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ABSTRACT 

The assessment of survivability is a common topic in critical network infrastructure 

research. In order to examine the critical components whose disruptions can cause huge 

system degradation, many measures have been approached to depict the characteristics of 

network systems. Serving more than ten million passengers a day, the Beijing subway 

system, which ranks third in the world for its length and annual ridership, raises 

survivability issues in the face of potential disruptions of network components along with 

its constantly increasing complexity.  In this research, we provide an accessibility-based 

survivability measure with which to explore how potential outages of network 

components might affect the overall functionality of the Beijing subway system. System 

survivability is measured from two perspectives: [1] connectivity under various simulated 

failures of stations and [2] variations in passenger flows in response to a disruptive 

influence. Plausible scenarios are constructed using local demographic data and daily 

ridership reports from subway management companies. To assess the possible range of 

influences, we develop a weighted rank-based simulation algorithm to approximate the 

extreme combinatorial disruption instances. The range of the potential effect highlights 

the best and worst-case scenarios so as to identify the critical components and help to 

prepare corresponding contingency plans. This research will enable the more legitimate 

allocation of limited emergency response resources and highlight the way of improving 

the survivability of the system. 
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CHAPTER 1   INTRODUCTION 

The assessment of survivability is a common topic in critical network infrastructure 

research. Much effort has been directed at developing approaches for exploring the 

potential outcomes of the unscheduled loss of network systems. Serving more than ten 

million passengers a day, the Beijing subway system is the third largest subway system in 

the world. However, as a fast-developing subway system serving one of the most rapidly 

expanding urban centers in the world, the Beijing subway system has not been explored 

from a survivability perspective. The goal of this research is to develop suitable measures 

and methods to assess the survivability of the Beijing subway system. Chapter 1 presents 

research background, research questions, and objectives. The organization of the thesis is 

outlined at the end of this chapter. 

 

1.1 Research Background 

This section demonstrates the background of the research. The importance of public 

transportation is discussed first, followed by the need for survivability assessment. The 

Beijing subway system and the City of Beijing are introduced last. 

 

1.1.1 Public transportation 

Transportation systems enable the movement of people and goods between origins and 

destinations across a network. Public transportation is a shared passenger transportation 

service that is available for use by the general public, including buses, trolleybuses, trams 

and trains, rapid transit, and ferries. It is a crucial part of the solution to the world’s 

environmental, social, and economic challenges. First, mass transit is generally regarded 

as significantly more energy efficient than other forms of travel (Layton 2002). Second, 

public transportation can also increase urban population densities, thereby reducing travel 

distances and fossil fuel consumption (Newman 1999). In addition, public transportation 

ensures that all members of the society, not just those with a driving license and access to 
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automobiles, are able to travel (Litman 1999). Finally, it can ultimately reduce the total 

transportation cost for the public and frequently has a positive impact on real estate prices 

by reducing private vehicles and improving local accessibility (John 1996, Wang and 

Yan 2011). With the world’s population soaring in recent decades, public transportation 

is getting increasing attention. In 2012, 10.5 billion trips on public transportation were 

made in the United States, and people in the U.S. boarded public transportation 35 

million times each weekday (Publictransportation 2013). In particular, the importance of 

the public transport systems in China is quite stressed because the burden of the systems 

in China is even heavier than that in the US. In 2010, the average number of motor 

vehicles owned by one thousand people in the U.S. was 797, while in China it was 58 

(The World Bank 2013). Under this circumstance, public transportation use in China is 

expected to be expanded to meet the increasingly urgent demand caused by the fast-

growing population, especially in some urban areas such as Beijing, Shanghai, and 

Shenzhen. 

 

1.1.2 The need of survivability assessment 

Along with the growing importance of public transportation, its functionality of paths for 

movement can be severely hindered by disruptions (Matisziw et al. 2009). The 

devastating impact of the 2011 floods in southeastern Queensland (Lee et al. 2013), the 

2004 Madrid train bombing, and the 2005 London Underground bombing display both 

the possibility of disruptions and the vulnerability of transportation systems confronted 

with such disruptions (CNN Library 2013a, 2013b). Since public transportation is 

embedded deeply into society, disruptions to system components can impair the 

functionality of the entire system, thereby causing huge socioeconomic costs, especially 

when the disruptions result from intended terrorist attacks (Angeloudis and Fisk 2006, 

Kim 2009).  

Because of the growing importance of public transportation and its expensive 

recovery after being disrupted, management agencies tend to fortify the system 

beforehand to prevent potential disasters from the system. For example, the service of the 
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New York subway system is seasonally disrupted by flooding from rainstorms, and the 

cost for the system maintenance is huge, with $357 million being spent in improving 269 

pump rooms since 1992 (Donohue 2007). This begs two questions: (1) how can 

disruptions be prevented from occurring, and what is the critical components in the 

system? And (2) how can the influence of disruptions be minimized? A preliminary 

approach to solve these questions is to identify the critical network components, and draw 

feasible scenarios to various situations on the system. Survivability is the capability of a 

system to fulfill its mission, in a timely manner, in the presence of threats such as attacks 

or large-scale natural disasters (Ellison et al. 1997, Mohammad et al. 2006). With limited 

resources to respond to an emergency, assessing survivability and exploring the potential 

scope of disruptive events are critical in network planning and risk management. 

Considering their socioeconomic importance, transportation systems, such as highway 

and road network, have been studied through hypothetical or empirical survivability 

analyses (Jenelius et al. 2006, O’Kelly and Kim 2007, Matisziw et al. 2009, Salmeron et 

al. 2004). 

 

1.1.3 Case study 

Beijing is the capital of the People’s Republic of China and one of the most populous 

cities in the world with a population of more than twenty million in 2012 (BMBS and 

NSOB 2013a). It is the nation’s political, cultural, and educational center. It is also home 

to the headquarters of most of China’s largest state-owned companies, and is a major 

transportation hub where nine expressways, eleven national highways, ten conventional 

railways and three high-speed railways converge (Encyclopedia 2013). The Beijing 

Capital International Airport is the second busiest in the world by passenger traffic 

(PANYNJ 2013). In order to serve the local residents and transfer traffic flow from and to 

all over the country effectively, the local transportation system shoulders a heavy burden. 

Traffic jams become a major concern. Even outside of rush hours, several roads still 

remain clogged with traffic (Xinhua 2003). In the beginning of 2010, Beijing had about 

four million registered automobiles, which increased at a rate of 15,500 per week in 2010 
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(Gao 2010). Drastic measures, including limiting the number of new license plates issued 

and barring cars with non-Beijing plates from entering areas within the Fifth Ring Road 

during rush hours, are applied to mitigate traffic jams (ChinaAutoWeb 2010). Obviously, 

private vehicles are not the solution to the transportation problem of Beijing. Thus, the 

authorities have introduced several bus lanes, which only public buses can use during 

rush hours (CCTV 2009), but these lanes are still affected by traffic jams to some extent. 

Staying away from the influence of congestion on the ground is one of the largest 

advantages of the subway system. A flat fare of 2 RMB (about 0.30 USD) per ride with 

unlimited transfers on all lines except the Airport Express also makes it the most 

affordable rapid transit in Beijing (U.S. News 2013). Because of its cheap, timely and 

reliable service and operation, the subway has become the first choice among the 

transportation modes in Beijing (JSCHINA.com.cn 2014). In 2012 its annual ridership 

ranked third in the world with 2.46 billion trips highlighting that even a small 

survivability issue of the Beijing subway system will affect millions of its passengers 

(BMBS and NSOB 2013a, BMCT 2013a, Liu 2013a). 

 

1.2 Research Objectives and Research Questions 

A series of research challenges is involved in this study. In this section, three major 

objectives of this study are listed. To achieve these objectives, four research questions are 

further identified and discussed. 

 

1.2.1 Research objectives 

The proposed study aims to pursue three main research objectives: (1) to design an 

accessibility-based survivability measure (ASM) as a measure of survivability taking into 

consideration both topology and system flow aspects of disruptions’ influences; (2) to 

develop a weighted rank-based simulation algorithm (WRSA) to make the ASM 

applicable for a large network; and (3) to assess the survivability of the Beijing subway 

system based on the designed measure through the algorithm. 
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1.2.2 Research questions 

The following research questions are addressed to achieve the above objectives: 

1. What is a suitable survivability measure? There are three types of survivability 

measures commonly-used in the survivability study of transportation networks: 

connectivity, characteristics as transportation paths, and system flow. They 

describe survivability from different perspectives. A measure including diverse 

perspectives may reveal a broad view of the facts. 

2. Is there a way to approximate the survivability to all disruption scenarios within 

the current computation capability? The demand for computation soars with the 

increase of a network’s complexity. The enumeration of all scenarios for the 

Beijing subway system is computationally not amenable, so a new algorithm is 

necessary. 

3. What will be the performance of the Beijing subway system when confronted 

with single-station disruptions or combinatorial disruptions? The influence of a 

single disrupted station varies with the topological and geographic characters of 

the station. Different combinations of the disrupted stations complicate the 

question further. 

4. Is the survivability of the system varying with time? Since the ridership of the 

system fluctuates with time in a week, the frequency of the stations being used 

and the distribution of the passengers’ travel demand changes as well. Can this 

change be reflected in the survivability assessment? 

 

 1.3 Organization of the Thesis 

This thesis is organized into six chapters. Besides the introduction in Chapter 1, Chapter 

2 reviews the literature covering what has been done related to this study, including 

survivability measures, methods of exploring network disruption scenarios and other 

related topics. In Chapter 3, we detail the case study and the data utilized for analysis. In 

the fourth chapter, we provide the research framework coupled with the ASM and 
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WRSA. The fifth Chapter provides the research results followed by the conclusions in 

Chapter 6.  
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CHAPTER 2   LITERATURE REVIEW 

The fundamental role of a network system is the paths of the interaction across the 

system. All too often, however, the paths are interdicted by unplanned events or targeted 

attacks (Murray and Grubesic 2007). Such disruptions can cause unscheduled loss of 

service capabilities within a network, resulting in costly repairs and widespread service 

outages. The fact that disruptions can take numerous forms complicates the study. For 

instance, targeted attacks seek to maximize system damage, while natural disasters, such 

as floods, hurricanes, and fires, also cause considerable damage to network systems over 

large geographic expanses. Therefore, the influence of disruptions, regardless of their 

origin, on a network system is often measured through the consequences. In survivability 

research, there is an implicit assumption that the direct result of disruptions on a system is 

limited. The worst direct influence is that a part of the system stops working. The scope 

of the affected network components is either a single node/link or a group of nodes/links. 

Even though the cascading reaction from a partial disruption may lead to the system’s 

collapse, the fundamental characteristic of a network is the capability of maintaining its 

functionality confronted with partial network components’ failure. Disruptions impair the 

functionality of a network system and modify the characteristics of it. Describing the 

influence of disruptions is the foundation for measuring the survivability of a network.  

 

2.1 The Concept of Survivability 

One of the foremost concerns in survivability research is exploring appropriate measures 

to evaluate system survivability. However, the concept of survivability itself does not 

have a commonly-accepted definition yet. The meaning of the term depends on the 

context (Jenelius et al. 2006). “Reliability” and “vulnerability” are two terms to define 

survivability. For example, Holmgren (2004) defines vulnerability as a collection of 

properties of an infrastructure system that may weaken or limit its ability to maintain its 

intended function when exposed to threats and hazards. Salmeron et al. (2004) compare 

vulnerability to the system’s “cushion” against failed, destroyed, or otherwise unavailable 

system components, while Berdica (2002) focuses on the possibility of catastrophes by 

stating that vulnerability is the susceptibility to rare, though big risks. Even though the 
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definition varies with the context of study, vulnerability in the transportation network is 

commonly seen as the complement of reliability (Berdica 2002). According to Husdal 

(2004), vulnerability studies primarily focus on the impact or consequence of disruptions, 

and vulnerability is the non-operability of the network under certain circumstances. On 

the contrary, he states that reliability is an expression of the probability that a network 

will function. Thus, reliability may be regarded as the degree of stability of the quality of 

service that a system offers. In other words, vulnerability represents the extent to which 

the system loses its original functionality, while reliability measures the remaining 

functionality (Bagga, et al. 1993, Berdica 2002). 

