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ABSTRACT 

In this thesis, we analyze mean residual life (MRL) functions and unique 

“function domain sets” confidence intervals to identify important opportunities for 

improving quality of medium density fiberboard (MDF). We stress these tools have 

tremendous potential for many other forest products (e.g., various composites, natural 

woods), not just MDF.  

These “function domain sets” confidence intervals can assess variation in quality 

where one MRL function dominates an industrial baseline. Assessments of the internal 

bond of MDF illuminate opportunities for helpful improvements, plus perform valid 

statistical comparisons of different types of MDF. For example, these MRL methods 

detect a new, higher-valued MDF product that represents an opportunity for an MDF 

producer to increase revenues or reduce costs due to excess MRL for a subgroup. These 

MRL methods can be used as diagnostics of a MDF manufacture process needing 

adjustments, etc. We provide MAPLE 10 code to implement these MRL procedures. 

Typical traditional confidence intervals for a MRL function are centered about the 

function. “Function domain sets” intervals, however, produce novel statements like: “we 

are 95% confident that the MRL function, e(t), is greater than another function for all t in 

the domain set [0, θ̂ ).” We study “function domain sets” intervals on internal bonds 

(tensile strengths) for various MDF products. 

The values of MRL analyses have been demonstrated in a variety of applications 

beyond MDF production. The usefulness of the MRL function in other areas suggests that 

it has considerable potential value for the forest products industry. Recent, MRL 
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applications vary from modern accelerated stress testing using proportional MRL 

modeling, to fuzzy set engineering modeling, to maintenance and replacement of bridges 

in Europe, to better decision making on materials in nuclear power plants, to general 

applications in evaluating “degrading” systems. We anticipate that varied analyses of 

MRL functions and “function domain sets” confidence intervals will furnish practitioners 

useful tools in many fields. Applications to different areas are highlighted to demonstrate 

the increasing usefulness and potential of MRL methods in many industries, government 

agencies, and future academic research. 

 

Keywords: Mean Residual Life, Confidence Intervals, Medium Density Fiberboard, 

Improvements, Engineering Systems. 
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PART 1: INTRODUCTION 
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 Mean residual life (MRL) functions measure the amount of remaining stress an 

item can sustain before failing.  There is considerable variation in what measurement of 

stress may be used for different items, though time is among one of the most familiar 

examples.  The amount of time an item will continue to be useful for is a common 

question of interest.  In cases where time in service is not a good predictor of survival, the 

MRL function can be used with other stresses, such as pounds of force applied, 

temperature or magnetic signature. The MRL function gives results that form intuitive 

statements for many situations.  As such, it merits consideration with many other 

measurements of reliability, such as hazard rate functions, that allow intelligent 

inferences to be made about the reliability of a product, group or individual.   

See Young and Guess (2002) for how such data is stored and used in a real time 

data base with regression modeling to predict the strength of medium density fiberboard 

(MDF).  This provides quick feedback to the manufacturer in order to minimize process 

inputs and maximize product quality within specified limits.  The key metric used by 

manufacturers for estimating the quality or reliability of MDF is internal bond (IB).  

Samples from a cross section of the MDF are tested by being pulled apart. The IB at 

failure is then measured in pounds per square inch (p.s.i.) or corresponding metric units 

(kilograms per cubic meter).    

 We briefly explore in Part 2 literature that pertains to topics discussed in this 

thesis in five sections. The first section encompasses some key reliability references.  

Next, the second section addresses the general theory of MRL functions plus connections 
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to various reliability measures.  Tersely in the third section we comment on classes of 

MRL and related citations for those highly niched specialists interested, but MRL classes 

are not the focus of this thesis.  Section four contains some more detailed references on 

MRL functions applications ranging from proportional MRL modeling engineering 

systems, to fuzzy set modeling, to bridges, to nuclear power plants, to general application 

to degrading systems.  In the fifth and final section we review some topics related to 

research on MDF.   

Different readers may be more interested in one topic than another, and an in 

depth knowledge of all five will not be necessary to understand all the information in this 

thesis.  At the same time, all five topics are valuable and having some familiarity with 

each will assist the reader in understanding the motivations and usefulness of this thesis. 

 Techniques are presented in Parts 3 and 4 that allow comparisons of MRL 

functions, either to other functions or to a baseline.  The thesis presents these techniques 

using data on the internal bond of MDF.  MDF has become an increasingly important 

modern engineered wood product as improvements in quality continue to widen its 

usefulness to consumers worldwide.  Capturing properties of MDF with statistically 

sound reliability measurements provides opportunities for improvement that allow 

manufacturers to gain competitive advantages. 

A key metric of quality used globally by MDF manufacturers is internal bond 

(IB).    IB describes to some degree, the usefulness of a piece of MDF.  If we consider the 

extreme weakest case, we can see that a piece of MDF used as a shelf at least needs to be 

able to support its own weight across an unsupported interval.  In reality, the internal 

bond of a piece of MDF used as a shelf would have to be higher than this so that it can 
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sustain a load placed on it.  Because it is natural to think about the amount of remaining 

force a MDF product can withstand before destruction, exploring the mean residual life 

function may provide opportunities for improving the quality of MDF production while 

minimizing cost. 

Typical confidence intervals for a mean or MRL are centered about the mean or 

MRL. We discuss “function domain sets” confidence intervals that produce statements 

for example like: “we are 95% confident that the MRL function, e(t), is greater than a 

pre-specified 
O

µ  for all t in the domain interval [0, θ̂ )” where θ̂  is determined from the 

sample data, confidence level, and 
O

µ .  

Also, we can have two sample statements like: “we are 95% confident that the 

MRL of population 1, namely e1(t), is greater than the MRL of population 2,  e2(t), for all 

t in the domain interval [0, θ̂ )” where θ̂  is determined from the sample data and 

confidence level. Other domain sets are possible in both the two sample and one sample 

cases.  We illustrate these one and two sample “function domain sets” confidence 

intervals on internal bonds (tensile strengths) for MDF.   

Part 3 demonstrates two-sample “function domain sets” confidence intervals that 

allow comparisons to be made between the MRL functions of two populations.  We use 

data from two commonly produced product types of MDF to illustrate the confidence 

intervals.  The analysis of the confidence intervals suggests the existence of a higher-

valued product that represents a new opportunity for the manufacturer to sell for 

increased profit.  Important to these types of confidence intervals is the capability to 

detect differences between groups in a range of stresses. 
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 We show in Part 4, the use of “function domain sets” confidence intervals for 

comparing MRL functions to a baseline.  An example is provided that uses data from 

MDF.  There are natural applications for the type of statement this allows, indicating the 

additional stress that may be applied to a unit after it reaches a given stress point.  If, for 

example, we know a steel drum is pressurized to a certain level, we could use the current 

pressurization level to find a “function domain sets” confidence interval that would 

describe a range of remaining pressures we would expect the drum to sustain before 

rupturing.  In the case of MDF, the demonstrated confidence interval could be used to 

provide a margin of safety where the baseline would be the reported amount of strength 

of the fiberboard and the estimated “function domain sets” confidence interval for the 

MRL function would show the range of further stress that could be applied to the board 

before it would fail. 

 Discussion in Part 5 focuses on a specific area of interest with respect to the MRL 

function: the MRL of systems.  In a time where increasingly high reliability is needed to 

ensure the proper functioning of important features of life, systems are often employed so 

that principles of redundancy protect features where failure of a system could have severe 

consequences.  In particular, parallel systems where a system does not fail as long as a 

single component is operating are of great interest for ensuring the proper functioning of 

a system.  Predicting the MRL functions of systems so that intervention prevents 

intolerable decay or outright failure has many important applications in modern life. 

 In Part 6, we consider some future lines of research suggested by the topics 

considered in earlier portions of the thesis.  There are many obvious paths for the 

extension of “function domain sets” confidence intervals that remain to be explored.  
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Some thoughts on multiple comparison techniques and suggestions for other ways to 

apply “function domain sets” confidence intervals are mentioned.  Additionally, there are 

a number of pathways for current research into the MRL functions of different systems.  

Some discussion on non-identical hazard functions for components of parallel systems 

and consideration of failure definitions when degradation of components is poorly 

understood is presented. 

 Appendix A discusses some of the mathematical properties used in the “function 

domain sets” confidence intervals described in Parts 3 and 4.  It is not expected that these 

details will be of interest to all readers, but the technical details are provided to assist 

those with an interest in the mathematical and statistical properties of the confidence 

intervals.  The chief topic of the details provided deal with asymptotic normality. 

Last, we give Appendix B which provides the Maple 10 code used to perform 

calculations and create figures for the thesis.  Comments in the introductory portion to the 

appendix and in the code itself are intended to assist interested readers in actually doing 

the calculations, multiple graphs, and confidence intervals for both small and large 

sample cases.  Some helpful references for Maple 10 are mentioned.  Figures are 

provided after the code that produces them to illustrate the plotting capabilities of Maple 

10. 
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PART 2: LITERATURE REVIEW 
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MATHEMATICS, STATISTICS, AND RELIABILITY 

The increasing study of and application of principles of statistical reliability will 

be of increasing importance to MDF producers as competition for business demands 

improved quality of product while decreasing production costs.  As such, the importance 

of understanding and the ability to apply reliability principles will be practiced by 

successful MDF producers in the near future.  The field of reliability is broad and a 

thorough review is, admittedly, not provided here.  A wide number of topics are 

presented that should provide some highlights from the field and some topics that will be 

useful for understanding and making useful the techniques discussed in this thesis.  

Several texts may be useful to the reader.  The thoughtful tome by Meeker and Escobar 

(1998a) should prove indispensable for most readers.  Krishnaiah and Rao (1988) provide 

another good overview of reliability and the chapter contributed by Guess and Proschan 

(1988) provides good information about the MRL function.  O’Connor (1985) is a classic 

reliability resource based on real world experience, with a balanced international 

perspective.  He comments on reliability databases that range from military to non-

military, electronic to non-electronic, etc.  For more review of reliability see the classic 

book and Barlow and Proschan (1981), and this link on reliability 

http://web.utk.edu/~leon/rel/overview/rellinks.html. The National Institute on Standards 

and Technology, along with an industrial consortium, have helpfully provide the 

NIST/SEMATECH e-Handbook of Statistical Methods, 
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http://www.itl.nist.gov/div898/handbook/ which has more on reliability applications and 

tools. Many other cites are available but not listed. 

Although not related to the MDF examples provided here, many processes for 

which the MRL is measured are stochastic processes.  For a review of stochastic 

processes the work by Karlin and Taylor (1975) will be useful.  For the reader especially 

interested in stochastic processes, Karlin and Taylor (1981) and Taylor and Karlin (1994) 

are good, but more advanced, resources.  Many other types of processes that are useful in 

reliability and with respect to MRL are described in Csörgő, Csörgő, and Horváth (1986).   

It is intended that the “function domain sets” confidence intervals described in 

Parts 3 and 4 be non-parametric in nature.  A good text for the study of non-parametric 

statistics is Hollander and Wolfe (1999).  Many of the details covered in Appendix A rely 

on asymptotic convergence.  The text by Serfling (1980) may be useful to those readers 

interested in further exploration of approximation and convergence. 

There may well be no end to the useful papers that cover various topics in 

reliability.  Guess and Walker (1992) discuss the effect of burn-in on different measures 

of reliability, including the MRL function.  Chan and Meeker (1999) discuss modeling 

population lifetimes when wear-out and early failure are both important.  Doganaksoy, 

Hahn, and Meeker (1999) provide a useful consideration of analyzing data when multiple 

modes of failure are active and important in a population. 

Meeker and Hamada (1995) give a good overall view of ways of quickly 

evaluating the reliability of products that do not fail often.  An important part of this is 

accelerated testing, which is discussed in Meeker and Escobar (1993) and Meeker and 

Escobar (1998b). 
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There are countless other papers that could be included in a review of reliability 

literature, and we will mention only a few more here.  The article by Hahn, Doganaksoy, 

and Meeker (1999) discusses the role that statistics may play in reliability improvement.  

Peña, Strawderman, and Hollander (2001) provide some non-parametric discussion of 

reliability data.  The work by Doganaksoy, Hahn, and Meeker (2000) includes a helpful 

case study analyzing reliability data. 

THE MEAN RESIDUAL LIFE FUNCTION 

In this thesis, we discuss using the MRL function to find opportunities to improve 

production of MDF.  Mean residual life functions (or, synonymously, mean remaining 

life functions, as they are sometimes called in literature) and tables have been studied and 

commented on by many individuals over the years. Guess and Proschan (1988), Chiang 

(1968), and Deevey (1947), cite the use of the MRL for annuities via expected life tables 

in ancient Roman culture.  More recently, a wide host of papers covers many other 

aspects of MRL, for example, Guess, Zhang, Young, and Leon (2005), Zhao and Elsayed 

(2005), Anis, Basu, and Mitra (2004), Bradley and Gupta (2003), Asadi and Ebrahimi 

(2000), Na and Kim, (2000), Lim and Park (1998), Guess, Nam, and Park (1998), Guess, 

Walker, and Gallant (1992), Abouammoh (1988), Oakes and Dasu (1990), Berger, Boos, 

and Guess (1988), Guess and Park (1988), Guess, Hollander and Proschan (1984). These 

citations are a brief list of the many excellent papers written on MRL.  

