection would 

also require another large operating system. 

This chapter will focus on the relationship between transport velocity 

and solids mass fiow rates to the wear rate of long radius bends. The wear 

rate of a standard 45 degree wye turning section will be compared to the wear 

rate of the long radius bends. The pressure drops associated with solid 

transport in horizontal, 45 degree,and vertical feedline orientations will also 

be investigated. 
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Experimental System 

The UT AFBC facility was modified to allow the connection of a turning 

section to the existing 2 inch diameter schedule 80 vertical feedline, Figure 

5-1. The transport air now rate, solids mass now rate, and total test time was 

monitored throughout the wear testing. This set-up proved an easy method for 

qualitative testing of the wear characteristics of different types of turning 

sections. As already noted, limestone was used as the wearing medium for the 

wear tests, reference Chapter 4. Minimal test time and a commercially 

available product were primary considerations in the choice of the turning 

section material. For these reasons, polyvinylchloride (PVC) was chosen for 

qualitative test purposes. 

Long Radius Bend Wear Testing 

Wear testing was conducted on several 2 inch diameter schedule 40, 45 

degree long radius PVC conduit bends, Figure 5.2. The centerline radius of the 

bends was approximately 14 V4 inches. The bends simulated the long radius 

bends reported in the TV A Pilot Plant. The first wear test was conducted at a 

limestone feed rate of approximately 27 40 lbm/hr and a volumetric air flow 

rate of 100 cfm. The long radius bend wore completely through after nearly 5 

hours. 

The turning section was then sectioned along its centerline to reveal the 

worn areas. The long radius conduit bend showed a thinning region on the 

outside wall starting at the point where bending is apparent. The wall 

thickness gradually decreased on the outer wall to a paper thin region in line 

with the tangent of the inside wall bend, Figure 5.2. The width of this wear 
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pattern was approximately 0.70 inches. Continuing along the outside wall, the 

section revealed a "bullet shaped" profile of rapidly increasing thickness. 

After approximately 8 1(2 degrees off the inside wall tangent line, there were 

no signs of wear on the outer wall. No wear was noticed on the side walls nor 

the inside wall anywhere along the test section. 

Two similarly constructed long radius PVC conduit bends were tested to 

determine the relationship between the transport air now rate and the wear 

rate of the bends at a constant solids mass now rate. The same solids mass 

now rate 2740 lbm/hr, was used for both tests. The operating air now rates 

were 75 and 125 cfm. By changing the air now rate, both the transport 

velocity and the solids to air mass ratios were altered. The results of the 

three tests are compared in Figure 5.3 as a plot of wear rate versus transport 

velocity. The wear rate was computed by dividing the wall thickness of the 

bend by the time to failure. The results show the strong influence of transport 

velocity on the wear rate. A cubic curve fit is shown in Figure 5.3, indicating 

the wear rate is proportional to the cube of the transport velocity. The curve 

represents a constant solids mass flow rate line. The solid to air mass ratios 

were 7 .5, 5.6, and 4.5 for air flow rates of 7 5, 100, and 125 cfm respectively. 

Thus, Figure 5.3 shows the combined influence of changes in transport velocity 

and solids to air mass ratios. A comparison between the 100 and 125 cfm points 

show that a combined 25 percent increase in transport velocity and a 20 

percent reduction in solids to air mass ratio increased the wear rate by 70 

percent. The results show clearly that a low transport velocity is desirable for 

the transportation of a constant solids mass now rate from a wear rate 

perspective. 
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Another similarly constructed bend was tested to determine the effect 

of transport velocity changes on the wear rate. The operating conditions were 

an air now rate of 125 cfm and a solids mass now rate of 3420 lbm/hr. The 

corresponding solids to air mass ratio was 5.6, equalling that used for the first 

test conducted at 100 cfm. Thus, by comparing the wear rates for these two 

tests, the effect of a net increase in transport velocity on wear rate was 

determined. A comparative increase in transport velocity of 25 percent 

resulted in a comparative increase in wear rate of 140 percent. This result is 

also shown in Figure 5.3 for comparison. 

By comparing this result with the combined influence of transport 

velocity and solids to air mass ratio between the 100 and 125 cfm points, the 

effect of solids - to air mass ratio was estimated. The end result was that a 

decrease of solids to air mass ratio of 20 percent (from 5.6 to 4.5) reduced the 

wear rate by 70 percent. From these preliminary test results, both the solids 

to air mass ratio and transport velocity parameters strongly effected the wear 

rate. Transport velocity effects were shown to be the controlling factor, 

nearly double the influence of solids to air mass ratio changes. 

45 Degree Wye Turning Section 

It was believed that the operation of a 45 degree wye, Figure 5.1, would 

significantly improve the total life of a turning section. The reason was due to 

the operational characteristics of the wye. Once a solids feed was established, 

the plugged end of the wye packed with solid particles. Other solid particles 

entering the wye impinged particles packed in the wye, and consequently, wear 

of the wye material was minimal. In order to test this concept, a single, 2 

inch diameter schedule 40, 45 degree PVC wye was tested, Figure 5.1. The 
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operating conditions were an air now rate of 100 cfm and a solids mass now 

rate of 27 40 lbm/hr, or a solids to air mass ratio of 5.6. The PVC wye was 

visually inspected after 5 hours, but showed no signs of appreciable wear and 

was reinstalled in the feed system. After a total of 10 hours of testing, the 

PVC wye section was removed to check for wear patterns. 

The 45 degree PVC wye was sectioned along the centerline and showed 

the following wear characteristics. The plugged end of the wye filled 

completely with limestone and thus the limestone wore upon itself, resulting in 

no wear to this stagnant area of the turning section. The solids now path and 

stagnant area is depicted in Figure 5.4. A minimal amount of wear to the 

turning section occurred in an elliptical shaped region at the packed 

solids/now interface shown in Figure 5.5. This was due to solids rebound from 

the initial collision with the packed limestone. This wear region was apparent 

on the outer wall as well as the side walls. The reduction in wall thickness 

along this region is less than 10 percent. Surprisingly, the sharp corners where 

the 45 degree section intersects the straight portion of the wye (i.e., the 

crotch) showed little sign of wear. The wear that was apparent indicated that 

the turning section would eventually fail, but a significant increase in time to 

failure had been achieved. 

The use of the 45 degree PVC wye section has shown definite advantages 

compared to the long radius bend. Most importantly, the time for wear failure 

would be greatly increased. The 45 degree PVC wye has shown a modest 10 

percent reduction in wall thickness in twice the operating period needed to 

wear the long radius PVC bend to failure. This comparison is made for similar 

operating conditions and turning section wall thickness. Also the total 

effected area of wear in the feedline would be limited to small regions of the 
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turning section: deep wearbacks could be welded to the outside of the 45 

degree wye ( where necessary) to further lengthen the life of the wye. It is 

recommended that the turning section be flanged on both ends to minimize 

replacement downtime when failure eventually occurs. It should be further 

noted that the combination of three to four 45 degree wye sections with 

straight sections in between should produce a wide latitude of effective "bend" 

angles. 

Connecting Section Tests 

In March 1983, the compartment D, ' 3 inch schedule 80 horizontal to 

vertical 90 degree steel bend wore to failure at the TV A Pilot Plant. Based on 

development work previously discussed, TV A replaced the bend with a twin 45 

degree steel wye, horizontal to vertical assembly, in order to obtain actual 

wear data with the 45 degree wyes. One concern was the determination of the 

proper minimum length for the connecting straight section between the two 

wyes. A qualitative wear test for determining this length was conducted. A 

schematic diagram of the UT facility for this testing is shown in Figure 5.6.  

The pipe was 2 inch schedule 80 PVC and both wyes were 2 inch schedule 40 

PVC. 

For time considerations, two straight test sections were given internal 

coats of bright yellow latex paint. The straight sections of pipe, 11 inches and 

20 inches (L/D ratio of 5.5 and 10) were tested for 5 minutes at an air fiow 

rate of 100 cfm and a limestone mass now rate of 27 40 lbm/hr. An inspection 

of the 45 degree inclined test section, Figure 5.6, revealed that all the paint 

had eroded throughout the entire pipe section with some exceptions. On the 

floor of the pipe section was an unworn area extending a few inches covering a 
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total arc of approximately 90 degrees. In other words, relatively high wear 

regions were located along the top and side of the connecting straight section 

just downstream of the 45 degree wye. It appeared that a uniform paint wear 

pattern resulted only 2 to 3 inches downstream of the first 45 degree wye, 

indicating that a L/D ratio of 2 or greater should be sufficient length for the 

connecting straight section. Both test sections yielded similar results. 

Recent thickness measurements at the TVA Pilot Plant of the compart­

ment D, 3 inch diameter twin 45 degree steel wye, horizontal to vertical 

assembly were made after a total of 3100 hours of operation [23]. The TVA 

twin 45 degree assembly configuration is similar to that shown for the UT test 

set-up in Figure 5.6. Although worn regions varied greatly, the 45 degree wyes 

have lost around 42 percent of the original wall thickness . Based on a linear 

wear rate, the 45 degree wyes should have a total life of around 7000 hours. 

The highest wear region occurred at the top of the connecting straight 

section at an approximate L/D of 3.5. The wall thickness reduction was 

around 70 percent, indicating a total life of around 4200 hours. This wear 

results from solids rebound just downstream of the first 45 degree wye. By 

placing the second 45 degree wye at a L/D of 2 to 3, this high wear region 

should be minimized. A high wear region in the vertical pipe section 

downstream of the second 45 degree wye may occur, but by welding wearbacks 

at appropriate locations, the life of this section should be increased. 

By either stellite hardening or welding wearbacks at appropriate 

locations of both the 45 degree wyes and adjoining straight sections, the life of 

the turning assembly should easily reach the goal of 8000 hours. This is a 50 

fold increase in total life compared to the steel long radius elbows. 
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Pressure Drop Tests 

The feedline pressure drops as a function of conveying parameters is 

important because it determines the feed system pumping costs. Testing was 

performed at UT to determine the pressure drop of solid transport in 

horizontal, vertical and 45 degree feedline orientations. The pipe test section 

was 2 inch schedule 80 PVC, with an L/D of 40. The test configuration for 

both the 45 degree and vertical testing is shown in Figure 5 .1 ,  page 2 2 . For 

vertical testing, the test section (L/D= 40) replaced the vertical section (L/D = 

4 7) shown in Figure 5 .1, page 2 2 .  For 45 degree testing, the test section was 

installed immediately downstream of the 45 degree wye shown in Figure 5 .1 ,  

page 2 2. During this testing, the pressure drop of the 45 degree wye was also 

measured. The test configuration for the horizontal testing is shown in Figure 

5 .6. The horizontal section immediately downstream of the 90 degree tee was 

used for the pressure drop measurements. Pressure taps were installed on both 

ends of the test section, and the pressure drop of the test section was 

measured with a water manometer. As before, limestone was used as the 

solids medium. 

The results of the testing are shown in Figures 5.7 and 5 .8 for the cases 

of an air now rate of 135 and 100 cfm, respectively. The results show that the 

pressure drop magnitude categorized in descending order were for vertical, 45 

degree, and horizontal transport. These results are in general agreement to 

other testing conducted for vertical and horizontal solids transport [2 4]. For 

the air only cases (corresponding to zero solids now rate on Figures 5.7 and 

5 .8), the pressure drop was computed using the familiar Darcy friction factor 

commonly quoted in the literature [25 ]. The experimentally measured air only 
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pressure drop was consistently higher, but was within 15 percent of the 

pressure drop predicted by the Darcy friction factor. 

The results shown in Figures 5. 7 and 5.8 were curve fitted to the type of 

equation that follows. Equation 5.1 is for horizontal solid transport only. 

( 5 .  1 )  

The pressure drop due to the friction of the air passing through the pipe was 

calculated using the Darcy friction factor. The pressure drop due to the solids 

was a combined term that included the effect of solid friction and accele­

ration. 

�p s ( 5 .  2 )  

In equation 5.2, the factor Ks accounts for both the solid friction and accele­

ration terms. The factor Ks was computed by subtracting the pressure drop 

due to friction of air from the total experimentally measured pressure drop. 