The relationship between vulnerability and reliability is more complicated, and it 

also matters how survivability is measured (Jenelius et al. 2006). As well introduced by 

Murray (2013), any network system can fail in various ways, and methods to examine its 

survivability have been developed based upon the type of systems and approaches. There 

are two types of measures describing the changes of a disrupted network: binary and 

fuzzy measures. Binary measures, which represent survivability within a range of values 

or through certain indices, follow all-or-nothing logic with system operation. Disrupted 

network components will be totally excluded from the system in this condition. On the 

contrary, fuzzy measures assume that network components function within a certain level 

of operation probability, such as the probability of a network disruption’s occurring, the 

chance of network components’ being disrupted, and the degree to which the disrupted 

components are able to maintain parts of their functionality. Reliability researchers 

generally prefer fuzzy measures, while binary measures are the first choice for 

vulnerability. In theory, applying a fuzzy measure is more realistic than a binary measure 

since the former takes into account the different malfunction possibility of network 

components. For example, Kim (2009) defines reliability as a network’s capability to 

deliver flows or availability of paths between nodal pairs in the network, which depends 

on the probability of operation at the links or nodes. However, the prerequisite of 

applying fuzzy measures is that the empirical or hypothetical failure probability of a 

system or network components is known. Otherwise, the setting of the probability form 

could be arbitrary. 
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2.2 Survivability Measures 

In both the traditional field of transportation and the newly emerging field of network 

science exist many measures for assessing the survivability of network-based systems 

(Matisziw et al. 2009). The four widely used network degradation measures are network 

connectivity, operational cost, capacity, and system flow, which can be classified into 

three types (Murray 2013, Kim 2012).  

 

2.2.1 Measures based on connectivity 

By definition, network connectivity concerns the existence of available or functional 

paths between origin-destination (O-D) pairs. The purpose of a network is to establish 

and maintain connectivity between a set of interacting elements to facilitate the 

movement of valuable goods and services across a system (Grubesic et al. 2008), thus the 

precondition of assessing the survivability of a transportation network is connectivity. 

Fundamental to all approaches for examining network survivability from the connectivity 

perspective is to represent complex networks as graphs. Introduced from the graph 

theory, regardless of diverse forms of transportation systems and disruptions, a network 

can be simplified as a collection of arcs or edges (e) that connects nodes or vertices (v). 

The arrangement of the elements (arcs and nodes) of a graph is typically referred to as 

network topology. Where a disruption is concerned, the removal or destruction of a node 

or arc in a system changes this arrangement, so graph theoretic measures are employed to 

evaluate network connectivity degradation. 

Global graph theoretic measures provide a single index that summarizes network 

structures and hence can be used to compare different networks. These indices are largely 

based on three components: nodes, arcs, and segregated parts. Note that the Beijing 

subway system can be represented by a planar graph, Table 2.1 lists a set of the global 

indices for planar networks.  
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Table 2.1. Global graph theoretic measures 

Name Equation Notes 

Beta index /e v    e  = number of arcs in the graph  

v  = number of nodes in the graph  

g = number of separated parts in 

the graph 

max 3 ( 2)e v     

Cyclomatic number e v g   
  

Alpha index 

max ( 1)

e v g

e v


 


 
  

Gamma index 
max/e e    

 

The first index is the beta index, where 

 
e

v
    (1) 

  is a basic measurement of network complexity and is easy to interpret. The minimally 

connected network when all nodes are linked as a graph results in   equal to ( 1) /v v , 

which indicates a treelike structure. 1   implies that there is one arc more than a tree, 

and 1  suggests a graph with circuits. The value of   for a maximally connected 

planar graph is 3( 2) /v v . Given the number of separated parts (g), a second basic 

measure is the cyclomatic number, where 

 e v g      (2) 

The cyclomatic number provides one with a basic idea of how many circuits there are in a 

graph. If the graph is a treelike structure, the cyclomatic number assumes a value of 0. If 

the graph has one circuit,   assumes a value of 1. Derrible and Kennedy state that 

compared with “assortativity”, a modified cyclomatic number is a better network 

“robustness” indicator (Derrible and Kennedy 2010). Assortativity, which is proposed by 

Newman (2002, 2003), indicates the similarity of the adjacent nodes. It is often examined 

in terms of a node’s degree. A third global measure is the alpha index as defined in 

equation (3): 
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max ( 1)

e v g

e v


 


 
  (3) 

  is a basic measure of connectivity that provides a ratio of the existing circuits to the 

maximum number of possible circuits in a graph. maxe  represents the maximum number 

of arcs and is calculated as 3( 2)v   in a planar network. Similar to the cyclomatic 

number, when   equals 0, the graph is a treelike structure. Thus, the removal of any arc 

would break the graph into disconnected parts. If 1  , no additional arcs can be added 

to the system without duplication. This represents a maximally connected graph. The 

value can be interpreted as the redundancy in the network. Finally, the gamma index,  , 

is formulated as follows: 

 
3( 2)

e

v
 


  (4) 

It is a measure that evaluates the ratio of the existing arcs to the maximum number of arcs 

possible in a network. In other words,   represents the relative connectivity of a system. 

As   approaches one, the network is more connected. If   reaches 1, the graph is 

completely connected. All of these measures emphasize the relationship between the 

number of nodes and the number of arcs in order to reveal the existence of alternative 

connections in a graph. It is evident that the alternative connections can act as backup 

when the components along the original paths are disrupted. This redundancy improves 

the survivability of a network. 

Local network measures, on the other hand, are computed for individual arcs or 

nodes within a network, emphasizing their relative topological characteristics. The 

simplest local measure of nodal connectivity is the degree of the node. The connectivity 

matrix (C-Matrix) serves to represent the topological connectivity of network systems 

(G). Let us define the 1st level C-Matrix ( 1C ) as the adjacent connection matrix of a 

network. If a node i is connected to another node j, then its connectivity (
1

ijc ) is defined 

with 1, otherwise 0 in 1C . The degree of each node can be determined by summing the 
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total number of direct (one-step) connections between node i  and all other nodes in the 

system: 

 
1

1

v

i ij

j

c


   (5) 

where  

v : the number of nodes in the graph; 

1, if nodes  and  are directly connected

0, otherwise.
ij

i j
c


 


 . 

In many cases, higher-degree nodes are assumed to be more critical to network operation, 

given their greater direct association with other nodes (Grubesic et al. 2003). Computing 

the average degree of all nodes results in   discussed earlier (see Table 2.1. Global 

graph theoretic measures).  

Unfortunately, the degree of a node does not address how a node is integrated 

with non-adjacent nodes. By powering 1C , the connectivity matrices describing the non-

adjacent connections are determined. The kth power of 1C  represents the number of 

nodal sequences of length k linking nodal pairs. The largest k is equal to the diameter of 

the network (d) to ensure that at least one nodal sequence connecting the two most distant 

nodes in the network is counted. The sequences computed do not necessarily represent 

valid paths of movement because nodes may be visited repeatedly (Harary et al. 1965). 

However, the number of internodal sequences tabulated through powering is indicative of 

how proximate a node is to other nodes within a system, and summing the powers of C 

produces a matrix of total connectivity, T: 

 
1

d
k

k

T C


   (6) 

Row sums of T (e.g., i ij

j i

T t


 , where ijt  are the items in T) indicate the importance of 

each node. Higher nodal values ( iT ) suggest a more connected node. All nodal 
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connectivity values can be further summed into a total connectivity value for the network 

(e.g., all ij

i j i

T t


 ). 

 

2.2.2 Measures based on characteristics as transportation paths 

Besides connectivity measures, there is another type of measures that takes into account 

how the components in a transportation system are linked, including operational costs 

and system capacity. Rather than focusing on the existence of paths between the origins 

and destinations, operational costs concern the impedance between them (Jenelius et al. 

2006, Nicholson 2003). Time, cost, distance and tariff are often used to measure the cost. 

In common cases, operational costs are decided by absolute locations, transportation 

methods, the market, etc. Operational costs may be increased due to network disruptions 

as alternative more expensive routes may become necessary. Thus, the influence of 

disruptions on a network system can be represented by the increase of the operational 

costs. As an example, Corley and Sha (1982) are the pioneers in viewing shortest path 

performance in the context of network survivability. The notion of “shortest” indicates 

the minimum of the operational cost of paths. Corley and Sha (1982) attempt to explore 

the maximal influence of removing one network component. Israeli and Wood (2002) 

and Lim and Smith (2007) extend the algorithm proposed by Corley and Sha (1982) to 

handle the problem of maximizing the impact of disruptions with limited disruption 

budget on different network systems.   

Topological distance is a good example of operational costs. A group of local 

graph theoretic measures describing nodal accessibility based on topological distance can 

also be used to evaluate the survivability of a network. As listed in Table 2.2, these 

measures are all derived from the D matrix or the Shimbel matrix, whose elements ijd  

indicate the topological shortest-distance between any nodal pairs (Shimbel 1953). 

Among them, the Shimbel index measures the sum of the shortest paths between node i to 

any other nodes ( ,  [1, ]ijd j v ). A smaller Shimber index is indicative of a node that is 
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more accessible or that has efficient connections to other network nodes, while a larger 

index indicates a greater level of effort is needed by a node to traverse the network. The 

dispersion index measures the total accessibility of a whole network by summing up the 

Shimber indices of all nodes. In order to compare the accessibility of nodes and networks, 

these two indices can be normalized with the size of the network to get the average 

version of the indices. By replacing the topological shortest distance between nodal pairs 

( ijd ) with other cost measures, these indices will indicate the characteristics of a network 

from other aspects. However, in scenarios where disruptions disconnect a network into 

separated parts, the shortest paths need to be specifically defined. For example, the 

network shown in Figure 2.1 contains 10 nodes in total. The disruption on node 4 will 

increase the shortest topological distance between nodes 0 and 9 from 2 steps to 3 steps. 

Disruptions on nodes 4 and 5 simultaneously will separate the network into two 

disconnected parts, where the path between nodes 0 and 9 will be excluded from the 

shortest path calculation or represented mostly by infinity. Thus, the interpretation of the 

indices concerning the operational costs needs to be done accordingly. 

Table 2.2. Local graph theoretic accessibility measures 

Name Equation Notes 
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Figure 2.1. A network system 

Besides operational costs, system capacity, which refers to the maximum flow 

between nodes (O-D pairs) at any given time, is often used as well (Ratliff et al. 1975, 

Wood 1993). Obviously, the disruptions of network components reduce the capacity and 

limit the maximum O-D flow possible. The maximum flow between any nodal pairs in a 

network obviously depends on the capacity of individual node and arc components. 