TESTING CLASSES OF THE MEAN RESIDUAL LIFE FUNCTION 

Although not a focus of this thesis, much work has been completed to define 

classes of distributions which have MRL functions that exhibit certain behaviors, each 
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class possessing different properties that make different inferences about the MRL 

function possible.  The development of tests to determine when a MRL function belongs 

to a certain class has also generated a great deal of scholarship.  By way of explanation, 

the most natural classification is probably the Decreasing MRL function, for which 

whenever the stress applied to an individual increases the expected residual life of an 

individual decreases.  Guess and Hollander (1986) discuss testing whether a MRL 

function exhibits a change in individual lifetime distributions or if the lifetimes fit an 

exponential distribution.  Ebrahimi (2001) explores a test for the goodness of fit of MRL 

functions to any known distribution.  Hendi and Abouammoh (2001) take it upon 

themselves to provide a test for the “new better (or worse) than renewal in expectation” 

class of MRL function against the exponential distribution.  Anis and Mitra (2005) pursue 

this same goal and demonstrate that their test is consistent.  Ahmad and Kayid (2005) 

propose a new class of MRL function they call “new better than used in total time on test 

transform ordering” and discuss its usefulness for modeling the residual life of series and 

k-out-of-n systems.  Sen and Jain (1991) offer some discussion on identifying a class they 

call “decreasing variance residual life.” 

 
APPLICATIONS OF THE MEAN RESIDUAL LIFE FUNCTION 

 In this work, we provide examples of using the MRL function to improve MDF 

production.  The value of the MRL function has been demonstrated in a number of 

applications beyond MDF production.  The usefulness of the MRL function in other areas 

suggests that it has considerable potential value for the forest products industry.  Because 

of the breadth of this area, some time is taken in Part 5 to note some further work 
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respecting parallel systems.  Here we make note of several more general examples.  

Whittle and Tennakoon (2005) discuss using the MRL function to predict the time to 

replacement of plastic pipes in a sewer system.  Tandler, Vehovar, et al (2003) and 

Kovpak (1981) concern themselves with using the MRL function to estimate the 

remaining usefulness of metallic components.  Ray, Tiwari, et al. (2002) estimate the 

MRL function of steel tubes used in a power plant.  These are somewhat industrial 

applications, but the breadth of fields that make use of MRL functions is wide.  Estesen, 

Buck, et al. (1992), for example, discuss the effect of insecticides used on cotton on 

exposed honey bees and note use the MRL function to estimate the length of time the 

insecticides are dangerous to the bees.  In cases where insecticides are used to defeat tree 

pests, this may have some direct application to production of raw materials for MDF.  

Zweifel, Felder, et al. (1999) make note of how health care expenditures depend much 

more on the mean remaining life of a human population rather than on its age. 

 

MEDIUM DENSITY FIBERBOARD 

The uses and topics of interest of to improvement of MDF are many and varied.  

According to the “U.S. Forest Products Annual Market Review and Prospectus, 2002-

2006” (Howard, 2006) 2004 saw an increase of 32.3% in domestic production of MDF, 

and an increase of 22.9% in imports of MDF.  Continued increases in production, 

imports, consumption, and exports of MDF are anticipated to be observed in the 

subsequent years.  While consumption of MDF is expected to continue to increase, 

Howard (2006) also notices that real prices for forest products have declined since 1998 

and are expected to continue to do so.  Lower prices for products will increase the 
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pressure on producers to lower production costs, particularly as competition from import 

markets increases. 

Interest in improving MDF drives considerable research into different input and 

process variables involved in the creation of MDF.  The statistics involved in studies of 

the mechanisms of MDF can be complicated, especially because several variables are 

taken into account in determining the quality of MDF.  The Composite Panel Association 

(2006) summarizes six properties by which MDF grade is determined by the American 

National Standards Institute: modulus of rupture, modulus of elasticity, internal bond, 

thickness swell, screw holding face, and screw holding edge.  All but thickness swell are 

measures of the strength of MDF.  Often variables that improve one property have little 

effect on, or even an adverse effect on, other properties important to the quality of MDF.  

The use of statistical techniques to increase quality and reduce costs for producers 

of MDF will be increasingly vital to American producers.  Research into the application 

of old and new statistical techniques to MDF production will achieve heightened 

importance.  Valuable work has already been done in this area.  Chen (2005) explores the 

estimation of extremely small percentiles in strength date, with the intention of applying 

the practice to MDF.  Chen’s (2005) work makes use of a forced censoring technique that 

can produce models that provide useful estimates for early failures of MDF.  Unusually 

early failures may suggest a failure mode resulting from a problem in production that 

produces substandard units of MDF.  Reliable detection of unusual early failure modes 

indicates an opportunity to improve the production process.  The estimation technique  

used by Chen (2005) is also described in the published work of Chen, Leon, Young, and 

Guess (2006) and Guess, Leon, Chen, and Young (2004). 
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Edwards (2004) also demonstrates applying reliability techniques to improving 

production of MDF.  Edwards (2004) takes time to discuss graphical techniques that are 

for practitioners to apply and understand.  Edwards (2004) also provides insightful 

discussion about information criteria (e.g. Bozdogan’s Information Complexity Criteria) 

that can assist in model selection and understanding what distributional assumptions are 

safe to apply to a given product.  Because data may be sparse in the tails of non-normal 

distributions, Edwards (2004) also discusses when bootstrap techniques may be useful for 

accurately estimating lower percentiles of strength data. 

Guess, Zhang, Young, and Leon (2005) discuss particular insights provided by the 

MRL function for strength data.  An example is included using MDF data demonstrating 

how a graphical plot of the MRL function may reveal sources of variation insensitive to 

an analysis that compares the sample mean of raw data to the sample mean of data 

screened for outliers.  The MRL technique identifies a product opportunity that could be 

missed if it is concluded that the outliers do not contain significant information about the 

MDF production process. 

Research into the properties of production components and the capabilities of 

MDF are also expected to provide some competitive advantages for MDF producers.  

Wang, Winistorfer, Young, and Helton (2001a) examine the effects of a new way of 

pressing MDF during manufacture on the density of the layers within MDF.  In Wang, 

Winistorfer, Young, and Helton (2001b) they extend their exploration of “step-closing 

pressing” of MDF to other mechanical properties of MDF.  In both works, the authors 

find that their new pressing technique allows them to manipulate the mechanical 

properties of MDF under exploration. 
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Suchsland and Woodson (1976) examine properties of MDF such as the 

relationship between increasing resin and increasing internal bond of MDF.  Kartal and 

Green (2003) consider the advantages of different kinds of MDF with respect to fungi 

and termite resistance, especially as compared to woods traditionally used in building 

materials.  Kelley, Elder, and Groom examine the chemical effects on MDF that arise 

from the age of the wood at the time of processing and from some processing conditions.  

Groom, Mott, Shaler, and Pesacreta (1999) examined earlier the effect of age of wood on 

the surface of fibers used in the generation of MDF believing that characterization of 

fiber surface would predict MDF properties.  Lee, Shupe, and Hse (2004) consider the 

properties of MDF formed from different mixtures of bagasse and Chinese tallow tree 

with different resin systems.  Short, Woodson, and Lyon (1978) made note of the 

differences in certain types of MDF made using “green” wood chips with high moisture 

content as opposed to partially dried wood chips.   
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PART 3: TWO SAMPLE “FUNCTION DOMAIN 

SETS” CONFIDENCE INTERVALS 
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INTRODUCTION 

Note that for a random lifetime X, the MRL is defined as the conditional 

expectation E(X - t│X > t) with the restriction that t ≥ 0. This can be further represented 

and simplified using the reliability function R(t) = P(X>t) = 1 – F(t) as  

( ) ( | ) ( ) / ( )
t

e t E X t X t R x d x R t
 
 
  
 

∞
= − > = ∫  

 

where we assume R(t) > 0  for e(t) to be well defined. Also note, the empirical MRL is 

easily calculated by substituting the standard empirical reliability function into the 

formula of e(t) for R(t) or by substituting the quantity of one minus the Kaplan-Meier 

estimate of the cumulative distribution function.  Compare Guess and Proschan (1988). In 

this paper we will calculate the empirical MRL at the order statistics, and then linearize it 

in between the order statistics.  

Recall the MRL function can exist, while the failure rate function might not exist, 

or, vice a versa, the failure rate function can exist without the MRL function existing. The 

reliability function can be represented as a function of the MRL, as  

1
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e x
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Compare, for example, Guess and Proschan (1988) for additional comments and insights 

on MRL. For more information on special classes of distributions connected with MRL 
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that have been widely studied and tested in a variety of situations see the helpful paper by 

Hollander and Proschan (1984), plus the classic book by Barlow and Proschan (1981). 

Remember that when we typically speak of a confidence interval for a function, 

we are describing a range of dependent variable that we believe will contain the true 

function mean at a particular level or particular range of an independent variable.  These 

types of confidence intervals allow us to make statements like “we are 95% confident that 

the MRL function, e(t), is in the interval (θ̂ 1, θ̂ 2) when at stress level, t” where θ̂ 1, and 

θ̂ 2 are determined from the sample data, confidence level, and t.  We suggest that for 

purposes of detecting variation it will also be useful to examine “function domain sets” 

confidence intervals.  The type of statement we propose making based on the “function 

domain sets” confidence interval is one like “we are 95% confident that the MRL of 

population 1, namely e1(t), is greater than the MRL of population 2, e2(t), for all t in the 

interval [0, θ̂ )” where again θ̂  is determined from the sample data and confidence level. 

Other types of confidence statements are possible based on the chosen interval, but this 

type of statement is most natural for analyzing MDF.  We analyze two types of MDF 

with different densities, with the a priori expectation that the denser type will have a 

stronger internal bond.  That is to say that, when we begin, we expect the mean residual 

life function of the denser MDF to dominate the less dense type over the entire range of 

stresses where individuals survive. 

See Berger, Boos, and Guess (1988) and Balgopal (1989) for more on these types 

of MRL intervals. For the interested reader, proofs related to using “function domain 

sets” confidence intervals taken from Balgopal (1987) and Berger, Boos, and Guess 
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(1988) are provided in Appendix A.  For more on MDF see Guess, León, Chen, and 

Young, (2004), Guess, Edwards, Pickrell, and Young (2003), and Young and Guess 

(2002). 

In Section 2, we discuss the helpful two sample case of confidence intervals using 

MRL functions. We apply these confidence intervals to real data from tests of tensile 

strength of MDF. We emphasize that these intervals can be used even more broadly, not 

just for regular life data. The intervals can be used for any time or stress to response data, 

plus financial data, etc.  

In addition to the empirical MRL function, the calculation of the confidence 

intervals also uses a standard deviation function and a sample size function.  The standard 

deviation function may be expressed as: 

( ) ( | ), 0s t s X t X t tn = − > ≥  

where s indicates taking the standard deviation of a sample formed from the failure 

stresses larger than t minus t.  The sample size function may be expressed as: 

( ) ( )n t n I X t
d

= − ≤  

where I represents a counting function for the number of failures that have occurred by 

stress level t and n is the original sample size before any failures.  Using the same 

notation, an equivalent representation can be given that counts the number that survive 

after time t as: 

( ) ( )n t I X t
d

= >  
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Recall that Weibull’s original reliability function was developed by him studying 

and fitting strengths for various materials (see Weibull 1939, 1951). Product “life” for 

MDF can be measured in terms of the strength to failure, as opposed to the time to 

failure. The strength (e.g., internal bond) or pounds per square inch (p.s.i.) to failure is a 

crucial reliability parameter of the product. It naturally allows the producer to make 

assurances to customers about the quality, safety, and useful “life” range of the product. 

We will write MRL where we understand it is actually mean remaining pressure 

(measured in p.s.i.) until failure. 

In Section 3 we have concluding comments and recommendations on these 

confidence intervals and future work. 

 

TWO SAMPLE MEAN RESIDUAL LIFE CONFIDENCE 
INTERVALS ON MODERN ENGINEERED WOOD  

We use 
46

ˆ ( )e t  to denote the empirical MRL of an MDF product with density of 

46 pounds per cubic foot (lbs/ft
3
), thickness of 0.625 inches, and width of 61 inches. We 

employ
48

ˆ ( )e t , to denote the empirical MRL of an MDF product with density of 48 

pounds per cubic foot (lbs/ft
3
), thickness of 0.625 inches, and width of 61 inches. 

Naturally, the corresponding population MRL’s are written 
46

( )e t  and
48

( )e t , 

respectively. Our sample size for density of 48 lbs/ft
3
 is n48 = 108 units, while the sample 

size for density of 46 lbs/ft
3
 is n46 = 974 units. A priori, MDF workers would conjecture 

that a higher density of 48 lbs/ft
3
 would yield a greater average IB and MRL. This turned 

out to be mostly true, but surprisingly was not always the case. 
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We discuss three figures that provide different insights into the MRL’s, into the 

corresponding novel confidence intervals, and into the specific statistical functions that 

are used to create these confidence intervals. The figures are all produced in Maple 10.  

The empirical MRL is plotted at each unique failure then linearized between points as 

seen in the figures. In Figure 1 we graph the empirical MRL’s for both 

46
ˆ ( )e t and

48
ˆ ( )e t . It is natural to conjecture for these products a decreasing empirical 

MRL. Recall this suggests the classical DMRL (Decreasing MRL) class tested in 

Hollander and Proschan (1975), plus other helpful DMRL tests by other authors. Note for 

density 48 lbs/ft
3
 there is graphical evidence of a DMRL, but this is not the case for 

density 46 lbs/ft
3
 (Figure 1). 

