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ABSTRACT 

This thesis was designed in two parts to determine the step count accuracy of activity 

monitors in a free-living environment. The aims of the first and second part of the study were to 

(1) critically evaluate the effects on step counts using the study methodology of wearing multiple 

monitors on the same area of the body and to (2) determine the step count accuracy of numerous 

consumer- and research-grade activity monitors worn on various locations of the body across all 

hours of a day in a free-living environment, respectively. For both parts of the study, the same 

hip- and wrist-worn monitor brands were examined. Wrist monitors included the ActiGraph 

GT9X (GT9X), Fitbit Alta (FA), Garmin Vivofit 3 (GV), and Apple Watch Series 2 (ApW). Hip 

monitors included the ActiGraph GT9X (GT9X), Fitbit Zip (FZ), Omron HJ-325 (OM), Yamax 

Digiwalker SW-200 (YX). In the second part of the study, a thigh-worn monitor, activPAL (AP), 

was also examined.  
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The past decade was marked by exponential growth in the use of activity monitors to 

track physical activity (PA) (20, 178). The popularity of activity monitors can be attributed to the 

"Quantified Self", a movement that embodies the quantification and assessment of human 

behavior (e.g., PA, sleep, food and water consumption) (14). With the widespread availability of 

monitors on the market today, PA measurement has become practical and easily accessible for 

the ordinary person. In many consumer-grade monitors, additional features (e.g., cellular 

updates, music, GPS) allow for diverse application and incorporation into one’s daily routine 

(178). Similar trends in monitor usage are observed in research and clinical settings.  

The use of activity monitors in research has drastically changed in recent years (178). 

Previously, monitors have been utilized to determine the relationship of PA and health (26, 49, 

86), elicit behavior change (29, 105, 153), and classify populations by PA level (120, 142). In 

addition to the prior uses, monitors are adapted to track PA in longitudinal studies (20), predict 

health outcomes in clinical trials (25), and validate medical procedures (12, 69). Recently, there 

has been growing interest in the incorporation of activity monitors in electronic medical records 

(20, 150, 178).  

Amongst researchers and consumers, a commonly used output of activity monitors to 

quantify ambulatory PA is steps (27, 178). Steps are a useful metric for quantifying human 

locomotion (166) and have shown to be associated with cardio-metabolic health (136, 142). The 

step is based on physical anthropometry (rather than fixed Scientific Internationale units, such as 

the meter or kJoule), thus simplifying comparisons across individuals of different height or body 

mass index (BMI) (20). Moreover, steps are intuitive, objective, and they can be a motivational 

tool to promote PA (150). For these reasons, step estimates from activity monitors may be 

utilized for a variety of purposes (20, 28, 94).  
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A major concern regarding the use of activity monitors is the accuracy of these monitors 

(20, 51, 177, 178). Thus, regulations have been implemented to regulate monitor accuracy. In 

Japan, the Japanese Ministry of Economy Trade and Industry has set standards for pedometers in 

which monitor estimates must be within 3% of actual steps (75). The criteria may likely be in 

reference to steps completed during treadmill walking at an average walking speed (e.g., 80.4 

m/min or 3 mph). It was not until late 2016 the standards for step count accuracy for consumer-

grade monitors were established in the United States (U.S.) by the Consumer Technology 

Association (CTA) (151). The CTA requires consumer monitors be tested during separate 

walking (i.e., 67-107 m/min) and running (i.e., 134- 322 m/min) treadmill trials and yield a mean 

absolute percent error within 10% of actual steps for both trials (151). Although both standards 

require monitors to be accurate, they have limitations since they do not reflect the step count 

accuracy of monitors in free-living environments, across a waking day. The steps taken 

throughout the course of a day are accumulated within a wide range of human behaviors (e.g., 

cooking, cleaning, playing sports) that extend beyond continuous treadmill ambulation, thereby 

substantiating the need to determine the step count accuracy across numerous activities.  

Previous research has validated activity monitors in laboratory settings.  Typically, 

researchers have examined step count accuracy at various treadmill speeds and for different 

types of activities (41, 73, 81, 122, 138). Numerous sources of error (i.e., wear location, body 

mass, slow walking, irregular gait, intermittent walking) were found to affect step estimate 

accuracy (22, 53, 141, 149). Although these studies provide insight into the specific 

characteristics of movement and activities that increase step count error, it is difficult to apply 

these findings to step counts that encompass an entire day. Thus, in order to enhance ecological 
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validity, it would be better to conduct step count validations that monitor performance across an 

entire day under free-living conditions.  

The validation of monitors in a free-living environment is accompanied by challenges not 

encountered with laboratory-based studies. Most laboratory-based studies use visual observation 

by a trained investigator as the criterion for step counting. However, this method can be difficult 

to apply when validating activity monitors in a free-living environment over prolonged time 

periods. Some studies have used another monitor as a criterion for step count (38, 56, 133), 

although these monitors were not validated against the gold-standard in the free-living 

environment. Furthermore, differences in the criterion monitor across studies make it nearly 

impossible to compare results across studies. Despite these challenges, a recent study conducted 

in our laboratory was able to validate numerous research- and consumer-grade monitors against 

the gold-standard in a free-living environment across a waking day. 

Toth and colleagues (162) were able to utilize the gold-standard of hand-counted steps by 

video-recording steps taken throughout an entire day. This study implemented rigorous testing to 

ensure the most accurate measure of steps per day was established. Hand-counted step estimates 

from 10-minute video segments were counted independently by two trained researchers. If the 

values differed by more than ±5% or 6 steps over 10 minutes, a third researcher counted the 

video and steps per day. The number of steps in a 10-minute segment was then determined by 

taking the average of the two closest values. Findings showed that the StepWatch (OrthoCare 

Innovations; Mountlake Terrace, WA) captured the greatest percentage of hand-counted steps 

taken during a waking day compared to other step counting methods. This monitor allows the 

researcher to initialize it by entering various settings for cadence and sensitivity. Across multiple 

settings, the StepWatch yielded 95.3-102.8% of hand-counted steps. Laboratory-based studies 
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have found similar results across a wide range of speeds and activities (34, 52, 114, 141, 149, 

160, 162). These findings substantiate the use of the StepWatch as a valid criterion measure in 

place of hand-counted steps in a free-living environment. 

The StepWatch has previously been used as a criterion measure for free-living validation 

studies (52, 54, 77, 91, 141, 173). However, these studies did not assess wrist-worn monitors or 

hip-worn consumer monitors (except for the Omron HJ series and Yamax SW-200). It is critical 

to establish the step count accuracy of consumer monitors since they are the most popular 

wearable monitors on the market today (144, 150). Additionally, large-scale research studies 

such as the All of Us Research Program (76) and over 175 randomized clinical trials are now 

using consumer monitors (178). It is important to include the validation of consumer-grade 

activity monitors in a free-living environment, and to use a rigorous methodology for 

determining monitor step count accuracy.  

A common method used in many step count validation studies involves wearing multiple 

monitors during the same trial (e.g., four wrist monitors worn on a participant’s wrist/forearm) 

(15, 37, 95, 112, 133). Wearing multiple activity monitors allows for more monitors to be 

investigated with less participant burden. However, this study design may conflict with the 

manufacturers’ instructions. In instances of wearing multiple activity monitors, only one monitor 

can be worn at the manufacturer’s suggested location (e.g., one monitor can be worn at the wrist 

while the subsequent monitors must be worn further up the forearm). Compromised monitor 

performance due to wear location could be mistaken for step count inaccuracy of that specific 

monitor. Thus, if step count accuracy is going to be tested using this method (simultaneously 

wearing four monitors on the wrist/forearm and hip), it is critical that monitor performance not 

be impacted by placement.   
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Statement of the Problem 

There is a need to establish the accuracy of consumer- and research-grade activity 

monitors in a free-living environment. Although the gold-standard for step counting is direct 

observation of steps, this method is difficult to perform outside of a laboratory setting and over 

extended time periods. The StepWatch is an activity monitor that can be used as a criterion in 

place of direct observation (162). Although a commonly used method in many step count 

validation studies is to simultaneously wear multiple monitors, it is not known if wearing these 

monitors at varied locations will produce equivalent step counts. To date, limited studies exist 

that validate both consumer-grade activity monitors and numerous step counting algorithms for 

research activity monitors against the StepWatch in a free-living environment. Additionally, no 

study has examined the effect of monitor placement on step counts of multiple monitors, worn 

simultaneously. 

Statement of Purpose 

This thesis will be carried out in two parts. The purpose of part one is to examine the 

effect of monitor placement on daily step counts of activity monitors worn at different positions 

on the wrist/forearm and hip. The purpose of part two is to examine the daily step count accuracy 

of multiple consumer- and research-grade activity monitors, using the StepWatch as a criterion 

measure.  

Research Questions 

Part 1: Will step count estimates of the same research- and consumer-grade monitors worn at 

different locations on the wrist/forearm and hip yield different step counts across waking hours 

of one day? 

Hypothesis 1: It is hypothesized that step estimates of consumer monitors will yield 

different step counts when worn at different locations on the wrist/forearm and hip.  
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Hypothesis 2: It is hypothesized that step estimates of research monitors will yield 

different step counts when worn at different locations on the wrist/forearm and hip.  

Part 2: Are step estimates from consumer- and research-grade activity monitors significantly 

different from steps compared to a valid criterion (i.e., StepWatch) across all waking hours of 

one day? 

Hypothesis 1: It is hypothesized that consumer monitors will yield significant different 

step count estimates compared to the StepWatch. 

Hypothesis 2: It is hypothesized that research monitors will yield significant different step 

count estimates compared to the StepWatch. 

 

Delimitations 

1. Participants shall be between 18 and 60 years of age.  

2. Participants must answer “No” to all questions on the Physical Activity Readiness 

Questionnaire (PAR-Q). 

3. Participants will be excluded if they have any heart conditions, are pregnant, or are unwilling 

to refrain from riding a bicycle or stationary exercise cycle during the study.  

Limitations   

1. Participants may experience some skin irritation from wearing monitors.  

2. Although monitors will not be directly touching each other and strapped tightly, excessive 

physical movement may temporarily misplace the monitors.   
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Ambulatory Physical Activity 

Physical activity (PA) is defined as body movements, produced via recruitment of 

skeletal muscles, that results in expenditure of energy (126). There are many types of PA (e.g., 

aerobic PA, muscle strengthening) but this thesis will only focus on the associations of health 

and ambulatory PA, specifically with walking and running. With regular quantities, walking has 

been shown to decrease the risk of cardiovascular disease (7), declining cognitive function (143), 

hypertension (87), and other complications leading to premature morbidity and mortality (21). 

Current PA guidelines issued by Department of Health and Human Services recommend that 

adults avoid inactivity and obtain at least 150 minutes per week of moderate-intensity activity 

(e.g., brisk walking), 75 minutes per week of vigorous-intensity activity, or a combination of 

both (2). Despite this, based on self-report, it is estimated that less than a third of U.S. adults 

meet the PA guidelines (32, 167). As a result, the prevalence of inactivity in society is 

contributing to increased health care expenditure (33), decreased life expectancy (99), and health 

of future generations (61, 113).  

Step Counting 

 One method of measuring ambulatory PA is step counting. Steps are a unit of human 

locomotion (84). A step is usually defined as the act of lifting one’s foot off the ground and 

setting it down in order to move to a new position (6). However, some researchers maintain that 

steps also include unweighting the foot so that it supports less than 50% of body weight and 

moving it to a new location; this definition could include shuffling steps taken by older adults.  

In addition, Hickey et al. (77) defined a step as lifting the foot up off the ground and putting it 

back down again; this definition could include situations where a person is stepping in place. 

Steps have numerous advantages as an objective metric (20). Regardless of educational status or 
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professional capabilities, the average person can easily comprehend steps and step counting. 

Unlike other units of measurement (i.e., SI units) that are based upon physical quantities (e.g., 

seconds, meters, calories), steps are not quantifiable by absolute units. Instead, steps are an 

individually-based anthropometric unit that is related to a person’s height and age. For these 

reasons, steps can provide a common ground for researchers to translate findings into public 

health messages. 

Associations Between Steps and Health Variables 

  An important reason for the popularity of step counting among consumers is because of 

the associations between steps and health variables. Steps can be measured by visual observation 

or estimated through activity monitors (i.e., pedometers, accelerometers, fitness trackers). The 

use of activity monitors to estimate steps has given researchers the ability to determine total steps 

per day which is often used in studying the associations of health variables. This section will 

further delve into the types of studies that use activity monitors to estimate steps and the 

potential for using new, technologically advanced activity monitors. 

Surveillance Studies 

 Across the world, activity monitors have been utilized to estimate steps per day in 

surveillance studies (70, 85, 86, 108, 109, 140, 170). In Switzerland, 493 adults wore a 

pedometer at work and during leisure time for one week. Steps per day from the pedometer were 

compared to the outputs of a questionnaire (140). On average, steps were found to be lower in 

woman than men and also for those that were older compared to younger age groups. These 

relationships seem to be consistent in other countries (85, 86, 109, 170) using different activity 

monitors. Additionally, for women, engagement in leisure time PA (e.g., fitness training, 
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walking, gardening) more than once a week was associated with significantly higher number of 

steps (p<0.003) (140).  

 Using the U.S. National Health and Nutrition Examination Survey (NHANES) from 

2005-2006, Tudor-Locke et al. (170) utilized data from the ActiGraph 7164 to determine how 

many steps/day were taken by U.S. adults. ActiGraph 7164 data was censored to adjust the step 

counts to make the step counts more closely resemble those of the Yamax Digi-walker, a 

pedometer that was often used in surveillance studies. Censoring of steps was accomplished by 

eliminating any steps taken during a minute on the ActiGraph clock in which less than 500 

ActiGraph “activity counts” were recorded. This procedure resulted in a reduction in steps taken 

during slow walking and intermittent activity, causing a decrease in daily step counts for men 

(10,578 to 7,431 steps/day) and women (8,882 to 5,756 steps/day). Tudor-Locke and Bassett 

(169) have outlined a classification system to group populations according to their PA level, as 

measured by steps/day. The differences in steps/day resulting from the differences in processing 

data can influence the classification of a population.  

Cross-sectional Studies 

 The output of steps per day is of great interest to researchers seeking to understand the 

relationship of ambulatory PA and chronic diseases. Although insight on the dose-response 

relationship can be attained with a prospective-cohort study design, there are currently no studies 

that have been done (20). Despite this, cross-sectional studies have been conducted around the 

world and have shown that steps per day is associated with decreases in metabolic syndrome and 

cardiometabolic risk factors (e.g., obesity, hypertension) (71, 86, 142). Unlike previous studies, 

recent NHANES (2011-2014) cycles have utilized the ActiGraph GT3X worn on the wrist. The 

decision to change the wear location from the hip was due mainly from the low compliance and 
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wanting to capture sleep data in previous cycles (165). Compliance with wearing the activity 

monitor has increased from 40-70% of participants wearing it for at least ten hours per day for at 

least six days to 70-80% of participants wearing it for at least eighteen hours per day for at least 

six days. Unfortunately, no daily step counts have been reported with NHANES (2011-2014) 

data and there is still a need for a validated step algorithm for the ActiGraph on the wrist.  

Intervention Studies  

  Another common use of step counters in research is as a motivational tool to increase PA 

in behavioral interventions. Several reviews have outlined intervention studies (27, 90, 130) that 

aim to increase daily step counts with walking interventions in individuals with musculoskeletal 

disease (107), post-pregnancy (118), cardiovascular disease (157), diabetes mellitus (40), and the 

general population (117, 127, 155, 156). Most studies show that pedometers are useful as an 

intervention tool to increase PA (155, 156, 158), leading to decreased body weight and 

improvements in other cardiometabolic measures (e.g., systolic blood pressure, glucose 

handling) (154, 180).  

Recently, several studies have assessed the use of newer consumer monitors and their 

applications beyond typical uses in intervention studies (20, 78, 150, 178). Since most consumer 

monitors come with mobile phone/computer interfaces that allow users to track, store, and share 

PA data; the usefulness of monitors has been expanded in intervention studies to include social 

support, extrinsic rewards, and other behavior modification techniques (178). The feedback that 

participants receive on their activity monitor, smartphone, or webpage has been shown to 

encourage PA, compared to wearing a traditional monitor (30, 92, 105)  
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Unique Applications  

 The use of activity monitors in research has branched into various applications in medical 

practice, pharmaceuticals, and clinical trials.  

 The ActiGraph GT3X-BT is being used in a randomized crossover pilot clinical trial 

(NCT02835937) to observe the effects of ambulatory red blood cell transfusions in patients with 

chemotherapy-induced anemia on functional status (115). Although the primary outcome 

measure is energy expenditure, step counts will also be measured. In addition to validating the 

efficacy of this costly practice, this trial will also provide information on the feasibility of using 

activity monitors to assess functional status in patients with red blood cell transfusions.  