For vertical solid transport, Hinkle [26] proposed an additional term to 

account for the static head of the solids. Thus, for vertical transport: 

�PT = �p f + �p + �p a s s s  

Where the pressure drop due to the static head of the solids is: 
Va p aL Ms 

�P s s  = • Ma 
v s  

( 5 • 3 ) 

( 5 . 4 ) 

The term Vs* corresponds to the equilibrium solid velocity (i.e., the velocity 

with no acceleration). Hinkle's empirical correlation for Vs* was approxi­

mately equal to 0.6 Va for the operating parameters tested. Again, Ks could 

be calculated for vertical solid transport from the experimentally measured 

total pressure drop and by computation of �Pss (equation 5.4} and from the 

Darcy friction factor. 
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For 45 degree solid transport, equation 5.3 was modified to account for 

the 45 degree orientation. 

�PT
= �p f a  + AP 8 + 0 . 7 0 7  �p s s  ( 5 . 5 ) 

As before, Ks was calculated once �Pfa and �Pss were computed. 

The curve fit of the experimental data (Figures 5. 7 and 5.8) f o� 

horizontal, 45 degree, and vertical solid transport resulted in Ks values of 

0.0165, 0.0246, and 0.0272, respectively. The differences in K8 values was 

evidently due to differences in the pressure drop from the acceleration of the 

solids. There was no convenient means for measuring the solids velocity in the 

current test configurations, thus no attempt was made to quantify the pressure 

drop due to the acceleration of the solids. Hinkle [26] found that this term 

was most significant, contributing as much as 70 to 90 percent of the total 

pressure drop. 

The pressure drops of both a long radius PVC bend (Figure 5.2, page 23) 

and a 45 degree PVC wye (Figure 5.5, page 29) were also measured. In 

general, the 45 degree wye had a pressure drop approaching 3 times that of the 

long radius bend. In comparison to the results shown in Figures 5.7 and 5.8, 

the pressure drops for the long radius bend and the 45 degree wye correspond 

to an equivalent L/D of 5 and 15, respectively. 



CHAPTER 6 

BELOW BED CAP/CAGE FEEDER DESIGN AND 

WEAR CHARACTERISTIC TESTING 
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The development of a reliable coal feed system has been recognized as 

one of the most critical problems facing the introduction of a utility sized 

fluidized bed boiler. Kress [27] investigated, designed, and tested a floating 

valve cap feeder at The University of Tennessee. The valve cap feed system 

design shown in Figure 6J was the feed nozzle originally installed in 

compartments A-D at the TV A 20 MW Pilot Plant [8]. It has two very 

desirable characteristics. First, when operating, the valve cap will fully open 

providing distribution of coal in all radial directions. Secondly, when not 

operating, the valve cap will seat on the feed pipe preventing bed material 

from draining back into the solids feedline. In effect, the cap operates as a 

check valve. 

In general, the valve cap feed system at the TVA 20 MW Pilot Plant has 

operated very well. However, some problems with the feed nozzle have been 

experienced during the Pilot Plant operation. Wear has occurred with the 

floating valve caps and support posts of the feed nozzles. The recess in the 

fioating valve cap is the key to the minimization of cap wear, allowing the 

solids to wear upon themselves and not the metal in the caps. Cap thickness 

measurements taken in October '82 and March '83 are documented in a TVA 

report [8] and are presented as Table 6.1. From this table, wear of the valve 
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Tab le  6 . 1 

TVA P i l ot P l ant  Beds  A-0 Feed Port 
Th i ckness Measu rements 

B & W - 4  
I 

Cap Th i ckness 
( i nch es) 

- -

I n terva l of 1 Change Feed Port I Operati ng (m i ls) --

Hours 
Mar. Oct. 82 1 

83 * ,, 

A-1  .2 1 5  .2 1 3  2 460 
A-2 . 237 .235 2 460 
A-3 I .229 .22 1 8 460 
8 - 1  .229 .223 6 420 
8 -2 · '  .238 .234 ! 4 420 

I 8 -3 .238 .234 I 4 420 i I I 

C- 1 . 259 .233 i 26 392 I 
I 

C-2 .250 .232 1 8  392 
C-3 .243 .224 1 9  392 
0- 1 . 236 .2 1 8  1 8  384 
0-2 . 228 .208 20 384 
0-3 . 254 .242 : 1 2  384 

* Tota l operating  time  as of March 83 ranged from 1 1 06-
1 2 50 hours 

40 
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cap has occurred and is certainly an undesirable characteristic for any long 

life feeder system. A reevaluation of the valve cap design is thus warranted. 

The support posts of the feed nozzles have also undergone wear as 

represented in Figure 6.2. As wear of the posts proceeds, the bending moment 

supplied by the force of the valve cap during operation causes the post to bend 

in an outward direction. This bending can cause the loss of valve caps, since 

the caps are then not sufficiently restrained by the retaining bars at the top of 

the feed nozzle. The loss of valve caps has been experienced at the pilot plant 

resulting in poor radial distribution of coal and to the drainback of hot bed 

material into the f eedlines upon shutdown. 

These problems associated with the valve cap feed system are significant 

and reduce the reliability of the feed system. This chapter will describe 

design modifications to the existing feed nozzle design to increase wear 

resistance. Long term wear characteristic tests were conducted for two valve 

cap designs to determine the relation between wear and recess depth. 

Floating Valve Cap/Cage Design Considerations 

Several design considerations were included in the feed nozzle design 

shown in Figure 6.1. Kress (27] showed from coal feed tests that coal can be 

distributed throughout the entire bed by the valve cap feed system and that a 

recessed valve cap will not degrade the system coal feeding performance in 

comparison to a fiat valve cap. Kress (27] also performed very qualitative 

valve cap wear characteristic tests which indicated that a recessed valve cap 

will significantly reduce the wear of the valve cap. Consequently, a recessed 

valve cap was chosen for the feed nozzle design. 
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The cage and cap design must be compatible. The diametrical clearance 

between the cage posts and the valve cap should be a minim um of 2 times the 

largest bed partical size. This will prevent cap hang-up due to particle 

entrapment between the cap and cage. Kress [27] found that for a 3.0 inch 

inside cage post diameter, a 2.688 inch outside diameter valve cap would meet 

this criteria for a 1/8 inch maximum bed particle size. This size cap will still 

effectively cover the 2.0 inch schedule 160 feed pipe during no feed conditions. 

These are the sizes used in compartments A-D at the Pilot Plant, F igure 6.1. 

A cap free travel dimension, designated as the cap gap, was recom­

mended by Kress [27] to be 0.75 inches. This dimension was chosen to adhere 

to a "coal industry" rule of thumb which states that the minimum opening 

should be equal to three times the maximum transported particle size (i.e., a 

1/4 inch diameter coal particle size). A cap gap of 0.75 inches was used in the 

initial feed nozzle installation. 

The primary objective of the valve cap design is to create a proper 

balance between cap mass and transport air now rate. The operating· 

conditions at the TV_A 20 MW Pilqt Plant for compartments A-D are an air 

now rate of 100 cfm at 80° F and 14.3 psia. It would be highly desirable for the 

valve cap to operate in a fully open position when subjected to these 

conditions. The added momentum of the coal now would provide an added 

margin of safety to the design. Two valve caps were designed and tested that 

met the above requirements. The valve caps are designated as the B&W-4 and 

the UT-4, both of which are shown in Figure 6.3. The significant difference 

between the two caps is the recess depth. The B&W-4 valve cap design was 

selected by B&W for the initial operation of the TVA Pilot Plant and is shown 

in Figure SJ. 
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One additional design consideration was identified by Kress [27] .  The 

cage top should be designed to minimize the contact area between itself and 

the fully open cap. A wide contact area is conducive to entrapping bed 

material, thus effectively reducing the cap gap. 

New Cage Development 

Modifications to the feed nozzle design were conducted to eliminate the 

problems previously described. The newly developed cage is shown in Figures 

6.4 and 6.5. The cage design is adaptable for use with either the UT-4 or the 

B&W-4 valve cap, but is shown in Figure 6.4 with the UT-4 valve cap. The 

only difference in the new cage design to mate with the B&W-4 cap is the 

vertical dimension from the top of the support plate to the bottom edge of the 

post rests. The dimensions for the UT-4 and B&W-4 caps are _1.375 and 1.250 

inches respectively. The principal design features of the cage are as follows. 

An inside post diameter of 3.0 inches was derived from the cap outside 

diameter plus 2.0 times the maximum bed particle size plus VI6 inch for an 

added safety margin. The maximum limestone particle size used was 0.125 

inches. A cap travel of 3/4 inch was used. A 3/8 inch square stock was 

oriented to present a knife edge for the contact surface between the cap rests 

and the valve cap. The knife edge will reduce the likelihood of particles 

becoming entrapped between the cap and the post rests. The cage posts of the 

cage have been increased to V2 inch diameter to increase post life. A 

reinforcing cross top was also included to prevent post bending and possible 

loss of a valve cap. 

Ease of construction was also a consideration in the design of the cage. 

One main advantage of this cage is that it can be constructed in a shop 
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environment (i.e., outside of the boiler). Figure 6.5 outlines the process. 

Note, the cap must be inserted inside the cage before all cage posts are 

indexed and welded to the support plate. Finally, the cross top is welded in 

place and the cage is complete. 

Cap/Cage Tests and Results 

Wear of the B&:W-4 valve caps has been experienced at the TV A 20 MW 

Pilot Plant as documented in Table 6.1 ,  page 40. A study was initiated to 

determine the relationship between recess depth and the wear experienced by 

the B&:W-4 and UT-4 caps, Figure 6.3. Based on the previous success of using 

PVC in determining wear characteristics (turning section tests), floating valve 

caps of both designs were fabricated from PVC. Two PVC cages were also 

fabricated as shown in Figures 6.4 and 6.5. In this way, a simultaneous post 

wear characteristic test was conducted. The wear characteristic testing was 

conducted at a solids flow rate of 27 40 lbm/hr and an air flow rate of 100 cfm. 

The UT facility was modif ed as shown in Figure 6.6. The upstream piping 

system consisted of 2 inch schedule 80 sections except for a 2 inch schedule 

160 section approximately 1.5 feet long immediately upstream of the feed 

nozzle. As with the PVC turning section wear characteristic testing, 

limestone was chosen as the solids medium. The use of limestone will not 

duplicate the operating conditions at the TVA 20 MW Pilot Plant, but will 

provide a useful wear rate comparison between the two valve caps. 

A total of 10 hours of testing was conducted on each cap and periodic 

mass measurements of the caps were made. The wear results are shown as a 

plot of material loss versus time in Figure 6. 7. A significant difference in the 

wear rate of the two caps is very apparent. Ater 10 hours, the B&:W-4 PVC cap 
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had lost 14 percent of its original mass, while the UT-4 PVC cap only lost 2.4 

percent of its original mass. Extrapolation of the wear rate of the B&W-4 

PVC cap from Figure 6. 7 indicated that the wear rate will continue at 

approximately the same magnitude for some time to come. The wear will 

proceed until the depth of the recess has been worn to at least 0.43 inches, 

since the UT-4 PVC cap shows some slight signs of wear. The minimum 

thickness of the B&W-4 PVC cap after 10 hours of testing is 0.130 inches, which 

corresponds to a maximum depth loss of 0. 1 20 inches (see Figure 6.8). This 

amount of PVC cap wear reasonably corresponds to over 1000 hours of TV A­

AFBC Pilot Plant run time. 

The UT-4 PY C valve cap shows only slight signs of wear after 10 hours of 

testing, as indicated in Figures 6. 7 and 6.8. The minimum thickness is 0.180 

inches, which corresponds to a maximum depth loss of only 0.020 inches. The 

difference in the magnitude of the wear of the two caps is quite pronounced. 

A factor of 6 to 7 prevails when comparing mass loss, maximum depth loss, or 

average remaining cap thickness in high wear areas. 

The results of the valve cap wear tests provide positive proof that the 

wear experien·ced by the cap is very sensitive to the recess depth of the v�ve 

cap. The B&W-4 valve cap has a recess depth of 0.25 inches, but was not 

sufficiently deep to prevent cap wear. By increasing the recess depth to 0.43 

inches, a 70 percent increase, the cap wear was reduced by a factor of 6 to 7. 