As expected, the MRL for 
48

ˆ ( )e t is much higher, starting with a sample mean of 

48
ˆ (0)e = 185.7 p.s.i., corresponding to mean residual pressure to failure in p.s.i. (which 

again will be understood when we use the standard abbreviation of MRL). This is higher, 

as would be conjectured, than a lower density MRL’s sample mean of 
46

ˆ (0)e = 122.7 

p.s.i. Also as conjectured, 
48

ˆ ( )e t dominates 
46

ˆ ( )e t  for all t > 0 until around t = 150 

p.s.i., when they surprisingly switch roles after a crossing. Also, note that 
46

ˆ ( )e t  has a 

later peak at 151.4 with the MRL being 
46

ˆ (151.4)e = 49.3, while the other MRL 

(which workers expected to be higher) is actually lower instead with 
48

ˆ (151.4)e = 

34.3. 
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Figure 1. The empirical MRL functions (expected remaining pressure till failure in p.s.i.). Starting top 

graph is the MRL 48
ˆ ( )e t

for MDF with density 48, while the starting bottom is 46
ˆ ( )e t

 the empirical 

MRL for MDF with density 46. Also, see that 48
ˆ (0)e

= 185.7 psi, while 46
ˆ (0)e

= 122.7 psi. Note the 

crossing and later peak for 46
ˆ ( )e t

. 
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Recall that a priori one would not conjecture this crossing. This suggests that for a 

density of 46 lbs/ft
3
 some units may be produced with unnecessarily high raw material set 

points, i.e., slow production transition from a density of 46 lbs/ft
3
 to 48 lbs/ft

3
, producing 

an intermediate type of product misclassified and possibly “under-priced” as having a 

density of 46 lbs/ft
3
. The upper turning in the MRL of 

46
ˆ ( )e t  is unusual and may yield 

higher product costs for the density of 46 lbs/ft
3
 product that does not require the stronger 

IB. The MRL provides an interesting rubric for product classification and continuous 

improvement.  

The increase in MRL above 135 p.s.i. for the product with a density of 46 lbs/ft
3
 

was a surprise. This may show a setup change by the manufacturer to a higher targeted 

strength product, i.e., the manufacturer produces a higher strength product with higher 

resin and wood at a slower line speed, and is unable to instantaneously meet target 

specifications during setup change from the nominal strength to higher strength product. 

It is obvious to practitioners from the MRL graph in Figure 2 that a hybrid 

product, or medium-strength product, is likely being produced. The MRL graph in Figure 

1 reveals an opportunity cost for the manufacturer, e.g. improve setup change time to 

minimize resin usage, optimize line speed targets during product change, etc. The MRL 

graph in Figure 1 may have, also, identified a new higher-valued product opportunity for 

the manufacturer. These empirical MRL behaviors can be powerful diagnostic tools to 

facilitate training, continuous improvement, and ultimately cost savings.  
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Figure 2. The same MRL functions are shown as in Figure 1, but now we have additionally the 

discerning statistical difference test function Zmn(t) as the darker line. It yields a crossing from above on 

the critical threshold line z α  = 2.33 at θ̂  = inf {t > 0: Zmn(t) < z α } = 147.98. This produces the 99 % one 

sided confidence interval we discuss. 
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Figure 2 has two empirical MRL functions plus the statistical function Zmn(t) 

described in Berger, Boos, and Guess (1988), where 

ˆ ˆ( ) ( )
48 46( )

2 2
( ) ( )

48 46
( ) ( )

48 46

e t e t
Z tmn

s t s t

n t n t

   
   
   

−
=

+

  

Figure 2 also shows the critical threshold z value straight line of z = 2.33 for determining 

a 99% confidence band. Note that Zmn(t) is essentially a two sample statistic on the 

difference between two population means, but here it is for the MRL functions at time t.  

Also, note that m and n are the respectively sample sizes m = n48 = 108 and n = n46 = 974. 

The thicker line is the statistical test function Zmn(t). Zmn(t) crosses from above the critical 

threshold line of z = 2.33 at the point θ̂  = 147.98. This implies, “we have 99% 

confidence that the population MRL for density 48, 
48

( )e t , dominates as statistically 

significant the population MRL for density 46, 
46

( )e t , for the entire interval [0, 

147.98).” These can be thought of as lower confidence bounds of the form C = 1−α , 

with 
48

( )e t  > 
46

( )e t for all t in [0,θ̂ ) where the θ̂  = inf {t > 0: Zmn(t) < z
α

} where 

z
α

is the standard normal upper α quantile, z
α

= 2.33, for the one sided lower 99% 

confidence interval. For a 95% we would use z
α

= 1.645, while for 90% confidence we 

would use z
α

= 1.28, etc. See Berger, Boos, and Guess (1988) for more comments and 

other types of these novel confidences intervals. 
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 Lastly we give insight into the need to adjust a two sample procedure when the 

remaining units (i.e., remaining sample sizes) are small (Figure 3). Figure 3 has all of the 

Figure 2 functions, and also has the “t” value adjusted for use in a two sample procedure 

using the adjusted “t” and adjusted degrees of freedom. We replace the z percentile with 

the appropriate adjusted “t” percentile. Recall our initial large sample sizes n48 = 108 and 

n46 = 974. Typically, MRL is a large sample approach, but we need to stress the need for 

care in the later tails of the MRL when the remaining samples might be small. Note that 

the t values jump above 2.33 or below -2.33 to the “t” heights in Figure 3. Also, there is 

more need to pre-specify particular aspects there. For additional specific details see 

Berger, Boos, and Guess (1988). 

Obviously other techniques such as TTT plots (see, Klefsjö 1991), box plots, 

histograms, as well as MRL plots, are helpful for process improvement and training. We 

stress the helpfulness of the graphs, but especially these novel confidence intervals for 

comparisons that are statistically valid in the two sample case and, as seen next, the one 

sample case. 

 

SUMMARY AND CLOSING REMARKS 

 We recommend using these “function domain sets” confidence intervals for both 

the two sample setting and the one sample setting demonstrated in Part 4. They provide 

additional insights that can be used to quantify aspects suggested by graphical  
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Figure 3.  Similar to Figure 2, but now we have added another critical z = - 2.33 and the appropriately 

adjusted “t” values for when the remaining sample sizes are small. Note the jump in the “t” values as seen 

beyond 150 psi. 
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comparisons, which are also useful. These statistical intervals can be used to explore the 

data and find key thresholds. Recall that the “function domain sets” confidence intervals 

we discuss for the MRL function actually give a confidence interval for the level of stress 

where two MRL functions are different rather than for the MRL function itself.  Note 

how unique, striking behaviors can be identified by comparative MRL plots and these 

novel confidence intervals on real word data sets on tensile strength measured by IB. 

Also remember the usefulness of these confidence intervals in conjunction with other 

methods.  We would expect the MRL function of a sample of MDF to be almost strictly 

decreasing, and the simple act of plotting the MRL functions of the samples above draws 

our attention to irregularities in the manufacturing process.  This may facilitate training, 

process improvement and cost savings.  

The calculations and graphs were done in Maple, version 10. Code from Maple 

can be outputted in Matlab and C++. Other languages naturally are also available, for 

example R or S+. Copies of our code in Maple format are available by emailing Research 

Associate Professor Timothy M. Young at tmyoung1@utk.edu or Cody Steele at 

steelejc@go.com.  The text of the code appears in Appendix B. 
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PART 4:ONE SAMPLE MRL CONFIDENCE 

INTERVALS ON MODERN ENGINEERED 
WOOD  
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INTRODUCTION 

We now illustrate the one sample versions of our “function domain sets” 

confidence intervals.  These are akin to the two sample case if one of the MRL functions 

is constant across all stress levels.  The one sample versions are advantageous because it 

is often naturally useful to discuss the MRL past a baseline for applications of safety and 

warranty. As compared to the previously described case, the statement we will make 

using “function domain sets” confidence intervals for the one sample case is akin to “we 

are 95% confident that the MRL function, e(t), is greater than a pre-specified 
O

µ  for all t 

in the interval [0, θ̂ )” where θ̂  is determined from the sample data, confidence level, and 

O
µ . 

ONE SAMPLE MEAN RESIDUAL LIFE CONFIDENCE 
INTERVALS ON MODERN ENGINEERED WOOD  

Using the internal bond data for MDF from Part 3, for the population MRL 

48
( )e t of density 48 lbs/ft

3 
a one sided 99% confidence interval for 

48
( )e t to be, for 

example, above 80 p.s.i. would yield θ̂  = 102.57. This implies we can say with 99% 

confidence that the population MRL
48

( )e t  is larger than 80 p.s.i. for all t in the entire 

interval [0, 102.57). A plot of 
48

( )e t  against its baseline function is shown in Figure 4. 

For the population MRL 
46

( )e t of density 46 lbs/ft
3
, a one sided 99% confidence 

interval for 
46

( )e t to be above 80 p.s.i. would yield instead θ̂  = 41.97. This implies we 

can say with 99% confidence that the population MRL 
46

( )e t is larger than 80 p.s.i. for  
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Figure 4.  A graph of e48(t) against a baseline of 80.  Note that the first crossing of the functions occurs 

after the upper side of the 99% “function domain sets” confidence interval value of 102.57 for internal 

bond.  In this sense, we know that our MRL function exceeds 80 p.s.i until we apply 102.57 p.s.i. of stress 

to the fiberboard. 
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all t in the entire interval [0, 41.97). A plot of 
46

( )e t  with its baseline function is shown 

in Figure 5. 

Note the MRL function may help in determining actual minimum safety standards 

and extra safety thresholds that are statistically valid.  MRL may also lead to economic 

benefits for the manufacturer from reduced rework and improved efficiency.  

Performance standards, safety standards, and advertising claims will tend to be phrased in 

terms of constants and make natural examples of baselines.  Comparing the MRL 

function to a baseline while provides the opportunity to make statistically valid claims 

about the margin by which MDF would tend to exceed these baselines.  In the above 

examples, 80 psi could be a performance standard for the types of MDF.  The interval 

over which the MRL dominates the baseline function represents a degree of assurance the 

manufacturer may have that its MDF exceeds minimum standards. 

Alternatively, the “function domain sets” confidence interval could also be used 

to detect special sources of variation in production of MDF.  If the MRL function for an 

MDF type fails to dominate a minimal baseline function over a pre-defined interval, it 

would indicate failure of the process to meet production standards, indicating an 

opportunity to improve the process.  By the same token, if the MRL function dominates a 

baseline over a longer than expected interval, a product opportunity would present itself 

that would present the opportunity to save money by more efficient production or to 

increase revenue of sales by setting an appropriate price for material that could be sold as 

having a higher internal bond than production variable settings were intended to produce. 
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Figure 5. Plot of the MRL function for e46(t) against a baseline of 80.  Notice that the first crossing of 

these two functions occurs after the upper side of the 99% “function domain sets” confidence interval value 

of 41.97 for internal bond.  Note that in this sense we know that our MRL function exceeds 80 p.s.i. until 

we apply 102.57 p.s.i. of stress to the fiberboard. 
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SUMMARY AND CLOSING REMARKS 

We recommend using these novel confidence intervals for both the one sample 

setting described here in Part 4 and the two sample setting described previously in Part 3. 

They provide additional insights that can be used to quantify aspects suggested by 

graphical comparisons, which are also useful. These statistical intervals can be used to 

explore the data and find key thresholds. Note how unique, striking behaviors can be 

identified by comparative MRL plots and these novel confidence intervals on real word 

data sets on tensile strength measured by IB. Note too, how the one sample comparison 

has many natural applications.  Here, with respect to comparing the internal bond of 

MDF to a baseline, the endpoint of the confidence interval may be thought of as a safety 

factor beyond the strength that will be claimed for the MDF product type.  “Function 

domain sets” confidence intervals may facilitate improved operator awareness, process 

improvement, product differentiation, and cost savings.  

The calculations and graphs were done in Maple, version 10. Code from Maple 

can be outputted in Matlab and C++. Other languages naturally are also available, for 

example R or S+. Copies of our code in Maple format are available by emailing Research 

Associate Professor Timothy M. Young at tmyoung1@utk.edu or Cody Steele at 

steelejc@go.com or by download from www.spcforwood.com.  The text of the code is 

provided in Appendix B. 
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 PART 5: MODERN MEAN RESIDUAL LIFE 

THEORY AND APPLICATIONS 
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INTRODUCTION 

The MRL function has long been used for a variety of applications extending 

beyond evaluating the reliability of products as they are manufactured.  Of particular 

interest recently have been the MRL functions of parallel systems, which are used in 

many instances when high-reliability is important, as in the components of aircraft and 

nuclear power plants.  In addition, MDF can be machined for use as a component in a 

system when one considers systems of furniture, cabinets, ceiling molding, automobile 

parts, etc.  In particular with respect to internal bond, a unit composed of multiple pieces 

of MDF should be constructed with consideration given to whether the failure of a single 

piece will constitute failure of the entire system and which components require the most 

strength.  Discussion of the MRL of systems is relevant to understanding the performance 

of parallel systems with MDF components. 

 

MEAN RESIDUAL LIFE FUNCTION THEORY RELATED TO 
PARALLEL SYSTEMS 

Rojo and Ghebrernichael (2006) show that they can make narrower confidence 

interval estimates for the MRL function under the assumption that a bounding function, 

known or unknown, can be determined.  The situation applies when an improvement in, 

for example, equipment or a medical treatment makes it reasonable that the MRL 

function of the improved system should strictly dominate the MRL function of the 

original system. Rojo and Ghebrernichael (2006) define a bivariate interpretation of the 
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MRL function, that may be extended as a multivariate MRL function, which considers 

the lifetimes of two individual systems.  Whether known or unknown, the determination 

that one of these systems bounds the other allows for more efficient estimation of the 

MRL function of the other.  The usefulness of this bounding result is of particular 

importance to parallel systems, which can often be bound if the class of system is known. 