Nodes can be described in terms of the activity they can process. As an example, if a 

node represents a station in a subway system, the capacity is the maximal number of 

passengers it can handle at any given time. Arcs can also be capacitated. In terms of a 

subway system, the arc represents subway lines between stations, and it has a capacity 

relative to the capacity and the frequency of the subway train. Returning to the network in 

Figure 2.1, let us suppose that the capacity of the wider arcs is 2 units while that of the 

thinner arc is 1 unit. In status quo, the capacity between nodes 0 and 9 is 3 units, 

including three 1-unit node paths along 0-4-9, 0-5-6-9, and 0-1-5-6-8-9. If the arc 

between nodes 5 and 6 is disrupted, the maximum flow between nodes 0 and 9 remains 

only 1 unit. Additionally, other measures are also used according to the specific study 

context. For example, the direct connection index is used to indicate the level of a node 

connected directly to other nodes in a network, which is helpful when examining the 

change of airlines hub-and-spoke structures (Shaw and Ivy 1994, Shaw et al. 2009). 
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2.2.3 Measures based on system flow 

System flow refers to the existing levels of interaction between O-D pairs and measures 

the actual function of the network; therefore, the effect of a potential disruption can be 

gauged by the magnitude of the flow affected. System flow is simply the total 

interaction/flow between all nodal pairs in the network. In the special case where there is 

only one unit of flow along each arc and no intra-node flow, the system flow is equal to 

the connectivity. Regarding system flow in a network in the context of survivability, 

Myung and Kim (2004) present an integer program to identify those arcs whose removal 

results in an upper bound on network failure and discuss an algorithm for finding a lower 

bound. Their formulation relies on identifying feasible paths for each O-D pair and 

tracking the availability of facilities involved in each path. A preprocessing technique is 

employed to focus only on O-D pairs that can be disrupted given the removal of a 

specified number of edges. Murray et al. (2007) present a general model that can be 

solved to give maximum and minimum system flow impacts when components are 

interdicted. However, to estimate the amount of traffic flow accurately, many 

preconditions have been set before the modeling. Some examples of the preconditions are 

as follows: (1) the public is not aware of the disruptions (Murray-Tuite and Mahmassani 

2004); (2) the public is aware of the disruptions and makes a detour, but the total travel 

demand is constant (Jenelius et al. 2006); and (3) the public is aware of the disruptions 

and makes a detour, and, at the same time, the travel demand decreases with time 

(Nicholson 2003). It is obvious that all of the above-mentioned preconditions are possible 

after disruptions, and that public awareness of disruptions gradually evolves from one 

condition to another. A proper assumption of public awareness of disruptions is helpful 

for accurate estimation. In this study, with the help of modern operation and broadcast 

systems of the subway, passengers are assumed to be aware of disruptions immediately, 

and the flow within the system will change according to the spatial interaction model. 
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2.3 Methods of Exploring the Scenarios 

Central to the assessment of network disruptions and the associated survivability to such 

disruptions is the identification of potentially important disruption scenarios, which 

delineates the range of disruptive influence. Lots of approaches exist for indicating these 

scenarios. These approaches differ primarily in how disruption scenarios are assessed and 

understood. A scenario in this context refers to a set of nodes and/or links impacted by 

disruptions. The impact on the system functionality can be drawn using any survivability 

measure. In some cases, an affected facility may be rendered completely inoperable by a 

disruption (e.g., the closure of a subway station). In other instances, a disruption may 

impact network activity to a lesser degree given that only some of the functionality of a 

facility may be lost, for example, an accident may block a single lane of an interstate 

highway segment only. Impacts can range from those directly associated with network 

operation, such as connectivity, flow, or capacity reduction, to more complex 

associations, such as the economic impacts affecting the production and consumption of 

flows. The following part introduces the four types of approaches and methodologies 

which are commonly considered to tackle the problem.  

 

2.3.1 Scenario-based approaches 

Scenario-based approaches evaluate the potential consequences of a specific disruption 

scenario or a small set of scenarios, which is perceived to be important. To explore a 

particular disruption and to compare the influence of different scenarios are the main 

goals of the approaches. For example, special attention might be drawn to transportation 

hubs located at metropolises in highway networks. With a limited number of scenarios 

considered, relatively detailed analyses of each scenario, such as applying more refined 

models of impacts on flow and considering detailed information on the costs involved, 

are feasible through these approaches. Other parameters unique to each scenario can also 

be easily integrated in the analysis. The above-mentioned survivability measures, 

including network connectivity, operational costs, system capacity, and system flow, are 

involved in analyses to evaluate the impact of disruptions on network performance. 
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Scenario-based approaches have been applied in a range of survivability assessing 

contexts. For instance, Kim et al. (2002) and Ham et al. (2005) examine the influence of a 

natural disaster, which can compromise specific portions of the U.S. transportation 

network, on both the average shipment length and the cost of transporting commodities. 

In another case, Suarez et al. (2005) consider the resulting impacts of sea rise to 

transportation performance in a coastal area. Specific disruption scenarios are defined by 

the levels of sea rise anticipated in various planning periods.  

The major benefits of this type of analysis are that professional knowledge can be 

used to identify important scenarios and that relatively complex analytical approaches 

can be used to evaluate each potential scenario. The focus on a limited number of 

scenarios also allows for many intricacies unique to each scenario to be addressed. The 

final results of such analyses can provide a very detailed understanding about the 

ramifications of the particular scenarios assessed. The insights gained from this process 

can be of use in determining the value of a component, or a set of components, to 

network activity and related processes. However, the potential drawback to scenario-

based approaches is that relatively few scenarios are typically evaluated. First, many 

transportation networks have been assembled incrementally over time by a variety of 

institutions and agencies and in some cases eventually merged. Therefore, a focus on a 

single component or portion of a network of local interest can produce misleading 

insights into survivability at larger scales. Second, potential exists for important scenarios 

to be overlooked, resulting in inaccurate characterizations of network survivability. This 

drawback is frequently exacerbated since scenario-based approaches are often conducted 

by a variety of agencies emphasizing different aspects of transportation networks. Thus, 

the comparison of the results of different approaches is different. 

 

2.3.2 Strategy-based approaches 

To evaluate the consequences of disruptions following a specific strategy on networks 

attracts the main attention of the strategy-based approaches. Unlike in scenario-based 

approaches where a set of potential disruption scenarios is selected based on professional 
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background knowledge, in strategy-based approaches, the scenarios of interest are those 

following a hypothesized sequence or strategy of disruption. For example, it might be 

assumed that the attackers who design a targeted attack would try to maximize the 

influence of the attack and at the same time minimize the probability of being detected 

(Yates and Casas 2012). 

The basic assumption behind these approaches is that the negative impact on the 

network would vary with the different topological structures and the types of attacks (i.e. 

random or targeted disruption). Thus, many statistical physics measures focused on the 

analyses of specially constructed types of networks are employed. One common 

methodology is to rank network components (arcs/nodes) in the order of their importance 

(usually based on their topological characteristics), and successively remove them, 

assessing the impact on network operation at each stage (Albert et al. 2000). This basic 

approach is also improved by updating components’ importance and ranking them after 

each removal of arcs/nodes (Albert et al. 2004, Holme et al. 2002). In this context, three 

network structures have been explored in detail to provide insight into the statistical 

complexities of network connectivity of systems: exponential, small-world, and scale-

free networks. 

Not surprisingly, levels of survivability in these network structures vary. Because 

both exponential graphs and small-world networks are topologically homogeneous, 

random and targeted attacks on nodes in these systems have basically the same effect. 

Nevertheless, because scale-free networks are inhomogeneous, they are exceedingly 

tolerant of random attacks, but the survivability of them confronted with targeted attacks 

depends a lot on the survivability of the hubs. 

The limitation of strategy-based approaches is that the survivability assessment of 

networks is biased and limited by the assumed attack strategy. While one network 

configuration might appear more survivable faced with a random loss of nodes, it might 

be less survivable if faced with other types of losses that are not considered. Second, this 

type of approaches often needs to make assumptions related to the way in which network 

losses will be coordinated. Such assumptions can produce misleading results as many 
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networked systems entail a complex mesh of interrelations between network components 

that are difficult to assimilate by evaluating the characteristics of individual facilities 

(Doyle et al. 2005). Furthermore, in some approaches, network components are required 

to be ranked according to their importance at first. But the importance of components and 

the hidden influence of simultaneous disruptions on a set of components are exactly what 

are needed to be revealed in survivability study. Therefore, similar to scenario-based 

approaches, the accuracy of strategy-based approaches is determined by the initial 

understanding of the network and disruptions. 

 

2.3.3 Mathematical programming approaches 

Mathematical programming approaches are well-known for their ability to provide 

insight into solution bounds (minima/maxima) for a wide range of spatial planning 

problems so that administrators and managers can be more capable of reducing a 

network’s vulnerability to these events (Salmeron et al. 2004, Matisziw et al. 2009). 

Compared with the above-mentioned scenario-based and strategy-based approaches, 

mathematical programming approaches are useful in the search for potentially important 

scenarios. In other words, those scenarios with the greatest potential to impact network 

operation may not always involve the most obvious facilities and are instead related to 

the function of the system as a whole.  

Various mathematical programming approaches to assessing network 

survivability have been proposed. For example, Murray et al. (2007) evaluate scenarios 

of router loss in a telecommunications network. A flow interdiction model is proposed to 

identify interdiction bounds according to connectivity and/or flow associated with a 

system of origins and destinations. Another example is that Church et al. (2004) seek to 

indicate the r most important supply nodes whose disruptions will result in the largest 

influence on the original p-median problems and maximal covering problems according 

to the change of weighted distance. Other adaptations of this basic approach have also 

been proposed. If q disrupted supply nodes indicated by Church et al. (2004) are able to 

be fortified to be prevented from interdictions, Church et al. (2007a) maximize the 
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influence of the fortification. Church et al. (2007b) expand the application of the r-

interdiction models (Church et al. 2004) by taking into account probabilistic network 

conditions and disruptions.  

There are limitations to mathematical modeling methods as well. First, networks 

can be very structurally and operationally complex. Hence, there may be many variables 

and relationships that need to be accounted for in the mathematical model specification, 

which is challenging. The mathematical programming models simplify the problem by 

adapting fixed shortest distance or fixed interaction of O-D pairs. More complex models 

are also proposed, such as travel time which is monotonically increasing and 

differentiable everywhere (Erath et al. 2009, Luathep et al. 2011). Travel time 

dynamically decided by the volume through certain paths is also employed to deal with 

traffic congestion’s influence (Murray-Tuite and Mahmassani 2004). However, 

disruptions’ consequences that cannot be simplified as a mathematical model are still 

beyond the ability of this kind of approaches. Second, a focus on the worst-case 

scenario(s) may omit little disruptions in alternative scenarios, which may not be as 

damaging as those in the worst-case, but still create problems for the operational 

continuity of network systems. Finally, limitations often exist on feasible model size and 

the ability to effectively obtain a model solution.  

 

2.2.4 Simulation-based approaches 

Simulation approaches to survivability assessment can be insightful if there are no prior 

assumptions concerning how network components will be disrupted. In other words, 

unlike scenarios-based and strategy-based approaches which only take into account the 

specific set of scenarios selected based on prior knowledge and strategies, simulation 

approaches do not depend on the priori knowledge but seek to handle all combinations of 

network components. Simulation analysis acknowledges that for any network there are 

many possible planning scenarios to be considered. Even for moderately sized networks, 

uncovering potential survivability and associated scenarios can be challenging, given the 

complex spatial relationships between origins and destinations. Compared with 
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mathematical programming approaches, simulation approaches are more flexible in 

adapting other measures and taking into account more aspects of network characteristics 

simultaneously. Note that both binary and fuzzy measures can be used in a simulation 

approach. For example, Jenelius et al. (2006) remove individual nodes from a highway 

network and measure the change in O-D flow cost in each scenario. In a recent study, 

Kim (2009) computes the range of remaining functionality of subway systems when 

faced with disruption to nodes in combinatorial disruption scenarios based on the failure 

probability of network components. Furthermore, simulation assessment of scenarios can 

also involve the specification of many other parameters, such as the performance metric 

used to evaluate disruption, characterizations specific to the temporal and spatial scale of 

analyses, and the property of network systems varying because of disruptions. This is 

important since network activity and other operating conditions can exhibit a large degree 

of temporal and spatial variability, so can the mitigation and the repair strategies 

following a disruptive event. Given the information on the dynamic nature of network 

conditions, simulation can also be used to explore important shifts and changes in 

network survivability in relation to such variability.  

