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ABSTRACT 

 

The work presented in this thesis focuses on the application and 

extension the zigzag search algorithms in power systems. The zigzag search 

method is a multi-objective algorithm which has recently been applied in 

multiple engineering fields, such as oil well replacement, with fast 

computational time and accurate results. 

Multi-objective optimization algorithms in power systems have been 

investigated for years. Most of the literatures focus on evolutionary algorithms 

(EA) such as a non-dominated sorting genetic algorithm (NSGA) or multi-

objective particle swarm optimization (MOPSO) for their simplicity and ease 

of implementation. However, there have been several issues regarding the 

evolutionary algorithm (EA). For example, the computational time of EA is 

significant and the parameter configurations are complicated. Other 

approaches mainly reply on the weight sum method by lumping together 

different objective functions to form a new single objective function; however, 

the priority is hard to determine and the characteristic between different 

objectives may be lost.  

In order to improve the performance of power system multi-objective 

optimization problems, this thesis will first introduce the zigzag search 

algorithm. Second, by modifying the classic zigzag search algorithm, the 

zigzag interior point method and zigzag genetic algorithm method will both 

be proposed to broaden the applications of the classic zigzag search method. 

Also, in order to provide a systematic method for step-size configuration, a 

zigzag search method with adaptive step-size will be proposed. Thirdly, all 
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algorithms will be applied to several practical power system multi-objective 

problems to demonstrate their practicability and effectiveness. 

The case study will be carried out on a modified IEEE 30-bus system 

and the IEEE 118-bus system. A comparison will be made with classic multi-

objective algorithms which have been widely applied in power systems to 

demonstrate the effectiveness and efficiency of the proposed zigzag search 

methods. 
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CHAPTER ONE  

INTRODUCTION AND GENERAL INFORMATION 

1.1 General optimization background 

The process of minimizing or maximizing objective functions by 

adjusting the decision variables while satisfying a set of constraints is called 

optimization [1]. It is a mathematics tool to provide guidelines for decision 

makers. In almost all real world decision making processes, optimization is 

an indispensable part. 

For example, in a decentralized electricity market, independent system 

operators (ISO) need to optimize the unit commitment and economic dispatch 

problems to determine the commitment status of all generation units and 

optimal outputs for committed units.  

In steel making plants, there are six steps: iron making, primary steel 

making, secondary steel making, continuous casting, primary forming, and 

manufacturing. The process time for each step is different. Therefore, 

optimization is utilized to enhance the coordination of each steps.  

In the modern stock market, the optimization technique is used to 

determine the optimal portfolios of different types of stocks.  

There are numerous categories of optimization problems that have been 

proposed. Linear programming means both the objective functions and 

constraints are linear [2]. Integer programming studies linear systems where 

some or all the decision variables are in integer value [3]. Quadratic 

programming allows the objective function to be quadratic but the constraint 

sets are linear equalities or inequalities [4]. Stochastic programming attempts 

to include uncertainty behaviors into an optimization problem [5]. From the 



 

2 
 

viewpoint of the structure of objective functions, optimization problems can 

be specified as two types: single objective optimizations and multi-objective 

optimizations. 

1.1.1 Single objective optimization 

The single objective optimization is to obtain the so called “best” 

solution which is an objective function’s minimum or maximum value [1]. It 

enables the decision maker to get a view of the nature of the problems. There 

have been many algorithms developed for single objective optimization. 

Several algorithms which will be related to the zigzag search methods are 

briefly reviewed as follows. 

▲Steepest descent algorithm 

The Steepest Descent Algorithm is a common algorithm for non-

constrained optimization problems. It is based on the first order derivative to 

find the local minimum [6]. In figure 1.1, the blue circle is the contour for the 

objective function.  

It is obvious the fastest way to obtain the optimal value is to follow the 

red line by equation (1) where 𝑎௡is the current solution, 𝑎௡ାଵis the next 

 

 

Figure 1.1 steepest descent algorithm 
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solution, (a )nF  is the gradient of objective function at current solution, 

and s is the predetermined step size. 

 1 (a )n nna a s F     (1) 

Then by a sequent of iterations, the optimal value is obtained. 

▲Interior point method 

Interior point method is another common type of method for convex 

optimization [7]. It aims to iteratively approach the optimal solution from the 

interior feasible set by forming barrier function.  A general form of convex 

optimization model is shown in Eq. (2)-(5). 

 min ( )x f x   (2) 

s.t. 

 1( ) 0, 1,2,...,ig x i m   (3) 

 2( ) 0,  1,2,...,jh x j m   (4) 

 0x   (5) 

By reformulating it into Eq. (6)-(8), all the iterations will be ensured to 

remain in the feasible set. Here the barrier function is predetermined as 

logarithmic term but it can be other type 

 min ( , )x B x   (6) 

s.t 

 2( ) 0,  1,2,...,jh x j m   (7) 

 
1

1 1

( , ) ( ) ( log(g ( )) log( ))
m n

i l
i l

B x f x x x 
 

      (8) 

Then, by relaxing the equality constraints, the Lagrange function is 

formed as shown in Eq. (9). 
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1 2

1 1 1

( ) ( log(g ( )) log( )) ( )
m mn

i l j j
i l j

f x x x h x 
  

       (9) 

 ( , ) 0L x    (10) 

 ( , ) 0xL x    (11) 

The Karush-Kuhn-Tucker (KKT) condition equations are applied to 

solve the Lagrange function, as shown in Eq. (10)-(11). There have been 

several modifications on the original interior point method, such as prime-

dual interior point or conjugate interior point method. 

▲Genetic algorithm 

The genetic algorithm (GA) is also a relatively new approach for single 

objective optimization. Traditional algorithms normally have requirements on 

either the form of objective functions or the constraints, and when the 

parameter set is large, the derivative is hard to obtain. The idea of GA is 

inspired by natural evolution. It can be divided into five parts: encoding; 

fitness function evaluation; selection; recombination; evolution scheme [8]. A 

classic encode method uses a bit string scheme, which means by choosing 

from {0, 1} a series of solutions can be formed. Fitness function evaluation 

assesses the value of objective functions. Therefore, the quality of each 

solution is determined. Selection is based on the value of fitness function 

evaluation. Those solutions that have better objective function values will 

have higher chances of being selected. A typical selection method is the 

Roulette Wheel method, which assigns a possibility to each solution by the 

solution’s proportion of the sum of the fitness function value of all the 

solutions. Recombination recombines the previous population to form the 

next generation according to the possibility assigned in the selection. 
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Crossover and mutation are two key factors. Crossover switches some bits in 

the selected two parent solutions to form a child solution. Then, by generating 

a random number between 0 and 1, it determines if the crossover operation 

occurs. The mutation determines whether to flip a bit in the new solution 

according to a random number between [0, 1]. Therefore, a new population 

can be formed after mutation and crossover. In the end, evolution tests if the 

new population satisfied the stop criterion. 

