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ABSTRACT 

PURPOSE: The purpose was to develop two regression models (2RM) to estimate energy 

expenditure (EE) using wrist-worn GENEActiv (GENEA) and Axivity AX3 (AX3) activity 

monitors in youth. METHODS: Youth (N=100; mean ± [plus or minus] SD; age, 12.2±3.5 

years) performed 16 activities ranging from sedentary behaviors (SB) to vigorous physical 

activities (VPA). Participants wore a GENEA and AX3 monitors on the opposite wrists. 

Monitors were randomized for which device was worn on which wrist. A Cosmed K4b2 (K4b 

squared) was used as the criterion measure of EE. Raw 100 Hz acceleration data were expressed 

as Euclidean norm minus one (ENMO) and reduced to one-second epochs. 2RMs were 

developed for the GENEA and AX3 worn on the left and right wrists. Leave-one-participant-out 

cross-validation (LOOCV) was used to assess model performance. Using the entire activity bout, 

estimates of average EE from the four 2RMs and a previously developed single regression 

equation were calculated and estimates of time spent in different physical activity (PA) intensity 

levels were calculated using the four 2RMs and five single regression equations and ROC cut-

points. RESULTS: Log-transformed ENMO was used for the development of the classifiers. 

Log-transformed ENMO and age were used as predictor variables in the regression equations. 

For the LOOCV, the four 2RMs had root mean square errors (RMSE) of 0.84-0.95 youth 

metabolic equivalents (METy [MET y]) and mean absolute percent errors (MAPE) of 19.21-

20.71%. For the entire activity bout, RMSE for the 2RMs ranged from 0.40 METy to 0.60 METy 

and the Hildebrand single regression ranged from 0.97 METy to 1.25 METy. The four 2RMs 

were within ± 10.3 minutes of measured minutes of SB, light PA (LPA), moderate PA (MPA), 

and VPA. All other methods were within ± 61.5 minutes of measured minutes of SB, LPA, 

MPA, and VPA. CONCLUSION: Compared to indirect calorimetry, the newly developed 
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2RMs had lower RMSE and MAPE for estimates of METy and time spent in PA intensity levels 

than previously developed methods. Future studies should validate the 2RMs using an 

independent sample in a free-living environment. 
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CHAPTER I: INTRODUCTION 

Physical activity (PA) is important in youth due to a variety of health benefits, such as 

increased cognition (3), prevention of obesity (33), and decreased depression (34). Research 

determining dose-response relationships between PA and health outcomes is reliant on accurate 

and reliable methods to estimate energy expenditure (EE) and time spent in different PA 

intensity levels (71). Recall surveys are a common subjective measure that rely on an individual 

to recall their PA behavior, which includes context of activity, by asking participants to recall 

their PA for several months to a year (72). Recall surveys are commonly used because of the low 

cost of administering them to large groups of participants. However, they are limited because 

individuals may not accurately recall the intensity, frequency, or duration of PA they perform 

(58). To eliminate the subjective nature of recall surveys, researchers have used objective 

measures of PA such as accelerometer-based activity monitors to collect PA data (74). 

Accelerometer-based activity monitors are lightweight, non-invasive wearable devices 

that contain accelerometers which measure acceleration and deceleration of the human body. 

Through the use of predictions models (e.g. regression equations (25, 32), artificial neural 

networks (ANN) (44, 45, 61), random forest (49), hidden Markov models (51), etc.), these 

activity monitors can be used to estimate EE, intensity, duration, and frequency of PA for several 

consecutive days to weeks, making them a popular tool amongst researchers, health care 

providers, and the general public (6, 21). Various accelerometer-based activity monitors have 

been uniaxial, measuring acceleration in the vertical axis (VA), while the majority of current 

accelerometer-based activity monitors are triaxial and measure movement in three axes: 

mediolateral axis (x-axis), VA (y-axis), and anteroposterior axis (z-axis). Accelerometer-based 

activity monitors can be worn at various locations on the body such as the wrist, hip, thigh, or 
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ankle. Traditionally, accelerometer-based activity monitors were worn on the hip. However, 

wearing accelerometer-based activity monitors on the wrist have become more popular due to 

increased compliance in wear time by the participant (23, 70) and the ability to estimate sleep 

duration and quality (65). Accelerometer-based activity monitors can also be combined with 

other sensors, such as heart rate monitors, gyroscopes, magnetometers, and altimeters to be used 

in prediction models for estimating EE and time spent in different PA intensity levels. Fifty-one 

percent of published studies use the ActiGraph, making it the most commonly used 

accelerometer-based activity monitor (74). However, the GENEActiv (GENEA) is currently 

being utilized in prospective cohort studies such as the Whitehall II study (N = 10,314) (43), 

Fenland study (N = 1,695) (73), and the Cork and Kerry Diabetes and Heart Disease Study (N = 

464) (36) and the Axivity AX3 (AX3) is being used in the UK BioBank with a total sample of 

over 500,000 participants (18), making the two activity monitors widely used. 

Prediction models that have been developed on adult populations cannot be applied to 

youth populations. Youth require separate calibrations than adults due to differences in 

movement economy (46) and increased resting metabolic rate (RMR) (60). Between the ages of 

1.5 and 18 years old, running economy improves 2% per year (46). In addition, RMR in youth 

declines from ~10 ml O2.kg-1.min-1 at five years old to 3.5 ml O2.kg-1.min-1 at 18 years old (60). In 

adults, a metabolic equivalent (MET) is defined as !"# =	 &'()*)(+	,-.
/.1	23.4567.2)867	

, however the use of 

this in youth will result in over-estimations of EE (60). Thus, researchers either use the predicted 

basal metabolic rate from the Schofield Equation (60) or measured RMR to convert oxygen 

consumption to youth metabolic equivalents (METy, !"#+ = 	
&'()*)(+	,-.
9:;()85	,-.

). These differences 

between youth and adult physiology highlight the need for youth-specific regression equations to 

estimate EE and activity intensity. 
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Regression equations using acceleration output as the predictor variable are the most 

common technique to predict EE and time spent in sedentary behavior (SB; <1.5 METs), light 

physical activity (LPA; 1.5 – 2.99 METs), moderate physical activity (MPA; 3.0 – 5.99 METs), 

and vigorous physical activity (VPA; ≥6.0 METs) based on the assumption that EE and 

acceleration are linearly related (25). Although regression techniques are common, no single-

regression equation predicts EE or different PA intensities across a wide range of activities (17, 

66). 

Pober et al. (51) showed that in an adult population, activities with the same MET value 

can have varying average activity count values, with intermittent activities often having a 2-3 

times higher EE than continuous walking or running (CWR) at the same average activity count 

value. As a result, Crouter and colleagues have developed separate two-regression models (2RM) 

using the Actical (9) and the VA from a hip-worn ActiGraph 7164 for adults (10, 15) and the VA 

and vector magnitude (VM) from hip-worn ActiGraph GT3X (GT3X) in youth (13). These 

2RMs first apply a threshold that discriminates between sedentary and non-sedentary behavior 

based on acceleration, and second, based on the variability in count values from one epoch to the 

next to discriminate between intermittent activity and continuous walk/run activity, a separate 

regression equation is applied that predicts EE based on the count values. Based off of a 

validation study using an independent sample in youth, the use of a 2RM improves estimates of 

EE compared to indirect calorimetry. The Crouter youth-specific VA and VM 2RM had a RMSE 

of 1.50 and 1.55 METy which were lower than commonly used single regression equations (1.56-

1.65 METy) (14). More recently, Hibbing et al. (30) developed 2RMs for the hip, left wrist and 

right wrist in adult populations while no 2RMs have been developed for the wrists in youth 

populations. The left and right wrist 2RMs had RMSEs of 1.24 METs and 1.29 METs, 
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respectively, which were comparable to the RMSE for the hip which was 1.14 METs suggesting 

there may be utility for wrist-worn 2RMs. 

Statement of Problem 

The GENEA and AX3 are two accelerometer-based activity monitors that are used by 

researchers (74) and have been previously validated using a mechanical shaker for their ability to 

measure acceleration (20, 39). Single regression equations are still the most commonly used 

method of estimating PA in youth when using GENEA (32). However, no prediction equation 

has been developed for the AX3. Using the Actical (9) and ActiGraph series of activity monitors, 

previous 2RMs decreased the error of EE predictions (13, 14) and provided closer estimates of 

time spent in different PA intensity levels (14) compared to criterion values derived from indirect 

calorimetry. Currently, there is a gap in the scientific literature because there is no adequate 

method for assessing PA using the wrist-worn GENEA and AX3 activity monitors.  

Statement of Purpose 

The primary purpose of this study was to develop 2RMs to estimate EE using wrist-worn 

GENEActiv and AX3 activity monitors in youth. 

Research Questions 

Question 1: Compared to indirect calorimetry, did the wrist-specific 2RMs for the GENEA and 

AX3 activity monitors provide improved estimates of EE compared to the wrist-specific 

Hildebrand single regression equation. 

Hypothesis 1a: It was hypothesized that using a wrist-specific 2RM for the GENEA in youth 

would improve estimates of EE to indirect calorimetry compared to the Hildebrand single 

regression equation. 
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Hypothesis 1b: It was hypothesized that using a wrist-specific 2RM for the AX3 in youth would 

improve estimates of EE and time spent in different PA intensity levels to indirect 

calorimetry compared to the Hildebrand single regression equation. 

Question 2: Compared to indirect calorimetry, did the wrist-specific 2RMs for the GENEA and 

AX3 activity monitors provide improved estimates of time spent in different PA intensity 

levels, compared to the Hildebrand single regression equation, Phillips cut-points, and 

Schafer cut-points? 

Hypothesis 2a: It was hypothesized that using a wrist-specific 2RM for the GENEA in youth 

would improve estimates of time spent in different PA intensity levels to indirect 

calorimetry compared to the Hildebrand single regression equation, Phillips cut-points, 

and Schaefer cut-points. 

Hypothesis 2b: It was hypothesized that using a wrist-specific 2RM for the AX3 in youth would 

improve estimates of time spent in different PA intensity levels to indirect calorimetry 

compared to the Hildebrand single regression equation, Phillips cut-points, and Schaefer 

cut-points. 

Delimitations 

1. Participants were between 6 and 18 years old. 

2. Participants reported no cardio-respiratory conditions, metabolic conditions or 

medications that affect metabolic processes, and no musculo-skeletal injury within the 

past six months via a health history questionnaire. 

3. Activities were limited to the facilities within and around the Health, Physical Education, 

and Recreation Building on The University of Tennessee, Knoxville campus.  
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4. Participants were asked to refrain from PA for 24 hours prior to testing and refrain from 

eating and drinking, except for water, for 3 hours prior to testing. 

Limitations 

1. Participants were exposed to some risks inherent to vigorous intensity physical activity 

2. Participants’ parents were expected to answer the health history questionnaire truthfully. 

3. Weather and campus events may have interfered with the ability to collect data. 

4. It is assumed that participants followed directions and refrained from exercise, eating, 

and drinking prior to testing, though participants who did not follow instructions could 

have affected EE measurements.  
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CHAPTER II: LITERATURE REVIEW 

Accelerometer-based activity monitors are increasingly popular devices that measure 

movement of the human body. Researchers use accelerometer-based activity monitors because 

they are minimally invasive. In addition, through the use of prediction models, they can estimate 

duration, frequency, and intensity of physical activity (PA) (16, 74) through data collected in 

either a single axis (y-axis) or in three axes (x-, y-, and z-axes). Two commercially available 

activity monitors that are used by researchers include GENEActiv (GENEA, Activinsights Ltd, 

Kimbolton, Cambridgeshire, UK) and Axivity AX3 (AX3, Axivity, Newcastle, UK). The 

GENEA is currently being utilized in prospective cohort studies such as the Whitehall II study 

(N = 10,314) (43), Fenland study (N = 1,695) (73), and the Cork and Kerry Diabetes and Heart 

Disease Study (N = 464) (36). The AX3 is being used in the UK BioBank with a total sample of 

over 500,000 participants (18). 

The purpose of the literature review is to discuss previously developed energy 

expenditure (EE) and PA intensity prediction models for the GENEA and AX3 activity monitors 

in adults and youth. The review will be organized by activity monitor. Two subsections for each 

activity monitor will be discussed: 1) model development split into adult and youth and 2) 

comparisons between the activity monitor and ActiGraph, the most widely used accelerometer-

based activity monitor (74). 

GENEActiv 

GENEA activity monitors are typically worn on the wrist or hip. The GENEA is a small 

(43 x 40 x 13 mm) lightweight (16g) device that contains a triaxial accelerometer. It records raw 

acceleration with a range up to ±8 gravitational units (g’s) at a sampling frequency between 10-

100 Hertz (Hz) in 10 Hz increments. The GENEA has the battery and memory capacity to collect 
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100 Hz data for up to seven days. GENEA raw acceleration output (g’s) have been validated 

using a mechanical shaker (21) and calibration of prediction models to estimate EE and time 

spent in different PA intensity levels have been developed for youth (19, 31, 32, 50, 55, 56, 59) 

and adult (20, 31, 32, 35, 44, 45, 49, 52, 57, 69, 75) populations. 

Model Development 

Adult 

Esliger et al. (20) investigated the technical reliability and validity of GENEA raw 

acceleration output, and calibrated activity intensity thresholds. Technical reliability and validity 

was assessed using a multi-axis shaking table which was calibrated to oscillate at 15 

physiologically relevant accelerations with ranges that spanned light, moderate, and vigorous 

intensities. Across all 15 accelerations, intrainstrument and interinstrument coefficients of 

variation (CV) were 1.8% and 2.4%, respectively with a correlation r = 0.97 (p < 0.001). In 

addition to the testing using a multi-axis shaking table, activity intensity thresholds for sedentary 

behavior (SB; <1.5 METs), light physical activity (LPA; 1.5 – 2.99 METs), moderate physical 

activity (MPA; 3 – 5.99 METs), and vigorous physical activity (VPA; ≥ 6.00 METs) were 

developed using receiver operating characteristics (ROC) curve analyses. A sample of 60 adults 

(age range: 40-63 years). completed 10 to 12 activities for 4.5 minutes each, except for lying, 

which was completed for ten minutes. A Cosmed K4b2 portable metabolic system was used as 

the criterion measure of EE. Reported correlations between acceleration and EE from the 

Cosmed K4b2 were r = 0.86 (left wrist), r = 0.83 (right wrist), and r = 0.87 (hip). For the left 

wrist, right wrist, and hip, sensitivities ranged from 97-99% (SB), 95-100% (MPA), and 73-78% 

(VPA) and specificities ranged from 95-96% (SB), 56-80% (MPA), and 97-99% (VPA). LPA 



 

 9 

was not assessed individually because the upper limit of SB and lower limit of MPA were used 

to create the thresholds for LPA. 

Zhang et al. (75) developed algorithms for classification of SB, household, and 

locomotion activities. The sample included 60 adults (mean age [SD] = 49.4 [6.5] years). The 

protocol consisted of 10 to 12 activities and each activity was completed for 4.5 minutes, except 

for supine rest, which was performed for ten minutes. Participants wore GENEA monitors on the 

hip, left wrist, and right wrist. To determine activity classifications, decision tree models were 

developed for each attachment site. Precision ( =>?:	@A;)()*:	(=@)

=@	C	=>?:	D:5E()*:	(=D)
) for the left wrist, right 

wrist, and hip, ranged from 98-99% (SB), 91-97% (household), 96-100% (walking), and 99-

100% (running). Accuracy ( =@	C	=D

F;()2E(:G	@A;)()*:	C	F;()2E(:G	D:5E()*:
) of all activities combined were 

96% (left wrist), 97% (right wrist), and 99% (hip). 

Hildebrand et al. (32) created one of the most commonly used regression equations to 

predict EE. A sample of thirty adults (mean age [SD] = 34.2 [10.7] years) completed a protocol 

consisting of eight structured activities split into two SB (lying down and sitting) and six 

activities ranging from LPA to VPA (circuit of activities of daily living, slow walking at 50 

m.min-1, fast walking at 83.3 m.min-1, running at 133.3 m.min-1, stepping up stairs, and standing). 