While simulation certainly has its benefits, it also has the potential to overlook 

important scenarios. Although simulation of relatively simplistic cases where a single 

network component is impacted is logically simple when enumeration of all scenarios is 

tractable, it is generally required to develop special algorithms to deal with large amount 

of computation for simulation of complex scenarios involving multiple network 

components (Kim 2009). In simulation approaches, therefore, the goal is to evaluate a 

suitable number of scenarios to obtain an effective characterization of the range of 

possible impacts (Murray et al. 2008). For instance, if a network is composed of n nodes 

and the complete loss of m network node is a major planning concern, then 

!/ [( )! !]n mC n n m m   potential scenarios exist. The situation becomes more complex when 

larger network systems are tackled and more network components are disrupted 

simultaneously.  

In conclusion, this chapter explores topics relevant to this study that have been 

amassed from previous research. The concept of network survivability is clarified first by 



23 

comparing two commonly-used definitions and the context in which they are employed. 

In order to describe the ramifications in disruption scenarios, three kinds of survivability 

measures are reviewed, followed by the methods of exploring the important scenarios at 

the end of this chapter.  
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CHAPTER 3   A CASE STUDY 

The case study of this thesis is located in Beijing, the capital of the People’s Republic of 

China and one of the most populous cities in the world (BMBS and NSOB 2013a). In this 

chapter, the transportation and the urban morphology of Beijing are briefly introduced to 

describe the context in which the Beijing subway system is operating. By comparing it 

with other public transportation systems, we highlight the uniqueness of the subway 

system, which is followed by the introduction of each subway line and some examples of 

the typical disruptions occurring in the subway system. Finally, the fluctuation of the 

passenger flow is presented to show the fact that the survivability of the system, which is 

not constant, may vary in a week. 

 

3.1 Beijing 

Beijing is China’s political, cultural, educational center (Encyclopedia 2013). Most of 

China’s largest state-owned companies set their headquarters in Beijing, which makes 

Beijing a special economic center in China. Thus, the transportation of Beijing is 

expected to meet the heavy travel demand of both the local residents and the travelers.  

Owing to its superior political status, Beijing serves as one of the largest rail hubs 

in China's railway network. Even passenger trains in China are numbered according to 

their direction in relation to Beijing. For example, if a train from Beijing to Shanghai is 

Z13, the same train returning from Shanghai will be numbered Z14. Ten conventional rail 

lines radiate from the city. In addition, the Datong–Qinhuangdao Railway, which is an 

electrified rail line serving as a major conduit for coal exportation, passes through the 

municipality to the north of the city center. Three high-speed rail lines also serve the city: 

the Beijing-Tianjin Intercity Railway; the Beijing-Shanghai High-Speed Railway; and the 

Beijing–Guangzhou High-Speed Railway, whose destinations are the most critical cities 

in North China, East China and South China respectively. From Beijing, direct passenger 

train service is available to most metropolises in China. International train service is 

available to Mongolia, Russia, Vietnam and North Korea. In 2012 the annual ridership of 
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the rail system from Beijing was more than 100 million, and it is still increasing (BMBS 

and NSOB 2013b).  

Beijing’s primary airport is the Beijing Capital International Airport, which is the 

second busiest airport in the world after Hartsfield-Jackson Atlanta International Airport 

(PANYNJ 2013). After renovations for the 2008 Olympics, the airport now contains three 

terminals, with Terminal 3 being the second largest in the world. The airport links Beijing 

with almost every other city in China with regular air passenger service. The civil 

aviation passenger volume in 2012 was about sixty million, which was nearly three 

million more than that in 2011 (BMBS and NSOB 2013b). In order to facilitate the 

transportation between the airport, which is approximately 20 kilometers northeast from 

the city, and the city center, a special light rail “Airport Express” connecting it to the 

Beijing subway system was constructed in 2008. 

Beijing is also connected by roads to all parts of China as a critical part of the 

National Trunk Road Network. Nine expressways of China as well as eleven China 

National Highways serve Beijing. The local transportation and urban morphology are 

also shaped by road networks. Five “ring roads” concentrically surrounding the 

geographical center of the city, the Forbidden City, support Beijing’s urban transportation 

(Students’ Academy 2010). Figure 3.1 shows the administrative districts the Beijing 

subway system serves. In 2005 according to the development and functions of each 

administrative district, Beijing was segregated into four areas. Xicheng and Dongcheng, 

which are located within the range of the 2nd Ring Road, are determined as the Core 

Districts of Capital Function (shown in orange). In ancient China, these districts were 

within the city wall of Beijing as the capital for over six hundred years, thus many 

government headquarters are located in these districts, following the tradition. The goal 

of these districts is to serve as the center of national politics, culture, financial 

administration and international communication. Many subway lines serve these districts, 

so passengers are able to access the system through several accessible stations within a 

short distance.  
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Figure 3.1. Beijing 

As shown in Figure 3.1 in pink, the Urban Function Extended Districts contain 

Chaoyang, Haidian, Shijingshan and Fengtai, which surround the core districts and are 

within the range of the 5th Ring Road. These districts are intended to support the core 

districts and to become the center for financial services, education, and high-technology. 

The number of subway lines here is less than that in the first area just mentioned above. 

Outside the range of Beijing subway Line 10, which is close to the boundary between this 

area and the first area, most of the subway lines are branch lines linked with only one 

bridge to the rest of the system. The bridge here is defined as the stations with the degree 
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larger than two and acting as the only connection for a subway line to the rest of the 

system. The blue area in the Figure 3.1 is the New Districts of Urban Development, most 

of which are still suburban and rural areas. The goal of these areas is to develop 

manufacturing and modern agriculture. Through the rapid evolution for more than ten 

years, the Beijing subway system has extended its service area to part of the districts with 

several peripheral branch lines. As the only way to access the subway system, the branch 

lines may have special criticality when faced with disruptions. The Ecological 

Preservation Development Districts are preserved for water resources, tourism, and 

environmental protection, which have not been served by the Beijing subway system. 

The population density for the four areas is 23407, 7488, 958, and 213 per square 

kilometers respectively, which indicates that most of the population and services are in 

the first two areas. Even though the structure of the city is delineated by several 

concentric rings, Beijing suffers from imbalanced development. In ancient China, the 

northern part of the Core Districts of Capital Function (the inner city) was the residence 

of royalties, aristocrats, wealthy merchants and the middle-class, while ordinary folks 

were only allowed to dwell in the southern part (the outer city). This imbalance is 

exacerbated by the development following the residence pattern. After the economy of 

China started to boom in the 1980s, the reconstruction in the southern part of the city was 

obstructed by the high population density. The areas to the east and north of the city 

center, which were previously mostly rural areas, became the first choice for new 

companies and institutes. In the Urban Function Extended Districts, Chaoyang is home to 

the majority of Beijing’s many foreign embassies. Sanlitun, which is well-known for 

many popular bars and international stores, as well as the Olympic Green built for the 

2008 Summer Olympics are also located in Chaoyang. Beijing’s CBD, centered on the 

Guomao area in Chaoyang, is home to a variety of corporate regional headquarters, 

shopping precincts, and high-end housing. The second-largest district in urban Beijing 

(after Chaoyang) with 431 square kilometers in area is Haidian District. Haidian is 

famous for its science and education with a large concentration of universities, research 

institutes, libraries, and scientific instruments and equipment. The concentration of well-

educated residents in this district attracts many high-tech companies. Zhongguancun (an 

area in Haidian), dubbed "China's Silicon Valley", is a major center in electronics and 
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computer-related industries, as well as pharmaceuticals-related research (BMBS and 

NSOB 2013a). However, the southern districts attract much less attention. In 2008, the 

sum of the GDP in the five southern districts (former Chongwen, former Xuanwu, 

Fengtai, Fangshan, and Daxing) was less than one fifth of that in the five northern 

districts (Haidian, former Xicheng, former Dongcheng, Changping, and Chaoyang) (Li 

2009). Xishan or the Western Hills dominates the western part of Beijing. Most parts of 

Mentougou, as well as the western parts of Haidian, Shijingshan, Fengtai and Fangshan 

are mountainous, which limits the expansion of the urban area of Beijing westward. The 

imbalance is also reflected in the distribution of the subway lines. Line 1 and Batong Line 

are almost along the boundary of northern and southern Beijing. The density of subway 

lines is much higher in the northern part. Besides more branch lines there is also an arc 

line, Line 13, constructed in the north. This imbalance is expected to result in different 

survivability. 

 

3.2 The Beijing Subway System 

Even though Beijing has long been well known for the number of bicycles on its streets, 

its motor traffic has been rising rapidly and has created a great deal of congestion 

(Meimeili 2014). At the end of 2012, the number of the registered automobiles in Beijing 

was 5.2 million, while it was only 1.6 million in 2000 (BTMB 2013). This rise in 

automobile ownership brings about traffic jams as a major concern. The worst traffic jam 

in history happened along the Beijing-Tibet expressway to the north of Beijing in 2010. 

The 62-mile long traffic jam lasted for twelve days (Gorzelany 2013). Traffic in the city 

center is also often gridlocked and is only predicted to get worse as the number of 

vehicles on Beijing’s roads increases. It is predicted that Beijing will have over 6 million 

cars on its roads by 2016 (Mu 2012). Besides the increase in the number of automobiles, 

Beijing's urban layout also has the potential to worsen the situation. Due to the original 

city planning, many government offices, shopping centers and large enterprises are 

located in the downtown area of Beijing, while most of their employees live far away. It 

has become a major burden on the local transportation system to carry them in and out of 

the city during rush hours. Drastic approaches have been taken to mitigate traffic jams 
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(ChinaAutoWeb 2010). Large amounts of money has been spent in dealing with 

congestion, including 180 billion RMB (about 30 billion USD) spent between 2004 and 

2008 (Du 2003). However, the approaches have not prevented the condition from 

worsening. The average time wasted on congestion per vehicle was 1 hour and 55 

minutes on weekdays in 2013, increasing by 25 minutes from that in 2012 (BMCT 2014). 

This result shows that limiting the number of registered vehicles cannot completely tackle 

congestion when confronted with the soaring population and the growing travel demand 

in Beijing. In addition to the restrictions on the number of cars on the roads and the 

construction of new roads, the fares of public transportation have been decreased to 

encourage more people to use it.  

The major forms of public transportation in Beijing include the public bus service 

(including trolleybus), the Beijing subway system and the Beijing suburban railway. 

Public bus service in Beijing is the most extensive, widely-used, and affordable form of 

public transportation in the urban and suburban districts of the city. In 2012, there were 

996 bus routes and 21839 buses operating, which delivered 5 billion rides (BPTG 2013). 

However, when confronted with congestion, the public buses are also trapped. Without 

proper designation and operation, bus stops can be a possible cause to impede normal 

traffic flow as well. Lots of new concepts have been introduced and applied to improve 

the bus service. Nowadays, there are four Bus Rapid Transit (BRT) lines in Beijing, 

including specific stations and lanes reserved only for buses. This system can effectively 

increase the average speed of buses in rush hours. However, there are still issues 

remaining that need to be tackled. For example, the specifically reserved lanes for buses 

actually reduce the available roads for private vehicles, which may worsen the traffic 

condition to some extent. The lack of BRT at crossroads may clog the whole system. The 

fact that the separated BRTs have not been joined to become a network also reduces the 

functionality of the BRTs (Bao 2013). In order to handle the problems, the Beijing 

Transportation Authorities are experimenting with a new type of public transport vehicle 

called the 3D Express Coach, also known as the straddling bus. The bus runs along a 

fixed route, and its passenger compartment spans the width of two traffic lanes. It 

straddles the roads at an overall height of 4 to 4.5 m (13.1 to 14.8 ft.), thus vehicles lower 

than 2 m (6.6 ft.) high will be able to pass underneath the bus, reducing the number of 
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traffic jams caused by ordinary buses loading and unloading at bus stops (Lee 2010). 

