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ABSTRACT 
 

Plants have a microbiome that hosts a variety of microorganisms, including pathogenic, 

neutral, and beneficial bacterial strains. These strains can influence the plant’s growth and health. 

Determining how the microbiome is recruited and structured and how these microbes 

communicate and interact with each other is needed to understand, and, ultimately, manipulate the 

effect of the microbiome on plant health. In order to pursue this goal, we are studying the plant-

associated microbe Pantoea sp. YR343. Pantoea sp. YR343 is a motile and rod-shaped bacterium 

isolated from the roots of Populus deltoides- a promising source for biofuels. It possesses the 

ability to solubilize phosphate as well as produce the phytohormone indole-3-acetic acid (IAA). 

Moreover, Pantoea sp. YR343 shows both swimming and swarming motility, is a robust root 

colonizer, and induces lateral root production in Arabidopsis thaliana and Populus deltoides. As 

part of a genetic screen to identify factors that promote root colonization, we identified a 

transposon mutant that mapped to a gene encoding the transcription regulator RcsA. The 

transposon mutant displayed defects in biofilm formation, capsule production, and colonization of 

wheat roots, suggesting that it may influence the ability of Pantoea sp. YR343 to associate with 

plants. Understanding the function of this gene in Pantoea sp. YR343 provides insights into the 

regulation and mechanisms of plant association. 

  



 

v 
 

TABLE OF CONTENTS 
CHAPTER ONE: Background .................................................................................................... 1 

Complex Communities ............................................................................................................ 1 

Plant-Microbe Communities ................................................................................................... 1 

Populus deltoides Microbiome ................................................................................................ 2 

Pantoea sp. YR343 ................................................................................................................. 4 

Colonization and Biofilm Formation of Microbes ................................................................... 5 

Exopolysaccharide Production ................................................................................................ 8 

RcsA: Regulator of Capsule Production .................................................................................. 9 

Regulation of RcsA in Pantoea stewartii ........................................................................... 10 

Function of RcsA in Pantoea stewartii ............................................................................... 11 

CHAPTER TWO: The Function and Regulon of Transcription Factor RcsA in Pantoea sp. 

YR343 ...................................................................................................................................... 15 

Selecting RcsA...................................................................................................................... 15 

Methods ................................................................................................................................ 17 

Results .................................................................................................................................. 18 

Discussion and Future Directions .......................................................................................... 31 

CHAPTER THREE: Other Projects .......................................................................................... 33 

LuxR: A Master Regulator .................................................................................................... 34 

LrhA: A Transcription Factor ................................................................................................ 36 

Symplasmata ......................................................................................................................... 38 

The Mysterious BB4 Transposon Mutant: A DNA Helicase .................................................. 43 

C-di-GMP-related Transposon Mutants ................................................................................. 45 

Salicin Degradation ............................................................................................................... 48 

Transport Transposon Mutants .............................................................................................. 52 

List of References ..................................................................................................................... 58 

Appendix .................................................................................................................................. 63 

Progress with the rcsA and lrhA Clean Deletions ................................................................... 64 

Primers ................................................................................................................................. 66 

Vita ........................................................................................................................................... 68 

 



 

vi 
 

LIST OF TABLES 
Table 2.1. Genes downregulated in rcsA:Tn5 compared to WT Pantoea sp. YR343. grown 

overnight in R2A media. We generated the expression matrix using DESeq2 in KBase 

and filtered with a log2_fold_change cutoff of 2 and q-value (corrected p-value) of 

0.05………………………………………………………………………………….……27 

Table 2.2. Genes upregulated in rcsA:Tn5 compared to WT Pantoea sp. YR343. grown 

overnight in R2A media. We generated the expression matrix using DESeq2 in KBase 

and filtered with a log2_fold_change cutoff of 2 and q-value (corrected p-value) of 

0.05………………………………………………………………………………….……28 

Table 3.1. BLAST ID and number of LuxR homologs in Pantoea strains compared to Pantoea 

sp. YR343 ......................................................................................................................... 34 

Table 3.2. BLAST ID and number of LuxI homologs in Pantoea strains compared to Pantoea sp. 

YR343 (PMI39_00509) …………………………………………………………………35 

Table 3.3. ATP/OD readings show no significant differences. Testing the supernatant alone 

rendered no ATP reading, so salicylate does not contribute to the results. .......................... 51 

Table 3.4. Overview of transport mutants isolated from c-di-GMP transposon screen. “-“ 

indicates no significant phenotypic difference from the WT. ............................................. 53 

Table 3.5. Predicting the function of transport mutants isolated from c-di-GMP transposon 

screen. ............................................................................................................................... 54 

Table 3.6. Summary of proteomics for Pantoea sp. YR343 transport mutants. .......................... 56 

Table 3.7. Summary of crytal violet biofilm assay for Pantoea sp. YR343 transport mutants. ... 57 

Table A.1. Primers. ................................................................................................................... 66 

 
 
   
 
 
 
 
 
 
 
 
 
 
 



 

vii 
 

LIST OF FIGURES 
Figure 1.1. Beneficial plant-microbe interactions in the rhizosphere. 1) Motility, 2) Adherence, 

and 3) Growth are the essential steps to compete in the rhizosphere. PGPR strains can 

release nutrients and phytohormones as well as inhibit root diseases caused by pathogens by 

4) causing the plant to elicit Induced Systemic Resistance (ISR) or 5) directly producing 

secondary metabolites.3 ....................................................................................................... 3 

Figure 1.2. Hybrid poplars planted like row crops. Can be processed into ethanol as alternative 

fuel.1 ................................................................................................................................... 4 

Figure 1.3. Pantoea sp. YR343 colonizing Populus deltoides. Populus deltoides WV94 cuttings 

grown in presence or absence of Pantoea YR343 expressing GFP for seven days. We 

detected plant roots using red autofluorescence and YR343 using GFP (green fluorescent 

protein) fluorescence. .......................................................................................................... 7 

Figure 1.4. Quorum sensing and biofilms. a. Steps involved in biofilm development. b. Confocal 

microscope images of P. aeruginosa developing a biofilm over time while producing GFP. 

The tower structures after 8 days are 100 um high.6 ............................................................. 7 

Figure 1.5. Symbiotic bioluminescence as a result of lux-gene organization. b. Australian 

pinecone fish has a lower light organ on the haw that contants ~10^10 V. fischeri cells per 

ml fluid. Pinecone fish use the light to search for prey at night. c. Hawaiian bobtail squid 

with an organ with ~10^11 V. fischeri cells per ml close to the ink sac. Bobtail squids emit 

light downward to blend with the moon and starlight to become invisible to predators.6 ...... 7 

Figure 1.6. Physiological functions and structure of c-di-GMP. c-di-GMP is controlled by 

diguanylate cyclases that carry GGDEF (red) domains and specific phosphodiesterases that 

carry EAL or HD-GYP  domains (blue). c-di-GMP can reduce motility by downregulating 

flagellar expression or interfering with flagellar motor function. High c-di-GMP levels 

stimulate biofilm-associate functions, like the formation of fimbriae and other adhesins and 

various matrix EPS.7 ........................................................................................................... 8 

Figure 1.7. Signal transduction pathway for RcsA, B, C, and D genes. Phosphate transfer from 

RcsC to RcsB is shown. HNS negatively regulates rcsA transcription.5 ............................. 10 

Figure 1.8. Regulation of lrhA and rcsA in Pantoea stewartii. At high cell densities, EsaR forms 

a complex with AHL and becomes inactivated. It cannot bind to the DNA or coordinate the 



 

viii 
 

expression of genes. At low cell densities, EsaR is free to bind to its recognition site and 

coordinate the expression of genes, like lrhA and rcsA. ..................................................... 12 

Figure 1.9. RcsA and Lrha in Pantoea stewartii. A. Capsule assay showing reduced capsule in 

RcsA knock-out mutant (center) compared to WT (left). Recovered capsule in 

complementation (right). B. Swarming assay showing reduced swarming in LrhA knock-out 

(center) compared to WT (left) and complementation (right). C. Regulatory model of RcsA 

and LrhA.2 ........................................................................................................................ 13 

Figure 1.10. Phylogenetic tree of Pantoea YR343 with other Enterobacteriaceae species.. ....... 16 

Figure 2.1. WT and rcsA:Tn5 on Congo Red plates (top) v. overexpressing c-di-GMP with 

induction of IPTG on Congo Red plates (bottom). ............................................................. 16 

Figure 2.2. RcsA sequence with known domains created by BLASTp. Transposon enters at base 

pair 18. .............................................................................................................................. 16 

Figure 2.3. RcsA promotes EPS production. A. Congo Red Phenotypes. B. Capsule Analysis. .. 20 

Figure 2.4. Monosaccharide analysis of rcsA:Tn5 and UDP:Tn5 compared to WT……………21 

Figure 2.5. Gene neighborhood of UDP in Pantoea sp. YR343, Erwinia amylovora, and Pantoea 

stewartii…………………………………………………………………………………………….21 

Figure 2.6. Pellicle formation of WT and mutants in Pantoea sp. YR343………………………22 

Figure 2.7. Crystal violet biofilm assay shows decreased biofilm formation for rcsA:Tn5 mutants 

compared to WT and pSRK:rcsA………………..………………………………………23 

Figure 2.8. Colonization of rcsA:Tn5 and WT on individual wheat roots………………………24 

Figure 2.9. Colonization of rcsA:Tn5 and WT inoculated on the same wheat roots………..…...24 

Figure 2.10. pPROBE:rcsA_promoter expressing GFP ……………………….………………..26 

Figure 2.11. A. pPROBE:UDP_promoter in WT background and pPROBE:UDP_promoter in 

rcsA:Tn5 background ……………......................................................................................26 

Figure 2.12. Heatmap of gene functions upregulated in the rcsA:Tn5 mutant compared to WT 

Pantoea sp. YR343 grown as pellicles. Darker colors correlate with increased number of 

genes with predicted COGs in each category. Category key is in Figure 2.14. …………29 

Figure 2.13. Heatmap of gene functions downregulated in the rcsA:Tn5 mutant compared to WT 

Pantoea sp. YR343 grown as pellicles. Darker colors correlate with increased number of 

genes with predicted COGs in each category. Category key is in Figure 2.14. …………29 

 



 

ix 
 

Figure 2.14. Category key for heatmap of predicted COG functions in Figures 2.12-13…...…..30 

Figure 3.1. LuxR likely positively regulates LrhA and negatively regulates RcsA in Pantoea sp. 

YR343. In turn, LrhA suppresses genes with motility functions and RcsA activates genes 

that produce EPS, like UDP. In addition, both LrhA and RcsA contribute to the 

development of symplasmata............................................................................................. 33 

Figure 3.2. Gene neighborhood of LuxR adjacent to LuxI (PMI39_00508) in Pantoea sp. 

YR343……………………………………………………………………………………34 

Figure 3.3. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated with WT Pantoea sp. 

YR343 on wheat roots. ...................................................................................................... 35 

Figure 3.4. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated on individual wheat 

roots. ................................................................................................................................. 36 

Figure 3.5. A. BLASTp tree of transcription factor LrhA in Pantoea sp. YR343. B. BLASTp top 

hits for RcsA and LrhA in Pantoea sp. YR343. Yellow arrow indicates the location of the 

Pantoea stewartii LrhA homolog in the BLASTp tree. ...................................................... 37 

Figure 3.6. LrhA phenotypes. A. Swarming assay of WT, LrhA:Tn5, pSRK:LrhA. B. Crystal 

violet biofilm assay. .......................................................................................................... 38 

Figure 3.7. Pantoea eucalypti 299R form symplasmata. A. Phase-contrast image showing pair of 

symplasmata (top). Counter-staining with Indian ink reveals capsule surrounding cells 

(bottom). B. Cells expressing either GFP or DsRed depicting clonal tendency of 

symplasmata. Bar = 20 um.4 .............................................................................................. 39 

Figure 3.8. Pantoea sp. YR343 form symplasmata. A. Pellicles contain abundant symplasmata. 

Brightfield image of symplasmata of various sizes. B. Symplasmata formation on wheat 

roots of Pantoea sp. YR343 with mcherry fluorescence. C. GFP Pantoea sp. YR343 

colonies from a pellicle. .................................................................................................... 40 

Figure 3.9. Figure 4.22. Using ImageJ to calculate number of cells in each symplasmata. ImageJ 

can separate the fluorescent cells and watershed to account for error. The new image 

(right) can be used to count the  individual cells. ………………………………....…….40 

Figure 3.10. Using ImageJ to calculate number of cells in each symplasmata in WT Pantoea sp. 