It is interesting to note that for the 1/2 inch diameter PVC posts, less 

than 1 percent of the original post mass was lost during the 10 hours of testing 

with both valve cap designs. A slight indention was observable in the same 

location as the post wear shown in Figure 6.2, page 42, that was experienced 

at the TV A 20 MW Pilot Plant. The relative magnitude of PVC post wear to 
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PVC valve cap wear was significantly less than the relative magnitude of post 

wear to valve cap wear experienced ·at the Pilot Plant. Two contributing 

factors lead to this result. The most influencing factor is the 1/8 inch stellite 

surface coating the underside of the valve caps. This material is considerably 

tougher than the steel cage posts. The second factor is the increase in cage 

post diameter from 3/8 inch to 1/2 inch diameter. This observation strongly 

suggests that the addition of a stellite surfacing be considered for the cage 

posts to significantly improve the wear resistance of the posts. 

Two additional tests were performed to determine if the modified cage 

would have any adverse effects on the opening and drainback characteristics 

of the caps. Both metal caps and a metal cage were built and the cap/cage 

assembly was inserted in the UT 2 X 2 fiuidized bed facility. Air only 

signature tests were conducted, and as expected, virtually no differences were 

observed between these tests and previous air only tests conducted in the 4 bar 

cage with 3/8 inch diameter posts. 

A drainback/hangup test for the B&W-4 cap/cage assembly was also 

conducted. The 2 X 2 bed was filled with 7 1/2 inches of limestone and was 

operated at an approximate bed superficial velocity of 6 ft/sec. The transport 

air was pulsed from O to 150 cfm numerous times resulting in no drainback in 

the feedline with the following exception. Slight drainback into the solids 

f eedline did occur on 3 to 4 occasions when the transport air was slowly shut 

down, allowing a limestone particle to be caught on the rim of the cap. This 

drainback was easily stopped by supplying a quick pulse of transport air, thus 

ejecting the trapped particles. At no time did the B&W-4 cap experience 

hangup in the cage. 
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Conclusions and Recommendations 

The UT-4 valve cap has shown far superior wear resistance compared to 

the B&W-4 cap. In fact, the UT-4 cap design has reduced the magnitude of 

wear by a factor of 6 to 7. The air now only opening characteristics for the 

UT-4 cap are essentially identical to the B&W-4 cap. For these reasons, the 

UT-4 valve cap is strongly recommended for future use in the Pilot Plant to 

determine its performance in an actual AFBC facility. It is also recommended 

that the cap be stellite surfaced to further increase the life of the cap. 

The modified cage is also recommended because of improved design 

features. The most important being ease of construction, added post life, and 

a simple reinforcing cross top to prevent post bending. 

By using the UT-4 valve cap with a stellite surface, the wear of the cap 

should be greatly reduced. In fact, wear of the cage post could become a more 

serious wear problem than the valve cap. The possibility of using a hardened 

steel or a stellite surfacing should be considered for the cage posts upon initial 

installation of the cap/cage assembly. The use of the UT-4 cap in combination 

with the modified cage with hardened posts should greatly improve the 

reliability of the feed nozzle assembly. 
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Feedline splitters are key components to the TVA AFBC 20 MW Pilot 

Plant below bed feed system. Feedline splitters provide a means for dividing 

the transport air and solids feed into multiple exits. In TVA's 20 MW Pilot 

Plant, feedline splitters are utilized in all aspects of below bed feeding: start 

up, compartments A-D, and recycle systems. The start up system currently 

has one main feedline upstream and eight feedlines downstream of the splitter, 

designated a 1:8 splitter. This designation is used since the flow is divided 

from a single feedline to eight exit feedlines. This designation will be used 

throughout this report. The compartments A-D currently utilize 1:3 feedline 

splitters. The recycle system has recently been changed from a 1:3 splitter to a 

1:6 splitter. The UT designed 1:6 recycle splitter became operational March 

22,  1984. The total number of main feedline systems required in the TVA 20 

MW Pilot Plant is  six (one for start up, one each for compartments A-D, and 

one for recycle). Without feedline splitters, a total of 26 main f eedline 

systems would be required (eight for start up, three each for compartments A­

D, and six for recycle). More importantly, 26 F-K pumps and compressors 

would be required. For a utility sized AFBC plant, around 200 MW, the total 

number of main feedline systems would increase further. To decrease the 

number of main f eedline systems, a commercial sized AFBC plant may utilize 

1:24 f eedline splitters. 
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The most important function of a feedline splitter is the ability to 

equally divide the solids feed and associated transport air in the main feedline 

to the exiting feedlines. If the feedline splitter cannot provide this function, 

poor (unequal) distributio� of coal occurs, resulting in cold and hot spots in the 

bed. The uneven burn rate in the bed diminishes the sulfur capture rate, alters 

heat transfer rates, and reduces the efficiency of the boiler. Thus, a 

relatively equal split of the solids feed is imperative to the efficient operation 

of an AFBC plant. Currently a split equality of :!: 10 percent of the splitter 

exit feedlines is regarded as acceptable by TVA. 

The current feedline splitter design utilized in compartments A-D feed 

systems in the TVA 20 MW Pilot Plant is shown in Figures 7 .1 and 7 . 2. The 

splitter was designed by the Fuller company and a brief description was given 

in an article by Hilbert [28]. An internal cone, Figure 7 .2 , of the design 

serves two purposes. First, it provides some control of the now area (the area 

seen by the transport air and solids feed), thus maintaining a solids velocity 

above saltation velocity. Secondly, it directs the solids - feed to the exit ports. 

Internal deflector plates are also included in the design to further decrease the 

now area. 

As with other feed system components, the feedline splitters at the TVA 

20 MW Pilot Plant have experienced extensive wear. Splitters of two different 

internal cone materials were supplied for erosion comparison. The original 

splitter cone is shown in Figure 7 .2 . Originally, compartments A, B, and C 

splitters had ceramic internal cones while the D splitter internal cone was of 

steel construction. Early in testing, the compartment A splitter ceramic cone 

broke and was replaced with a steel cone. During a M arch 1983 outage, 

measurements of the splitter cone of compartments A, C, and D were taken 
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and are given in Table 7 .1. The wear of the steel splitter cones was quite 

severe, as nearly 3 inches (over 50 percent) of the cone height had been lost. 

The large amount of splitter cone wear has an obvious detrimental effect on 

the reliable and efficient operation of the Pilot Plant. In fact, two serious 

problems result from the splitter cone wear: increased occurrence of line 

plugg�ge, and uneven coal distribution. Before replacement of the compart­

ment D splitter cone, there were numerous line pluggages in the splitter area 

(19 plugs from February 2 1  to M arch 9, 1983 ). After replacement, the 

compartment D feed lines plugged only five times for a comparable operating 

period, nearly a four fold decrease. The pluggage could result from over­

loading of one or two of the exit feedlines or by the occurrence of saltation 

from the result of the large increase in flow area. This provided graphic 

evidence that the severely wom splitter cone was the primary cause for the 

large number of line pluggages. Also, before replacement of the compartment 

D splitter cone, one side of compartment D had consistently lower bed 

temperatures. This indicated that an uneven distribution of coal resulted from 

the badly worn splitter cone. As a result of the steel splitter cone wear, the 

compartment A cone was replaced with another steel cone and the compart­

ment D cone was replaced by a ceramic cone. 

In comparison, the compartment C ceramic cone had lost only about 8 

percent of its original height. However, an equally severe problem with the 

ceramic cones was experienced. As previously mentioned, the compartment A 

ceramic cone broke early in testing, and had to be replaced. The compartment 

B ceramic cone had a portion of its base broken. The fractures could have 

resulted from attempts to clear pluggages or by thermal shocks caused by the 



Cone Height (in.) 

Cone diameter 2 (in) 

Cone diameter 3 (in) 

Cone diameter 4 (in) 

Cone diameter 5 (in) 

Table 7 .1 

TVA Pilot Plant Beds A-D Splitter 
Cone Wear Measu rements 

Comp A Comp ( 
(Steel) (Ceramic) 

Comp D 
(Steel) 

0 h r  1,355  h r  0 h r  1 . 2s6  h r  I 0 h r  1, 211 h r  

i 5.688 2.7 50 5.7 50 5 .313 : 5.750 2.875 

I .951 0 1 1.020 .880 I 1. 111 0 

I 1 . 642 0 1 1.635 1.400 1 1.72 5  0 

1 2.312 .2 50 1 2.276 2.170 1 2.360 .42 5  

1 2 . 8 53 1.2 50 t 2 .881 2 .720 1 3.004 1.480 

C) 
0 
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drainback of hot bed material. These fractures caused significant problems: 

the pluggage of exit feedlines with large fractured pieces and unequal splits. 

Additional wear problems with the splitters have also occurred. 

Presently, the exit f eedlines of the splitter are oriented in an approximate 25 

degree angle off vertical position. Since all the vertical momentum of the 

solids now is not lost as it passes through the splitter, wear on the upper side 

of the exit feedlines occurs. In fact, some of the exit feedines have worn to 

failure. Also, the internal deflector plates provided to decrease the solids 

now area have undergone significant wear. 

The problems associated with both the steel and ceramic splitter cones 

reduced the reliability of the TVA 20 MW AFBC feed system. The currently 

installed splitters have not shown the durability required for utility operation. 

The problems with the splitters have occurred after about 1250 hours of 

operation, about 15 percent of the desired one year (8000 hour) life. For these 

reasons, a new, innovative design for a pneumatic feedline splitter was sought 

to provide the reliablity required in a utility sized AFBC below bed feed 

system. 

Design Philosophy 

The design of a new feedline splitter for incorporation in any pnuemati­

cally transported solids feed system must meet several requirements. The 

design of the feedline splitter that was conceived by Dr. H. Joe Wilkerson and 

constructed and tested at UT was tailored to the needs of TVA's 20 MW Pilot 

Plant facility. However, flexibility in the design exists such that design 

modifications can be made for implementation in any pneumatically conveyed 
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solids system that utilizes feedline splitters. The primary design requirements 

for the feedline splitter are as follows: 

1. Must provide fit to existing feed system (ie, the splitter must mate 

to the upstream and downstream feed piping system}. 

2. Must function over the operating range of the given pneumatically 

conveyed solids feed system. 

3. Must provide good split equaltiy (TVA's current acceptable split 

equality range is :!: 10 percent}. 

4. Must minimize wear (should operate in the range of 8,000 hours 

before splitter wear effects performance). 

5. Must prevent pluggage and saltation. 

6. Must provide flexibility in design for enlargement or reduction in 

size to match changes in operating conditions. This includes the 

reduction or addition in the number of exit feedlines. 

All of these design considerations must be included to provide a reliable 

feedline splitter that is essential in a pneumatically conveyed solids system. 

UT Feedline Splitter Design 

Introduction 

This section describes the design of a new feedline splitter that was 

constructed and tested at the UT facility. The purpose of the testing program 

was to determine if the new splitter design would provide superior operating 

performance in terms of wear resistance and split equality. If successful, the 

new splitter design would supply TV A and the industry with a possible replace­

m ent to the existing splitters used in the Pilot Plant and in future AFBC 

facilities. The 1:3 splitter design corresponds to the 1:3 splitters currently 
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used in TVA compartments A-D feed systems. The results of the testing will 

be presented and recommendations in subsequent sections will be presented for 

implementation of a similar designed splitter in the existing compartment D 

and recycle feed systems in the TV A Pilot Plant. 

Design Considerations 

The first decisions to be made in the splitter test program were the 

choice of material for the splitter construction and the solids medium to be 

used in the testing. The fabrication material chosen for the UT 1:3 splitter 

was PVC. As with the turning sections and floating valve cap/cage wear 

characteristic testing, PVC was chosen because of its availability and wear 

characteristics. The solids medium used in the splitter testing was limestone. 