 Activity monitors are also used to evaluate postoperative recovery after surgical 

procedures (174). Previously, postoperative recovery has been measured via self-report 

questionnaires. Van der meij et al. (174) determined the feasibility of activity monitors when 

assessing postoperative recovery after laparoscopic abdominal surgery in patients (N=30). 

Patients were instructed to wear the ActiGraph GT3X-BT one week before surgery, and during 

the first, third, and fifth week post-surgery. Additionally, patients were asked to self-report their 

recovery process which included a written list of several activities that were completed before 

surgery and the date in which the patient was able to complete them post-surgery. Patients who 

had a minor surgery were able to reach baseline step count three weeks after surgery, while those 

who had major surgery did not meet their baseline step counts at five weeks. Overall, the activity 

monitor was well-accepted by the patients and there was a fair agreement between accelerometer 

and self-report data (Cohens Kappa range: 0.273-0.391).  
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History of Step Counting   

Leonardo da Vinci designed the first step counter that was worn on the waist (65). This 

mechanical pedometer counted steps from the movement of a lever arm attached to the thigh 

during walking.  As early as the 1800s, pedometers have been used for mapmaking and 

measuring distance (18, 63, 116). Gell records in the topography of Troy, “the number of paces 

we walk affords a tolerably good measure of distance passed over, but the value of this is much 

enhanced by possessing a pedometer, which will count for us the number of steps” (63).. 

Throughout the next century, a variety of pedometers (e.g., self-winding (68), spring-levered 

pedometers (89)) with unique mechanisms for counting steps were invented to provide a better 

measure of distance to improve maps of the world (66, 110).  

In the late 1800s, Charteris (35) outlines in his manual specific activities and behaviors 

involved to maintain a healthy lifestyle. Specifically, the author suggests exercising daily; 

specifically recommending walking two miles before breakfast, three miles before lunch, three 

miles before dinner, and two before sleeping. In order to keep track of the distance traveled to 

achieve ten miles a day, he encourages readers to use a pedometer.  

In 1965, the Yamasa company in Japan initiated a ‘10,000 steps per day’ campaign (75), 

because it was believed to be the minimum amount of ambulatory PA that would sufficiently 

decrease the risk of coronary heart disease. In 1987, the company produced a pedometer with a 

mechanism to prevent double-counting of steps- an issue common with mechanical step counters 

(75). Soon after, Yamasa introduced a pedometer with a mechanical and electrical mechanism to 

count steps that included a digital display. Since then, step counting monitors have become more 

advanced and are now used for more than just measuring steps and tracking ambulatory PA. The 

advancements in monitors and examples of specific monitors used in the thesis study will be 

presented in the current literature review.  
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Sources of Error in Step Counters 

Activity monitors can be categorized based on their internal mechanisms, wear locations, 

and data storage capabilities. This section will explore various types of step counters and the 

sources of error associated with each type. It is critical to understand the potential sources of 

error in various step counters, as they may contribute to understanding step count accuracy in a 

free-living environment. This section will also discuss the study designs frequently used to assess 

step count accuracy.  

Internal Mechanism  

 Traditional step counters (e.g., Yamax Digiwalker) utilize a spring-levered mechanism, in 

which a horizontal lever arm moves up and down with vertical accelerations of the body during 

walking or running. The movement of the arm opens and closes an electrical circuit causing the 

monitor to count steps; however, in order to count steps, a minimum vertical acceleration to 

displace the lever arm must be met. In a recent study, John et al (88) found that the Yamax 

Digiwalker SW200 required a total acceleration amplitude of at least 1.21 g to count a step, 

though a vertical acceleration threshold of 0.35 g to count step was determined previously (170). 

This minimum acceleration threshold yields a potential source of error during slow-walking (<80 

m/min). Slow-walking does not create sufficient vertical acceleration to move the lever arm to 

count a step, thus resulting in an underestimation of steps. An additional issue is found with 

individuals who have a large waist circumference (41, 173). An increased waist circumference 

causes the monitor to tilt away from the vertical axis, which decreases the amplitude of 

acceleration and results in an underestimation of steps. For these reasons, spring levered 

monitors are not recommended for use in individuals with increased waist circumference or older 

adults who walk slowly.  
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 Piezoelectric or piezo-resistive accelerometers (e.g., some models of the Omron, Fitbit 

Zip) utilize proprietary criteria involving acceleration-signal features to record steps. During 

walking and running, the acceleration versus time recording generates a sinusoidal pattern 

caused by the repetitive ambulatory cycle. Some criteria involve counting the number of zero 

crossings or vertical acceleration peaks detected in a given time window to determine steps. 

Unlike spring-levered pedometers, these monitors are not affected by waist circumference, 

though some monitors may display decreased accuracy for slow-walking (134). In order to 

prevent the recording of extraneous, non-ambulatory movements, some monitors utilize a step-

based time filter. The Omron’s step-based time filter requires four seconds of continuous 

stepping to register a step. Steps taken in short bouts (i.e., less than four seconds) will not 

contribute to the total steps displayed on the screen of the monitor. These filter constraints may 

contribute to reduced step count accuracy during activities that consist of intermittent stepping 

(e.g., household activities) (77, 161).   

Wear Location  

 Although some activity monitors are designed to be worn on the ankle (e.g., StepWatch, 

AMP 331), most step counters were only designed to be worn on the waist and respond to up-

and-down movements of the torso that occur in walking and running. However, in recent years, 

the wear location of step counters shifted to the wrist. The wrist is now the most popular wear 

location for PA monitors, and it has been shown to be increase wear time compliance (165). 

Additionally, monitors can be designed to be worn on the thigh, pocket, or clipped to a clothing 

piece (e.g., bra). With these new wear locations come new sources of error (13, 183), such as 

recording erroneous steps resulting from extraneous arm movements (161). 



 17 

Consumer- and Research-Grade Monitors 

Consumer-grade monitors are categorized as step counters that are marketed to the 

general public. Traditional step counters (e.g., Omron, Yamax) fall under that category of 

consumer-grade monitors and display total steps on the screen. These monitors are easy to use 

but do not have the capability to store large amounts of data. On the other hand, advanced 

monitors (e.g., Fitbit, Garmin, Apple Watch) come with associated mobile applications that 

allow users to upload, save, and store large amount of fine-grained data including raw data. 

Some consumer monitors are marketed to researchers and provide open source applications that 

allow access to activity data. Despite the increased use of consumer-grade monitors, a 

disadvantage of these monitors is that the manufacturers do not explicitly share their step 

algorithms. In addition, determining the step count accuracy of consumer-grade monitors is 

challenging due to the fact that manufacturers can alter their step-counting algorithms at any 

time, unbeknownst to the user (51). Therefore, the same monitor may yield different step 

estimates depending on the update version.  

Research-grade monitors (e.g., ActiGraph) can store raw, time-stamped acceleration data 

but also allow users to access this information. This allows researchers to study the ability to 

accurately count steps and improve previous step counting methods. By providing access to the 

raw data output, research-grade monitors allow researchers to develop new step counting 

algorithms.  

Step Count Validation Studies  

 Step count accuracy can be determined by using different protocols performed in the 

laboratory and free-living settings. Laboratory-based studies can identify confounders that affect 

a monitor’s step count accuracy. The most common type of laboratory study consists of treadmill 
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walking or running. Secondly, structured bouts of activities (e.g., over-ground walking, activities 

of daily living) can inform researchers on the specific movement patterns that may affect monitor 

performance. Laboratory studies are useful because they can help researchers understand the 

sources of error contributing to step count differences throughout the day, which is what users 

are primarily interested in. Since most laboratory studies are structured and activities are 

performed for set periods of time, researchers are able to utilize a gold-standard of hand-counted 

steps by visual observation. Monitors yielding acceptable step count accuracy in laboratory-

based studies are often used as a criterion measure in free-living studies.  

 Free-living studies are characterized by studying monitor performance in an unstructured 

setting across several hours or days. Since it is difficult to apply the hand-counted steps in free-

living studies, surrogate monitors are often used to assess step count accuracy. This practice is 

problematic since researchers are determining the accuracy of other monitors against a monitor 

that has not been validated in a free-living setting. It was not until recently that several research 

and consumer monitors were validated against hand-counted steps in a free-living setting across 

one waking day (162). In this study, researchers manually counted steps from video recordings 

of each participant’s steps and determined the StepWatch to be a highly accurate monitor (i.e., 

within 5% of hand-counted steps). This suggests that researchers can use the StepWatch as a 

criterion for validating other monitors under free-living conditions, without repeating the process 

of video recording and manually counting each step, as was done in the former study.  

Research Monitors 

Unlike consumer monitors, research monitors are not marketed to the general public and 

are usually (although not always) more expensive than consumer monitors. Along with having to 

purchase the monitor, a docking station for charging and initializing the monitor is also 
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necessary. Additionally, some companies require the user to purchase a license for the 

corresponding monitor software. Unlike consumer monitors, research monitors typically do not 

come with diverse feature options. The main difference between these two groups of monitors is 

the step algorithms that are used to process raw data. Research-grade monitors that will be 

covered in this literature review are the ActiGraph, activPAL, and StepWatch. Specifications of 

the particular model of monitor and findings of the step count accuracy will be presented for the 

studies conducted under laboratory-based and free-living conditions.  

ActiGraph 

ActiGraph (ActiGraph, LLC, Pensacola, FL) is a manufacturer of research-grade activity 

monitors. In addition to activity monitors, ActiGraph also provides a platform (i.e., Centrepoint) 

that can transfer data (e.g., activity bouts, raw data, steps, sleep score) from a mobile device, 

computer, and activity monitor in real-time (10) for innovative research. Additionally, ActiGraph 

monitors have been used in one of the largest cross-sectional studies in the U.S., the National 

Health and Nutrition Examination Survey (NHANES).  

ActiLife is a program designed to initialize ActiGraph monitors, download data, and 

analyze data. Users can use ActiLife’s step counting algorithm to process counts to estimate 

steps. Prior to being processed with the ActiLife algorithm, ActiGraph GT3X+ acceleration data 

from the Y-axis are put through a bandpass filter in order to attenuate accelerations that are 

outside the range of normal human movements. The filtered data are then processed through the 

algorithm, which identifies the zero crossings to estimate steps. However, due to its use of a 

single axis, the ActiLife step-counting algorithm is only optimal for counting steps when the 

ActiGraph is worn on the hip.  
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ActiLife also allows users to process data with the low frequency extension (LFE) filter 

option. The LFE filter was designed to make count values of the ActiGraph GT3X comparable to 

the ActiGraph 7164 (31). Enabling the LFE will reduce the attenuation of acceleration signals 

from low frequency movements (e.g., slower walking, light-intensity activity). This is done by 

extending the lower end of the filter’s frequency range, thus allowing the amplitude of the low-

frequency acceleration signals to be retained (9). Due to the fact that these movements are now 

more likely to exceed the acceleration threshold needed to record a step, turning on the LFE 

roughly doubles the number of steps per day recorded (54). 

 In order to create a step algorithm that could be applied to multiple wear locations, a 

preliminary (beta) version of the Moving Average Vector Magnitude (MAVM) algorithm was 

created by ActiGraph. Unlike the ActiLife step algorithm, MAVM uses raw data from the X, Y, 

and Z-axes or vector magnitude. The MAVM algorithm analyzes raw data in 4-sec time-

windows. In addition, ActiGraph claims to use a time-based stepping filter.  In other words, 

continuous stepping, for 10 seconds (on the wrist) and 2 seconds (on the hip), is required in order 

for steps to be recorded. These time-based filters are applied in order to prevent extraneous 

movements that are unrelated to ambulation being counted as steps.  

ActiGraph GT9X Link 

The ActiGraph GT9X Link is a 3-axis accelerometer that stores raw acceleration data to 

produce step counts. It is (3.5 cm x 3.5 cm x 1 cm) and weighs 14 g. The ActiGraph costs $275 

and cannot be purchased in stores. The GT9X Link has high-resolution liquid crystal display 

(LCD) window and Bluetooth capabilities, as well as the inclusion of an integrated measurement 

unit (IMU) including a gyroscope, magnetometer, and second accelerometer. Additionally, users 

must also purchase ActiLife software ($1,250) in order to utilize the monitor. The monitor can 
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last up to 14 days on a full charged battery and can store up to 180 days of data. A 6-port 

docking station is $175, and the belt clip is $12, and the watch band is $22.  

Laboratory Studies 

Numerous models of the ActiGraph with several step counting algorithms have been 

validated in laboratory settings (8, 37, 50, 55, 77, 79, 97, 112).  

 Hickey et al. (77) examined the step count accuracy of the ActiGraph GT3X across a 

range of ambulation speeds. Participants (N=15) wore two GT3X monitors in line with the 

anterior axillary line of either the right or left hip while completing a treadmill protocol. The 

protocol consisted of ambulating at speeds of 40, 80, 120, and 162 m/min for 5-min at each 

speed with 2-3 minutes of rest between speeds. The monitors were initialized using ActiLife with 

LFE (AGL) and without LFE (AG). Hand-counted steps served as the criterion for the study. At 

40 m/min, AG significantly underestimated by 25 steps/min (p<0.05). At the remaining speeds, 

AG and AGL underestimated steps by up to 1 step/min. The greatest step count errors for AG 

and AGL were exhibited at slower speeds. Höchsmann et al. (79) found similar results with the 

AG having the greatest underestimation of steps at slower speeds by underestimating by 60 

steps/min at 27 m/min and underestimated by 2 steps over 5 minutes at 100 m/min.  

 Chow et al. (37) determined the accuracy of the ActiGraph GT3X (GT3X) initialized 

with ActiLife (though no stepping algorithm is mentioned) at speeds 83, 108, 133, 167, and 200 

m/min. Participants (N=31) wore the monitors on the hip and wrist and were asked to walk or 

run at 83, 108, 133, 167, and 200 m/min for 3 minutes. A two-way ANOVA was used to assess 

the effect of placement site (i.e., hip vs wrist) and speed on step count error. There was no 

significant interaction between wear location on speed (p=0.796), though significant main effects 

of wear location were found (p<0.001). Across all speeds, the wrist-worn GT3X underestimated 
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steps by 41.7% ± 13.5% (mean % error ± SD) compared to hand-counted steps. With increasing 

speeds, the GT3X on the wrist underestimated more steps (-29% at 83 m/min to -50% at 200 

m/min). On the other hand, the hip-worn GT3X had a percent error ranging from -2% to 1% 

across all speeds. The wrist-worn GT3X decreased in accuracy with increasing speed. Overall, 

the wrist-worn AG seems to produce inaccurate step estimates while the hip-worn GT3X shows 

increasing accuracy with speed. The enabling of LFE was not mentioned in the study.    

 Few studies have examined the step count accuracy for activities of daily living. In a 

study by Toth et al. (161), participants (N=21) wore an ActiGraph GT3X on the right hip, in-line 

with the anterior axillary line, and non-dominant wrist while completing a series of activities. 

Activities included brushing teeth, brushing hair, eating a snack, cooking an egg, folding 

laundry, and sweeping a room. Each activity was performed for 2 minutes followed by a 30 

second break. ActiGraph data were processed with the normal filter (AG), LFE (AGL), and 

MAVM algorithm (AGM). Hand-counted steps served as the criterion measure and ±10% of 

mean hand-counted steps were distinguished as the equivalence zones. Unlike the other step 

methods, the hip-worn AGL was statistically equivalent to hand-counted steps (p=0.02) across 

all activities while the AG and AGL on the wrist overestimated up to 17 steps/min and AGM on 

the wrist underestimated by 4 steps/min. AG and AGM on the hip underestimated up to 11 

steps/min. In a similar study, Hickey et al. (77) found that during activities of daily living (i.e., 

cleaning, vacuuming, dusting, sitting, filing) the hip-worn AG processed with ActiLife without 

LFE significantly underestimated by up to 34% of hand-counted steps while the AGL 

overestimated by 70% of hand-counted steps (p<0.05).   
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Free-living Studies 

 Several studies have examined the accuracy of the ActiGraph in a free-living 

environment (38, 52, 77, 102, 162).  

 Toth et al. (162) determined the step count accuracy of the ActiGraph GT9X across an 

entire day in a free-living environment compared to hand-counted steps by video recording. 

Healthy adults (N=12) wore a GoPro video camera on their chest to record steps taken 

throughout the day. Additionally, three ActiGraph GT9X monitors were worn simultaneously on 

the left and right wrists and right hip in line with the anterior axillary line. ActiGraph data were 

processed in ActiLife and with AGM. Across all methods, step-count accuracy ranged between 

69% to 220% of hand-counted steps. By enabling LFE, both the hip and wrist monitors greatly 

overestimated steps, recording 128%-220% of hand-counted steps (p<0.05). AGM on the hip 

underestimated steps, recording 70% of hand-counted steps (p<0.05). AGM on the non-dominant 

wrist recorded 84% of hand-counted steps, while AGM on the dominant wrist produced step 

estimates within 10% of hand-counted steps. Findings of this study display the major 

overestimation from enabling the LFE and the step counting accuracy of ActiGraph’s MAVM 

algorithm (compared to the ActiLife algorithm) when the monitor is worn on the wrist.  