YR343……………………………………………………………………………………41 

Figure 3.11. Using ImageJ to calculate number of cells in each symplasmata as a percentage of  

 symplasmata vs. total cells in WT Pantoea sp. YR343……….………………………….41 



 

x 
 

Figure 3.12. WT and transposon mutant symplasmata formation of Pantoea eucalypti 299R. 

LrhA:Tn5 does not form symplasmata.4............................................................................. 42 

Figure 3.13. LrhA:Tn5 does not form symplasmata in a pellicle. ............................................... 42 

Figure 3.14. RcsA:Tn5 clusters with no capsule in a pellicle...................................................... 42 

Figure 3.15. Depiction of transposon insertion into the gene encoding DNA helicase using 

BLAST. ............................................................................................................................ 43 

Figure 3.16. Location of PMI39_00093 using IMG with descriptions of adjacent genes. ........... 43 

Figure 3.17. Similar pellicle formation for WT (left) and BB4 (right)........................................ 44 

Figure 3.18. Trypan blue phenotype for BB4 (right) compared to WT (left). ............................. 44 

Figure 3.19. Significant biofilm defect for BB4 compared to WT Pantoea sp. YR343 in a crystal 

violet biofilm assay. .......................................................................................................... 44 

Figure 3.20. Degradation of c-di-GMP by a diguanylate phosphodiesterase. ............................. 45 

Figure 3.21. Equal growth of transposon mutants compared to WT. .......................................... 46 

Figure 3.22. Equal biofilm development of transposon mutants compared to WT. ..................... 46 

Figure 3.23. Swimming motility for WT (left), G11 (center), and G7 (right). ............................ 47 

Figure 3.24. Pellicle defect for G11 (right) compared to WT (left). ........................................... 47 

Figure 3.25. Growth in a 96-well plate. Little to no growth for salicin to salicin cultures and 

delayed growth for glucose to salicin cultures.................................................................... 49 

Figure 3.26. R2A cultures showing no growth........................................................................... 49 

Figure 3.27. Growth in 250 mL of MOPS. Delayed and slightly reduced growth for salicin to 

salicin cultures and delayed growth for glucose to salicin cultures….………………….50 

Figure 3.28. Growth in 250 mL of MOPS with glucose or salicin compared to cultures grown in 

R2A. MOPS + glucose grows similarly to R2A, but MOPS + salicin has delayed growth of 

about 12 hrs....................................................................................................................... 50 

Figure 3.29. Comparing Glycoside hydrolase family 1 genes. Aligned using TCoffee, formatted 

into a Newick file using Clustal W2, and viewed and edited using Dendroscope. .............. 51 

Figure 3.30. Growth curve of transport mutants grown in R2A media. ...................................... 55 

Figure 3.31. Pellicles different from the WT’s (right). F11 (left), F12 (second from left), and 

BB11 (second from right). ................................................................................................. 55 

Figure A.1. Modified pk18mobsacB plasmid (left). Transformation of the plasmid with no 

insertion (top right) and with insertion (bottom left). ......................................................... 64 



 

xi 
 

Figure A.2. Gel electrophoresis showing presence of rcsA insert into pk18mobsacB plasmid. ... 65 

Figure A.3. Diagram of screen for rcsA clean deletion mutant. .................................................. 65 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xii 
 

LIST OF ABBREVIATIONS 
 

AHL: N-acyl homoserine lactone 
C-di-GMP: Bis-(3ÅL-5ÅL)-cyclic dimeric guanosine monophosphate 
EPS: exopolysaccharide 
IAA: Indole Acetic Acid 
LrhA: LysR homolog A; regulator of flagella 
LuxR: luminous emittance regulator; master regulator of bioluminescence in  
 Vibrio fischeri (EsaR and SdiA are homologs) 

PGPR: Plant-growth promoting rhizobacteria 

pSRK:rcsA: IPTG-inducible overexpression of rcsA 
QS: Quorum sensing 
RcsA: Regulator of Capsular Synthesis 
rcsA:Tn5: transposon mutant of rcsA 
UDP:   UDP-phosphate galactose phosphotransferase 



 

1 
 

CHAPTER ONE: BACKGROUND 

Complex Communities 

The rhizosphere encompasses a complex and diverse community composed of a host 

plant and its associated community. This community includes many organisms, such as 

nematodes, fungi, and bacteria. Its composition is influenced by both biotic and abiotic factors, 

such as temperature, pH, and moisture.9, 10 Compared to bulk soil, the rhizosphere is a nutrient-

rich environment containing sugars, amino acids, organic acids, carbon, and other small 

molecules from root exudates.11  

Host plant species and plant richness can greatly alter microbial interactions. This results 

in the coevolution of plants and the soil community. The establishment of early land plants was 

facilitated by their interaction with symbiotic fungal associations. Molecular interactions with 

epiphytic, symbiotic, and pathogenic microbes have shaped the evolution of land plants 

overtime.12, 13  

The various interactions between plants and its associated community can alter the 

community as a whole. In addition, the community and environment of the plant host is a vital 

determinant of the community structure. Plants, fungi, and microbes are also all affected by 

spatial scales, plant richness, species identity, and overall community characteristics.14 The many 

conditional variables affecting complex communities in the rhizosphere require it to be 

meticulously studied to elucidate the factors contributing to plant health and fitness. 

 

Plant-Microbe Communities   

There are tens of thousands of species of microbes associated with plant roots and some 

can be crucial for plant health. Plants affect the microbiome through the exudation of 

compounds. At the same time, microbes provide resources, modulate hormone levels, and 

compete for nutrients and space.11, 15 Depending on the host and microbe species and 

environmental conditions, microbes in the rhizosphere have the opportunity to be harmful, 

neutral, or beneficial to the plant.11 
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There are reciprocal impacts on plants and microbes. Plants influence the rhizosphere by 

releasing organic acids, sugars, amino acids, fatty acids, vitamins, growth factors, hormones, and 

antimicrobial compounds.16-18 How the microbial community structure is organized, however, is 

not well-understood. Bakker et. al. shows no consistency for operational taxonomic units (OTUs) 

between different host species. The microbes depend on biotic and abiotic characteristics, like 

carbon and soil moisture, which are affected by plants.14,19  

Plant-growth promoting rhizobacteria (PGPR) can reduce the incidence of soil borne 

diseases. PGPR can limit pathogen success by consuming nutrients, stimulating the plant 

immune system, and/or producing biostatic compounds.15, 20, 21 Rhizobacteria can act as 

biocontrol agents. They can locally antagonize pathogens or cause systemic resistance of the 

entire plant with the use of siderophores and antibiotics. This biocontrol could improve crop 

systems.15, 22, 23 

PGPR can also help in the solubilization of mineral phosphates and other nutrients, 

stabilize soil aggregates, improve soil structure and organic matter content, and enhance 

resistance to stress (Figure 1.1).18, 24 These factors affect the host’s growth, development, 

physiology, and metabolism.20  

Identifying essential functions, such as biofilm formation and motility, and their 

expression in bacteria in response to plant signals will define what genes are required for 

bacterial colonization. This knowledge will allow researchers to create minimal bacterial 

genomes that demonstrate effective colonization and rhizosphere competence.4 Overall, 

manipulating the microbiome can reduce plant disease, increase agricultural production, and 

reduce chemical use and emissions of greenhouse gasses. 

 

Populus deltoides Microbiome 
A major source for biofuel and plant-microbe interaction studies is Populus deltoides or 

the poplar tree. There is a renewed interest in poplars as a major source of bioenergy where their 

wood is converted into transportation fuel and other energy resources (Figure 1.2). Populus 

deltoides trees are sources of bioenergy by producing cellulose, which is the source for 

biofuels.25 Plant-based biofuels provide a renewable resource for gasoline additives ethanol and 
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butanol. As of now, a major obstacle toward realizing the potential of biofuels is the high cost of 

production.26 

Poplars are a model for woody perennials and physiological research because they can be 

easily utilized as a short-rotation woody crop with their extraordinary growth rates. They can 

also grow on land not suitable for food, so they do not compete with agriculture. A poplar 

increases carbon sequestration, which reduces the carbon debt from land use changes. It also has 

the first fully sequenced tree genome. 25, 27 The poplar can be a dominant keystone species and 

vital to the pulp and paper industry as well as biofuel production. 

Proteobacteria and Actinobacteria dominate the microbial community of mature Populus 

deltoides roots.25 The rhizosphere of the poplar provides carbon and energy sources for microbial 

communities by exporting organic molecules and nutrients.25 In addition to the impact of plants 

and microbes, abiotic factors, like soil type, pH, geography, and season, affect the poplar-

microbe interactions. Understanding the complex relationship between Populus deltoides and its 

resident microbes could promote poplar growth and development, increase its resistance to 

disease, and improve its phytoremediation potential.28 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Beneficial plant-microbe interactions in the rhizosphere. 1) Motility, 2) 
Adherence, and 3) Growth are the essential steps to compete in the rhizosphere. PGPR 
strains can release nutrients and phytohormones as well as inhibit root diseases caused 
by pathogens by 4) causing the plant to elicit Induced Systemic Resistance (ISR) or 5) 
directly producing secondary metabolites.4 
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Pantoea sp. YR343 

Pantoea is from the Enterobacteriaceae family and has been isolated from plants, 

humans, and the natural environment. Some members of the genus Pantoea are infamously 

pathogenic. Pantoea stewartii is known for Stewart’s Wilt Disease, which causes corn crops to 

wilt. Pantoea agglomerans causes crown and root gall disease and gysophila and beet plants. 

Also, Pantoea ananatis causes bacterial blight and dieback of Eucalyptus, stem necrosis of rice, 

and brown stock rot of maize.29, 30 Pantoea has a broad host range and pathogenic potential.31 

 However, some Pantoea strains have been shown to be beneficial to plant hosts. Pantoea 

sp. YR343 is not pathogenic when applied to the leaves or roots of selected plant hosts and 

readily colonizes plant roots (Figure 1.3). Pantoea sp. YR343 is a motile and rod-shaped 

bacterium isolated from the roots of Populus deltoides.1 The gamma-proteobacterium Pantoea 

sp. YR343 is one of the more vigorous colonizers of Populus deltoides and could provide greater 

benefits to poplar trees with increased colonization. Some characteristics that promote its ability 

to survive in the rhizosphere and associate with its plant hosts are swimming and swarming 

motility, its ability to solubilize phosphate, and its production of IAA. The motility is key 

because it can avoid hostile conditions and locate and form colonies on the roots in the soil.1, 32 

Figure 1.2. Hybrid poplars planted as row crops. Can be 
processed into ethanol as alternative fuel.2 
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Pantoea sp. YR343 could be a beneficial colonizer because it possesses the ability to 

solubilize phosphate as well as produce the phytohormone indole-3-acetic acid (IAA).1 The 

phosphorous amount in the soil is high but mostly insoluble. A microbe’s ability to solubilize 

phosphate could be essential for plant growth. The production of IAA has the ability to affect 

plant cell division, extension, differentiation, stimulate germination, increase xylem and root 

development, control vegetative growth and root formation, and mediate responses to 

environmental stresses.29 

 

Colonization and Biofilm Formation of Microbes 

 Bacteria need to be able to establish themselves in the rhizosphere at a sufficient 

population density to have a beneficial effect. To accomplish this, the plant-microbe field needs a 

greater understanding of how bacteria efficiently colonize the root system and become fierce 

competitors against other microorganisms.23  

A major factor in colonization is quorum sensing, a signaling mechanism in bacteria that 

regulates biofilm formation, motility, and other morphological and cellular processes. N-acyl 

homoserine lactone (AHL) signal molecules accumulate in environments of a sufficiently dense 

population or a quorum. This quorum of signal-generating bacteria coordinates to express 

specific target genes. Quorum sensing is most often regulated by LuxR. This system regulates 

functions required for host-microbe interactions, which makes it significant for promoting 

beneficial microbial activities (Figure 1.4).33  

A general quorum sensing mechanism involves LuxI-dependent production of AHL 

signaling molecules that freely diffuse across biological membranes. The luxR gene encodes for 

a signal receptor that is an acyl-HSL-responsive transcriptional activator that resides in the 

cytoplasm. Upon binding of the AHL molecule, LuxR binds to its recognition site and interacts 

with RNA polymerase to stimulate transcription of a wide variety of genes depending on the 

bacterial strain. In Vibrio fischeri, this results in transcription of the luminescence operon and the 

production of light (Figure 1.5).6, 34, 35 

Bacteria live as independent planktonic cells or members of organized surface-attached 

communities called biofilms. The cells transfer from motile to sessile and attach to a surface to 

form a biofilm. Motility is key for the initial interaction and movement along the surface.36, 37 
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Biofilms are formed in response to environmental conditions and cues38 and can protect a 

microbial community from stresses, immune responses, and antibacterial agents.  Within a 

biofilm, there are gradients of nutrients, waste products, and signaling factors that produce a 

heterogeneous environment. 7, 39-41 Cells within a biofilm can experience different local 

environmental conditions which can influence gene regulation and lead to functional diversity 

within the community. The molecular mechanisms that drive biofilm formation have been the 

subject of much research.42 

Recent research has shown that the secondary messenger c-di-GMP plays a significant 

role in driving biofilm formation. The synthesis of c-di-GMP is driven by diguanylate cyclases 

(DGCs), whereas the degradation of c-di-GMP is driven by phosphodiesterases (PDEs).7, 43 C-di-

GMP signaling cascades begin with the activation of a DGC or repression of a PDE followed by 

binding to an effector component, which produces a molecular output.44 Generally, bacteria form 

biofilms at high c-di-GMP cellular levels and disperse at low c-di-GMP levels. The specific 

mechanisms behind this observation have proven to be a “regulatory nightmare” due to 

numerous c-di-GMP signaling systems, questions of specificity, and the diverse intracellular and 

environmental stimuli that serve specific targets.45,46  The action of DGCs and PDEs is well-

characterized, but research on specific effectors and environmental cues need to be conducted in 

order to gain a greater understanding of the scope  of c-di-GMP signaling cascades. 