The circuit of daily activities was coded as one activity and consisted of taking off shoes 

standing, moving eight things in a bookshelf, writing a sentence, putting a sheet of paper in an 

envelope, and sitting down. Each activity was completed for five minutes, except for lying down, 

which was completed for ten minutes. The participants wore GENEA activity monitors on their 

non-dominant wrist and right hip. A VMax Encore indirect calorimeter was used as the criterion 

measure of EE. Raw acceleration measures for all three axes were combined into one measure of 

body acceleration using Euclidean norm minus one (ENMO) which subtracts one gravitational 
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unit from vector magnitude (VM; [x2 + y2 + z2]1/2 – 1g) (68). Leave-one-out cross validation was 

used to assess model performance. Two regression equations for predicting VO2 were developed: 

hip, VO2 (ml O2.kg-1.min-1) = 0.0530 ENMO + 6.86, and wrist, VO2 (ml O2.kg-1.min-1) = 0.0323 

ENMO + 7.49. The hip and wrist equations are unable to estimate time spent in SB, because 

when there is zero acceleration, the estimations of VO2 are 6.86 and 7.49 ml O2.kg-1.min-1 for the 

hip and wrist, respectively, which is about two times higher than the average RMR of an adult, 

which is 3.5 ml O2.kg-1.min-1. Therefore, the authors combined SB and LPA estimations into a 

single category. For SB/LPA, intensity classification accuracies for the hip and wrist were 93%-

100% for all activities except for slow walking (80%, hip, and 0%, wrist). For MPA, the hip and 

wrist classifications were 100% for fast walking, however, <47 and <30% for all other activities, 

respectively. For VPA, intensity classification accuracies for the hip and wrist for running were 

100% and 97%, respectively, and for stepping were 0% for both locations. 

Hildebrand et al. (31) calibrated SB cut-points from the same data set discussed 

previously (32). These cut-points were validated in a free-living setting with the ActivPal activity 

monitor used as the criterion measure of time spent in SB. Cut-points for lie/sit and stand/step 

were created using ROC curve analyses. Sensitivity for SB thresholds were 93% and 98% for the 

hip and wrist, respectively, although specificity for SB thresholds were 73% and 78% for the hip 

and wrist, respectively. When these cut-points were applied in a free-living setting, estimates of 

SB time were significantly different by at least 30 minutes at both attachment sites compared to 

the ActivPal (p < 0.001). 

One of the few studies to use machine learning techniques with the GENEA activity 

monitor was conducted by Montoye et al. (44). Artificial neural networks (ANN) were 

developed to predict EE from wrist-worn monitors while identifying simple feature sets to 
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maximize the accuracy of the predictions. Forty-four adults (mean age [SD] = 22.1 [4.3] years) 

were recruited with an equal percentage of male and female participants. Participants wore an 

Oxycon Mobile metabolic analyzer which was used as the criterion measure of EE. GENEA 

monitors were worn on both wrists while the participants completed 14 activities ranging from 

SB to VPA which included ambulatory, lifestyle, and exercise movements. Using a semi-

structured format, participants could choose the order of activities and when to transition 

between activities as long the duration was between 3-10 minutes. Four feature sets were used to 

develop the neural networks: 1) 36-time domain features and three participant features, 2) only 

mean and variance of acceleration, 3) mean, variance, and minimum and maximum acceleration 

signal, and 4) 10th, 25th, 75th, and 90th percentiles and the covariance of acceleration. The average 

measured MET value was 3.3 across all activities. Left wrist root mean square error (RMSE) for 

feature sets 1-4 were 1.18, 1.26, 1.26, and 1.15 METs, respectively, and right wrist RMSE were 

1.18, 1.25, 1.27, and 1.21 METs, respectively. 

Montoye et al. (45) developed ANNs for wrist-worn monitors using the same sample set 

as Montoye et al (44). Separate ANNs were used to predict EE and whether the activity monitor 

was worn on the left or right wrist. For EE predictions, three feature sets were tested for each 

wrist: 1) mean and variance of the VM, 2) the absolute values of the mean and variance of the 

VM, and 3) mean raw acceleration. For prediction of whether the GENEA was located on the left 

or right wrist, only the third feature set was tested. During evaluation, both models were applied 

to data from the wrist they were developed for (same wrist prediction) and the opposite wrist 

(opposite wrist prediction). Same wrist RMSE for feature sets 1-3 were 1.47, 1.33, and 1.25 

METs, respectively. Opposite wrist RMSE for feature sets 1-3 were 1.48, 1.35, and 1.97 METs, 
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respectively. The ANN developed to predict whether the GENEA was located on left or right 

wrist was correct 100% of the time. 

Pavey et al. (49) used random forest models to predict activity intensity in a free-living 

environment. A sample of 21 adults (mean age [SD] = 27.6 [6.2] years) wore GENEA activity 

monitors while completing seven activities in a laboratory setting. The first activity was always 

lying down while the following six (sitting still, standing still, sitting while using a computer or 

sorting papers, washing dishes or cleaning windows, walking at a self-selected pace, and running 

at a self-selected pace) were completed in a random order for three minutes each. Sixteen of the 

21 participants also completed a 24-hour free-living trial the day following the laboratory 

protocol. ActivPals were worn on the thigh as the criterion measure of posture and stepping vs. 

non-stepping behavior. A random forest classifier model was developed using frequency domain 

features to classify SB, stationary+ (sitting active or standing still/active), walking, and running. 

Another random forest classifier model was developed to determine stepping vs. non-stepping 

behavior. Model performance was assessed using balanced accuracy, which is the average of 

sensitivity and specificity. Balanced accuracy for SB, stationary+, walking, and running were 

89%, 93%, 95%, and 97%, respectively. The sensitivity and specificity for the random forest 

model that distinguishes between stepping and non-stepping behavior were 54% and 96%, 

respectively. 

In summary, regression equations, ROC cut-points and machine learning algorithms have 

been developed to predict EE and time spent in different PA intensity levels using a GENEA 

activity monitor in adults. However, more complex machine learning approaches have shown to 

improve EE and time spent in different intensity estimates compared to single regression 
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approaches. In addition, an ANN was developed to determine whether the GENEA activity 

monitor is being worn on the left or right wrist with perfect accuracy. 

Youth 

Phillips et al. (50) developed cut-points using a GENEA activity monitor in youth. A 

sample of 44 youth (mean age [SD] = 10.9 [1.9] years) completed eight activities while wearing 

GENEA activity monitors on both wrists and the right hip and a Cosmed K4b2 as a criterion 

measure of EE. Cut-points were developed using ROC analyses to split activities into four 

intensities; SB (<1.5 youth metabolic equivalents [METy]), LPA (1.5-2.99 METy), MPA (3-5.99 

METy), and VPA (>6.00 METy). For the left wrist, right wrist, and hip, sensitivity ranged from 

95-96% (SB), 82-89% (MPA), and 89-92% (VPA) and specificity ranged from 96-98% (SB), 83-

88% (MPA), and 86-89% (VPA). LPA was not assessed individually because the upper limit of 

SB and lower limit of MPA were used to create the thresholds for LPA. 

Hildebrand et al. (32) developed one of the most commonly used youth specific 

regression equations to predict EE using a GENEA. Thirty youth (mean age [SD] = 8.9 [0.9] 

years) completed an activity protocol similar to the adults previously discussed (32). Differences 

in the youth and adult activity protocol included allowing youth to watch television during lying 

down and drawing on a white board during standing in lieu of using a mobile phone. Two 

regression equations for predicting VO2 were developed: hip, VO2 (ml.kg-1.min-1) = 0.0497 

ENMO + 10.39 (r2 = 0.75), and wrist, VO2 (ml.kg-1.min-1) = 0.0357 ENMO + 11.16 (r2 = 0.72). 

Similar to the adult wrist equation, the youth hip and wrist equations are unable to estimate EE 

and time spent in SB, because when there is zero acceleration, the estimations of VO2 are 10.39 

and 11.16 ml.kg-1.min-1 for the hip and wrist, respectively. Those values are almost twice the 

average RMR of youth in the study which was 6 ml.kg-1.min-1. Therefore, the authors combined 
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SB and LPA estimations into a single category. For SB/LPA, intensity classification accuracies 

for the hip and wrist were 93%-100% for all activities except for fast walking (0%). For MPA, 

intensity classification accuracies for the hip and wrist were <64% for all activities except for 

fast walk (85%, hip) and running (100%, wrist). For VPA, intensity classification accuracies for 

the hip and wrist for stepping were 67% and 0%, respectively and for running were 89% and 

72%, respectively. 

Hildebrand et al. (31) created SB cut-points in youth using the same data set mentioned 

previously (32). Cut-points for lie/sit and stand/step were developed using ROC curve analyses. 

For the hip and wrist, sensitivity for SB thresholds was 100% and 97%, respectively, while 

specificity was 68% and 75%, respectively. When applied to free-living data, the hip and wrist 

GENEA predictions overestimated time spent in SB by 26% and 15%, respectively, compared to 

the ActivPal. 

Schaefer et al. (59) developed GENEA cut-points for the wrist in a youth population. The 

study included 24 youth (mean age [SD] = 9.4 [1.2] years) and each participant wore a GENEA 

activity monitor on the non-dominant wrist. The participants performed a resting trial for six 

minutes before completing seven activities in order of increasing intensity for six minutes each, 

that included: coloring, Lego® building, Wii sports tennis, Wii sports boxing, treadmill walking 

at 45 and 75 m.min-1, jogging at 105 m.min-1, and running at 135 m.min-1. Average gravity-

subtracted signal VM was calculated for each one second epoch using the formula: signal VM = 

∑ ([x2 + y2 + z2]1/2 / (f) where f is the sampling frequency. ROC analyses were used to establish 

cut-points for SB, LPA, MPA, and VPA intensities. The cut-points created for SB, MPA, and 

VPA were 0.190, 0.314, and 0.998 signal VM. Sensitivity was 97% (SB), 91% (MPA), and 95% 

(VPA), and specificity was 88% (SB), 87% (MPA), 85% (VPA). No cut point was created for 
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LPA, so the upper threshold of SB and lower threshold of MPA activity created the thresholds 

for LPA. 

Duncan et al. (19) validated the Phillips et al. (50) cut-points in a 5-8 year old population 

(mean age [SD] = 6.8 [1.4] years). The Phillips cut-points were developed in youth between the 

ages of 8 and 14 years old. Fifteen youth wore GENEA activity monitors on their non-dominant 

wrist while performing a series of six semi-structured activities for five minutes each. The 

activities included lying, sitting and playing with Legos, slow-paced walking (3 km.hour-1), 

medium-paced walking (4.5 km.hour-1), fast-paced walking (6 km.hour-1), and a medium-paced 

run (8 km.hour-1). All walking and running activities were completed on a treadmill. Participants 

wore a MetaMax 3B portable gas analyzer as the criterion measure of EE. Classification 

accuracy of the cut-points were evaluated using sensitivity and specificity. Sensitivity was 92% 

(SB), 81% (LPA), 97% (MPA), and 96% (VPA), and sensitivity was 90% (SB), 56% (LPA), 

83% (MPA), and 84% (VPA). 

Recently, Roscoe et al. (55) developed wrist cut-points for PA intensity in preschool 

children four to five years old. Twenty-one participants wore GENEA activity monitors on both 

wrists and simultaneously wore a MetaMax 3B gas analyzer as the criterion measure of EE. The 

participants performed two SB activities (lying and playing with Lego® blocks) for five minutes 

each and four treadmill walking and running activities (41.7 m.min-1, 56.7 m.min-1, 71.7 m.min-1, 

and 90.0 m.min-1) for four minutes each. Using ROC curve analyses, activity intensity cut-points 

were developed for SB, LPA, and MPA for the dominant and non-dominant wrists. VPA cut-

points were not developed because the youth who participated in the study could not run at a 

speed for four continuous minutes that would be classified as VPA intensity. For the non-

dominant wrist, sensitivities were 90% (SB) and 86% (MPA) and specificities were 90% (SB) 
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and 40% (MPA). For the dominant wrist, sensitivities were 100% (SB) and 76% (MPA) and 

specificities were 10% (SB) and 40% (MPA). The authors also evaluated LPA based off the SB 

and MPA cut-points. For the non-dominant wrist, sensitivity and specificity were 40% and 20%, 

respectively. For the dominant wrist, sensitivity and specificity were 10% and 85%, respectively. 

Okely et al. (47) validated previous developed wrist specific cut-points for estimating 

time spent in MPA, VPA, and moderate-to-vigorous PA (MVPA) in youth. The study included 

57 participants (mean age [SD] = 9.2 [2.3] years) who wore a MetaMax 3B portable metabolic 

system and GENEA activity monitors on their non-dominant wrist. Participants completed 15 

semi-structured activities ranging from SB to VPA in increasing intensity for five minutes each, 

with the exception of lying down which was completed for 10 minutes. Metabolic VO2 data from 

a MetaMax 3B portable respiratory gas analysis system were averaged over 10-second epochs 

and converted into METy using measured RMR. Activities were categorized into MPA (≥ 3 - 

5.99 METy), VPA (≥ 6 METy) and MVPA (≥ 3 METy) based off indirect calorimetry. 

Acceleration data reduction were performed in three ways that were specific to the calibration 

studies of Hildebrand et al. (32), Phillips, et al. (50), and Schaefer et al. (59). Measured and 

predicted minutes spent in MPA, VPA, and MVPA cut-points were reported in contingency 

tables and 95% equivalence testing were conducted to determine group-level agreement between 

the cut-points using indirect calorimetry as a criterion. The Hildebrand, Phillips, and Schaefer 

cut-points correctly classified MPA 47%, 45%, and 52% and VPA 70%, 80%, and 94% of the 

time, respectively. The Schaefer cut-points were equivalent to the criterion for estimating 

minutes of MPA, but no cut-points were equivalent to the criterion for estimating minutes of 

VPA. The Hildebrand and Phillips cut-points were equivalent to the criterion for estimating 
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minutes of MVPA. When wearing a GENEA activity monitor on the wrist, all three prediction 

methods exhibited large group-level error with high misclassification of MVPA as non-MVPA. 

In summary, only regression equations and ROC cut-points have been developed to 

predict EE and time spent in different PA intensity levels using GENEA activity monitors in 

youth. No machine learning algorithms have been developed using the GENEA in youth. The 

Hildebrand regression equation is unable to predict sedentary behavior while the Phillips and 

Schaefer cut-points have a high misclassification rate of MVPA. 

Comparisons Between GENEActiv and ActiGraph Activity Monitors 

One of the clear advantages to using raw acceleration is the ability to compare output 

between activity monitors and potentially develop prediction models that can be used by any 

brand of accelerometer-based activity monitor (24). Comparing the GENEA to the ActiGraph 

series of activity monitors is important because ActiGraph activity monitors are used most 

frequently amongst researchers (74). ActiGraph activity monitors are used in 51% of published 

studies (74) and the ActiGraph 7164 and ActiGraph GT3X+ (GT3X+) have been used in the 

National Health and Nutrition Examination Survey. 

Acceleration Output 

Comparisons of raw acceleration output between GT3X+ and GENEA activity monitors 

have been previously investigated (32, 35, 56, 57). John et al. (35) conducted a study comparing 

raw acceleration (g’s) values between the GENEA and GT3X+. Comparisons using a mechanical 

shaker were conducted by attaching each activity monitor to a mechanical shaker that oscillated 

at frequencies between 0.7 - 4.0 Hz and a fixed radius of 5.08 cm for a duration of ten minutes. 