 Hickey et al. (77) examined the step accuracy of the hip-worn ActiGraph GT3X with 

ActiLife compared to the StepWatch (SW) in adults (N=15, Male = 7) across one, waking day. 

AGL steps were significantly greater than SW (9,597 steps/day mean) by 4,000 steps/day. 

Although AG steps were not significantly different from SW, there was still a 1,300-step 

underestimation. A similar study by Feito et al. (52) investigated the accuracy of the ActiGraph 

GT3X (using ActiLife) placed on the hip in line with the right anterior axillary line and the SW 

across one waking day. AG recorded 74% ± 13% (percent ± SD) of SW steps. Pearson 
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correlation coefficients showed a strong correlation (r = 0.95) between AG and SW (p<0.001).  

ActivPAL 

The activPAL™ (PAL Technologies Ltd, Glasgow, Scotland) is a research-grade activity 

monitor that can measure steps, instantaneous cadence for a period of walking, time periods 

spent ambulating, postural allocation, and energy expenditure. It was initially designed to 

identify time spent lying/sitting, standing, and walking for stroke populations but is primarily 

used to measure time spent in sedentary time. The monitor contains a uniaxial accelerometer 

(although the most recent model is triaxial) that records gravitational acceleration and segmental 

movement. It also has the capacity to process data and store memory for up to seven days.  

activPAL 

The activPAL (AP) is small (5 x 3.5 x 0.7 cm) and lightweight (20 g). It is worn on the 

midline of the anterior thigh between the inguinal and patella crease, and affixed with 

Palstickies, double-sided hypoallergenic hydrogel adhesive pads. The monitor itself costs $1,450 

USD and the docking station costs $950 USD. The software is provided online at no cost to the 

user.  

Laboratory Studies 

 Numerous laboratory-based studies have examined the step accuracy of the AP (28, 43, 

52, 72, 77, 106, 134). The first study to validate the step count accuracy of the AP across various 

walking speeds was conducted by Ryan et al. (134). Participants (N=20) walked on a treadmill at 

54, 67, 80, 92, and 107 m/min for 5 minutes at each speed. Additionally, each participant walked 

at a self-selected slow, normal, and fast walking speed on a 500-m outdoor track, with mean 

speeds of 83, 99, and 110 m/min, respectively. Across all speeds for treadmill and over-ground 

walking, the absolute percent error was less than 1% of hand-counted steps.  
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 Dahlgreen et al. (43) established the intra-monitor reliability of the AP to measure steps 

during ambulatory activities. Participants (N=24) performed the same procedure on two separate 

occasions a week from each other. The procedure consisted of walking at a self-selected speed, 

53, 75, 75 m/min with incline, and running at 133 m/min. Participants also were asked to stair 

walk and cycle at 45, 60, 75 rpm. Each activity was performed for 2 minutes for each trial. 

Intraclass Correlation Coefficient (ICC) with two-way mixed model was used to calculate 

relative reliability of steps. Test retest relative reliability was very high for treadmill walking at 

75 m/min and 75 m/min with incline (ICC= 0.94 and 0.95, respectively). High correlation was 

found for 53 and 133 m/min and stair walking (ICC = 0.88, 0.81, and 0.70, respectively). Finally, 

moderate correlations were found for self-paced walking and cycling (ICC= 0.69 and 0.55, 

respectively). It is interesting to note that during running at 133 m/min, the AP overestimated 

steps by 15 and 23 steps/min for the first and second trial, respectively.   

 Hickey et al. (77) examined the step accuracy in adults (N=15) during running on a 

treadmill at 120 and 162 m/min, vacuuming, dusting, filing papers, and cleaning a room in a 

home-setting for 5 minutes each. Participants also sat for 3 minutes. During vacuuming, dusting, 

and cleaning the AP significantly underestimated steps compared to hand-counted steps by 9, 15, 

and 13 steps/min, respectively. At 120 and 162 m/min, the AP significantly underestimated steps 

by 11 and 17 steps/min, respectively (p<0.05). When assessing step accuracy by movement type, 

the AP significantly underestimated steps during non-rhythmic (e.g., cleaning) and rhythmic 

(e.g., running) activities, but not during sedentary (e.g., sitting) activities. When assessing step 

accuracy by movement direction, the AP significantly underestimated steps during forward (e.g., 

jogging), side-to-side (e.g., dusting) and multidirectional (e.g., vacuuming) movement. The AP 
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underestimated steps by >5% of hand-counted steps for all activities except for filing papers, in 

which results were not significantly different (p>0.05).  

Free-living Studies 

 In the same study by Hickey et al. (77) the step count accuracy of the AP was compared 

to the SW during one, full waking day. The AP significantly underestimated by greater than 

1,000 steps/day of SW (9,597 mean steps/day) (p<0.05). Feito et al. (52) found similar results for 

the AP across one, full waking day compared to the SW. Feito examined participants in different 

BMI groups (i.e. normal (<24.9 kg/m2), overweight (25.0-29.9 kg/m2), and obese (30 kg/m2). 

The AP recorded only 70% of SW steps (p<0.001). Additionally, no significant effect of BMI 

was found on step count accuracy.  

 To determine the step accuracy of the AP across one, full waking day compared to the 

gold-standard, Toth et al. (162) used a GoPro video camera to film steps taken in one day. 

Participants (N=12) were outfitted with two AP that were placed in the midline of the anterior 

aspect of the right and left thighs between the inguinal and patella crease. Similar to previous 

free-living validation findings (52, 77), the AP recorded 76.9% of hand-counted steps. AP steps 

were highly correlated with hand-counted steps for the right and left thigh locations (r = 0.969 

and 0.973, respectively). The author attributes the 23.1% underestimation of steps to the 

decreased accuracy of the AP at slower walking speeds. However, based on the present literature 

review, it appears that the underestimation of steps could also be due to the AP’s inability to 

accurately detect steps during activities of daily living, and at faster ambulatory speeds in healthy 

adults.  
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StepWatch 

The StepWatch™ (Modus Health, LLC, Washington D.C.) is a research-grade activity 

monitor specifically designed to measure PA in populations with slow or irregular gait. The 

StepWatch is regarded as the most accurate monitor for step counting during walking (40-121 

m/min) (20, 77, 162). In addition to the activity monitor, the company provides the Modus 

StepWatch activity monitoring software that is able to initialize the monitor with user 

characteristics (e.g., height, age, weight) and activity patterns (e.g., engages in both extremes, 

normal stepping).   

The StepWatch uses a step counting method that analyzes the instantaneous acceleration vs. 

time waveform in order to distinguish specific features of stepping (39, 160). In order to account 

for varying stepping rates and characteristics of walking, users are able to initialize the monitor 

with different sensitivity and cadence settings. Sensitivity is defined as the threshold acceleration 

that must be exceeded in order to record a step. For decreased sensitivity settings, the threshold 

for step detection is reduced to capture slower walking speeds or light-intensity movements. On 

the other hand, increased sensitivity will allow for higher step detection for fast walking or for 

individuals who frequently fidget or produce leg movements that are not steps. Cadence (cadence 

setting x 0.01 seconds) is defined as the time required before another step is counted to reduce 

the double counting of steps.  

The StepWatch can also be initialized to record steps at different epoch lengths and does not 

use a stepping filter such as the Omron and ActiGraph MAVM. The StepWatch is worn on the 

ankle and counts steps using an analog accelerometer which samples at 120 Hz. 
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StepWatch 3 

The StepWatch 3 (SW) is an ankle-worn step counter. The SW costs a total of $2,000 

USD ($500 for the monitor and $1,500 for the Modus activity monitoring system and docking 

station (91)). The monitor does not have a screen and is designed to be strapped to the ankle, 

above the lateral malleolus. The SW dimensions are 75 x 50 x 20 mm and weighs 38 g. It comes 

with an elastic strap with Velcro® closures and the battery of a SW can last from 5-7 years.  

Laboratory Studies 

Numerous studies have examined the validity of the SW in clinical populations (58, 62, 93, 

135, 164) and in healthy adults (53, 60, 91, 160). Karabulut et al. (91) determined the accuracy 

of the StepWatch 3 (SW) during treadmill walking, heel tapping, leg swinging, driving a motor 

vehicle, and cycling. The treadmill and cycle protocol consisted of participants (N=20) walking 

on a treadmill at 27, 40, 54, 67, 80, and 107 m/min, riding a cycle ergometer at 60 rpm, lightly 

tapping their right and left heels on the floor, and swinging their legs while sitting on a table for 

3 minutes for every activity and speed. A subsample of participants (N=10) drove a motor 

vehicle around a 6.4 km course on a city street. Across all treadmill speeds, the SW was within 

1% of hand-counted steps. Unlike other monitors (i.e., AMP 331, New Lifestyles NL-2000, 

Yamax Digiwalker SW-701) that were studied, modified Bland-Altman plots showed very little 

variability in individual steps per minute across all speeds. For heel tapping and leg swinging, 

the SW recorded erroneous steps (zero hand-counted steps) with mean steps 28.7 ± 6.4 and 118.2 

± 0.75 (p<0.05), respectively. During driving the SW recorded no steps, while for cycling the 

SW recorded 120.2 ± 0.41 steps/min. The SW was accurate (recorded 3% of hand-counted 

steps) during slow to brisk walking. Foster et al. (60) found similar results in which the SW 

displayed high accuracy (99-100%) and precision [(SD of each test/ hand-count) * 100, with 0 as 
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the highest score] (0.26-0.56%) at 27, 54, 80 m/min during treadmill walking, and at 27 and 48 

m/min during over-ground walking. Feito et al. (53) also found similar findings in which the SW 

recorded 96 to 100% of hand-counted steps across BMI categories at walking speeds ranging 

from 40 to 94 m/min.  

Hickey et al. (77) examined the accuracy of the SW at speeds greater than 100 m/min and 

during activities of daily living. The SW was initialized with sensitivity and cadence settings at 

13 and 67, respectively. Participants ran on a treadmill at 120 and 162 m/min, and performed 

different activities (i.e., vacuuming, dusting, filing papers, and cleaning a room) for 5 minutes 

each. Additionally, each participant sat in a chair for 3 minutes. At 120 and 162 m/min, the SW 

significantly underestimated mean steps by 0.8 and 23 steps/min of hand-counted steps, 

respectively, compared to hand-counted steps. The SW significantly overestimated steps during 

vacuuming by 8 steps/min and significantly underestimated during filing by 4 mean steps. No 

differences in steps were found for the remaining activities. When assessing SW estimates based 

on movement direction, steps were overestimated (i.e. greater than 5% of hand-counted steps) 

during activities with multi-directional movements (e.g. cleaning). There was no significant 

difference between SW estimates and hand-counted steps for activities with side-to-side 

movements. Since the step counting accuracy of the SW decreases at high ambulation speeds 

(162 m/min) and certain activities (i.e., vacuuming and filing) and movement direction (i.e., 

multidirectional), the authors warn the comparison of steps/day using the SW and hand-counted 

steps as a criterion.  

Toth et al. (160) examined the effect of SW initialization settings (i.e., cadence, sensitivity) 

on step count accuracy across various ambulatory speeds. Participants (N=15) were outfitted 

with four SW monitors worn above the outer and inner malleolus and performed treadmill 
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walking/running at ten speeds between 27 to 268 m/min, for 2 minutes at each speed. Treadmill 

trials were completed twice. During the first trial, the SWs were initialized with the same 

sensitivity setting (default setting) but different cadence settings (100, 83, 70, and 60% of default 

setting). For the second trial, monitors were initialized with the same cadence setting (default 

setting) but different sensitivity settings (18, 16, 14, and 12). The modified setting that yielded 

the greatest percent of hand-counted steps during treadmill trials (i.e., cadence 70% and 

sensitivity 16) was examined for the second part of the study. Participants (N=10) wore two SW 

monitors initialized with the default and modified setting and were asked to clean tables, 

vacuum, dust, play tennis, and drive a vehicle while wearing both monitors on the right ankle 

above the medial and lateral malleolus. One-way ANOVA showed significant differences across 

cadence and sensitivity settings across speeds (p<0.05). The modified setting captured 96- 104% 

of hand-counted steps. Similar to previous findings, SW recorded no steps during driving. There 

was a significant underestimation of steps during “singles tennis” when using the default setting 

(90% of hand-counted steps, p<0.001), and “dusting” when using the modified setting (85% of 

hand-counted steps, p=0.032). The default setting displayed higher accuracy across activities of 

daily living, while the modified setting had higher accuracy for singles tennis. To provide step 

estimates, users who engage in vigorous sports play may consider altering the cadence and 

sensitivity settings from default settings.  

Free-living Studies 

 In the same study presented earlier (StepWatch: Laboratory Studies), Karabulut et al. (91) 

compared the step output of monitors (i.e., AMP 331, New Lifestyles NL-2000, Yamax 

Digiwalker SW-701, StepWatch 3) across one, entire waking day. Significant differences were 

found across monitors (p<0.01). On average, participants took 12,500 steps/day according to the 
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SW, while remaining monitors underestimated by a mean of 1,367 to 2,185 steps/day. The AMP 

331, a monitor that is also worn on the ankle, significantly underestimated SW steps by 18% 

(p<0.05). The YX and NL underestimated SW steps BY 15% and 11%, respectively, but were 

not significantly different from the SW (p>0.05). Although there was no criterion measure of 

steps, authors conclude that the SW would likely produce the most accurate step estimates 

because of its accuracy across a wide range of walking speeds. Additionally, authors concluded 

that although the SW overestimated steps during heel tapping and leg swinging, only a small 

percentage of time during the day is spent performing these types of activities.  

 Toth et al. (162) examined the step count accuracy of the SW during one, waking day in a 

free-living environment compared to hand-counted steps. For each participant (N=12), four SW 

monitors were randomized to be worn above the lateral or medial malleoli on the right or left 

ankles. (According to the manufacturer, it makes no difference for step counts whether the 

monitor is worn on the lateral or medial side of the ankle.) Each SW was initialized with 

numerous pre-programmed settings (i.e., default, quick stepping, both extremes of walking 

speed, and quick stepping with dynamic/fidgety leg motion) using Modus software. Compared to 

hand-counted steps, the SW recorded 95-103% of steps per day (p>0.05). The pre-programmed 

setting of ‘both extremes of walking speed’ produced the most accurate step estimate as it 

recorded 98% of hand-counted steps/day and a MAPE of only 4%,   

Consumer Monitors 

 Consumer monitors can be referred to as a wearable monitor, fitness tracker, and/or 

consumer-grade activity monitor. These monitors measure a collection of health behavioral data 

that may track aspects of one’s PA, sleep, menstrual cycle, or even water-intake. Over the past 

decade, the popularity of consumer monitors has increased greatly (144) as the tracking and 
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monitoring of personal health data has become more prevalent (14). The growing availability, 

wide price range, and diverse feature options of consumer monitors have increased the 

affordability and utility for consumers (20, 51, 150, 178).  Unlike research-grade monitors, 

manufacturers of consumer monitors rarely disclose their algorithms or the process of how health 

data is attained. Additionally, automatic updates to monitors may change the way in which the 

health data are measured (51). These updates make it difficult to ensure the accuracy of the 

monitors and comparability of data over time. Despite these limitations, consumer-grade 

monitors are often user-friendly, as they are accompanied by a free mobile interface that allow 

users to store data, share and compare data with other users, and track progress over time. 

Additionally, consumer-grade monitors do not require any further data processing that may need 

the assistance of a skilled expert. In this review of consumer monitors, manufacturers of the 

Apple Watch Series Two, Omron HJ-325, Fitbit Alta, and Garmin vivofit 3 will be presented.  

Apple Watch 

The Apple Watch (Apple Inc., Cupertino, CA) is a series of smartwatches that were 

introduced by Apple Inc in mid-2015. Smartwatches are starting to take over the wearables 

market and currently amount to more than $13 billion USD in annual revenue (145). 

Smartwatches offer similar features to fitness trackers but also possess stand-alone phone 

capabilities (e.g., call and text notifications and response), which may allow for convenience and 

ease of use in one’s daily routine. In 2017, 35% of smartwatch shipments were Apple Watches 

(131), thus, establishing Apple as a major retailer of smartwatches in the market today. Apple 

Watches, which are only intended to be worn on the wrist, may be initialized to be worn on 

either the dominant or non-dominant wrist (16).  
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Apple Watch Series 2 

The Apple Watch Series 2 is small (38.6mm x 33.3mm x 11.4mm) and lightweight (28.2 

g). Like most smartwatches, the Apple Watch ranges in price from $369 to $1,299 USD, 

depending on the size (38 and 42mm) and casing material (aluminum, steel, ceramic). The Apple 

Watch Series 2 contains a heart rate sensor, accelerometer, gyroscope, and a speaker. A major 

limitation of the Apple Watch is that the monitor is only compatible with an iPhone 5 or later 

iPhone model (147). Additionally, a single charge will provide only 18 hours of battery life.  