1.1.2 Multi-objective optimization 

In many real-world decision making processes, multiple goals need to be 

considered, such as minimizing the risk while maximizing the profit. In this 

case, single objective optimization is not enough, because there will exist 

multiple objective functions and the best solution will no longer exist. Multi-

objective optimization is able to deal with multiple conflicting objective 

functions and provide a set of trade-off solutions for decision makers [9]. In 

the single objective optimization, the comparison between different solutions 

can be easily determined by objective function values, while if multiple 

objective functions exist the previous comparison method is no longer useful. 

Therefore, there are several important definitions that need to be noted. 

DEFINITION 1. For feasible solution x1 and x2, x1 is said to weakly 

dominate x2, denote as x1 ≥ x2 if equation (12) holds. F represent the objective 

functions. i is the index for different objective functions. m is the number of 

the objective functions [10]. 

  ( 1) ( 2) 1,2,...i iF x F x i m    (12) 

DEFINITION 2. For feasible solution x1 and x2, x1 is said to strictly 

dominate x2, denote as x1 > x2 if equation (13) (14) holds [10]. F represent 
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the objective functions. i is the index for different objective functions. m is the 

number of the objective functions. 

  ( 1) ( 2) 1,2,...i iF x F x i m    (13) 

 ( 1) ( 2) 1,2,...i iF x F x i m    (14) 

DEFINITION 3. For a set of feasible solutions, if all the solutions in 

this set is not strictly dominated by another member in this set, then this set is 

called as non-dominated solution set [9]. 

DEFINITION 4. The non-dominated solution set over the entire feasible 

solution space is known as the Pareto optimal solution set [11]. 

DEFINITION 5. The boundary formed the Pareto optimal solution set 

is called Pareto optimal front [9]. 

Roughly speaking, the multi-objective optimization is to obtain the 

Pareto optimal front solutions [12]. There have been numerous techniques 

developed especially for multi-objective optimizations. For example, the 

weighted sum method, ε-constraint method, weighted metric method, Multi-

Objective EAs, and a Non-Dominated Sorting GA. Some of those algorithms 

will be reviewed in detail in Chapter Two. 

1.2 Structure 

This thesis will be organized as follows: 

Chapter 2 will briefly review different techniques of multi-objective 

optimization solutions which have been widely used in power systems and 

different types of multi-objective optimization models that have been 

investigated in power systems. 
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Chapter Three will present the general approach of the classic zigzag 

search method, zigzag IP method, zigzag GA method, and zigzag search 

method with adaptive step-size. 

Chapter Four will formulate and analyze the economic emission dispatch 

problem and economic dispatch considering CVaR when under wind 

uncertainty.  

Chapter Five will show the simulation results, comparing the results 

from the proposed methods and other algorithms that have been widely 

applied. 

Finally, conclusions and future works will addressed in Chapter Six. 
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CHAPTER TWO  

POWER SYSTEM MULTI-OBJECTIVE OPTIMIZATION 

As introduced in Chapter One, single objective optimization is to obtain 

the best solution for a proposed model, which may not be desirable in a real-

world decision making process because it fails to provide trade-offs with 

respect to concerns from different sides. On the contrary, multi-objective 

optimization techniques simultaneously deal with two or more conflicting 

objectives. In many real life applications, the attempt to improve one objective 

will inevitably lead to the degradation of another [1]. Hence, the multi-

objective optimization is able to provide a set of alternative solutions to 

decision makers. Especially in power systems, much effort has been done on 

multi-objective optimization. For example, in the decentralized electricity 

market, the solutions to economic dispatch problems determine the optimal 

power output for each power plant. Traditional economic dispatch problems 

only consider fuel cost while satisfying power balance constraint with various 

security requirements. However, with increasing concerns from 

environmental protection, economic emission dispatch (EED) starts to lead 

the direction of research [14] [15] [16]. Similarly, in [17], fuel cost and 

dynamic security are optimized together; in [18], fuel cost and variability 

mitigation for the micro grid system are optimized together; in [19], economic 

aspects and risk impacts are two conflicting objectives when including high 

wind penetration; or, in [20], investment cost, reliability, and congestion cost 

are optimized altogether. 
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Generally, there are two types of methods to solve a multi-objective 

optimization problem in power systems based on current literatures: the 

scalarization method and a genetic algorithm. 

2.1 Scalarization methods 

Scalarization methods will reform the multi-objective optimization 

problem into single objective optimization. However, it is not desirable in 

power system application because the scalarization methods will always need 

parameters that not included in either the objective functions or constraints.  

2.1.1 Weight sum method 

By assigning the priority to different objective functions, weight sum 

method is able to reformulate the original multi-objective optimization 

problem into a single objective optimization problem as shown in equation 

(15)-(17). For the single objective optimization problem, the methods have 

been introduced in Chapter One or other classic algorithm can be applied. 

 
K

1

min  ( ) ( )k k
k

F x w F x


    (15) 

   g (x) 0   m 1,2,....Mmsubject to     (16) 

 h (x) 0   1,2,....Nn n    (17) 

By changing the priority value 𝑤௞, different points in the Pareto front 

can be found. However, it is hard to identify the priority values unless you 

have extra information for the optimization problem besides the model itself. 

Furthermore, varying the weights may not result in an accurate Pareto front 

[21]. 
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In power system application, the weight sum method typically utilizes 

either traditional methods like lambda iteration, gradient search, bender 

decomposition [22], and Lagrangian relaxation [23] or population based 

methods such as a GA [16], the hybrid bacterial foraging Nelder–Mead 

algorithm [25], gravity search algorithm [26], artificial bee colony, bat 

algorithm [24] and flower pollination algorithm [27]. 

2.1.2 ε-constraint method 

The ε-constraint method is another way to convert multi-objective 

optimization into single objective optimization. This method only optimize 

one objective and reformulates all other objectives into constraints, as shown 

in equation (18)-(21). ε is an user defined value to confine the other objective 

functions. By choosing different ε values, the Pareto front can be formed. 

However, the user defined value ε is hard to justify and the obtained Pareto 

front may be not evenly distributed [28]. 