These frequencies correlate to locomotion speeds ranging between 1.5 mph to 16 mph. Using a 

linear mixed model with likelihood ratio tests, mean VM raw acceleration between the GT3X+ 
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and GENEA at each oscillation frequency were compared. Raw triaxial acceleration output 

between brands of activity monitors were statistically different at each oscillation frequency (p < 

0.05). The GENEA acceleration were consistently higher by 3.5-6.5% with larger differences 

seen as oscillation frequency increased. Significant differences were found between GENEA and 

GT3X+ VM raw acceleration output will affect estimates of EE and time spent in different PA 

intensity levels when using models developed on the opposite activity monitor. 

As a part of the same study discussed previously, John et al. (35) compared raw 

acceleration values from the GT3X+ and GENEA activity monitors in a laboratory protocol 

designed to simulate free-living. Eight adults (mean age [SD] = 23.8 [5.4] years) completed eight 

activities which included walking at 2.0 and 3.5 mph on a treadmill, running at 5.5 and 7.5 mph 

on a treadmill, seated computer work, vacuuming, cleaning a room, and throwing a ball for two 

minutes each. Two separate random forest models were developed for each monitor to predict 

activity type, one using frequency domain features and one using time domain features. The 

prediction accuracy was compared when the models were applied to the activity monitor they 

were trained for (e.g. GT3X+ model on GT3X+ data) and applied to the other activity monitor 

(e.g. GT3X+ model on GENEA data). When using frequency domain features, accuracy was 

94.3-95.8% when the model was applied to the same activity monitor as it was calibrated for and 

93.8% when the model was applied to the opposite monitor than the one it was calibrated on. 

When using time domain features, accuracy was 91.7-94.3% when the model was applied to the 

same activity monitor it was calibrated on and 86.5-94.5% when the model was applied to the 

opposite monitor than the one it was calibrated on. Significant differences were found in VM raw 

acceleration output between the GT3X+ and GENEA activity monitors which will affect time 

domain features but not frequency domain features. When developing models that are intended 
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to be used between the GENEA and GT3X+, using frequency domain features are 

recommended. 

Rowlands et al. (57) compared raw acceleration outputs between wrist-worn GT3X+ and 

GENEA activity monitors in adults. The outputs investigated in this study included acceleration 

and time spent in MVPA. Thirty-four participants (mean age [SD] = 28.2 [5.8] years) 

participated in a two-day free-living trial. The participants were instructed to wear both monitors 

on their non-dominant wrist during all waking hours with the GENEA always being proximal to 

the GT3X+. For each activity monitor, ENMO was calculated over 5-second epochs. Time spent 

in MVPA was classified using a 100 mg per five second cut-point. Mean ENMO for the GENEA 

and were 22.9 ± 20.7 mg and 27.8 ± 21.4 mg, respectively, and were significantly different (p < 

0.05). Estimates of time spent in MVPA from the GENEA and GT3X+ were 91.8 ± 46.0 minutes 

and 89.3 and 46.0 minutes, respectively, and were not significantly different from one another (p 

> 0.05). Intraclass correlation coefficients (ICC) and 95% confidence intervals were used to 

determine agreement between activity monitor brand outputs (ENMO and time spent in MVPA). 

ENMO output between the two monitor brands were highly correlated (ICC = 0.987, 95% CI = 

0.707-0.997). Time spent in MVPA between the two monitor brands were highly correlated (ICC 

= 0.982, 95% CI = 0.943-0.993). In conclusion, the ENMO outputs (mg) were significantly 

different. However, no statistical differences were found for estimates of average time spent in 

MVPA. 

Hildebrand et al. (32) compared raw acceleration between GT3X+ and GENEA activity 

monitors using the same participants and the same protocol discussed previously. Agreement 

between placement and brands of activity monitors were evaluated using a two-way mixed 

model ANOVA, ICC, and mean bias with limits of agreement. The raw acceleration outputs 
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were not significantly different between brands in adults (p = 0.12) or youth (p = 0.73). ICC and 

95% CI between the raw acceleration for each brand was 0.979 (0.979-0.980) for the hip and 

0.987 (0.986-0.987) for the wrist in adults and 0.964 (0.929-0.932) for the hip and 0.976 (0.976-

0.977) for the wrist in youth. Mean bias and limits of agreement for the hip and wrist in youth 

and adults ranged from -6.9 mg to 10.3 mg with all limits of agreement ranging from ±45mg to 

±55mg. Raw acceleration output between brands at the same wear location has a high correlation 

although individual variability is large as shown by wide limits of agreement. 

In summary, inconsistent findings were found when comparing raw acceleration between 

the GENEA and GT3X+ activity monitors. When the two brands of activity monitors were 

attached to a mechanical shaker, significant differences in VM raw acceleration were seen with 

the differences becoming larger as oscillation frequency increased (35). In a free-living 

environment, Rowlands et al. (57) found significant differences in average ENMO (mg) output 

but no statistical differences in average time spent in MVPA. 

Comparisons of Estimations from Prediction Equations between the GENEActiv and ActiGraph 

Series of Activity Monitors 

Van Loo et al. (69) validated previously developed cut-points for estimating SB using 

wrist accelerometry in 57 youth (mean age [SD] = 9.2 [2.3] years), split into groups of 5-8 years 

old and 9-12 years old for analyses. Participants wore a GT3X+ and GENEA on each wrist, and 

an GT3X+ while completing 15 activities over two testing days. The order of activities for each 

day of testing were in increasing intensity. The 15 activities included: lying down, TV watching, 

handheld electronic gaming, writing/coloring, computer gaming, getting ready for school, 

standing class activity [e.g. writing on a whiteboard], slow walking at a self-selected pace, 

picking up toys/clothes, brisk walk at a self-selected pace, soccer, basketball, running at a self-
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selected pace, and an obstacle course. The criterion measure for activity classification was direct 

observation. Nine ActiGraph and two GENEA wrist cut-points were validated. The authors used 

95% equivalence testing to assess group level equivalence between measured and predicted SB 

time. For 5-8 year olds, no equation was statistically equivalent to direct observation. For 9-12 

year olds, the Crouter et al. VA ROC cut-points (12) and Kim et al. (38) single regression 

equation developed for the ActiGraph were statistically equivalent to direct observation (p < 

0.001). The Schaefer et al. (59) and Phillips et al. (50) cut-points developed for the GENEA 

overestimated SB time by 9.6%-17.8% for both age groups. 

Rowlands et al. (56) compared estimates of time spent in different PA intensity levels 

between GENEA cut-points and ActiGraph cut-points for the hip and wrist in youth. The 

GENEA and ActiGraph cut-points were calibrated using raw acceleration and activity counts, 

respectively. A sample of 51 youth (mean age [SD] = 10.7 [0.8] years) wore a GT3X+ and a 

GENEA activity monitor on the right hip and GENEA activity monitors on their non-dominant 

wrist during a seven-day free-living trial. Estimates for time spent in SB, LPA, and MVPA for 

GT3X+ data were calculated using the Evenson et al. (22) cut-points, which uses the VA, and the 

Hanggi et al. (28) cut-points, which uses VM. Estimates for time spent in SB, LPA, and MVPA 

using GENEA data were calculated using the Phillips et al. (50) wrist and hip cut-points, which 

uses ENMO. Phillips developed cut-points for the left and right wrist so the cut-points that 

corresponded with the wrist in which the GENEA was worn was used for analysis. Mean output 

between GT3X+ activity count output and GENEActiv raw acceleration (g.sec-1) were examined 

using four correlations: 1) mean daily VA GT3X+ (counts.sec-1) with mean daily GENEActiv 

hip output (g.sec-1), 2) mean daily VA GT3X+ (counts.sec-1) with mean daily GENEActiv wrist 

output (g.sec-1), 3) mean daily VM GT3X+ (counts.sec-1) with mean daily GENEActiv hip output 
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(g.sec-1), and 4) mean daily VM GT3X+ (counts.sec-1) with mean daily GENEActiv wrist output 

(g.sec-1). Repeated measures ANOVAs were used to investigate statistical differences between 

the four cut-point methods for time spent in SB, LPA, MPA, VPA, and MVPA. For mean daily 

output, all correlations (r2) were significant ranging from 0.86-0.90 (p < 0.001). For time spent in 

SB, the Evenson equation was significantly different from both GENEA equations (p < 0.01) 

while the Hanggi equation was significantly different from the Schafer cut-points (p < 0.01) but 

not the Philips cut-points (p > 0.01). For time spent in SB and LPA, the Evenson cut-points was 

significantly different from both GENEA cut-points (p < 0.01) while the Hanggi cut-points was 

significantly different from the Schafer cut-points (p < 0.01) but not the Philips cut-points (p > 

0.01). For time spent in MPA and VPA, the Evenson cut-points was significantly different from 

the Schafer cut-points and the Philips cut-points (p < 0.01). No comparisons were made using the 

Hanggi equation for time spent in MPA and VPA because those intensities were combined into 

one MVPA cut-point. For time spent in MVPA, all equations were significantly different (p < 

0.01). 

In summary, there is limited evidence that estimates of EE and time spent in different PA 

intensity levels from prediction equations developed for the GENEA or ActiGraph when applied 

across-device are different, thus making them comparable. Within the same device, the estimates 

of EE and time spent in different PA intensity levels are highly dependent on the prediction 

method being used. More research should be done to investigate the comparability of using a 

regression equation developed using data from one monitor but applied to data from a different 

monitor. For example, how do estimates of time spent in different PA intensity levels differ 

when applying a model developed using GENEA data compare when applied to GENEA and 

ActiGraph data using an independent sample. 
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Axivity AX3 

The AX3 is a small (23.0 x 32.5 x 7.6 mm), lightweight (9g) activity monitor that 

contains a triaxial accelerometer that can be worn at multiple body locations. The monitor can 

measure acceleration with a sampling rate ranging between 12.5 Hz and 3200 Hz and a seismic 

acceleration range of ± 2, 4, 8, or 16 g’s. The AX3 has a battery life of 14 days when a sampling 

frequency of 100 Hz is used. Other features of the activity monitor include a real-time clock, 512 

MB of memory, temperature sensor, light sensor, and it is dust and water resistance. 

Model Development 

No models have been developed for the AX3 to estimate EE or activity type in adults or 

youth. However, the manufacturer of the AX3 recommends using models developed for the 

GENEA; specifically the wrist-specific Hildebrand regression equations for estimating EE in 

adults and youth and the wrist-specific Phillips cut-points for time spent in different PA intensity 

levels for youth (2). No hip-specific regression equations were recommended, although Axivity 

Ltd. guides users to a variety of review articles that overview methods to analyze accelerometer-

based activity monitor data at various wear locations (1, 37, 62). 

Comparisons Between Axivity AX3 and ActiGraph 

Currently there are no studies that have investigated the raw acceleration output between 

the AX3 and ActiGraph series of activity monitors. No models have been developed for the AX3 

to predict EE or time spent in different PA intensity levels; thus, no comparisons can be made 

between AX3 and ActiGraph prediction models. 

Gaps in the Literature 

Prediction models for estimates of EE and time spent in different PA intensity levels for 

the GENEA activity monitors have been developed. However, no prediction models have been 
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developed for the AX3. Single regression equations and cut-points methods are variable in their 

estimates of EE and time spent in different activities intensities when predicting across a wide 

range of PA intensity levels and activity domains (i.e. household chores, CWR, sporting 

activities, etc.). The use of a two-regression model (2RM) that distinguishes between continuous 

walking and running and intermittent lifestyle activities has improved estimations of EE and time 

spent in different PA intensity levels in adults (9-11, 15) and youth (12, 13) using the Actical and 

ActiGraph series of activity monitors for the hip and wrist but no 2RM has been developed for 

wrist-worn GENEA and AX3 activity monitors. The development of a 2RM will advance future 

research by providing a more valid prediction method for estimating EE, which in turn can be 

used for more valid estimates of time spent in different PA intensity levels. The valid estimations 

of time spent in different PA intensity levels can be used in large scale studies to investigate 

associations between frequency, duration, and intensity of PA and various health outcomes. 
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CHAPTER III: MANUSCRIPT 

Introduction 

Valid methods for estimating physical activity (PA) energy expenditure (EE) are 

important to determine associations between PA and various health outcomes. A common 

method of estimating PA outcomes is the use of wearable sensors like heart rate monitors, 

pedometers, and accelerometers (7, 65). Accelerometer-based activity monitors are common 

wearable devices used by researchers and healthcare professionals (7, 65). Three common 

accelerometer-based activity monitors are the ActiGraph (ActiGraph, LLC, Pensacola, FL), 

GENEActiv (GENEA; Activinsights Ltd, Kimbolton, Cambridgeshire, UK), and Axivity AX3 

(AX3, Axivity, Newcastle, UK). The ActiGraph is the most widely used activity monitor and the 

majority of prediction methods for estimating EE and time spent in different PA intensity levels 

have been developed for the ActiGraph. However, the GENEA has been utilized in prospective 

cohort studies such as the Whitehall II study (N = 10,314) (43), Fenland study (N = 1,695) (73), 

and the Cork and Kerry Diabetes and Heart Disease Study (N = 464) (36) and the AX3 is being 

used in the UK biobank study, a large-scale study with over 500,000 participants (18). Prediction 

methods have been developed for the GENEA, however no prediction method has been 

developed for the AX3. 

Through the use of prediction equations and machine learning algorithms, researchers 

have been able to estimate EE and time spent in sedentary behavior (SB; <1.5 metabolic 

equivalents [METs]), light physical activity (LPA; 1.5 – 2.99 METs), moderate physical activity 

(MPA; 3.0 – 5.99 METs), and vigorous physical activity (VPA; ≥6.0 METs) using 

accelerometer-based activity monitors. Regression equations are the most common method for 

estimating EE. Initially, researchers constructed regression equations relating accelerometer 



 

 26 

counts to EE based on treadmill walking and running (25). However, Pober et al. (51) showed 

that, at the same activity counts, adults performing intermittent activities can have 2-3 times 

higher EE than continuous walking and running (CWR). Thus, Crouter and colleagues developed 

two-regression models (2RM) that first apply a threshold that discriminates between sedentary 

and non-sedentary behavior based on count values, and second, based on the variability in count 

values to discriminate between CWR and intermittent activity, a separate regression equation is 

applied that predicts EE based on the count values (10, 13, 15). 

Previously developed 2RMs using hip-worn ActiGraph in youth or wrist-worn ActiGraph 

in adults have improved estimates of EE and time spent in different PA intensity levels compared 

to single regression equations. Crouter et al. (14) conducted an independent validation in a free-

living environment in youth, which compared estimated EE from youth-specific ActiGraph 

Crouter vertical axis (VA) and vector magnitude (VM) 2RMs (13) and the Freedson (25), Trueth 

(64), Trost (67), and Puyau (53) single regression equations to indirect calorimetry. The VA 

2RM and VM 2RM had the lowest root mean squared error (RMSE) of 1.55 and 1.50 METy 

(youth metabolic equivalent, !"#+ = 	
&'()*)(+	,-.
9:;()85	,-.

), respectively, which was 0.6% – 9.1% lower 

than the single regression equations. More recently, Hibbing et al. (30) developed 2RMs for the 

ActiGraph GT9X worn on the hip, left wrist, right wrist, left ankle and right ankle in adults. The 

2RMs for the left wrist and right wrist had RMSEs of 1.24 METs and 1.29 METs, respectively. 

These were similar to the 2RMs developed for the hip, left ankle, and right ankle using the same 

dataset, which had RMSEs of 1.14 METs, 1.16 METs and 1.18 METs, respectively. This shows 

potential that the wrist location can be used for development of a 2RM. 