C-di-GMP is a key player in the switch between motile planktonic and sedentary biofilm-

associated bacteria. C-di-GMP binds to a range of effector components and controls diverse 

targets, like transcription and the activities of enzymes. Generally, it stimulates the biosynthesis 

of adhesins and exopolysaccharide matrix substances in biofilms and results in a decrease in 

various forms of motility.7  

It has also been proven that c-di-GMP affects the transcription of target genes. The 

secondary messenger binds to structurally and functionally unrelated proteins (like transcription 

factors) and even to RNAs (riboswitches). Therefore, it can act at the transcriptional, 

posttranscriptional, and posttranslational levels. For example, the P. aeruginosa transcription 

factor, FleQ, directly binds to c-di-GMP, which antagonizes the activity of c-di-GMP because 

FleQ activates the expression of flagellar genes and represses the biofilm promoting operon 

(Figure 1.6).7  
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Figure 1.4. Quorum sensing and 
biofilms. a. Steps involved in biofilm 
development. b. Confocal microscope 
images of P. aeruginosa developing a 
biofilm over time while producing 
GFP. The tower structures after 8 
days are 100 um high.6  

Figure 1.5. Symbiotic bioluminescence 
as a result of lux-gene organization. b. 
Australian pinecone fish has a lower 
light organ on the haw that contants 
~10^10 V. fischeri cells per ml fluid. 
Pinecone fish use the light to search for 
prey at night. c. Hawaiian bobtail squid 
with an organ with ~10^11 V. fischeri 
cells per ml close to the ink sac. Bobtail 
squids emit light downward to blend 
with the moon and starlight to become 
invisible to predators.6 
 

Figure 1.3. Pantoea sp. YR343 colonizing Populus deltoides. Populus deltoides WV94 
cuttings grown in presence or absence of Pantoea YR343 expressing GFP for seven 
days. We detected plant roots using red autofluorescence and YR343 using GFP (green 
fluorescent protein) fluorescence. 
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Exopolysaccharide Production 

Exopolysaccharides (EPS) can provide survival advantages by preventing predation, 

impeding desiccation, and acting as an adhesive for microbes. EPS are layers of carbohydrates 

external of the cell wall. They are not water soluble.47 The production of EPS is a widespread 

characteristic of gram-negative bacteria.48  

EPS production is often correlated with virulence.49 EPS capsules protect pathogens 

against recognition by plant defenses, bind water to keep bacteria moist, and retain nutrients and 

ions released from the plant. The capsules are favorable for bacterial multiplication, aid in the 

spread of bacteria, but can act as virulent factors.48 

While EPS production is harmful from a pathogenic strain like P. stewartii, EPS in a non-

pathogenic and even PGPR strain can protect plant roots from various stresses.50 EPS can 

enhance water retention in the microbial environment as well as regulate the diffusion of carbon 

sources, like glucose. Studies on the EPS-producing bacterium, Panotea agglomerans NAS206, 

showed a positive effect on plant growth by affecting rhizosphere soil aggregation and 

Figure 1.6. Physiological functions and structure of c-di-GMP. c-di-GMP is controlled by 
diguanylate cyclases that carry GGDEF (red) domains and specific phosphodiesterases 
that carry EAL or HD-GYP  domains (blue). c-di-GMP can reduce motility by 
downregulating flagellar expression or interfering with flagellar motor function. High c-
di-GMP levels stimulate biofilm-associate functions, like the formation of fimbriae and 
other adhesins and various matrix EPS.7 
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macroporosity.51 Mutants affected in EPS biosynthesis were hindered in their capacity to initiate 

wheat root colonization at the root hair zones compared to the wild-type.52 Efficient EPS 

production could potentially contribute to a more competitive strain and provide greater benefits 

to plants.  

A study by Bernhard et al. compared the gene cluster for EPS synthesis in P. stewartii 

and P. amylovora.48 They determined that the P. amylovora gene cluster, ams, is 7 kb and 

equivalent to P. stewartii’s cps gene cluster.48 In a later study, they measured the glucose-

galactose ratios of the capsules and determine their structures. They determined that they have 

similar structures with glucose, galactose, and glucornic acid as the main components. The 

operons had similar organizations and homology. There were slight differences in structure, 

which indicates that ams and cps gene clusters adapted to different host plants.48, 53,54  

 

RcsA: Regulator of Capsule Production 
 RcsA is a DNA binding protein related to response regulators RcsB, C, and D.  

However, RcsA is not regulated by phosphorylation. RcsA binds with RcsB to activate 

transcription of genes (Figure 1.7). These proteins are likely involved in capsular polysaccharide 

production. RcsA has also been shown to repress genes for flagella synthesis. RcsA can be 

degraded by the Lon protease and negatively regulated by a heat-stable nucleoid-structuring 

protein (HNS).8  

RcsAB transcriptionally activates EPS biosynthesis in P. stewartii.48 EsaR, a LuxR 

homolog, represses transcription of rcsA by binding in the promoter region. Otherwise, RcsA 

binds with RcsB to form a heterodimer complex that activates the expression of rcsA. RcsAB 

also activates the cps gene cluster.55, 56 RcsA stabilizes RcsB-DNA complexes.57 Wehland et al. 

identified the RcsAB box as TaAGaatatTCctA.58 

 Overall, cell interaction with surfaces activates the Rcs regulon, which plays a role in 

development of biofilms on surfaces.8 RcsA, B, C, D, and F are all predicted to be in Pantoea sp. 

YR343. 
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Regulation of RcsA in Pantoea stewartii 

Some of the first members of the genus Pantoea were recognized as plant pathogens. 

Since then, Pantoea strains have been constantly isolated from aquatic and terrestrial 

environments. In Pantoea stewartii, quorum sensing affects adhesion, motility, dispersion, and 

EPS production. As a result, quorum sensing plays a major role in the development of Stewart’s 

wilt disease in corn.55 
Ramchandran et al., 2014, have analyzed LrhA and RcsA in P. stewartii in a quorum 

sensing context. A density-dependent quorum-sensing (QS) system temporally controls the 

production of the EPS stewartan in P. stewartii and regulates RcsA and LrhA. The QS system is 

regulated by a transcription factor, EsaR, which belongs to the LuxR family. P. stewartii contains 

two LuxR homologues: EsaR and SdiA. The LuxI homolog, EsaI, synthesizes the cognate acylated 

homoserine lactone (AHL). EsaR recognizes the AHL signal, N-3-oxo-hexanolyl-homoserine 

lactone, which enables EsaR to sense changes in cell density. EsaR binds to specific 20-bp 

regulatory sequences in promoter regions called esa boxes when AHL is at a low density. Once it 

binds to an esa box, it can repress or activate transcription of downstream genes. At high cell 

Figure 1.7. Signal transduction pathway for RcsA, B, C, and D genes. Phosphate 
transfer from RcsC to RcsB is shown. HNS negatively regulates rcsA transcription.8 
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density, AHL binds to EsaR, which disables it from binding to DNA. This leads to derepression 

or deactivation of gene expression.59, 60 This gene expression could affect a variety of physiological 

outputs as a result of QS, like biofilm formation, virulence factor expression or exoenzyme 

production.  

Based on previous and current results, Burke et al. developed an overall QS regulation 

model for Pantoea stewartii. Previous studies showed that EsaR is capable of self-inactivation. 

EsaR regulates both rcsA and lrhA. It represses rcsA, while it activates lrhA. RcsA regulates genes 

involved in capsule production. In Burke et al.’s study, they determine that LrhA also represses 

RcsA as well as genes involved in surface motility and adhesion (Figure 1.8).3 

 

Function of RcsA in Pantoea stewartii 

A paper describing the roles of RcsA and LrhA in P. stewartii was recently published, and 

the phenotypes described are consistent with the phenotypes observed for our mutants (described 

below). In P. stewartii, quorum sensing affects adhesion, motility, dispersion, and EPS production. 

As a result, quorum sensing plays a major role in the development of Stewart’s wilt disease in 

corn. Burke et al. studied the functions and virulence effects of transcription factors, LrhA and 

RcsA, in P. stewartii. Their transcriptome analysis showed that RcsA primarily regulated genes 

encoding proteins involved in capsule production and LrhA regulated genes encoding hypothetical 

proteins. They validated their transcriptome analysis with qRT-PCR, which also confirmed a three-

fold repression of rcsA by LrhA. They performed phenotypic analyses on the lrhA and rcsA 

knockouts. The main results of these analyses showed that the rcsA-knockout had a significant 

reduction in capsule production as compared to the wild-type. The lrhA-knockout showed a 

significant reduction in surface area covered in a swarming motility assay as compared to the wild-

type (Figure 1.9).3  

While Pantoea sp. YR343 and P. stewartii are from the Pantoea genus and code for the 

transcription factors, LrhA and RcsA, it is unknown whether LrhA and RcsA regulate the same 

genes. Notably, Pantoea stewartii is pathogenic and causes Stewart’s wilt disease, whereas 

Pantoea sp. YR343 appears to be non-pathogenic on all tested plant hosts (poplar, Arabidopsis, 

wheat). In addition, Pantoea sp. YR343 only has one LuxR homolog, which is unlike P. stewartii 

with two. The Pantoea sp. YR343 LuxR homolog is more similar to Pantoea stewartii’s SdiA 
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LuxR homolog (66% amino acid identity) than EsaR (26% amino acid identity). Therefore, it is 

likely that the transcription factors are regulated differently in Pantoea sp. YR343 than P. 

stewartii. While P. stewartii is different from Pantoea sp. YR343, the P. stewartii research helps 

in forming expectations for this study. We formed a phylogenetic tree for Pantoea sp. YR343 with 

other closely related species in Figure 1.10 below. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.8. Regulation of lrhA and rcsA in Pantoea stewartii. At high cell 
densities, EsaR forms a complex with AHL and becomes inactivated. It cannot 
bind to the DNA or coordinate the expression of genes. At low cell densities, 
EsaR is free to bind to its recognition site and coordinate the expression of 
genes, like lrhA and rcsA.    
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Figure 1.9. RcsA and Lrha in Pantoea stewartii. A. 
Capsule assay showing reduced capsule in RcsA knock-
out mutant (center) compared to WT (left). Recovered 
capsule in complementation (right). B. Swarming assay 
showing reduced swarming in LrhA knock-out (center) 
compared to WT (left) and complementation (right). C. 
Regulatory model of RcsA and LrhA.3 
 
Figure 3.12. WT and rcsA:Tn5 on Congo Red plates 
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Figure 1.10. Phylogenetic tree of Pantoea YR343 with other Enterobacteriaceae species.1 
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CHAPTER TWO: The Function and Regulon of Transcription 
Factor RcsA in Pantoea sp. YR343 

Selecting RcsA 

We isolated the rcsA transposon mutants from a transposon library previously created in 

our lab during a screen for mutants that failed to respond to high levels of Bis-(3ÅL-5ÅL)-cyclic 

dimeric guanosine monophosphate (c-di-GMP), which is a soluble molecule that acts as a second 

messenger in bacteria. High levels of c-di-GMP are generally associated with increased EPS 

production, biofilm formation, and reduced motility. For this screen, the assumption was made 

that root colonization was equivalent to biofilm formation because biofilm formation is key to 

colonization and that mutants defective in their response to high c-di-GMP levels may have defects 

in root colonization. The screen was conducted by overexpressing a diguanylate cyclase, which is 

an enzyme that produces c-di-GMP, in a transposon library background. WT cells overexpressing 

this diguanylate cyclase produce a characteristic wrinkly colony that binds Congo Red (Figure 

2.1). Transposon mutants that displayed different colony phenotypes on Congo Red plates were 

selected as candidate mutants defective in their response to high levels of c-di-GMP and potentially 

defective in biofilm formation/root colonization.  