 1min  (x)f  (18) 

  to (x)  i 1,2,....Misubject f     (19) 

 g (x) 0   m 1,2,....Mm      (20) 

 h (x) 0   1,2,....Nn n     (21) 

In [29], the amount of emission cannot exceed the maximum emission 

amount, and the optimization problems are optimized by a genetic algorithm 

(GA). In [30], the voltage will be controlled in specified security region. 
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2.2 Evolutionary method 

2.2.1 Non-dominated sorting genetic algorithm-II 

The non-dominated sorting genetic algorithm-II (NSGA-II) is a multi-

objective optimization tool modified from an NSGA. It is first proposed by 

[16]. The  objective of an NSGA-II algorithm is to perform modification on a 

set of initial populations until the final solution set is close enough to the true 

Pareto front. It made two improvements based on NSGA. Firstly, it propose a 

new fast non-dominant sorting method. Original sorting method in NSGA 

needed every individual solution to compare with other solutions for each 

objective function value at each Pareto front level, which made the algorithm 

slow. The new algorithm needs two entities to be calculated: the domination 

count 𝑛௣ and dominated solution number𝑆௣. Then by reducing 𝑛௣ from set𝑆௣, 

each solution is assigned a Pareto domination level. The pseudo code is shown 

below. 

1 def fast_nondominated_sort( P ): 

2   F = [ ] 

3    for p in P: 

4        Sp = [ ] 

5         np = 0 

6         for q in P: 

7             if p > q:                

8                 Sp.append( q ) 

9             else if p < q:         

10                 np += 1 

11        if np == 0: 
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12            p_rank = 1         

13      F1.append( p ) 

14    F.append( F1 ) 

15    i = 0 

16   while F[i]: 

17       Q = [ ] 

18        for p in F[i]: 

19            for q in Sp:         

20               nq -= 1 

21                if nq == 0:       

22                    q_rank = i+2     

23                    Q.append( q ) 

24        F.append( Q ) 

25        i += 1 

Secondly, it made modification on the diversity in order to maintain a 

good spread of solutions in the obtained set. NSGA utilize sharing function to 

ensure diversity. However the sharing parameter depend on user experience. 

The NSGA-II propose a crowded-comparison method to replace the sharing 

function. The smallest cuboid around current solution is defined as the density 

estimation. 

The overall procedure is shown in figure 2.1. 
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Figure 2.1 main loop of NSGA-II 

 

An NSGA-II has been applied into power system multi-objective 

optimization for years and successfully achieved satisfactory results. In [31], 

an NSGA-II is applied to solve the siting and sizing problem of wind farms 

and FACTS devices. Cost and improvement on voltage profile are both 

considered. NSGA-II is utilized in [32] to design a power system stabilizer so 

that the maximum of damped response is obtained for all contingencies. In 

[33], power loss reduction and reliability are both considered as objectives in 

order to determine the allocation of reclosers under the load uncertainty. 

2.2.2 Multi-Objective particle swarm optimization  

For MOPSO, the Parent solutions are generated within the feasible area 

randomly. For each solution i, a position POS and a velocity VEL are 

determined. The solutions will update their positions and velocities to move 

towards the optimal solutions found so far. The current Pareto optimal 

solutions will be kept in the repository. The procedure of moving towards the 

optimal solution is shown as follows: 
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1 1 2 2VEL(i) [ ( ) ( ( ) ( )) ( ( ) ( ))]VEL i r PBEST i POS i r REP h POS i         (22) 

 ( ) ( ) ( )POS i POS i VEL i    (23) 

Here 𝜑ଵ and 𝜑ଶ  are weighting factors which will determine the weight 

for the local best solution and global best solution; 𝑟ଵ  and  𝑟ଶ  are random 

numbers within the range [0-1]. χ is calculated as shown in (24): 

 2

2
 if 4  

2 4

                            if 0 4

k

k


  



  
    

 
  

  (24) 

where 0< k<1and  𝜑=φଵ+φଶ ,with φଵ ൌ φଶ ൌ 2.05. PBEST (i) is the past 

optimal position for the particle i; REP(h) is a value that is taken from the 

repository; the Roulette-Wheel selection will decide the index h. 

The overall steps of MOPSO is presented as follows. 

1: Parent solution, velocity, iteration counter are determined. 

2: Fitness value calculation. 

3: Pareto optimal solution obtained from the non-dominated solution set and 

set the repository equal to non-dominated solution set. 

4: For each solution, the local best solution is first defined as the current 

position for each particle, form non-dominated set. 

5: The local best solution and the global best will be defined for each 

particle. 

6: Update the velocity for each solution. 

7: Update each solution’s position. 

8: Calculate the fitness function for each solution. 

9: By use of the non-dominant sorting method, searching for the non-

dominated solutions. 
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10: Expand and update non-dominated global optimal solution set. 

11: Expand and update non-dominated local optimal solution set. 

12: Update the repository. 

13: Determine the local best solution and the global best solution. 

14: Check if the maximum iterations is met ?: If it is then stop. Otherwise, 

go tos 6. 

END 

MOPSO is also a prevailing multi-objective optimization tool that has 

been applied in power systems. In [34], MOPSO is used to solve the 

traditional economic dispatch with maximum generation company profit. Ref 

[35] made modification on MOSPO to solving the siting and sizing problem 

of FACTS devices.  
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CHAPTER THREE  

ZIGZAG SEARCH METHOD 

3.1 Classic zigzag search method 

The zigzag search method was proposed for multi-objective optimization 

by Dr. Honggang Wang in 2012. It tries to find a set of non-dominant solutions 

sequentially within single optimization iteration by zigzagging tightly around 

a Pareto front surface [36]. 

The routine of the zigzag algorithm consists of three steps: Find the First 

Pareto optimal (FFPO) search, zig search and zag search. 

An FFPO search is based on a line search to find the first minimum 

solution for f1 while maintaining the smallest value of f2. It consists of two 

major parts: a regular line search will return an optimal solution for f1 and 

then take a horizontal search for f2 which means a search along the projection 

of g2 to the hyperplane of g1: 

 0 0 0 0
2 1 2 1( )- ( ), ( ) * ( )g g x g x g x g x    (25) 

where <, > is the vector dot production, g1 (x) is the gradient of f1, and g2 (x) 

is the gradient of f2. 

A zig search is trying to find a solution that relaxes the value of f1 

somewhat while keeping f2 the same. It projects the gradient of f1 to the 

hyperplane of f2 :  

                  1 1 2 2( ) ( ), ( ) * ( )g g x g x g x g x     (26) 
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Figure 3.1 projection 

 

Then along this direction, Xn+1=Xn-δ*g will be obtained; δ is step size, 

as shown in Figure 3.1. 