Even though this invention may improve the public bus service, it is still in the 

experiment phase. The Beijing suburban railway, which is a commuter rail service that 

connects urban Beijing with outlying districts and counties beyond the reach of the city's 

Beijing Subway network, is still under construction. Thus, the Beijing subway system, as 

a service totally beyond the influence of the congestion on the ground, is the most timely 

and reliable public transportation service especially during rush hours in downtown, and 

it has become one of the first choices among transportation modes in Beijing with annual 

ridership ranking third in the world at 2.46 billion trips in 2012 (BMBS and NSOB 

2013a, BMCT 2013a, Liu 2013a).  

The Beijing Subway is a rapid transit rail network that serves the urban and 

suburban districts of Beijing. After its initial line was completed in 1969, it has grown to 

17 lines, 227 stations and 465 km (289 mi) of track in operation (shown in Figure 3.2), 

making it the third longest subway system in the world after Seoul and Shanghai (Tang 

2012). The subway lines generally follow the checkerboard layout of the city. Most lines 

run parallel or perpendicular to each other and intersect at right angles. According to the 

areas they serve, the lines can be classified into 2 groups. 

Lines serving the urban core: 

 Line 1 is a straight east-west line underneath Chang'an Avenue, which bisects the 

city into north-south segments. It connects major commercial centers, Xidan, 

Wangfujing, Dongdan and Beijing’s CBD. 

 Line 2 is a rectangular loop line following the Ming-era city wall that once 

surrounded the inner city. It stops at 11 of the wall's former gates (whose names 

end in “men”), which have become busy intersections now, as well as the Beijing 

Railway Station. The traditional financial center, Beijing Financial Street in the 

Fuxingmen and Fuchengmen area, is also along this line. It was the first loop line 

of the system. 
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Figure 3.2. Schematic map of the lines of the Beijing subway system in operation 

(Not to scale) (Beijing Subway 2013) 

 Line 4 is a mainly north-south line running west of the city center with stops at 

the Summer Palace, Old Summer Palace, Peking and Renmin Universities, 

Zhongguancun Technology Park, National Library, Beijing Zoo, Xidan and 

Beijing South Railway Station. It extends southward to Daxing district as Daxing 

Line. 

 Line 5 is a straight north-south line just to the east of the city center. It connects 

several large apartment complexes, like Tiantongyuan, Beiyuan and 

Songjiazhuang, with the city center. It also passes by the tourist attractions of 

Temple of Earth, Lama Temple and the Temple of Heaven. 

 Line 6 is a nearly straight east-west line running parallel to the north of Line 1. It 

links the large apartment complexes to the east of the city center, namely 
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Chaoqing, Changyin and Dingfuzhuang, with Beijing Financial Street and other 

shopping centers. 

 Line 8 is a north-south line following the city’s central axis from Changping 

District through Huilongguan and the Olympic Green to Guloudajie, which is a 

transfer station to Line 2. 

 Line 9 is a north-south line running west of Line 4 from the National Library 

through the Military Museum and Beijing West Railway Station to 

Guogongzhuang, southwest of the city center. It extends southwest to Fangshan 

District as Fangshan Line. 

 Line 10 is a larger loop line outside Line 2 that connects every other line passing 

the city center. It is also the busiest line in the system and the longest loop subway 

line in the world (Xinhua 2013). 

Lines to outlying suburbs: 

 Batong Line extends Line 1 eastward from Sihui to suburban Tongzhou District 

as a surface level rapid transit rail line. Because it passes many large apartment 

complexes and promotes the construction of the residential areas in Tongzhou 

District, Batong Line is one of the most crowded lines in the system (Xu 2011). 

Even though the parallel Line 6 opened in 2012 shares parts of its traffic flow 

and causes a 12.14% decrease of its daily ridership and a 10-20% reduction in 

flow during rush hours, during peak hour the line still operates above 100% 

capacity (BMCT 2013b). 

 Airport Express connects the Beijing Capital International Airport with Line 10 

at Sanyuanqiao and Lines 2 and 13 at Dongzhimen. 

 Line 13 arcs across the north of the city. It extends Line 2 north by connecting 

Xizhimen and Dongzhimen, at the northwest and northeast corners of Line 2. 

 Line 15 branches off Line 13 at Wangjing West and runs northeast to suburban 

Shunyi District. 

 Changping Line branches off Line 13 at Xi'erqi and runs north to Changping 

District. 
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 Line 14 runs west from Xiju on Line 10, across the Yongding River, to 

Zhangguozhuang in Fengtai District. It connects the China (Beijing) 

International Garden Expo with the city center. 

 Fangshan Line extends Line 9 south from Guogongzhuang to Fangshan District 

in the southwestern suburbs. 

 Daxing Line extends Line 4 south to Daxing District. 

 Yizhuang Line extends from Line 5's southern terminus to Yizhuang District. 

The last decade has been a transition period for the Beijing subway system, as its 

operation mode has changed from single line operation to network operation and 

experienced the largest effective growth in the world cities (Niedzielski and Malecki 

2012, Wang et al. 2012). Before Beijing won the bid to host the 2008 Summer Olympics, 

the Beijing subway system only had its first two lines (Line 1 and Line 2) built in the 

1970s. The rapid evolution exposes the problem that the system may suffer from 

malfunctions and disruptions. The following are some examples: 

 The worst accident of the Beijing subway system happened on July 5, 2011, when 

an escalator malfunction at the Beijing Zoo station killed one person and injured 

28 others (Zhan and Lea 2011).  

 Due to the heavy load and malfunctions of the signaling system, Line 10 of the 

Beijing subway system used to stop working six times in a month (Xi 2013). 

 Because Line 1, Line 2, Line 13 and Batong Line of the Beijing subway system 

were designed and constructed early, there is no platform screen door which 

separating the platforms and the tracks along these lines. Accidents, such as 

accidental falls off the platform, suicide attempts and homicides by pushing, 

happen occasionally (Shen and Sun 2013, He 2014, Yin and Xiao 2014).  

All the accidents remind us that the disruptions of the Beijing subway system, whether 

accidental or intentional, can occur randomly and may affect different stations 

simultaneously.  
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Figure 3.3. Hubs in the Beijing subway system 

Subway stations are often classified into two types based on their roles in the 

network: non-transfer and transfer stations. Note that unlike a non-transfer station, a 

transfer station connects different lines to collect traffic flows and to reallocate them, 

resulting in more frequent use and a heavy concentration of passenger flow. In theory, 

selected multiple disruptions of transfer stations may easily disconnect the system to an 

extent, while a single and random disruption rarely causes a critical situation of operation 

(Kim 2009). Shown in Figure 3.3 with red points are the hubs in the Beijing subway 

system, which are the stations whose degrees are greater than two. The hubs are a special 

subset of the transfer stations in the system because some of the transfer stations only 

connect the terminus of two subway lines, and their degrees are equal to two. These 

transfer terminus do not serve to collect traffic flow and redirect it, which makes their 

function similar to the non-transfer stations. Therefore, these special cases are excluded 

from the candidate set in the analysis. Under this definition, in the Beijing subway 
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system, 34 hub stations are identified and are used as a candidate set for disruptions in 

our analysis. 

 

3.3 The Passenger Flow of the Beijing Subway System 

In the analysis, to measure survivability, the passenger flow of a station is estimated 

using the population distribution and the distance to any other station. A challenge for 

estimation is how to define the served area of the subway system, which is delineated 

based on the walking distance. Different values have been applied in the previous 

research. Shaw (1991) consider 2,000ft as a reasonable distance to estimate of the 

maximal walking distance for the Miami Tri-Rail system. Kuby et al. (2004) select a 

round distance of one-half mile for the walking distance. Considering the land use in 

Beijing, we assume that places within one-hour walk (5 km) are the subway system’s 

served area (Browning et al. 2006, Mohler et al. 2007). As illustrated in Figure 3.4, we 

generate a five-kilometer buffer zone of the network. Thiessen polygons are applied to 

divide the served areas into separate service zones of stations. Then we estimate the 

potential passengers of each station within its service zone using the Sixth National 

Population Census taken in November, 2011. With more subway stations concentrating, 

the city center is separated into more tiny areas. The service areas tend to expand 

progressively as they approach the suburbs. The population within each service area is 

shown in Figure 3.4 with different shades. From the city center to the suburbs, the sizes 

of the service areas generally increase, while the population density decrease. Thus, the 

number of each station’s potential passengers decreases at first, followed by an increase, 

and then decreases again. 
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Figure 3.4. The population served by the Beijing subway system 

 (Note: 5 km buffer applied and delineated based on Thiessen polygons) 

The shortest paths between every two stations based on the network distance are 

generated at all disruption scenarios including status quo, because we assume that 

passengers will be informed of disruptions immediately so that they can adjust their trips 

accordingly. By calculating the shortest paths at each scenario, passenger flow across the 

system can be estimated more accurately. Considering that even though the distances 

between every two adjacent stations are not completely identical, the time taken to travel 

between adjacent stations is similar (for example, 2-3 minutes for the Beijing subway 

system), we use the topological distance to simplify the computation (Beijing Subway 

2014).  

The estimated passenger flow should be adjusted based on the days of the week, 

considering that daily ridership and travel demand to each line fluctuate. For example, the 

number of passengers using the subway system on Friday is 3 million more than that on 

Sunday (Beijing Subway 2013). To reflect this fact, the estimated flows are adjusted 
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based on the empirical daily ridership of each subway line for two weeks (5/20/2013-

6/2/2013). The ridership date are from the official weibo account of the Beijing subway 

system. We adjust the estimated passenger flow of a station by multiplying the ratio 

between the actual daily ridership and the estimated passenger flow along the line at 

status quo. In this study, we select the actual ridership of Friday and Sunday to represent 

the passenger flow of weekdays and weekends, respectively. As illustrated in Figure 3.5, 

the ratios between the ridership on Friday and Sunday of each subway line are not 

constant. For example, even though the ridership of Lines 1, 2, and 4 are almost identical 

on Friday, the difference between the ridership on Friday and Sunday is much smaller on 

Line 4 than the differences on the other lines. As introduced above, Line 4 is a major 

north-south line running west of the city center, and its extension to the south, Daxing 

District, is Daxing Line, which shares a similar ratio of daily ridership on Friday and 

Sunday. Meanwhile, the ridership fluctuation of the lines serving the southwest of the 

system, like Line 9, Daxing Line, Fangshan Line, and Line 14, is smaller than that of 

other lines. It is reasonable to speculate that this imbalance may result in the differences 

in the characteristics of the Beijing subway system. Thus, we explore its survivability 

results for weekdays and weekends. 

 

Figure 3.5. Daily ridership of subway lines  
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CHAPTER 4   METHODOLOGY 

In this paper, we define the term survivability as the ability of a network system to 

maintain its topological and functional state when a certain level of disruptions on 

stations occurs simultaneously. Note that disruptions affecting the same number of 

stations are considered as being on the same disruption level.  For example, at the mth 

disruption level, where the number of disrupted stations is m out of the 34 hubs, the 

number of possible scenarios at the level is 34 mC . Accordingly, the total number of 

potential incidences for two-hub disruptions is 
34 2 561C  . The accessibility-based 

simulation measure (ASM) examines the network survivability of the Beijing subway 

system from no disruption (status quo) to the level in which all of the 34 hubs are 

disrupted from two perspectives: [1] system connectivity loss ( loss

mT ) and [2] system flow 

loss ( loss

mF ).  