Laboratory Studies 

 Currently, there are only three step count validations studies of the Apple Watch (19, 59, 

112). Of those studies, no free-living validation studies exist.  

Bai et al. (19) examined the step count accuracy of the Apple Watch 1 in healthy adult 

participants (N=41). The criterion measure of steps was the Yamax SW-200 DigiWalker (YX). 

The entire protocol lasted 80-minutes and was comprised of 20 minutes of sedentary activities 

(i.e., laptop/phone browsing, reading a book), 25 minutes of aerobic exercise (i.e., walking or 

jogging on a treadmill at self-selected paces), and 25 minutes of light PA (i.e., folding laundry, 

and sweeting, moving light boxes, stretching, slow walking). Each activity was separated by 5-

min rest breaks. Across activity categories, MAPE ranged vastly: sedentary activity (453%), 

aerobic exercise (6%), and light PA (161%). Overall, the Apple Watch overestimated YX steps 

by 12%, with the most overestimation coming from light PA (greater than 200 mean steps). 

Light activity also had the lowest correlation (r = 0.30) compared to aerobic exercise which had 

the lowest step error and highest correlation (r = 0.91). The current study showed the Apple 

Watch displayed less step count error compared to the YX during aerobic exercise, however a 
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major limitation of the current study was the use of the YX as the criterion measure since slow 

walking and obesity pose significant threats to validity of the YX spring-levered pedometer.  

Modave et al. (112) examined the step count accuracy of the Apple Watch Series 2 

during a treadmill protocol. Healthy participants (N=20) between the ages of 18-39 years 

completed two separate trials, each consisting of a total of 1000 steps, at a self-selected pace 

between 53.6 and 80.5 m/min. The Apple Watch was worn on the right wrist for the first trial 

and left wrist for the second trial. The authors do not mention whether the Apple Watch was 

initialized for specific wrist placement when switching the placement of the monitor between 

trials, although the dominant wrist was inputted for each participant. Additionally, the exact 

placement of the Apple Watch in relation to other monitors worn during the same trial was not 

disclosed; however, it was worn adjacent to the Fitbit Surge and Garmin Vivofit on both wrists. 

Hand-counted steps served as the criterion measure. Averaging both sessions, the mean step 

output of the Apple Watch was 964.9 ± 59.0 (mean ± SD) out of 1,000 steps, though this 

difference was not found to be statistically significant from hand-counted steps.  

Fokkema et al. (59) examined the reliability and validity of the Apple Watch Sport during 

treadmill walking and running. Healthy adult participants (N=31) walked on a treadmill at slow 

(53.3 m/min), comfortable (80 m/min), and vigorous (106.7 m/min) speeds for 10 minutes each, 

on two separate sessions that were separated by a week. The Apple Watch was worn on the left 

wrist for all trials. Hand-counted steps by visual observation served as the criterion measure of 

steps per trial. Intraclass correlations (ICC) were calculated to determine test-retest reliability. At 

the slow, comfortable, and vigorous speeds, the mean average percent error (MAPE) of both 

sessions was 0.7%, 3.7%, and -0.1%, respectively. ICC for slow, comfortable, and vigorous 

speeds resulted in 0.38, 0.48 and 0.80, respectively. Although the Apple Watch exhibited low 
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reliability at slow speeds, it may be valid for counting steps at higher (i.e.- 80-106.7 m/min) 

speeds where it showed high reliability and low MAPE.  

Fitbit 

The Fitbit™ (Fitbit Inc., San Francisco, CA) is the most popular consumer monitor on the 

market today and the company holds 72% of the market share in wearable technology (132). 

Since the release of its first activity monitor in 2011, the company has released a vast number of 

products, including fitness trackers, fitness watches, headphones, and even smart scales (1).  

Fitbit activity monitors range in size and weight, depending on whether the product is 

classified as a fitness tracker, fitness watch, or clip-on tracker. Fitness trackers are designed to be 

worn on the wrist or waist and have Bluetooth capabilities in which the user is able to connect 

the monitor to a mobile platform to store and share activity data. Some fitness trackers are able to 

receive cellular notifications (i.e., call and text). Also, some fitness trackers have clip-on casing 

that allow for the monitor to be worn in various locations (i.e., bra, pocket, wrist, waistband).  

Fitness watches are generally bigger in size and weight and include the features of a fitness 

tracker in addition to a built-in GPS. Fitbit monitors use a triaxial accelerometer, which capture 

the accelerations of human movement, to detect steps using proprietary algorithms (3). 

Additionally, all monitors require the user to create an account to periodically ‘sync’ or 

download data using the Fitbit mobile platform and update the monitor firmware.  

Fitbit Zip 

The Fitbit Zip (Zip) is a small (35.6 x 9.7 x 28 mm) and lightweight (8.5 g) fitness tracker 

released in 2012. The Zip is inserted into a silicone holder and can be affixed to various parts of 

the body (e.g., belt, pocket, bra). Based on the Fitbit website, one can purchase the monitor for 
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$59.95 USD. The Zip uses a replaceable 3V coin battery, which provides four to six months of 

battery life.  

Fitbit Alta 

The Fitbit Alta (Alta) was released in 2016. It is a wrist-worn fitness tracker with an 

organic light-emitting diode (OLED) display screen. The Alta is listed as $129.95 USD on the 

Fitbit website. The Alta is a thin (238.8 x 15.2 x 10.2) and lightweight (31.2 g) fitness tracker. 

The monitor is rechargeable and uses a lithium-polymer battery that lasts up to 5 days. The Alta 

also allows the user to initialize the monitor to be worn on the dominant or non-dominant wrist, 

which is suggested to improve step estimates when counting steps (3).  

Laboratory Studies 

Numerous Fitbit step count validation studies have been conducted in a laboratory-based 

environment (11, 13, 24, 37, 45, 81-83, 104, 112, 119, 121, 122, 148, 152). Although a majority 

of studies use hand-counted steps as the criterion, some studies use the activPAL micro (121), 

Shimmer 3 (104), and the OPAL sensor (148). Some of these laboratory-based studies have 

validated newer Fitbit models, such as the Surge (112) and Charge HR (104).  

The step count accuracy of Fitbit monitors has been assessed at numerous treadmill speeds. 

For slow walking speeds (i.e., less than 67 m/min), Diaz et al. (45) assessed the step-estimates 

from a Fitbit One worn on the hip and upper torso and a Fitbit Flex (Flex) on the wrist during a 

6-min treadmill walk at 50.4 m/min compared to hand-counted steps. Percent error was lower for 

hip- (-1.5 ± 2.8%) and upper torso-worn Fitbit One (-3.1 ± 7.8%) compared to the wrist-worn 

Flex (-15.8 ± 27.9%). Alina et al. (13) asked participants to walk at a slow speed of 41.4 m/min 

for five minutes while wearing Fitbit monitors at various locations (i.e., Zip on the upper torso, 

Fitbit One on the hip, and Flex on the wrist). Similar to previous findings, the hip location had 
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the lowest error compared to the wrist and the upper torso (i.e., 5.5%, 6.8% 6.7%, respectively) 

compared to hand-counted steps, though differences were minimal. Both studies also assessed 

the accuracy at normal walking speeds and found that for all wear locations, percent error 

decreased (1.4%-3.9%). 

Huang et al. (81), determined the step count accuracy of the Fitbit One worn on the waist, 

Flex worn on the wrist, and the Zip worn on the hip at slow (54 m/min), moderate (80 m/min), 

and fast walking speeds (107 m/min). Healthy participants (N=10) ambulated on a treadmill for 3 

minutes at each speed. Hand-counted steps were used as the criterion measure of steps. Slow 

walking significantly decreased step count accuracy for the Fitbit One (p=0.04). Percent error 

was highest in the One at slower walking speeds compared to moderate and fast speeds -3.8%, -

1.2%, -1.5%, respectively, though at all speeds the One underestimated steps. The greatest 

underestimation (step error of -8.9 ± 13.4% (mean ± SD)) was exhibited in the Flex at fast 

speeds, though this was not statistically different than other speeds. Overall, wrist-worn monitors 

had the highest step count error. Moderate and fast walking speeds did not affect step count error 

across all monitors, though slow speeds reduced the accuracy of the One.  

Chow et al. (37) assessed the step count error of the Fitbit at brisk walking to running speeds. 

Healthy participants (N=31) wore a Fitbit One on the waist and Flex and Fitbit Charge HR 

(Charge) on each wrist while ambulating on a treadmill at 83, 108, 133, 167, and 200 m/min for 

3 minutes at each speed. Since the wrist-worn monitors were worn on both wrists, this allowed 

for the comparison of step count error between the dominant and non-dominant wrists. Across all 

speeds, the One underestimated hand-counted steps (-1.1% to 1.2% error), while the 

underestimation of the Charge (-10 to 0.3% error) and Flex (-11.9 to 1.8% error) was greater. 
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The step error was not affected by dominant and non-dominant wrist wear, though further 

examination of activities of daily living may show significant differences.    

Free-living Studies 

Several studies have examined the validity and reliability of various Fitbit models in a free-

living environment (38, 46, 48, 56, 67, 111, 128, 133, 152, 172). The first published study by 

Tully et al. (172) examined the Fitbit Zip’s step validity compared to the ActiGraph GT3X 

(GT3X) and the Yamax CW700 (CW700). GT3X was initialized using ActiLife, although no 

specification on whether the normal filter or LFE was stated. Participants (N=42) wore monitors 

on the right hip during all waking hours for seven, consecutive days. In addition to wearing the 

monitors, participants were asked to record their opinions of the monitor as part of the study. 

Free-living PA was assessed by comparing steps/day from the Zip to the output of steps/day 

from the GT3X and CW700. There was no statistical difference between steps/day with the Zip 

(7,477 steps/day) and the CW700 (7532 steps/day), however Zip steps/day were significantly 

higher than GT3X steps (6,774 steps/day, respectively; p<0.001). In regard to the usability of the 

Zip, a majority of the participants responded that the Zip was easy to use and did not interfere 

with their daily routine (88.1% for both categories).  

Chu et al. (38) compared steps/day between a wrist worn Flex and waist-worn ActiGraph 

GT3X (initialized with ActiLife with no mention of enabling LFE) across seven days in 104 

adults with a normal walking gait. In addition, daily step counts were used to classify the day by 

activity level, where greater than 10,000 steps/day were considered as an active day and less than 

10,000 steps/day as a non-active day. The median steps/day by the Flex and AG (10,193 and 

8,812, respectively) were similar to previous findings in which a wrist-worn Fitbit monitor 

overestimated steps compared to a waist-worn monitor. There was high correlation in steps 
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between monitors in both gender and PA categories (Spearman’s rho: 0.76-0.91; ICC:0.73-0.87). 

Mean absolute percent error (MAPE) was 20.4% for inactive days and 9.6% for active days, 

revealing a discrepancy in the ability of the Flex to count steps in active vs. non-active daily-

activity patterns.  

Middelweerd et al. (111) assessed PA using numerous time intervals (i.e. minute, hour, day) 

with the Fitbit One and GT3X (ActiLife algorithm). Healthy adults (N=34) wore monitors on the 

right hip for seven consecutive days. The absolute mean error was 11.4% steps/day between the 

GT3X and Fitbit One. When assessing the agreement between steps/day from both monitors, the 

Fitbit One overestimated steps on all time interval analyses (i.e., minute, hour, and day). 

Overestimations of steps for the Fitbit One compared to the GT3X were 10.1 vs. 9.3 steps/min, 

554.6 vs. 509.5 steps/hour, and 8312.7 vs. 7635.8 steps/day. Bland-Altman analyses were 

constructed to plot steps/min across each participant and showed a smaller range of differences 

in steps for those taken at greater than 100 steps/min. There was an excellent association between 

steps/min, steps/hour, and steps/day (ICC=0.80, 0.97,0.96, respectively). Although step estimates 

were higher in the One compared to the GT3X across all time intervals, the difference was 

within the range of ‘acceptable error’ which was defined as ±10%.  

Gomersall et al. (67) compared step estimates of the Fitbit One on two occasions of seven 

days of wear. Participants (N=14) wore the One and the GT3X on the hip. ICC (0.90) was 

acceptable for the Fitbit One steps/day. Compared to the GT3X, Fitbit One overestimated steps 

by 1,000 steps/day but was still within the limits of acceptable accuracy (8% of GT3X steps).  

 Toth et al. (162) examined the error of the Charge and Zip across one waking day in a 

free-living environment. Compared to hand-counted steps by video recordings, the Charge (i.e., 

worn on the dominant and non-dominant wrist) and Zip (i.e., worn on the hip) estimated 77-85% 
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of steps. The correlation of Fitbit monitors to hand-counted steps was high (ranged from r=0.87 

to 0.92). 

Garmin 

The Garmin Ltd. (Garmin, Olathe, KS) is a well-known manufacturer of consumer activity 

monitors that is geared towards athletes (e.g., runners, cyclists) rather than the general 

population. Although it is not as popular as Fitbit activity monitors amongst researchers, it is 

currently being used in numerous clinical trials, including an ongoing study that is using the 

Garmin Vivosmart to monitor PA and motivate behavior change in patients diagnosed with 

prostate cancer who are experiencing cancer-related fatigue [NCT2911649]. Garmin specializes 

in GPS technology and offers a wide-range of products that may serve varying purposes (e.g., 

marine and aviation utilities). Currently, Garmin provides eight different wrist-worn models of 

activity monitors and one clip-on monitor that can count steps. Garmin provides a free mobile 

app that can be used to sync, store, and share daily activity.  

Garmin vivofit 3 

The Garmin vivofit® 3 (vivofit3) is a wrist-worn activity monitor that comes in a silicone 

strap. It is small (196.6 x 22.9 x 12.7 mm) and lightweight (45.4 g). The vivofit3 battery life can 

last up to one year and the monitor can store activity data in memory for up to four weeks. In 

addition to the step counter, vivofit3 is able to monitor sleep, estimate time spent in moderate 

intensity activity, calories burned and distance traveled. According to the Garmin website, one 

can purchase the monitor for $69.99 USD.  

Laboratory Studies 

 Leth et al. (104) examined the step count accuracy of the Garmin Vivofit 2 (firmware 

3.30) for an over-ground walking protocol (121). Healthy participants (N=22) walked on a 100-
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m, rectangular track in an asphalt parking lot two times at each speed 33 m/min and 58 m/min. 

The Shimmer 3 was used as the criterion measure of steps, which was set to process at 64 Hz 

through an algorithm that detected the swing phases of walking. Since the Shimmer 3 had never 

been validated, the step output of the Shimmer 3 was inspected and corrected against the gold-

standard criterion, hand-counted steps. Garmin underestimated Shimmer 3 steps at 33 m/min and 

58 m/min by 5% and less than 1% (mean step difference), respectively. This was the first study 

to determine the ability of the Garmin to estimate steps at slow walking speeds. Although the 

percent differences were low, modified Bland-Altman plots show a high individual variability in 

steps across speeds, especially at 33 m/min.   

 Several studies have examined the step count of several Garmin Vivofit models on a 

treadmill at various speeds (15, 104) and over-ground walking. An and colleagues (15), 

determined the step count accuracy of ten activity monitors, including the Garmin vivofit which 

was worn on the wrist. Healthy adults (N=35) first walked or ran on a treadmill for 3 minutes at 

each speed 54, 67, 80, 94, 107, and 134 m/min). Five minutes after the completion of the 

treadmill protocol, participants proceeded into the over-ground protocol, in which the same 

monitors were worn. Participants completed three laps around a 200 m track at a self-selected 

speed at normal, faster than normal, and slower than normal. The distance and time were 

recorded to calculate speed for each self-selected speed. Both protocols used hand-counted steps 

by visual observation as the criterion. On the treadmill, walking speeds between 54 and 80 

m/min had MAPE ranging from 2.4 - 4.9% while faster speeds showed increasing MAPE 4.0 - 

13.6%. A similar tread was observed in the over-ground walking trials where, the MAPE 

increased from slow walking (2.49 mph), walking (3.2 mph), and fast walking (3.95 mph), 2.7%, 

3.3%, 16.5%, respectively. For both protocols, equivalence testing with post-hoc Tukey analysis 
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showed that the Garmin vivofit (p=0.06) yielded step estimates that were within 10% of hand-

counted steps. Overall, the Garmin decreased in MAPE as speeds increased.  

Free-living Studies 

 Only one study has validated the step count of the Garmin in a free-living environment. 

In the study by An et al. (15), 35 participants wore the Garmin vivofit over the course of one 

waking day. The reference measure was the New Lifestyle (NL-1000 Series). The Garmin had 

the highest correlation with the NL-1000 (r = 0.9) compared to any other monitor and had a 

MAPE of 17.8%.  The Garmin also fell within ±10% of the equivalence zone. Additionally, post-

hoc Tukey analysis showed no significant differences between steps (p=0.06). However, a 

limitation in this study was the use of the New Lifestyle as the criterion measure, since this 

monitor has never been validated in a free-living setting. 