Pseudo code will be shown as follow: 

1. if g1 (x0) = 0 then 

2.   set g = rand( ) 

3. else if  g2 (x0) = 0 then 

4.  set  g = g1 (x0) 

5. else 

6.  set α= angle(g1 (x0)， g2 (x0)) 

7.  if α !=pi then 

8.   set g2 (x0) = g2 (x0)/norm(g2 (x0),2) 

9.   set g = g1 (x0) − (g1 (x0)， g2 (x0)) ×g2 (x0) 

{project g1  to the orthogonal plane of g2} 

10  else 

11      set g = g1 (x0) 

12  end if 

13 end if 

14 set x= x0 + ô×g 

15 set x = project(x) {project x into X} 
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A zag search is similar to a zig search, also searching along the projection 

of one objective to another. However, it will follow the projection of f2 to f1: 

  1 0 1 0 2 0 2 0( ) ( ), ( ) * ( )g g x g x g x g x      (27) 

It is used to find the best solution for f2 while trying to keep f1 the same. 

Xn+1=Xn-δ*g will be applied. Pseudo code will be shown as follows: 

1. set n = 0; xn+1 = xn 

2. while xn+1>=  xn do 

3.  set n = n + 1 

4.  if  g2(xn) = 0 then 

5.   set g2 (xn) = rand( ) 

6.  end if 

7.  if  g1 (xn) = 0 then 

8.   set  g= g2 (xn) 

9.  else 

10.  set α= angle(g1 (xn)， g2 (xn)) 

11.  if α !=pi then 

12.   set g1 (xn) = g1 (xn)/norm( g1 (xn),2)  

13.   set g = g2(xn) − <g1 (xn)， g2 (xn )> ×g1 (xn )  

14        else 

15    set g = g2 (xn) 

16   end if 

17  end if 

18  set  xn+1 = xn - ô ×g; x = project(x) 

19  end while 

20  return  x= xn 
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Figure 3.2 zigzag search procedure 

 

Continued zigzagging from the solution obtained from FFPO enables the 

formation of a whole Pareto front. The simplified procedure of the zigzag 

method can be found in the above flow chart (Figure 3.2). 

3.2 Modification of zigzag search method 

A set of new variants of the zigzag search algorithm can be formulated 

since the zigzag search can also be seen as a framework that can incorporate 

any desired search method. The classic zigzag search algorithm is based on 

the line search method and searches from one Pareto optimal to another. 

Therefore it is desirable if applied in a small system. The classic zigzag will 

try to decrease its step size in order to keep the solution within the limitations. 

However, when applied in a large scale power system, there will be many 

linear or non-linear binding constraints. If the current solution is at the edge 
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of limitation then any progress on the gradient will violate the constraints. 

Therefore the zig or zag step may fail or stop early, which will cause the 

returned solution to be inaccurate and lead to a premature stop for the whole 

algorithm. 

3.2.1 Zigzag interior point method  

The zigzag interior point method is proposed for large scale convex 

problems. Here instead of a line search, the interior point (IP) method is used, 

in order to improve accuracy and prevent the premature stop issue. The flow 

chart is shown in Figure 3.3. 

The interior point method has been demonstrated as an efficient tool for 

quadratic convex programming [7].  By relaxing all inequality constraints to 

form a barrier function, a Newton step is applied to solve the KKT equations. 

If the Newton step fails, a conjugate gradient method will be applied as a 

backup option. A zigzag interior point method is therefore proposed 

implemented with an interior search method. Still zig is a step that relaxes one 

function somewhat but, instead of following the projection of f1 to f2, at each 

iteration one objective function will be converted as an equality constraint and 

the optimization problem can be solved as a single objective optimization 

problem. It is convenient and effective, which will be tested in the 

demonstration.  

3.2.2 Zigzag genetic algorithm method 

Population-based algorithms can also be incorporated into zigzag search 

algorithms at the researchers’ preference. A hybrid version zigzag GA method 

is also proposed to demonstrate its feasibility and effectiveness. A GA is 
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chosen for its ease of implementation and speed of convergence among its 

peers. A GA step is inserted into the zigzag search algorithm. The classic 

zigzag is fast in getting results but it is sensitive to an initial guess and easily 

stuck at a local optimal. Population-based methods need randomized parent 

populations which takes substantial computation time but which will search 

in a whole solution space to have a certain chance of obtaining the global 

optimal, which is desirable when encountering non-convex problems. The 

proposed method aims to combine the advantages of both. If the line search 

stuck at the local minimum, then the use of the GA may help the solution jump 

out of it. A GA will be initially used to find the first Pareto solution. After 

each zigzag step, the angle between the last Pareto solution and the current 

obtained Pareto solution will be calculated： 

 

1 0
1 1
0 1

2 2

=arcsin( )
f f

f f
 

  (28) 

If the angle is large enough, then the current solution is satisfactory. 

Otherwise, a GA step can be used. Whenever a zag or zig step fails, a GA step 

will also be utilized. In this way, the zigzag GA will at least have the same or 

better results with the classic zigzag and the concern that the randomness of 

evolutionary algorithms will worsen the situation is eliminated.  

The flow chart is given in Figure 3.4. The GA method can also be 

replaced by any population-based method like particle swarm optimization, 

flower pollination algorithm, bacterial colony chemotaxis algorithm, or  
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Figure 3.3 zigzag IP procedure 

 

 

Figure 3.4 zigzag GA procedure 
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3.2.3 Zigzag search method with adaptive step-size selection 

Artificial bee colony algorithm etc. Further researches will focus on how 

to design a more suitable heuristic algorithm within zigzag framework. 

The step-size for a classic zigzag search method is firstly defined by the 

user. Then in the line search, the current step size will be doubled if better 

function value is obtained. Otherwise, if the new solution violates any 

constraints, the step size will be reduced to half until the candidate solution is 

feasible.  

Therefore, if the user defined step size is unsatisfactory, then the quality 

of the Pareto front is hard to be guaranteed. Especially when the step size is 

large, the Pareto front solution will be inaccurate. Another way around is to 

reset the step size to a very small value then it will be doubled until current 

solution is close enough to the boundary. However, the small step size will 

make the zig-zag search method bring too much unnecessary solutions. 

Inspired by the steepest gradient descent [6], a zigzag search with 

adaptive step size is proposed to determine the step size automatically. 

Additionally, instead of using the fixed step size, the desirable range of two 

adjacent Pareto front solutions can be assigned by users. As shown in equation 

(29), εu and εl will give the user the desirable diversity of the Pareto front 

solution. 