It was recognized that the extensive use of limestone in the splitter testing 

would not fully duplicate operating conditions at the TV A Pilot Plant. TVA 

currently uses 1/4 inch X O inch top size coal particles with a mixture of 

limestone of 1/8 inch X O inch top size. Coal to limestone mass ratios of 1.5 

and 2.25 to 1.0 are typical. The wear characteristics of the coal/limestone 

mixture will most certainly be different than a feed of limestone only. But it 

was not the purpose of the splitter testing to exactly duplicate the same 

operating conditions used in the TVA Pilot Plant. Rather, the purpose of the 

testing was to establish if the new designed splitter would function and to 

determine the general wear characteristics of the splitter. 

Wear prevention was the single most influencing factor in the splitter 

design. The feedline splitter that was constructed at UT is shown in Figure 

7 .3. The splitter was designated as the UT 1:3 PVC splitter. The two principle 

design features of the UT 1:3 PVC splitter were the internal recessed cone and 
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FIGURE 7.3 

UT 1 :3 PVC SPLITTER FOR WEAR TESTING 
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the vertical directed exit feedlines. The mechanics of wear reduction of the 

internal recessed cone were similar to the recessed floating valve caps and the 

45 degree wye. Once a solids feed was established, the recess in the cone 

packs with solid particles and other entering solid particles impact trapped 

particles in the recess. In effect, a protective buffer layer was established in 

the recess of the cone which prevented wear of the cone material directly 

facing the solids stream. With the design change to a recessed internal cone, 

the wear rate of the internal cone should be significantly reduced. The 

vertical directed exit feedlines were chosen for wear considerations also. The 

splitter design enabled an internal turn of the solids to a vertical exit direction 

with minimal wear to the splitter body. A large void area located vertically 

above the feedline discharge elevation (in effect, a second recess) shown in 

Figure 7 .3 was the key to wear prevention. This area packed with solid 

material and thus prevented wear to the upper splitter body. Therefore, the 

solids can be turned internally with minimal wear of the splitter body, instead 

of an external turning section where wear has already proven to be a 

significant problem. The vertical directed exit feedlines also simplify the 

splitter downstream piping system. Recommendations for the splitter down­

stream piping system will be discussed in both the TVA compartment D and 

recycle feedline splitters design sections. 

The size and operating test parameters of the UT 1:3 splitter were the 

next considerations in the design. The operating capabilities of the UT facility 

restricted the inlet and exit feedline sizes as well as the size of the splitter 

design. In the TVA Pilot Plant, the compartments A-D splitter inlet pipe size 

was 3 inch diameter schedule 80. The three exit splitter f eedlines were 2 inch 

diameter schedule 80. The inlet pipe solids mass fiow rate was around 4140 
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pounds per hour (lb/hr) with a transport air supply of 3 00 cubic feet per minute 

(cfm). With equal split of the entering flow, the exit feedlines handle a solids 

flow rate of 1380 lb/hr and a corresponding air flow rate of 1 00 cfm. The UT · 

facility could not provide either the solids mass flow rate or the air flow rate 

used at the TVA Pilot Plant. Consequently, a scaledowned splitter was 

designed. 

As discussed in the turning section wear testing, (Chapter 5 ), two of the 

most influencing operating parameters on wear rate were the transport 

velocity and the solids to air mass ratio of the feed system. In order to obtain 

similar wear rate conditions in the UT 1: 3 PVC splitter testing, it was decided 

to maintain the transport velocity and solids to air mass ratio used at the TVA 

Pilot Plant. 

Several combinations of the UT 1: 3 PVC splitter inlet and exit feedlines 

were studied, with one set best providing a similar operating range that also 

complimented the UT facility. A UT 1:3 PVC splitter inlet size of 2 inch 

diameter schedule 80 and exit feedlines sizes of 1 1/4 inch diameter schedule 

80 were chosen. This combination of feedline sizes provided a very close 

comparison of transport velocity between the UT and TVA feed systems. The 

solids to air mass ratio nearly equaled that used at the TV A Pilot Plant. Table 

7.2 summarizes the operating parameters used in both the TVA and UT 

facilities and Table 7 .3 shows some appropriate scale factors. 

Once the splitter's inlet and exit f eedlines were sized, the main splitter 

body and internal recessed cone could be designed. The most . important design 

parameter was the now area progression through the splitter body • . The now 

area was defined as the area seen by the transport air and solids feeds. The 

flow area was a crucial parameter, since the transport velocity is inversely 
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Tab l e  7 .2 

Operati ng  Compa risons B etween TVA and UT Feed Systems 

TVA B eds A-0 

Upstream 

3 i n .  d iameter p i pe Sch . 80 
M (so l ids} = 41 40 l bm/h r 
A i r  F low Rate = 300 cfm 
Transport Vel oc ity = 1 09.0 ft/sec 

Downstream 

2 in .  d iameter p ipe  Sch . 80 
M (so l ids} = 1 380 l bm/h r 
Ai r F low Rate = 1 00 cfm 
Transport Vel ocity = 8 1 .3 ft/sec 

UT 1 :3  PVC Sp l itter 

of Sp l i tter 

2 i n .  d iameter p ipe  Sch . 80 
M (so l ids} = 1 863 l bm/hr 
Ai r Fl ow Rate = 1 3 5 cfm 
Transport Velocity = 1 09.7 ft/sec 

of Sp l i tter 

1 1 /4 i n .  d i ameter p ipe  Sch . 80 
M (so l ids} = 62 1 l bm/h r 
Ai r F low Rate = 45 cfm 
Transport Velocity = 84. 2  ft/sec 
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Tab le  7.3 

Sca l e  Factors B etween TV A and UT Feed Systems 

Feed System ·Pa rameter UT to TVA Feed System Rati o 

Sp l i tter I n l et P i pe Area 0.447 

Sp l itter Ex it P i pe Area 0.434 

So l i ds Mass F l ow Rate 0.450 

Vol umetri c A i r F low Rate 0.450 
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proportional to the now area. The strong influence of transport velocity to 

wear rate was clearly demonstrated in the turning section wear tests (Chapter 

5). In fact, the wear rate was approximately proportional to the cube of the 

transport velocity. Thus, a low transport velocity is desirable from a wear 

rate perspective. However, the transport velocity must be maintained safely 

above the solids feed saltation velocity. An estimation of the now area and 

corresponding transport velocity was conducted for the UT 1:3 PVC splitter 

design that resulted in an operating region that prevented saltation and 

minimized wear. The calculation of the flow areas for the UT 1:3 PVC splitter 

will be discussed later. 

There were several other considerations in the UT 1:3 splitter design. 

Reference Figure 7.4 as needed for definitions of distances and angles 

described below. The perpendicular distance between the main splitter body 

and the recessed cone, designated as the gap, needed to be approximately 

three times the maximum particle size to prevent pluggage. The vertical 

distance between the inlet of the splitter body and the recess opening plane of 

the internal cone, designated as recess height, needed to be approximately an 

inch; again, due to pluggage concerns. Another design consideration was the 

determination of the recess diameter of the internal cone. The solids now 

spreads outward upon entering the splitter body, designated as the spread 

angle. To prevent excessive wear of the internal cone, the recess diameter 

must be enlarged to include this effect. Prior experimentation has shown the 

spread angle to be approximately 10 degrees. Using a 10 degree spread angle, 

the recess diameter can be computed once the recess height was set. The 

outside diameter of the internal cone must accomodate three exit pipe 

penetrations and must be of sufficient diameter to prevent exit f eedline flange 
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interference. With the exit f eedline pipe and fiange size set, the minimum top 

diameter of the internal cone could be determined. A final design parameter 

to be considered was both the splitter main body and internal cone angles. 

Any reasonable internal cone angle could be used to meet the recess and 

outside diameter requirements that did not result in an excessively tall 

splitter. The splitter main body angle was chosen to equal the internal cone 

angle, thus providing parallel surfaces for the solids now path boundary. 

All the factors including the gap, recess height, main splitter body and 

internal cone angles, and the recess diameter effect the now area. An 

estimation of the now area through the splitter body was needed in order to 

compute a theoretical transport velocity. The now area was computed as 

follows (further detail in Appendix A): first, the solids now was taken to now 

in a parallel pa th to the walls of the main splitter body and recessed cone. 

Therefore, the now area at any given elevation would be the surface area of a 

frustum of a cone. The gap between the recessed cone and main splitter body 

served as the slant height for the furstum of the cone. Several combinations 

of design parameters were studied, and it was concluded that a 0.75 inch gap, 

a recess height of 1.5 inches, and a 40 degree cone angle for both the main 

splitter body and recessed cone would result in satisfactory now areas. A 

recess diameter of 2.5 inches was chosen along with a 10.6 degree spread 

angle. A sample calculation of the now area is shown in Appendix A for this 

combination of design parameters. 

Once the now areas had been computed, the transport velocity could 

readily be calculated. The transport velocity was computed based on an 

operating air now rate of 135 cfm. Figure 7.5  shows the now area and 

transport velocity for the UT 1:3 PVC splitter. As stated earlier, the transport 
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velocity was the key parameter in the operation of the feedline splitter. Low 

transport velocity is desirable to reduce wear, but the transport velocity must 

be maintained above the solids feed saltation velocity. 

The saltation velocity for limestone was estimated to be 40 ft/sec 

(reference Chapter 4). From Figure 7 .s, it . is seen that the theoretical 

transport velocity for the UT 1:3 PVC splitter drops below 20 ft/sec near the 

discharge exit plane. This is an extremely conservative estimate for two 

reasons. First, in estimating the transport velocity, 100 percent of the now 

area was used. In actual operation, portions of the annulus area between the 

exit ports will be partially packed with solid material, thus reducing the 

effective now area. Secondly, the solids transport has a large vertical 

momentum. The total vertical now dimension through the main splitter body 

is only 3.5 inches, thus the now will not have sufficient time to reach the 

uniform transport velocity predicted from the now area calculation. For 

these reasons, the occurrence of saltation during operation of the UT 1:3 PVC 

splitter was not a major concern. However, if saltation did occur, modifi­

cations to the splitter body would be made to reduce the now area. 

The assembled UT 1:3 PVC splitter is shown in Figure 7 .3, page 64. The 

remaining design drawings for the UT 1:3 splitter are shown in Figures 7 .6 

through 7 .8. Of interest is the manner of construction used to fabricate the 

UT 1:3 PVC splitter. A solid 15 inch diameter eyclinder of PVC one foot tall 

was not readily available and was costly. For this reason, it was decided to 

laminate 1/2 inch thick PVC sheets to form the main splitter body. The waste 

material from making the main splitter body was used to construct the 

recessed internal cone. 
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Experimental System 

Changes to the UT facility were conducted for the UT 1:3 PVC splitter 

testing program. Figure 7 .9 is a schematic representation of the UT facility 

during the splitter testing. Basically, the limestone was injected into the main 

f eedline piping system by a vibra screw metering feeder. The building air 

supply furnished the desired air to transport the limestone through the splitter 

and into three storage drums. The transport air was vented from the storage 

drums to the plexiglass bed and up to the baghouse and finally to atmosphere. 

The three splitter exit feedlines and the storage drums were painted blue, 

yellow, and red for clarity. 

The vertical section upstream of the splitter was 2 inch schedule 80 PVC 

pipe with a total length of 113 inches, corresponding to a length to diameter 

(L/D) ratio of 58. This L/D ratio equaled that currently used in compartments 

A-D at the TVA Pilot Plant. The three vertical exit f eedlines downstream of 

the splitter were 1 1/ 4 inch schedule 80, 70 inches long, or an L/D ratio of 55. 

Each f eedline were coupled to a 45 degree wye, which was coupled to a 1 1/2 

inch flex hose that emptied into one of the three storage drums. The flex hose 

lengths were varied from 40 to 108 inches, or an L/D ratio of 27 to 7 2, 

respectively. 

During the splitter testing, several operating parameters were 

monitored. The most important of these were the air flow rate in cubic feet 

per minute, the mass now rate in pounds per hour, and the total time of the 

test in minutes. The measurement of the air flow rate was described in 

Chapter 4. By weighing each storage drum and using the known test time, the 

actual mass flow rate for each test was computed. 
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Several pressure taps were included in the experimental set up. The 

pressure taps were located at the bottom and top of the vertical inlet feedline 

to the splitter, just downstream of the three exit f eedlines flange connections, 

in the storage drums, and in the plexiglass bed. These pressure tap locations 

allowed direct measurement of the following pressures: the line pressure at 

the top and bottom of the vertical inlet f eedline , the pressure just downstream 

of the splitter in any or all of the exit feedlines, the storage drum pressure, 

and the plexiglass bed pressure. The following pressure drops could be 

measured: the vertical inlet feedlines pressure drop, the splitter pressure drop 

based on any exit feedline, the exit feedline pressure drops, and the vent line 

pressure drops. The pressures and pressure drops were measured with a 

vertical bank of manometers. 