The insertion sites of three of the transposons mapped to a gene with predicted homology 

to rcsA (PMI29_02189, 92% amino acid identity to P. stewartii’s rcsA). The predicted sequence 

of RcsA includes a C-terminal DNA binding domain with a helix-turn-helix motif. The transposon 

insertion sites mapped to base pairs 17 (mutant DD5), 18 (mutant G4), and -3 (mutant AA4) of the 

predicted rcsA sequence. Based on the transposon insertions near the 5’ end of the gene, it is likely 

that these mutants represent loss of RcsA function (Figure 2.2). Due to the observed phenotypic 

similarities between the three transposon mutants, transposon mutant G4 was primarily used for 

detailed characterization studies. 
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Figure 2.1. WT and rcsA:Tn5 
on Congo Red plates (top) v. 
overexpressing c-di-GMP with 
induction of IPTG on Congo 
Red plates (bottom).   
 

Normal  
c-di-GMP 
 
High  
c-di-GMP 
levels 
of IPTG  

WT 
 

rcsA:Tn5  
 

Transposon 
 

Figure 2.2. RcsA sequence with known domains created by 
BLASTp. Transposon enters at base pair 18. 
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Methods 
Capsule Production. Wild-type and rcsA:Tn5 strains were grown overnight in Luria’s broth (LB) 

at 28°C with shaking. Fresh LB was used to adjust the cultures to an OD600 of 0.05 and the 

cultures were grown again at 28°C to an OD600 of 0.2. The strains were then cross streaked on 

CPG agar plates (0.1% casamino acids, 1% peptone, 1% glucose (CPG), and 1.5% agar) to 

observe capsule production.3 

Pellicles. Pellicles were grown by adding 5 µL of an overnight culture to 5 mL SOBG61 in 5 mL 

glass tubes at 28oC for 72 hours without shaking. 

Crystal violet biofilm assay. Biofilm assays were conducted using the protocol described by 

O’Toole and Kolter, 1998, with a few modifications.62 An overnight culture was diluted 1:100 

into LB and grown statically in a 96-well plate covered in breathable tape (Breathe-EASIER, 

Diversified Biotech) at 28°C for 72 hours. Adherent cells were stained with 0.1% crystal violet. 

The crystal violet stains on the biofilms were dissolved using a modified solution containing 

10% SDS dissolved in 80% ethanol. Finally, absorbance was measured at 550 nm using a 

BioTek Synergy 2 microplate reader and normalized according to OD600.1 

Wheat root colonization. Wheat seedlings were surface-sterilized by washing in a bleach solution 

containing 0.01% Tween-20, rinsed, washed in 70% ethanol, and rinsed again as described in 

Bible et al., 2016.1 Our lab has developed a protocol to inoculate wheat seedlings with Pantoea 

sp. YR343 based on Amellal et al.’s methods (1998).51 Briefly, we added 15 mL of total culture 

(OD600 of 0.01) to 100 mL of Fahreus media and placed two seedlings in each container. The 

seedlings grew for one week with ample sunlight. After this period, they were imaged on the 

confocal laser microscope for qualitative assessment and harvested by rinsing excess media, 

grinding with glass beads, and plating on new plates. The new plates were quantified for cell 

count. There were four to five plant replicates for each sample collected in two to three separate 

rounds of colonization. 

Monosaccharide analysis. To wash the cells before isolating the EPS, we grew cells overnight at 

28oC with shaking in 5 mL of LB. We then inoculated 25 µL overnight culture to 250 mL of 

SOBG and grew at 28oC for 72 hours. We collected the cells via centrifugation and washed in 

PBS before incubating with shaking at 30 oC for 1.5 hours and repeating. We collected the cells 

again and treated them with proteinase K to a final concentration of 200 ug/mL. To isolate the 

EPS after incubating ON at 37 oC, we extracted the supernatant using phenol-chloroform and 
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precipated the sugars with 95% ethanol in the freezer. We washed the pellets with 70% ethanol, 

resuspended them in water, and dialyzed them with a Slide-a-lyzer dialysis cassette overnight. 

We redialyzed the samples for one hour before collection. The glycosyl composition analysis 

was performed by the Complex Carbohydrate Research Center (University of Georgia). 

RNA extraction, sequencing, and analysis. We extracted RNA from 3 WT and 3 mutant ON 

cultures in R2A media and 3 WT and 3 mutant pellicles grown in SOBG with a Qiagen RNeasy 

RNA extraction kit. The samples were sequenced by GENEWIZ Next Generation Sequencing 

Services. We performed a transcriptome analysis using the KBase workflow to create an RNA 

sample set, align and assemble the reads, and identify the predicted genes and their functions that 

are differentially expressed among the samples. 

Promoter constructs. We developed the promoter constructs using a pPROBE:GFP vector. We 

PCR amplified the promoter region for each gene, digested the vector and PCR fragment, and 

ligated them together. We then transformed them into E. coli TOP10 cells and electroporated the 

extracted plasmid into Pantoea sp. YR343.  

Overexpression constructs. We overexpressed rcsA as described in Khan et al., 2008. Briefly, we 

cloned the strains into the replicating, IPTG-inducible vector pSRK. Expression is induced by 

the addition of 2 mM IPTG.63 

 

Results 
rcsA:Tn5 has an EPS Production Defect 

 Since the rcsA:Tn5 mutants were isolated in a screen to identify mutants that failed to 

respond to high c-di-GMP levels, we wanted to examine their phenotypes under normal growth 

conditions. To do this, we cured the rcsA:Tn5 mutants of the plasmid encoding a constitutively 

expressed diguanylate cyclase using repeated rounds of growth and plating with antibiotic 

selection. The cured strains were then compared to control strains to examine the effect of RcsA 

loss of function on biofilm formation and EPS production. 

 Congo Red plates and capsule production assays were used to examine phenotypic 

differences in EPS production and/or composition. These results show that the cured rcsA:Tn5 

mutant shows stronger Congo Red binding than the WT strain (Figure 2.3). There were also 

differences between rcsA:Tn5 and the WT with regard to capsule production. Indeed, the 
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rcsA:Tn5 mutant failed to produce a detectable capsule in this assay. To examine the effect of 

RcsA overproduction, we constructed a plasmid in which RcsA is expressed from an IPTG-

inducible promoter (pSRK-rcsA).63 Overexpression of RcsA in a WT background did not result 

in any significant changes to Congo Red binding or capsule production, but rather resembled the 

WT strain (Figure 2.3). Finally, we examined whether high levels of c-di-GMP could overcome 

the capsule defect in rcsA:Tn5. The results of this experiment indicate that the rcsA:Tn5 mutant 

still failed to produce capsule even under high c-di-GMP conditions that promote capsule 

production in WT (Figure 2.3). 

 We next wanted to determine whether the EPS composition was different between the 

rcsA:Tn5 and WT strains. To test this, we isolated the EPS from both strains and sent them to the 

Complex Carbohydrate Research Center for monosaccharide analysis. The results of this analysis 

showed that the EPS from WT cells is composed primarily of galactose, glucose, glucuronic 

acid, and mannose (Figure 2.4). The EPS from the rcsA:Tn5 mutant, on the other hand, showed 

reductions in the levels of galactose, glucose, and glucuronic acid (Figure 2.4). This result is 

particularly interesting since the repeat unit of P. stewartii stewartan EPS, the production of 

which is regulated by RcsA, is comprised of galactose, glucose, and glucuronic acid.64 These 

data suggest the possibility that RcsA regulates the production of a similar EPS in Pantoea sp. 

YR343. 

 To test this possibility, we examined Pantoea sp. YR343 for the presence of genes 

encoding proteins homologous to those involved in stewartan production in P. stewartii. 

Stewartan is synthesized by a suite of enzymes that are encoded by genes organized within an 

operon.48, 65 Indeed, we found a gene cluster in Pantoea sp. YR343 (PMI39_01835-1848) that is 

predicted to encode proteins homologous to those involved in stewartan production (Figure 2.5). 

One of the genes in this cluster (PMI39_1848) encodes a protein that is homologous to P. 

stewartii’s undecaprenyl-phosphate UDP-galactose phosphotransferase (wceG2). Interestingly, 

we had also identified a transposon mutant that inserts into the gene PMI39_01848 (abbreviated 

UDP:Tn5) in the same genetic screen that produced the rscA:Tn5 mutants. Thus, we also 

examined the monosaccharide composition of UDP:Tn5 and found a similar reduction in 

glucuronic acid (GlcA), galactose (Gal), and glucose (Glc) compared than the WT (Figure 2.4). 

This suggests the possibility that the EPS defect found in rscA:Tn5 might be due, at least in part, 

to mis-regulation of the EPS gene cluster PMI39_01835-PMI39_01848.  
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Figure 2.3. A. Congo Red phenotypes of spotted strains on LB with Congo Red. 
dye B. Capsule Analysis of cross-streaked strains on capsule media. Assays show 
EPS effects. 
 
Figure 4.4. LuxR likely positively regulates LrhA and negatively regulates RcsA 
in Pantoea sp. YR343. In turn, LrhA suppresses genes with motility functions 
and RcsA activates genes that produce EPS, like UDP. In addition, both LrhA 
and RcsA contribute to the development of symplasmata.Figure 3.5. RcsA 
promotes EPS production. A. Congo Red. B. Capsule. C. Monosaccharide 
Analysis. 
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EPS Composition of rcsA:Tn5, UDP:Tn5, and WT 
Pantoea sp. YR343

UDP:Tn5
rcsA:Tn5
WT

Figure 2.4. Monosaccharide analysis of rcsA:Tn5 and UDP:Tn5 compared to WT. 
Error bars show standard deviation. There are two replicates per strain. The bars 
represent the mean of the replicates. 
 
Figure 4.6. LuxR likely positively regulates LrhA and negatively regulates RcsA in 
Pantoea sp. YR343. In turn, LrhA suppresses genes with motility functions and RcsA 
activates genes that produce EPS, like UDP. In addition, both LrhA and RcsA 
contribute to the development of symplasmata.Figure 3.7. RcsA promotes EPS 
production. A. Congo Red. B. Capsule. C. Monosaccharide Analysis. 

Figure 2.5. Gene neighborhood of UDP in Pantoea sp. YR343, Erwinia amylovora, and 
Pantoea stewartii. 
 
Figure 4.8. LuxR likely positively regulates LrhA and negatively regulates RcsA in Pantoea 
sp. YR343. In turn, LrhA suppresses genes with motility functions and RcsA activates genes 
that produce EPS, like UDP. In addition, both LrhA and RcsA contribute to the development of 
symplasmata.Figure 3.9. RcsA promotes EPS production. A. Congo Red. B. Capsule. C. 
Monosaccharide Analysis. 
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rcsA:TN5 has a Biofilm Formation Defect 

We next wanted to determine the consequences of differences in EPS composition by 

examining biofilm and pellicle formation. Unlike the WT, rcsA:Tn5 forms little to no pellicle 

(Figure 2.6). This pellicle defect could be partially rescued with the induction of c-di-GMP in the 

rcsA:Tn5 background but the pellicle was less structured, suggesting that the EPS composition 

and/or abundance still differed from WT (Figure 2.6).  As before, overexpression of RscA 

resulted in pellicles that closely resembled those of WT.  

We also conducted a crystal violet biofilm assay to analyze biofilm formation for all three 

of the rcsA:Tn5 transposon mutants (AA4, DD5, and G4). In this assay, all of the rcsA:Tn5 

mutants showed a significant reduction in biofilm formation compared to the WT (Figure 2.7). 

These results indicate a role for RcsA’s promotion of EPS production in the development of 

biofilms in Pantoea sp. YR343. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Pellicle formation of WT and mutants in Pantoea sp. 
YR343. 
 