No prediction equation has been developed for the AX3 activity monitor and only one 

single regression equation has been developed to predict EE in youth using a GENEA activity 
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monitor (32). The manufacturer of the AX3 recommends using the Hildebrand wrist specific 

model for estimations of EE when using the AX3 (2). In addition to the Hildebrand regression 

equation, Philips et al. (50) and Schaefer et al. (59) developed youth specific cut-points using 

ROC curve analyses to measure time spent in PA intensity levels using the GENEA in youth. To 

date, no 2RM has been developed for the GENEA or AX3 in youth. Thus, the purposes of this 

study were to: 1) develop left and right wrist 2RMs to predict youth metabolic equivalents 

(METy) for the AX3 and GENEA activity monitors in youth, 2) compare METy estimates from 

the left and right wrist GENEA and AX3 2RMs and the Hildebrand single regression equation to 

the Cosmed K4b2, and 3) compare time spent in different PA intensity levels from the left and 

right wrist GENEA and AX3 2RMs, Hildebrand single regression equation, Phillips left and 

right wrist cut-points, and Schaefer cut-points to the K4b2. Secondary purposes of this study 

were to 1) compare the estimates of METy and time spent in different PA intensity levels of the 

2RMs when applied to data from a different wrist than it was developed and 2) compare the 

estimates of METy and time spent in different PA intensity levels of the 2RMs when applied to 

data from a different activity monitor than it was developed. 

Methods 

Participants 

Youth (N = 100) between the ages of 6 and 18 years old were recruited from the greater 

Knoxville area via schools, after-school sports camps, word of mouth, and flyers. A parent or 

legal guardian of each participant signed a written informed consent and completed a health 

history questionnaire and each participant signed a written informed assent before participating 

in the study. Approximately 25 participants with a 50% split of males and females were recruited 

from each of the following four age groups: 1) 6 - 9 years old, 2) 10 - 12 years old, 3) 13 - 15 and 
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4) 16 - 18 years. Participants were excluded if their parents reported musculo-skeletal injuries 

within the past six months, any metabolic condition or medication that may alter metabolic 

processes, and cardio-respiratory conditions reported via a health history questionnaire. 

Participants were instructed to report to the laboratory having fasted for at least three hours and 

having refrained from exercise for the previous 24 hours. The University of Tennessee Knoxville 

Institutional Review Board approved the study before recruitment began. 

Procedures 

Data were collected at The University of Tennessee Knoxville Applied Physiology 

Laboratory in the Health, Physical Education, and Recreation building. Testing was performed 

on two visits on separate days. On the first day of testing, participants completed the informed 

consent and assent process, and anthropometric measurements were taken. All participants had 

their standing and seated height (cm) measured using a wall-mounted stadiometer (Seca Co., 

Hamburg, Germany). Body mass (kg) and body fat percentage were measured using a Tanita 

Body Composition Analyzer BC-418 segmented bioelectrical impedance analyzer (Tanita Co., 

Tokyo, Japan). Participants wore light weight athletic clothing and removed their shoes and 

socks prior to the anthropometric measurements. Participants then completed 30 minutes of 

supine rest to allow for the measurement resting metabolic rate (RMR), along with eight of the 

16 activities which are summarized in Table 1. On day two of testing, the participants completed 

the remaining eight activities. 

Participants completed each activity twice, once for 60 to 90 seconds and once for four to 

five minutes. Before the first visit, eight activities were randomly selected, and the order of the 

short and long bouts were randomized. Before testing, each participant was able to choose the 

order of activities, however the same activity was not allowed to be performed consecutively.  
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This study was a part of a larger study in which participants wore 14 activity monitors 

(five ActiGraph GT9X [left wrist, right wrist, right hip, left ankle, right ankle], Apple Watch 2, 

[left wrist], either a Fitbit Charge 2 or Samsung Gearfit 2 [right wrist], AX3 [left or right wrist], 

GENEA [left or right wrist], Mymo activity tracker [right hip], two misfit shine 2 [right hip and 

right shoe], and two ActivPals [right and left thigh]). The GENEA and AX3 are the only activity 

monitors that are used in the analyses for the current study. Each participant wore a GENEA and 

AX3 on opposite wrists. The wrist location (i.e. left or right wrist) of the monitors was switched 

every 25 participants until all 100 participants were collected. For example, the first 25 

participants wore the GENEA on the left wrist and the AX3 on the right wrist, while the next 25 

participants reversed the locations of those two activity monitors. Multiple monitors were worn 

on each wrist simultaneously with the most distal monitor (always ActiGraph GT9X) positioned 

at the level of the ulnar process on the posterior aspect of the wrist. The GENEA and AX3 were 

located proximal to the ActiGraph GT9X without touching. A Cosmed K4b2 (K4b2, Cosmed, 

Rome, Italy) indirect calorimeter was used as the criterion measure of EE.  

Noldus Observer XT (Noldus International Technology, Wageningen, Netherlands) 

software was used to code activity behaviors in real time using a Samsung Galaxy Tab 4 tablet 

(Samsung, Seoul, South Korea). A two-class coding scheme was used to code the activity being 

performed and the posture of the participant during the activity. Duration of each activity was 

calculated from the time stamps corresponding with the start and end of an activity. Posture was 

recorded as lying, sitting, standing, or stepping. The tablet system clock for the Noldus Observer 

XT program was different than the GENEA, AX3, and K4b2. To synchronize the live coding 

data with the accelerometer and metabolic data, a comment was inserted into the Noldus data 

containing the time of the PC system clock. This permitted alignment of the time series of 
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acceleration and Noldus data. If the participants and their parents consented, data collection was 

video recorded. Video recordings were used during the data cleaning process when atypical 

metabolic data was observed or to correct live coding errors (e.g. due to the device becoming 

dislodged, activity being interrupted, or an errant keystroke). 

Equipment 

Activity Monitors 

GENEActiv: The GENEA is a small (43 x 40 x 13 mm) light weight (16g) activity 

monitor that is recommended to be worn on the wrist or hip. It has a range of up to ± 8 

gravitational units (g’s) in three planes of motion and can be initialized to collect data at 

sampling frequencies of 10 - 100 Hz in 10 Hz increments. Battery life and memory capacity of 

GENEA activity monitors can measure data for up to seven days at 100 Hz. For the present 

study, GENEA activity monitors were initialized to collect data at 100 Hz. 

Axivity: The AX3 is a small (23 x 32.5 x 7.6) lightweight (9g) activity monitor that can 

be worn on the wrist, hip, ankle, or upper arm. It can collect data in the range of ± 2, 4, 8, or 16 

g’s in three planes of motion and can collect data at a sampling rates of 12.5 - 3200 Hz. Battery 

and memory capacity of the AX3 can measure data for up to 14 days at 100 Hz. In addition to 

the accelerometer, the AX3 activity monitor houses a real-time clock, 512 MB of memory, a 

temperature sensor, a light sensor, and is dust and water resistant. For the present study, AX3 

activity monitors were initialized to record at a sample rate of 100 Hz with a seismic acceleration 

range of ± 8 g’s. 

Indirect Calorimetry 

Cosmed K4b2: The K4b2 weighs 1.5 kg, which includes the battery and harness to hold 

the equipment. It measures ventilation rate, oxygen consumption (VO2), and carbon dioxide 
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(CO2) production on a breath by breath basis. The K4b2 has been shown to be valid for 

measurement of VO2 and CO2 compared to Douglas bag measurements during light to vigorous 

intensity cycling on a stationary ergometer (42). Before the start of each test, a four step 

calibration was done: 1) room air calibration, 2) the gas analyzers were calibrated using a 

reference gas tank containing 15.93% O2 and 4.92% CO2, 3) the flow meter was calibrated using 

a Hans-Rudolph 3.00-liter syringe, and 4) a delay calibration was performed to adjust for the 

time lag between the expiratory flow and the expired gas fractions measurements. All calibration 

procedures were done according to manufactures instructions (8). 

Live Coding and Video Recording 

Noldus Observer XT: The Noldus Observer XT is a program designed for coding 

activities, either from videos or in real-time (i.e. live coding, for example in a laboratory setting). 

Using the Noldus Pocket Observer application (version 3.2), live coding is performed with 

Android tablets. Data collected from the Noldus Pocket Observer application can be downloaded 

to a PC using the Noldus Observer XT 12.5 software. Before the start of data collection, each 

researcher was trained on the Noldus Observer XT and pocket observer software. 

A Canon Vixia HFR700 camcorder (Canon Inc., Melville, NY) with a Vivitar HD4 MC 

AF High Definition 0.43X Wide Angle Converter with Macro Japan Optics attachment (Vivitar, 

Santa Monica, CA) was used to record the entirety of the data collection period. At the start and 

end of data collection, a camera shot of the system clock of the PC was taken to allow for 

synchronization of timestamps. The recording settings were set at a resolution of 1080p and 29 

frames per second. A SanDisk Ultra 64GB SD card was used to store the video recordings. 
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Data Reduction and Cleaning 

RMR was calculated from data collected during the 30-minute supine rest. A sliding 

window approach was used that examined breath-by-breath K4b2 data in five-minute windows 

from minute 10 to the end of the RMR test (~30 minutes). Beginning at minute 15, each breath 

was averaged together with all the breaths from the preceding five minutes. This process was 

repeated for each succeeding breath until the end of the RMR test. The lowest 5-minute average 

VO2 value was used as the measured RMR. 

For each activity, the metabolic data were reduced to obtain a single METy value for each 

participant. The long bout of activity was used to compute steady state METy. Steady state METy 

was calculated by excluding the last the last ten seconds of the activity bout and using the 

previous sixty seconds. Using breath-by-breath data, all breaths that occurred within the 60-

second window were averaged to obtain a steady-state absolute VO2 (ml.min-1) and converted to 

relative VO2 (ml.kg-1.min-1). Two kg were added to the participant’s body mass for 

weightbearing activities to account for the weight of equipment. Relative VO2 values were 

divided by measured RMR to convert to METy. 

For acceleration data reduction, raw triaxial accelerometer data were collected at 100Hz, 

downloaded, and reduced down to one second averages in g’s. Euclidean norm minus one 

(ENMO) was calculated on the raw 100 Hz data and averaged into one-second epochs. ENMO is 

a process that combines the three axes into VM for a single-orientation-independent value and 

subtracts one gravitational unit ("H!I = 	JKL + NL + OL − 1). Any negative acceleration 

values after subtracting one gravitational unit were rounded up to zero. The average ENMO was 

calculated for each second of data and the 60 one-second values that matched what was used for 
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the metabolic steady state data for each activity were averaged and used for the calibration of the 

2RM. 

The metabolic data (VO2 and METy) were cleaned by removing potential outliers. This 

was accomplished by removing any measured average VO2 during RMR that were ≥ 2 SD away 

from the mean. Activity VO2 data were removed if one or more of the following criteria were 

met: 1) the activity bout was under 220 seconds, 2) METy values ≤ 0.2 METy, which were 

physiologically unreasonable, or 3) METy values were ≥ 2 SD from the mean. 

Model Development 

2RMs were developed using techniques similar to those used by Crouter and colleagues 

(10, 13, 15, 30). The overall analytic dataset included 100 participants. Fifty participants wore 

AX3 on the right wrist and the GENEA on the left wrist. The other 50 participants wore the AX3 

on the left wrist and GENEA on the right wrist. There were four subsets of data that correspond 

to the activity monitor being used and the wrist location, which were: 1) Axivity left wrist 

(AX3LW), 2) Axivity right wrist (AX3RW), 3) GENEActiv left wrist (GENEALW), and 4) 

GENEActiv right wrist (GENEARW). A 2RM was developed for each of the four subsets of data. 

Cycling was removed during the entire model development process. 

All four 2RMs were developed using the same procedures as described below. 2RM 

development used all activities except cycling. Using the pROC package for R (54), a classifier 

that distinguishes between SB and non-SB was developed with receiver operating characteristic 

(ROC) curve analyses. During the development process, ENMO and log-transformed ENMO 

were investigated as predictor variables. The threshold for the classifier was selected by choosing 

the point closest to the top-left corner of the ROC curve using the ‘closest.topleft’ function which 

maximized sensitivity and specificity (26). SB was defined as any activity that had a measured 
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EE of <1.5 METy and was in a seated or lying position (63) while all other activities were 

defined as non-SB. 

After the development of the SB classifier, a second classifier was developed that 

distinguishes between CWR and intermittent activity. Classification was made based on 

variability in acceleration because CWR activities are very consistent and rhythmic activities 

with low variations in acceleration while intermittent activities are often stop-and-go and have 

high variation in acceleration. The subset used for the development of the CWR classifier 

excluded all activities that were classified as SB from the first classifier. The activities used to 

classify CWR were slow walking, brisk walking, and running while all other activities were 

considered intermittent activity. The classifier was developed with ROC analysis, and the 

predictor variable was a coefficient of variation (CV) for ENMO or log-transformed ENMO. 

This was calculated based on the one-second ENMO values and the ENMO values of the 

preceding and succeeding nine seconds. Specifically, for each one-second ENMO value, ten 

CV’s were calculated in the following manner: 1) one-second ENMO value and preceding nine 

one-second ENMO values, 2) one-second ENMO value, preceding eight one-second ENMO 

values, and succeeding one-second ENMO value, 3) one-second ENMO value, preceding seven 

one-second ENMO values, and succeeding two one-second ENMO values, and so on, up to 10) 

one-second ENMO value and succeeding nine one-second ENMO values. The CV used in 

analyses was the minimum of the ten CVs calculated. 

Following classifier development, regression models were developed using a three-step 

process. First, the SB classifier was applied to distinguish between SB and non-SB. Second, the 

CWR classifier was applied to divide the non-SB subset into a CWR subset and intermittent 

activity subset. Third, using the CWR subset and intermittent activity subset from the second 
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step, regression equations were developed. Different models (i.e. linear [CWR and intermittent 

activity] and cubic [intermittent activity]) and expressions of ENMO data (i.e. ENMO and log-

transformed ENMO) were examined for each regression equation. Further testing was conducted 

to determine if adding age as a predictor variable improved the fit of the models. 

Any activity that was classified as SB was applied a METy value of 1.25, which differs 

from the norm of 1.00 METy for SB. The use of assigning 1.25 METs to SB has been used by 

Hibbing et al. (30) in the development of a 2RM in adults. The Sedentary Behavior Research 

Network defines SB as any activity that is under 1.5 METs and where the person is in a seated, 

reclining, or lying posture (63). The clear majority of SBs in the youth compendium have a 

METy value around 1.3 METy while only one activity (watching TV/movies while lying down) 

has an average METy value of 1.00 METy (5). Time use surveys suggest that screen-time 

constitutes for about half of all SB in youth living in the United States and Scotland (4, 41). 

Therefore, the use of 1.25 METy is a reasonable value to use for SB EE estimations. 

Additional Models 

Previously developed prediction models were applied for estimations of EE and time 

spent in different PA intensity levels using each of the following methods: 

• The Hildebrand equation and cut-points were originally calibrated for the non-dominant 

wrist. The regression equation was: VO2 [ml O2.kg-1.min-1] = 0.0357mg + 11.16. The cut-

points for SB/LPA, MPA and VPA were: SB/LPA, <192 mg; MPA, 192-695 mg; VPA, 

≥696 mg. Classification of SB and LPA were combined because when there is zero 

acceleration the estimation of VO2 is 11.16 ml.kg-1.min-1, which is almost twice the 

average RMR of youth in the Hildebrand study (6 ml.kg-1.min-1). In addition to the cut-

points, time spent in different SB, LPA, MPA, and VPA were estimated by converting 
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VO2 to METy by dividing by measured RMR for each activity. Each METy value was 

classified as: SB, <1.5 METy; LPA, 1.5 METy -2.99 METy; MPA, 3.00 METy – 5.99 

METy; and VPA, >6.00 METy; 

• The Phillips cut-points for the right wrist are SB, ≤87.5 mg; LPA >87.5 to 275 mg; MPA, 

>275 to 700 mg; and VPA, >700 mg and left wrist are SB, ≤ 75 mg; LPA >75 to 250 mg; 

MPA, >250 to 750 mg; and VPA, >750 mg. Application of the Phillips cut-points is 

sampling frequency dependent because the calibration of the cut-points was developed 

using the sum of gravity-based accelerations. The cut-points were developed using 80 Hz 

data but the activity monitors in the present study were set to initialize collect data at 100 

Hz. Therefore, the original Phillips cut-points were divided by 80 to adjust them to match 

match the collection frequency in the present study. 