 1 1 1(X ) (X )s u
n nf f     (29) 

 In steepest gradient descent, the step size selection can be attained by 

applying equation (30). xk is the current solution; λ is the optimal step size; d 
k is the gradient. 

 min  ( )k kf x d  (30) 



 

24 
 

 2min  ( )k kf x g   (31) 

 1 1( ) ( )s k k k uf x g f x        (32) 

In the zigzag search method, two objective functions are involved. As 

equation (25) shows, g2 will be obtained by the projection of g1 to g2.  
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CHAPTER FOUR  

POWER SYSTEM PROBLEMS FORMULATIONS 

4.1 Economic emission dispatch 

Currently, economic dispatch is the major methodology for ISO to 

determine the optimal output of each power plant. It is utilized in satisfying 

the demand with the least cost. However, for traditional units, fossil fuels are 

the major source of generating electric power. With the increasing demand 

consumption, environment protection has become a serious problem. The solo 

cost optimization for economic dispatch no longer satisfied needs. Therefore, 

economic emission dispatch (EED) serves as an alternation method for ISO 

to dispatch the units. EED problems are a multi-objective mathematical model 

which take both costs and pollution into consideration. 

4.1.1 Economic emission dispatch formulation 

The formulation of objective functions and overall models for EED will 

be given in this section. Fuel cost and emission will be set as two opposing 

objective functions while satisfying the power balance and transmission limit 

constraints. 

▲ Objective functions 

 Minimization of fuel costs 

The goal of economic dispatch is to achieve minimization of operation 

costs through optimal generation dispatch. This function can be defined: 

 
1

( )
i

N

i G
i

F F P


   (33) 

where N represents the total number of generators, PGi is the power output of 
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the generator i and Fi(PGi) is the total generation cost for the generator i. Then 

F will be the overall operation cost.  

Traditional dispatch problem makes an assumption that power output 

increases quadratically or linearly with power efficiency [37]. Typically, 

Fi(PGi) is represented by quadratic functions: 

 
2( )=a

i i ii G i i G i GF P b P c P   (34) 

where ai, bi , and ci are fuel cost coefficients of the generator i. 

In reality, stream enters the turbine through different set of nozzles. 

Those nozzles are opened in a sequence to achieve the highest efficiency, 

which is called valve-point effect. Therefore, there will be a rippled term in 

fuel cost function, as shown: 

 
2 min

, ,( )=a + e sin( ( ))
i i ii G i i G i G n n G n G nF P bP c P f P P    (35) 

where en and fn are fuel cost coefficients for valve-point effects. 

 Minimization of emission 

Extreme amount of pollution are generated while power plants provide 

electricity. For example, Sulfur Oxides, Nitrogen Oxides, Osmium tetroxide,  

Oxygen difluoride, Perchloryl fluoride, Phosgene, Phosphorus pentafluoride, 

Selenium hexafluoride or Carbon Dioxide are all detrimental to both the 

environment and human body. 

 The relationship between emissions and power output can also be 

represented as quadratic function [38]: 

 
2( )=

i i ii G i i G i GE P P P     (36) 

where αi, βi , and δi are emission coefficients of the generator i. 
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▲ Constraints  

 Equality constraint:  

 L
1 1

=
i i

N NL

G
i i

P P
 
   (37) 

where NL is the total number of loads. The equality constraint for an EED 

problem is power balance. The total amount of generation output must be 

equal to the sum of demand, in order to achieve secure operation. 

 Generator output limit 

 
Min Ma  

i i i

x
G G GP P P i    (38) 

For secure generator operation, the output of each generator must be 

within its power loading limits. PMin is the minimum value for generator. 

PMax is the maximum value for generator. Gi is the index for a specific 

generator.  

 Transmission line thermal limit  

For the purpose of steady operation of the power system, load flow run 

at each line should not exceed its thermal limits. 

      k=1,2,3,.....,NLim
k kP P  (39) 

where N is the total number of transmission lines and PLim is the flow limit 

at a line. K is a specific index for a line.  Most researches on EED [24] [26] 

[27] [39] doesn’t consider this constraint since it will derive too many 

constraints as the test system grows larger. However, transmission limits are 

extremely important for secure operation. Therefore, in the later case study, 

we will take the line flow limit into consideration. 
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4.1.2 Model reformulation 

It is clear from the above problem formulations that the economic 

emission problem is a non-linear multi-objective optimization problem.  

Decision variables are the outputs for each power plant which will be confined 

within a certain range. The parameter configuration of the zigzag search 

algorithm for the EED problem is based on trial and error. 

Equality constraint is hard to be dealt with when applying a zigzag search 

algorithm, which is also an important issue for most optimization algorithms. 

However, in any economic dispatch related optimization problem there is no 

escape from power balance constraint. Here, it is dealt with representing 

output of one power plant with outputs from the others. Then the output of 

generator j is given by: 

 L
1 1,

= )
j i i

NL N

G G
i i i j

P P P
  

   (40) 

The optimization problem can be reformulated as shown in the following: 

 

2 min
, ,

1,

2
L L

1 1, 1 1,

min
, j L

1 1,

in ( )= a sin( ( - ))

a ( ) ( )

e sin( ( ( )))

i i i

i i i i

i i

N

i G i i G i G i i G i G i
i i j
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j j G j G
i i i j i i i j
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i i i j

M F P b P c P e f P P

b P P c P P

f P P P

 

     

  

  

    

  



   

 

 (41) 

 

2

1,

2
L L

1 1, 1 1,

 ( ) =

( ) ( )

i i i

i i i i

N

i G i i G i G j
i i j

N L N N L N

j G j G
i i i j i i i j

M in E P P P

P P P P
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 

 

     

  

   



   
 (42) 

st: 
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 Min Ma   
i i i

x
G G GP P P i N i j       (43) 

 Min Ma
L

1 1,
j i i j

NL N
x

G G G
i i i j

P P P P
  

     (44) 

     k=1,2,3,.....,NLim
k kP P  (45) 

In the above optimization formulation, PGj is an unknown variable while 

other symbols represent parameters. The equality constraint will be enforced 

as other inequality constraints are satisfied. 

4.2 Economic dispatch considering CVaR 

Renewable energy like wind power is usually environmental-friendly 

and cost-efficient, which is beneficial to green and economic operation for the 

power system [40]. However, because of its intermittent behavior, the 

randomness and uncertainty it brings will be detrimental to power system 

secure operation.  In decentralized electricity market, economic dispatch is 

utilized to determine the optimal output for each power plant in terms of fuel 

cost. With increasing penetration of wind power, a challenge has been posed 

concerning how to deal with the intermittence of wind power in the economic 

dispatch problems. 

In this section, a multi-objective economic dispatch model under wind 

generation uncertainty will be proposed with the consideration of both the 

operation cost and CVaR.  

