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Abstract

Calling context is widely used in software engineering areas such as profiling, debugging

and event logging. It can also enhance some dynamic analysis such as data race detection.

To obtain the calling context at runtime, current approaches either perform expensive stack

walking to recover contexts or instrument the application and dynamically encode the context

into an integer. The current encoding schemes are either not fully precise, or have high

instrumentation and detection overhead, and scalability issue for large and highly recursive

applications.

We propose slot-based calling context encoding (SCCE), which consists of a scalable

encoding for acyclic contexts and an efficient encoding for cyclic contexts. Evaluating with

CPU 2006 benchmark suite, we show that our acyclic encoding is scalable, has very low

instrumentation overhead, and an acceptable detection overhead. We also show that our

cyclic encoding also has lower instrumentation and detection overhead than the state-of-the-

art approach by significantly reducing the number of bytes pushed and checked for cyclic

contexts.
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Chapter 1

Introduction

Calling context enhances a wide range of software engineering fields such as debugging, and

event logging [5]. For example, data race detectors record memory accesses that might

cause data races. Including the calling contexts of such memory accesses will greatly help

the programmers. In [17], calling context information reduces the events logged, and after

removing redundant events in the replay log, the replay could be much faster. Context

information is also helpful for various feed-back directed optimizations (FDO). One example

is region-based memory management guided by calling contexts [8]. In our lab’s researches,

we link the application against a custom memory allocator which detects calling context

online to guide the allocations [14]. In such FDO scenarios, if the context detection overhead

is too high, it can defeat the purpose of using it as the guidance.

Over the years, many instrumentation-based encoding schemes have been proposed to

efficiently encode and detect contexts. Some of them [6] [5] are imprecise approaches so

different contexts can be encoded into the same value. These encodings generally have low

instrumentation and detection overhead, and scale to larger applications than the precise

approaches. But they are not suitable for situations where precision is required. In addition,

they often provide no or complicated decodings. On the other hand, the precise approaches

[13] [11] [16] usually lose efficiencies when the applications are highly recursive. It [13] has

been found that when a large number of cycles are executed in the call graph, most of the

instrumentation and detection overhead come from the cyclic contexts. Besides, the encoding

often does not fit in one integer for large applications [11] and thus profiling is required to
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prune the static call graph. The scalablity issue was addressed in [16] by extending [13]’s

encoding, but in a heavyweight way which incurs complex instrumentations and greatly

increases instrumentation overhead and detection overhead. Besides, the decoding also has

higher complexity compared to the original decoding.

In this work, we present a precise encoding - slot-based calling context encoding (SCCE)

for large-scale highly recursive applications. Specifically, we make the following contributions:

1. We propose an alternative encoding for acyclic contexts that scales to arbitrarily large

applications, has the simplest instrumentation operation and linear-time decoding with

an acceptable detection overhead.

2. We make the observation that the acyclic contexts and the cyclic contexts can be

encoded independently without sharing any encoding space.

3. Based on the observation above, we present a more compact encoding scheme for cyclic

contexts that significantly reduces instrumentation and detection overhead.

The rest of this thesis is organized as follows: Chapter 2 describes related work. Chapter

3 provides an overview of PCCE’s acyclic encoding and SCCE’s acyclic encoding. Chapter

4 provides an overview of PCCE’s cyclic encoding and SCCE’s cyclic encoding. Chapter 5

shows some analysis of the profile data collected from the benchmarks. Chapter 6 discusses

future directions for this work, and Chapter 7 concludes the thesis.
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Chapter 2

Related Work

We introduce some static and dynamic analysis works that require or benefit from context

sensitivity. We then introduce some context encoding schemes.

Context sensitivity in static analysis. Context sensitivity is implemented in various

static analysis, especially pointer analysis. Because time and space overhead is not a concern,

these analysis typically use explicit call strings or calling context trees [9] [10] [12]. As BDD

(binary decision diagram) is a widely used data structure in context sensitive pointer analysis,

customized calling context numbering has been implemented to improve BDD compactness

[15]. Computing this numbering, however, analyzes the entire call graph ahead of time.

Context sensitivity in dynamic analysis. Prior dynamic analyses have used either a

calling context tree [3] [18] or stack walking [7] to detect context at run-time. The inefficiency

of these methods are discussed below.