 Myotyri, Pulkkinen, and Simola (2006) consider residual lifetime prediction in a 

stochastic degradation process.  For illustration, they examine crack growth in a system 

where crack length predicts residual lifetime.  Crack growth can reasonably modeled with 

the assumptions that the cracks strictly increase in length and are measured at specific 

times. This allows Myotyri, Pulkkinen, and Simola (2006) to model crack growth as a 

stochastic Markov process, for simplicity of computation, though they also demonstrate 

that numerical methods exist to allow estimation of more complex systems. The 

modeling of crack growth as a stochastic process is relevant to MDF performance as part 

of a system, i.e., MDF is a wood composite that experiences cracks in its use with 

fractures generally occurring parallel to the fiber wall that makes up the fibers of MDF.  

By observing degradation data, Myotyri, Pulkkinen, and Simola (2006) achieve residual 

lifetime information without observing failures. By extension, the residual lifetime 

predictions achieved could be used to estimate a MRL function from which inferences 

about a system of multiple components could be drawn.   

 Chinnam and Baruah (2004) discuss the extension of Myotyri, Pulkkinen, and 

Simola (2006) to the MRL function in the respect that they consider the use of expert 

knowledge for arriving at fuzzy definitions for failure.  In this case, not only are actual 

failures not observed, but the mechanics of failure may also not be well understood.  For 
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illustration, Chinnam and Baruah (2004) discuss a drill bit used to make holes in a 

stainless steel plate.  Their term for this type of system is “condition-based maintenance” 

because the condition of the drill bit determines a great deal about the quality and 

efficiency of system, and must be properly maintained (in this case, replaced at the 

correct time) in order to cost-effectively operate the system. A fuzzy inference model, in 

this case trained from a neural network using the degradation data, is used to estimate the 

MRL function.  Chinnam and Baruah’s (2004) drill bit again is very relevant to MDF.  

One of the high-valued uses of MDF is for machining for kitchen cabinet doors, molding, 

furniture, etc.  The interaction between diamond-tipped drill bits used for machining 

MDF and the tensile strength or IB reliability of MDF may directly affect drill bit 

reliability. 

 

THE MEAN RESIDUAL LIFE FUNCTION OF PARALLEL 
SYSTEMS 

A broad category of systems, in practice and in statistical thought, can be thought 

of as k-out-of-n systems.  K-out-of-n systems are those that function correctly as long as 

a certain number of the original components of the system continue to operate correctly.  

There are numerous classes of k-out-of-n systems, some of which are: new-better-than-

used, new-better-than-used-in-expectation, new-better-than-used-in-convex-ordering, 

new-better-than-used-in-second-stochastic-dominance, new-better-than-used-in-Laplace-

order, increasing-failure-rate, decreasing-mean-residual-life, and new-worse-than-used.  

In theory, any of these classes could be a parallel system.  Parallel systems are those that 
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operate as long as a single component is still functioning.  Mathematically, the 

operational lifetime function of a parallel system, L, may be presented as: 

 

1 2 3
max{ , , ,..., }nL X X X X=  

 

Since parallel systems are a special case of k-out-of-n systems, many properties of the 

MRL function of k-out-of-n systems apply to parallel systems.  The MRL of a parallel 

system, specifically, may be defined as: 

 

1
: :( )

( ) ( | )n n n nn
e t E X t X t= − >  

 

The above representation is for the entire parallel system.  The system lasts until the 

failure of the last component, so the measured residual life lasts until the nth component 

of an n component system fails.  The failure of individual components is not represented 

in the formula above. 

 The properties of parallel systems as they apply to classes of systems are 

discussed in numerous works.  Li and Zuo (2002) provide some properties of classes of 

systems.  Li and Zuo (2002) also show that class determination can be used to  predict the 

behavior of the MRL functions.  In particular, they show that if the lifetime function as 

defined above strictly dominates the MRL function then the parallel system is new-better-

than-used-in-second-stochastic-dominance, which implies that the properties of new-

better-than-used-in-expectation also apply to the system.  Other discussions of the 
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properties of the MRL function with respect to classes and parallel systems may be found 

in Abouammoh and Elneweihi (1986) and Belzunce, Franco, and Ruiz (1999), and many 

others. 

 Asadi and Bayramoglu (2005) discuss several properties of the MRL function of a 

parallel system.  Asadi and Bayramoglu (2005) show that under the assumption that 

component lifetimes have independent, identical distributions, the more working 

components a system has, the longer the MRL of the system will be.  This means that the 

MRL function increases as a function of n, the number of components in the system.  

Although the extension is intuitive, Asadi and Bayramoglu (2005) also show that the 

MRL of a system decreases as the number of failed components increases, e.g. aircraft, 

space shuttle, bridge, etc.  An upper bound for the MRL function of a parallel system 

with n components is also defined in the work of Asadi and Bayramoglu (2005) as: 

 

1

( ) 1 2( ) ( ) ( 1) ( )ne t ne t n e t≤ − −  
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The upper bound proposed by Asadi and Bayramoglu (2005) suggests that for 

components with independent, identically distributed lifetimes that a parallel system of n 

components should have a shorter MRL than n single-component systems. 

 Finkelstein (2001) directs his attention more generally than simply to parallel 

systems, considering an n-component system when he compares two kinds of statistical 

residual life.  He terms statistical residual life as the residual life function with the 

independent variable being time, and terms the information-based residual life, as the 

residual life function which considers the number of satisfactorily operating components 

remaining in the system as the independent variable.  Finkelstein’s (2001) work makes a 

practical point by noticing that a parallel system has an expected residual life as soon as it 

is put into operation, but that residual life may be different from the expected residual life 

of the system when the number of failed components is known.  Finkelstein (2001) 

considers systems with components with independent, identically distributed lifetimes 

and monotonic hazard functions to illustrate his point.  Finkelstein (2001) illustrates that 

for a two-component system the information-based residual life function declines more 

steeply than the statistical residual life function.  The information-based residual life 

function is lower than the statistical residual life function when only one component is 

operational; but the opposite is true when both components are operating.  Finkelstein 

(2001) notes that when the component lifetimes are identically distributed, time does not 

affect the information-based residual life.   

Finkelstein (2001) also examines the case when the component lifetimes are not 

identically distributed, and notes that in this case the relationship between the 

information-based residual life function (that considers the number of failed systems as 
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the independent variable) and the statistical residual life function (that considers time as 

the independent variable) is much more complex.  When the components are not 

identically distributed, the information-based residual life function may depend both on 

the hazard functions of the components and the time at which observations are made.  Li 

and Chen (2004) also consider the effect of assuming that the life distributions of the 

components in the system are independent but not identical.  Note that in many cases, a 

single MDF item may incorporate pieces of different thicknesses and pieces that are 

intended to sustain different amounts of stress (e.g. furniture arms and legs) so the 

consideration of different lifetime distributions for the components of MDF systems is 

natural. 

Gebraeel, Lawley, Li, and Ryan (2005) formulate Bayesian updating methods for 

condition-based systems monitored in real time.  In this case again, actual failures are 

rarely observed because the condition of the system strongly determines the quality of 

production.  Gebraeel, Lawley, Li, and Ryan (2005) provide an illustration of their 

Bayesian updating in accelerated testing of bearings.  Degradation of bearings is 

measured by the amount of vibration they produce in the test, the more vibration the more 

degradation the bearings are believed to have experienced.  First, a model for vibration as 

a function of time is determined with a prior assumed.  The prior is updated by the data to 

form the posterior, which is then assumed to provide the distribution of the MRL function 

before the time when degradation to the point of failure has occurred.  The MRL 

distribution thus determined makes predictions that provide an improvement over the 

empirical MRL distribution as evaluated for the bearing data. 
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 Chen, Jewell, Lei and Cheng (2005) discuss the estimation of the proportional 

MRL function proposed by Oakes and Dasu in the presence of censoring.  Here again 

there is a motivation to make predictions about the MRL function without observing 

actual failures.  Chen, Jewell, Lei, and Cheng (2005) use a semi-parametric technique to 

allow prediction of the MRL without using failure data.  Chen, Jewell, Lei, and Cheng 

(2005) provide an illustration using data from postoperative lung cancer patients. In Chen 

and Cheng (2005) a similar technique is used that results in a regression analysis of the 

proportional MRL function.  Since destructive testing is expensive the possibility of 

predicting MRL without observing failures would provide advantages to MDF producers. 

 

APPLICATIONS OF THE MEAN RESIDUAL LIFE FUNCTION IN 
PARALLEL SYSTEMS AND ENGINEERING 

Zhang and Wang (1993) demonstrate prediction of residual life of aircraft engines 

using data from oil samples taken from engines.  Zhang and Wang (1993) are motivated 

by the difficulty of accurately predicting failure from oil sample data.  They cite an 

experiment by Aghjagan (1989) in which indications of a problem in an oil sample were 

used to decide when to send locomotive gear boxes for reconditioning/overhaul, but only 

approximately half of the gear boxes indicated by the oil samples required such work. 

Zhang and Wang (1993) notice that not all the data gathered from an oil sample are 

useful for predicting residual life, so they reduce the variables they use principal 

component analysis before they begin to predict residual life. By extension, estimation of 

the MRL function would be possible based on the predicted residual lives.  With this 
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ability, changes in oil routines between different gear boxes could be checked for 

statistical significance over several samples. 

 Van Noortwijk and Klatter (2004) fit the Weibull distribution to data that 

considers the age of existing bridges and the age of demolished bridges at the time of 

demolition to predict when bridges will need to be replaced.  In this case, residual life is 

the time to replacement of a bridge.  In the case of the study, data for all bridges and 

viaducts of interest are known and the estimation of the cost of replacing all Dutch 

bridges and viaducts as a function of time can be made.  The estimation of the MRL 

function from the bridge data would allow the model to make estimations that took into 

account additional bridges that might be built in the future.  Fryba and Pirner (2001) also 

consider the usefulness of the MRL function in working with the lifetimes of bridges.  

Fryba and Pirner (2001) document data gathered from tests of bridges in the Czech and 

Slovak Republics under their normal conditions of use. Monitoring the stresses of the 

bridges allows estimation of the residual life of the bridges.  Inferences about how often 

inspection and repair are needed on the bridges are made based on the expected 

remaining life of a particular bridge. 

 Qian and Yan (2004) discuss using fuzzy theory to assess whether the ageing of a 

power transformer is proceeding in an expected or unexpected fashion.  Dividing the 

power transformers into two groups justifies separate calculations of the residual lives of 

transformers that are ageing as expected from transformers that are not aging as expected.  

The division also highlights the need for determining the cause of failure of the 

transformers that are showing faster degradation than planned.  The division helps to 
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exclude transformers operating under abnormal conditions from being used in assessing 

the performance of the production of all transformers. 

De Backer, Schoss, and Maussner (2001) discuss the frequency with which 

components in nuclear power plants experience stresses unlike those planned in their 

design.  Because of the safety issues related with the operation of nuclear power plants, 

De Backer, Schoss, and Maussner (2001) recommend that methods of monitoring 

components for stress while they are in operation should be used to update predictions 

about the original remaining life of the components based on its exposure to design basis 

conditions. De Backer, Schoss, and Maussner (2001) demonstrate changes in magnetic 

properties of stainless steel that occur when it is placed under stress at high temperature 

as a means of reevaluating the residual life of safety significant systems in use in nuclear 

power plants.  In practice, continual monitoring of most MDF systems is not performed, 

but the idea that previous stress may affect the MRL is useful in terms of MDF use.  For 

example, if an MDF board cracks under great strain such that its internal bond is 

weakened; there is advantage to having the ability to update the MRL function.  As MDF 

is used for more applications that involve semi-permanent use (e.g. construction), there 

will be increased interest in updating stress to replacement 
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PART 6: CONCLUDING REMARKS AND 

FUTURE RESEARCH 
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In this thesis, we have demonstrated the use of “function domain sets” confidence 

intervals for identifying opportunities for MDF producers.  In particular, where more than 

one kind of MDF is produced, we are able to recognize a hybrid product that occurs when 

machine settings are switched from production of one type of MDF to another.  This 

hybrid product represents an opportunity to the producer as a new product to sell--at a 

higher price than would have been claimed by MDF with a lower internal bond.  This 

demonstration emphasizes the usefulness of the MRL function and “function domain 

sets” confidence intervals as a reliability tool to help increase manufacturing profits. 

The work in this thesis suggests numerous avenues of pursuit for future research.  

As a very practical matter, continuous improvement in achieving stronger internal bonds 

of MDF will make the product suitable for even more applications.  Already, 

improvements in fire resistance, termite resistance, and mold resistance have been 

achieved that suggest that MDF has a strong future in construction of homes.  Increased 

understanding of the mechanisms of manufacturing MDF has a high potential to improve 

its usefulness to society. 

There are also many pathways for future research into the MRL function and the 

“function domain sets” confidence intervals of the MRL discussed here.  In many cases, 

it is desirable to estimate the MRL function without observing outright failures.  There is 

a great deal of opportunity in specific industries to improve understanding of mechanisms 

of failure so that the MRL function can be more accurately modeled early enough to 

provide useful information about when items can be replaced before they fail.  There is 
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also a corresponding need to identify methods of generating fuzzy definitions of failure, 

so that items can be replaced or repaired when such action will improve process 

efficiency and the quality of finished products, rather than simply avoiding failure of the 

item.  Training neural networks has shown some promise in the area of describing failure 

before it can be detected as a failed item. 