Test Results 

The original UT 1 :3 PVC feedline splitter had a natural dark grey color. 

Before the splitter testing began, the inside of the main splitter body, the 

recessed internal cone, and the · splitter top were painted with a bright color. 

This provided a means for observing initial wear areas in a very short 

opera ting time. A bright orange color paint was chosen to provide a high 

contrast from the dark gray PVC material. Based on painted turning section 

test results, wear areas were noticable after 5 minutes of testing. 

The purpose of the first test performed on the UT 1 :3 PVC splitter was to 

establish that the splitter would function and to disclose initial wear areas in 

the splitter body. The test duration was 4 minutes, with a mass fiow rate of 

nearly 3 400 lb/hr and an air fiow rate of 1 50 cfm, corresponding to a solids to 

air mass ratio of 4. 7. The results of the test were quite revealing and 
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promising. The only area of wear noticeable was a small ring located on the 

inside of the main splitter body. This wear area was located at an elevation 

just below the recess height. The wear resulted from the rebounding of 

limestone particles after impacting trapped particles in the recess. It was also 

noticed that the base of the recess had worn. How ever, this wear was not 

representataive of normal operating conditions. Before the acutal test 

started, the feed system was checked for air leaks using air now rates up to 

200 cfm. During these air leak tests, stray limestone particl�s were entrained 

in the transport air. There were not sufficient limestone particles to pack the 

recess area, and consequently, the stray limestone particles wore the base of 

the recess. Before continuation of testing, the recess area, and only the 

recess area, was repainted to prove or disprove this theory. 

· After completion of the first test, the three storage drums were weighed 

to determine the split equality and the mass now rate. The split equality is 

expressed as a percentage computed in the following manner. The combined 

weight of the three storage drums was calculated, and an average weight was 

computed. The split equality for any one of the three exit f eedlines was the 

difference in weight of limestone in the respective storage drum from the 

average weight, divided by the average weight. For the first 4 minute test, 

the split equality ranged from +1.3 percent to -1.0 percent. 

The remainder of the UT 1:3 splitter tests were approximately 20 

minutes in length and a total of 10 hours of testing was logged. There were 

two primary objectives in the remainder of the splitter testing. First, a 

periodic observance of the splitter wear was made. Secondly, the split 

equality was computed. Also of interest was the effect of varying feedline 

lengths on split equality. The change of feedline lengths was made by varying 
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the lengths of the nex hose that coupled the 45 degree wyes to the storage 

drums. 

The splitter was disassembled periodically to observe the progress of 

wear. Pictures of the splitter are shown in Figures 7 .10, 7 .ll and 7 .1 2 ,  after 

0.4 , 2 and 10 hours of testing, respectively. The operating parameters for the 

majority of testing were solid mass now rates ranging from 1900 to 2000 lb/hr 

and air now rates of 135 cfm. These operating conditions correspond to solids 

to air mass ratios of 2.97 to 3.1 2 , respectively. Exceptions to these operating 

conditions will be noted where applicable. After 0.4 hours of testing, Figure 

7 .10, the small ring of wear evident from the first 4 minute test had 

approximately doubled in size. A very small area of wear was also present 

around the internal rim of the recess. Surprisingly, no wear areas were 

present along the outside of the internal cone. Evidently, a relatively stagnant 

boundary layer of limestone was present along the outside of the internal cone. 

The most active region, and therefore the highest wear area, was located on 

the inside of the main splitter body in a region surrounding the recess height 

elevation. Again, this wear area resulted from solid particles rebounding off 

packed solid material in the recess. It was notable that the base of the recess 

had not been worn, thus providing proof that the wear of the base of the recess 

from the first 4 minute test could be ignored. 

After 2 hours of testing, Figure 7 .ll, the ring of wear had more than 

doubled in size and patches of wear extending outward from the ring were 

noticeable. The orientation of the patches correspond to . the exit feedlines 

orientation. Another area of wear was present along the inside lip of the 

recess. The base of the recess showed that wear had begun due to the 

numerous test starts and stops. The only other sign of wear was present along 
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FIGURE 7. 1 0  
UT 1 :3 PVC SPLITTER WEAR AFTER 0.4 HOURS TEST TIME 
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FIGURE 7. 1 1  

UT 1 :3 PVC SPLITTER WEAR AFTER 2 HOURS TEST TIME 
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FIGURE 7. 1 2  

UT 1 :3 PVC SPLITTER WEAR AFTER 1 0  HOURS TEST TIME 
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the rim of the exit feedlines. Again, no wear was present along the outside of 

the internal cone. It should be emphasized that the wear present was limited 

to paint wear only. No wear of PVC material had occurred. 

After a total of 4 hours of testing, the ring of wear on the inside of the 

main splitter body had grown in size. The patches extending from the ring 

were more pronounced. The wear on the inside rim of the recess had 

progressed. The base of the recess had completely worn due to the numerous 

test starts and stops except at the outside edge. The wear of the rims of the 

exit feedlines was continuing and wear was also noticeable along the walls of 

the three exit holes of the internal cone. For the first time, a small area of 

wear was present on the outside surface of the internal cone. This wear was 

limited to a small line located approximately an inch below the elevation of 

the exit feedlines. Again, no wear of PVC material had occurred. 

Figure 7 .12 shows the splitter wear results after 10 hours. The wear on 

the inside of the main splitter body had progressed. Worn patches extending 

from this region were present and were oriented in the same configuration as 

the exit feedlines. Wear on the inside walls of the recess was nearly complete, 

and wear on the outside surface of the internal cone had proceeded. 

From Figure 7.12 it can be seen that no wear had occurred on the top 

plate nor on the outside surface of the internal cone located vertically above 

the feedline exits. The reason for the absence of wear in this area was due to 

solids packing, as described earlier. This stagnant area in the UT 1:3 PVC 

splitter design was unneccessarily large. A reduction in the size of the 

stagnant region would reduce the possibility of pluggage, with no reduction in 

wear resistance. 
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The most significant result from the 10 hours of testing was that the 

wear was limited to paint wear only. No wear of PVC material had occurred. 

In comparison, long radius PVC elbows of 3/16 inch wall thickness wore to 

failure in as little as 5 hours. The 45 degree PVC wye turning section tests 

showed a wall thickness reduction of around 10 percent in a total of 10 hours of 

testing. · From these test comparisons, it can be concluded that the new 

designed f eedline splitter resulted in a splitter that was very resistant to wear. 

As previously mentioned, the split equality was also of primary 

importance to the successful operation of a feedline splitter. Feedline lengths 

were varied to determine the effect of different feedline lengths on split 

equality. 

Several combinations of feedline lengths were tested and the results are 

shown in Figure 7 .13 as a plot of split equality in percent versus feedline length 

difference from the average length in percent. The split equality was 

computed in the exact manner as described for the first 4 minute test. The 

feedline length difference percentage was calculated in the following way. 

The combined length of all three downstream splitter feedlines was computed, 

and an average length was calculated. The feedline length difference 

percentage for any of the three exit feedlines was the difference in length of 

the respective feedline from the average length, divided by the average 

length. As Figure 7.13 shows, the feedline length difference percentage was 

tested over a range from -13 to +25.4 percent. With equal feedline lengths, the 

split equality ranged from approximately +5 to -4 percent, well within the 

acceptable .:!: 10 percent criteria. In fact, only one test fell outside of the .:!: 10 

percent range. This occurred with one exit feedline length difference 

percentage equalling 25.4 percent, and with the other two exit feedline length 
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difference percentages just above -13 percent. 
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For this particular 

combination, the split accuracy ranged from +9.4 percent to -14.1 percent. 

Table 7 .4 summarizes the operating parameters and test results used to 

construct Figure 7 .13. An average split equality was calculated for each 

feedline length difference percentage from the data in Table 7 .4. A least 

squares curve fit was conducted from these average values and both the 

average values and curve are shown on Figure 7 .13. The curve fit equation is 

linear over the range of values tested and is given below in an expression of 

percent split equality (S.E.) as a function of feedline length difference 

percentage (F .L.) 

�S.E. = -0.2806 X �F .L. + 0.2228 7.1 

Another approach to estimate the split equality was conducted based on 

a multiple parallel now piping system (29]. For a parallel now case, the head 

loss is the same in each pipe and the total flow is the sum of the individual 

nows. The head loss can be written for each pipe in terms of the Darcy 

friction factor. Assuming the friction factor is the same for each pipe leads 

to simplification in the determination of the split equality. By substituting the 

velocity from the head loss equation into the total flow equation yields the 

following result for the split equality. 
1 1 / 2  �S . E . = ( �F . L .  + 1 >  - 1 7 . 2  

Using equation 7 .2 results in the curve shown in Figure 7 .13 for 

comparison. The slope of the curve is steeper than the average data curve 

shown on Figure 7 .13. This could be due to lack of sufficient experimental 

data and from the error introduced by assuming equal friction factors for each 

pipe. Another limiting assumption to this approach is that it is based on an air 



Test 
Test Du ra-
No. tion 

I (M i n .) 
I 

20 20 
2 1  20 
22 20 
23 20 
24 20 
25  

I 
20 

I 

26 25 
27 20 
28 20 
29 I 20 

I 

30 20 
3 1  I 1 5  

Tab l e 7 .4 

UT PVC 1 : 3  Sp l itter Test Summary 

Lime-
stone 
Mass 
Fl ow 
Rate 

( l b/h r) 

2004 
1 952 
1 976 
1 962 
1 940 
1 9 1 7  
1 4 1 4  
1 905  
1 967 
1 949 
1 989 
25 1 4  

- . 

B l ue 

Li ne  
Diff .  Mass 
from Spl it 
Mean . Equa l .  

% % 

0 -2 . 1  
0 -3 .6 

- 1 2 .7 -2 .3 
- 1 2 .7 -3 .4 
- 1 2 .7 3 . 5  
25 .4 - 1 4. 1  
0 -0 .2 

-6 .8 -2.2 
-6 .8 -2 .3 
3 .9 -4.8 

; 

3 .9 -5 .0 
0 -2 .9 

Feed l i n e Ex its 

Yel l ow 

Li ne 
Diff. Mass 
from Sp l it 
Mean Equa l  

% % 

0 4.9 
0 5 .2  

- 1 2 .7 8.0 
: - 1 2 .7 9 .9 

25 .4 -2 .6 
- 1 2 .7 4.7 

0 - 1 .7 
-6.8 6 . 3  
-6 .8 3 .0 
3 .9 2 .3  
3 .9 -0 . 5  
0 3 . 1 
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Red 

Li ne 
Diff .  Mass 
from Spl it 
Mean Equal  

% % 

0 -2.8 
0 - 1 . 5 

25 .4 -5 .7 

I 
25 .4 -6 .4 

• - 1 2 .7 -0 .9 
- 1 2 .7 i 9.4 

0 1 .9 
1 3 . 5  -4. 1 
1 3 . 5  -0 .7 
-7.8 2 . 5  
-7.8 5 . 5  
0 -0 .2 



90 

only now, a departure from the actual two phase air/solids mixture. However, 

Equation 7 .2 is simple in form and can be used for design purposes to estimate 

the split equality with reasonable confidence. 

Two tests were conducted at different solid mass now rates to 

determine if the split equality was sensitive to this parameter. An air now 

rate of 135 cfm was used in both tests. Solid mass now rates of approximately 

1400 lb/hr and 2500 lb/hr were tested, corresponding to solids to air mass 

ratios of 2.2 and 3.9, respectively. For these two tests, equal feedline lengths 

were used and the split equality ranged from +3.1 to -2.9 percent. It can be 

concluded from these tests that a moderate change in solid to air mass ratios 

have no adverse effect on splitter performance. 