The Schaefer cut-points were originally calibrated for the non-dominant wrist. The cut-

points were calibrated using signal vector magnitude using the following equation: 

RS! = 	∑ |V
)WX JKL + NL + OL| RYZ[\]^_	`abcdb^eNf .	The cut-points are SB, < 190 

mg; LPA, 190 to <314 mg; MPA, 314 to <998 mg; and VPA, ≥998 mg. 

For the primary analysis, the newly developed 2RMs were applied to data from the same 

wrist and same device as it was developed on. For the secondary analysis, each 2RM was applied 

to data from: 1) the opposite wrist but same activity monitor, 2) the same wrist but opposite 

activity monitor, and 3) the opposite wrist and activity monitor it was developed for. For each 

activity monitor and wrist location, the Hildebrand single regression equation, Hildebrand cut-

points, Phillips left and right wrist cut-points, and Schaefer cut-points were applied. 
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Statistical Analysis  

Descriptive statistics on the participants’ age, height, weight, and BMI were calculated. 

For each activity, average ENMO and CV for the 60 seconds of steady state activity were 

calculated for each of the four subsets. Model performance for each activity was assessed using a 

leave-one-participant-out cross-validation (LOOCV) for the AX3LW 2RM, AX3RW 2RM, 

GENEALW 2RM, and GENEARW 2RM. LOOCV is a process where model development is 

repeated on subsets of the data where each subset has one participant held out and every 

participant is held out from one subset. Within each subset, the model development procedure 

described above (i.e. SB and CWR classifier development and CWR and intermittent activity 

regression equation development) was completed. For the participant who was held out of the 

model development procedure, activity EE predictions were obtained from the newly developed 

2RM. When all subsets had been processed, there were measured and predicted values for all 

activities performed by each participant. These values were then used to calculate root mean 

squared error (RMSE) and mean absolute percent error (MAPE). 

In addition to cross-validation of EE of specific activities, cross-validation of EE and 

time spent in different activity intensity estimates was performed using the entire data collection 

period. The entire data collection period in the present study included the long bouts of activity, 

short bout of activity, and transitions between activities. In order to keep the data collection 

duration approximately the same duration, only participants with two complete days of data 

collection were included in this analysis. 

Statistical analyses were completed using SPSS (version 25.0; SPSS Inc., Chicago, IL). 

Using the AX3LW data, two one-way repeated measures analysis of variance (ANOVA) were 

used to compare measured (K4b2) and predicted METy for each activity and measured (K4b2) and 
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predicted METy for the entire activity bout from the four 2RMs and the Hildebrand single 

regression equation. A third one-way repeated measures ANOVA was used to compare 

measured (K4b2) and predicted time spent in different PA intensity levels from the four 2RMs, 

Hildebrand single regression equation, Hildebrand cut-points, Phillips left and right wrist cut-

points, and Schaefer cut-points. Using one-way repeated measures ANOVA, the same 

comparisons were made using AX3RW, GENEALW, and GENEARW data. Planned contrasts with 

Bonferroni adjustments were performed to locate differences between the criterion measure and 

prediction methods for METy and time spent in different PA intensity levels. The significance 

level was set at p < 0.05 for all comparisons.  

Results 

Missing Data 

One participant withdrew from the study after enrollment, before completing any testing. 

Six other participants withdrew from the study after completing one visit, and available data 

were included from those cases. Additional data loss occurred for participants who did not 

complete the RMR protocol (n = 3), stopped wearing the K4b2 following the RMR protocol (n = 

3), RMR values were > 2 SD (n = 5) from the mean, and removed after manual inspection of the 

values (n = 2). Seven AX3 and 11 GENEA download errors occurred. 

Metabolic data cleaning resulted in a loss of data for individual activities for one or more 

of the following reasons: K4b2 malfunctions (21 activities), activity duration was under the 

minimum duration of 220 seconds (74 activities), activity METy values under 0.2 (6 activities), 

and activity METy values ≥2 SD away from the mean (47 activities). In total, 800 observations 

(50 participants times 16 activities) were expected for each of the monitors and attachment sites. 

The four calibration subsets included 582 observations (AX3LW), 577 observations (AX3RW), 
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543 observations (GENEALW), and 541 observations (GENEARW). Participant characteristics are 

summarized in Table 2. Average ENMO across one minute of steady state activity and average 

of the one-second CV’s across one minute of steady state activity for each activity are 

summarized in Table 3. 

Model Development 

SB and CWR classifier performance for the AX3LW 2RM, AX3RW 2RM, GENEALW 

2RM, and GENEARW 2RM development is shown Table 4. Figure 1 shows the SB classifier 

threshold separating SB and non-SB for GENEA and AX3 data. Activities to the left of the 

threshold line are classified as SB while activities to the right of the line are classified as non-SB. 

The SB classifier sensitivities, specificities, and AUC for all devices and wrist locations were 

≥91.6%, ≥97.1%, and ≥97.6%, respectively. Figure 2 shows the CWR classifier threshold 

separating CWR and intermittent activity for GENEA and AX3 data. Activities below the 

threshold line are classified as CWR, while activities above the threshold line are classified as 

intermittent activity. The CWR classifier sensitivities, specificities, and AUC for all devices and 

wrist locations were ≥85.3%, ≥87.5%, and ≥92.3%, respectively. Sensitivity, specificity, and 

AUC of the classifiers were the same regardless of whether ENMO or log-transformed ENMO 

were used as predictor variables.  

MAPE and RMSE for different combinations of linear, logarithmic, and cubic 

transformations of ENMO with and without age added as a predictor variable when predicting 

METy are shown in Table 5. Log-transforming versus not log-transforming ENMO reduced 

RMSE by 0.06 (GENEARW 2RM) – 0.10 (GENEALW 2RM) METy and MAPE by 1.18% (AX3RW 

2RM) – 2.67% (GENEALW 2RM), respectively. Adding age as a predictor versus only using 

log(ENMO) as a predictor reduced RMSE by 0.03 (GENEARW 2RM) – 0.06 (AX3RW 2RM) 
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METy and MAPE by 0.02% (AX3LW 2RM) – 1.12% (AX3RW 2RM). Therefore, log-transformed 

ENMO and age were chosen as predictor variables in the regression equations. To remain 

consistent with the regression equations, the classifiers also used log-transformed ENMO. Final 

classifier thresholds and regression equations for AX3LW, AX3RW, GENEALW, and GENEARW 

data are shown in Table 6. 

Estimation of METy for Structured Activities 

Table 7 shows measured (K4b2) and predicted METy from the four 2RMs and the 

Hildebrand single regression model when applied to AX3LW data. When applying the 2RM that 

was developed on the same activity monitor and wrist (AX3LW 2RM), five activities were 

significantly different from the K4b2 by 0.08 METy (games) to 2.39 METy (cycling, p < 0.05). 

When the Hildebrand single regression equation was applied to AX3LW data, eight activities were 

significantly different from the K4b2 by 1.03 METy (reclining) to 2.81 METy (jumping jacks, p < 

0.05). When applying the 2RM developed on the same activity monitor but opposite wrist to 

AX3LW data, seven activities were significantly different from the K4b2 by 0.08 METy (games) 

to 2.51 METy (cycling, p < 0.05). When applying the 2RMs that were developed on the opposite 

activity monitor to AX3LW data, ≥4 activities were significantly different from the K4b2 by 0.08 

METy (games) to 2.43 METy (cycling, p < 0.05).  

Table 8 shows measured (K4b2) and predicted METy from the four 2RMs and the 

Hildebrand single regression model when applied to AX3RW data. When applying the 2RM that 

was developed on the same activity monitor and wrist (AX3RW 2RM), six activities were 

significantly different from the K4b2 by 0.45 METy (brisk walk) to 2.14 METy (cycling, p < 

0.05). When the Hildebrand single regression equation was applied to AX3RW data, 13 activities 

were significantly different from the K4b2 by 0.67 METy (dust) to 4.32 METy (jumping jacks, p < 
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0.05). When applying the 2RM developed on the same activity monitor but opposite wrist to 

AX3RW data, five activities were significantly different from the K4b2 by 0.08 METy (games) to 

2.09 METy (cycling, p < 0.05). When applying the 2RMs that were developed on the opposite 

activity monitor to AX3RW data, ≥4 activities were significantly different from the K4b2 by 0.09 

METy (games) to 2.10 METy (cycling, p < 0.05). 

Table 9 shows measured (K4b2) and predicted METy from the four 2RMs and the 

Hildebrand single regression model when applied to GENEALW data. When applying the 2RM 

that was developed on the same activity monitor and wrist (GENEALW 2RM),, four activities 

were significantly different from the K4b2 by 0.10 METy (games) to 2.08 METy (cycling, p < 

0.05). When the Hildebrand single regression equation was applied to GENEALW data, 12 

activities were significantly different from the K4b2 by 0.47 METy (dust) to 4.39 METy (jumping 

jacks, p < 0.05). When applying the 2RM developed on the same activity monitor but opposite 

wrist to GENEALW data, four activities were significantly different from the K4b2 by 0.10 METy 

(games) to 2.10 METy (cycling, p < 0.05). When applying the 2RMs that were developed on the 

opposite activity monitor to GENEALW data, ≥4 activities were significantly different from the 

K4b2 by 0.10 METy (games) to 2.07 METy (cycling, p < 0.05).  

Table 10 shows measured (K4b2) and predicted METy from the four 2RMs and the 

Hildebrand single regression model when applied to GENEARW data. When applying the 2RM 

that was developed on the same activity monitor and wrist (GENEARW 2RM),, four activities 

were significantly different from the K4b2 by 0.10 METy (games) to 2.21 METy (cycling, p < 

0.05). When the Hildebrand single regression equation was applied to GENEARW data, 12 

activities were significantly different from the K4b2 by 0.47 METy (dust) to 4.39 METy (jumping 

jacks, p < 0.05). When applying the 2RM developed on the same activity monitor but opposite 
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wrist to GENEARW data, six activities were significantly different from the K4b2 by 0.08 METy 

(lying) to 2.19 METy (cycling, p < 0.05). When applying the 2RMs that were developed on the 

opposite activity monitor to GENEARW data, ≥7 activities were significantly different from the 

K4b2 by 0.08 METy (lying) to 2.21 METy (cycling, p < 0.05). 

Estimation of METy for Entire Activity Routine 

Descriptive statistics, RMSE, and mean biases when applying the four 2RMs and the 

Hildebrand single regression model to the four subsets of data for the entire activity routine are 

summarized in tables 11, 12, and 13, respectively. When the four 2RMs were applied to the same 

dataset in which they were developed, the AX3RW 2RM was the only model not statistically 

different from the K4b2, while the other three 2RMS were statistically different from the K4b2 by 

0.26 METy (GENEALW 2RM) to 0.31 METy (GENEARW 2RM, p < 0.05). When the four 2RMs 

were applied to the same dataset in which they were developed, RMSE ranged from 0.46 METy 

(GENEALW 2RM) to 0.58 METy (GENEARW 2RM) and mean bias ranged from -0.07 METy 

(AX3RW 2RM) to 0.31 METy (GENEARW 2RM). When applied to each dataset, the Hildebrand 

single regression equation was statistically different from the K4b2 by 0.47 METy to 0.73 METy 

(p < 0.05), had a RMSE ranging from 0.93 – 1.09 METy, and a mean bias of -0.47 METy to -0.73 

METy.When the four 2RMs were applied to data collected from the same activity monitor but 

opposite wrist in which they were developed, the AX3RW 2RM was the only model not 

significantly different, while the other three 2RMs were statistically different from the K4b2 by 

0.20 METy to 0.36 METy (p < 0.05). When the four 2RMs were applied to data collected from 

the same activity monitor but opposite wrist in which they were developed, RMSE ranged from 

0.50 METy to 0.55 METy and mean bias ranged from -0.02 METy to 0.36 METy. When the four 

2RMs were applied to data collected from the opposite activity monitor in which they were 



 

 43 

developed, the AX3RW 2RM was the only model not significantly different while the other three 

2RMs were statistically different to the K4b2 by 0.06 METy to 0.37 METy (p < 0.05). When the 

four 2RMs were applied to data collected from the opposite activity monitor in which they were 

developed, RMSE ranged from 0.40 METy to 0.60 METy and mean bias ranged from -0.06 

METy to 0.37 METy. 

Cross Validation of Models Predicting Time Spent in Different Physical Activity Intensities 

Levels 

Figure 3 shows average minutes spent in SB, LPA, MPA, and VPA, measured from the 

K4b2 and predicted from the four 2RMs, Hildebrand single regression equation, and four cut-

point methods when applied to AX3LW data. Average data collection duration was 147.4 minutes 

for participants included in the AX3LW whole trial cross-validation. When applying the 2RM that 

was developed on the same activity monitor and wrist (AX3LW 2RM), minutes spent in SB and 

VPA were significantly different from the K4b2 by 7.5 minutes and 6.1 minutes, respectively (p 

< 0.05). When the 2RM developed on the same monitor but opposite wrist was applied to 

AX3LW data, minutes spent in SB and LPA were significantly different from the K4b2 by 8.3 

minutes and 5.7 minutes, respectively (p < 0.05). When the 2RM developed on a different 

activity monitor but same wrist was applied to AX3LW data, minutes spent in VPA were 

significantly different from the K4b2 by 5.7 minutes (p < 0.05). When the 2RM developed on a 

different activity monitor and different wrist was applied to AX3LW data, minutes spent in SB 

and VPA were significantly different (p < 0.05) from the K4b2 by 9.1 minutes and 7.0 minutes, 

respectively. The five previously developed models vary widely in their estimates of time spent 

in different PA intensity levels. All models were significantly different from the K4b2 for ≥2 PA 

intensity levels. The greatest differences for minutes spent in SB, LPA, MPA and VPA were 
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61.5 minutes (Schaefer, p < 0.001), 50.2 minutes (Hildebrand cut-points, p < 0.001), 27.0 

minutes (Phillips right wrist cut-points, p < 0.001), and 6.4 minutes (Schaefer, p < 0.001), 

respectively. 

Figure 4 shows average minutes of SB, LPA, MPA, and VPA, measured from the K4b2 

and predicted from the four 2RMs, Hildebrand single regression equation, and four cut-point 

methods when applied to AX3RW data. Average data collection duration was 141.3 minutes for 

participants included in the AX3RW whole trial cross-validation. When applying the 2RM that 

was developed on the same activity monitor and wrist (AX3RW 2RM), minutes spent in SB and 

LPA were significantly different from the K4b2 by 8.1 minutes and 10.3 minutes, respectively (p 

< 0.05). When the 2RM developed on the same monitor but opposite wrist was applied to 

AX3RW data, minutes spent in SB and VPA were significantly different from the K4b2 by 8.1 

minutes and 6.6 minutes, respectively (p < 0.05). When the 2RM developed on a different 

activity monitor was applied to AX3RW data, minutes spent in SB was significantly different 

from the K4b2 by 4.6 minutes to 9.0 minutes from the K4b2, and minutes spent in VPA were 

significantly different by 5.7 minutes to 7.0 minutes from the K4b2(p < 0.05). The five 

previously developed models vary widely in their estimates of time spent in different PA 

intensity levels. All models were significantly different from the K4b2 for ≥2 PA intensity levels. 

The greatest differences for minutes spent in SB, LPA, MPA and VPA were 55.9 minutes 

(Schaefer, p < 0.001), 45.9 minutes (Hildebrand cut-points, p < 0.001), 23.7 minutes (Phillips 

right wrist cut-points, p < 0.001), and 6.6 minutes (Schaefer, p < 0.001), respectively. 