Figure 4.10. LuxR likely positively regulates LrhA and negatively 
regulates RcsA in Pantoea sp. YR343. In turn, LrhA suppresses 
genes with motility functions and RcsA activates genes that produce 
EPS, like UDP. In addition, both LrhA and RcsA contribute to the 
development of symplasmata.Figure 3.11. RcsA promotes EPS 
production. A. Congo Red. B. Capsule. C. Monosaccharide 
Analysis. 
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rcsA:TN5 has a Colonization Defect 

We then wanted to examine if differences in EPS production and biofilm formation found 

in laboratory assays translated to differences in plant colonization between rcsA:Tn5 and the WT 

strain. In order to monitor colonization of our strains in an actual plant context, we inoculated 

media surrounding wheat roots with either rcsA:Tn5 or WT (Figure 2.8), as well as with co-

cultures containing both rcsA:Tn5 and WT cells (Figure 2.9). After harvesting, colonization was 

measured using traditional plating assays (colony counts). Because the transposon carries  

kanamycin resistance, we differentiated between WT and rcsA:Tn5 by plating on plates 

containing kanamycin. The results of these studies show that rcsA:Tn5 had significantly less 

colonization than the wild-type in the individual study (Figure 2.8). In the co-culture, however, 

the levels of colonization of both WT and rcsA:Tn5 were very similar (Figure 2.9). This suggests 

the possibility that rcsA:Tn5 may colonize more efficiently in the presence of WT due to the 

formation of mixed biofilms. To test this possiblity, we imaged the localization of WT and 

rscA:Tn5 cells during co-culture with a plant host.  
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Figure 2.7. Crystal violet biofilm assay shows decreased biofilm formation for 
rcsA:Tn5 mutants compared to WT and pSRK:rcsA. Error bars show standard 
deviation and p-values calculated by T-tests are less than 0.05 where indicated. 
 
Figure 4.12. LuxR likely positively regulates LrhA and negatively regulates RcsA in 
Pantoea sp. YR343. In turn, LrhA suppresses genes with motility functions and 
RcsA activates genes that produce EPS, like UDP. In addition, both LrhA and RcsA 
contribute to the development of symplasmata.Figure 3.13. RcsA promotes EPS 
production. A. Congo Red. B. Capsule. C. Monosaccharide Analysis. 
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Figure 2.8. Colonization on individual wheat roots. T-test calculated p-value is below 0.05 and 
error bars show standard deviation. Bars represent the mean of three to four replicates. 
 

Figure 2.9. Colonization of rcsA:Tn5 and WT inoculated on the same wheat roots. Error 
bars show standard deviation. Bars represent the mean of three to four replicates. 
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The Expression of rcsA 

 To examine under which growth conditions rscA is expressed, we constructed a plasmid 

in which GFP expression is controlled by the rcsA promoter (pPROBE:rcsA_promoter). The 

plasmid was transformed into WT Pantoea sp. YR343 and the cells were grown in LB medium. 

The results indicate that rcsA is expressed in an LB culture grown overnight in 28oC based on 

GFP fluorescence (Figure 2.10). It was also expressed during pellicle formation, biofilm 

formation, and plant colonization. 

 

The Regulon of RcsA 

 Previous studies suggest that UDP may be regulated by RcsA.3, 48 To test this, we 

constructed a plasmid in which GFP expression is controlled by the UDP promoter 

(pPROBE:UDP_promoter) and transformed this construct into both WT and rscA:Tn5 cells.  

Following growth in LB medium overnight, we found that the UDP promoter was active in 

wildtype cells, based on GFP fluorescence (Figure 2.11).  Under these same conditions, however, 

we failed to detect GFP fluorescence in the rcsA:Tn5 background (Figure 2.11).  These data 

suggest that UDP expression requires RcsA and is consistent with a role for RcsA in the 

regulation of UDP. In addition, the RNASeq analysis showed that UDP is downregulated in 

rcsA:TN5 compared to the WT, which indicates that RcsA plays a positive role in the expression 

of UDP. 

 To determine the full complement of genes regulated by RcsA, we next performed a 

transcriptome analysis. For this analysis, we extracted RNA from WT and rcsA:Tn5 cells grown 

in R2A media or grown under pellicle-forming conditions. To analyze the sequence data, we 

used the Tuxedo suite through KBase to create an RNASeq sample set, align and assemble the 

reads, and identify genes that are differentially expressed between rcsA:Tn5 and the WT as 

pellicles and in R2A media as well as differentially expressed genes between the different 

growth conditions. Tables 2.1 and 2.2 show the differentially regulated genes between rcsA:Tn5 

and WT in R2A media. There were 746 differentially expressed genes between rcsA:Tn5 and 

WT grown as pellicles. These are displayed as heat maps (Figures 2.12 and 2.13). The most 

highly represented genes have functions relating to carbohydrate and amino acid transport and 

metabolism and transcription. 
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Figure 2.10. A. pPROBE:rcsA_promoter expressing GFP in an ON culture of LB. B. Biofilm on 
a glass slide. C. Pellicle.  
 
Figure 4.14. LuxR likely positively regulates LrhA and negatively regulates RcsA in Pantoea 
sp. YR343. In turn, LrhA suppresses genes with motility functions and RcsA activates genes 
that produce EPS, like UDP. In addition, both LrhA and RcsA contribute to the development of 
symplasmata.Figure 3.15. RcsA promotes EPS production. A. Congo Red. B. Capsule. C. 
Monosaccharide Analysis. 

A. B. C. 

Figure 2.11. A. pPROBE:UDP_promoter in WT background (left) and rcsA:Tn5 
background (right) in an ON culture of LB. B. pPROBE:UDP_promoter in WT 
background (left) and rcsA:Tn5 background (right) in a biofilm on a glass slide. 
C. pPROBE:UDP_promoter in WT background (left) and rcsA:Tn5 background 
(right) in a pellicle  

A. 

B. 

C. 
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Locus Tag Function 
log2_fold_ 
change q_value 

PMI39_00663 
Transcriptional regulator, contains XRE-
family HTH domain -2.107162657 1.48E-71 

PMI39_01663 
sulfite reductase (NADPH) hemoprotein 
beta-component -4.261941474 1.39E-173 

PMI39_02423 Putative intracellular protease/amidase -3.191299845 2.20E-22 

PMI39_02424 
Pimeloyl-ACP methyl ester 
carboxylesterase -2.617944738 1.54E-25 

PMI39_02686 
cationic peptide transport system 
permease protein -3.837247046 2.92E-93 

PMI39_03158 

Zn-binding Pro-Ala-Ala-Arg (PAAR) 
domain-containing protein, incolved in 
TypeVI secretion -5.127841044 1.99E-05 

PMI39_03410 lycopene beta-cyclase -3.256130494 0.01144029 

PMI39_04333 
peptide/nickel transport system permease 
protein -4.029654168 0.00257769 

Table 2.1. Genes downregulated in rcsA:Tn5 compared to WT Pantoea sp. YR343. grown 
overnight in R2A media. We generated the expression matrix using DESeq2 in KBase and 
filtered with a log2_fold_change cutoff of 2 and q-value (corrected p-value) of 0.05. 
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Locus Tag Function 
log2_fold_ 
change q_value 

PMI39_00792 aspartate aminotransferase family protein 2.048881451 3.47E-05 

PMI39_01239 tellurium resistance protein TerA 11.20510372 0 

PMI39_01330 nitrogen regulatory protein P-II 2 2.402998495 7.14E-36 

PMI39_01659 siroheme synthase 2.114937676 9.48E-28 

PMI39_02095 hypothetical protein 3.574202519 1.52E-135 

PMI39_02096 arginase 2.245044922 1.51E-41 

PMI39_02690 hypothetical protein 2.169543624 3.77E-45 

PMI39_03091 succinate--CoA ligase subunit beta 9.880784011 0 

PMI39_03297 thiosulfate transporter subunit 2.396874835 2.33E-44 

PMI39_03960 
glycine/betaine ABC transporter substrate-
binding protein 2.128723495 1.76E-08 

PMI39_04035 molybdate ABC transporter permease 2.918890676 0.01361531 

PMI39_04198 CysB family transcriptional regulator 2.654696814 5.68E-64 

PMI39_04350 MFS transporter 2.182657969 0.00011873 

PMI39_04401 sulfate transporter subunit 2.412998941 3.73E-32 

PMI39_04468 glutamine synthetase 2.105991926 1.85E-11 

PMI39_05000 non-ribosomal peptide synthetase 2.428067482 2.15E-13 

PMI39_05003 ferrichrysobactin receptor 2.083713584 0.00038907 

Table 2.2. Genes upregulated in rcsA:Tn5 compared to WT Pantoea sp. YR343. grown 
overnight in R2A media. We generated the expression matrix using DESeq2 in KBase and 
filtered with a log2_fold_change cutoff of 2 and q-value (corrected p-value) of 0.05. 
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Figure 2.12. Heatmap of gene functions upregulated in the rcsA:Tn5 mutant compared to WT 
Pantoea sp. YR343 grown as pellicles. Darker colors correlate with increased number of genes 
with predicted COGs in each category. Category key is in Figure 2.14.  
 

Figure 2.13. Heatmap of gene functions downregulated in the rcsA:Tn5 mutant compared to 
WT Pantoea sp. YR343 grown as pellicles. Darker colors correlate with increased number of 
genes with predicted COGs in each category. Category key is in Figure 2.14.  
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Figure 2.14. Category key for heatmap of predicted COG functions in Figures 2.12-13. 
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Discussion and Future Directions 
 The absence of a capsule for rcsA:Tn5 indicates a defect in EPS production. Moreover, 

we determined that the EPS from rcsA:Tn5 differs from WT in that it is reduced in galactose, 

glucose, and glucuronic acid based on monosaccharide analyses.  Interestingly, these are key 

residues in the structure of stewartan and amylovoran64, and suggest that Pantoea sp. YR343 

may produce a structurally similar EPS. Functionally, these changes in EPS abundance and 

composition in rcsA:Tn5 resulted in defects in biofilm and pellicle formation, as well as in plant 

colonization. That the colonization defect of rcsA:Tn5 could be rescued by co-culture with WT 

cells suggests that the WT cells are providing some molecule or function that influences 

rcsA:Tn5 colonization efficiency.  Based on our results, it is possible that the production of EPS 

by WT cells may promote the formation of mixed biofilms on plant roots.    

 In the same genetic screen that identified rcsA:Tn5, we also isolated a transposon mutant 

for PMI39_01848 or UDP. It is notable that the monosaccharide composition between rcsA:Tn5 

and UDP:Tn5 are similar. This could indicate a regulatory connection between the two, which is 

further emphasized by the promoter studies. That the UDP promoter is not active in the rcsA:Tn5 

background suggests that RcsA regulates UDP gene expression, although whether this regulation 

is direct or indirect is currently unknown. This result aligns with the studies by Burke et al., 

2015, in which undecaprenyl-phosphate UDP-galactose phosphotransferase (wceG2), which is a 

homolog of PMI39_01848, is activated by RcsA in P. stewartii.  WceG2 and UDP could be 

regulated similarly in both strains.3 

 We determined the full regulon of RcsA to identify other possible contributors to EPS 

production and colonization in Pantoea sp. YR343. We found that UDP  is significantly 

downregulated in the rcsA:Tn5 mutant compared to the WT when grown as a pellicle. Other 

genes in the cluster in Pantoea sp. YR343 (PMI39_01835-1848) that is predicted to encode 

proteins homologous to those involved in stewartan production were also downregulated, 

including PMI39_01847, PMI39_01846, and PMI39_01838. This suggests that RcsA may 

regulate EPS production primarily by activating the cluster containing UDP. The promoters for  

rcsA and UDP are both expressed during growth in LB medium, colonization on plant chambers, 

and biofilm and pellicle formation.  

 The different rcsA:Tn5 Congo Red phenotypes with and without the presence of c-di-

GMP and the partial rescue of the rcsA:Tn5 pellicle defect with high c-di-GMP indicate a 
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possible regulatory connection between RcsA and c-di-GMP.7 A gene encoding a diguanylate 

cyclase (PMI49_00995), which drives the synthesis of c-di-GMP, is downregulated in rcsA:Tn5 

compared to the WT when grown as a pellicle. In addition, a gene encoding a phosphodiesterase 

(PMI39_01056), which synthesizes the degradation of c-di-GMP, is upregulated in rcsA:Tn5 

compared to the WT when grown as a pellicle. This indicates that RcsA plays a positive role in 

the production of c-di-GMP. 

 In Pantoea stewartii, RcsA is repressed at low cell densities through a quorum sensing 

regulatory mechanism involving a LuxR homolog, EsaR.59 Pantoea sp. YR343, however, does 

not have a homolog for P. stewartii’s EsaR, suggesting that rcsA may be regulated differently in 

Pantoea sp. YR343. The RNASeq data shows that RcsA plays a role in the depression of N-acyl-

L-homoserine lactone (AHL) synthetase, which catalyzes the production of AHL, during pellicle 

formation. This indicates that RcsA contributes to the downregulation of quorum sensing. It is 

possible that LuxR regulates quorum sensing in Pantoea sp. YR343 partially by regulating 

RcsA. Future studies are needed to determine the definite involvement of LuxR in the regulation 

of rcsA in Pantoea sp. YR343. 
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CHAPTER THREE: OTHER PROJECTS 
 This chapter summarizes additional projects including preliminary data on salicylate 

degradation and other transposon mutants isolated from the c-di-GMP screen in Pantoea sp. 