A single test was conducted with one of three exit feedlines plugged. 

The feedline was plugged by inserting an end plug into a 45 degree wye 

downstream of the splitter. An air now rate of 135 cfm and a solids mass now 

rate of 1960 lb/hr were used, corresponding to a solids to air mass ratio of 3.0. 

A split equality was computed within ! 0.2 percent. This was the single best 

split equality achieved during the testing program indicating that a large 

increase in transport velocity had a favorable effect on split equality. The 

splitter exit transport velocity was increased from 84.2 ft/sec to 124.3 ft/sec 

(50 percent), since one of the three exit f eedlines was plugged. The transport 

velocity through the splitter body would also increase since more solid 

particles would pack around the plugged exit feedline, thus reducing the total 

flow area. However, the increase in transport velocity would accelerate the 

wear effects, and is therefore not recommended. 



91 

Also of interest are the magnitudes of pressure drops in the UT 1:3 PVC 

splitter feed system. The piping system and location of pressure taps were 

described in the Experimental System section. The pressure drops of the 

vertical inlet pipe, the splitter, and the exit feedlines versus solid mass fiow 

rates are compared in Figure 7.14. The operating air flow rate was 135 cfm 

and equal feedline lengths were used for the comparison. There were 

negligible differences in the three exit f eedline pressure drops, so no 

distinction was made in Figure 7.14. It is important to note that the splitter 

pressure drop was significantly lower than the three exit feedline pressure 

drops. It would be desirable for the splitter pressure drop to be significantly 

greater than the three exit feedline pressure drops. That way, any differences 

in the three exit feedline lengths would be negated by the large splitter 

pressure drop, resulting in good split equality. In the TVA Pilot Plant, feedline 

inserts just downstream of the splitters were originally used to produce large 

pressure drops. However, the inserts were wom quite extensively and 

pluggage problems centered in the feedline inserts were experienced. For 

these reasons, the inserts were removed. Since the splitter pressure drop is 

significantly lower than the exit feedline pressure drops, equal length feedlines 

should be used to the maximum extent possible to obtain the best split equality 

possible for the feed system. 

Conclusions 

The UT 1:3 PVC splitter design has shown great potential as a replace­

m ent of the existing f eedline splitters used at the TV A Pilot Plant. During the 

splitter testing program, there were no occurrences of either pluggage or 

saltation. The wear resistance capability of the UT 1:3 PVC splitter shows 
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significant promise. After a total of 10 hours of testing and nearly 10 tons of 

transported material, no detectable PVC material wear has occurred. The 

wear present has been limited to paint wear only. In comparison to other wear 

characteristic testing, this was a vast improvement. With equal exit feedline 

lengths, a split equality of : 5 percent can be expected. This lies well within 

the acceptable range of :!: 10 percent, quoted by TV A. The split equality has 

been shown to be a function of exit feedline lengths. Consequently, to insure 

the best split equality obtainable, the feed system should be designed with 

equal length exit feedlines to the maximum extent possible. The split equality 

was shown to be independent of solid to air mass ratios, at least within a range 

of 2 to 4 that was tested. 

Overall, the UT 1:3 PVC splitter has shown excellent performance. A 

similarly designed splitter should be considered as a strong candidate to any 

pneumatically conveyed solids system that utilizes feedline splitters. This is 

especially true if a high abrasive solids medium is used. 

TV A Compartments A-D Feedline Splitter Design 

Introduction 

Based on the successful testing of the UT 1:3 PVC splitter, TV A 

requested a study be undertaken to design a similar splitter for the compart­

ments A-D feed systems at the 20 MW Pilot Plant. After installation of the 

new splitter design in the Pilot Plant, the performance of the splitter could be 

monitored and compared to the performance characteristics of the splitters 

currently used. In this way, the feasibility of using the new splitter design for 

future AFBC facilities could be accurately determined. The piping system 

recommendations were made for the compartment D feed system, as it was 
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the most likely candidate for installation of the new designed splitter and 

piping system. 

Base Design 

As with the UT 1:3 PVC splitter the two basic design features for the 

compartments A-D splitter design are the internal recessed cone and the 

vertical directed exit feedlines. The recessed cone greatly improves the wear 

resistance of the splitter and the vertical directed exits reduce wear and 

greatly simplify the downstream piping system. With these two features as · 

the basis of the design, the determining factors for the 1 :3 splitter design were 

the splitter's inlet and exit feedline sizes. The current 3 inch schedule 80 

feedline size upstream of the splitter in compartments A-D was taken as the 

fixed inlet size. The feedline size downstream of the splitter is currently 2 

inch schedule 80. The outside diameter of the 2 inch pipe will be taken as the 

fixed exit size. A determination of the wall thickness for the exit feedlines 

will be made based on experimental results from the turning section wear 

characteristic testing. A change of wall thickness of the exit feedlines has no 

effect on the design of the 1:3 splitter since the outside diameter of the pipe is 

independent of wall thickness. The controlling factors in determining the 

minimum outside diameter of the recessed cone were the exit feedline and 

corresponding flange sizes. The prevention of exit feedline flange interfe­

rence sets the minimum outside diameter of the recessed cone. Using 

standard 2 inch 150 pound flanges resulted in an outside diameter of nearly 13 

inches for the recessed cone. 

Once the inlet and exit feedline sizes were set, the most important 

design parameter was the flow area through the splitter body. The same 
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procedure for calculation of the now area described in the UT 1:3 PVC splitter 

section was used. The main spitter body and recessed cone angles were taken 

as 40 degrees, the same cone angles used in the UT 1:3 PVC splitter design. 

Several combinations of recess height, recess diameter, and gap were studied. 

The now area and corresponding transport velocity through the splitter body 

were calculated for each combination of design parameters. The transport 

velocity was calculated based on an operating air now rate of 300 cfm. Of 

primary importance is the saltation velocity of the solids feed. Based on an 

independent study [30], the saltation velocity of a mixture of l/4 inch X O inch 

top size coal and 1/8 inch X O inch limestone is approximately 55 ft/sec. The 

criteria used to determine acceptable now areas and corresponding transport 

velocities in the design was based on a comparison of these parameters to the 

UT 1:3 PVC splitter design. No saltation occurred during the operation of the 

UT 1:3 PVC splitter. The saltation velocity for the limestone was computed to 

be 40 ft/sec (reference Chapter 4). Thus, the coal/limestone mixture saltation 

velocity is 38 percent greater than the limestone used at UT. Therefore, if 

the transport velocity is maintained 38 percent above the transport velocity 

for the UT model, saltation should not occur. Based on this criteria, a gap of 

O. 76 inches (over three times the maximum particle size), a recess height of 

1.69 inches, and a rec�ss diameter of 3.58 inches was chosen to produce 

satisfactory now areas. 

An added design feature to the compartments A-D splitter design was 

the addition of a 1/4 inch shim plate. The base design included the 1/4 inch 

shim plate to the splitter assembly. The purpose of the shim plate was to add 

nexibility in changing the now area by the installation or removal of varying 

thickness shim plates. In effect, the recessed cone can be translated 
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vertically in relation to the main splitter body. Consequently, the gap size, 

and hence the now area through the splitter body can be altered if needed. 

The now areas and corresponding transport velocities are shown in Figures 7.15 

and 7.16, respectively. The base design with a 1/4 inch shim plate is shown in 

comparison to the cases with no shim plate and with a 1/2 inch shim plate. The 

UT 1:3 PVC splitter transport velocities shown in Figure 7 .5, page 72, should 

be referenced for comparison to the base design shown in Figure 7.16. The 

lowest transport velocity for the compartments A-D 1:3 splitter design was 

increased by nearly 56 percent compared to the UT 1:3 PVC splitter. The 56 

percent comparative increase in transport velocity should more than offset the 

38 percent comparative increase in saltation velocity. Consequently, saltation 

should not occur. But if saltation should occur with the base design, the 

existing 1/ 4 inch shim can easily be replaced with a thicker (l/2 inch) shim 

plate which would increase the transport velocity by nearly 30 percent. If 

saltation still occurs, a thicker shim plate should be installed. If on the other 

hand, saltation does not occur with the base design, the removal of the shim 

plate should be considered to reduce the transport velocity. A reduction in 

transport velocity of around 20 percent would result, along with a significant 

reduction in the splitter wear rate. With no shim, the gap size would be 0.925 

inches, allowing larger particles to pass through the splitter body. 

The design drawings for the compartments A-D 1:3 splitter are shown in 

Figures 7.17 through 7.22. The assembly drawing is shown in Figure 7.17. The 

splitter is basically composed of four main parts: the main splitter body, the 

internal recessed cone, the top plate, and the shim plate. These parts are 

detailed in Figures 7 .18 through 7 .21, respectively. The exit feedlines and 

fianges which are welded to the top plate are detailed in Figure 7 .22. One 
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significant change from the UT 1:3 PVC splitter design was the reduction of 

the large void area located at the splitter top. The results of the UT 1:3 PVC 

splitter testing showed that the void area was unnecessarily large. A 

reduction in the void area reduces the possibility of pluggage with no reduction 

in the wear resistance. The spread angle for the base design was also 

increased from 10.6 to ll.4 degrees. The increase was not due to any results 

from the UT 1:3 PVC splitter testing, but for the following reason. If the V 4 

inch shim plate is removed from the base design, the recess height would be 

increased by 1/ 4 inch, thus reducing the spread angle. To insure a 10 degree 

spread angle for this case, the spread angle was increased to ll.4 degrees in the 

base design. 

The design of the compartments A-D 1:3 splitter use 2 inch schedule 80 

exit f eedlines. Based on limited PVC long radius bend wear rate data 

presented in Figure 5.3, page 25, this f eedline wall thickness size would 

provide the longest life for 2 inch exit lines. Three feedline sizes were 

compared: 2 inch schedule 40, 80, and 160. The 2 inch schedule 80 feedline 

size was used as the base size for percentage comparisons. Table 7.5 shows 

the area, wall thickness, velocity based on an air fiow rate of 100 cfm, and the 

wear rate from Figure 5.3, page 25, for each f eedline size. A percentage 

comparison of velocity, wear rate, and wall thickness is shown in Table 7 .6. 

From Table 7 .6, a change to a 2 inch schedule 40 f eedline size would reduce 

the wall thickness by 29.4 percent, but only decrease the wear rate by 26 

percent. From this comparison, the 2 inch schedule 40 feedline size would 

wear to failure in a quicker time than the 2 inch schedule 80 feedline size. 

The 2 inch schedule 160 feedline size would increase the wall thickness by 57.8 

percent, but the resulting increase in transport velocity would increase the 



Tab l e  7 . 5  

Feed l i n e  S i ze  Wear Comparisons 

Feedl i ne Transport Wal l  Th ickness Schedule (a l l  2 F low Area ( i n .) ( in . )  Velocity @ 1 00 
inch d iameter) cf m ( ft/sec) 

40 3 . 355  0. 1 54 7 1 . 53 

80 2 .953 0.2 1 8  8 1 .27 

1 60 2 .235 0 .344 1 07.38 

Tab l e  7 .6 

Feed f i n e  S ize Wear Percentage Comparisons 1 

Feedl ine Schedule 

40 
80 

1 60 

Velocity 
(% ) 

- 1 2 .0 

+ 32. 1 

Wear Rate 
(% ) 

-26.0 

+ 95.0 

1 Based on 2 i n ch d i ameter schedu l e  80 s ize 
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PVC Turn ing 
Sect ion Wear 

Test Resu lts (Ref. 
F ig .  5.3) Wear 
Rate ( i n/hr. x 

1 00) 

3 .3 1 1 
4.469 
8.7 1 7  

Wal l  Thickness 
(% ) 

-29.4 

+ 57.8 
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wear rate by around 95 percent. Although the wall thickness has been 

increased, the 2 inch schedule 160 feedline would actually wear to failure in a 

quicker time period than a 2 inch schedule 80 feedline size. Based on the 

limited wear rate results from PVC turning section wear testing, the 2 inch 

schedule 80 feedline size is recommended. If more than one bed A-D feedline 

splitter is used at some point in time, it is recommended that a different 

schedule thickness pipe be installed (preferably 2 inch schedule 80 and/or 160) 

to determine which size would provide longer life. 