Omron 

Omron Healthcare Inc. (Kyoto, Japan) is a company commonly associated with their medical 

equipment such as home blood pressure monitors and electronic scales (125). They manufacture 

a variety of pedometers and activity trackers that are low-cost in comparison to other consumer 

activity monitor bands and range from $16 to $46 USD. A majority of the Omron pedometers 

provide users with a limited number of features that can be accessed using on-screen buttons. 

Most monitors can store memory for up to seven days and provide users with information on 

steps, aerobic steps, distance, and calories burned. The newest activity tracker (i.e., Omron HJ-

327T), is the first Bluetooth compatible monitor and can be synced to view and store data on a 

mobile interface.  
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Numerous Omron models have a 4-second filter for counting steps (124). In Omron’s 4-

second filter, the monitor will not accrue steps from walking bouts less than 4-seconds in 

duration, which prevents counting erroneous movement as steps.  

Omron HJ-325 

The Omron HJ-325 (HJ-325) is a pedometer that replaced the Omron HJ-112 (124). The 

Omron comes with a silicone holder and strap with a clip allowing for it to be worn on the waist, 

in a pocket, or purse. According to the manufacturer’s website, the Omron retails for $23.99 

USD. It is small (12.7x 40.6 x 55.9), lightweight (113 g) and uses “tri-axis technology” that 

allows for it to be worn in multiple wear locations. The monitor is battery-powered but includes 

a battery-saving mode in which the screen will shut off after 20-seconds of inactivity.  

Laboratory Studies 

 Crouter et al. (42) conducted one of the first laboratory-based studies on a treadmill 

across a range of slow and brisk walking speeds. In this study, the step count of the Omron HJ-

105 was established across speeds (54, 67, 80, 94, and 107 m/min) using hand-counted steps as 

the criterion measure. At slow walking speeds (54 and 67 m/min), the Omron estimated 110% of 

hand-counted steps. As the speed increased, error was within ±1% hand-counted steps. Since the 

early to mid 2000s, numerous studies have reported similar findings in which numerous models 

of the Omron were shown to be capture less steps at slower speeds (60, 96, 134) compared to 

normal walking speeds (80 m/min). There are apparent decreases in error across slow-walking 

speeds, however, the findings of recent studies show an improvement in this issue.   

 Most studies conducted in the past decade have determined that step count of numerous 

models of the Omron was accurate across a wide range of treadmill speeds. Dondzila et al. (47), 

found no significant differences in steps across speeds (54, 67, 80, 94, and 107 m/min) with 
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slower speeds (i.e., 54 and 67 m/min) had an error within ±3% of hand-counted steps. Several 

studies reported similar results at slower speeds (54 m/min) with step estimates within the range 

of 1% (64), 3% (100), and 5% (175) of hand-counted steps.  

In contrast, a recent study conducted by Hickey et al. (77) found that the Omron HJ720-

ITC recorded 67% of hand-counted steps at 40 m/min. Although the monitor underestimated 

steps at this speed, it is important to note that this speed is much slower than most previously 

studied slow-walking speeds of 54 m/min. Only one study by Foster et al. (60) determined the 

accuracy of the Omron HF-100at an even slower walking speed (27 m/min) and found that the 

monitor captured 61% of hand-counted steps. Therefore, caution may be elicited towards the use 

of the Omron to capture steps at very slow walking speeds.   

 Ryan et al. (134) examined the ability of the Omron to capture steps during three walking 

bouts. Each participant walked on a 500-m course at a self-selected slow, normal and fast 

walking speed, which yielded mean walking speeds of 83, 99, and 110 m/min, respectively. A 

decrease in error was displayed with increasing speed (11% (slow), 5% (normal), and 3% (fast)). 

Interestingly, the average slow walking speed that resulted in the largest absolute error is close to 

the average walking speed of 80 m/min which was examined on a treadmill and shown to have 

less error (42, 64, 77). Other studies show similar findings, in which increasing speed will yields 

less error (47, 80).  

 The ability of the Omron HJ-321 and Omron HJ-303 to capture steps during stair 

climbing/descending has been assessed in two studies (81, 146) compared to hand-counted steps. 

Huang et al. (81) assessed stair walking (stair ascending and descending) with two trials, each 

separated by 3-min of rest. Participants were asked to ascend and descend 16 flights of stairs, 

each containing 11 stairs (height-15.8 cm, depth-32 cm) at a self-selected pace. During stair 
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ascend and descend, the Omron HJ-321 underestimated by 3.9 ±5.5% and 2.5 ± 6.5%, 

respectively. The authors state that out of the eight monitors studied, the Omron HJ-321 

produced the lowest error as estimates were within 5%. Similarly, Steeves et al. (146) found no 

significant differences for ascending or descending stairs, although the Omron HJ-303 

overestimated steps by 5-10%.    

 Laboratory-based validations on lifestyle activities are limited across models of the 

Omron. Although several studies assess the step count error during activities other than treadmill 

walking/running (44, 81, 146, 175), one study is unique in the incorporation of activities of daily 

living. Hickey et al. (77), assessed activities that may emulate activities that are commonly 

performed in a free-living environment and encompass multidirectional movement patterns. 

Participants were instructed to perform the following activities for 5 minutes: vacuuming, 

dusting, filing papers, and cleaning a room. Hand-counted steps served as the criterion measure. 

In this study, the Omron HJ720-ITC (HJ720) underestimated steps in all activities from 8 steps 

over 5 minutes (filing) to 36 steps/min (cleaning) (p<0.05). The HJ720 was most inaccurate 

during activities that were comprised of multidirectional movement patterns (i.e., cleaning) and 

captured only 80% of hand-counted steps. Similar findings were also presented in a study that 

included multidirectional activities (146), in which the HJ720 captured only 20% of hand-

counted steps during front-back-side-side and fox trot stepping. Higher error was attributed to the 

4-second filter and the nature of lifestyle activities which are typically comprised of shorter 

bouts.    

 The reliability of numerous models of the Omron have been assessed (44, 80, 94, 134) 

across a wide range of activities. Kooiman et al (94), examined the reliability during two, 30-min 

treadmill walk at 80 m/min that were separated by a week. The Optogait system served as the 
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criterion for steps for this protocol. Participants wore the Omron (HJ-203) in the front pocket of 

the pants. To test reliability, Intraclass Correlation Coefficient (ICC) (two-way random, absolute 

agreement, single measure with 95% CI). The HJ-203 had a low ICC (0.14 ± -0.24-0.47 (ICC, 

95%CI)). De Cocker et al. (44), examined the intra-instrument reliability across a range of 

treadmill speeds (53-107 m/min). ICC ranged from 0.25 to 0.96 with increasing reliability as 

speed increased. The increase in reliability with increasing speed was found in other studies 

(134).   

 In healthy adult populations, the accuracy of the Omron in populations ranging in BMI 

was assessed (73, 183). Zhu and Lee (183) compared the step output of various wear locations 

between normal, overweight, and obese BMI categories. Participants were asked to walk two 

times on a straight, flat sidewalk for 100 steps. There was no interaction between gender and 

BMI groups with the performance of the monitor to estimate steps (p>0.05). Laboratory-based 

study findings suggest that variations in BMI may not affect the performance of the Omron to 

accurately count steps.  

Free-living Studies 

 Free-living validation studies on the Omron have been conducted with a wide array of 

criterion measures: Yamax SW-200 (44, 101, 137, 141), StepWatch (77, 141), New Lifestyles-

1000 (47), ActiGraph CSA accelerometer (96), and activPAL (94).  

 One of the first free-living validation studies was conducted by Silcott et al. (141) who 

compared steps/day of the HJ-720 at multiple wear locations (i.e., pants pocket, neck, waist) 

during one, waking day. Healthy adults (N=62, Males= 32) were recruited and ranged in BMI 

(between 22-36.5 kg/m2). They were instructed to wear several HJ-720 monitors on the body: the 

waist in the midline of the right thigh, the right pants pocket, and around the neck in the center of 
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the chest. The StepWatch was worn on the ankle and was the criterion measure of steps/day. 

Across all participants, independent of BMI, the HJ-720 significantly underestimated SW steps 

in all placement locations (p<0.001). When stratifying the participants by BMI (normal (N=19) 

or overweight (N=23)), less error was found for the monitor placed on the neck and belt 

compared to obese (N=20) participants. Across normal BMI participants, the Omron worn on the 

neck, belt and pocket captured 63%, 64%, and 68% of SW steps. The Omron worn in the pocket 

was the most accurate across BMI categories compared to other placement locations. There was 

a wide range in step differences at various placement locations and a significant underestimation 

of steps/day. This was not observed in laboratory-based studies in which numerous models of the 

Omron were generally found to show less step error during continuous walking bouts across 

BMI categories and placement locations. The underestimation of steps may be due to Omron’s 4-

second filter and the context of the free-living environment potentially containing many 

intermittent walking bouts. Additionally, the discrepancy of the Omron-HJ720 to count steps 

across BMI groups may be attributed to the tilt angle of the monitor placement. According to the 

user manual, the manufacturer’s warn users that the monitor may not capture steps accurately if 

the front screen is tilted below 60º (123).  

 A more recent study conducted by Hickey et al. (77) evaluated the step counts of the HJ-

720 using the SW as the criterion measure. Healthy participants (N=15, Male=7) wore the 

Omron on either hip on the midline of the thigh and the StepWatch was worn on the ankle for 

one waking day. In this study, the Omron (7460 steps/day) significantly underestimated steps 

compared to the StepWatch steps (9597 steps/day) (p<0.05). Overall findings suggest that the 

Omron underestimates total daily steps compared to StepWatch determined steps. 
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Yamax Digi-walker 

The Yamax Digi-walker (Yamasa Corporation, Tokyo, Japan) was perhaps the most popular 

pedometer used in research studies from 1995 to 2010. In 1965, Yamasa initiated a 10,000 steps 

per day campaign to sufficiently increase ambulatory PA to decreased the risk of heart disease 

(75). The YX counts steps using a spring-levered mechanism, in which a vertical acceleration of 

the body will cause the horizontal lever-arm to move in accordance to a step (20). If the 

threshold exceeds 0.35 g (42), the movement of the arm will cause an electrical circuit to close, 

and that will in turn will lead to the counting of a step.  

Yamax Digi-walker SW-200 

The Yamax Digi-Walker SW-200 (SW-200) is a pedometer that is worn on the waist. 

According to the manufacturer’s website, the SW-200 retails for $19.50 USD. It is small (50 x 

38 x 13 mm) and lightweight (21 g). The pedometer contains a liquid crystal display that can be 

accessed by opening the cover case to show total steps and a single button that resets steps to 

zero. SW-200 is powered by a battery that can last up to 3 years.  

Laboratory Studies 

 Many step count validation studies have been conducted with the Yamax (23, 41, 64, 73, 

77, 81, 94, 96, 103, 141, 146, 175). One of the earliest laboratory-based studies of the Yamax 

SW-series pedometers was conducted by Crouter et al. (41). Participants (N=10) wore two 

Yamax Digiwalker SW-701 (SW-701) monitors on the right and left waist line in the midline of 

the thigh while ambulating on a treadmill at 54, 67, 80, 94, and 107 m/min for 5-min at each 

speed. Across all trials, the SW-701 did not significantly differ from hand-counted steps (p>0.05) 

across a wide range of walking speeds.  
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 Crouter et al. (41) examined the effects of BMI, waist circumference, and tilt angle on 

step count error of a spring-levered pedometer (i.e., SW-200) and a piezoelectric pedometer (i.e., 

New Lifestyles NL-2000) in a laboratory setting. Exclusion criteria included those with a BMI < 

25 kg/m2 or those that could not walk at 107 m/min. Participants wore the pedometers on the left 

and right sides of the hip in line with the midline of the thigh while walking at 54, 67, 80, 94, and 

107 m/min. Each pedometers tilt angle was measured for further analysis. At slow walking 

speeds (i.e., 54-94 m/min), the SW-200 recorded significantly less steps than the New Lifestyles 

NL-2000 (p<0.05). Additionally greater step count error was seen for those with larger waist 

circumferences at slow speeds (54-80 m/min), the group with the largest BMI (>35kg/m2), and 

for the monitors with a large tilt angle (>15°). 

 Hickey et al. (77) assessed step count error of the SW-200 in simulated activities of daily 

living in a laboratory setting. Participants (N=15) wore the SW-200 in line with the midline of 

the thigh on the hip while performing the following activities: sitting, self-paced walking, 

vacuuming, dusting, filing papers, and cleaning. In order to further investigate the sources of 

error with the SW-200, the activities were broken into three categories based on the direction of 

steps that are taken. Categories consisted of forward (included self-paced walking), side-to-side 

(included filing, dusting, and sitting), and multidirectional (included vacuuming and cleaning). 

Compared to hand-counted steps, the SW-200 did not produce significantly different steps for 

self-paced walking and sitting. However, during the remaining activities, the SW-200 

significantly underestimated steps (p<0.05). Although the underestimation of steps was small 

(less than 1 to 23 steps/min), in activities such as cleaning and vacuuming, the SW-200 recorded 

only 51% and 58% of hand-counted steps, respectively. When assessing movement patterns, the 
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percent of hand-counted steps underestimated by greater than 5% in side-to-side, 

multidirectional, and forward movement.  

Free-Living Studies 

 Due to the acceptable accuracy at normal walking speeds, the Yamax SW series is often 

used as a criterion measure of steps (19, 44, 137) in free-living studies. 

 Silcott et al. (141) compared the accuracy of the Omron HJ-720 to the SW-200  in 

individuals who were normal, overweight, and obese BMI in a free-living environment. The SW 

was the criterion measure. When comparing the step counts of a piezoelectric monitor (i.e., 

Omron HJ-720) and a spring-levered pedometer (i.e., SW-200), BMI did not have an effect on 

error for the Omron HJ-720. With increasing BMI, the SW-200 underestimated SW steps in the 

normal, overweight, and obese groups by 19%, 21% and 48%, respectively (p<0.05).  

 Hickey et al. (77), mentioned previously under Yamax laboratory studies in this thesis, 

also assessed the accuracy of the YX under free-living conditions with SW as the criterion 

measure of steps. Similar to the laboratory conditions, the YX (7,924 steps/day) underestimated 

SW steps (9,597 steps/day). Toth et al. (162) also found that the YX SW-200 underestimated 

hand-counted steps by 19.5% of SW steps, across all waking hours of one day.  

Standardization 

In an effort to ensure step counters achieve a certain level of error, several agencies have 

issued specific standards.   

Ministry of Economy, Trade and Industry 

 The Ministry of Economy, Trade and Industry (METI) in Japan created industrial 

standards for pedometers (74). METI states that pedometers must be within ±3% of actual steps 
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for approval. These standards are most likely in reference to treadmill walking at a normal speed 

of approximately 3.0 mph or 80.4 m/min. 

Consumer Technology Association 

 In the U.S., the Consumer Technology Association (CTA) created standards for 

consumer activity monitors and app-based PA monitoring monitors (151). Unlike performance 

standards created by METI, CTA standards provide detailed procedures in which monitors are 

tested in order to meet certification requirements. These standards require testing wearable 

monitors in walking and jogging/running in at least twenty participants that are representative of 

various body types and sex. Walking is performed at a self-selected pace between 1.11 to 1.81 

m/s and jogging/running is performed at a self-selected pace between 2.22 and 5.42 m/s. Testing 

involves five minutes of treadmill activity at an incline that is no less than 0%.  The criterion is 

hand-counted steps by trained investigator, using video recording. Monitors are considered to 

meet requirements when step estimates for both ambulatory conditions are within 10% of 

MAPE.   
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Abstract 

PURPOSE: The purpose was to examine the effect of monitor placement on step counts of 

activity monitors worn at different positions on the wrist/forearm and the hip during waking day. 

METHODS: Each day, participants (N=18) wore four wrist monitors of the exact same model, 

and four hip monitors of the exact same model.  The monitors were worn at designated locations 

(i.e., positions A-D) during all waking hours on one day. On subsequent days, different models 

of wrist and hip activity monitors were tested.  Apple Watch 2 (ApW), ActiGraph GT9X 

(GT9X), Garmin vivofit 3 (GV), and Fitbit Alta (FA) were worn on the wrist. Yamax SW-200 

(SW200), GT9X, Omron HJ-325 (HJ325), and Fitbit Zip (FZ) were worn on the hip. At the start 

of each day and before going to bed, participants were instructed to record the current time and 

step counts displayed on the screens of the monitors. The step counts of each monitor were 

compared to those of a monitor worn in the reference position (i.e., wrist- just proximal to the 

ulnar styloid process, hip- in line with the anterior axillary line). For each monitor worn in a 

specific position, the percentage of reference steps and mean bias were computed. One-way 

repeated measures ANOVAs were used to determine if there were significant differences in steps 

between positions for each model (or step counting algorithm). In the case of significant main 

effects for position, pairwise comparisons with Bonferroni corrections were used to determine 

which positions were significantly different in terms of steps. RESULTS: All wrist step count 

methods (i.e. consumer monitor or step count algorithm) showed a significant main effect for 

placement (p<0.05). Steps counts of wrist monitors underestimated steps compared to the 

monitor worn in the reference position. When expressed as a percent of steps recorded by a 

monitor in the reference position, steps underestimated by -1% to -16%. All hip step count 

methods, except for the HJ-325, did not differ across positions (p>0.05). However, the HJ-325 

was still within ±3% of steps recorded by a monitor in the reference position. CONCLUSION: 

On the wrist/forearm, step counts decreased the further away the monitor was from the reference 

position. On the hip, step counts did not differ by more than 5% of steps/day across any of the 

four positions. For step count validation studies in which multiple monitors are worn 

simultaneously, researchers should be aware that monitor placement on the wrist may affect the 

results.  
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Introduction  

 The risk of negative health outcomes can be attenuated with ambulatory PA (98, 171). 