YR343. We specifically examined the transposon mutants for genes encoding the LuxR and 

LrhA transcription factors because we hypothesized that the LuxR homolog regulates LrhA as 

well as RcsA in Pantoea sp. YR343 (Figure 3.1). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. LuxR likely positively regulates LrhA and negatively regulates RcsA in 
Pantoea sp. YR343. In turn, LrhA suppresses genes with motility functions and RcsA 
activates genes that produce EPS, like UDP. In addition, both LrhA and RcsA 
contribute to the development of symplasmata. 
 
Table 4.1. BLAST ID and number of LuxR homologs in Pantoea strains compared to 
Pantoea sp. YR343Figure 4.2. LuxR likely positively regulates LrhA and negatively 
regulates RcsA in Pantoea sp. YR343. In turn, LrhA suppresses genes with motility 
functions and RcsA activates genes that produce EPS, like UDP. In addition, both 
LrhA and RcsA contribute to the development of symplasmata. 
 
Table 4.2. BLAST ID and number of LuxR homologs in Pantoea strains compared to 
Pantoea sp. YR343Figure 4.3. LuxR likely positively regulates LrhA and negatively 
regulates RcsA in Pantoea sp. YR343. In turn, LrhA suppresses genes with motility 
functions and RcsA activates genes that produce EPS, like UDP. In addition, both 
LrhA and RcsA contribute to the development of symplasmata. 
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LuxR: A Master Regulator 

We isolated luxR:Tn5 in our screen for genes involved in c-di-GMP. As the only LuxR 

homolog in Pantoea sp. YR343, we hypothesize that LuxR regulates rcsA and lrhA in Pantoea sp. 

YR343. We compared our LuxR homolog to other homologs in Pantoea strains (Table 3.1). We 

did not get a close match to Pantoea stewartii’s EsaR, which is unexpected because EsaR regulates 

RcsA in Pantoea stewartii. It is possible that our homolog functions differently. We only have one 

homolog, while Pantoea stewartii contains two. There is a high percent ID between Pantoea sp. 

YR343’s LuxR and the homologs in GM01, YR525, and YR512. There are two homologs in 

OV426, which could contribute to its slightly lower percent ID. We also found a LuxI homolog in 

Pantoea sp. YR343 that is adjacent to LuxR and determined its amino acid percent ID to other 

closely related species (Table 3.2). 

The luxR:Tn5 mutant has even co-colonization with the WT, but decreased colonization 

when colonized by itself on the wheat roots (Chapter 2: Methods, Figures 3.3-3.4). 

 

 

 

 
Pantoea Strain LuxR nucleotide ID LuxR homologs locus 

tags 
Stewartii 66 % (SdiA) 

26 % (EsaR) 
CKS_4147 
CKS_2903 

GM01 95 % PMI17_01419 
YR525 100 % Ga0115490_101468 
YR512 100 % Ga0115489_101468 
OV426 71 % Ga0115488_2481 

Ga0115488_1611 
 
 
 

 
 
 
 

Table 3.1. BLAST ID and number of LuxR homologs in Pantoea strains compared to 
Pantoea sp. YR343 (PMI39_00509) 
 
Figure 4.4. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated with WT Pantoea 
sp. YR343 on wheat roots.Table 4.3. BLAST ID and number of LuxR homologs in Pantoea 
strains compared to Pantoea sp. YR343 
 
Figure 4.5. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated with WT Pantoea 
sp. YR343 on wheat roots.Table 4.4. BLAST ID and number of LuxR homologs in Pantoea 
strains compared to Pantoea sp. YR343 
 
Figure 4.6. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated with WT Pantoea 
sp. YR343 on wheat roots.Table 4.5. BLAST ID and number of LuxR homologs in Pantoea 
strains compared to Pantoea sp. YR3431 

Figure 3.2. Gene neighborhood of LuxR adjacent to LuxI (PMI39_00508) in Pantoea sp. 
YR343. 
 
Figure 4.7. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated on individual 
wheat roots.Figure 4.8. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated 
with WT Pantoea sp. YR343 on wheat roots. 
 
Figure 4.9. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated on individual 
wheat roots.Figure 4.10. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated 
with WT Pantoea sp. YR343 on wheat roots. 
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Pantoea Strain LuxI nucleotide 

percent ID 
LuxI homolog locus tag 

Stewartii 86.63% NZ_AHIE01000008 
GM01 99.01% PMI17_GM01_CGATGT_L007_R1_006_ 

paired_trimmed_paired_contig_61.61 
 

YR525 100% Ga0115490_101 
YR512 100% Ga0115489_101 
OV426 87.68% Ga0115488_101 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated with 
WT Pantoea sp. YR343 on wheat roots. Error bars determined by standard error. 
Bars are the mean of three to four replicates per strain. *p-value<0.5 determined 
by T-test. 
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Table 3.2. BLAST ID and number of LuxI homologs in Pantoea strains compared to Pantoea 
sp. YR343 (PMI39_00509) 
 
Figure 4.13. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated with WT Pantoea 
sp. YR343 on wheat roots.Table 4.6. BLAST ID and number of LuxR homologs in Pantoea 
strains compared to Pantoea sp. YR343 
 
Figure 4.14. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated with WT Pantoea 
sp. YR343 on wheat roots.Table 4.7. BLAST ID and number of LuxR homologs in Pantoea 
strains compared to Pantoea sp. YR343 
 
Figure 4.15. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated with WT Pantoea 
sp. YR343 on wheat roots.Table 4.8. BLAST ID and number of LuxR homologs in Pantoea 
strains compared to Pantoea sp. YR3431 
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LrhA: A Transcription Factor 

LrhA most likely affects swarming in Pantoea sp. YR343. Swarming motility is an 

infamous characteristic of the plant pathogen, P. stewartii. P. stewartii shows enhanced 

swarming motility in glucose, while Pantoea sp. YR343 shows enhanced swarming in glycerol. 

This indicates a possible difference in metabolism.1 Hyperflagellated swarm cells undergo 

coordinated population migration across a solid surface. Critical stimuli include cell density, 

surface contact, and physiological signals, such as anaerobicity. Mass translocation is facilitated 

by close cell alignment and production of secreted migration factors. Swarming allows bacteria 

to rapidly colonize nutrient-rich environments, which accelerates biomass production and would 

allow increased colonization in the rhizosphere.66, 67 

We created a BLASTp tree LrhA comparing the IDs from Pantoea sp. YR343 to 

different Pantoea strains (Figure 3.5). This showed close sequence conservation between strains. 

In our swarming assay, overnight cultures of the WT, lrhA:Tn5, and pSRK:lrhA were 

diluted to an OD600 of 0.05 in LB broth and grown to an OD600 of 0.5. 5 µL of this culture was 

Figure 3.4. Colonization of rcsA:Tn5, lrhA:Tn5, and luxR:Tn5 inoculated on individual 
wheat roots. Error bars determined by standard error. Bars are the mean of three to four 
replicates per strain. *p-value<0.5 determined by T-test. 
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spotted onto the agar surface of LB 0.6% agar plates poured the same day. LrhA:Tn5 swarming 

covered an even/slightly more surface area compared to the WT, while the overexpression 

mutant had a decrease in surface area covered compared to the WT (Figure 3.6 A). This is in 

contrast to the swarming phenotype seen by Burke et al. in P. stewartii. The biofilm assay also 

showed a decrease in biofilm formation for lrhA:Tn5 compared to WT (Figure 3.6 B). Swarming 

occurs on the colony level, which is unlike the cellular-level of biofilm formation.68 This could 

indicate LrhA has a broad regulatory influence in Pantoea sp. YR343. There was a drop in 

colonization cell counts of lrhA:Tn5 (1.263x10^7 log10 CFU/gram) compared to WT 

(2.328x10^7 log10 CFU/gram), but it was not significant. These data suggest that LrhA may 

negatively regulate swarming behavior. 

 

 

 

 

 

Figure 3.5. A. BLASTp tree of transcription factor LrhA in Pantoea sp. YR343. B. 
BLASTp top hits for RcsA and LrhA in Pantoea sp. YR343. Yellow arrow indicates the 
location of the Pantoea stewartii LrhA homolog in the BLASTp tree. 
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Symplasmata 

The rcsA:Tn5 and lrhA:Tn5 mutants form no/few evident symplasmata, while WT Pantoea 

sp. YR343 contain hundreds in a single pellicle. Symplasmata contain several to hundreds of 

bacterial cells inside a shared capsule and have been shown to confer tolerance to stress (Figure 

3.7). We developed a method to image and quantify symplasmata in Pantoea sp. YR343 (Figure 

3.8-3.11). This method could be applied to colonization studies and could further characterize the 

role of LrhA and RcsA and their contribution to symplasmata in Pantoea sp. YR343. 

These studies could be expanded by analyzing symplasmata development, its role in 

colonization, formation under stress and in different medias. These could be done with time scales 

and using the rcsA:Tn5 and lrhA:Tn5 mutants. 

LrhA:Tn5 does not form symplasmata in Pantoea eucalypti 299R (Figure 3.12).5 LrhA:Tn5 

in Pantoea sp. YR343 also does not form symplasmata (Figure 3.12). RcsA:Tn5 in Pantoea sp. 

YR343 clusters like symplasmata but does not form a capsule (Figure 3.14). 
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Figure 3.6. LrhA phenotypes. A. Swarming assay of WT, lrhA:Tn5, pSRK:lrhA. B. Crystal 
violet biofilm assay. 
 

A.. 
 

B. 
 



 

39 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7. Pantoea eucalypti 299R form symplasmata. A. Phase-contrast image 
showing pair of symplasmata (top). Counter-staining with Indian ink reveals capsule 
surrounding cells (bottom). B. Cells expressing either GFP or DsRed depicting 
clonal tendency of symplasmata. Bar = 20 um.5 
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Figure 3.8. Pantoea sp. YR343 form symplasmata. A. Pellicles contain abundant symplasmata. 
Brightfield image of symplasmata of various sizes. B. Symplasmata formation on wheat roots 
of Pantoea sp. YR343 with mcherry fluorescence. C. GFP Pantoea sp. YR343 colonies from a 
pellicle. 
 
Figure 4.40. Using ImageJ to calculate number of cells in each symplasmata. ImageJ can 
separate the fluorescent cells and watershed to account for error. The new image (right) can be 
used to count the  individual cells.Figure 4.41. Pantoea sp. YR343 form symplasmata. A. 
Pellicles contain abundant symplasmata. Brightfield image of symplasmata of various sizes. B. 
Symplasmata formation on wheat roots of Pantoea sp. YR343 with mcherry fluorescence. C. 
GFP Pantoea sp. YR343 colonies from a pellicle. 
 
Figure 4.42. Using ImageJ to calculate number of cells in each symplasmata. ImageJ can 
separate the fluorescent cells and watershed to account for error. The new image (right) can be 
used to count the  individual cells.Figure 4.43. Pantoea sp. YR343 form symplasmata. A. 
Pellicles contain abundant symplasmata. Brightfield image of symplasmata of various sizes. B. 
Symplasmata formation on wheat roots of Pantoea sp. YR343 with mcherry fluorescence. C. 
GFP Pantoea sp. YR343 colonies from a pellicle. 
 
Figure 4.44. Using ImageJ to calculate number of cells in each symplasmata. ImageJ can 
separate the fluorescent cells and watershed to account for error. The new image (right) can be 
used to count the  individual cells.Figure 4.45. Pantoea sp. YR343 form symplasmata. A. 
Pellicles contain abundant symplasmata. Brightfield image of symplasmata of various sizes. B. 
Symplasmata formation on wheat roots of Pantoea sp. YR343 with mcherry fluorescence. C. 
GFP Pantoea sp. YR343 colonies from a pellicle. 

Figure 3.9. Using ImageJ to calculate number of cells in each symplasmata. ImageJ can 
separate the fluorescent cells and watershed to account for error. The new image (right) can be 
used to count the  individual cells. 
 
Figure 4.46. Using ImageJ to calculate number of cells in each symplasmata in WT Pantoea sp. 
YR343Figure 4.47. Using ImageJ to calculate number of cells in each symplasmata. ImageJ 
can separate the fluorescent cells and watershed to account for error. The new image (right) can 
be used to count the  individual cells. 
 