The “function domain sets” confidence intervals demonstrated herein are 

dependent on asymptotic normality to provide useful comparisons.  Some conditions will 

arise where they could be more usefully applied if developed for use with bootstrapping 

or other re-sampling techniques.  The application of “function domain sets” confidence 

intervals to other types of functions, such as the hazard rate function, may also reveal 

useful information about processes.  It may also be worthwhile to consider the possibility 

of developing multiple comparison techniques for MRL functions that grow out of 

“function domain sets” confidence intervals.  For example, multiple wood sources could 

be compared at the same time to discern a best type for internal bond after production 

with specific variable settings.  This may be very important for reducing the costs 

associated with MDF manufacturing. 

As the applications of MDF grow, the incorporation of MDF components into 

systems will also become more and more common.  Estimation of the MRL functions of 

MDF and other systems will have numerous applications for describing the reliability of 

such systems.  Since the residual lives of systems are dependent on the residual lives of 

their components, increased modeling of systems where the component residual lives are 

correlated or where component lifetimes are non-identically distributed will increase the 

usefulness of MRL functions in predicting the failure of complicated systems.  The 
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estimation of the mean residual lives of parallel systems captures high importance 

because using a parallel system often indicates that failure of the system could have 

severe consequences.   
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APPENDICES 
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APPENDIX A: MAPLE CODE 



60 

 

INTRODUCTION 

 

 Calculations and figures in this thesis were generated principally with the Maple 

10 software package.  This appendix provides a few notes about the coding done in 

Maple 10 for this thesis.  Maple is just one of many software packages that are suitable 

for these calculations, a short list of which could include: Matlab, R, S-Plus, and SAS.  

Maple was chosen because of my personal familiarity with it.  Maple 10, in fact, claims 

the ability to export code to Matlab and C, but this function has not been evaluated for the 

code that follows. 

In the process of converting the code to text for this document, Maple 10 removed 

the line ending portions of the code.  In general, these are a colon, :, if one does not wish 

to see the result of that line of code printed in Maple and a semicolon, ;, if one does wish 

to view the result of that line of code.  Keep in mind that the code that follows in this 

section will not function if a “cut and paste” operation is used to move the code from the 

thesis directly into Maple 10.  Placing the code portion in a file with the .txt extension 

and then opening it in Maple 10 will also not produce satisfactory results without 

additional labor.  If possible, the recommended course of action is to obtain an original 

file of the code by emailing Research Associate Professor Timothy M. Young at 

tmyoung1@utk.edu, by e-mailing Cody Steele at steelejc@go.com or by downloading 

the code from www.spcforwood.com. 
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When running the code with your own data sets, keep in mind that the import 

matrices will have to be identified properly for your own files.  In the current form of the 

code they are saved as “x” and “x2.”  The current version of the code demonstrates 

importing from a tab-delimited file with a Microsoft Excel file extension (.xls).  Many 

other types of files can be imported and can be found in Maple’s help files.  The Z and T 

scores in the code may be manipulated, but are written in as positive values, so the data 

with the MRL function expected to dominate should be entered as “x.” 

There are portions of the code that are included with the intention that they be 

helpful to individuals in their own programming efforts.  The variable “printlevel,” for 

example, tells Maple 10 how many operations to display as it runs a nested loop.  It is not 

necessary to set the print level for the correct execution of the code, but various instances 

are retained to suggest places where investigation of a nested loop may be of interest.  

Some plot options that were not used to produce graphs in the thesis are also included for 

users to review.  Comments and explanations are also included and may be identified by 

the presence of what Maple documentation tens to call a “sharp character” but which may 

also be familiar as a “number sign” to many readers: the # symbol.  In the code text 

below comments have been italicized to differentiate them from operable code.  Values 

that are shown in the code text are those obtained using the data demonstrated in the 

thesis. 

As Maple software advances in design, many features have become accessible 

from push buttons, menus, and have added interactive capability.  These kinds of 

capabilities in Maple 10 will not be adequately demonstrated by reading the code and 

examining the plots below.  In fact, one of the more useful interactive capabilities Maple 



62 

possesses is in its plots, which can usually be accessed by right-clicking a plot displayed 

in the Maple 10 environment.  For further assistance with Maple 10 and succeeding 

versions, we recommend the files available at the “Documentation Center” portion of the 

Maplesoft website,  http://www.maplesoft.com/documentation%5Fcenter/.  Programming 

guides and introductory manuals are available for download at no cost for people who 

sign up as members, also free.  The Maplesoft website will also search for books on 

Maple published privately.  During my own work here, although I used very few of the 

operations directly, I found Calclabs with Maple for Stewart’s Single Variable Calculus, 

5
th

 Edition (Yasskin, Barrow, Belmonte, Boggess, Morgan, Rahe, Smith, and Stecher, 

2003) to be well-organized and to have examples that were clear enough to be modified 

easily.  Also, although for an older version of Maple than demonstrated below, I found 

Harichandran (1999) provides many useful points on operations and syntax for the 

beginning programmer.  Harichandran’s instructions are available for download from his 

website at http://www.egr.msu.edu/~harichan/.  

 

CODE 

> #The first four lines invoke Maple Command libraries used 

in the rest of the code and are necessary for the correct 

execution of the code. 

> with (Statistics ):  

> with (plots ) :  

Warning, the name changecoords has been redefined 
> with(LinearAlgebra): 
Warning, the name Rank has been rebound 

> with (CurveFitting ) :  

Warning, the name LeastSquares has been rebound 
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Warning, the assigned name Interactive now has a global binding 

> #The first portion of code performs the oneKsample comparison 
of the mean residual life function to a baseline.  

 

> #The following line imports data from a text  file that is tab 
delimited.  See  Maple 's Help files for ways to import other 
kinds of files.  For correct operation, all  failures  in  the  
data  should  take  place  when  thte  stress  is  greater  
than  zero  and  a  zero  should  be  added  to  the  data  
so  the  mean  residual  life  function   will  be  computed  
at  stress = 0.

 

> x := ImportMatrix ("48density.txt", delimiter = "\t"):  

> #Some data manipulation steps are easier to make  when data is 
defined in a certain way in Maple.  The next  line converts 
the original data a list so the "sort" command may be used.

 

> p:=convert(x,list): 
>  
> q:=sort(p): 

> # In preparation for later mathematical operations, the list is 
converted to an array.

 

> t := Array (q ) :  

>  

> # c sets the number of rows that will be in the matrix  
where calculations of the standard errors, mean residual 
life, etc. will be calculated.  Because  the  first  row  will  
represent  stress = 0, the sample size is cK 1.  a is a 
counting variable.  The number of columns in the matrix , K, 
are predefined based on the number of calculations that will be 
recorded.  In this case, the  seven  columns are : 1. row 
number, 2. mean residual life, 3. standard error of the 
sample used to calculate the mean residual life, 4. 
sample size, 5. stress level for each failure, 6. zK value 
at beginning of failure stress interval, 7. zKvalue at end of 
failure stress interval.
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> # for ease of checking, some lines end in a semiKcolon.  In 
Maple, lines  that  end  in  a  colon  do  not  display  
their  result  when  the  code  is  running  and  lines  that  
end  in  semiKcolons do.  Occassionally lines are inserted 
specifically to provide an opportunity to check a value.

 

> c := ArrayNumElems ( t );  

c := 109 

> a := 1 :  

> K := Matrix (c, 7 ) :  

> # The 4 lines below are redone in the loop below, but are 
provided here as simple examples of the second, third, 
and fourth columns.  m takes  the positive values of t, 
which is our original data.  Here, m is all the failure times.  
Inside the actual loop, m takes  the values of the times 
remaining after the time of the most recent failure.

 

> m := Select(y/ is(0 ! y ) , t ) :  

> K [a, 4 ] := cK 1 :  

> K [a, 3 ] := StandardDeviation(m ) :  

> K [a, 2 ] := Mean(m ) :  

> a;  

1
 

> # This loop writes the remaining mean residual lives, 
standard errors, and sample sizes for the samples after each 
failure.
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> fora to c do
r := t K ta;

m := Select (y / is(0 ! y ) , r ) ;
if (ArrayNumElems (m ) ) O 1 then K [a, 3 ] :=

StandardDeviation (m ) ; end if;
if (ArrayNumElems (m ) ) O 0 then K [a, 2 ] := Mean (m )
; end if;
K [a, 4 ] := ( (cK 1 )K (a K 1 ) ) ;

end do:

 

> K [1, 4 ] ;  

1
08

 

>  

> #This loop writes the failure times into the matrix K. 

> counter2 := 1 :  

> for counter2 to c do K [counter2, 5 ] := t [counter2 ] ; end do

:
 

> # In cases where more than one individual fails at the 
same stress, the mean residual life function only takes  one 
value.  The following loop counts the number of ties so 
that the correct valueK the one that considers all the 
failures that take  place at a stress levelK can be left 
in the matrix , K.

 

> nties := 0 :  

> for  counter4  from  1  to  cK 1  do

 if K [counter4, 5 ] = K [counter4

C 1, 5 ]  then  nties := ntiesC 1; end if; end do :

 

> nties :  

>  

> counter3 := 1 :  
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> #The following loop removes rows that  are not needed because of 
tied failure stresses.

 

> for counter3 from 1 by 1 to (c K nties K 1 )  do if 
K [counter3, 5 ] = K [counter3

C 1, 5 ]  then  K := DeleteRow(K, counter3 ) ; counter3 :=
counter3K 1; end if; end do :

 

> #The new number of rows after the tied rows have been deleted is 
defined below as "Krows."

 

> Krows := cK nties :  

>  

> #The next  loop adds row numbers to matrix  K for identification 
numbers.  Although positioned in the first column of the 
matrix , it needs to be added at the end after the tied rows are 
deleted to make sense.

 

> counter7 := 1 :  

> for counter7 from 1 to Krows do K [counter7, 1 ] := counter7

; end do :
 

> #The baseline may be chosen as any number desired.  The code 
has not been tested with the baseline defined as a 
function, but this may be possible.

 

> baseline := 80 :  

> #The loop below computes a zKscore for the mean residual life 
function vs. the baseline.  This is the one sample procedure 
defined in Part 4 of the thesis.

 

> counter5 := 1 :  

> for  counter5  from  1  by  1  to Krows K 2 do 

K [counter5, 6 ] :=





(K [counter5, 2 ]K baseline)




(K [counter5, 3 ] )2

K [counter5, 4 ]




.5






; end do :
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> #The loop below checks the endpoint of the zKfunction for the 
mean residual life function vs. the baseline.  When the zKscore 
for the desired confidence level is between the end point and 
the zKscore we can find the mean residual life function 
"function domain sets" confidence interval endpoint.  These steps 
follow the loop below.

 

> counter6 := 1 :  

>  

> for  counter6  from  1  by  1  to  Krows K 2  do  
K [counter6, 7 ] := K [counter6, 6 ]

C





K [counter6, 5 ]K K [counter6 C 1, 5 ]






(K [counter6, 3 ] )2

K [counter6, 4 ]




.5







; end  do :

 

>  

> # Desired confidence levels may be manipulated as desired.  
Three are provided, so different levels can be compared as 
useful.

 

>  

> desiredconfidence1 := 90 :  

> desiredconfidence2 := 95 :  

> desiredconfidence3 := 99 :  

> # Note that zK values for confidence are for, in this case, 
oneKsided confidence intervals.  Adjustments  should be made 
in the "desiredconfidence" variables above if a twoKsided 
interval is of interest.

 

> zalpha1 :=
Percentile (Normal (0, 1 ) , (desiredconfidence1) , numeric ) ;

 

zalpha1 := 1.281551566 

> zalpha2 :=
Percentile (Normal (0, 1 ) , desiredconfidence2, numeric) ;

 



68 

zalpha2 := 1.644853627 

>  

> zalpha3 :=
Percentile (Normal (0, 1 ) , desiredconfidence3, numeric) ;

 

zalpha3 := 2.326347874 

> # The loop below finds the interval where the MRL zKscore 
function crosses the zKvalue of the desired confidence level.  
Immediately below, the failure time is interpolated that gives 
the upper bound of the "function domain sets" confidence interval

.

 

> counter8 := 1 :  

> for counter8 from 1 to Krows do if K [counter8, 7 ] !

zalpha1 and K [counter8, 6 ] O zalpha1  then  
interpolaterow1 := counter8; counter8 := counter8 C Krows; 
end if; end do :

 

> interpolaterow1 :  

> #The lines below provide the upper end of the calculated 
"function domain sets" confidence intervals.  These are not 
output to the matrix , but are the main output of this portion 
of the code.

 

> upper90 :=
PolynomialInterpolation( [ [K [ interpolaterow1, 6 ] , 
K [ interpolaterow1, 5 ] ] ,
 [K [ interpolaterow1, 7 ] , K [ interpolaterow1

C 1, 5 ] ] ] , zalpha1) ;

 

upper90 := 103.9752291 

> for counter8 from 1 to Krows do if K [counter8, 7 ] !

zalpha2 and K [counter8, 6 ] O zalpha2  then  
interpolaterow2 := counter8; counter8 := counter8

C Krows; end if; end do;
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> upper95 :=
PolynomialInterpolation( [ [K [ interpolaterow2, 6 ] , 
K [ interpolaterow2, 5 ] ] ,
 [K [ interpolaterow2, 7 ] , K [ interpolaterow2

C 1, 5 ] ] ] , zalpha2) ;

 

upper95 := 103.4875929 

> for counter8 from 1 to Krows do if K [counter8, 7 ] !

zalpha3 and K [counter8, 6 ] O zalpha3  then  
interpolaterow3 := counter8; counter8 := counter8

C Krows; end if; end do;

 

> upper99 :=
PolynomialInterpolation( [ [K [ interpolaterow3, 6 ] , 
K [ interpolaterow3, 5 ] ] ,
 [K [ interpolaterow3, 7 ] , K [ interpolaterow3

C 1, 5 ] ] ] , zalpha3) ;

 

upper99 := 102.5728684 

> #This file may be renamed.  It contains the numbers saved in 
matrix  K as described earlier.