2.1 Non-instrumentation methods

Stack walking. Stack walking explicitly traverses the program stack whenever a context

is requested. It has no instrumentation overhead because the program stack is naturally

maintained, but has high detection overhead because generally programs are not directly

allowed to look at its own call stack, and thus switching to the OS or the VM is required.

Because of this innate security design, getting the context information from the program
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execution record is prohibitively expensive and is not suitable for dynamic analysis, or FDO,

etc which queries contexts very often and requires low detection overhead.

Calling context tree. Compared to static call graph, calling context tree is the dynamic

execution result of a static call graph. It is widely used as a profile data, and can be

dynamically maintained as the program executes. Tree may be a natural data structure

to represent call paths, but it is highly uncompact. Updating the tree nodes incurs high

overhead at run-time.

Last branch record (LBR). Since Haswell, the LBRs have a new mode where the

CPU logs every call and return into the LBR and treats them as a stack. Typically there

are 16 or 32 pairs MSRs to record a pair (from address, to address) and a top-of-stack

register to indicate top of the stack. Since LBR uses architectural support and thus has very

low instrumentation overhead. However, there is no efficient ways to read these MSRs at

user space as of now. It has to switch into the OS code (via system calls), which has high

overhead. Besides, this LBR mode is only available on certain architectures.

Function cloning. Another way to achieve context sensitivity is to duplicate a same

function and let different callers call different its copies. We have observed that function

cloning is a clean method that incurs almost no overhead when the cloning is only performed

up to a few layers of contexts. The downside of cloning is that the code size blows up

exponentially and there can potentially be an infinite amount of contexts if cycles are present

in the call graph.

2.2 Instrumentation-based methods

Probablistic calling context encoding (PCC). In [6], a probabilistic calling contexts

encoding is proposed. In such a probablistic encoding, same context will always be encoded

into the same value, but different contexts also could be computed the same value. PCC

updates an identifier with a hash function on each call site and does not treat cyclic contexts

specially. They have very low probability of collision and low overhead. But it is imprecise

and does not provide decoding. A more recent work [5] by the same author presents a

method to reconstruct the calling context from hashed numeric identifiers. It uses the static
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call graph and dynamic information to decode the calling context. To reduce the runtime

overhead, it only collects dynamic information at infrequently executed callsites. However,

this may cause reconstruction to fail.

Precise calling context encoding (PCCE). PCCE is a state-of-the-art precise

static instrumentation-based proposed encoding method thats uniquely represent the current

context of any execution point using an integer identifier and a stack. It adopts the efficient

path profiling encoding approach proposed by Ball and Larus [4] and adjusts it for call

path encoding. PCCE offers a nonprobabilistic approach with very low run-time overhead.

However, PCCE’s one drawback is that it does not scale to large applications. It relies on

profiling to prune the original call graph to reduce the encoding space pressure. Besides,

PCCE has an inefficient encoding for cyclic contexts. Due to these limitations, PCCE is not

suitable for modern large-scale highly recursive applications.

DeltaPath. Delta builds on top of PCCE’s encoding scheme, and addresses the

issue of dynamic dispatch, dynamic class loading, and insufficient encoding space. The

encoding space issue is resolved by introducing a set of anchor node and encode each anchor

node’s territory separately so that each piece is encodable with one integer. However, this

solution involves complex run-time behavior such as having to push the anchor node onto a

stack, which increases both instrumentation overhead and detection overhead. Besides, the

decoding also has higher complexity compared to the original PCCE decoding.
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Chapter 3

Acyclic Context Encoding

In this chapter, we discuss our encoding scheme for acyclic call graphs. Before introducing

our scheme, we first give an overview of PCCE and use the same consistent definitions from

PCCE as much as possible.

3.1 Precise Calling Context Encoding (PCCE)

For the acyclic graphs, PCCE’s algorithm consists of two phases - annotation and

instrumentation. During the annotation phase, each node in the call graph is assigned a

value NumCC which represents the number of possible contexts that node can have. During

the instrumentation phase, PCCE traverses all calling (incoming) edges of a given node, and

increment a global identifier (id) by a value before the call and decrement the identifier (id)

after the call by the same value. The value that is added and subtracted from id depends on

the caller. The invariant is that for a given node, different taken edges produce a disjoint set

value ranges of id. Therefore, by comparing the current id against these ranges, the taken

edge can be uniquely determined.