4.2.1 Wind penetration 

▲Weibull Distribution  

A Weibull probability distribution function (PDF) is a prevailing method 

to model wind speed distribution [41][42]. The mathematical formulations are 
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shown from equations (46) - (48). 

 1( ) ( ) exp[ ( ) ] r rr
f

c c c

     (46) 

 1.086( )
mean

r



  (47) 

 c=
(1 1/ )

mean

G r




  (48) 

▲Conversion  

The wind power output is closely related to the distribution of wind 

speed. The higher the wind speed, the more wind power will be generated if 

the wind speed is below the cut-out speed. This paper adopts the conversion 

method from [43], as shown in equation (49). In this equation, k is a constant 

number, Cp is the maximum power coefficient, ρis the air density, A is the 

area for the rotor, V is the velocity of the wind speed, and Prated is the 

maximum wind power which can be integrated. 
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 (49) 

4.2.2 Security and risk assessment 

The attempt to decrease the cost of generation units in the day-ahead DA 

market will inevitably increase the scheduled power output of wind energy. 

However, the real power output for wind is uncertain and assumed to follow 

the Weibull distribution to be introduced in Section III of this chapter. 
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Therefore, the over estimation of wind power output will lead to the inability 

to satisfy the load. As a result, the deficiency will be compensated by buying 

extra power in the balancing market. The optimal DA market operation cost 

may correspond to significant financial loss in the RT market. 

VaR was proposed by J. P. Morgan in 1996, which is defined by the 

maximum loss in a portfolio under a certain confidence level [50]. The 

formulation of VaR can be seen from equation (50) where a is a predetermined 

confidence level. It normally selected from 0.8, 0.9, 0.95 and 0.99. x is the 

random variable and z is the financial losses. 

 ( )=min{ | ( ) : [0,1]}a xVaR x z f z a a   (50) 

CVaR is defined as the expected value of a loss exceeding VaR, as shown 

in equation (51) and (52) where z is the loss value and 𝐹௑is the cumulative 

probability function. 

   ( ) a
a XCVaR x zdF z




  （）  (51) 
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F F z a

z VaR x
a

 
   

  

  (52) 

There are several risk assessment techniques that have been widely used 

in power system application [44] [45] [46]. In this paper, CVaR is employed 

since it has two advantages: (1) it is a convex optimization; and (2) it is 

designed to be sensitive to extreme losses. As shown in Figure 4.1, the CVaR 

value is obtained by calculating the expectation of the shadow area. α is the 

confidence level. 
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4.2.3 Model formulation 

▲Objective functions  

 Minimization of fuel costs 

The objective of economic dispatch is to determine the optimal output 

from each unit economically. The operation cost function can be described in 

as follows 

 
1

( )
i

N

i G
i

F F P


   (53)  

where PGi is the power output for ith generator, Fi is the cost function for each 

unit, and N is the total number of power plants. Typically, Fi (PGi) is 

represented by quadratic functions: 

 2( )=c
i i ii G i i G i GF P b P a P   (54) 

where ai, bi , and ci are fuel cost coefficients of the generator i. 

 Minimization of CVaR 

Under wind power uncertainty, the evaluation of CVaR can be 

formulated in equation (55). 

 

VaR

CVaR

α 1-α 

Expected Cost

 

Figure 4.1 illustration of CVaR value 
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q   

 

  
   (55) 

where α is the VaR value and β is a predetermined confidence level. k 

represents a scenario index for wind power output and q is the total scenarios 

generated. f (PG, PW) is the financial loss function in RT market for ISOs, as 

shown in equation (56). 
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 (56) 

where ρ1 is the purchase value of extra power at RT market, ρ2 is the excessive 

wind power penalty coefficient, Pk w,i is the actual wind power and Ps w,i is 

the scheduled wind power. 

▲Technical constraints 

 Power balance  

 s
L

1 1 1

+ =
i i i

N NW NL

G W
i i i

P P P
  
    (57) 

Power balance constraint ensures the secure operation of the power 

system. The total amount of generation outputs must be able to satisfy the sum 

of the demand. NL is the total number of loads and NW is the total number of 

wind plant.  

 Generation limits 

 
Min Ma   ,

i i i

x
G G GP P P i N     (58) 

The output of each generator will be confined in its power loading limits. 

PMin Giand PMax Giare the minimum and maximum value for power output 

respectively. 

 Wind power forecast constraint 
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The forecasted wind power generation is limited by the maximum and 

minimum wind power capacity. 

 
min max

, , , ,s
W i W i W iP P P i NW     (59) 

  



 

35 
 

CHAPTER FIVE  

SIMULATION RESULTS AND DISCUSSIONS 

The zigzag search algorithms are applied to both the IEEE 30-bus system 

and IEEE 118 bus system. In order to show its effectiveness, the zigzag search 

algorithms are compared with both the NSGA-Ⅱ and MOPSO. 

All algorithms are implemented in Matlab 2014 and run in a computer 

with an Intel i7-3720 processor and 8GB RAM. 

5.1 Simulation results from economic emission dispatch 

5.1.1 Description of test system 

▲IEEE 30 bus system 

The single line diagram of the IEEE 30-bus system is shown in Figure 

5.1 [4]. 6 units are dispatched to fulfill a total 283.4 MW load.  Cost and 

emission coefficients data is shown in Table 1. Load data and branch data can 

be found at [47]. 

 

 

Figure 5.1 one-line diagram of IEEE 30-bus system 
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Table 1 cost and emission data for 30-bus system 

 

 

Figure 5.2 one-line diagram of IEEE 118-bus system 

 

Generator 

NO 

a1($/ 

MW) 

b1($/ 

MW) 

c1($/ 

MW) 

α1(kg/ 

MW) 

β1(kg/ 

MW) 

γ1(kg/ 

MW) 

1 0.00375 2 0 0.0126 -1.1 22.983 

2 0.0175 1.75 0 0.02 -0.1 25.313 

3 0.0626 1 0 0.027 -0.01 25.505 

4 0.00834 3.25 0 0.0291 -0.005 24.9 

5 0.025 3 0 0.029 -0.004 24.7 

6 0.025 3 0 0.0271 -0.0055 25.3 
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 Table 2 cost and emission data for 118-bus system 

 

Table 3 computation time and solution number comparison 

Algorithm
Run time 

(s) 

Pareto 

solution 

NSGA-Ⅱ 258.85 120 

MOPSO 120.18 200 

Zigzag 40.13 897 

 

Generator 

NO 

a1($/ 

MW) 

b1($/ 

MW) 

c1($/ 

MW) 

α1(kg/ 

MW) 

β1(kg/ 

MW) 

γ1(kg/ 

MW) 