 

> ExportMatrix ("first.xls", K ) :  

> #The following lines of code repeat those previously for a second 
data sample.  As before, zero  should  be  entered  into  a  
data  set  of  failure  times  so  that  the  MRL  function  
will  be  correctly  computed  beginning  from  the  stress =
0 point.

 

> x2 := ImportMatrix ("46density.txt", delimiter = "\t"):  

> p2:=convert(x2,list): 
>  

> q2:=sort(p2): 

> t2 := Array(q2 ) :  

>  

>  

> c2 := ArrayNumElems ( t2 );  
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c2 := 975 

> a2 := 1 :  

> K2 := Matrix (c2, 7 ) :  

> m2 := Select(y/ is(0 ! y ) , t2 ) :  

> K2 [a2, 4 ] := c2K 1;  

K21, 4 := 974 

> K2 [a2, 3 ] := StandardDeviation(m2 ) :  

> K2 [a2, 2 ] := Mean(m2 ) :  

>  

> for a2 to c2 do

r2 := t2 K t2 [a2 ] ;
m2 := Select (y / is(0 ! y ) , r2 ) ;
if ArrayNumElems (m2 ) O 1 then K2 [a2, 3 ] :

= StandardDeviation (m2 ) ; end if;
if ArrayNumElems (m2 ) O 0 then K2 [a2, 2 ] := Mean

(m2 ) ; end if;
K2 [a2, 4 ] := ( (c2K 1 )K (a2 K 1 ) ) ;

end do:

 

> K2 [1, 4 ] ;  

9
74

 

> counter2 := 1 :  

> for counter2 to c2 do K2 [counter2, 5 ] := t2 [counter2 ] ; end

 do :
 

>  

> nties2 := 0 :  
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> for  counter4  from  1  to  c2K 1  do

 if K2 [counter4, 5 ] = K2 [counter4

C 1, 5 ]  then  nties2 := nties2C 1; end if; end do :

 

> nties2;  

6
27

 

>  

> counter3 := 1 :  

> for counter3 from 1 by 1 to (c2 K nties2 K 2 )  do if 
K2 [counter3, 5 ] = K2 [counter3

C 1, 5 ]  then  K2 := DeleteRow(K2, counter3 ) ; counter3 :=
counter3K 1; end if; end do :

 

> Krows2 := (c2K nties2 ) ;  

Krows2 := 348 

>  

> counter7 := 1 :  

>  

> for counter7 from 1 to Krows2 do K2 [counter7, 1 ] :=
counter7; end do :

 

> baseline2 := 80 :  

> counter5 := 1 :  

> for  counter5  from  1  by  1  to Krows2 K 2 do 

K2 [counter5, 6 ] :=





(K2 [counter5, 2 ]K baseline2)




(K2 [counter5, 3 ] )2

K2 [counter5, 4 ]




.5






; end 

do :

 

>  

> counter6 := 1 :  
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>  

> for  counter6  from  1  by  1  to Krows2K 2  do  
K2 [counter6, 7 ] := K2 [counter6, 6 ]

C





K2 [counter6, 5 ]K K2 [counter6 C 1, 5 ]






(K2 [counter6, 3 ] )2

K2 [counter6, 4 ]




.5







; end  do :

 

> counter7 := 1 :  

> for counter7 from 1 to Krows2 do K2 [counter7, 1 ] :=
counter7; end do :

 

>  

> desiredconfidence1b := 90 :  

> desiredconfidence2b := 95 :  

> desiredconfidence3b := 99 :  

> zalpha1b :=
Percentile (Normal (0, 1 ) , (desiredconfidence1b) , numeric ) ;

 

zalpha1b := 1.281551566 

> zalpha2b :=
Percentile (Normal (0, 1 ) , desiredconfidence2b, numeric ) ;

 

zalpha2b := 1.644853627 

>  

> zalpha3b :=
Percentile (Normal (0, 1 ) , desiredconfidence3b, numeric ) ;

 

zalpha3b := 2.326347874 

> counter8 := 1 :  

> for counter8 from 1 to Krows2 do if K2 [counter8, 7 ] !

zalpha1b and K2 [counter8, 6 ] O zalpha1b then  
interpolaterow1b := counter8; counter8 := counter8 CKrows2;
 end if; end do :

 

> interpolaterow1b :  
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> upper90b :=
PolynomialInterpolation( [ [K2 [ interpolaterow1b, 6 ] , 
K2 [ interpolaterow1b, 5 ] ] ,
 [K2 [ interpolaterow1b, 7 ] , K2 [ interpolaterow1b

C 1, 5 ] ] ] , zalpha1b) ;

 

upper90b := 42.31469156 

> for counter8 from 1 to Krows2 do if K2 [counter8, 7 ] !

zalpha2b and K2 [counter8, 6 ] O zalpha2b  then  
interpolaterow2b := counter8; counter8 := counter8

C Krows2; end if; end do;

 

> upper95b :=
PolynomialInterpolation( [ [K2 [ interpolaterow2b, 6 ] , 
K2 [ interpolaterow2b, 5 ] ] ,
 [K2 [ interpolaterow2b, 7 ] , K2 [ interpolaterow2b

C 1, 5 ] ] ] , zalpha2b) ;

 

upper95b := 42.19533335 

> for counter8 from 1 to Krows2 do if K2 [counter8, 7 ] !

zalpha3b and K2 [counter8, 6 ] O zalpha3b  then  
interpolaterow3b := counter8; counter8 := counter8

C Krows2; end if; end do;

 

> upper99b :=
PolynomialInterpolation( [ [K2 [ interpolaterow3b, 6 ] , 
K2 [ interpolaterow3b, 5 ] ] ,
 [K2 [ interpolaterow3b, 7 ] , K2 [ interpolaterow3b

C 1, 5 ] ] ] , zalpha3b) ;

 

upper99b := 41.97143715 

> ExportMatrix ("second.xls", K2 ) :  
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> # This begins the portion that explores the twoK sample 
case, using the data from the matrices named K and K2 in the 
code.  To begin with, the data from those two matrices are 
combined into a single matrix .  The number of rows for 
the new matrix  are determined immediately below and 
then the new matrix  is defined on the next  line.  The number 
of columns for the new matrix , 11, is fixed based on the 
information that will be recorded in the new matrix .

 

> twosamprows := Krows C Krows2;  

twosamprows := 448 

> twosamp := Matrix ( twosamprows, 11 ) :  

> countera := 1 :  

> counterb := 1 :  

> #This loop enters the failure stress values from the first imported 
data set from the matrix  named K into the first column of the 
twoKsample matrix .  It also enters the twoKsample zK
value for the failure times present in the first column from the 
first data set.  Both values will be reordered for presentation.
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> 
for  countera  from  1  by  1  to  Krows  do  twosamp [countera, 1 ]

:= K [countera, 5 ] ;
  if K [countera, 5 ] O K2 [Krows2, 5 ]  then  counterb :=
Krows2 C 1 elif K [countera, 5 ] ! K2 [Krows2, 5 ]  then 
counterb := 1; while  K2 [counterb, 5 ] != K [countera, 5 ]  
do  counterb := counterb

C 1; end do; end if;
 if K [countera, 4 ] = 0  or K2 [counterbK 1, 4 ] = 0  or

 (K [countera, 3 ] = 0 and K2 [counterbK 1, 3 ] = 0 )  then

 twosamp [countera, 2 ] := 0;
 else  twosamp [
countera, 2 ] := (K [countera, 2 ]
K (K2 [counterbK 1, 2 ]

K (K [countera, 5 ]K K2 [counterbK 1, 5 ] ) ) )



sqrt





K [countera, 3 ]2

K [countera, 4 ]


 C




K2 [counterbK 1, 3 ]2

K2 [counterbK1, 4 ]






 ;  

end if; end do :

 

> counterb;  

3
49

 

> countera;  

1
01

 

> counterc := countera;  

counterc := 101 

> counterd := 1;  

counterd := 1 

> countere := 1;  

countere := 1 
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> # The loop below enters the failure stresses from the 
second data set, matrix  K2.  It also calculates and enters the 
twoKsample zKvalues for the failure stress values from the 
second data set.  Both values will be reordered for presentation.

 

> for counterc from countera by 1 to twosamprows do 
twosamp [counterc, 1 ] := K2 [counterd, 5 ] ; if 
K2 [counterd, 5 ] O K [Krows, 5 ]  then  countere := Krows

C 1  else  countere := 1; while K [countere, 5 ] !=
K2 [counterd, 5 ]  do  countere := countere C 1; end do; end

 if; if K2 [counterd, 4 ] = 0 or K [countereK 1, 4 ] = 0 or

 (K2 [counterd, 3 ] = 0 and K [countereK 1, 3 ] = 0 )  then

 twosamp [counterc, 2 ] : 0 else twosamp [
counterc, 2 ] := ( (K [countereK 1, 2 ]
K (K2 [counterd, 5 ]K K [countereK 1, 5 ] ) )K

K2 [counterd, 2 ] )

 sqrt






K2 [counterd, 3 ]2

K2 [counterd, 4 ]




C



K [countereK 1, 3 ]2

K [countereK 1, 4 ]






 ; end if; counterd := counterd

C 1; end do :

 

>  

> counterc;  

4
49

 

> counterd;  

3
49

 

> #The next  four lines order the combined failure times from the 
two data sets.  These will be put in the third column of the 
matrix  in the next  loop.

 

> failures := Column ( twosamp, 1 ) :  

> fail := convert ( failures, list) :  
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> fails := sort ( fail) :  

> failu := Array( fails) :  

>  

>  

>  

> counterf := 1;  

counterf := 1 

> for counterf from 1 to twosamprows do 
twosamp [counterf, 3 ] := failu [counterf ] ; end do :

 

> counterg := 1 :  

> counterf := 1 :  

> printlevel := 4;  

printlevel := 4 

> # The  loop  below  matches  the  unordered  z K values  from 
earlier with the correct failure value and prints them in the 
fourth column of the matrix .

 

> for counterg from 1 by 1 to twosamprows do  counterg;
counterf := 1; if twosamp [counterg, 1 ] =
twosamp [counterf, 3 ]  then twosamp [counterf, 4 ] := 
twosamp [counterg, 2 ] ; else while  twosamp [counterf, 3 ] !

= twosamp [counterg, 1 ]  and  counterf ! ( twosamprows )  
do  counterf := counterf C 1; end do;
 twosamp [counterfK 1, 4 ] := twosamp [counterg, 2 ] ; end if;
 end do :

 

> #The next  loop ensures that any cases where the failure times are 
the same have the same zKvalue.  

 

> counterf :  

> if twosamp [1, 3 ] = twosamp [2, 3 ]  then twosamp [2, 4 ] :=
twosamp [1, 4 ] ; end if;
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twosamp2, 4 := 45.56163144 

> counterg :  

> #The loop below repeats checking that any cases where the failure 
times are the same have the same zKvalue.

 

> counterz := 1 :  

> for counterz from 1 by 1 to  counterg K 2 do if 
twosamp [counterz, 3 ] = twosamp [counterz

C 1, 3 ]  then twosamp [counterz, 4 ] := twosamp [counterz

C 1, 4 ] ; end if; end do;

 

twosamp1, 4 := 45.56163144 

> #The next  loop takes  the number surviving from the first data set 
and puts them into the new matrix  in the fifth  column.

 

> counteraa := 1 :  

> for counteraa from 1 by 1 to Krows do 
twosamp [counteraa, 5 ] := K [counteraa, 4 ] ; end do :

 

> counterbb := Krows C 1 :  

> #The next  loop places the number surviving in column 6 of the 
new matrix  beginning in the row after the last number 
surviving from the first data set.

 

> countercc := 1 :  

> for counterbb from Krows C 1 by 1 to twosamprows do 
twosamp [counterbb, 6 ] := K2 [countercc, 4 ] ; countercc := 
counterccC 1; end do :

 

> countergg := 1 :  

> counterff := 1 :  
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> #The row below puts the number surviving from the first data into 
the seventh column set for the ordered survival times in the 
third column.  These will be compared to the number surviving 
for the second data set (placed in the eighth column )  to 
determine the degrees of freedom for the twoKsample tK
statistic.

 

> for countergg from 1 by 1 to Krows do counterff := 1;
 if twosamp [countergg, 3 ] = twosamp [countergg, 1 ]  then 
twosamp [counterff , 7 ] := twosamp [countergg, 5 ] ;
 else while twosamp [counterff , 3 ] !=
twosamp [countergg, 1 ]  and  counterff != twosamprows  
do  counterff := counterff

C 1; end do; twosamp [counterffK 1, 7 ] :=
twosamp [countergg, 5 ] ; end if; end do :

 

> counterdd := 1 :  

> counteree := Krows C 1 :  

> #The next  loop places the number surviving from the second data 
set into the eighth column that  correspond to the ordered 
survival times in the third column.