Although a variety of metrics can estimate ambulatory PA, the most intuitive is steps (20). More 

recently, growth in the popularity of wearable activity monitors has made step counting 

convenient and accessible even for the layperson (14, 51). Furthermore, researchers are using 

activity monitors to count steps for population surveillance (109, 181), tracking PA in large 

prospective cohort studies (139) and changing behavior (129).  

 With the increased availability and widespread use of activity monitors, there is a need 

for studies that examine the validity of step counting monitors/methods. The step count accuracy 

of monitors has been examined using a variety of study designs (37, 42, 112, 172). The most 

common study designs are laboratory-based studies that involve participants wearing activity 

monitors while performing structured bouts of activities (e.g., treadmill walking/running, or brief 

bouts of activities of daily living). Understanding the impacts of locomotor speed or different 

movement patterns on step accuracy is useful, but a limitation to these study designs is that the 

results cannot be generalized to free-living settings. Thus, some validation studies have been 

conducted under free-living conditions (77, 162) in which participants wear monitors for 

extended periods of time while going about their daily lives. In both types of studies, it is 

common for researchers to have participants wear multiple monitors at the same time. 

 Wearing multiple monitors simultaneously allows for more monitors to be investigated 

with less burden on participants and researchers. However, this method may compromise 

monitor performance due to the placement of the monitor outside of manufacturer’s 

recommended location. In instances of wearing multiple activity monitors, only one monitor can 

be worn at the manufacturer’s recommended location (e.g., one monitor can be worn at the wrist 

while subsequent monitors must be worn further up the forearm). If step count accuracy is going 
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to be tested by this method, it is critical that monitor performance not be affected by improper 

placement of monitors on the body. Otherwise, compromised monitor performance due to wear 

location could be mistaken for monitor step count inaccuracy.   

 Currently, the impact of varied placement sites on step counts is unknown. Therefore, the 

purpose of this study is to examine the effect of placement on steps per day of four activity 

monitors worn at different positions on the wrist/forearm, and four activity monitors worn at 

different positions on the hip.  

Methods 

Participants 

 Eighteen healthy adults (26 ± 9 years, mean age ± SD) were recruited by posted flyers 

and word of mouth at the University of Tennessee, Knoxville and in the surrounding community. 

Exclusion criteria included contraindications to exercise indicated by the Physical Activity 

Readiness Questionnaire (PAR-Q) and those who were currently pregnant. In addition, 

participants were excluded if they participated in bicycling and stationary cycling during the 

study. The University of Tennessee Institutional Review Board approved the research protocol, 

and all participants provided a written informed consent prior to participation the study.  

Protocol   

 The study was conducted across five days for each participant. On the first day, each 

participant’s height and weight was measured in light clothing without shoes, using a stadiometer 

and calibrated scale, respectively. Participants were instructed on how to wear the monitors on 

the hip and wrist/forearm. They were required to successfully demonstrate the placement of 

activity monitors before leaving the laboratory and were provided an instruction sheet regarding 
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the placement of monitors in the case of removal (i.e., swimming, bathing). Additionally, 

researchers demonstrated how to record step counts and time on/ time off using the step count 

recording sheet.  

 For the remaining four days, participants wore four activity monitors on the wrist/forearm 

and four on the hip. On each day, within a given wear location, participants wore several 

monitors of the exact same model at four different positions. Each day, participants put on the 

activity monitors as soon as they got out of bed and recorded the current time and step counts 

displayed on the screens of activity monitors. Participants were instructed to go about their 

normal daily routine while wearing the monitors. Before going to bed, participants removed the 

monitors and recorded the current time and step counts.  

Monitors  

 Wrist-worn activity monitors included the Apple Watch Series 2 (ApW; Apple Inc., 

Cupertino, CA; firmware version 5.0), Fitbit Alta (FA; Fitbit, San Francisco, CA; firmware 

version 4.0), Garmin vivofit 3 (GV; Garmin, Olathe, KS; firmware version 4.2.1.1), and 

ActiGraph GT9X (GT9Xwrist, ActiGraph, LLC, Pensacola, FL; firmware version 1.7.1). Hip-

worn activity monitors included the Yamax Digi-Walker SW-200 (SW-200; Yamasa 

Corporation, Tokyo, Japan), Omron HJ-325 (HJ-325; Omron Healthcare, Bannockburn, Illinois), 

Fitbit Zip (FZ; Fitbit, San Francisco, CA; firmware version 90), and ActiGraph GT9X 

(GT9Xhip).  

Positioning   

Wrist positions are displayed in Figure 1a. Position A was defined as the position just 

proximal to the ulnar styloid process. The subsequent placement positions (i.e., position B-D) 
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were adjacent to the previous position without directly touching the other monitors. Pre-wrap 

was worn between each wrist monitor to prevent monitors from directly touching. 

Hip positions are displayed in Figure 1b. Position A was located 1 inch to the right of the 

umbilicus. Position B was defined as the position in line directly below the mid clavicular line. 

Position C was located directly over the anterior axillary line. Position D was located over the 

mid-axillary line. Hip monitors were positioned so that they did not directly touch each other.   

Data Processing    

GT9X monitors worn on the hip and wrist were initialized at 30 Hz using ActiLife 6 software 

(version 6.13.1) and the wear location (i.e., waist, wrist) was also specified. After monitors were 

worn, GT9X raw data were downloaded and processed both with and without the low frequency 

extension (AGL and AG, respectively). Data were exported in 60-second, time-stamped epochs 

with corresponding step counts. Steps/day were computed by summing the steps from when the 

monitor was worn, which was indicated on the step count recording sheet.  

GT9X data were also processed with a beta version ActiGraph’s Moving Average Vector 

Magnitude Step Algorithm (AGM). AGM step estimates were displayed on the monitor screen. 

Total daily steps for AGM and all remaining monitors were obtained by subtracting the step 

counts recorded in the morning from the steps recorded before removal.   

Statistical Analysis   

Position A was the reference position for the wrist and position B and C were the 

reference position for the hip, as these are the manufacturers’ recommended positions for some 

monitors and are often cited in literature (42, 52, 57, 77, 141).    
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For all step count methods in all positions, mean ± standard deviation, mean bias 

(position steps per day – reference position steps per day), and percent of reference position steps 

((position steps per day / reference position steps per day) x 100) were computed. One-way 

repeated measures ANOVAs were used for each hip and wrist step count method to analyze 

differences between positions. For step count methods that had a significant main effect of 

position, pairwise comparisons with Bonferroni corrections were used to determine which 

positions yielded significantly different steps. All analyses were performed using SPSS Version 

24 (SPSS Inc., Chicago, IL) with an alpha of 0.05 to indicate statistical significance.  

Results 

 Participant characteristics are shown in (Table 1). All participants were right-hand 

dominant and average wear time was 12.2  1.9 hours (mean + SD). Since wrist-worn monitors 

varied in monitor width, placement sites were not consistent across monitors. Table 2 displays 

each monitor’s width and the total width of all four monitors, including three segments of pre-

wrap that were used to separate the monitors.  

All wrist methods had a significant main effect of position (p<0.05) (Figure 2). Wrist step 

count methods in positions B-D underestimated position A steps by a range of 68 to 1,748 

steps/day, which represented between 1% and 16% of total steps/day of position A. Expressed as 

a percentage of position A’s steps, the monitors worn in positions B-D captured 84-96% for 

GT9X wrist step methods (i.e., AG, AGL, AGM) and 94-99% for consumer monitors. For all 

wrist methods, monitors worn in position C and D recorded significantly fewer steps than 

monitors worn in position A (p<0.05) (Table 3). For AGM and ApW, position B recorded 

significantly fewer steps than position A (p<0.05). No significant differences were found 

between positions B-D for the ApW and GV (p>0.05). In general, GT9X step methods produced 



 59 

greater step differences relative to position A, compared to consumer devices (i.e., GV, FA, 

ApW).  

With exception of the Omron HJ325, all hip step count methods did not have a significant 

main effect of position (p>0.05) (Figure 3). The greatest step difference across positions A-D on 

the hip was 393 steps/day. Only for the Omron HJ325 was position A significantly different than 

the reference position C (p<0.05) (Table 4,5), although the step differences were minimal (192 

steps). Reference position B was not significantly different from other positions (p>0.05).  

Discussion  

 To our knowledge, this is the first study to compare the effect of wearing identical 

activity monitors at various positions on the hip and wrist/forearm. Findings of the current study 

show that step count estimates for wrist monitors are affected by placement on the wrist/forearm. 

Hip monitors are generally not affected by placement and yield similar step estimates when worn 

at various positions (with the exception of the OM).  

In general, for wrist methods, step estimates decreased as monitors were positioned more 

proximally (further up the forearm) than the suggested wrist placement site. During ambulation 

and activities of daily living, monitors worn on the wrist/forearm move around a joint (e.g., the 

shoulder and elbow). For monitors worn closer to the wrist (i.e., position A), the radius of 

gyration around the shoulder or elbow is longer than for a monitor worn at a more proximal 

location. The closer the monitors are to the hand, the more angular acceleration the monitor will 

experience. Since all step counting methods use acceleration-based algorithms for counting steps 

(88), it may explain why monitors worn further up the forearm would detect fewer steps. This 

was observed in the current study where steps were lower for all monitors worn in positions B, 

C, and D compared to the monitor worn in the manufacturer’s recommended location.  
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 For the GT9X on the wrist, the effect of position was greater for AG than for AGL. This 

could be due to the low frequency extension (LFE) filter, which extends the lower end of the 

band-pass filter cutoff, thus increasing the amplitude of acceleration signals in the low-frequency 

range. Previous studies (31, 54, 162, 168, 176) have assessed the effect of enabling the LFE and 

found that it results in much higher step counts. Thus, even though the acceleration signal is 

attenuated as the monitor position becomes more proximal, the LFE allows for more low-

amplitude movements to be detected, resulting in less of a drop-off in steps.  

 In the current study, there was no consistent effect of placement on step estimates for hip 

methods. Hatano compared the instantaneous vertical acceleration produced during walking at 

various locations around the hip (75). He showed that peak acceleration for a monitor worn 

further from the umbilicus was greater than a monitor worn at the center of the body (75). Since 

step estimates did not vary substantially, it may suggest that regardless of wear location for hip-

worn monitors, the accelerations caused by walking will still meet the established thresholds to 

count a step. Therefore, for most step counting methods (with exception of OM), there was no 

difference of daily step count when worn in the four locations. Although step estimates from the 

OM yielded statistically significant differences in step counts across positions, the difference was 

minimal (less than ±3% of steps) and was not deemed to have any practical significance. The 

step differences observed in the current study even meet the industry standards set by the 

Japanese Ministry of Economy Trade and Industry (75). These findings may provide assurance 

of minimal step differences when the monitor is worn on one side of the hip, though greater step 

differences may be found when comparing across left and right hips (137).   

 The present study compared step estimates of the same monitor worn in positions that 

were close to, but not exactly the same as, the manufacturers’ recommended placements, under 



 61 

free-living conditions. A strength of the study was that steps counts were assessed across all 

waking hours of one day, under free-living conditions, which may improve ecological validity 

over laboratory studies. Many previous laboratory (42, 59, 77, 94, 112) and free-living (77, 94, 

133, 162) validation studies have utilized the methodology of wearing multiple monitors on 

either the wrist or the hip. The authors of these studies probably assumed that wearing four 

different devices on the wrist/forearm in slightly different positions would not impact step 

counts.  Since the current study found that step counts of wrist-worn monitors are affected by 

placement in the case of wearing multiple monitors, results of previous studies using this 

methodology to assess step counts across a day may have underestimated total daily steps for 

some monitors. Researchers should be aware of the effects of placement on step counts when 

simultaneously assessing the step count accuracy of multiple wrist monitors. Even if one 

randomizes (or counterbalances) monitor placements, this does not eliminate the position effect; 

it just spreads it out over the various positions. Rather than having participants simultaneously 

wear 4-5 wrist monitors for one day, researchers could spread the data collection out over 

multiple days and then compare each monitor to a criterion. On the other hand, with hip-worn 

monitors (except for the Omron HJ325), researchers can be reasonably confident that step 

estimates will be similar when monitors are worn at various locations on the right or left hip.  
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Abstract 

PURPOSE: The purpose of this study was to determine the step count accuracy of numerous 

wrist-, hip-, and thigh-worn activity monitors during all waking hours of one day, under free-

living conditions. METHODS: Each participant (N=48) wore activity monitors for two days. 

For one day, the Apple Watch (ApW)/Garmin vivofit (GV) were worn on the wrist with two of 

the following hip monitors: Omron HJ-325 (HJ325), Fitbit Zip (FZ), Yamax SW-200 (SW-200), 

ActiGraph GT9X (GT9X). On the second day, the ActiGraph GT9X (GT9X)/Fitbit Alta (FA) 

were worn on the wrist with the remaining two hip monitors that were not worn on the first day. 

On one of the two days, the activPAL (AP) was worn on the thigh and on both days, the ankle-

worn StepWatch (SW) was worn and served as the criterion measure of steps per day. The 

monitors were affixed to the participants’ body soon after they awoke each day, and were 

removed before going to bed. During placement and removal of monitors, the time of day and 

step counts displayed on the screens of the monitors were recorded. Participants were instructed 

to go about their normal daily activities. After the data were collected, the total daily step counts 

for each method were compared to the SW. Mean absolute percent error, mean bias and Pearson 

product moment correlations were computed. For all step methods, the percentage of SW steps 

was used for statistical analysis. One-sample t-tests with Bonferroni adjustments were used to 

determine if the step method differed significantly from 100%. Results: With the exception of 

the ApW, all step count methods produced step estimates that were significantly different than 

the SW (p<0.05). The ApW and FA captured within 10% of SW steps. GT9X processed with 

low frequency extension (AGL) and GT9X processed with normal filter (AG) on the wrist and 

AGL on the hip overestimated by 25-102% of SW steps, while the remaining consumer and 

research step methods underestimated by 13-34% of SW steps. MAPE across all monitors were 

greater than ±10%, with the lowest error coming from FA (14.8%). Conclusion: With exception 

of some GT9X step methods, most methods underestimated steps when compared to the SW. 

The FA and ApW showed a mean bias within 10% of criterion steps. Overall, consumer 

monitors produce step estimates that are closer to the validated SW than some research step 

counting methods and could be used to measure steps for healthy adults in free-living settings.   
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Introduction  

 Regular physical activity (PA) is widely recognized to reduce the risk of chronic 

conditions (e.g., cardiovascular disease, cancer, stroke, type II diabetes, hypertension), which 

currently afflict a large proportion of the world’s population (2, 99). Thus, lack of PA is a major 

public health concern throughout the world, as sedentary occupations are becoming more 

prevalent with technological advancements (5). New activity monitors provide a unique 

opportunity to conduct PA surveillance, refine scientific knowledge of the relationships between 

PA and health, and promote PA to the general public. 

In recent years, sales of consumer activity monitors have increased worldwide, reaching 

revenues of $16 billion USD in 2016 (163). Unlike research-grade monitors, most consumer 

monitors have diverse user capabilities (e.g., LCD screen, GPS feature, text/phone messaging) 

which increases their usefulness in daily life. The use of activity monitors has transformed PA 

research over the past decade. Currently, the National Institutes of Health is using the Fitbit 

Charge 2 and the Fitbit Alta HR, two popular consumer monitors, in a large cohort study (76). 

Additionally, there are over 250 registered clinical studies using the Fitbit (4) and various other 

consumer monitors (178). 

Steps are a commonly used output of activity monitors. Steps are often used as a metric 

of PA in research and public health, and they are easily understood by the general public. Most 

importantly, steps are positively associated with cardiometabolic health (20, 179, 182). Due to 

the increased use of activity monitors, it is important that they are validated to accurately count 

steps (15, 36, 37, 83). One major advantage of step count validation is that monitors can be 

easily validated against a gold standard, especially under laboratory conditions (e.g., treadmill 

walking/running, structured bouts of activities). However, although the findings from these 

studies are useful in understanding the performance of wearable monitors under different 
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conditions, they do not capture all the types of activities that are performed throughout the day. 

Free-living validation studies can provide ecological validity but it is difficult to obtain a valid 

criterion measure of steps per day.  