 

4.1 Data Preparation 

According to the survivability measures reviewed in Chapter 2, several empirical data are 

necessary for survivability assessment. Now that a subway system is evaluated as a 

network system, the network itself is the foundation for any analysis. A network can be 

represented by its topology which indicates the arrangement of arcs and nodes, while a 

map recording the geographic locations of the network components will offer more 

information. Other data needed are determined by the survivability measures applied. A 

measure considering the influence of congestions may require empirical data, such as the 

traffic volume and the speed of vehicles, to build a model.  

There are many data models for transportation networks. For instance, almost all 

commercial GIS packages connect or represent a network as a set of nodes 

interconnected by a set of links with their coordinates. Because the absolute geographic 

locations of the subway stations and lines are not applied in the calculation directly, the 

Beijing subway network is also represented as a matrix between the origins and 

destinations. The matrix of a network system (G) on n nodes is a n n  matrix where the 
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entry ija  are the property of the links between node i  and j . Because there is no loop 

directly from any node i  to itself in the Beijing subway network, the diagonal entries are 

always equal to 0. The entries represent different network properties. For example, the 

entries can indicate the length of the shortest path between nodal pairs, which results in a 

D matrix or Shimbel matrix. The connectivity matrix (hereafter C-Matrix) is used to 

represent the topological connectivity of network systems. The entries in the 1st level C-

Matrix ( 1C ) is defined to represent the adjacent connections between every two nodes. If 

a node is connected to another node, then we define their connectivity as 1, otherwise 0 in 

1C  (as shown in Figure 4.1). 

 

Figure 4.1. 1st level C-Matrix 

1C  is required to be generated as the starting point of the following processes. The 

raw data record the sequences of the subway stations along each line. It is reasonable to 

assign that the stations, except the termini, are connected with their two adjacent stations, 

because the subway lines do not bifurcate. Every terminus is only linked to one adjacent 

station. In this case, transfer stations, which exist on different lines, will be represented 

repeatedly in the matrix. For example, the station “Xizhimen”, which is on Line 2, Line 4 

and Line 13 has three columns/rows related to it to represent its adjacent relationships on 

the three lines respectively. In order to connect separated lines through the transfer 

stations, a virtual connection is applied to link the transfer stations on different lines. For 

instance, the connectivity between the station “Xizhimen” on Line 2 and that on Line 4 is 
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assigned as 1, which indicates that transferring from Line 2 to Line 4 through Xizhimen 

will take the same amount of time as moving between the adjacent stations along a line, 

approximately 2-3 minutes (Figure 4.2). Because the repeated transfer stations on 

different lines share similar properties, after evaluating the survivability, only the results 

of the first cases are included in the analyses. For example, in the case of Xizhimen, 

Xizhimen on Line 2 is chosen to represent this station in the final analyses.  

 

Figure 4.2. Virtual connections for transfer stations in 1C   

The simulation is adjusted to represent the real world more accurately by applying the 

transferring penalty. Now that the transfer stations exist repeatedly in the matrix, a 

dictionary, which records the indices of the transfer stations in the matrix, is generated to 

accelerate the positioning of the transfer stations when changing their connectivity. In a 

disruption scenario, the connections between the disrupted stations and their adjacent 

stations are destroyed, which is processed as the following steps: 
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 Step 1: Find the indices of the disrupted stations ([ 1 2 3 1 2, , , , ,...i i i j j  ]) according to 

the dictionary. 

 Step 2: Position the corresponding columns and rows in 1C  based on the indices 

from the first step, and assign all the entries in them as 0. 

 

4.2 System Connectivity Loss 

Now that 1C  at status quo is generated from the raw data, and will be modified in 

disruption scenarios because of different stations disrupted. Let us define the kth level C-

Matrix (
kC ) as the k-step connection matrix of a network, which results from 

1 1  ( 2)kC C k    and 1 2 1  ( 3)k kC C C k    , and so forth. Each entry (
k

ijc ) in kC  represents the 

number of possible paths with length k between nodal pairs (nodes i and j). Thus, not 

only the adjacent connections but also connections with certain steps can be recorded in a 

series of C-Matrices. Then the sum of the entries in all the kC  indicates the topological 

connection of a network ( [1, ]k d , d = the diameter of the network, which is the length of 

the longest shortest path between the nodal pairs in a network), where all the possible 

paths with k steps ( [1, ]k d ) are recorded. Note that the number of meaningless paths 

visiting nodes repeatedly increases with k, k  is employed to mitigate the attenuation 

effect ( 0.5   ). We define this measure as the system connectivity ( sysT ), as expressed 

below:  

 
1 1 1

d n n
sys k k

ij

k i j

T c
  


,

 (7)

  

where  

k: the number of steps; 

 : the constant to mitigate the attenuation; 

d: the diameter of the network G; 
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n: the number of nodes in the network G; 

k

ijc  : the entry at the ith column and the jth row in kC  ( [1, ]i n , [1, ]j n ). 

A larger value of sysT  indicates a more complex and more highly connected 

network. Note that disruptions occurring at subway stations affect the topological 

relationship in the network by removing all links to the disrupted station, resulting in a 

decrease in the total connectivity of the network, sysT . The system connectivity loss to 

the number of m nodal disruptions ( loss

mT ) is calculated by the disparity between the total 

connectivity index in this scenario ( sys

mT ) and the original sysT  at status quo (
0

sysT ): 

 0

loss sys sys

m mT T T   (8) 

A larger loss

mT  value represents a smaller survivability after a disruption due to its reduced 

path availability. 
loss

mT varies with the combinatorial effect of the stations based on 

different sets of stations disrupted. By comparing all loss

mT  values at the mth disruption 

level, the critical scenarios when m stations are disrupted are revealed. 

 

4.3 System Flow Loss 

Besides connectivity, the magnitude of the system flow loss ( ,

loss

m dayF ) is also selected to 

reflect the impact of disruptions. We assume that after disruptions the original passenger 

flow is redirected to alternative subway paths rapidly, and the system flow therefore 

reaches a new balance, although the volume of passengers decreases due to the increasing 

travel distance after rerouting. In this research, the flow loss is assessed based on the 

spatial interaction model, which means the number of passengers between two stations 

will decrease with increasing travel distance caused by disruptions. The shortest distances 

between the nodal pairs are calculated simultaneously when generating C-Matrix series to 

reduce extra computational burden. To estimate the loss of passenger flows in the mth 

disruption scenario and compare the difference in ridership between weekdays and 

weekends, we use four steps. First, suppose that there are two stations where the number 
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of the potential passengers are Pi and Pj, respectively, in the network, and that their 

distance is (dij); then the volume of passenger flows Vij is calculated using 

 
( )i j

ij

ij

P P
V

d


   (9) 

Then, the total volume of the passenger flow at station i ( S

iV ) is equal to the sum Vij from 

station i to all other stations: 

 
S

i ij

j S

V V


  (10) 

where  

 S: the set of all stations in the Beijing subway system except the station i itself. 

Second, the total inbound and outbound of a subway line a ( L

aV ) is calculated by 

summing S

iV  of the stations along this line: 

 
L S

a i

i A

V V


  (11) 

where  

S

iV : the estimated volume of passenger flow of station i; 

a: a subway line of the Beijing subway system; 

A: the set of subway stations along subway line a. 

Third, S

iV  should be calibrated by the ratio between the actual ridership (ra,day) 

and the estimated total inbound and outbound of line a at status quo (VL
a). Because the 

actual ridership is recorded according to the number of tickets used in stations, it reflects 

the actual inbound and outbound along subway lines. Line a represents the line passing 

station i, which can be two or more lines. Because of different ,a dayr  used, the adjusted 

system flow reflects the remaining functionality of stations after disruptions on Friday 

and Sunday. For the mth disruption scenarios, the adjusted system flows at station i (noted 

, ,'m day iV ) are calculated using 
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, , ,

,0

'
L

a dayS

m day i m i L

a U a

r
V V

V

    (12)

  

where  

m: the index of the disruption level; 

,a dayr : the actual ridership along subway line a on a certain day (day: Friday or Sunday); 

VL
a: the estimated volume of the passenger flow along subway line a under status quo; 

,

S

m iV : the estimated volume of the passenger flow of station i at the mth disruption level; 

LU  : the set of subway lines passing station i because more than one line passes transfer 

stations. 

The fourth step is to sum the adjusted volume of passenger flow of all the stations 

to calculate the total volume of passenger flow in the whole system for the mth disruption 

scenario (
,m dayF ): 

 , , ,'m day m day i

i S

F V


   (13) 

In the final step, the system flow loss ( ,

loss

m dayF ) is simply the difference between 

Fday at status quo and Fm,day for the mth disruption scenario. 

 

4.4 The Method of Exploring Network Resilience 

When the number of disrupted stations is fixed, the extent to which a network system will 

degenerate varies with the disrupted stations’ topological importance and the scale of 

passengers served. Now that both topological attributes and service functions of the 

stations are different, a range, which is defined by the best and worst scenarios, can be 

drawn for any given number of disruptive stations, is an efficient way of identifying a 

group of critical stations and examining the resilience of the network system. Prior 

attempts have been made to identify the simulation results using the concept of an 
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envelope (Kim 2009). As illustrated in Figure 4.3, named survivability envelope, the y-

axis represents the level of network survivability and the x-axis represents the 

 ( 0,..., )thm m n  disruption levels. The range of the disruptions’ impact is drawn from 

status quo (0th level) to the level where all transfer stations are disruptive (nth level). At 

each level, the gap between the best and worst scenarios (minimum and maximum 

negative impacts, respectively) is the survivability performance. For example, if the best 

and worst scenarios are 50% and 1.8% at the 100th level, then the survivability 

performance is 48.2%. The range will be narrowed with the levels.  

 

Figure 4.3. Survivability envelope 

A significant challenge in drawing the envelopes is the complexity of the 

computation to complete the simulation, which heavily depends upon the network size 

and disruption levels. Although we only consider 34 hubs in generating scenarios, it is 

computationally burdensome for some range of disruption scenarios. For instance, the 

computation of the 1st level disruption for the enumerated 34 scenarios (34C1 = 34) takes 

nearly 85 seconds using the Windows 7 32-bit OS platform with Intel® Core™ i5- 

2.60GHz. Given this condition, simulating all the scenarios at the 5th level will cost 

34 5 85 34C    seconds (more than 8 days). Before the 17th level, the computation 

complexity increases with the number of disrupted stations. At the 17th level, the explicit 
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enumeration will cost about 184 years. Thus, simulating scenarios between the 5th and 

29th levels is not well applicable. To tackle this problem, Weighted Rank-based 

Simulation Algorithm (WRSA) is developed to traverse the potential disruption scenarios. 