Figure 4.48. Using ImageJ to calculate number of cells in each symplasmata in WT Pantoea sp. 
YR343Figure 4.49. Using ImageJ to calculate number of cells in each symplasmata. ImageJ 
can separate the fluorescent cells and watershed to account for error. The new image (right) can 
be used to count the  individual cells. 
 
Figure 4.50. Using ImageJ to calculate number of cells in each symplasmata in WT Pantoea sp. 
YR343Figure 4.51. Using ImageJ to calculate number of cells in each symplasmata. ImageJ 
can separate the fluorescent cells and watershed to account for error. The new image (right) can 
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Figure 3.10. Using ImageJ to calculate number of cells in each symplasmata in 
WT Pantoea sp. YR343. Bars represent total cells. Error bars are standard error. 
 
Figure 4.52. Using ImageJ to calculate number of cells in each symplasmata as a 
percentage of symplasmata vs. total cells in WT Pantoea sp. YR343.Figure 4.53. 
Using ImageJ to calculate number of cells in each symplasmata in WT Pantoea 
sp. YR343 
 
Figure 4.54. Using ImageJ to calculate number of cells in each symplasmata as a 
percentage of symplasmata vs. total cells in WT Pantoea sp. YR343.Figure 4.55. 
Using ImageJ to calculate number of cells in each symplasmata in WT Pantoea 
sp. YR343 
 
Figure 4.56. Using ImageJ to calculate number of cells in each symplasmata as a 
percentage of symplasmata vs. total cells in WT Pantoea sp. YR343.Figure 4.57. 
Using ImageJ to calculate number of cells in each symplasmata in WT Pantoea 
sp. YR343 

Figure 3.11. Using ImageJ to calculate number of cells in each symplasmata as a 
percentage of symplasmata vs. total cells in WT Pantoea sp. YR343. Bars are a 
percentage of cells. Error bars are standard error. 
 
Figure 4.58. WT and transposon mutant symplasmata formation of Pantoea 
eucalypti 299R. LrhA:Tn5 does not form symplasmata.Figure 4.59. Using 
ImageJ to calculate number of cells in each symplasmata as a percentage of 
symplasmata vs. total cells in WT Pantoea sp. YR343. 
 
Figure 4.60. WT and transposon mutant symplasmata formation of Pantoea 
eucalypti 299R. LrhA:Tn5 does not form symplasmata.5Figure 4.61. Using 



 

42 
 

 
  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12. WT and transposon mutant symplasmata 
formation of Pantoea eucalypti 299R. LrhA:Tn5 does not form 
symplasmata.5 
   

Figure 3.14. RcsA:Tn5 clusters 
with no capsule in a pellicle. 
 
Figure 4.70. RcsA:Tn5 clusters 
with no capsule in a pellicle. 
 
Figure 4.71. RcsA:Tn5 clusters 
with no capsule in a pellicle. 
 
Figure 4.72. RcsA:Tn5 clusters 
with no capsule in a pellicle. 

Figure 3.13. LrhA:Tn5 does not 
form symplasmata in a pellicle. 
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The Mysterious BB4 Transposon Mutant: A DNA Helicase 
 One of the transposon mutants also isolated in the c-di-GMP screen encoded a predicted 

DNA helicase known as PMI39_00093 and in a gene neighborhood with membrane 

proteins(Figures 3.15-3.16). Interestingly, the mutant showed similar phenotypes to rcsA:Tn5. 

The mutant does not have a pellicle defect like rcsA:Tn5, but does have a biofilm defect and 

trypan blue phenotype, which indicates a role in EPS production (Figures 3.17-3.19). 

PMI39_00093 is not significantly up or downregulated in the RNASeq analysis for rcsA:Tn5 

(Chapter 2: Results). Future experiments could explore how PMI39_00093 is regulated, affects 

EPS production, and relates to c-di-GMP. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transposon 
 

Figure 3.15. Depiction of transposon insertion into the gene encoding DNA helicase using 
BLAST. 
 
Figure 4.76. Location of PMI39_00093 using IMG with descriptions of adjacent 
genes.Figure 4.77. Depiction of transposon insertion into the gene encoding DNA helicase 
using BLAST. 
 
Figure 4.78. Location of PMI39_00093 using IMG with descriptions of adjacent 
genes.Figure 4.79. Depiction of transposon insertion into the gene encoding DNA helicase 
using BLAST. 
 
Figure 4.80. Location of PMI39_00093 using IMG with descriptions of adjacent 
genes.Figure 4.81. Depiction of transposon insertion into the gene encoding DNA helicase 
using BLAST. 

Figure 3.16. Location of PMI39_00093 using IMG with descriptions of adjacent genes. 
 
Figure 4.82. Similar pellicle formation for WT (left) and BB4 (right).Figure 4.83. Location of 
PMI39_00093 using IMG with descriptions of adjacent genes. 
 
Figure 4.84. Similar pellicle formation for WT (left) and BB4 (right).Figure 4.85. Location of 
PMI39_00093 using IMG with descriptions of adjacent genes. 
 
Figure 4.86. Similar pellicle formation for WT (left) and BB4 (right).Figure 4.87. Location of 
PMI39_00093 using IMG with descriptions of adjacent genes. 
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Crystal Violet Biofilm Assay shows biofilm 
deficiency in RcsA:Tn5 Mutants compared to 

WT

Figure 3.17. Similar pellicle 
formation for WT (left) and 
BB4 (right). 
 

Figure 3.18. Trypan blue phenotype 
for BB4 (right) compared to WT (left). 
 

Figure 3.19. Significant biofilm defect for BB4 compared to WT Pantoea sp. YR343 in a 
crystal violet biofilm assay. *p-value<0.5 determined by T-test. Bars are a mean of six 
replicates. Error bars are standard error. 
 
Figure 4.100. Degradation of c-di-GMP by a diguanylate phosphodiesterase.Figure 4.101. 
Significant biofilm defect for BB4 compared to WT Pantoea sp. YR343 in a crystal violet 
biofilm assay. 
 
Figure 4.102. Degradation of c-di-GMP by a diguanylate phosphodiesterase.Figure 4.103. 
Significant biofilm defect for BB4 compared to WT Pantoea sp. YR343 in a crystal violet 
biofilm assay. 
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C-di-GMP-related Transposon Mutants 
Diguanylate phosphodiesterase catalyzes the degradation of cyclic c-di-GMP to 

monophosphate (GMP; Figure 3.20). We identified a transposon insertion into a gene predicted 

to encode a diguanylate phosphodiesterase in Pantoea sp. YR343, PMI39_00827, labeled G11. 

The deoxyguanosinetriphosphate triphosphohydrolase (dGTPase), PMI39_03698, is labeled G7 

and is also involved in c-di-GMP synthesis because it hydrolyzes dGTP to deoxyguanosine. We 

conducted preliminary growth, biofilm, pellicle, and swimming assays to determine possible 

phenotypes of the transposon mutants related to c-di-GMP. 

 G11 grows similarly to WT Pantoea sp. YR343. There is no significant biofilm defect in 

a crystal violet assay, but G11 does not form as solid of a pellicle as WT. There is a definite 

swimming defect for G11 compared to the WT (Chapter 2: Methods, Figures 3.21-3.24). 

 G7 also grows similarly to the WT. It does not have a significant biofilm, pellicle, or 

motility phenotype (Chapter 2: Methods, Figures 3.21-3.23).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.20. Degradation of c-di-
GMP by a diguanylate 
phosphodiesterase. 
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Figure 3.21. Equal growth of transposon mutants compared to WT. 
 
Figure 4.112. Equal biofilm development of transposon mutants compared to WT.Figure 
4.113. Equal growth of transposon mutants compared to WT. 
 
Figure 4.114. Equal biofilm development of transposon mutants compared to WT.Figure 
4.115. Equal growth of transposon mutants compared to WT. 
 
Figure 4.116. Equal biofilm development of transposon mutants compared to WT.Figure 
4.117. Equal growth of transposon mutants compared to WT. 

Figure 3.22. Equal biofilm development of transposon mutants compared to WT. Error 
bars are standard error. Bars are a mean of six replicates. 
 
Figure 4.118. Swimming motility for WT (left), G11 (center), and G7 (right).Figure 
4.119. Equal biofilm development of transposon mutants compared to WT. 
 
Figure 4.120. Swimming motility for WT (left), G11 (center), and G7 (right).Figure 
4.121. Equal biofilm development of transposon mutants compared to WT. 
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Figure 3.23. Swimming motility for WT (left), G11 (center), and G7 (right). 

Figure 3.24. Pellicle defect for G11 
(right) compared to WT (left). 
 
Figure 4.124. Growth in a 96-well 
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Salicin Degradation 
 Populus trees host a large microbial community in the rhizosphere. It produces secondary 

metabolites known as higher-order salicylates (HOS). We wanted to determine how HOS affects 

the host-microbiome composition and physiology. We performed initial studies with glucose and 

salicin as carbon sources to test the growth of Pantoea sp. YR343 in the presence of HOS. We 

examined the growth of Pantoea sp. YR343 in the presence of salicin and glucose on 96-well 

plates. We grew ON cultures in the presence and absence of salicin or glucose. Next, we 

inoculated the ON cultures into fresh media with or without salicin or glucose in a 96-well plate 

(Figure 3.25). The “Blank” samples were uninoculated. The salicin to salicin cultures had little to 

no growth and the glucose to salicin cultures had delayed growth. This inspired the following 

questions and experiments.  

1. Is salicylate by-product toxic? Yes. There is no growth of Pantoea sp. YR343 in the 

presence of salicylate and salicin, salicin and glucose, and only salicylate (Figure 3.26).  

2. Does evaporation in a 96-well plate result in toxic concentrations of salicin/salicylate? 

Evaporation in a 96-well plate does result in toxic concentrations. Overnight growth of 

250 mL cultures showed growth of salicin (1.1mL 50mM salicin/10 mL media) to salicin 

cultures. Note that the cultures did not reach as high of an OD as the glucose (1 mL 20% 

glucose/50 mL media) cultures (Figure 3.27-3.28). 

3. Is there limited survivability of Pantoea sp. YR343 in salicin? ATP/OD readings indicate 

live cells and showed no evidence of limited survivability in the presence of salicin 

(Table 3.3). 

 We also created a family tree for Glycoside hydrolase family genes because aryl-b-

glucosidase activity is induced in the presence of salicin in Pantoea sp. YR343 (Figure 3.29). 
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Figure 3.25. Growth in a 96-well plate. Little to no growth for salicin to salicin 
cultures and delayed growth for glucose to salicin cultures. 
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Figure 3.27. Growth in 250 mL of MOPS. Delayed and slightly reduced growth for 
salicin to salicin cultures and delayed growth for glucose to salicin cultures.  
 

Figure 3.28. Growth in 250 mL of MOPS with glucose or salicin compared to cultures 
grown in R2A. MOPS + glucose grows similarly to R2A, but MOPS + salicin has 
delayed growth of about 12 hrs. 
 
Table 4.9. ATP/OD readings show no significant differences. Testing the supernatant 
alone rendered no ATP reading, so salicylate does not contribute to the results.Figure 
4.148. Growth in 250 mL of MOPS with glucose or salicin compared to cultures grown 
in R2A. MOPS + glucose grows similarly to R2A, but MOPS + salicin has delayed 
growth of about 12 hrs. 
 
Table 4.10. ATP/OD readings show no significant differences. Testing the supernatant 
alone rendered no ATP reading, so salicylate does not contribute to the results.Figure 
4.149. Growth in 250 mL of MOPS with glucose or salicin compared to cultures grown 
in R2A. MOPS + glucose grows similarly to R2A, but MOPS + salicin has delayed 
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Condition OD600 ATP 

Reading* 

ATP/OD 

GlucoseàGlucose 0.9129 542929.65 594730.693 

GlucoseàSalicin 1.3699 755344.3333 551386.476 

SalicinàSalicin 1.0381 611116.3333 588687.345 

Table 3.3. ATP/OD readings show no significant differences. Testing the supernatant 
alone rendered no ATP reading, so salicylate does not contribute to the results. 
 
Table 4.12. ATP/OD readings show no significant differences. Testing the supernatant 
alone rendered no ATP reading, so salicylate does not contribute to the results. 
 
Table 4.13. ATP/OD readings show no significant differences. Testing the supernatant 
alone rendered no ATP reading, so salicylate does not contribute to the results. 
 
Table 4.14. ATP/OD readings show no significant differences. Testing the supernatant 
alone rendered no ATP reading, so salicylate does not contribute to the results. 

Figure 3.29. Comparing Glycoside hydrolase family 1 genes. Aligned using TCoffee, 
formatted into a Newick file using Clustal W2, and viewed and edited using Dendroscope. 
 