 

> for counteree from Krows C 1 to twosamprows do counterdd

:= 1; if twosamp [counterdd, 3 ] = twosamp [counteree, 1 ]  
then twosamp [counterdd, 8 ] := twosamp [counteree, 6 ] ; else

 while twosamp [counterdd, 3 ] != twosamp [counteree, 1 ]  
and  counterdd != twosamprows  do  counterdd :=
counterdd C 1; end do; twosamp [counterddK 1, 8 ] :=
twosamp [counteree, 6 ]  end if; end  do :

 

> #The next  loop makes corrections to sample sizes so that the 
number surviving is shown correctly at the top of the matrix  
where there are two zero times, since each data set had one 
initially.

 

> counterhh := 1 :  
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> for counterhh from 1 by 1 to twosamprows do if 
twosamp [counterhh, 7 ] = 0  and  twosamp [counterhh, 8 ] =
0 and twosamp [counterhh, 3 ] = 0 then 
twosamp [counterhh, 7 ] := twosamp [counterhhK 1, 7 ] ; 
twosamp [counterhh, 8 ] := twosamp [counterhhK 1, 8 ] ; end 
if; end do;

 

twosamp2, 7 := 108 

twosamp2, 8 := 974 

> counterii := 1 :  

> for counterii from 1 by 1 to twosamprows K 1 do if 
twosamp [counterii, 7 ] = 0 and twosamp [counterii, 8 ] = 0 
then twosamp [counterii, 7 ] := twosamp [counterii

C 1, 7 ] ; twosamp [counterii, 8 ] := twosamp [counterii

C 1, 8 ] ; end if; end do;

 

twosamp447, 7 := 0 

twosamp447, 8 := 0 

> #The loop below makes corrections to columns where a zero 
number surviving was left because no failure time matched for 
that column.  The line immediately afterwards corrects where 
the zero is overwritten  that  should belong there.

 

> counterjj := 1 :  

> twosamp [Krows, 1 ] ;  

2
19.6999969

 

> for counterjj  from 1 by 1 to twosamprows do if 
twosamp [counterjj , 7 ] = 0 and twosamp [counterjj , 3 ] !

twosamp [ twosamprows, 1 ]  then twosamp [counterjj , 7 ] :=
twosamp [counterjjK 1, 7 ] ; end if; if 
twosamp [counterjj , 8 ] = 0 and twosamp [ twosamprows, 1 ]  
! twosamp [Krows, 1 ]  then twosamp [counterjj , 8 ] :=
twosamp [counterjjK 1, 8 ] ; end if; end do :
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>  

> twosamp [ twosamprows, 8 ] = 0;  

1 = 0 

> #This loop calculates the t statistic that  is appropriate for 
comparison to the tKscore of the twoKsample confidence 
level of interest.  This alerts the user to cases where differences 
may appear large but are not statisitically significant because 
of small sample sizes.  Here, the confidence level is 99 %, 
but this may be adjusted at the convenience of the user.

 

> counterkk := 1 :  

> for  counterkk  from  1  by  1  to  twosamprows  do  tdf

:= min ( twosamp [counterkk , 8 ] , twosamp [counterkk , 7 ] ) ; if

 tdf O 1 then twosamp [counterkk , 9 ]
:= Percentile (StudentT ( tdf K 1 ) , 99, numeric) ; end if; end 
do :

 

> #A matrix  is output here with the information that  has been 
calculated for the two sample case.

 

> ExportMatrix ("check.xls", twosamp ) :  

> #A new matrix  is created that should neatly output all the numbers

 calculated in the previous code.  A new row is added so that 
column labels can be added.  At the end, it is output as a  
Microsfot Excel file.  See  Maple 's help for directions on 
outputting  to other types of files.

 

> outputmatrix := Matrix ( twosamprows C 1, 11 ) :  

> outputmatrix [1, 1 ] := "unordered failure times":  

> outputmatrix [1, 2 ] := "unordered z scores":  

> outputmatrix [1, 3 ] := "failure times":  

> outputmatrix [1, 4 ] := "z scores":  

> outputmatrix [1, 5 ] :=" unordered number surviving from 
sample1":

 



82 

> outputmatrix [1, 6 ] := "unordered number surviving until, sample 2":  

> outputmatrix [1, 7 ] := "number surviving until, sample 1":  

> outputmatrix [1, 8 ] := "number surviving until, sample 2":  

> outputmatrix [1, 9 ] :=" t scores":  

> outputmatrix [1, 10] := "mrl, sample 1":  

> outputmatrix [1, 11] := "mrl, sample 2":  

> outputcounter := 1 :  

> outcounter := 2 :  

> for  outputcounter  from  1  to  9  do  for outcounter from 2
 to twosamprows do 
outputmatrix [outcounter, outputcounter ] :=
twosamp [outcounterK 1, outputcounter ] ; end do; end do :

 

> ocounter := 1 :  

> pcounter := 1 :  

> printlevel := 1 :  

> # Not included in the "check" matrix , the next  loop adds the 
MRL values to the "output" Microsoft Excel file.

 

> for ocounter from 1 to twosamprows do for pcounter from 
1 to Krows do if outputmatrix [ocounter, 7 ] =
K [pcounter, 4 ]  then outputmatrix [ocounter, 10 ] :=
K [pcounter, 2 ] ; end if; end do; end do :

 

> ocounter := 1 :  

> pcounter := 1 :  

> for ocounter from 1 to twosamprows do for pcounter from 
1 to Krows2 do  if outputmatrix [ocounter, 8 ]  = 
K2 [pcounter, 4 ]  then outputmatrix [ocounter, 11 ] :=
K2 [pcounter, 2 ] ; end if; end do; end do :

 

> ExportMatrix ("output.xls", outputmatrix ) ;  
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4
1855

 

> #Calculations for the two sample confidence intervals are 
prepared below.  The desired confidence levels may be 
adjusted as desired by the user.

 

> desiredtwosampconfidencea := 90 :  

> desiredtwosampconfidenceb := 95 :  

> desiredtwosampconfidencec := 99 :  

> zalphatsa :=
Percentile (Normal (0, 1 ) , (desiredtwosampconfidencea ) , 
numeric) ;

 

zalphatsa := 1.281551566 

> zalphatsb :=
Percentile (Normal (0, 1 ) , desiredtwosampconfidenceb, 
numeric) ;

 

zalphatsb := 1.644853627 

>  

> zalphatsc :=
Percentile (Normal (0, 1 ) , desiredtwosampconfidencec, 
numeric) ;

 

zalphatsc := 2.326347874 

> twosampa := 1 :  

> counterh := 1 :  
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> # The loop below finds where the twoK sample zK

function crosses the desired confidence level zK value 
and saves it as the row number as the variable 
"twosampa."  Immediately afterwards, linear interpolation is 
used to find the endpoint of the "function domain sets" 
confidence interval for which the greater MRL function 
dominates the lower one.  The process is repeated for for the 
remaining two confidence levels.

 

> for counterh from 1 by 1 to twosamprows do if 
twosamp [counterh, 4 ] ! zalphatsa  then  twosampa :=
counterh; counterh := counterh C twosamprows; end if; end 
do;

 

> twosampa;  

3
44

 

> upper90ts :=
PolynomialInterpolation( [ [
twosamp [ twosampaK 1, 4 ] , twosamp [ twosampaK 1, 3 ] ] ,
 [ twosamp [ twosampa, 4 ] , twosamp [ twosampa, 3 ] ] ] , 
zalphatsa ) ;

 

upper90ts := 147.4675343 

>  

> for counterh from 1 by 1 to twosamprows do if 
twosamp [counterh, 4 ] ! zalphatsb  then  twosampb :=
counterh; counterh := counterh C twosamprows; end if; end 
do;

 

> twosampb;  

3
43
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> upper95ts :=
PolynomialInterpolation( [ [
twosamp [ twosampbK 1, 4 ] , twosamp [ twosampbK 1, 3 ] ] ,
 [ twosamp [ twosampb, 4 ] , twosamp [ twosampb, 3 ] ] ] , 
zalphatsb ) ;

 

upper95ts := 147.3940803 

> for counterh from 1 by 1 to twosamprows do if 
twosamp [counterh, 4 ] ! zalphatsc  then  twosampc :=
counterh; counterh := counterh C twosamprows; end if; end 
do;

 

> twosampc;  

3
42

 

> upper99ts :=
PolynomialInterpolation( [ [
twosamp [ twosampcK 1, 4 ] , twosamp [ twosampcK 1, 3 ] ] ,
 [ twosamp [ twosampc, 4 ] , twosamp [ twosampc, 3 ] ] ] , 
zalphatsa ) ;

 

upper99ts := 147.9844381 

> # The next  lines repeat the confidence interval process with

 the t distribution instead of with the normal distribution,
 to check for any problems with sample size making the zK
confidence intervals less useful.

 

 

> for counterh from 1 by 1 to twosamprows do if 
twosamp [counterh, 4 ] ! twosamp [counterh, 9 ]  then  
twosamp99student := counterh; counterh := counterh C

twosamprows; end if; end do;

 

> twosamp99student;  

3
41
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>  

> upper99tint :=
PolynomialInterpolation( [ [
twosamp [ twosamp99studentK 1, 4 ] , 
twosamp [ twosamp99studentK 1, 3 ] ] ,
 [ twosamp [ twosamp99student , 4 ] , 
twosamp [ twosamp99student , 3 ] ] ] , 
twosamp [ twosamp99student , 9 ] ) ;

 

upper99tint := 146.4622854 

> #Vectors are declared below to use in plots of the 

results from the code above.  For those interested in the 

Maple code process used, "failweight" and "tvals" are 

declared first to make the failure times and t values into 

vectors.  Each is then converted into a list so that they 

can easily be changed into a single vector of points, below 

named "fbys3b."  A similar process creates a vector of 

points with the MRL function values. 

> failweight := Column ( twosamp, 3 ) :  

> tvals := Column ( twosamp, 9 ) :  

> failweightlist := convert ( failweight, list) :  

> tvalslist := convert ( tvals, list) :  

> for  i  from  1  by  1  to  twosamprows  do  fbys3b [ i ]
:= ( [ failweightlist [ i] , tvalslist [ i] ] ) ; end do :

 

> twosampzvals := Column ( twosamp, 4 ) :  

> mrl1 := Column (K, 2 ) :  

> mrl1list := convert (mrl1, list) :  

> mrl1fails := Column (K, 5 ) :  

> mrl1failslist := convert (mrl1fails, list) :  

> for  i  from  1  by  1  to  Krows  do  failbymrl1[ i ]
:= ( [mrl1failslist[ i ] , mrl1list[ i ] ] ) ; end do :

 

> failbymrl1list := convert ( failbymrl1, list) :  
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> mrl2 := Column (K2, 2 ) :  

> mrl2fails := Column (K2, 5 ) :  

> for  i  from  1  by  1  to  Krows2  do  failbymrl2 [ i]
:= ( [mrl2fails[ i] , mrl2 [ i ] ] ) ; end  do :

 

> failbymrl2list := convert ( failbymrl2, list) :  

> for  i  from  1  by  1  to  Krows  do  baseline1[ i]
:= (mrl1failslist[ i] , baseline) ; end do :

 

> for  i  from  1  by  1  to  Krows2  do  baseline2b[ i]
:= (mrl2fails[ i] , baseline2)  end do :

 

> baseline1a := convert (baseline1, list) :  

> baseline2a := convert (baseline2b, list) :  

> # A number of plots are demonstrated below, some to suggest 
variations of plots that may be useful in Maple.  Polynomial 
interpolation is also demonstrated as a means of solving for the

 mean residual life function value at a specific stress level.

 

> #This is a simple plot in maple that shows the MRL values of the 
second sample data.

 

> pointplot ( failbymrl2list) ;  
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> #Polynomial interpolation is demonstrated below.  "w" has not 
been declared as a variable previously.

 

> blue := PolynomialInterpolation( failbymrl1list, w ) ;  
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> whattype (blue) ;  

C
 

> #The line below demonstrates solving for a specific value of the 
MRL function with polynomial interpolation.  The second value 
is the stress value where the desired value lies.

 

> blue2 := PolynomialInterpolation( failbymrl2list, 0 ) ;  

blue2 := 122.7357289 

> # The  plot  from  above  is  repeated  here  with  the  
connect = true option.  This option tends to be more common in
 graphs of MRL functions and stresses that the function is often

 assumed to be continuous.  Below  is  the  plot  of  the  first  
sample 's MRL function.  It also includes the oneKsample 
baseline functions.

 

> multiple (pointplot, [ failbymrl2list, connect = true ] ,
 [baseline2a, connect = true ] ,
 title =" Graph  of  density = 46 medium density fiberboard

 against a baseline of 80", labels = [ IB, MRL] , 
labeldirections = [horizontal, vertical ] ) ;

 



91 

 

>  

> multiple (pointplot, [ failbymrl1list, connect = true ] , 
[baseline1a, connect = true ]
, title =" Graph  of  density = 48 medium density 
fiberboard against a baseline of 80", labels = [ IB, MRL] , 
labeldirections = [horizontal, vertical ] ) ;
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> whattype ( failbymrl) ;  

s

ymbol

 

> fbys3bl := convert ( fbys3b, list) :  

> #Below is a point plot of the calculated tKvalues by stress level 
based on the minimum surviving from the two samples.  At 
the end, the function has been forced to be zero.  
Infinite or Does Not Exist  would be more technically 
correct, but are not convenient for plotting.

 

> pointplot ( fbys3bl) ;  
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>  

> #lists of points are created below for the zfunction and for zK
scores for the 99 % confidence level.