1 0.022 20 0 0.016 -1.5 23.33 

2 0.1176 20 0 0.031 -1.82 21.022 

3 0.045 20 0 0.013 -1.249 22.05 

4 0.0318 20 0 0.012 -1.355 22.983 

5 0.4286 20 0 0.02 -1.9 21.313 

6 0.526 20 0 0.007 +0.805 21.9 

7 0.049 20 0 0.015 -1.401 23.001 

8 0.2083 20 0 0.018 -1.8 24.003 

9 0.0645 20 0 0.019 -2 25.121 

10 0.0625 20 0 0.012 -1.36 22.99 

11 0.0256 20 0 0.033 -2.1 27.01 

12 0.0255 20 0 0.018 -1.8 25.101 

13 0.0194 20 0 0.018 -1.81 24.313 

14 0.021 20 0 0.03 -1.921 27.119 
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▲IEEE 118 bus system 

A typical IEEE 118-bus system is used to demonstrate the effectiveness 

of the proposed method. The total load is 2067.5MW which is provided by 14 

units. Cost and emission coefficients data can be found in Table 2. The single-

line diagram is shown in Figure 5.2. All other related data can be found in [47] 

[48] [49]. 

5.1.2 Results from the IEEE 30-bus systems 

This test system is a small-size system with six generators. Generator 

capacity constraints, power balance constraint and transmission limits are all 

considered. The zigzag search successfully obtain 897 Pareto fronts in 

40.1314 seconds, as shown in Table 3. It starts from f1= 767.8439, 

f2=430.5725 and keeps zigzagging until f1= 827.7445, f2=330.6526 while 

NSGA-Ⅱ and MOPSO only obtain 120 solutions and 200 solutions in 

258.8536 and 120.1838 respectively. 

In order to get enough Pareto fronts, the population size for both MOPSO 

and NSGA-Ⅱ is set to a relatively high value. It is obvious that the zigzag 

search obtains more alternative solutions in a much less computation time than 

the other two algorithms. 

In terms of accuracy, the zigzag search algorithm outperforms NSGA-Ⅱ 

and MOPSO, as shown in Figure 5.3 and Figure 5.4. 

▲Results from the IEEE 118-bus system 

There is hardly any research investigating economic emission problem 

with IEEE 118-bus systems while considering all the constraints mentioned 

in problem formulation. 
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Figure 5.3 detailed Pareto front 

 

 

Figure 5.4 comparison by MOPSO, NSGA-ii and classic zigzag search 
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Figure 5.5 comparison for case 1 between MOPSO, NSGA-ii and classic 

zigzag search 

 

Table 4 computation time and solution number comparison 

Algorithm
Run time 

(s) 

Pareto 

solution 

NSGA-Ⅱ 780.13 120 

MOPSO 664.46 101 

Zigzag 314 .61 894 

 

Table 5 best solution comparison 

Algorithm Best solution(f1,f2) 

Zigzag  IP (60080.2, 8121.6) 

MOPSO (60100,8381.3) 
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Therefore the proposed methods are applied to this system. Comparisons 

are made and three cases are considered to further reveal the helpfulness of 

the zigzag method, zigzag IP, and zigzag GA. 

 Case 1: ignoring transmission limits 

In this case only generation limits and power balance constraints are 

considered. All the algorithms behave well and consistent Pareto fronts are 

obtained (Figure 5.5). 

The accuracy of NSGA-Ⅱ starts to decrease while MOPSO still obtains 

rather accurate results. However, the zigzag search still outperforms these two 

in terms of accuracy. 

The following Table 4 shows that the zigzag search method saves much 

computational time while obtaining more alternative solutions.  

 Case 2: considering transmission limits 

When taking transmission limits into consideration, the Pareto front 

obtained from NSGA-Ⅱ is so far from the Pareto front for zigzag and MOPSO 

that it is dropped from the comparison. 

The classic zigzag algorithm doesn’t form a suitable Pareto front (Figure 

5.6). The algorithm stop early if no suitable initial guess is provided, as 

explained in section III. 

In order to overcome this drawback, the zigzag IP is proposed and 

applied to show its effectiveness. From Figure 5.7, it is obvious that the zig-

zag IP outperforms both MOPSO and the classic zigzag algorithm but it is to 

some extent at the sacrifice of computation time when comparing with the 

classic zigzag. 

If accuracy is the major concern then the zigzag IP is more preferred. If 
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only a few solutions are needed and computation time is most important, then 

the classic zigzag can be applied. 

Table 5 shows the computation time for each proposed method and Table 

6 shows selected best solution for each method. 

 Case 3: considering valve-point effect 

In this case, an additional sinusoidal term will be applied in the fuel cost 

function to represent the valve-point effect in addition to those constraints 

posed on case 2, which will lead the optimization problem to become non-

convex. In this situation, although a fair initial guess is provided to the classic 

zigzag algorithm in order to form the Pareto front, the accuracy is less than 

satisfactory, as shown in Figure 5.8. 

However, the Pareto front is successfully obtained by the zigzag GA 

(Figure 5.9). The results are also compared with result obtained from MOPSO. 

As shown in Table 7, although the zigzag GA consumes more time, it 

returns more solutions with better accuracy.  

5.2.2 Simulation results 

▲Wind Penetration 

However it is not guaranteed and the result from the zigzag GA may 

occasionally be the same with the classic zigzag. This is because the Pareto 

solution returned from the GA is not the same every time but if more 

computation time is allowed or a better way to initial parent populations, 

Zigzag GA will have higher chance to return a better result. It is demonstrated 

that the zigzag frame is suitable for incorporating evolutionary algorithms 
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Figure 5.6 comparison for case 2 between MOPSO and zigzag search 

 

 

Figure 5.7 comparison for case 2 between MOPSO and zigzag IP 
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Table 6 computation time comparison  

Algorithm Run time (s) Pareto solution 

Zigzag  IP 483.62 651 

Classic zigzag 17.64 22 

MOPSO 3401.23 39 

 

 

Figure 5.8 comparison for case 3 between MOPSO and classic zigzag  

 

 

Figure 5.9 comparison for case 3 between MOPSO and zigzag GA 
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Table 7 computation time and solution number comparison 

Algorithm Run time (s) Pareto solution 

MOPSO 3628.44 27 

Zigzag GA 8876.3 139 

Classic Zigzag 134.5 15 

 

Table 8 generation capacity and cost parameters 

Generator Pmin 
i  Pmax 

i

ai 

($/MW) 

bi 

($/MW) 

ci 

($/MW) 

1 5 50 100 200 10 

2 5 60 120 150 10 

3 5 100 40 180 20 

4 5 120 60 100 10 

5 5 100 40 180 20 

6 5 60 100 150 10 

 

 

Figure 5.10 wind speed weibull distribution  
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Figure 5.11 wind power output curve 

 

 

Figure 5.12 CVaR under different wind power integration 
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Figure 5.13 pareto front with different confidence level 

 

 

Figure 5.14 pareto front comparison 
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5.2 Case study for economic dispatch considering CVaR 

5.2.1 Description of test system 

A modified IEEE 30-bus system is applied and the generation capacity 

and cost efficient are shown in Table 8. The total electricity demand is 283.4 

MW.  