Figure 5 shows average minutes of SB, LPA, MPA, and VPA, measured from the K4b2 

and predicted from the four 2RMs, Hildebrand single regression equation, and four cut-point 

methods when applied to GENEALW data. Average data collection duration was 134.5 minutes 
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for participants included in the GENEALW whole trial cross-validation. When applying the 2RM 

that was developed on the same activity monitor and wrist (GENEALW 2RM), minutes spent in 

SB and VPA were significantly different from the K4b2 by 6.1 minutes and 6.9 minutes, 

respectively (p < 0.05). When the 2RM developed on the same monitor but opposite wrist was 

applied to GENEALW data, minutes spent in SB and VPA were significantly different from the 

K4b2 by 6.2 minutes and 8.1 minutes, respectively (p < 0.05). When the 2RM developed on a 

different activity monitor was applied to GENEALW data, minutes spent in SB was significantly 

different from the K4b2 by 6.7 minutes to 6.8 minutes, and minutes spent in VPA were 

significantly different from the K4b2 by 6.9 minutes to 8.1 minutes (p < 0.05). The five 

previously developed models vary widely in their estimates of time spent in different PA 

intensity levels. All models were significantly different from the K4b2 for ≥2 PA intensity levels. 

The greatest differences for SB, LPA, MPA and VPA were 53.4 minutes (Schaefer, p < 0.001), 

45.1 minutes (Hildebrand cut-points, p < 0.001), 24.0 minutes (Phillips right wrist cut-points, p < 

0.001), and 7.6 minutes (Schaefer, p < 0.001), respectively. 

Figure 6 shows average minutes of SB, LPA, MPA, and VPA, measured from the K4b2 

and predicted from the four 2RMs, Hildebrand single regression equation, and four cut-point 

methods when applied to GENEARW data. Average data collection duration was 140.4 minutes 

for participants included in the GENEARW whole trial cross-validation. When applying the 2RM 

that was developed on the same activity monitor and wrist (GENEARW 2RM), minutes spent in 

SB and VPA were significantly different from the K4b2 by 6.8 minutes and 5.8 minutes, 

respectively (p < 0.05). When the 2RM developed on the same monitor but opposite wrist was 

applied to GENEARW data, minutes spent in SB and VPA were significantly different from the 

K4b2 by 4.1 minutes and 4.5 minutes, respectively (p < 0.05). When the 2RM developed on a 
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different activity monitor but same wrist was applied to GENEARW data, minutes spent in VPA 

were significantly different from the K4b2 by 4.5 minutes (p < 0.05). When the 2RM developed 

on a different activity monitor and different wrist was applied to GENEARW data, minutes spent 

in SB and VPA were significantly different from the K4b2 by 6.8 minutes and 5.9 minutes, 

respectively (p < 0.05). The five previously developed models vary widely in their estimates of 

time spent in different PA intensity levels. All models were significantly different from the K4b2 

for ≥2 PA intensity levels. The greatest differences for SB, LPA, MPA and VPA were 56.7 

minutes (Schaefer, p < 0.001), 45.1 minutes (Hildebrand cut-points, p < 0.001), 23.5 minutes 

(Phillips right wrist cut-points, p < 0.001), and 5.1 minutes (Schaefer, p < 0.001), respectively. 

Discussion 

The primary aim of this study was to develop 2RMs for the left and right wrist for the 

GENEA and AX3 in youth. The three primary findings of this study were: 1) estimates of EE 

from the 2RMs when developed and validated using data from the same wrist and activity 

monitor had lower error compared to the K4b2 than the Hildebrand single regression equation. 

2) estimates of time spent in different PA intensity levels from the 2RMs when developed and 

validated using data from the same wrist and activity monitor had lower error compared to the 

K4b2 than previously developed regression equations and cut-points, and 3) applying 2RMs to 

data from different activity monitors and wrist locations had minimal impact on their error 

compared to the K4b2 for estimates of EE and time spent in different PA intensity levels.  

The wrist-specific 2RM in youth appeared to improve estimates of EE and time spent in 

different PA intensity levels compared to previous single regression and ROC cut-points. 

However, it is important to note that the 2RMs were developed and cross-validated using the 

same activities which could have contributed to the lower RMSE for the 2RMs. In contrast, the 
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Hildebrand single regression equation was developed on different activities and participants than 

the current study. Although using the same activities biased the results in favor of the 2RMs, it is 

important to note that not all of the 2RMs were developed using the same group of participants. 

The AX3LW and GENEARW subsets were drawn from the same group of 50 participants and the 

AX3RW and GENEALW subsets were drawn from a different group of 50 participants.  

Improvements for Estimation of Energy Expenditure 

A reason that the 2RM had improved performance compared to the Hildebrand equation 

is in part due to the classification accuracy of SBs. All four of the SB classifiers in the current 

study had sensitivities over 91.6% and specificities over 97.1%, demonstrating a high level of 

classification accuracy between sedentary and non-sedentary behaviors. The high level of 

classifications accuracy leads to estimates of EE that are closer to the K4b2 compared to the 

Hildebrand single regression equation. Previous research has shown the Hildebrand equation to 

significantly over-predict EE of SB (29). The inability to estimate the EE of SB using the 

Hildebrand single regression equation for the wrist in youth is due to the intercept of the equation 

being 11.16 ml.kg-1.min-1. This means that when there is zero acceleration, the minimum VO2 

that can be estimated is 11.16 ml.kg-1.min-1, which is almost twice as much as the average resting 

VO2 of youth from the Hildebrand study (6 ml.kg-1.min-1). The results from the current study 

showed the Hildebrand equation significantly over-estimated the five sedentary activities by ≥1 

METy whereas the four 2RMs were within 0.10 METy to the K4b2, which is consistent with 

previous research. 

A limitation of the 2RM for predicting METy arises in part from being able to correctly 

differentiate between CWR and intermittent activity. During the development of the CWR 

classifiers (with CV as the predictor variable), jumping jacks was misclassified as CWR 48.5% 
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to 59.0% of the time making it the most commonly misclassified activity. The high 

misclassification rate was because the variation in acceleration for jumping jacks is low, similar 

to CWR activities although the relationship between EE and acceleration for jumping jacks and 

CWR activities are different. Therefore, future researchers should be aware that activities with 

low-variability in acceleration will be classified as CWR and thus, impact EE predictions from 

the 2RMs (10, 13). 

Previous research has investigated whether adding age as a predictor variable in youth 

regression equations improved estimations. Trost et al. (66) conducted a validation study 

examining multiple youth regression equations with participants between 5-15 years old. Trost and 

colleagues concluded that estimations of time spent in different intensities from single regression 

equations which include age as a predictor variable performed similarly to those without. The 

current study decided to add age as a predictor due to a decrease in MAPE and RMSE across all 

developed 2RMs compared to when age was not included which supports the use of age as a 

predictor variable. Preliminary results from the current study showed stratifying the sample into 

two age groups (6 - 12 years and 13 - 18 years) reduces error for the younger age group while 

increasing error in the older age group compared to indirect calorimetry. Future studies should 

investigate age-stratification within regression equations to predict EE and time spent in different 

PA intensity levels. Differences in metabolic rate and movement patterns between children and 

adolescents may support the implementation of age-stratification in regression equations. 

Improvements for Estimation of Time Spent in Different Physical Activity Intensity Levels 

In recent years, differences between regression equations and ROC cut-points for 

estimating time spent in different physical activity intensity levels has been investigated using 

the Actical and ActiGraph series of devices. Schaefer et al. developed regression equations and 
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ROC cut-points for a wrist-worn Actical in youth and using a free-living independent sample. 

The ROC cut-points gave higher estimates of time spent in MPA and VPA compared to 

regression analyses by 45.2 minutes and 12.3 minutes, respectively. However, the study had no 

criterion measure of time spent in MPA and VPA, so it is uncertain to know whether the ROC 

cut-points or regression equation provided closer estimates. Additionally, Crouter et al. (12) 

developed regression equations and ROC cut-points for the dominant wrist to estimate time spent 

in different physical activity intensity levels in youth using ActiGraph GT3X and GT3X+ 

accelerometers. Compared to indirect calorimetry, the ROC cut-points had a mean bias of 22% to 

69%, which was higher than the mean bias of the regression equations (2% to 8%) for estimates 

of time spent in SB, LPA, MPA, and VPA. The results of the current study are consistent with 

the findings of Schaefer and Crouter, which showed ROC cut-points have greater error for 

estimating time spent in SB, LPA, MPA, and VPA compared to indirect calorimetry, supporting 

the use of a 2RM. 

There has been increasing interest by researchers in developing prediction models that 

can estimate SB because increased time in SB independent of time spent in moderate-to-vigorous 

PA (MVPA) has been shown to be associated with negative health outcomes (27, 48). When 

estimating minutes spent in SB, the four 2RMs developed in this study provide closer estimates 

of minutes spent in SB to the K4b2 than previously developed prediction methods. The 

Hildebrand single regression equation is the most commonly used prediction method for 

estimating EE and minutes spent in different PA intensity levels using the GENEA. The 

Hildebrand single regression equation has been shown to have error when estimating time spent 

in SB (31, 32). Therefore, Hildebrand developed cut-points that distinguish between SB and non-

SB using the sample used to develop the single regression equations (31). However, it is 
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unknown how using the Hildebrand SB cut-point and the Hildebrand single regression equation 

together will impact estimates of LPA. In addition, previous research has shown that the Phillips 

and Schaefer cut-points over-estimate minutes spent in SB to direct observation (69). The results 

from the current study show the four 2RMs over-estimated time spent in SB to indirect 

calorimetry regardless of the activity monitor or wrist it was applied to by <9.1 minutes while all 

other methods were different by >27.2 minutes. Therefore, the 2RMs offered improvements in 

time spent in different PA intensity levels compared to ROC cut-points. 

The ability to estimate time spent in MPA and VPA is important for youth interventions 

that focus on the association between MVPA and various health outcomes (47). Previous 

research has shown that the Hildebrand, Phillips, and Schaefer prediction models do not provide 

equivalent estimates of VPA to indirect calorimetry while the Hildebrand and Schaefer 

prediction models do not provide equivalent estimates of MPA to indirect calorimetry (47). The 

four 2RMs developed in the present study improved estimates of time spent in MPA compared to 

the Hildebrand, Phillips and Schaefer prediction models to indirect calorimetry. However, the 

AX3LW 2RM, GENEALW 2RM and GENEARW 2RM all significantly underestimated time spent 

in VPA from the K4b2 while the AX3RW 2RM was not significantly different in estimating 

minutes of VPA from the K4b2. It is important to note that the models are being validated using 

the same participants and the same activities that were used in the development process, but they 

also include short bouts of activity and transitions that were not used in the development process, 

which is how the 2RMs are applied by researchers. 

Applying a 2RM on the Opposite Wrist or Different Monitor than it was Developed For 

Accelerometers worn on the wrist have become popular with researchers because of the 

increased wear-time compliance (23) and the ability to estimate sleep duration and quality (65). 
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Researchers have been interested on the effect that attachment site at the wrist has on EE 

predictions (30, 32, 40, 44, 45, 50, 75). Hand dominance has been a common distinction made 

when developing prediction models using the GENEA because many daily activities (e.g. 

writing, eating, etc.) are typically performed with the dominant hand. Previous research has 

shown that applying site-specific models to the opposite wrist (e.g. applying a dominant wrist 

model to non-dominant wrist data) has little effect on estimations of EE and minutes spent in 

different PA intensity levels in adults (45) and youth (40). The results from the current study are 

consistent with previous studies. Mean bias and RMSE of the 2RMs were approximately the 

same regardless of whether it was being applied to data from the same or opposite wrist. In 

addition, the participants in the development of the GENEALW and AX3RW 2RM were different 

than the GENEARW and AX3LW 2RM, so cross-validating the 2RM on data using the opposite 

wrist but the same activity monitor used an independent sample of participants, which makes the 

comparisons in the current study less biased. However, future research should investigate the 

application of 2RMs on data using a different activity protocol, such as free-living data. 

Researchers have also been interested in whether prediction models that are developed 

for one activity monitor can be applied to data from a different activity monitor. Harmonization 

between activity monitors will allow for more direct comparisons between studies to be made. 

Currently, the AX3 is being used in the UK BioBank study (18) while the GENEA is being used 

in prospective cohort studies like the Whitehall II (43) and Fenland (73) studies. In order for 

comparisons to be made between the studies, comparisons between the GENEA and AX3 have 

to be conducted. Previous research has shown that applying models that were developed using a 

GENEActiv on ActiGraph data or vice versa provide similar estimations of EE and minutes 

spent in different PA intensity levels (32, 35, 69), but no prior comparisons have been made 
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between the GENEA and AX3. In the current study, mean bias and RMSE for estimations of 

METy for the entire activity bout were approximately the same when applying 2RMs across 

activity monitor brands, indicating that any of the four 2RMs can be used when analyzing 

GENEA or AX3 raw acceleration data. 

Strengths and Limitations 

The present study has strengths and limitations. A strength of the study is development of 

both right and left wrist 2RMs. Previous regression equations developed for the GENEA in 

youth have usually been developed for one wrist, typically the non-dominant wrist. The 

exception is the Phillips wrist cut-points which were developed for left and right wrists 

separately. Another strength of the study is the 2RMs were developed using activities with 

varying intensities and multiple activity domains (e.g. household chores, sport and gaming, 

continuous locomotion). Using a wide range of intensities and types of activities allows for a 

more generalizable model. A limitation of this study is the 2RMs were cross-validated on the 

same activities in which they were developed. Using the same activities to develop and cross-

validate the 2RM biased the results and made estimations of EE and time spent in different PA 

intensity levels appear more accurate than other single regression models and ROC cut-points 

that were developed in other studies and cross-validation in the present study. However, the 

participants in the development of the GENEALW and AX3RW 2RM were different than the 

GENEARW and AX3LW 2RM, providing cross-validation using independent participants. Future 

research should validate the 2RMs and the Hildebrand model using an independent sample in a 

free-living environment. 
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Conclusion 

In conclusion, the current study has developed 2RMs for the left and right wrist using 

GENEA and AX3 activity monitors in youth. To our knowledge, these are the first prediction 

models that estimates EE and time spent in different PA intensity levels using the AX3. 

Compared to indirect calorimetry, when estimating METy, the 2RMs have lower RMSE and 

MAPE than the Hildebrand single regression equation. In addition, for estimating PA intensity 

levels, the 2RMs had lower mean bias than the Hildebrand single regression equation and cut-

point methods. In addition, the findings from the present study suggest that applying 2RMs to the 

opposite wrist (i.e. left versus right wrist) or across activity monitor brand (AX3 versus GENEA) 

do not change estimates of METy or minutes spent in different PA intensity levels. Future work 

should validate the newly developed 2RMs in an independent free-living sample.  
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Tables 

Table 1. List and descriptions of the activities. 

Activity Description of Activity 
Supine Rest Lying supine with arms by their side in a quiet room. 

Internet Games Sitting at a desk playing a self-selected internet computer game. 
Surf Internet Sitting at a desk browsing self-selected internet websites on a computer 

Reclining 
Sitting in a desk chair. If desired, participants were able to lean back in the chair and put feet 

up on a desk. 
Book Reading Sitting in a desk chair reading a book. 

Dusting Wiping down tables and similar surfaces with a paper towel and spray bottle. 

*Slow Walking Walking at a self-selected pace around an indoor basketball court or outdoor tennis court. 
Participants were instructed to walk at a leisurely pace. 

Sweeping Sweeping a pile of paper shreds in a hallway with a straw broom. 

*Brisk Walking 
Walking at a self-selected pace around an indoor basketball court or outdoor tennis court.. 

Participants were instructed to walk as if they were late for class. 
Playing Catch Passing a football with a partner at a comfortable distance. 

Cycling Riding a stationary ergometer at a self-selected pace and resistance. 
Soccer Soccer gameplay (e.g., dribbling, passing, shooting, etc.) with a partner. 

Basketball Basketball gameplay (e.g., playing one-on-one, dribbling, shooting, etc.) with a partner. 
Stair Walking Walking up and down a staircase in an indoor or outdoor location. 
Jumping Jacks Continuous jumping jacks. 

Running 
Running at a self-selected pace around an indoor basketball court or outdoor tennis court.. 

Participants were instructed to choose as pace they could sustain for 4-5 minutes. 
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Table 2. Descriptive characteristics of the participants of the final analytical dataset. 