Unlike laboratory-based studies, it is difficult to use the gold-standard of direct 

observation and hand-counted steps under free-living conditions. Due to the longer durations of 

the measurement period and the difficulties of observing individuals outside the laboratory, 

another monitor is often utilized as a criterion. It was not until recently that a method was 

developed for validating research and consumer monitors against hand-counted steps, across all 

waking hours of one day (162). In this study, participants wore a chest-counted video camera 

pointed at their feet and researchers reviewed the video recordings to count steps. Of all the step 

count methods examined, only the StepWatch, an ankle-worn research monitor, yielded step 

counts within 5% of hand-counted steps.  This supports its consideration as an alternative 

measure of steps/day that is similar to direct observation. 

 Currently, a few studies have assessed the step count accuracy of monitors in a free-

living environment, using the StepWatch as the criterion (52, 54, 77, 91, 141, 173). A limitation 

to prior studies is that they did not examine newer consumer monitors. Although the study of 

Toth et al. that validated monitors to hand-counted steps included some models of the Fitbit, only 

one wrist-worn consumer monitor was examined. With the increase in newer wrist-worn 

consumer monitors, it is important to include them in step count validation studies. Therefore, 

the purpose of this study is to determine the step count accuracy of multiple consumer and 

research grade monitors compared to StepWatch across all waking hours of one day, under free-

living conditions.  
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Methods 

Participants 

 A total of 48 healthy adults (mean age ± SD, 28 ± 12 years) participated in the study. 

Participants were recruited via word of mouth and flyers at the University of Tennessee, 

Knoxville and in the surrounding community. Exclusion criteria included contraindications to 

exercise (determined by administering the PA Readiness Questionnaire (PAR-Q)), pregnancy, 

and participation in stationary cycling or bicycling. Participants provided a written informed 

consent and PAR-Q before participating in the study. The study was reviewed and approved by 

the Institutional Review Board at The University of Tennessee, Knoxville.  

Protocol 

The study was conducted over three days. During the first day, participants reported to 

the laboratory on campus for anthropometric measurements and study instructions. Height and 

weight were measured using a stadiometer and electronic weight scale, respectively, in light 

clothing with shoes off. Participants were shown how to properly affix activity monitors to the 

corresponding body locations (i.e. wrist, hip, thigh, and ankle) and were asked to demonstrate 

proper monitor placement on their own. Participants were also provided a PA diary to record the 

monitor wear times (on and off) and step counts for monitors with screens. Afterwards, 

participants were asked if they were comfortable with properly affixing the monitors and 

completing the PA diary on their own. Those who were confident were given all activity 

monitors in a bag before leaving the laboratory and instructed to send a picture of the affixed 

monitors at the beginning of each day to ensure proper placement of the devices. Otherwise, a 

research assistant met with the participant to help with device placement and PA diary 
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completion. All participants were given an instruction sheet regarding the proper placement of 

monitors in the case of removal (i.e., when swimming or bathing).  

For the second and third days, participants were instructed to go about their daily routine 

while wearing monitors. On both days, participants wore two wrist-, two hip-, and one ankle-

monitor. A thigh monitor was worn on only one of the two days. With the exception of the ankle 

monitor, a different brand of monitor was worn each day.  

Wrist Monitors  

 Each day two wrist-worn activity monitors were worn on the nondominant wrist. Wrist 

activity monitors included the Apple Watch Series 2 (ApW; Apple Inc., Cupertino, CA; 

firmware version 5.0), Fitbit Alta (FA; Fitbit, San Francisco, CA; firmware version 4.0), Garmin 

vivofit 3 (GV; Garmin, Olathe, KS; firmware version 4.2.1.1), and ActiGraph GT9X 

(GT9Xwrist, ActiGraph, LLC, Pensacola, FL; firmware version 1.7.1). For the GT9Xwrist, 

monitors were initialized at 30 Hz and specified for wrist placement using ActiLife 6 software 

(version 6.13.1). For the FA, GW, and ApW, the non-dominant wrist was selected as the 

preferred wear location using the corresponding mobile application. 

Only two monitors were worn each day as a result of previous pilot testing that explored 

the effect of simultaneously wearing four identical monitors (e.g., 4 ApWs) on the wrist/forearm 

on steps/day. Across all monitors, there was a significant main effect of position on steps 

(p<0.05). Step counts were attenuated as the monitor was positioned further away from the 

reference position (i.e. proximal to the ulnar styloid process).  However, step counts were not 

significantly different between the reference position and the adjacent position for the GV and 

FA. This indicated that the ApW and GT9Xwrist needed to be worn at the reference position and 
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the GV and FA could be worn directly adjacent to them. The placement of devices any further up 

the arm could compromise their validity.  

The current study aimed to place monitors as close to the wrist as possible. Thus, 

monitors worn simultaneously were paired, based on the two monitors that would result in the 

smallest displacement from the reference position. The ApW and GV were worn on day one 

while the GT9X and the FA were worn on day two (Table 7). 

Hip Monitors  

Each day two different hip-worn activity monitors were worn. Hip-worn activity 

monitors included the Yamax Digi-Walker SW-200 (SW200; Yamasa Corporation, Tokyo, 

Japan), Omron HJ-325 (HJ325; Omron Healthcare, Bannockburn, Illinois), ActiGraph GT9X 

(GT9Xhip), and Fitbit Zip (FZ; Fitbit, San Francisco, CA; firmware version 90). The monitors 

were worn on either the anterior axillary line or mid-clavicular line on the right hip with the 

exception of the Omron HJ325 which was always worn on the anterior axillary line. For the 

ActiGraph GT9Xhip, monitors were initialized at 30 Hz and specified for waist placement using 

ActiLife 6 software (version 6.13.1). 

Thigh Monitor 

 One activPAL (AP; PAL Technologies, Ltd, Glasgow, Scotland) was worn on the 

anterior midline of the right thigh, midway between the top of the patella and inguinal crease. It 

was wrapped in parafilm and attached to the body with Tegaderm film (3M Health Care, St. 

Paul, MN). AP monitors were initialized with activPAL software (version 7.2.28).  
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Ankle Monitors 

One StepWatch (SW; Modus Health, LLC Washington DC) was worn on the right ankle 

just above the lateral malleolus. It was held on by an elastic strap with Velcro® closures. 

Monitors were initialized with the Modus software (Modus Health, version 3.4) with each 

participant’s height, weight, and sex. The SW was initialized with a pre-programmed setting 

called ‘both extremes of walking speed’ (162). In a previous study, this procedure was shown to 

yield daily step counts that were 98% of visually observed steps (162). 

Data Processing    

Total daily steps for monitors with screens were obtained by subtracting the step counts 

in the morning from the step counts at bed. This was done for all monitors, including 

ActiGraph’s beta version of Moving Average Vector Magnitude Step Algorithm (AGM), which 

was programmed on the device screen.  

For SW, AP, and some GT9X step methods (i.e., AGL, AG), data downloaded for 

subsequent analysis. For GT9Xhip and GT9Xwrist, raw data were downloaded, processed with 

and without the low frequency extension (AGL and AG, respectively), and exported in 1-minute, 

time-stamped epochs with steps. For SW, AP, and some GT9X step methods (i.e., AGL, AG), 

total daily steps were determined by summing all steps according to participant’s wear times 

indicated from the PA diary.  

Statistical Analysis   

 Mean ± standard deviation (x ± SD), mean bias (monitor estimate - SW), and mean 

absolute percent error (MAPE) were calculated with total daily step counts for each method. 

Percent of SW steps (monitor estimate / SW x 100%) was used for statistical analysis. To 
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determine if the percent of SW steps significantly differed from 100%, one-sample t-tests with 

Bonferroni adjustments were computed. Additional one sample t-tests with Bonferroni 

adjustments were computed using only step counts from participants with complete data for all 

wrist pairings. Pearson product-moment correlation coefficients were computed for each step 

count method. For all comparisons, the α level was set at 0.05. SPSS Version 24 for Windows 

(SPSS Inc, Chicago, IL) was used to perform statistical analysis. 

Results 

 A total of 48 healthy participants were recruited into the study (Table 7). Forty-seven 

participants were right-hand dominant, and one was left-hand dominant. The average wear time 

was 13.2  1.7 hours (mean + SD).  

 The current study examined the accuracy of 13 step count methods, using the SW as a 

criterion (Table 8). The ApW (90% of SW steps) was the only method that was not significantly 

different from the criterion (p<0.05), although the FA recorded a similar percentage of SW steps 

(91% of SW steps) as the ApW. With the exception of the AG and AGL on the wrist and AGL 

on the hip that overestimated steps (120% to 202% of SW steps), all step count methods 

underestimated steps (66% to 91% of SW steps) (Figures 4 and 5). Consumer hip-worn monitors 

yielded 72%-87% of SW steps while consumer wrist-worn monitors yielded 83%-92% of SW 

steps. GT9X step algorithms displayed wide variability in step counts and appeared to be 

influenced by several factors including the placement site, digital band-pass filter, and step 

counting algorithm used to analyze acceleration data.  

 When examining just the participants with valid data on both wrist monitors in either pair 

(GT9X/FA and (ApW/GV), MAPE increased by 2% for AGL and decreased for the AG and FA 

by less than a percent (Table 4). MAPE did not change for ApW and GV (Table 9).  
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 FZ (r=0.902), AGL (r= 0.930) on the hip, and AP (r=0.910) displayed the highest 

correlation with SW (Table 10). The consumer wrist monitors displayed correlations that were 

comparable (r=0.861 to 0.881) to the SW200 and GT9Xhip (r=0.870 and 0.868, respectively) 

(Figure 6). GT9Xhip step methods displayed stronger correlations with the SW (r= 0.829 to 

0.930) than GT9Xwrist step methods (r=0.750 to 0.804).  

Discussion  

 The SW has been used as a criterion measure in previous research on step count accuracy 

of monitors under free-living conditions.  However, these studies were limited primarily to 

research monitors (i.e., ActiGraph GT3X, AP), and older consumer monitors (i.e. numerous 

models of the YX and OM) (52, 54, 77, 91, 141, 173). One study (162) validated newer 

consumer monitors against hand-counted steps, but it only included one wrist-worn monitor (i.e., 

Fitbit Charge). It is important to include more consumer wrist monitors since they are a major 

component of the wearable industry market (17), and are now being used in behavioral 

intervention studies (145, 150), clinical trials (178) and epidemiological research (76).   

 Out of the thirteen step count methods studied, ApW was the only one that did not show a 

statistically significant difference from SW (p<0.05). Despite the high cost of an ApW ($179 to 

$1,399 USD), it is the most popular smartwatch on the market today (131). To our knowledge, 

this is the first study comparing step estimates of the validated SW to the ApW across one day in 

a free-living condition. Step count validation studies on the ApW are limited and so far have 

only been conducted in laboratory settings (19, 59, 112). Findings suggest that the ApW displays 

low MAPE (<5%) at a wide range of ambulation speeds (i.e., 54-107 m/min), with increasing 

reliability at faster speeds (ICC: 0.38-0.80) (59). Additionally, the ApW displayed less step 

counting error (MAPE 6%) during aerobic exercise (i.e., walking or jogging) than during light 
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intensity PA (i.e., folding laundry, sweeping, moving light boxes, stretching, slow walking) 

(MAPE 161%) (19). Although these studies disclose the sources of error in the ApW during 

various activities involved in a typical day, they do not quantify the magnitude of error across an 

entire day of wearing the monitor. Our study shows that the ApW was within 10% of the 

criterion (SW) over an entire day, in healthy adults. 

 The FA was the only other monitor that estimated within ±10% of SW steps, in terms of 

mean bias. Fitbit is the most popular consumer activity monitor and has more than 70% of the 

market share in fitness trackers (132). Additionally, Fitbit monitors are being used more in NIH-

funded research cohort studies and clinical trials (4, 150, 178). The selection of the Fitbit Charge 

HR and Fitbit Alta HR for use in the 10,000-person pilot study for the “All of Us” program 

appears to be well-justified, since the FA had the lowest mean bias (compared to the SW) of any 

step count methods examined in this study. In addition, the FA demonstrated a high correlation 

with the criterion SW (r=0.861). Despite the ApW and FA capturing more than 90% of SW 

steps, they still yielded MAPE scores of 18.9% and 14.8%, respectively, showing that there is 

some individual variability in the step estimates.   

 The current study supports the findings of previous laboratory-based and free-living 

research (141, 162, 173), where ActiGraph step count methods display a wide range of results. 

The current study found that the AGL on both wear locations overestimated steps (up to 202% of 

SW steps). These large overestimations in steps that result from enabling the LFE in the 

ActiGraph GT3X have been documented in previous step count validation studies (54, 77). The 

LFE was originally designed to make the accelerometer counts of the MEMS accelerometer in 

the new ActiGraph GT3X align with those of the older, analog ActiGraph 7164.  However, an 

unforeseen consequence of widening the band-pass filter to allow for lower frequency 
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accelerations to “pass through” was that it reduced the attenuation of low frequency signals, 

resulting in a large overestimation of steps (31). One possibility is that the AGL algorithm may 

be recording extraneous non-ambulatory movement as steps. Currently, only one study (162) has 

examined the most recent ActiGraph accelerometer model (GT9X), and it found similar results 

to the present study.  On the hip, there was an underestimation of steps for the normal filter but 

an overestimation of steps with the LFE filter.  On the wrist, both the normal filter and LFE filter 

resulted in an overestimation of steps. 

The current study also processed raw GT9X data from monitors worn on the non-

dominant wrist and hip with the beta version of ActiGraph’s Moving Average Vector Magnitude 

(MAVM). AGM on the hip and wrist recorded 81% and 66% of SW steps, respectively. Only 

one other study (162) has assessed the step accuracy of the MAVM step algorithm across one 

day on both wrists and the hip. Interestingly, the findings of that study differed by more than 

10% of SW steps at both wear locations. Differences of implementation of the MAVM algorithm 

from the current study may have contributed to the inconsistencies between the current study and 

the aforementioned study. In the current study, rather than post processing data, MAVM step 

counts were obtained directly off the screen of the monitor, similar to how steps were acquired 

from consumer monitors (The screen display is based on the MAVM algorithm (Wyatt, J.  2018, 

personal communications, 7 May)). 

The other consumer monitors underestimated steps by 72% to 87% of SW steps. Findings 

of previous studies that utilized the SW as a criterion have found a similar magnitude of 

undercounting in the YX and OM (52, 77, 91, 141). This could be attributable to the decreased 

step estimations observed during slow walking (42, 97) and activities of daily living (77). The 

newer consumer monitors (i.e., GV and FZ) estimated 83% and 80% of SW steps, respectively, 
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with similar MAPE (22-23%). Although there are limited studies that have validated various 

models of the Garmin (15, 104, 121) and Fitbit activity monitors worn on the hip and wrist (13, 

36, 81, 172), previous studies show that faster ambulation speeds may increase step count error 

for the Garmin, while slower speeds were found to increase step count error for the Fitbit.  

A study conducted in our laboratory assessed step accuracy during brief, intermittent 

walking bouts and found that for the FZ, steps taken in bouts that were 6 steps (or approximately 

3 seconds) did not get added to the total step count (159). This likely contributed to the 

underestimation of steps that were found in the present study. The underestimation of steps 

during brief, intermittent walking bouts and sporadic activities of daily living results from the 

‘continuous stepping requirements’ that is designed to prevent extraneous, non-ambulatory 

movements from being recorded as steps. Most consumer monitors stored the steps in a 

temporary cache, and require 3-6 seconds of continuous ambulation before those steps are added 

to the aggregate total step count (i.e., if the person stops walking before that time period, the 

steps will not be added into the daily step count).  In addition, ActiGraph’s MAVM algorithm 

requires more than two seconds of continuous walking when worn on the hip, and ten seconds of 

continuous stepping when worn on the wrist, in order for steps to be recorded (Wyatt, J. 2017, 

personal communications, 3 May, (159)). Thus, one of the reasons that many step count methods 

underestimate the SW is that the SW is designed to capture each and every step, while other 

methods only count steps taken in continuous stepping bouts of a certain minimum duration.  

The current study provides support for the use of consumer monitors in healthy adult 

populations, though more research needs to be conducted in clinical populations that may have 

irregular gait patterns and/or slower walking speeds. Our findings add to the step count 

validation literature by assessing the accuracy of popular consumer and research monitors across 
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all waking hours of one day, under free-living conditions. This is important because steps per 

day is a variable of great interest to researchers, and step count monitors are being widely used 

by researchers, clinicians, and the general public (178). 
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CHAPTER V: CONCLUSION  
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This thesis was designed to determine the step count error of activity monitors across all 

waking hours of one day under free-living conditions. Part one of the thesis aimed to determine 

the effects of wearing multiple activity monitors on daily step counts when worn in specific 

positions on the hip and wrist/forearm. The findings of part one (Chapter III) were used to 

develop the methodology of part two (Chapter IV). The activity monitors examined in these 

studies included: ActiGraph GT9X (GT9X), Fitbit Alta (FA), Garmin Vivofit 3 (GV), and Apple 

Watch Series 2 (ApW), Fitbit Zip (FZ), Omron HJ-325 (HJ325), Yamax Digiwalker SW-200 

(SW200), and activPAL (AP).  