Two wind farms are located at the same place with generator 1 and 

generator 2. Each of the wind farm is composed of 32 wind turbines. The wind 

speed curve is modeled by Weibull distribution, as shown in Figure 5.10. 

The Enercon E-126 EP4 4.2 MW turbine model is selected as a wind 

turbine model because it has high power output. The r and c are set at 5 and 

8, respectively.  Power curve is shown in Figure 5.11. According to this 

distribution, 1000 scenarios are constructed. 

▲Financial Risk under wind penetration 

Figure 5.12 shows the CVaR values under confidence level 0.8, 0.95, 

0.99, 0.999 respectively with different scheduled wind power outputs, from 

which it can be seen that the CVaR value monotonically increases with 

scheduled wind power output.  When ISO schedules more wind power in the 

DA market, it will face losing substantial amounts of money in the RT market. 

In the extreme case when all thermal units are set at the minimum output, wind 

power scheduled will be 253.4MW which accounts for 89% of total demands, 

as shown at the endpoint of each line in Fig.2. The CVaR value is more than 

$600,000. The higher the CVaR value is, the more financial loss may be 

induced in RT market. Therefore, the financial risk can be reduced if less wind 

power is scheduled by ISO. 

However, increasing wind penetration enables ISO to switch off 
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traditional thermal units that have high operation costs. The more wind power 

is scheduled, the more operation cost can be saved from the DA market, as 

shown in Figure 5.13. At the same extreme case mentioned before, although 

the CVaR is rather high, the operation costs are reduced to $16,380. With 

costs decreasing, the CVaR value inevitably increases. Based on the Pareto 

front, ISO can tradeoff between the possible loss in the RT market and 

operation cost at the DA market. 

▲Comparing Pareto Optimal Solutions 

To illustrate the improvements on the algorithm more clearly, instead of 

using the original CVaR value, the square of CVaR is applied. CVaR under 

95% confidence level is selected as the representative case for comparison.  In 

Figure 5.14，the proposed zigzag search method with adaptive step-size is 

compared with the classic zigzag search method with both the small step-size 

and large step-size. By applying the small step size, the Pareto front obtained 

will be accurate but there will be too many Pareto front solutions calculation 

which may be unnecessary. By applying the large step-size, the accuracy is 

not guaranteed, the solution keeps jumping away from the true Pareto front 

and the Pareto solutions may be too sparse. Moreover, if the system gets larger, 

the accuracy will worsen. The Pareto front obtained by adaptive step-size 

shows better accuracy than the Pareto front obtained by applying the large 

step-size and it has a more consistent pattern. After the operation cost is larger 

than $150,000, the accuracy of Pareto front obtained by the proposed method 

is almost the same with the small step method.  Also, the proposed method 

avoids calculating unnecessary solutions. The distance of adjacent two Pareto 

front solutions totally depends on users’ preference. 
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5.3 Simulation result discussion 

5.3.1 Zigzag IP search and zigzag GA search   

In both the 30-bus system and the 118-bus system, the zigzag search 

algorithms outperform NSGA-Ⅱ and MOPSO. It also provides more solutions 

in less computation time.  In the 30 bus system the computation time of the 

zigzag search is almost 15% of NSGA-Ⅱ and 33% of MOPSO and Pareto 

solutions obtained are up to ten times greater. In a 118 bus system, without 

power flow limits, computation time of the zigzag search is less than half of 

NSGA-Ⅱ and MOPSO and the number of Pareto solutions obtained are close 

to 8 times the solutions obtained from them. When flow limit is posed, the 

accuracy of the classic zigzag algorithm is not as accurate as before but still a 

few alternative solutions can be obtained in a short amount of time. The 

modified zigzag search algorithms are also applied. Depending on different 

situations, a better result can be achieved by applying either the zigzag IP or 

the zigzag GA. 

5.3.2 Zigzag search with adaptive step-size 

A new economic dispatch model with CVaR risk management under 

wind power output uncertainty is proposed to demonstrate the usefulness of 

the zigzag search with adaptive step-size. In the IEEE 30-bus sytem, the 

proposed method outperform the classic zigzag search method. The fixed and 

user-defined step-size for classic zigzag search method is replaced by an 

adaptive step-size selection, to guarantee the accuracy and avoid unnecessary 

calculation. 
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CHAPTER SIX                                                                          

CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusion 

In this thesis, an analytical method, the zigzag search algorithm, for 

power system multi-objective optimization is proposed, modified and applied 

to two test studies. The contribution and advantages can be summarized as 

follows: (1)a zigzag search algorithm to an economic emission dispatch 

problem and successfully obtaining satisfactory results; (2) modified versions 

of the zigzag search algorithm are proposed to extend the original zigzag 

search to a broader application range: zigzag IP for large scale convex 

problems and zigzag GA for non-convex problems; (3) the step-size selection 

is improved by applying a steepest descent method to simplify the step size 

selection procedure and obtain more accurate results; and(4) test cases are 

carried out to demonstrate the zigzag search algorithms’ efficiency and 

effectiveness for implementation in both small-size and large-size problem 

instances. Through comparison with other techniques published in literature, 

the proposed approaches can provide better solution than other algorithms for 

power system optimization problems. 

6.2 Future work  

For more practical applications and further improvement of the zigzag 

algorithm, the following improvement can be investigated. 

(1) Obtaining a more precise approach to automatically determine the step size 

for the zig and zag step will improve the zigzag algorithm proposed in this 

thesis. 
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(2) Further modification of the zigzag GA algorithm can be focused on 

replacing GA with other evolutionary algorithms such as PSO, artificial 

bee algorithm or ant colony algorithm. By testing different evolutionary 

algorithm, the most suitable algorithm can be determined to be applied. 

(3) Extending the original zigzag search algorithm to a discrete zigzag search 

algorithm can enable the zigzag search algorithm to be applied into unit 

commitment problem or PMU location optimization. 

(4) By combining the zigzag adaptive step-size algorithm and other zigzag 

based algorithm, a new variant of zigzag search algorithm can be 

developed. 
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