The process of the WRSA consists of two parts. At lower complexity levels, where the 

explicit enumeration is tractable (i.e., 0 to 4th, and 30 to 34th), all the possible scenarios 

are enumerated, and the best and worst scenarios are identified. However, for other 

levels, the algorithm searches the scope of potential disruption scenarios by constructing 

the set of candidate hubs, which is a subset of all hubs, using the global rank index 

(GRIm,i) of each hub at each level. This index evaluates the criticality of the hubs based 

on their local rank index ( ,m iLRI ) at all levels that have already been explored. The steps to 

calculate GRIm,i (1 ≤ 𝑚 ≤ 34) are as follows. Suppose that the best and worst scenarios 

are identified at the mth level. The algorithm sorts all scenarios at the mth level from best 

to worst in terms of the criteria, loss
mT  and ,

loss
m dayF . The best scenario in each criterion 

represents the most survivable, while the worst scenario represents the least survivable 

case. The next step is to construct the most and least critical hub sets from the selected 

scenarios. In the selected scenario, the WRSA evaluates the criticality of the hubs 

according to the influence of the scenarios they contribute to, which means that each hub 

has two different ranks, named rtm,i and rfm,i, corresponding to each criteria loss

mT  and 
loss

mF , 

respectively. Using these two ranks, the indices LRIm,i and GRIm,i are calculated for each 

hub i at the mth level using (14) and (15), respectively:  

 , , ,(1 )  (0 1, 1)m i m i m iLRI w rt w rf w m          (14) 

 
1, 1,

, , 1,0.5  ( 2)

i i

m i m i m i

GRI LRI

GRI LRI GRI m




   
 (15) 

where  

w: the weight to calibrate the importance of the two survivability measures (in this 

research, 0.5 is applied to treat both measures being equal). 
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Figure 4.4. Weighted rank-based simulation algorithm 

As shown in Figure 4.4, the algorithm includes all hubs in the candidate set for 

the 1st to the 4th levels and 30th to the 34th levels, which are applicable for explicit 

enumeration, and generate a disruption candidate set for the mth level according to 

𝐺𝑅𝐼𝑚−1,𝑖  when 5 ≤ 𝑚 ≤ 29. Specifically, the WRSA requires four steps.  

 Step 1: Explicitly enumerate the potential combinatorial disruption scenarios of the 

disruption candidates at this level. Calculate loss

mT  and 
,

loss

m dayF  for each scenario.  

  Initial disruption candidate set  

(all hubs) for m=1 

Step 1: Enumerate hubs at the disruption level m 

Step 2: Calculate rank indexes  
(LRIm,i and GRIm,i) 

Step 3: Sort stations according to index GRIm,i 

Step 4: Generate a new disruption candidate set 

 
Is there any more 

disruption level? 

m = m + 1 
(1 ≤ m ≤ 33) 

Terminate the algorithm 

Yes 

No 
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 Step 2: Calculate the criticality for the selected stations using 
,m iLRI  and 

,m iGRI . 

 Step 3: Sort the stations based on 
,m iGRI from the most critical to least critical 

stations. These candidate sets are used to complete the scenario. 

 Step 4: Select n top stations and n bottom ones in the set of candidate stations for the 

next level scenario.  

When m equals the number of the hubs in the system, the algorithm is terminated with all 

potential disruption levels explored. 

In order to validate the algorithm, 1000 potential disruptions are generated 

randomly in each disruption level. The quality of the algorithm is determined by the 

percentage of random scenarios whose reaction to disruptions can be predicted in the 

range set by the algorithm. 
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CHAPTER 5   RESULTS 

By applying the WRSA, the simulation of the potential disruption scenarios in the Beijing 

subway system becomes applicable. In each simulated disruption scenario, the ASM 

measures the influence of the corresponding disruption from both the connectivity and 

system flow perspectives so that the criticality of the set of hubs can be revealed. Before 

the results of the assessment can be used to explain the ramifications of disruptions, we 

discuss first how effectively the WRSA is able to approximate the range of the 

disruptions’ influence. Because the disruptions happening at a single station are most 

common, the second part of this chapter discusses the criticality of every hub based on 

the different consequences caused by excluding one of the hubs each time from the 

system. The last part of this chapter presents the impact of the disruptions occurring at a 

group of stations simultaneously. 

 

5.1 Validation of the WRSA 

For the Beijing subway system, the explicit enumeration of the potential disruption 

scenarios cannot be completed within a reasonable time when the number of disrupted 

stations is between 5 and 29. For example, the largest number of the potential scenarios is 

in the 17th level with
9

34 17 2.33 10C   . Following the ASM and the WRSA, the number of 

the potential scenarios in each level is limited to 20 thousand to accelerate the 

computation and to, in turn, make more in-depth exploration of the combinatorial 

disruption scenarios possible.  

As a heuristic method to speed up the process of finding a satisfactory solution 

where the exhaustive search is impractical, the WRSA is required to be validated before 

its results can be considered reasonable. In this study, 1000 disruptions are randomly 

generated at every disruption level from the 5th to the 29th levels, which results in 25,000 

samples in total. These samples are used to check how well the algorithm can perform in 

determining the range of the impact of disruptions.  
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Figure 5.1. The comparison of the survivability envelops according to (a) the 

normalized system connectivity; (b) the normalized system flow on weekdays 

(Friday); (c) the normalized system flow on weekends (Sunday)  
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Figure 5.1.a 

 

Figure 5.1.b 

Figure 5.1 continued 
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Figure 5.1.c 

Figure 5.1 continued  
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Figure 5.1 shows the comparison between the survivability envelops of the 

WRSA’s results and the random ones according to the ASM. The ranges of the impact of 

the random disruptions, which are delineated with yellow dash lines, are within the area 

defined by the results of the WRSA. Even though this random examination does not 

guarantee that the boundary determined by the WRSA is perfect, it is reasonable to 

believe the algorithm is effective to approximate the extremes among the potential 

scenarios. Based on the exploration of all disruption levels, two items are worth noting in 

the following sections. 

 

5.2 Hub Criticality 

The first analysis is focused on evaluating the network survivability at an individual hub 

in terms of the ASM. Based on the computation, the criticality of the hubs is ranked 

according to their 1

lossT , 1, 1, and loss loss

Friday SundayF F . A higher rank indicates the hub is more critical.  

 

Table 5.1. Part of the survivability results of the first level disruptions 

Rank 
1

lossT   1,

loss

FridayF  1,

loss

SundayF  

   Hubs Value     Hubs 
Value 

(thousand) 
   Hubs 

Value 

(thousand) 

1 Xizhimen 143.76 Gongzhufen 1052.14 Gongzhufen 737.21 

2 Dongzhimen 117.57 Guomao 922.18 Guomao 644.54 

3 Chegongzhuang 100.98 Wangjingxi 815.70 Wangjingxi 569.54 

4 Gongzhufen 93.31 Xierqi 772.61 Xierqi 533.20 

5 Chaoyangmen 89.13 Jiaomenxi 709.50 Liuliqiao 526.58 

6 Songjiazhuang 87.49 Liuliqiao 708.38 Jiaomenxi  516.10 

7 Jianguomen 86.81 Haidianhuangzhuang 667.74 Hujialou 498.14 

8 Yonghegong 85.30 Hujialou 655.62 Haidianhuangzhuang  445.91 

9 Dongdan 83.20 Songjiazhuang 602.77 Songjiazhuang 425.20 

10 Shaoyaoju 81.32 Xizhimen 580.40 Xizhimen 406.48 

 

Table 5.1 summarizes the ranks of the top ten critical hubs and the values of their 

survivability measures, and Figure 5.2 shows the distribution of the normalized ASM.  
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Figure 5.2. Survivability results of the first level disruptions 

In Figure 5.2, 1

lossT represents the loss of possible paths caused by one-hub disruptions. In 

order to highlight the extent to which the disruptions affect the connectivity, 1

lossT  

normalized with the system connectivity at status quo is used. The 
1

lossT  of the three most 

critical hubs, Xizhimen, Dongzhimen, and Chegongzhuang, is much higher than the rest 

hubs. Both of Xizhimen and Dongzhimen are the hubs connecting Line 2 and Line 13. As 

introduced in the Chapter 2, Line 2 is the only loop line serving the city center, which is 

the traditional “inner city”, while Line 13 is a special line solely serving the northern part 

of the city and intersecting with four branch lines in the north. In particular, the degree of 

Xizhimen is five, which is the largest in the system, followed by Dongzhimen whose 

degree is four. Chegongzhuang is the hub next to Xizhimen on Line 2, and its property of 

connectivity is similar to Xizhimen. The geographic locations of the rest of the top ten 

critical hubs based on 
1

lossT are also shown in Figure 5.3 with green circles. Notably, 

similar to the above-mentioned three hubs, most of the critical hubs are clustered within 

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

N
o

rm
al

iz
ed

 s
ys

te
m

 f
lo

w
 lo

ss
 (

%
)

N
o

rm
al

iz
ed

 s
ys

te
m

 c
o

n
n

ec
ti

vi
ty

 lo
ss

 (
%

)

𝑇1
𝑙𝑜𝑠𝑠 𝐹1,𝐹𝑟𝑖𝑑𝑎𝑦

𝑙𝑜𝑠𝑠 𝐹1,𝑆𝑢𝑛𝑑𝑎𝑦
𝑙𝑜𝑠𝑠



55 

Line 2, which indicates the hubs in the center of the system have a large influence upon 

the system connectivity than the peripheral hubs. The result is consistent with the 

common assumption that the stations at the center not only affect the connections from/to 

them, which is similar to the peripheral stations, but also the connections that pass the 

center of the system.  

 
Figure 5.3. The locations of the top 10 critical hubs  

based on topological loss and flow loss 

Meanwhile, the three exceptions along Line 10 display an important fact that Line 10 is 

effective to redirect connections which would pass Line 2 instead. One good example is 

Songjiazhuang, which ranks 6th and connects Line 10 and Yizhuang Line. Without Line 

10, Chongwenmen, which is the adjacent hub of Songjiazhuang on Line 2, would be the 

bridge of Yizhuang Line and would have the criticality similar to Songjiazhuang. 

However, Chongwenmen ranks 16th in reality, because when it is disrupted, there are 

remaining connections to Yizhuang Line through Line 10. Finally, most of the 

normalized 1

lossT  are about 2%-3%, and their average is 2.9%. The small standard 
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deviation of 1

lossT  also points out the influence of targeted and random disruptions at a 

single hub is similar according to the system connectivity. 

However, through 
1

lossT , it is difficult to reveal other attributes of subway systems, 

including geographic features such as distance, time, and actual passenger demand. In 

that sense, the results of critical hubs based on 1, 1, and loss loss

Friday SundayF F  more clearly reveal the 

criticality of hubs with different interpretations. First, as observed in Figure 5.2, similar 

to the normalized 
1

lossT , the values of the 1, 1, and loss loss

Friday SundayF F  normalized with the 

corresponding daily ridership at status quo also concentrate at 3%-4%. However, they 

reveal more outliers than 1

lossT  does. For example, if the most critical hub, Gongzhufen, 

which is the bridge connecting Line 1 and Line 10 (labeled in Figure 5.3), is disrupted, 

the west part of Line 1 would be completely excluded from the system, and the estimated 

passenger flow would decrease by nearly 11% on both Friday and Sunday. This is 

consistent with the fact that Line 1 and Line 10 are the two busiest lines in the Beijing 

subway system. There are seven hubs the disruptions at which will cause more than 6% 

system flow loss, while the worst connectivity loss is less than 6%. Compared with 
1

lossT , 

which weighs all the stations the same, 1, 1, and loss loss

Friday SundayF F  reveal more serious potential 

influences of the one-hub disruptions. Second, notice that all the critical hubs based on 

1, 1, and loss loss

Friday SundayF F , except Xizhimen, are bridges. This fact is very significant in terms of 

network survivability because excluding one of the bridges can result in losing the entire 

passenger flow from or to an entire branch line. Third, in our analysis, 11 out of 34 (33%) 

hubs will cause a system flow loss of more than 5%, and the average system flow loss 

would be 4.2% on both days. In other words, given the daily ridership of the system, the 

expected value of the number of the affected passengers confronted with a one-hub 

disruption is nearly 427,000 on Friday and 300,000 on Sunday, highlighting that even a 

minor disruption in a large subway system such as Beijing’s can trouble a large number 

of customers. Fourth, the distribution of the top ten critical hubs also reflects a special 

pattern of the system. Gongzhufen and Guomao, which are the top two critical hubs, are 

both the hubs connecting Line 1 and Line 10. Line 1 had always been the busiest line in 
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the system until its ridership was outnumbered by that of Line 10 in 2013 (Liu 2013b). 