The methodology of simultaneously wearing multiple monitors on the wrist/forearm has 

been practiced in many step count validation studies (59, 77, 94, 112). Part one showed that this 

practice can affect step estimates, even when comparing between the same monitor. The results 

showed that for multiple monitors worn on the wrist/forearm, the monitor is positioned closer to 

the elbow will record less steps. It is important for researchers to be aware of this issue if they 

want to obtain valid study results. One way to deal with this position effect is to randomize the 

placement of monitors. However, this will only spread out the step counting error out across 

monitors, since the effect of placing monitors in varied positions on the wrist/forearm cannot be 

prevented. Ideally, even though it requires more time, researchers should ensure multiple wrist 

monitors are not worn simultaneously. Alternatively, the position effect on the wrist/forearm can 

be reduced by wearing no more than two monitors as close as possible to the manufacturer’s 

recommended location.  

For hip-worn devices (with exception of the Omron HJ325), there were no differences in 

daily step counts when devices were worn at four different positions on the belt/waistband. Thus, 
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researchers can feel confident that step counting errors will not be introduced by simultaneously 

validating up to four waist-worn monitors. 

In part two of this thesis, the purpose was to examine the validity of 10 different 

monitors, and a total of 13 different step counting methods, for step counting over all waking 

hours of one day. In this study, the ankle-worn StepWatch (SW) was used as the criterion 

measure of step counting, since this monitor has previously been validated against direct 

observation of steps both in the laboratory (52, 54, 77, 91, 141, 173) and in a free-living 

environment (162).  Of all step count methods examined, only the ApW produced step estimates 

not significantly different from the SW. However, the FA also yielded step counts within 10% 

of SW steps, which was considered to be an acceptable range of error. In addition, the 

correlations between consumer monitors and the criterion SW are in the range of r=0.79 to 0.90. 

This study supports the use of consumer monitors to count daily steps in healthy adults, an 

important finding given the widespread use of consumer monitors in clinical trials, behavioral 

studies, and epidemiological research.  

With the increasing number of advanced activity monitors that store large amounts of 

information and provide additional features for increased usability, incorporating daily step 

counts in clinical practice may soon become feasible. However, prior to including a component 

of ambulatory PA in clinical practice, it is important that step counters are standardized to 

produce accurate step estimates not only in laboratory settings but also under free-living 

conditions. Despite the current study showing consistent step estimates across consumer 

monitors, there is still an issue of underestimation that must be resolved before activity monitors 

are adopted into practice. Additionally, there is a need to further improve or develop an accurate 

step counting algorithm for the GT9X in order to analyze previously acquired data in large 



 79 

population studies (i.e., NHANES and Women’s Health Study). In general, both consumer and 

research monitors were highly correlated (r=0.75-0.93) with the SW. In conclusion, the thesis 

was able to  improve upon the methodology used in step count validation studies, and directly 

apply the findings to determine the step count accuracy in many consumer and research monitors 

in healthy adults, compared to a valid criterion.  
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Table 1: Participant descriptive characteristics (mean ± SD). 

BMI: body mass index  

 

 

Table 2: Wrist-worn activity monitor width and total width of four monitors separated by 

pre-wrap.  

Monitor Width of single monitor Total width 

ApW 3.33 cm 16.32 cm 

FA 1.55 cm 9.20 cm  

GV 2.03 cm 11.12 cm 

GT9X 3.50 cm  17.00 cm 

Activity monitors: Apple Watch Series 2 [ApW], Fitbit Alta [FA], Garmin vivofit 3 [GV], 

ActiGraph GT9X [GT9X]. Total width: ((4 x single monitor width) + (3 cm of pre-wrap)).  

 

 

 

 

Table 3: Mean bias of wrist step count methods worn on positions (B-D) and reference 

position (A). 

Step Count 

Method 

Total Steps 

from A 
B C D 

AGL 18,098 -740 -845a -1,390a,c 

AGM 7,060 -330a -486a -794a,b,c 

AG 11,165 -867 -1,102a -1,748a,b,c 

ApW 6,774 -288a -243a -199a 

FA 9,513 -68 -177a -366a,b 

GV 9,142 -200 -360a -533a 

Mean bias: (position steps – reference steps). Results of pairwise comparisons. Step count 

methods: ActiGraph GT9X Low Frequency Extension [AGL], ActiGraph GT9X Moving 

Average Vector Magnitude [AGM], ActiGraph GT9X Normal Filter [AG], Apple Watch 2 

[ApW], Fitbit Alta [FA], Garmin Vivofit 3 [GV].  a significantly different than Position A, b 

significantly different than Position B, c significantly different than Position C. 

 

 All (N = 18)  Female (n = 9)  Male (n = 9)  

Age (yr)  26 ± 9 25 ± 9 28 ± 10 

Height (cm) 169.6 ± 6.2 165.6 ± 4.5  173.6 ± 5.2  

Weight (kg) 68.6 ± 13.5 58.8 ± 8.7 78.5 ± 9.6 

BMI (kg/m2) 23.7 ± 3.7 21.4 ± 2.3 26.1 ± 3.3  
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Table 4: Mean bias of hip step count methods worn on positions (A, C, D) and reference 

position (B). 

Step Count 

Method 

Total Steps 

from B 
A C D 

AGL 10,873 151 -16 204 

AGM 6,905 69 -104 -61 

AG 6,481 92 -14 -88 

FZ 8,330 -31 43 9 

HJ325 7,758 129c -63 -158a 

SW200 8,260 -533 -171 -139 

Mean bias: (position steps – reference steps). Results of pairwise comparisons. Step count 

methods: ActiGraph GT9X Low Frequency Extension [AGL], ActiGraph GT9X Moving 

Average Vector Magnitude [AGM], ActiGraph GT9X Normal Filter [AG], Fitbit Zip [FZ], 

Omron HJ-325 [HJ325], Yamax Digiwalker SW-200 [SW200]. a significantly different than 

Position A, c significantly different than Position C. 

 

 

 

 

Table 5: Mean bias of hip step count methods worn on positions (A, B, D) and reference 

position (C).  

Step Count 

Method 

Total Steps 

from C 
A B D 

AGL 10,857 167 16 220 

AGM 6,801 173 104 43 

AG 6,333 240 148 60 

FZ 8,373 -74 -43 -34 

HJ325 7,695 192c 63 -95a 

SW200 8,589 -362 171 31 

Mean bias: (position steps – reference steps). Results of pairwise comparisons. Step count 

methods: ActiGraph GT9X Low Frequency Extension [AGL], ActiGraph GT9X Moving 

Average Vector Magnitude [AGM], ActiGraph GT9X Normal Filter [AG], Fitbit Zip [FZ], 

Omron HJ-325 [HJ325], Yamax Digiwalker SW-200 [SW200]. a significantly different than 

Position A, c significantly different than Position C. 
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Table 6: Total width of wrist-worn activity monitors separated by pre-wrap.   

Monitors Total Width + PreWrap 

ApW (3.33 cm) + GV (2.03 cm) 6.36 cm 

GT9X (3.50 cm) + FA (1.55 cm) 6.05 cm 

Monitors: Apple Watch Series 2 [ApW], Fitbit Alta [FA], Garmin vivofit 3 [GV], ActiGraph 

GT9X [GT9X]. Width = (width of first monitor + width of second monitor + 1 cm of pre-wrap).  

 

 

 

Table 7: Participant Characteristics (mean ± SD). 

BMI: body mass index, SW steps/day: average of both days of wear 

 

 

 

 

 

 

 

 

 All (N = 48)  Female (n = 27)  Male (n = 21)  

Age (yr)  28 ± 12 28 ± 12 28 ± 11 

Height (cm) 169.8 ± 8.7 164.2 ± 6.1  177.0 ± 5.7 

Weight (kg) 72.3 ± 18.3 63.5 ± 16.0 83.6 ± 14.7 

BMI (kg/m2) 24.9 ± 5.3 23.6 ± 5.8 26.6 ± 4.0 

SW steps/day 9,634 ± 3,800 9,355 ± 3,731 9,996 ± 3,869 
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Table 8: Total daily steps across all waking hours of one day in a free-living environment 

as measured by 6 wrist methods, 6 hip methods and 1 thigh method, with the criterion of 

StepWatch steps (N=48).  

Placement 

Site 

Step 

count 

method 

n Method 

(Mean ± SD) 

StepWatch 

(Mean ± SD) 

Mean Bias MAPE (%) 

 AGL** 45 18,630 ± 5,192 9,858 ± 3,674 8,772 101.5 

 AGM** 42 6,463 ± 2,862 9,772 ± 3,539 -3,309 34.2 

 AG** 45 11,274 ± 3,414 9,858 ± 3,674 1,416 24.2 

  ApW 45 8,229 ± 3,552 9,357 ± 4,093 -1,128 18.9 

Wrist FA* 45 9,029 ± 3,817 9,884 ± 3,653 -855 14.8 

 GV** 46 7,590 ± 3,487 9,278 ± 4,126 -1,664 23.3 

 AGL** 46 12,562 ± 3,943 9,765 ± 3,779 2,797 35.1 

 AGM** 43 7,821 ± 3,618 9,674 ± 3,679 -1,854 22.5 

 AG** 46 7,506 ± 3,063 9,765 ± 3,799 -2,259 23.6 

Hip  FZ** 46 7,623 ± 3,584 9,489 ± 3,975 -1,867 23.9 

 SW200* 38 8,004 ± 4,059 9,343 ± 4,101 -1,339 20.7 

 HJ325** 46 6,652, 2,792 9,274 ± 3,627 -2,623 29.8 

Thigh AP** 37 8,290 ± 3,822 9,857 ± 4,147 -1,567 24.0 

Mean: total daily steps. SD: standard deviation. Mean bias: (method estimate – StepWatch estimate). % 

SW: Percent of StepWatch steps: ((method estimate ÷ StepWatch estimate) • 100). MAPE: mean absolute 

percent error. Step count method: ActiGraph GT9X Low Frequency Extension [AGL], ActiGraph GT9X 

Moving Average Vector Magnitude [AGM], ActiGraph GT9X Normal Filter [AG], Apple Watch Series 2 

[ApW], Fitbit Alta [FA], Garmin vivofit 3 [GV]. Fitbit Zip [FZ], Omron HJ-325 [HJ325], Yamax 

Digiwalker SW-200 [SW200]. *p<0.05. **p<0.01 
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Table 9: Total daily steps across all waking hours of one waking day in a free-living 

environment with the criterion of StepWatch steps (N=48). These data only reflect a subset 

of total participants that had valid data for both monitors; any participants who had 

missing data for one monitor or the other were excluded.  

Placement 

Site 

Step 

count 

method 

n Method 

(Mean ± SD) 

StepWatch 

(Mean ± SD) 

Mean 

Bias 

% SW MAPE 

(%) 

Wrist 

AGL* 42 18,710 ± 5,172 9,772 ± 3,539 8,938 203.9 103.9 

AGM* 42 6,463 ± 2,862 9,772 ± 3,539 -3,309 65.8 34.2 

AG* 42 11,284 ± 3,399 9,772 ± 3,539 1,512 120.9 24.9 

FA* 42 8,888 ± 3,850 9,772 ± 3,539 -884 90.3 14.4 

Mean: total daily steps. SD: standard deviation. Mean bias: (method estimate – StepWatch estimate). % 

SW: Percent of StepWatch steps: ((method estimate ÷ StepWatch estimate) • 100). MAPE: mean absolute 

percent error. Step count methods: ActiGraph GT9X Low Frequency Extension [AGL], ActiGraph GT9X 

Moving Average Vector Magnitude [AGM], ActiGraph GT9X Normal Filter [AG], Fitbit Alta [FA]. 

*p<0.05.  

 

 

Table 10: Total daily steps across all waking hours of one day in a free-living environment 

with the criterion of StepWatch steps (N=48). These data only reflect a subset of total 

participants that had valid data for both monitors; any participants who had missing data 

for one monitor or the other were excluded. 

Placement 

Site 

Step 

count 

method 

n Method 

(Mean ± SD) 

StepWatch 

(Mean ± SD) 

Mean 

Bias 

% SW  MAPE 

(%) 

Wrist 

ApW* 45 8,229 ± 3,552 9,357 ± 4,093 -1,128 90.1 18.9 

GV* 45 7,664 ± 3,490 9,357 ± 4,093 -1,693 82.7 23.3 

Mean: total daily steps. SD: standard deviation. Mean bias: (method estimate – StepWatch estimate). % 

SW: Percent of StepWatch steps: ((method estimate ÷ StepWatch estimate) • 100). MAPE: mean absolute 

percent error. Step count methods: Apple Watch Series 2 [ApW], Garmin vivofit 3 [GV]. *p<0.05. 

**p<0.01. 
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Table 11: Pearson Correlation Coefficients for step counting methods during one waking day. 
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Ankle StepWatch 1 .861 .866 .880 .804 .750 .791 .787 .902 .870 .868 .930 .829 .910 

Non-

Dominant 

Wrist 

Fitbit Alta  1 -- -- .781 .701 .915 .902 .881 .970 .903 .824 .929 .909 

Garmin vivofit 3    1 .963 -- -- -- .974 .979 .941 .991 .991 .986 .925 

Apple Watch 2     1 -- -- -- .965 .971 .906 .989 .999 .981 .913 

AG     1 .950 .629 .980 .818 .721 .741 .866 .631 .897 

AGL      1 .552 .668 .563 .506 .676 .858 .570 .806 

AGM       1 .951 .843 .951 .930 .742 .903 .832 

Hip 

Omron HJ325        1 .984 .971 .865 .712 .977 .891 

Fitbit Zip         1 .959 .982 .938 .966 .985 

Yamax SW200          1 .971 .880 .993 .885 

AG           1 .866 .924 .883 

AGL            1 .799 .912 

AGM             1 .822 

Thigh activPAL              1 

 

Step counting methods: ActiGraph GT9X Normal Filter [AG], ActiGraph GT9X Low Frequency Extension [AGL], ActiGraph GT9X 

Moving Average Vector Magnitude [AGM]. 
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Figure 1A: Wrist-worn monitors separated by pre-wrap worn on the non-dominant wrist. 

B: Hip-worn monitors worn on the right side on the waistband. Position A was located two 

cm right of the umbilicus. Position B was located in the mid-thigh. Position C was located 

in the anterior axillary line. Position D was located in the middle axillary line.  
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Figure 2: Steps/day from wrist-worn step count monitors worn adjacent to each other on 

the non-dominant wrist in position A (subsequent to the ulnar styloid process) and 

positions B-D (adjacent to previous monitors without directly touching). Mean ± SD; 

steps/day. Step count methods: ActiGraph GT9X Low Frequency Extension [AGL], 

ActiGraph GT9X Moving Average Vector Magnitude [AGM], ActiGraph GT9X Normal 

Filter [AG], Apple Watch 2 [ApW], Fitbit Alta [FA], Garmin Vivofit 3 [GV]. *p<0.05 

denotes main effect for position.  
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Figure 3: Steps/day from hip-worn step count monitors worn adjacent to each other on the 

right hip in position A (one inch right of the umbilicus), B (in line with the mid-clavicular 

line), C (in line with the anterior axillary line), and D (in line with the mid-axillary line). 

Mean ± SD; steps/day. Step count methods: ActiGraph GT9X Low Frequency Extension 

[AGL], ActiGraph GT9X Moving Average Vector Magnitude [AGM], ActiGraph GT9X 

Normal Filter [AG], Fitbit Zip [FZ], Omron HJ-325 [HJ325], Yamax Digiwalker [SW200]. 

*p<0.05 denotes main effect for position. 
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Figure 4: Percent of StepWatch steps: ((estimation method ÷ StepWatch) • 100%) for wrist 

step counting methods. Abbreviations are as follows: ActiGraph GT9X Low Frequency 

Extension [AGL], ActiGraph GT9X Moving Average Vector Magnitude [AGM], 

ActiGraph GT9X Normal Filter [AG], Apple Watch Series 2 [ApW], Fitbit Alta [FA], 

Garmin vivofit 3 [GV]. *p<0.05.  
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Figure 5: Percent of StepWatch steps: ((estimation method ÷ StepWatch) • 100%) for hip 

step counting methods. Abbreviations are as follows: ActiGraph GT9X Low Frequency 

Extension [AGL], ActiGraph GT9X Moving Average Vector Magnitude [AGM], 

ActiGraph GT9X Normal Filter [AG], Fitbit Zip [FZ], Omron HJ-325 [OM], Yamax 

Digiwalker [YX]. *p<0.05.
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Figure 6: Correlation for wrist (A) and hip/thigh (B) step counting methods and StepWatch across all hours of one day. 
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Figure 6 continued 

A. 
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Figure 6 continued  

B. 
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