Four glycoside hydrolase family 1 enzymes encoded in Pantoea sp. YR343 
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Transport Transposon Mutants 
 This section provides an overview of eight transposon mutants isolated by the c-di-GMP 

screen. They had predicted functions for a glycerol kinase (PMI39_04394), glycerol uptake 

facilitator (PMI39_04393), D-xylose substrate binding (PMI39_02071), glyceraldehyde 3-

phosphate dehydrogenase (PMI39_03169), substrate-binding ABC (PMI39_04218), 

hydroxymethlypyrmidine substrate-binding (PMI39_04978), and L-ribulose-5-phosphate 4-

epimerase (PMI39_02700). We selected these mutants for further studies because they had 

predicted functions related to transport in Pantoea sp. YR343. 

 We analyzed growth, biofilm development, pellicle formation, colony counts, and 

previously acquired proteomic data (Tables 3.5-3.7 and Figures 3.30-3.31). We summarized 

these analyses in the following Table 3.4. 
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Predicted description PMI39_ Short 

ID 
Growth 
Curve 

Biofilm 
Difference 
from WT 

Pellicle 
Test 

Confocal Log2ratio_ 
GluToSal 

Glycerol kinase 04394 F12 - 0.007166 Smaller 
pellicle 

- -
4.011092507 

Glycerol uptake facilitator 04393 F11 - 0.125 Smaller 
pellicle 
that 
sinks 

More 
colonies 

- 

D-xylose substrate 
binding 

02071 BB5 Slightly 
lower 
peak 

-0.2055 - - -
4.876327997 

Glyceraldehyde 3-
phosphate dehydrogenase 

03169 BB6 - -0.132166 - - -
1.769667321 

Substrate-binding ABC 04218 BB7 Slightly 
lower 
peak 

-0.153833 - - - 

Hydroxymethlypyrmidine 
substrate-binding 

04978 BB11 Slightly 
higher 
peak 

-0.179333 Smaller 
pellicle 

- -
0.216521144 

L-ribulose-5-phosphate 4-
epimerase 

02700 D4 - 0.02433555 - - - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.4. Overview of transport mutants isolated from c-di-GMP transposon screen. “-“ indicates 
no significant phenotypic difference from the WT. 
 
Table 4.17. Predicting the function of transport mutants isolated from c-di-GMP transposon 
screen.Table 4.18. Overview of transport mutants isolated from c-di-GMP transposon screen. “-“ 
indicates no significant phenotypic difference from the WT. 
 
Table 4.19. Overview of transport mutants isolated from c-di-GMP transposon screen. “-“ indicates 
no significant phenotypic difference from the WT. 
 
Table 4.20. Predicting the function of transport mutants isolated from c-di-GMP transposon 
screen.Table 4.21. Overview of transport mutants isolated from c-di-GMP transposon screen. “-“ 
indicates no significant phenotypic difference from the WT. 
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PMI39
_ 

Short 
Experi
-ment 
ID 

IMG Description Super  
Family 

Protei
n 
Family 

Closest 
BLAST hit 

BLAS
T ID 
% 

02071 BB5 D-xylose transport 
system substrate binding 
protein 

ABC _13407 D-xylose 
transporter 
subunit XylF 
[Enterobacter 
ludwigii] 

99 

02667 A9 oligopeptide transport 
system substrate-binding 
protein 

ABC _00496 oligopeptide 
ABC 
transporter 
substrate-
binding protein 
OppA 
[Enterobacter 
ludwigii] 

99 

02700 D4 L-ribulose-5-phosphate 
4-epimerase 

ABC _00596 ribulose 
phosphate 
epimerase 
[Enterobacter 
ludwigii] 

99 

03169 BB6 glyceraldehyde 3-
phosphate 
dehydrogenase 

Glycer-
aldehyd
e 

_00044 
_02800 

glyceraldehyde
-3-phosphate 
dehydrogenase 
[Enterobacter 
ludwigii] 

99 

04218 BB7 branched-chain amino 
acid transport system 
substrate-binding protein 

ABC _13433 urea ABC 
transporter 
[Enterobacter 
ludwigii] 

99 

04393 F11 glycerol uptake 
facilitator protein 

Major 
Intrinsic 

_00230 aquaporin 
[Enterobacter 
ludwigii] 

99 

04394 F12 glycerol kinase Glycerol 
kinase 

_00370 
_02782 

NA NA 

04978 BB11 putative 
hydroxymethylpyrimidin
e transport system 
substrate-binding protein 

ABC _09084 thiamine 
biosynthesis 
protein 
[Enterobacter 
ludwigii] 

97 

Table 3.5. Predicting the function of transport mutants isolated from c-di-GMP transposon 
screen. 
 
Figure 4.157. Growth curve of transport mutants grown in R2A media.Table 4.22. Predicting the 
function of transport mutants isolated from c-di-GMP transposon screen. 
 
Figure 4.158. Growth curve of transport mutants grown in R2A media.Table 4.23. Predicting the 
function of transport mutants isolated from c-di-GMP transposon screen. 
 
Figure 4.159. Growth curve of transport mutants grown in R2A media.Table 4.24. Predicting the 
function of transport mutants isolated from c-di-GMP transposon screen. 
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Figure 3.30. Growth curve of transport mutants grown in R2A media. 
 
Figure 4.160. Pellicles different from the WT’s (right). F11 (left), F12 (second from left), and 
BB11 (second from right).Figure 4.161. Growth curve of transport mutants grown in R2A media. 
 
Figure 4.162. Pellicles different from the WT’s (right). F11 (left), F12 (second from left), and 
BB11 (second from right).Figure 4.163. Growth curve of transport mutants grown in R2A media. 
 
Figure 4.164. Pellicles different from the WT’s (right). F11 (left), F12 (second from left), and 
BB11 (second from right).Figure 4.165. Growth curve of transport mutants grown in R2A media. 

Figure 3.31. Pellicles different from the WT’s 
(right). F11 (left), F12 (second from left), and BB11 
(second from right). 
 
Table 4.25. Summary of proteomics for Pantoea sp. 
YR343 transport mutants.Figure 4.166. Pellicles 
different from the WT’s (right). F11 (left), F12 
(second from left), and BB11 (second from right). 
 
Figure 4.167. Pellicles different from the WT’s 
(right). F11 (left), F12 (second from left), and BB11 
(second from right). 
 
Table 4.26. Summary of proteomics for Pantoea sp. 
YR343 transport mutants.Figure 4.168. Pellicles 
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Predicted description PMI39_ Short ID Log2ratio_GluToSal 

Glycerol kinase 04394 F12 -4.011092507 

Glycerol uptake facilitator 04393 F11 - 

D-xylose substrate binding 02071 BB5 -4.876327997 

Glyceraldehyde 3-phosphate 
dehydrogenase 

03169 BB6 -1.769667321 

Substrate-binding ABC 04218 BB7 - 

Hydroxymethlypyrmidine substrate-
binding 

04978 BB11 -0.216521144 

L-ribulose-5-phosphate 4-epimerase 02700 D4 - 

oligopeptide transport system substrate-
binding protein 

02667 A9 -1.38225136 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.6. Summary of proteomics for Pantoea sp. YR343 transport mutants. 
 
Table 4.27. Summary of crytal violet biofilm assay for Pantoea sp. YR343 transport 
mutants.Table 4.28. Summary of proteomics for Pantoea sp. YR343 transport mutants. 
 
Table 4.29. Summary of crytal violet biofilm assay for Pantoea sp. YR343 transport 
mutants.Table 4.30. Summary of proteomics for Pantoea sp. YR343 transport mutants. 
 
Table 4.31. Summary of crytal violet biofilm assay for Pantoea sp. YR343 transport 
mutants.Table 4.32. Summary of proteomics for Pantoea sp. YR343 transport mutants. 
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Predicted description PMI39_ Short 
ID 

550 nm 
Absorbance 

Difference 
from WT 

WT WT WT 0.71 0 

Glycerol kinase 04394 F12 0.717166667 0.007166667 

Glycerol uptake facilitator 04393 F11 0.835 0.125 

D-xylose substrate binding 02071 BB5 0.5045 -0.2055 

Glyceraldehyde 3-phosphate 
dehydrogenase 

03169 BB6 0.577833333 -0.132166667 

Substrate-binding ABC 04218 BB7 0.556166667 -0.153833333 

Hydroxymethlypyrmidine 
substrate-binding 

04978 BB11 0.530666667 -0.179333333 

L-ribulose-5-phosphate 4-
epimerase 

02700 D4 0.734333333 0.024333333 

Table 3.7. Summary of crytal violet biofilm assay for Pantoea sp. YR343 transport mutants. 
 
Table 4.33. Summary of crytal violet biofilm assay for Pantoea sp. YR343 transport mutants. 
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 Progress with the rcsA and lrhA Clean Deletions 

In order to develop chromosomal deletions of rcsA and lrhA to use for transcriptome and 

functional analyses, we inserted two 1 kb base pair fragments from upstream and downstream of 

the gene of interest into the modified pk18mobsacB vector (Figure A.1). After confirming the 

insertion via PCR and gel electrophoresis, we electroporated the plasmids into Pantoea sp. YR343.  

We began screening using antibiotic selectors to ensure the plasmid was present. We then 

attempted to kick out the plasmid backbone with sucrose, because the modified pk18 plasmid has 

a sacB gene that expresses levansucrase, which is lethal for cells in the presence of sucrose.69 Then, 

we had an additional selection for ΔrcsA candidates based on the strong trypan blue phenotype of 

the transposon mutants (Figure A.2-A.3). The selected deletion strains will be screened with PCR 

using primers for rcsA corresponding to upstream, downstream, and inside the gene. DNA 

sequencing of the selected PCR products will confirm the deletion strain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A.1. Modified pk18mobsacB plasmid (left). Transformation of the plasmid 
with no insertion (top right) and with insertion (bottom left). 
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Figure A.2. Gel electrophoresis 
showing presence of rcsA insert 
into pk18mobsacB plasmid. 
 

Figure A.3. Diagram of screen for rcsA clean deletion mutant. 
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Primers 
 
 
 
Primer Sequence Cutting 

Enzyme 
Annealing 
Tempera-
ture (C) 

Location 

LrhA_upFor_EcoRI GCATTGAATTCAGC 
TTGCCGGATTTATC 

EcoRI 52 Upstream, 
top strand, 
1000 bp 
from lrhA 

LrhA_upRev_BamHI GATGGATCCCGAT 
TTGCATTAGTCATG 

 

BamHI 49 Upstream, 
bottom 
strand, 
overlapping 
lrhA 

LrhA_downFor_BamHI TAGGGATCCAGTA 
GGGGTTACAGTTGC 

 

BamHI 54 Downstream, 
top strand, 
overlapping 
lrhA 

LrhA_downRev_HindIII AAGAAGCTTGCCA 
AGAGCACCAAAATG 

 

HindIII 56 Downstream, 
bottom 
strand, 1000 
bp from lrhA 

RcsA_upFor_EcoRI ATTGCGAATTCAAC 
GGACATCTGTGGCTG 

 

EcoRI 54 Upstream, 
top strand, 
1000 bp 
from rcsA 

RcsA_upRev_BamHI TTGGGATCCTTG 
GCATTATAGCGACCC 

 

BamHI 52 Upstream, 
bottom 
strand, 
overlapping 
rcsA 

RcsA_downFor_BamHI AAGGGATCCTCAG 
TGAATAAAGGGGCC 

 

BamHI 52 Downstream, 
top strand, 
overlapping 
rcsA 

RcsA_downRev_HindIII AAGAAGCTTTTCA 
CGCACCGTTCCTAC 

 

HindIII 55 Downstream, 
bottom 
strand, 1000 
bp from rcsA 

 
 
 
 
 

Table A.1. Primers. 
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Primer Sequence Cutting 

Enzyme 
Annealing 
Tempera-
ture (C) 

Location 

LrhA_out_For TTGCCGATGTTC 
AGCTTG 

 

 55 1100 bp 
upstream of 
lrhA, top 
strand 

LrhA_out_Rev TGCTTATGAGGG 
TTGGTG 

 

 54 1100 bp 
downstream 
of lrhA, 
bottom 
strand 

RcsA_out_For GTGCTGGCACGT 
TTTCTC 

 

 55 1100 bp 
upstream of 
rcsA, top 
strand 

RcsA_out_Rev AGCTTGCTCTTC 
AGTACG 

 

 54 1100 bp 
downstream 
of rcsA, 
bottom 
strand 

 

 

 

 

 

 

 

 

 

Table A.1 Continued. Primers. 
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