The extension of Line 1 to the eastern part of the city, Batong Line, is also well-known 

for its high ridership (Xu 2011). Wangjingxi, Xierqi, Jiaomenxi, and Liuliqiao are 

similar, which are all the bridges to the branch lines that do not share service areas with 

other lines. However, the locations of the first two hubs determine that they are more 

critical than the latter two, because the southern and the southwestern parts of Beijing 

served by the latter two are the less developed areas within the city. Finally, the members 

of the top ten critical hubs indicated by 
1, 1, and loss loss

Friday SundayF F are identical, although there are 

some changes in the lower ranking among them. The fluctuation of the passenger flow 

across a week does not affect the criticality for the top five hubs. However, the changes 

of the rank of the remainder of the stations also imply that some stations play more 

important roles on weekends or vice versa.  

 

5.3 Network Resilience 

The network resilience to combinatorial disruptions is also important. According to the 

scenarios, disruptions that involve multiple hubs will decrease the system’s functionality 

dramatically based upon what particular set of hubs are disrupted simultaneously.   

Figure 5.4 shows the survivability envelope of the normalized system 

connectivity and the disruption levels. The bar represents the survivability performance 

of the system connectivity. From the 8th to the 26th level, the survivability performance is 

almost constant and less than 20%. The decreasing rates of the system connectivity in the 

best and the worst scenarios are similar as well. When the total 34 hubs are disrupted, 

30% system connectivity remains.  
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Figure 5.4. Survivability envelopes of system connectivity 

 
Figure 5.5. Survivability envelopes of system flow 

for Weekdays (Friday) and Weekends (Sunday) 
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Recall that the system connectivity only handles the topological characteristics of 

the network, so that it is less efficient to reveal the potential survivability issues hidden 

by other geographic factors. Figure 5.5 shows the survivability envelopes of the 

normalized estimated system flow and the disruption levels for Friday and Sunday. 

Compared with the survivability envelope of system connectivity in Figure 5.4, the 

envelopes in Figure 5.5 clearly show that the system flow is more sensitive to the 

disruptions than the system connectivity. Furthermore, the following several points draw 

special attention. First, in terms of the worst scenarios drawn in solid lines, the influence 

of one additional disrupted hub decreases with more hubs disrupted. Before six hubs are 

disrupted, the additional disrupted hub will cost a 7-10% system flow loss on average, 

and the system only maintains half of its original flow, while the final 17 hubs only cause 

less than 10% normalized system flow loss. However, in terms of the best scenarios, the 

influence of one additional disrupted hub is small at first. The decreasing rate raises and 

almost reaches a constant after the 6th level, and the system can maintain half of its 

passenger flows until 18 hubs are disrupted. The discrepancy between the decreasing rate 

of the normalized system flow in the best and worst scenarios results in the changing 

survivability performance. The gap between the normalized system flow in the best and 

worst scenarios ranges from a few percent to as high as 46% at the 8th disruption level. 

As the disruption level increases, the gap first increases rapidly, reaches its peak at the 8th 

level and then decreases slowly. In other words, the potential difference between the 

consequences of a targeted attack and a random disruption reaches its peak at the 8th 

level. This wide gap also clearly indicates that the subway system is vulnerable to 

targeted disruptions rather than random accidents.  

Comparing the survivability envelopes of Friday and Sunday, the differences 

between their boundaries, delineated by the best and worst scenarios, are not obvious by 

the 15th disruption level, which is consistent with our finding in the stations’ criticality 

that the fluctuation of the system flow is not strong enough to affect the criticality of 

some stations. After disruptions affect more stations, the remaining system flow on 

Friday tends to be less than that on Sunday in both the best and worst scenarios. Thus, on 

Friday, hubs shoulder relatively more work than on Sunday. Finally, when all the hubs 
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are disrupted, only nearly 10% system flow remains, which means the 34 hubs determine 

the main functionality of the system with 227 stations. 

Now that the effect of the fluctuation of the system flow is apparent after the 

disruption involves more than 15 stations, we take the worst scenarios in the 20th level as 

an example to explore how they affect the system from a geographic perspective. Figure 

5.6 shows the worst scenarios and marks the locations of the hubs on Friday (triangles) 

and Sunday (squares). There are five stations that are different between the two days, and 

these stations are labeled with frames. If a city axis is drawn from north to south, it is 

apparent that the four different stations on Friday are all located in the northern and 

eastern part of the system, while there are two stations on Sunday,  “Cishousi” and 

“Jiaomenxi”, which are located on the southwest corner of the system with no match on 

Friday.  

 

 
Figure 5.6. The worst scenario where 20 stations are disrupted 
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Consistent with the finding in the previous section, 5 out of the 10 different hubs are 

bridges, namely “Lishuiqiao”, “Hujialou”, “Jiaomenxi”, “Cishousi”, and “Xierqi”. These 

hubs have a large effect on the system’s survivability. The degree of the fluctuation of the 

system flow is highlighted with the width of the branch lines in Figure 5.6 representing 

the ratio between the flow on Friday and Sunday. The ratios of the “Line 5”, “Line 6”, 

“Line 1”, “Batong Line” and “Changping Line” are obviously much larger than the other 

lines. On Friday, the percentage of passengers using the branch lines in the east part of 

the system is larger than on Sunday. In other words, the imbalance of the ridership on 

branch lines between the eastern and the western parts of Beijing is more apparent on 

Friday than on Sunday. The change of this imbalance influences the relative criticality of 

the hubs and results in a difference in the distribution of the hubs.  
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CHAPTER 6   CONCLUSIONS  

This chapter summarizes the achievements and contributions of this study. We identify 

several methods of improving the results of the study that are likely to be handled in the 

future. Clearly, this study is the starting point of a more accurate assessment compared 

with the previous research. 

 

6.1 Summary of the Study 

Transportation systems facilitate the movement of people and goods between origins and 

destinations across a network. With the world population soaring in recent decades, 

public transportation, as a shared passenger transport service available for use by the 

general public, is attracting more attention. The common modes of public transportation 

include buses, trolleybuses, trams and trains, rapid transit, and ferries.  

Along with the growing importance of public transportation, its functionality of 

paths for the movement can be hindered by both accidental and intentional disruptions 

(Matisziw et al. 2009). Much effort has been directed at developing methods and 

approaches of exploring the potential outcomes of the unscheduled losses of public 

transportation. In this thesis, two major definitions about survivability (vulnerability and 

reliability) are provided to clarify the concept. According to the literature reviewed, 

vulnerability represents the extent to which the system loses its original functionality. In 

vulnerability assessment, binary measures is the simple but first choice. Binary measures 

represent survivability within a range of values or through certain indices to evaluate the 

given network system, and follow the logic of all-or-nothing of a system operation. On 

the other hand, reliability is an expression of the probability that components within the 

network will function, which often utilize fuzzy measures with certain specific 

probability form. Fuzzy measures assume that network components operate within a 

certain level of operation probability. The probability of a network disruption’s 

occurring, the chance of network components’ being disrupted, the degree to which the 

disrupted components are able to maintain parts of their functionality, and so forth are 

applied to improve the estimation of survivability. Three commonly-used survivability 
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measures are explored to highlight the criteria of the survivability assessment. Based on 

the review, the term survivability in this study is defined as the ability of a network 

system to maintain its topological and functional state when facing a certain level of 

disruptions. In order to assess the impact of network disruptions and the associated 

survivability to such disruptions, the identification of potentially important disruption 

scenarios, including the best and worst scenarios which delineate the range of disruptive 

influence, is required. Lots of approaches, which differ from each other primarily in how 

disruption scenarios are assessed and understood, exist for indicating those scenarios. 

After comparing the characteristics of the four major approaches, including scenario-

based approaches, strategy-based approaches, mathematical programming approaches, 

and simulation-based approaches, this study takes a simulation-based approach because it 

is more applicable to the case study, the Beijing subway system. 

The Beijing subway system, which ranks third in the world for its length and 

annual ridership, serves Beijing, the capital of the People’s Republic of China and one of 

the most populous cities in the world with more than 20 million residents in 2012 (BMBS 

and NSOB 2013a). Because of the rapidly increasing number of vehicles and the city’s 

original layout designation, the traffic conditions of Beijing are quickly degrading, which 

attracts increasingly more attention to the public transportation. As a public transportation 

mode completely beyond the impact of traffic jams on the ground, the Beijing subway 

system serves as a crucial means of transportation for a mass of people. Its growing 

importance, as well as geographic and functional features, requires specifically designed 

research on its survivability because this research provides valuable information for 

better preparation in terms of network protection. Furthermore, the fluctuation of the 

passenger flow of the Beijing subway system in a week displays the potential of different 

survivability varying with time. 

In particular, based on reviewing the former network survivability research, an 

accessibility-based survivability measure has been developed in this study. This measure 

captures the differences of the consequence from two perspectives. The system 

connectivity loss is used to measure the impact from the topological aspect while the 

system flow loss is employed to measure the impact from the functional aspect. Because 
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the system flow loss admits the differences existing between subway lines and stations by 

taking into account the distances and the daily ridership, it is expected to reveal more 

detail about the system. In order to tackle the computational issues of the simulation-

based approaches, a weighted rank-based simulation algorithm (WRSA) is developed to 

reduce the computational requirement. Even though it is a heuristic method, its 

effectiveness is well verified by 25,000 random samples, which prove the algorithm is 

sufficient to be utilized.  

As an empirical study, we highlight several important findings as follows. First, 

the differences between the survivability based on the system connectivity and the system 

flow are obvious. The system flow is more sensitive to the disruptions and estimates the 

criticality of the stations differently to the system connectivity. This difference indicates 

the limitation of the system connectivity as a survivability measure because the system 

connectivity does not consider the differences among the geographic characteristics of 

the stations. Second, when facing single station disruptions, the Beijing subway system 

shows a strong survivability. Only 33% of disruptions on one hub will cost more than an 

estimated 5% passenger loss for the entire system. Meanwhile, the roles of several critical 

stations are prominent. For example, the disruption on Gongzhufen will cause more than 

10% passenger loss based on the estimation. Third, the performance of the system 

confronted with combinatorial disrupted stations varies with the disruption level and is 

highly dependent on the combination of hubs. This finding is consistent with the results 

of previous research, highlighting that the protection of hubs acting as the bridges for 

branch lines to the rest of the network is extremely important, indicating that providing 

more belt lines or alternative lines will improve the system’s ability to maintain 

survivability. At last, even though the fluctuation of ridership through a week affects the 

survivability to some extent, a well-prepared emergency plan for the entire week is 

currently acceptable. The effect of the ridership change remains limited to certain 

disruption levels, at least in the Beijing subway system.  
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6.2 Future Research Directions 

This study introduces an accessibility-based measure and a simulation-based approaches 

to assess the survivability of the Beijing subway system. The achievements of the study 

can be the base of some future research. 

With more detailed information about the passengers’ origin-destination flow, the 

model to estimate the passenger flow after disruptions can be updated. In this study, the 

spatial interaction model used is based upon the population around the stations and the 

distances between the stations and adjusted with the actual daily ridership; thus the 

relative criticality of the stations along the same line might be biased.  

The study can also be improved by modeling the reaction of the passengers 

toward disruptions more accurately. In order to estimate the amount of traffic flow as 

accurate as possible, many assumptive conditions have been put forward in former 

research. In this study, considering the modern operating and broadcasting systems of the 

subway, the passengers are assumed to make their decision according to the spatial 

interaction model. 

Finally, one important factor is how the subway management company is 

managing the system. The outcomes of a disruption include not only the direct impact but 

also the response of the managers. If the entire subway system is shut down because of 

one bombing at a station, the survivability of the system will be meaningless. 
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