 Male (n = 41) Female (n = 45) Total (N = 86) 
Age (years; Mean [SD]) 12. (3.5) 12.2 (3.6) 12.2 (3.5) 
     6 – 9 years (n) 11 14 25 
     10 – 12 years (n) 12 10 22 
     13 – 15 years (n) 11 10 21 
     16 – 18 years (n) 7 11 18 
Height (cm; Mean [SD]) 152.1 (20.4) 148.4 (17.9) 150.2 (19.1) 
Body Mass (kg; Mean [SD]) 46.2 (20.1) 43.8 (17.2) 45.0 (18.7) 
BMI Classification (%)    
     Underweight (<5th Percentile) 4.9% 4.4% 4.7% 
     Normal Weight (5th - <85th Percentile) 78.0% 75.6% 76.7% 
     Overweight (85th - <95th Percentile) 7.3% 15.6% 11.6% 
     Obese (≥95th Percentile) 9.8% 4.4% 7.0% 

cm = centimeter. kg = kilogram. BMI = body mass index. 
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Table 3. Mean (SD) acceleration (g) and coefficient of variation (CV) for 60 seconds of steady state activity for the Axivity left wrist 
(AX3LW), Axivity right wrist (AX3RW), GENEActiv left wrist (GENEALW), and GENEActiv right wrist (GENEARW) for each activity 
used in the calibration data set. 

Activity 
AX3LW AX3RW GENEALW GENEARW 

n Acceleration 
(g) CV n Acceleration 

(g) CV n Acceleration 
(g) CV n Acceleration 

(g) CV 

Supine Rest 37 0.013 
(0.015) 

18.39 
(25.51) 36 0.013 

(0.015) 
23.85 

(39.07) 33 0.009 
(0.007) 

21.98 
(30.40) 37 0.017 

(0.012) 
11.41 

(23.43) 

Internet Games  34 0.011 
(0.014) 

41.98 
(39.81) 36 0.009 

(0.015) 
64.75 

(52.10) 32 0.015 
(0.011) 

41.98 
(39.81) 34 0.024 

(0.013) 
16.09 

(18.86) 

Surf Internet  41 0.013 
(0.014) 

57.86 
(51.00) 40 0.011 

(0.018) 
61.62 

(47.41) 39 0.015 
(0.011) 

57.86 
(51.00) 36 0.023 

(0.011) 
16.58 

(15.19) 

Reclining 39 0.016 
(0.016) 

37.18 
(38.22) 39 0.011 

(0.015) 
49.53 

(42.74) 36 0.017 
(0.011) 

37.18 
(38.22) 33 0.016 

(0.011) 
28.62 

(38.58) 

Book Reading 36 0.024 
(0.015) 

41.19 
(46.61) 38 0.011 

(0.012) 
52.80 

(46.33) 37 0.010 
(0.011) 

41.19 
(46.61) 35 0.015 

(0.011) 
45.18 

(32.75) 

Dusting 38 0.060 
(0.035) 

50.21 
(16.59) 37 0.104 

(0.055) 
44.48 

(12.58) 34 0.067 
(0.035) 

50.21 
(16.59) 36 0.100 

(0.065) 
45.04 

(12.36) 

Slow Walking 40 0.155 
(0.083) 

20.62 
(5.07) 36 0.146 

(0.078) 
20.53 
(6.82) 34 0.239 

(0.103) 
20.62 
(5.07) 34 0.141 

(0.042) 
21.51 
(4.65) 

Sweeping 41 0.089 
(0.034) 

37.13 
(8.34) 34 0.097 

(0.042) 
37.98 

(12.17) 34 0.103 
(0.040) 

37.13 
(8.34) 35 0.093 

(0.035) 
41.96 
(6.30) 

Brisk Walking 33 0.239 
(0.117) 

18.83 
(7.79) 37 0.234 

(0.113) 
17.88 
(6.31) 34 0.239 

(0.103) 
18.83 
(7.79) 32 0.225 

(0.097) 
17.90 
(6.45) 

Playing Catch 36 0.272 
(0.096) 

71.77 
(15.79) 37 0.370 

(0.109) 
81.64 

(14.06) 35 0.261 
(0.091) 

71.77 
(15.79) 31 0.384 

(0.126) 
79.80 

(18.39) 

Cycling 35 0.033 
(0.017) 

32.50 
(26.58) 3 0.023 

(0.023) 
52.56 

(49.75) 34 0.042 
(0.020) 

32.50 
(26.58) 34 0.039 

(0.025) 
21.00 

(10.38) 

Soccer 34 0.305 
(0.134) 

63.60 
(17.12) 35 0.343 

(0.194) 
53.32 

(13.89) 32 0.388 
(0.202) 

63.60 
(17.12) 35 0.281 

(0.114) 
65.94 

(18.09) 

Basketball 34 0.371 
(0.116) 

60.34 
(11.39) 28 0.451 

(0.137) 
58.58 

(14.80) 26 0.435 
(0.156) 

60.34 
(11.39) 31 0.414 

(0.128) 
63.54 
(9.94) 
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Table 3. Continued. 

Activity 
AX3LW AX3RW GENEALW GENEARW 

n Acceleration 
(g) CV n Acceleration 

(g) CV n Acceleration 
(g) CV n Acceleration 

(g) CV 

Stair Walking 35 0.184 
(0.052) 

32.20 
(5.39) 39 0.187 

(0.047) 
33.28 
(7.33) 37 0.192 

(0.051) 
32.20 
(5.39) 33 0.177 

(0.056) 
33.84 
(7.20) 

Jumping Jacks 33 0.897 
(0.368) 

28.90 
(13.75) 39 1.051 

(0.451) 
26.01 

(15.52) 36 1.045 
(0.444) 

28.90 
(13.75) 34 0.968 

(0.399) 
27.93 

(13.50) 

Running 36 0.865 
(0.191) 

16.27 
(7.24) 31 0.825 

(0.228) 
14.71 
(4.81) 30 0.813 

(0.202) 
16.27 
(7.24) 31 0.888 

(0.205) 
15.17 
(5.80) 
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Table 4. Sedentary behavior (SB) and continuous walking and running (CWR) classifier sensitivities (SEN), specificities (SPEC), and 
area under the curve (AUC) for the Axivity left wright (AX3LW), Axivity right wrist (AX3RW), GENEActiv left wrist (GENEALW), 
and GENEActiv right wrist (GENEARW) 2-regression models 

Activity Monitor and Location 
SB  CWR 

SEN SPEC AUC  SEN SPEC AUC 
AX3LW (n = 43) 93.8% 97.1% 97.6%  87.8% 90.9% 92.9% 
AX3RW (n = 43) 91.6% 100 % 96.7%  86.0% 87.5% 92.3% 

GENEALW (n = 42) 91.9% 98.7% 97.7%  85.3% 93.9% 93.2% 
GENEARW (n = 42) 95.0% 98.8% 98.5%  89.1% 93.8% 93.7% 
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Table 5. Root mean squared error (RMSE) and mean absolute percent error (MAPE) for Axivity left wrist (AX3LW), Axivity right 
wrist (AX3RW), GENEActiv left wrist (GENEALW), and GENEActiv right wrist (GENEARW) data from leave-one-participant-out 
cross validation when using combinations of linear, cubic, and log-transformed acceleration with and without age as a predictor 
variable 

Calibration Data CWR INT 
ENMO and Age Only ENMO 

RMSE (METy) MAPE (%) RMSE (METy) MAPE (%) 

AX3LW 

Linear Linear 0.92 20.85 0.96 21.20 
Linear Cubic 0.89 19.96 0.93 20.21 

log(ENMO) log(ENMO) 0.85 19.21 0.89 19.23 
log(ENMO) Linear 0.90 20.30 0.93 20.28 
log(ENMO) Cubic 0.86 19.40 0.90 19.28 

Linear log(ENMO) 0.88 19.76 0.92 19.96 

AX3RW 

Linear Linear 1.02 21.89 1.06 22.73 
Linear Cubic 1.00 21.48 1.05 22.42 

log(ENMO) log(ENMO) 0.95 20.71 1.02 21.83 
log(ENMO) Linear 0.97 21.81 1.03 22.11 
log(ENMO) Cubic 0.96 20.77 1.02 21.80 

Linear log(ENMO) 1.00 21.42 1.05 22.45 

GENEALW 

Linear Linear 1.00 22.28 1.05 23.15 
Linear Cubic 0.96 20.88 1.02 22.08 

log(ENMO) log(ENMO) 0.90 19.61 0.96 20.65 
log(ENMO) Linear 0.95 21.34 1.01 22.15 
log(ENMO) Cubic 0.91 19.94 0.97 21.07 

Linear log(ENMO) 0.95 20.56 1.02 21.65 

GENEARW 

Linear Linear 0.90 20.65 0.92 20.92 
Linear Cubic 0.88 20.08 0.90 20.44 

log(ENMO) log(ENMO) 0.84 19.44 0.87 19.75 
log(ENMO) Linear 0.87 20.02 0.90 20.22 
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Table 5. Continued 

Calibration Data CWR INT 
ENMO and Age Only ENMO 

RMSE (METy) MAPE (%) RMSE (METy) MAPE (%) 

GENEARW 
log(ENMO) Cubic 0.85 19.45 0.88 19.76 

Linear log(ENMO) 0.87 20.07 0.90 20.43 
ENMO = Euclidean norm minus one, CWR = continuous walking and running, INT = intermittent activity. Bold indicates the final 
model.  
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Table 6. Sedentary behavior (SB) and continuous walking and running (CWR) thresholds and CWR and intermittent activity 
regression equations developed for the Axivity left wright (AX3LW), Axivity right wrist (AX3RW), GENEActiv left wrist (GENEALW), 
and GENEActiv right wrist (GENEARW) 

Activity 
Monitor 

and Location 

SB 
Threshold 
(1-s epoch, 

g) 

CWR 
Threshold 

(CV) 
Regression Equations 

AX3LW log(ENMO) 
≤ -3.33 

log(ENMO) 
≤ 25.8% 

CWR METy = 4.500 + 1.568(log(ENMO [g’s])) + 0.134(Age [yrs]) 
[0.63, 1.14] 

Intermittent Activity METy = 5.044 + 1.184(log(ENMO [g’s])) + 0.075(Age 
[yrs]) 

[0.44, 1.06] 

AX3RW log(ENMO) 
≤ -3.08 

log(ENMO) 
≤ 27.9% 

CWR METy = 5.992 + 1.447(log(ENMO [g’s])) + 0.194(Age [yrs]) 
[0.51, 1.37] 

Intermittent Activity METy = 4.541 + 1.183(log(ENMO [g’s])) + 0.102(Age 
[yrs]) 

[0.63, 1.14] 

GENEALW log(ENMO) 
≤ -3.11 

log(ENMO) 
≤ 27% 

CWR METy = 4.351 + 1.490(log(ENMO [g’s])) + 0.151(Age [yrs]) 
[0.56, 1.30] 

Intermittent Activity METy = 4.489 + 1.274(log(ENMO [g’s])) + 0.129(Age 
[yrs]) 

[0.45, 1.09] 

GENEARW log(ENMO) 
≤ -2.93 

log(ENMO) 
≤ 25.6% 

CWR METy = 4.779 + 1.487(log(ENMO [g’s])) + 0.098(Age [yrs]) 
[0.68, 0.97] 

Intermittent Activity METy = 4.840 + 1.148(log(ENMO [g’s])) + 0.071(Age 
[yrs]) 

[0.38, 1.13] 
ENMO = Euclidean norm minus one. Values in brackets are [R2, Standard error of the estimate (SEE)]. 
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Table 7. Axivity AX3 Left Wrist Dataset: Measured (Cosmed K4b2) and predicted (Axivity and GENEActiv left and right wrist two-
regression models and Hildebrand equation) youth metabolic equivalents (METy) for 16 structured activities. 

Activity n K4b2  
Axivity GENEActiv 

Hildebrand  
Left Wrist Right Wrist Left Wrist Right Wrist 

Supine Rest 37 1.16 (0.02) 1.25 (0.00)* 1.25 (0.00)* 1.25 (0.00)* 1.25 (0.00)* 2.22 (0.10)* 
Games 34 1.17 (0.03) 1.25 (0.00)* 1.25 (0.00)* 1.25 (0.00) 1.25 (0.00)* 2.24 (0.10)* 
Internet 41 1.17 (0.03) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 2.25 (0.11)* 

Reclining 39 1.18 (0.04) 1.25 (0.00) 1.25 (0.00) 1.27 (0.03) 1.25 (0.00) 2.21 (0.09)* 
Book 36 1.22 (0.03) 1.30 (0.03) 1.25 (0.00) 1.30 (0.03) 1.27 (0.01) 2.29 (0.10)* 
Dust 38 2.32 (0.07) 2.26 (0.13) 2.02 (0.14) 2.37 (0.11) 2.09 (0.12) 2.51 (0.11) 

Slow Walk (mean speed = 74.5 m.min-1) 40 2.95 (0.09) 3.22 (0.11) 3.47 (0.09)* 3.25 (0.11) 3.15 (0.10) 3.15 (0.15) 
Sweep 41 3.02 (0.11) 2.97 (0.07) 2.85 (0.09) 2.98 (0.07) 2.82 (0.06) 2.73 (0.12) 

Brisk Walk (mean speed = 96.6 m.min-1) 33 3.65 (0.15) 3.85 (0.13) 4.06 (0.11)* 3.85 (0.13) 3.76 (0.12) 3.73 (0.20) 
Catch 36 3.72 (0.13) 4.33 (0.07)* 4.18 (0.07)* 4.33 (0.07)* 4.14 (0.07)* 3.90 (0.17) 

Cycling 35 3.82 (0.15) 1.43 (0.06)* 1.31 (0.05)* 1.46 (0.07)* 1.39 (0.05)* 2.37 (0.11) 
Soccer 34 4.70 (0.23) 4.46 (0.09) 4.30 (0.09) 4.46 (0.09) 4.27 (0.09) 4.31 (0.27) 

Basketball 34 4.72 (0.17) 4.71 (0.07) 4.54 (0.07) 4.71 (0.07) 4.51 (0.07) 4.62 (0.25) 
Stairs 35 5.16 (0.21) 3.85 (0.07)* 3.78 (0.06)* 3.88 (0.06)* 3.68 (0.06)* 3.42 (0.16)* 

Jumping Jacks 33 5.73 (0.23) 5.88 (0.11) 5.80 (0.12) 5.87 (0.11) 5.67 (0.11) 8.54 (0.66)* 
Running (mean speed = 155.0 m.min-1) 36 6.30 (0.27) 5.96 (0.06) 6.06 (0.06) 5.96 (0.06) 5.75 (0.06) 7.72 (0.38)* 

Values are Mean (SD). *Significantly different from Cosmed K4b2, p < 0.05. Italicized indicates models developed on the opposite 
wrist or activity monitor than the calibration subset.
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Table 8. Axivity AX3 Right Wrist Dataset: Measured (Cosmed K4b2) and predicted (Axivity and GENEActiv left and right wrist two-
regression models and Hildebrand equation) youth metabolic equivalents (METy) for 16 structured activities. 