 

> twosampzvalslist := convert ( twosampzvals, list) :  

> for  i  from  1  by  1  to  twosamprows  do  failbyz[ i ]
:= ( [ failweightlist [ i] , twosampzvalslist [ i ] ] ) ; end  do :

 

> failbyzlist := convert ( failbyz, list) :  

> for  i  from  1  by  1  to  twosamprows  do  ztest [ i]
:= ( [ failweightlist [ i] , zalphatsc] ) ; end  do :

 

> ztestlist := convert (ztest, list) :  

> for  i  from  1  by  1  to  twosamprows  do  negztest [ i]
:= ( [ failweightlist [ i] , Kzalphatsc ] ) ; end  do :

 



94 

> negztestlist := convert (negztest, list) :  

> #A multiple point plot is demonstrated below containing the two 
MRL functions.  Color options are also demonstrated.  See  
Maple 's help for a complete list of available colors.

 

> multiple (pointplot,
 [ failbymrl1list, color = black, connect = true ]
, [ failbymrl2list, color = orange, connect = true ] ) ;

 

 

>  

> for  i  from  1  by  1  to  twosamprows  do  negfbys3b [ i ]
:= ( [ failweightlist [ i] ,K tvalslist [ i ] ] ) ; end do :

 

> negfbys3blist := convert (negfbys3b, list) :  

>  
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> # More complicated plots are below that  includes multiple 
functions.  Line thickness options and line style options are 
demonstrated.  Plot title and axis labels are also included.

 

> multiple (pointplot,
 [negztestlist, connect = true, linestyle = DASH] ,
[ztestlist, connect = true, linestyle = DASH] ,
[ fbys3bl, connect = true, linestyle = DOT] ,
 [ failbyzlist, connect = true, thickness = 2 ], 
[ failbymrl1list, connect = true, thickness = 1 ]
, [ failbymrl2list, connect = true, thickness = 1 ] , 
 [negfbys3blist, connect = true, linestyle = DOT]
, title =" Mean Residual Life Functions, Z Function, and 't '
 Critical Values", labels = [ indepaxis, depaxis ] , 
labeldirections = [horizontal, vertical ] ) ;
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> multiple (pointplot, 
 [ failbymrl1list, connect = true, thickness = 1 ]
, [ failbymrl2list, connect = true, thickness = 1 ] , title =" Mean

 Residual Life Functions", labels = [ indepaxis, depaxis ] , 
labeldirections = [horizontal, vertical ] ) ;

 

 

> multiple (pointplot, [ failbyzlist, connect = true, thickness = 2 ], 
[ztestlist, connect = true ] ,
 [ failbymrl1list, connect = true, thickness = 1 ]
, [ failbymrl2list, connect = true, thickness = 1 ]
, title =" Mean Residual Life Functions and Z Function", 
labels = [ indepaxis, depaxis ] , labeldirections

= [horizontal, vertical ] ) ;
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> #This final plot shows the gridlines option in a plot. 

> multiple (pointplot, [ failbymrl1list, thickness = 1 ]
, [ failbymrl2list, color = red ] , gridlines) ;
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>  
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INTRODUCTION 

For completeness in this thesis, we summarize some key theorems, techniques, 

and proofs from Balgopal (1987) and comments from Berger, Boos, and Guess (1988).  

Some useful results from other papers are provided in detail here to assist the reader 

interested in developing a deeper understanding of the MRL function and the techniques 

described in the previous chapters.  We begin with a theorem that appears in the work of 

Berger, Boos, and Guess (1988) and in greater detail in Balgopal (1987).  Theorem 1 in 

this paper is also Theorem 1 in Balgopal (1987) and in Berger, Boos, and Guess (1988). 

THEOREM 1 

Let X1,…, Xn be an independent sample of failure stresses.  Let 2[ ]
i

E X  

represent the expectation of the square of the failure stresses and ( )F t  be the reliability 

function defined by 1 ( )F t−  where ( )F t is the cumulative distribution function.  If 

2[ ]
i

E X < ∞ and ( ) 0F t >  

Let 2 ( )
n

s t denote the sample variance of the failure stresses of the samples with lives 

greater than t and let 2 ( )
F

tσ represent the variance of the samples with lives greater than t.  

Then, 

(1) 
1

2 2( ) ( )
wp

n Fs t tσ→  as n → ∞  
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Additionally, let ( )m t represent the number of surviving individuals at time t, let 

ˆ( )e t represent the empirical MRL function, let ( )e t be the true MRL function, and let 

0 ( )e t  be the hypothesized MRL function.  Then 

(2) 
2

ˆ( ) ( )
(0,1)

( ) / ( )

d

n

e t e t
N

s t m t

−
→  as n → ∞  

PROOF OF THEOREM 1 

Begin the proof of (1) by considering the order statistics (1) (2) ( ), ,...
n

X X X .  2 ( )
n

s t  is a 

continuous function of four parts:  

i. 
2

1

( )n
i i

i

I X t X

n=

>
∑ , 

ii. 
1

( )n
i i

i

I X t X

n=

>
∑ , 

iii. 
1

( )n
i

i

I X t

n=

>
∑ , 

and 

iv. ( )( )
n

I X t>  

where the function I defines the individuals surviving past stress t.  In iii, I is a counting 

function and as a function of t converges to the reliability function.  With this result in 

mind, we can see that as t increases: iv converges to 1, ii converges to 2

1 1[ ( ) ]E I X t X> , 

and i converges to 1 1[ ( ) ]E I X t X> .  Using the forms of convergence described in the 

preceding, we can write 
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2
2

2

( )

1 1

( ) ( )
( ) ( )

( ) ( )

n n
i i i i

n n

i i

I X t X I X t X
s t I X t

nF t nF t= =

  > > 
= − >  

   
∑ ∑  

(1) follows from the above definition of 2 ( )
n

s t . 

It should be noted that the converged forms of i, ii, may also be expressed as: 

i. 2 ( )
t

x dF x
∞

∫  

ii. ( )
t

xdF x
∞

∫  

 We must keep (1) in mind to reach the proof of (2).  Consider the left hand side of 

(2) as 

( ) ( )( )0

2

ˆ( ) ( ) ( ) ( )

( )

( )

n

n e t e t n e t e t

s t

F t

− + −
 

And consider separately the part 

( )ˆ( ) ( )n e t e t−  

From the definition of the empirical MRL, we can rewrite the above as a composite 

function substituting for ˆ( )e t  as 

( )
( )

( )

n

t
n

F x dx
n e t

F t

∞ 
− 

 
∫  where some X>t 

and 

( )( )n e t−  if X t≤ . 
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Since we are principally interested in the case where at least one item survives past stress 

t, we will ignore the latter case, which, in any case, converges to zero as n → ∞ .  

Considering just the first case of our separated part of (2), we may write: 

A= ( ) ( )( )1
( ( ) ( ) ( ) ( ) ( )

( )
n n

t
n

n F x F x dx F t F t e t
F t

∞

− − −∫  

= ( ) ( )( )1
( ( ) ( ) ( ) ( ) ( )

( )
n n

t
n

n F x F x dx F t F t e t
F t

∞

− − − −∫  

 

If we consider just the first portion of the integral described above, we find: 

( )( ) ( )
n

t
n F x F x dx

∞

− −∫  

( )( ) ( )( ) ( ) | ( ) ( )
n x t n

t
n F x F x x n x d F x F x

∞
∞

== − − + −∫  

( )
1

1
( ) ( ) ( ) ( )

n

n i i
t

i

n F t F t t n I X t X x dF x
n

∞

=

 
= − + > − 

 
∑ ∫  

Returning to the full equation, we may rewrite A as: 

( )( ) ( )( )
1

1 1
( ) ( ) ( ) ( ) ( )

( )

n

i i i i

in

A n I X t X E I X t I X t F t e t t
F t n =

 
= > − > − > − + 

 
∑  

 

1

1 1
( )

( )

n

i

in

n Q t
F t n =

 
=  

 
∑  

Where we make the definition that 

( )( ) ( ) ( )i i iQ t I X t X t e t= > − −  

It is not complicated to arrive at the results where 

( ) ( )( )( ) ( )( )
1

1 1
( ) ( ) ( ) ( ) ( )

( )

n

i i i i i

in

n I X t X t E I X t X t I X t F t e t
F t n =

 
= > − − > − − > − 

 
∑
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( ( )) 0
i

E Q t =  

and 

2( ( )) ( ) ( )
i F

Var Q t F t tσ=  

Using Slutsky’s Theorem and the Central Limit Theorem we can now show that A is 

normal as n → ∞  with a distribution characterized by 

( )2

2

1
0, ( ) ( )

( )

d

F
A N F t t

F t
σ

 
→  

 
 

Which can be simplified further for the case when n→∞ as: 

2 ( )
0,

( )

d
F

t
A N

F t

σ 
→  

 
 

This shows that the left hand term of the top of (2) has a normal distribution.  A similar 

proof could be applied to the right-hand side of the top of (2).  Since A converges we 

may use Slutsky’s Theorem to show that (2) converges to a standard normal distribution. 

THEOREM 2 

Theorem 2 is described in Balgopal (1987) as Theorem 2 and is also described in 

Berger, Boos, and Guess (1988) as Theorems 2 and 3 with some description that applies 

to a two-sample case.  Theorem 2 states that if the conditions of Theorem 1 hold then 

0

2 2

ˆ ( ) ( )( ) ( )
1, , 0

( ) / ( ) ( ) / ( )
n n

e t e te t e t
P Z or

s t m t s t m t
α α

 −−
 + > →
 
 

 where 

1→  if 0( ) ( )e t e t>  

α→  if 0( ) ( )e t e t=  

0→  if 0( ) ( )e t e t<  
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PROOF OF THEOREM 2 

Consider as a definition that 

0

2

( ) ( )

( ) / ( )
n

e t e t
B

s t m t

−
=  

It is simple to see that if 0( ) ( )e t e t=  that B=0, which is to say that if the MRL function is 

the same as a hypothesized MRL function that B is zero.  When B is zero we have from 

(2) of Theorem 1 that the left-hand side of Theorem 2 has a standard normal distribution.  

When the left-hand side of Theorem 2 has a standard normal distribution, it is 

straightforward to see that the probability that it is greater than zα  is simply α . 

 We may also show the remaining convergence probabilities by considering B.  If 

we allow that e(t) > eo(t) then we are adding positive number to the standard normal 

distribution included in the left-hand side of Theorem 2.  When this happens, we 

necessarily increase the probability that the left hand side of Theorem 2 is greater than 

zα , and the probability converges to 1.  The opposite holds when e(t) < e0(t), we subtract 

a positive number from the standard normal distribution included in the left-hand side of 

Theorem 2 and we necessarily decrease the probability that the left-hand side of Theorem 

2 is greater than zα .  As e(t) becomes increasingly small compared to e0(t), the 

probability that the left-hand side of Theorem 2 is greater than zα  converges to zero.  

Theorem 2 will be important for the application of confidence intervals. 
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THEOREM 3 

 Theorem 3 appears as Theorem 5 in Balgopal (1987) and deals directly with how 

confidence statements may be made.  Balgopal’s reasoning follows similar reasoning 

used in Berger, Boos, and Guess (1985).  Theorem 3 makes statements about the 

probability that a described confidence procedure makes an incorrect statement.  In 

Balgopal (1987), three confidence statements are considered: 

1. 0 1
ˆ( ) ( ) : [ , )e t e t t t T θ> ∀ ∈  

2. 0 2
ˆ( ) ( ) : ( , ]e t e t t t Tθ> ∀ ∈  

3. ( )( )0
ˆ ˆ( ) ( ) : max 0, , )e t e t t t t tδ δ> ∀ ∈ − +  

The conditions for Theorem 3 are that we consider an independent sample of failures 

from F and we assume that  

2

1[ ]E X < ∞ . 

If we then assume that 

0( ) ( )e t e t≤  

we can say that  

lim
n → ∞

  P[procedure 1 makes an incorrect statement] ≤  α  

In addition when F is a continuous function, then 

 lim
n → ∞

 P[procedure i makes an incorrect statement] ≤  α  for i = 2 and 3. 
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PROOF OF THEOREM 3 

Let F and F0 be fixed distributions satisfying the condition of our Theorem 3. For each of 

the three procedures if )T(
F

e  ≤  
0F

e (T) then by Theorem 2 

 

 lim
n → ∞

P[procedure 1 makes an incorrect statement) 

 

 = lim
n → ∞

 P[Zn(t) > αz ] ≤  α . 

 

Now assume eF(T) > . T)(
F

e
0

 For procedure 1 define 

 1θ    = inf (t))
F

e(t)
F

e:T(t
0

≤≥  

If ∞=1θ then as we have helpfully 

 

P[procedure 1 makes an incorrect statement] = 0.  

 

 

For the case ∞<1θ recall first that MRL functions are right continuous, similar to 

cumulative distribution functions being right continuous. Thus, the combination 

t)(
F

e - t)(
F

e
0

 is also right continuous; and hence we will have, 1 1
0

e ( ) e ( ).
FF

θ θ≤  Note 

that Procedure 1 will make an incorrect statement only if 11
ˆ θθ > . Thus, by Theorem 2, 
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lim
n → ∞

 P[procedure 1 makes an incorrect statement) 

 

 ≤ lim
n → ∞

]P[ 11 θθ >  

 ≤ lim
n → ∞

αθ α ≤> ]z)(Z[ 1mP . 

 

 For procedures 2 and 3, the proofs are similar except for the requirement of F to 

be continuous. Compare similar reasoning in Berger, Boos, and Guess (1985). 
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