Recommendations 

One of the main design features included in the compartments A-D 

design were the vertical directed exit feedlines. This design feature resulted 

in a simpler downstream piping system and increased the wear resistance of 

the feed system. The basis concept of the effort was to design feed piping 

systems that consist of straight piping sections and controlled turning sections 

where the solids would wear upon themselves. This design philosophy would 

produce planar pipe paths and would elimate the numerous bends currently 

used at the pilot plant downstream of the feed splittel." assemblies. The feed 

piping system recommendations that follow are presented for the compart­

ment D feed system only since it was the most likely candidate for installation 

of the new splitter design and corresponding feed piping system. However, the 

feed piping recommendations can be directly extended to the other 

compartments as well. 

In order to obtain the simplest pipe paths, the plan view location of the 

compartment D splitter assembly should be moved from the current in-line 

orientation with the feed ports (geometric center of the bed area) to an off-
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line orientation. Figure 7 .23 shows the recommended piping arrangement. In 

the proposed feed system, 45 degree wye turning sections have replaced the 

numerous ceramic lined bends in the existing system. Each f�edline down­

stream of the splitter assembly would require two 45 degree wyes. The first 

45 degree wye is oriented to direct the now through a 45 degree traverse 

straight pipe to immediately below the feed port. The second 45 degree wye 

redirects the now vertically through another straight pipe to the feed nozzle. 

The proposed location and orientation of the splitter shown in Figure 

7 .23 results in near equal exit feedline lengths. The total length of each 

feedline was calculated and the percent feedline length difference from the 

mean length was computed in the manner described in the UT 1:3 PVC splitter 

section. The percent feedline length differences for the proposed compart­

ment D feed piping system are summarized in Figure 7 .23. From the split 

equality results for the UT 1:3 PVC splitter testing presented in Figure 7.13, 

page 87, the split equality for the proposed compartment D 1:3 splitter and 

feed piping system is expected to be within :!: 7 percent. This split equality 

range is within the acceptable :!: 10 percent range currently used by TV A. 

The proposed compartment D feedline system for a single feedline is 

shown in Figure 7.24. Flanged connections, both upstream and downstream of 

the 45 degree wyes are recommended for ease of alignment or removal. Short 

threaded pipe sections (or welded connections) are recommended for the 

connection of the 45 degree wyes to the fianges. The threaded pipe sections 

would allow turning of the 45 degree wyes to assure proper orientation and 

also simplify · the fiange bolt alignments. The threaded pipe section down­

stream of the 45 degree wyes need to be of minimum length required to 

provide clearance for removal of the end plug of the 45 degree wyes. The 45 
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degree wyes end plugs can be removed to clear any pluggages in either .the 45 

degree wyes or the straight piping sections. All other pipe to flange 

connections are welded, and extreme care must be maintained to prevent any 

misalignment. Any misalignment in any joint (welded or threaded), will 

produce very high localized wear areas that are preventable by insuring proper 

alignment. 

Flanged connections both upstream and downstream of the splitter are 

recommended. The upstream end includes a two foot flanged spool section 

with one end threaded (or welded in place). Once again, the flanges allow for 

ease of installation or removal. The threaded end spool section would provide 

flexibility in the splitter orientation and ease of flange both alignments. 

Conclusions 

The new compartments A-D 1:3 splitter design and recommended feed 

piping system improves the existing feed system currently used at TVA in 

several ways. First, and most importantly, the new 1:3 splitter design will 

greatly improve the wear resistance of the splitters currently used in the TVA 

Pilot Plant. The new 1:3 splitter can be expected to operate for a much 

longer time period before wear effects the splitter operation. Secondly, the 

vertical directed splitter exit feedlines have simplified the downstream piping 

system. The piping system consists of standard 45 degree wye turning sections 

with straight piping sections. The 45 degree wyes have replaced- the numerous 

ceramic lined bends in the existing system. Each exit f eedline will be 

standardized in the sense that only 45 degree wyes and straight piping sections 

will be used in each exit feedline, not the varied angled bends currently used. 

By monitoring the life of the 45 degree wye turning sections, an economic 
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comparison can be made to the ceramic lined bends currently used in the feed 

system. Last, the recommended feed piping system will have near equal 

feedline lengths. Based on the UT 1: 3 PVC splitter testing, the split equality 

can be expected to be within ! 7 percent, certainly acceptable under TVA's ! 

10 percent criteria. All of these factors combined should produce a superior 

feed system. 

TV A Recycle Feedline Splitter Design 

Introduction 

The original recycle system at the TV A 20 MW Pilot Plant utilized a 1: 3 

feedline splitter. With only three recycle feed ports to feed the bed, 

nonuniform distribution of the recycle material resulted. With recycle rates 

up to 60,000 lb/hr, the system requirement, nonuniform distribution becomes a 

significant factor. For this reason, TVA decided to increase the number of 

recycle feedlines and concluded that six recycle feedlines would alleviate the 

problem of non-uniform feed. Consequently, a new 1:6 recycle splitter was 

required for the new recycle feed system. Based on the successful testing of 

the UT 1: 3 PVC splitter, TVA in January 198 4  requested a study be undertaken 

to design a similar splitter to meet the requirements of the recycle feed 

system. The 1:6 recycle splitter design presented in this section was then 

fabricated by TVA for incorporation into the new recycle feed system. 

Recommendations were also given for the new recycle feed piping system. 

While not all of the feed piping recommendations were used by TV A, the basic 

design philosophy for the piping system was followed. The new 1:6 recycle 

splitter and feed system in the TVA Pilot Plant became operational M arch 2 2 ,  

1 984. 
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Base Design 

As with the compartments A-D 1:3 splitter design, the 1:6 recycle splitter 

is of entirely steel construction. The two basic design features of the 1:6 

recycle splitter were, once again, the internal recessed cone and the vertical 

directed exit feedl.ines. With these two features as the basis of the design, the 

determining factors of the 1:6 recycle splitter design were the splitter's inlet 

and exit feedl.ine sizes. The current 5 inch schedule 80 recycle feedl.ine 

upstream of the recycle splitter was taken as the fixed inlet size. The exit 

f eedl.ine sizes were specified by TVA to be 2 1/2 inch schedule 160. The 

controlling factors in determination of the splitter outside diameter were exit 

feedl.ine and corresponding fiange sizes. Using standard 2 1/2 inch 150 pound 

fianges (7 inch outside diameter) in a planar orientation would result in an 

excessively large (greater than 24 inch) splitter diameter. Therefore, the 

elevation height of the exit feedline flanges were staggered, resulting in a 

more compact (19 1/2 inch diameter) splitter. This design still allowed ample 

room for welding the exits into place during the initial fabrication of the top 

plate assembly. 

Once the inlet and exit feedline sizes were set, the essential design 

parameter was the now area through the splitter body. Again, the estimation 

of the now area was computed in the same manner as for the UT 1:3 PVC 

splitter. Once the now areas were calculated, the transport velocities could 

be computed. The saltation velocity of the char recycle feed material was not 

known, but was assumed to be approximately the same as for a coal/limestone 

mixture, 55 ft/sec. The criteria used to determine acceptable transport 

velocities was to compare the transport velocites of the 1:6 recycle splitter to 

the UT 1:3 PVC splitter. For this design, the transport velocities were held 
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above those for the UT 1 :3 PVC splitter. Consequently, the possibility of 

saltation is unlikely. 

Based on data received form TVA, three typical sets of splitter inlet 

conditions were chosen for the transport velocity calculations. Several 

combinations of recess height, recess diameter, and gap size were studied to 

determine ·satisfactory flow areas and corresponding transport velocities. It 

was concluded that a gap of I inch, a recess height of 2.16 inches, and a recess 

diameter of 5.66 inches would produce satisfactory flow areas and corres­

ponding transport velocities. The gap was increased to 1 inch because of the 

increase in the operating air now rate of the recycle system. 

A V 4 inch shim plate was also �ed in the base design of the 1 :6 recycle 

splitter to add flexibility in changing the gap size, and hence now area and 

corresponding transport velocity. The now areas for the 1 :6 recycle splitter 

are shown in Figure 7 .25. The flow areas for the base design (1 /4 inch shim) 

were compared to the now areas for the case of a 1 /2 inch shim and for the 

case of no shim. The transport velocities for the base design are shown in 

Figure 7 .26 for three typical sets of splitter inlet conditions. The lowest 

transport velocity was around 3 1  ft/sec., nearly double the low transport 

velocity in the UT 1:3 PVC splitter. Based on this comparison, the occurrence 

of saltation does not seem likely. If saltation does occur, the 1/4 inch shim 

should be replaced by a 1 /2 i�ch shim to increase the transport velocity. If 

saltation does not occur, the removal of the 1 /4 inch shim should be considered 

to reduce the transport velocity, and consequently reduce the wear rate of the 

splitter. A comparison of the transport velocities is shown in Figure 7 .27 for 

a 1 /2 inch shim, 1/4 inch shim, and for no shim. A single inlet condition was 

used for the comparison. A change to a 1 /2 inch shim will increase the 
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transport velocity by around 20 percent, while the removal of the 1/ 4 shim 

would reduce the transport velocity by around 15 percent. 

A change in recycle operating temperature also effects the transport 

velocity. Assuming the air mass fiow rate and air pressure remain constant, a 

decrease in operating temperature will reduce the air fiow rate due to an 

increase in air density. A recycle temperature of 600 degrees fahrenheit was 

used to construct Figure 7 .26.  Figure 7 .28 show the transport velocities for 

the same operating conditions except the recycle air temperature was reduced 

to 300 degrees fahrenheit. A reduction in transport velocity of around 28 

. percent resulted. This transport velocity was still 40 percent greater than the 

low velocity for the UT 1:3 PVC splitter. 

The design drawings for the 1:6 recycle splitter are presented in Figures 

7 .29 through 7 .34. The assembled 1:6 recycle splitter is shown in Figure 7 .29. 

The splitter is composed of four main parts; the main body, the recessed 

internal cone, the splitter top, and the 1/4 inch shim plate. These parts ar� 

detailed in Figures 7 .30 through 7.33, respectively. The splitter exit feedlines 

and flange assemblies that are welded to the splitter top are shown in Figure 

7.34. 

Recycle Feed Nozzles 

The choice of 2 1/2 inch schedule 160 feedline splitter exits necessitated 

the design of an appropriate sized floating valve cap/cage feeder. The 

development of a new cage was discussed in Chapter 6. The principle design 

features of the cage were as follows: a center-line to center-line post 

diameter of 4.00 inches, a cap travel of 3/4 inch, a knife edge used for the 

post rests to prevent cap fusion, a 5/8 inch diameter post to provide added 
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post life, and a reinforcing cross top to prevent post bending and possible loss 

of a floating valve cap. The construction of the cage was described in Chapter 

6. 

From the valve cap wear characteristic testing, the wear rate of the 

valve caps was shown to be a strong function of recess depth. The wear tests 

conducted simulated operating conditions in compartments A-D at the Pilot 

Plant. A recess depth of 0.43 inches was sho�n to have far superior wear 

resistance compared to a recess depth of 0.25 inches. Since the recycle 

feedline solids velocity is expected to be comparable to the feedline solids 

velocity in compartments A-D, a recess depth for the recycle valve cap was 

chosen to be 0.43 inches. A stellite surf acing is also recommended to provide 

additional wear resistance. It is expected that the recycle floating valve caps 

will operate in a fully open position with solids and transport air based on 

typical operating conditions given by TVA. The proposed recycle floating cap 

and cage are shown in Figures 7 .35 and 7 .36.  

Recommendations 

As with both the UT 1:3 PVC splitter and the TVA 1:3 compartments A-D 

splitter, the vertical directed exit feedlines result in a simpler downstream 

piping system. The proposed recycle feed system consist of straight piping 

sections and controlled turning sections where the solids would wear upon 

themselves. This design philosophy uses 45 degree wyes in place of the varied 

angled ceramic bends originally used in the recycle system at the Pilot Plant. 

The proposed recycle feed system for a single f eedline is shown in Figure 7 .37. 