Activity n K4b2 
Axivity GENEActiv 

Hildebrand 
Left Wrist Right Wrist Left Wrist Right Wrist 

Supine Rest 36 1.20 (0.03) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 2.33 (0.11)* 
Games 36 1.18 (0.03) 1.26 (0.01)* 1.25 (0.00) 1.26 (0.01) 1.27 (0.01)* 2.31 (0.10)* 
Internet 40 1.28 (0.04) 1.28 (0.01) 1.25 (0.00) 1.28 (0.01) 1.28 (0.02) 2.37 (0.11)* 

Reclining 39 1.24 (0.04) 1.28 (0.03) 1.25 (0.00) 1.27 (0.04) 1.28 (0.03) 2.40 (0.11)* 
Book 38 1.19 (0.03) 1.25 (0.00) 1.25 (0.00) 1.27 (0.02) 1.25 (0.00) 2.32 (0.11)* 
Dust 37 2.39 (0.09) 3.03 (0.15)* 2.94 (0.15)* 3.11 (0.13)* 2.90 (0.14)* 3.06 (0.16)* 

Slow Walk (mean speed = 73.7 m.min-1)  36 2.85 (0.11) 3.17 (0.12) 3.40 (0.11)* 3.18 (0.12) 3.08 (0.11) 3.40 (0.16)* 
Sweep 34 3.08 (0.12) 3.07 (0.07) 3.03 (0.06) 3.07 (0.07) 2.88 (0.07) 3.08 (0.15) 

Brisk Walk (mean speed = 97.0 m.min-1) 37 3.60 (0.16) 3.83 (0.12) 4.05 (0.11)* 3.83 (0.12) 3.72 (0.11) 4.03 (0.23) 
Catch 37 3.96 (0.13) 4.74 (0.06)* 4.57 (0.05)* 4.74 (0.06)* 4.54 (0.06)* 4.91 (0.25)* 

Cycling 35 3.52 (0.22) 1.43 (0.08)* 1.38 (0.07)* 1.49 (0.08)* 1.42 (0.07)* 2.49 (0.12)* 
Soccer 35 4.88 (0.28) 4.53 (0.12) 4.38 (0.11) 4.53 (0.12) 4.34 (0.11) 4.81 (0.37) 

Basketball 28 4.54 (0.22) 4.97 (0.07) 4.80 (0.07) 4.97 (0.07) 4.76 (0.07) 5.32 (0.32)* 
Stairs 39 5.09 (0.18) 3.84 (0.07)* 3.80 (0.05)* 3.88 (0.06)* 3.68 (0.06)* 3.62 (0.15)* 

Jumping Jacks 39 5.73 (0.22) 6.03 (0.14) 6.00 (0.14) 6.03 (0.14) 5.81 (0.13) 10.05 (0.75)* 
Run (mean speed = 154.4 m.min-1) 31 6.67 (0.33) 5.85 (0.08) 5.95 (0.08) 5.85 (0.08) 5.66 (0.08)* 8.31 (0.54)* 

Values are Mean (SD). *Significantly different from Cosmed K4b2, p < 0.05. Italicized indicates models developed on the opposite 
wrist or activity monitor than the calibration subset.  



  

  71 

Table 9. GENEActiv Left Wrist Dataset: Measured (Cosmed K4b2) and predicted (Axivity and GENEActiv left and right wrist two-
regression models and Hildebrand equation) youth metabolic equivalents (METy) for 16 structured activities. 

Activity n K4b2  
Axivity GENEActiv 

Hildebrand  
Left Wrist Right Wrist Left Wrist Right Wrist 

Supine Rest 33 1.18 (0.03) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 2.38 (0.12)* 
Games 32 1.15 (0.03) 1.25 (0.00)* 1.25 (0.00)* 1.25 (0.00)* 1.25 (0.00)* 2.42 (0.11)* 
Internet 39 1.29 (0.04) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 2.47 (0.11)* 

Reclining 36 1.24 (0.05) 1.25 (0.00) 1.25 (0.00) 1.28 (0.03) 1.25 (0.00) 2.52 (0.11)* 
Book 37 1.19 (0.03) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 2.37 (0.11)* 
Dust 34 2.39 (0.10) 2.42 (0.16) 2.23 (0.16) 2.51 (0.14) 2.27 (0.15) 2.86 (0.15)* 

Slow Walk (mean speed = 73.7 m.min-1) 34 2.94 (0.11) 3.27 (0.11) 3.52 (0.09)* 3.28 (0.11) 3.20 (0.10) 3.55 (0.15)* 
Sweep 34 3.15 (0.13) 3.08 (0.10) 3.01 (0.11) 3.11 (0.08) 2.94 (0.09) 3.18 (0.14) 

Brisk Walk (mean speed = 97.0 m.min-1) 34 3.57 (0.16) 3.82 (0.11) 4.08 (0.11)* 3.82 (0.11) 3.74 (0.11) 4.11 (0.25)* 
Catch 35 3.93 (0.14) 4.28 (0.08) 4.13 (0.07) 4.28 (0.08) 4.10 (0.07) 4.15 (0.18) 

Cycling 34 3.58 (0.23) 1.51 (0.09)* 1.51 (0.10)* 1.50 (0.09)* 1.49 (0.07)* 2.71 (0.13)* 
Soccer 32 5.12 (0.28) 4.67 (0.13) 4.52 (0.12) 4.67 (0.13) 4.48 (0.12) 5.22 (0.38) 

Basketball 26 4.66 (0.24) 4.90 (0.09) 4.72 (0.09) 4.90 (0.09) 4.70 (0.09) 5.35 (0.34) 
Stairs 37 5.20 (0.18) 3.94 (0.06)* 3.86 (0.05)* 3.94 (0.06)* 3.76 (0.06)* 3.78 (0.16)* 

Jumping Jacks 36 5.87 (0.21) 6.06 (0.14) 6.01 (0.15) 6.04 (0.14) 5.84 (0.14) 10.26 (0.76)* 
Run (mean speed = 154.4 m.min-1) 30 6.71 (0.33) 5.83 (0.08)* 5.95 (0.07) 5.83 (0.08)* 5.63 (0.07)* 8.28 (0.51)* 

Values are Mean (SD). *Significantly different from Cosmed K4b2, p < 0.05. Italicized indicates models developed on the opposite 
wrist or activity monitor than the calibration subset.
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Table 10. GENEActiv Right Wrist Dataset: Measured (Cosmed K4b2) and predicted (Axivity and GENEActiv left and right wrist 
two-regression models and Hildebrand equation) youth metabolic equivalents (METy) for 16 structured activities. 

Activity n K4b2  
Axivity GENEActiv 

Hildebrand 
Left Wrist Right Wrist Left Wrist Right Wrist 

Supine Rest 37 1.17 (0.02) 1.25 (0.00)* 1.25 (0.00)* 1.25 (0.00)* 1.25 (0.00)* 2.26 (0.10)* 
Games 34 1.16 (0.03) 1.27 (0.01)* 1.25 (0.00)* 1.26 (0.01)* 1.27 (0.01)* 2.30 (0.09)* 
Internet 36 1.18 (0.03) 1.25 (0.00) 1.25 (0.00) 1.23 (0.01) 1.25 (0.00) 2.31 (0.10)* 

Reclining 33 1.18 (0.04) 1.25 (0.00) 1.25 (0.00) 1.24 (0.01) 1.25 (0.00) 2.18 (0.09)* 
Book 35 1.21 (0.03) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 1.25 (0.00) 2.23 (0.09)* 
Dust 36 2.27 (0.08) 2.82 (0.17)* 2.74 (0.16)* 2.94 (0.14)* 2.69 (0.16) 2.72 (0.10)* 

Slow Walk (mean speed = 73.6 m.min-1) 34 2.87 (0.09) 3.11 (0.08)* 3.42 (0.07)* 3.16 (0.08) 3.07 (0.07) 3.10 (0.13) 
Sweep 35 2.96 (0.11) 3.08 (0.07) 2.95 (0.08) 3.08 (0.07) 2.92 (0.07) 2.71 (0.11) 

Brisk Walk (mean speed = 96.6 m.min-1) 32 3.53 (0.15) 3.78 (0.12) 4.01 (0.10)* 3.79 (0.12) 3.68 (0.11) 3.61 (0.18) 
Catch 31 3.61 (0.14) 4.77 (0.07)* 4.60 (0.07)* 4.77 (0.07)* 4.57 (0.07)* 4.63 (0.25)* 

Cycling 34 3.78 (0.13) 1.58 (0.09)* 1.57 (0.10)* 1.59 (0.09)* 1.57 (0.08)* 2.39 (0.11)* 
Soccer 35 4.55 (0.24) 4.36 (0.08) 4.21 (0.08) 4.36 (0.08) 4.17 (0.08) 4.15 (0.23) 

Basketball 31 4.72 (0.17) 4.86 (0.07) 4.69 (0.07) 4.86 (0.07) 4.66 (0.07) 5.06 (0.27) 
Stairs 33 4.91 (0.19) 3.81 (0.07)* 3.73 (0.06)* 3.81 (0.07)* 3.64 (0.07)* 3.28 (0.16)* 

Jumping Jacks 34 5.58 (0.22) 5.95 (0.11) 5.88 (0.12) 5.95 (0.11) 5.73 (0.11) 8.88 (0.70)* 
Run (mean speed = 155.2 m.min-1) 31 6.12 (0.24) 5.98 (0.06) 6.07 (0.07) 5.98 (0.06) 5.77 (0.06) 7.79 (0.40)* 

Values are Mean (SD). *Significantly different from Cosmed K4b2, p < 0.05. Italicized indicates models developed on the opposite 
wrist or activity monitor than the calibration subset. 
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Table 11. Mean (SD) measured youth metabolic equivalents (METy) from the Cosmed K4b2 and predicted METy from the Axivity 
left wrist 2-regression model (AX3LW 2RM), Axivity right wrist 2-regression model (AX3RW 2RM), GENEActiv left wrist 2-
regression model (GENEALW 2RM), GENEActiv right wrist 2-regression model (GENEARW 2RM), and Hildebrand single regression 
model across the entire data collection period. 

Subset 
Prediction Model 

K4b2 AX3LW 2RM AX3RW 2RM GENEALW 2RM GENEARW 2RM Hildebrand 
AX3LW EE (METy) (n = 42) 2.73 (0.53) 2.44 (0.23)* 2.75 (0.33) 2.50 (0.33)* 2.37 (0.21)* 3.20 (0.91)* 
AX3RW EE (METy) (n = 41) 2.83 (0.49) 2.52 (0.24)* 2.89 (0.33) 2.58 (0.31)* 2.45 (0.21)* 3.56 (0.79)* 

GENEALW EE (METy) (n = 39) 2.76 (0.57) 2.47 (0.34)* 2.82 (0.45) 2.50 (0.38)* 2.40 (0.32)* 3.50 (0.67)* 
GENEARW EE (METy) (n = 40) 2.70 (0.56) 2.46 (0.24)* 2.78 (0.33) 2.50 (0.31)* 2.39 (0.22)* 3.34 (0.98)* 

Bold indicates that the model was developed and applied on the same wrist and activity monitor 
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Table 12. Root mean squared error for Axivity left wrist 2-regression model (AX3LW 2RM), Axivity right wrist 2-regression model 
(AX3RW 2RM), GENEActiv left wrist 2-regression model (GENEALW 2RM), GENEActiv right wrist 2-regression model (GENEARW 
2RM), and Hildebrand single regression model for the entire data collection period 

Subset 
Prediction Model 

AX3LW 2RM AX3RW 2RM GENEALW 2RM GENEARW 2RM Hildebrand 
AX3LW EE (METy) 0.56  0.50  0.55  0.60  0.93  
AX3RW EE (METy) 0.55  0.50  0.55  0.58  1.06  

GENEALW EE (METy) 0.50  0.40  0.46  0.54  1.09  
GENEARW EE (METy) 0.55  0.50  0.55  0.58  1.06  

Bold indicates that the model was developed and applied on the same wrist and activity monitor 
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Table 13. Mean bias and prediction intervals (PI) for Axivity left wrist 2-regression model (AX3LW 2RM), Axivity right wrist 2-
regression model (AX3RW 2RM), GENEActiv left wrist 2-regression model (GENEALW 2RM), GENEActiv right wrist 2-regression 
model (GENEARW 2RM), and Hildebrand single regression model for the entire data collection period. Units are youth metabolic 
equivalents (METy) 

Subset 

Prediction Method 
AX3LW 2RM AX3RW 2RM GENEALW 2RM GENEARW 2RM Hildebrand 
Mean Bias 

(Upper PI, Lower PI) 
Mean Bias 

(Upper PI, Lower PI) 
Mean Bias 

(Upper PI, Lower PI) 
Mean Bias 

(Upper PI, Lower PI) 
Mean Bias 

(Upper PI, Lower PI) 
AX3LW METy  0.29 (-0.66, 1.24) -0.02 (-1.01, 0.96) 0.24 (-0.75, 1.22) 0.36 (-0.59, 1.31) -0.47 (-2.06, 1.13) 
AX3RW METy 0.30 (-0.52, 1.13) -0.07 (-0.91, 0.78) 0.25 (-0.59, 1.09) 0.37 (-0.46, 1.21) -0.73 (-2.46, 1.00) 

GENEALW METy 0.29 (-0.50, 1.09) -0.06 (-0.84, 0.72) 0.26 (-0.51, 1.03) 0.36 (-0.44, 1.17) -0.71 (-2.34, 0.92) 
GENEARW METy 0.24 (-0.74, 1.21) -0.09 (1.07, 0.90) 0.20 (-0.81, 1.21) 0.31 (-0.67, 1.28) -0.65 (-2.31, 1.02) 

Bold indicates that the model was developed and applied on the same wrist and activity monitor 
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Figures 

 

Figure 1. Classification between sedentary behavior and non-sedentary behavior for A) Axivity 
left wrist, B) GENEActiv left wrist, C) Axivity right wrist, and D) GENEActiv right wrist data 
using log(ENMO). Values to the left of the threshold are classified as sedentary while values to 
the right of the threshold are classified as non-sedentary. 



  

  77 

 

Figure 2. Classification between continuous walking and running and intermittent activity for A) 
Axivity left wrist, B) GENEActiv left wrist, C) Axivity right wrist, and D) GENEActiv right 
wrist data using the coefficient of variation (CV) of log(ENMO). Values below the threshold are 
classified as continuous walking and running while values above the threshold are classified as 
intermittent activity.



  

  78 

 

Figure 3. Axivity AX3 Left Wrist Dataset: Measured (Cosmed K4b2) and predicted (Axivity left wrist (AX3LW), Axivity right wrist 
(AX3RW), GENEActiv left wrist (GENEALW) and GENEActiv right wrist (GENEARW) two-regression models, Hildebrand 
equation, and four cut-points) time spent in different PA intensity levels. *Statistically different from Cosmed K4b2, p < 0.05. ^ The 
model was developed and applied on the same wrist and activity monitor. #Sedentary behavior and light intensity activity were 
combined because no cut-point was developed. 
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Figure 4. Axivity AX3 Right Wrist Dataset: Measured (Cosmed K4b2) and predicted (Axivity left wrist (AX3LW), Axivity right wrist 
(AX3RW), GENEActiv left wrist (GENEALW) and GENEA right wrist (GENEARW) two-regression models, Hildebrand equation, and 
four cut-points) time spent in different PA intensity levels. *Statistically different from Cosmed K4b2, p < 0.05. ^ The model was 
developed and applied on the same wrist and activity monitor. #Sedentary behavior and light intensity activity were combined because 
no cut-point was developed.
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Figure 5. GENEActiv Left Wrist Dataset: Measured (Cosmed K4b2) and predicted (Axivity left wrist (AX3LW), Axivity right wrist 
(AX3RW), GENEActiv left wrist (GENEALW) and GENEA right wrist (GENEARW) two-regression models, Hildebrand equation, and 
four cut-points) time spent in different PA intensity levels. *Statistically different from Cosmed K4b2, p < 0.05. ^ The model was 
developed and applied on the same wrist and activity monitor. #Sedentary behavior and light intensity activity were combined because 
no cut-point was developed.
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Figure 6. GENEActiv Right Wrist Dataset: Measured (Cosmed K4b2) and predicted (Axivity left wrist (AX3LW), Axivity right wrist 
(AX3RW), GENEActiv left wrist (GENEALW) and GENEA right wrist (GENEARW) two-regression models, Hildebrand equation, and 
four cut-points) time spent in different PA intensity levels. *Statistically different from Cosmed K4b2, p < 0.05. ^ The model was 
developed and applied on the same wrist and activity monitor. #Sedentary behavior and light intensity activity were combined because 
no cut-point was developed.
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Informed Consent Form 
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Informed Assent Form 
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Health History Questionnaire 
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