The recycle f eedline system concept proposed is identical to the f eedline 

system proposed for the compartment D feed system, which was described in 
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detail in ·the previous section. The main differences between the two 

proposed systems are the size and number of the exit feedlines and related 

hardware. The proposed recycle feedline system was followed by TVA with 

the following exceptions. The threaded straight pipe sections both upstream 

and downstream of the 45 degree wyes, and upstream of the recycle splitter 

were not used. All pipe to fiange connections were welded. The threaded pipe 

sections were included in the proposed feed system to allow for easy turning 

section and fiange bolt alignments. But as long as proper alignment is 

maintained with the welded joints, there will be no difference in the feed 

system design concepts or performance. 

In order to obtain simple pipe paths and near equal lengthed exit 

feedlines, the recycle splitter would be relocated. The ideal location is the 

approximate geometric center of the six recycle exit ports. However, the 

relocation of the recycle splitter would have been an extremely difficult task, 

and therefore, the original 1:3 recycle splitter location was used for the new 

1:6 recycle splitter and corresponding feed system. Since each feedl.ine travels 

around 18.5 feet vertically (from splitter elevation to center-line elevation of 

the distributor plate), these are only small differences in total exit feedline 

lengths whether using the current or ideal splitter location. The total length 

of each feedl.ine was computed for both the current and ideal recycle splitter 

locations. The results are summarized in Figure 7 .38. The f eedline lengths 

for both the current and ideal locations were compared as a percent difference 

from the average length. The maximum percent difference for the current 1:6 

recycle splitter location is 10. 7 percent, compared to 2.4 percent for the ideal 

splitter location. The ideal splitter location is certainly an improvement, but 

a more useful comparison can be made using the results of the UT 1:3 PVC 
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splitter testing. One set of feedline lengths tested did have maximum percent 

differences equal to ll.7 percent, comparable to the 10.7 maximum percent 

difference for the current 1:6 recycle splitter location. Two tests were 

conducted with this set of f eedline lengths, corresponding to test numbers 29 

and 30 shown in Table 7 .4, page 89. The split equality for these two tests 

ranged from +5.5 to -5.0 percent, well within the current ! 10 percent criteria 

used by TVA. Therefore, even though the current location is not the optimum 

location for the 1:6 recycle splitter, the split equality at the current location 

should fall within the ! 10 percent criteria used by TV A. 

The 1:6 recycle splitter was painted with a high temperature resistant 

paint prior to installation in the new recycle feed system at the TVA Pilot 

Plant. By painting, a wear study can be conducted after 100 to 200 hours of 

operation by simply removing and disassembling the splitter. An inspection 

could provide information for any improvements needed in the 1:6 recycle 

splitter design. 

Conclusions 

TV A's immediate need of a 1:6 recycle splitter provided an excellent 

opportunity to test the concepts of the new 1:6 recycle splitter design. The 

two principle design features of the design are the internal recessed cone and 

the vertical exit feedlines. By testing the design in an operating AFBC 

facility, the actual performance and wear characteristics of the new splitter 

design can be determined. In addition, a splitter downstream feed system that 

consists of only 45 degree wye turning sections and straight pipe sections could 

be tested. In this way, the future potential of both the new splitter design and 

corresponding feed piping system can be determined. 
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It should be emphasized that the choice of the new 1:6 recycle splitter 

location was not the optimum location. If this type of feedline splitter is used 

in the future for new AFBC facilities, the splitter should be located near the 

geometric center of the feed ports. This location would best equalize exit 

feedline lengths, thus optimizing the split equality obtainable for the feed 

system. 
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CHAPTER 8 

CONCLUSIONS AND RECOM M ENDATIONS 

The wear testing of PVC constructed components with a limestone feed 

stock has proven to be a successful means for assessing new wear resistant 

designs in a short time period. The wear testing of long radius 2 inch diameter 

PVC bends has shown there exists a strong relationship between the transport 

velocity and solids mass now rate to the wear rate of the bends. In · fact, the 

wear rate of the bends was found to be approximately proportional to the cube 

of the transport velocity for a given solids mass now rate of 2 740 lb/hr and 

transport velocities ranging from 58 to 96 ft/sec. A single wear test was 

conducted on a 2 inch diameter PVC bend at a solids mass now rate of 3 420 

lbm/hr. From this test result, it was found that a 20 percent reduction in the 

solids to air mass ratio reduced the wear rate by 70 percent, about one half 

the effect of a comparable change in transport velocity. 

A standard 45 degree wye PVC turning section was also subjected to long 

wear testing. This test result showed that the 45 degree wye was a high wear 

resistant design. In fact, a 50 fold increase in the life of the wye compared to 

a long radius bend is expected. 

A preliminary testing program was conducted to determine the pressure 

drop characteristics of horizontal, upward 45 degree, and vertical solid tran&­

port through a PVC pipe (L/D of 40). In general, it was found that the pressure 

drop magnitude categorized in descending order were for vertical, 45 degree, 

and horizontal solid transport. The pressure drops that were experimentally 

measured included an acceleration of the solids, since the solids would most 
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certainly be accelerated after passing through a 90 degree tee or 45 degree 

wye. Unfortunately, there was no convenient means for determining the 

velocity of the particles; hence, a quantitative estimate of the pressure drop 

due to acceleration of the solids could not be made. It is recommended that 

for future testing, a means for measuring the solid particle velocity be 

implemented into the test program to determine this term. Also, testing 

should be made far downstream of any turning section to determine the 

pressure drop characteristics without solid acceleration. 

The pressure drop of the 45 degree wye was found to be nearly 3 times 

that of a long radius bend. The pressure drops of a long radius bend and 45 

degree wye were found to correspond to an equivalent f eedline L/D of 5 and 

15, respectively. It should be emphasized that the increased wear resistance of 

the 45 degree bend far outweighs the additional pumping cost. 

Two PVC floating valve caps were subjected to similar wear tests to 

determine the effect of recess depth to the wear of the floating caps. It was 

found that a recess depth of 0.43 inches improved the wear resistance by a 

factor of 6 to 7 compared to a recess depth of 0.25 inches. Thus, a floating 

valve cap with a recess depth of 0.43 inches is strongly recommended. 

A design of a new feedline splitter was also conducted. A new 1:3 PVC 

splitter design was constructed and tested to determine the splitter's wear 

characteristics and split equality. The testing showed the new splitter design 

was very resistant to wear. In fact, there was no discernable wear of any PVC 

material after 10 hours of testing. In comparison, long radius PVC bends wore 

to f allure in as little as 5 hours. 

The split equality testing showed there was a definite relationship 

between the splitter's exit feedline lengths and the split equality. A 
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theoretical approach for predicting the split equality was conducted based on a 

multiple parallel flow system. This technique reasonably matched the 

experimental data and thus can be used for design purposes to estimate the 

split equality. It is recommended that additional testing be conducted at 

different operating conditions to determine the general validity of this 

approach. Testing showed that for equal exit feedline lengths, the split 

equality can be expected to be within � 5 percent. 

Two new steel f eedline splitters were designed for replacement of the 

feedline splitters currently used at the TVA Pilot Plant. The first design was a 

1:3 feedline splitter to be used in compartments A-D. The second design was a 

1:6 f eedl.ine splitter that was installed in the modified recycle system at the 

TVA Pilot Plant. After 486 hours of operation, the new 1:6 recycle splitter has 

shown great promise. The 1:6 recycle splitter has not plugged, and more 

significantly, has not shown any observable signs of wear. 
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APPENDIX A 

SPLITTER FLOW AREA COM PUTATION PROCEDURE 

The now area progression through the splitter body is an import ant 

design parameter. Since the transport velocity is inversely proportional to the 

now area, the transport velocity through the splitter body is dictated by the 

now area. A low transport velocity is desirable to reduce the wear rate of the 

splitter, but the transport velocity through the splitter body must be 

maintained safely above the saltation velocity of the solids medium. Thus, a 

means for calculation of the now area was crucial to the successful operation 

of the splitter. 

The solids now was taken to now in a parallel path to the walls of the 

main splitter body and recessed cone. Therefore, the now area at any given 

elevation is the surface area of a frustrum of a cone. The gap between the 

recessed cone and main splitter body serves as the slant height for the 

frustrum of the cone. A single sample calculation follows for the UT 1:3 PVC 

splitter. The calculation procedure is identical for both the beds A-D 1 :3 and 

the recycle 1 :6 splitters. 

Using an elevation height (y) equal to 1.0 inch, the now area of for O. 75 

inch gap is : (Ref. Figure A-1 ). Note: All dimensions in inches unless noted. 

ri = recess radius + y x tan (40° ) 

ri = 1.25 + 1 .0 X tan (40° ) 

ri = 2 .089 

r2 = l9} + gap X COS (40° ) 

r2 = 2.664 
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Flow area (A) =,r (11 + r2) x gap 

A =,r (2.089 + 2.664) x (0. 75) 

A =ll.20 in2 
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APPENDIX B 

UNCERTAINTY ANALYSIS 

There is always some uncertainty associated with experimental work due 

to inaccuracies in instrumentation. The uncertainty of a calculated term can 

be determined by the method of Kline and McClintock given in Holman (31].  

Let R be a function of n independent variables Xi, X2, ••• Xn• Let the 

uncertainty of each of these variables be denoted W1, W2, ••• Wn. The 

uncertainty of a calculated value, R, is then given by Wr and is determined by 

equation B.l. 

W = [ ( .llL  W ) 2 + ( a R  W ) 2 + • • •  + ( a R  W ) 2 ] 1 / 2 B . l R · a x  l 1 a x2 2 a xn n 

This equation was used to determine the uncertainty of calculated values. 

Table B.l lists the measurements used to calculate the results of this 

study and the corresponding instrument identification and uncertainty. The 

uncertainties listed are based on operator experience and the least count of 

the instrument. 

The transport air volumetric air fiow rate is given by 

'½A
= KA

0 
( 2 g �h ) 1 1 2 B . 2 

where K is the orifice coefficient, A0 is the orifice area, g is gravitional 

acceleration, and �h is the orifice differential pressure. The orifice was 

designed to give an orifice coefficient of 0.65. The uncertainty in K is 

estimated to be 0.02 and the uncertainty in A0 is 0.005 square inches. The 

resulting uncertainty in the transport air volumetric now rate is ! 4 cfm. 



Tab le  B . 1  

I n strument Uncerta i nt ies 

I 

I nstrument Measu rements Range 

Wate r Manometer Transport Ai r Ori fice 0 - 30 i n .  H20 
Differenti a l  Pressu re 

Wate r Manometer Feed l i ne  D ifferenti a l  0 - 30  i n .  H20 
Pressu re 

Mercu ry Ba rometer ' Ambient Ai r Pressu re 2 5 . 5-32 .7 i n  Hg 
Ba rometer : Amb ient  A i r  : - 1 0 - 1 20° F 
Thermometer · Temperatu re 
Tacho meter, Re l i a nce Limeston e  Feed Rate O - 1 5 5 rpm 
E l ectric  Company 
Weight  Sca l e  Limestone  Weight  0 - 1 000 l b .  

- -

Least 
Count 

0 . 1 i n .  H20 

0 . 1 i n .  H20 

· .0 1 i n  Hg 
.· 2° F 
I 

5 rpm 

0 .5  lb  

U n certa i nty 

..:t. 0 . 1 i n .  H20 

..±. 0 . 3  i n .  H20 

..±. .03 in Hg 
+ 1 ° F 

..±. 2 rpm 

+ 0 . 5 lb  

..... � 
CD 
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The uncertainty in the calibration of the volumetric limestone feeder 

was determined from the calibration and splitter testfog results. Repeatibility 

tests indicated a limestone feed rate uncertainty of 30 lb/hr for an angular 

speed setting of 20 to 60 rpm. 

The uncertainty in the wear rate results is infiuenced by several factors. 

The shape, size, and hardness of the wearing medium (limestone), and the 

hardness of the surface being worn certainly effect the results. PVC material 

was used in all wear tests, and it was assumed that there was very little 

difference in the hardness of the test sections. Fresh batches of limestone 

was periodically added to the base feed stock to provide a near uniform feed 

for each wear test. Still, some differences in the feed stock were inevitable. 

It was estimated that the uncertainty in the wear results are within + 20 

percent of the reported results. 
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