Figure 3.1 shows how PCCE instruments edges on an example graph. Table 3.1 shows the

context value and the number of memory operations associated with each call or return. We

simulate the the memory operations incurred by the instrumentation code for the following

execution path. We will run the same execution path using our encoding later.
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PCCE Introduction

2

PCCE
Action Current 

path
Context 

value
Total 

mem. ops
Call A A 0 0
Call C AC 0 0
Call E ACE 1 2
Call F ACEF 3 4
Return to E ACEFE 1 6
Return to C ACEFEC 0 8
Call D ACEFECD 1 10
Call F ACEFECDF 1 10

A

!" = $

B C

D E

!" += &
!" −= &!" += &

!" −= &

F

!" += (
!" −= (

Figure 3.1: An example of PCCE’s acyclic instrumentation

Table 3.1: Simulate Call Trace “ACEFECDF” With PCCE

Action Call trace Current context Context ID Total mem. ops

Call A A A 0 0
Call C AC AC 0 0
Call E ACE ACE 1 2
Call F ACEF ACEF 3 4
Return to E ACEFE ACE 1 6
Return to C ACEFEC AC 0 8
Call D ACEFECD ACD 1 10
Call F ACEFECDF ACDF 1 10
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3.2 Slot-based calling context encoding (SCCE)

Similarly to PCCE, SCCE also consists of an annotation phase and an instrumentation

phase. During the annotation phase, SCCE assigns a context level to each node in the call

graph, which is defined in the next section. Besides, SCCE uses an one-byte array as the data

structure to store the context as opposed to a single integer. During the instrumentation

phase, code will be inserted before each instrumented edge to set one or more slots depending

on the edge. No instrumentation is needed after the call. During detection, only a part of the

context array is used for detection. What slots to use for detection depends on the querier

function’s context level.

3.2.1 Definitions

We introduce a consistent definition of the call graph with PCCE, as well as some concepts

that are specific to SCCE.

Definition 3.1. A call graph (CG) is a pair 〈N,E〉. N is a set of nodes with each node

representing a function. E is a set of directed edges. Each edge e ∈ E is a triple 〈n,m, l〉, in

which n,m ∈ N , represent a caller and callee, respectively, and l represents a call site where

n calls m.

Definition 3.2. The calling context (CC) of a given function invocation m, is a path in the

CG leading from the root node to the node representing m.

Definition 3.3. The context level (CL) of a node n in the call graph is the longest acyclic

path between the root node and n.

Definition 3.4. The context level (maximum depth) of the call graph is the maximum context

level of any node in the graph.

Definition 3.5. Context array is a global data structure used to store context. It is fixed-

sized and its size equals the context level of the call graph. Each element in the array is one

byte.
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An Optimized Version

4

A

𝒊𝒅 𝟎 = 𝟎

B C

D E

𝒊𝒅 𝟎 = 𝟑

𝒊𝒅 𝟎 = 𝟐

𝒊𝒅 𝟎 = 𝟎

𝒊𝒅[𝟎] = 𝟏

F

SCCE

Action Path Context 
value

Slots used for 
detection

Total
mem. ops

Call A A 0 - 0

Call C AC 0 - 0

Call E ACE 3 0 1

Call F ACEF 3 0 1

Return to E ACEFE 3 0 1

Return to C ACEFEC 3 - 1

Call D ACEFECD 1 0 2

Call F ACEFECDF 1 0 2

𝑳 𝟎

𝑳 𝟎

𝑳 𝟏

𝑳 𝟏

𝑳 𝟎

𝑳 𝟏

Figure 3.2: SCCE’s minimal instrumentation with the same example

Table 3.2: Simulate Call Trace “ACEFECDF” With Minimal SCCE

Action Call trace Current context Context array Slots Total mem. ops

Call A A A 0 - 0
Call C AC AC 0 - 0
Call E ACE ACE 3 slot 0 1
Call F ACEF ACEF 3 slot 0 1
Return to E ACEFE ACE 3 slot 0 1
Return to C ACEFEC AC 3 - 1
Call D ACEFECD ACD 1 slot 0 2
Call F ACEFECDF ACDF 1 slot 0 2

As a motivation example, we observe that the example in figure 3.1 can be instrumented

with simpler instrumentations in figure 3.2. Table 3.2 shows the context array, the slots used

to check current context (‘-’ means no slot is checked) and the number of memory operations

associated with each call or return.

Following the motivation example, we detail SCCE’s encoding and instrumentation.

3.2.2 Context Level

The context level of each node is calculated in a bottom-up fashion, we first show a naive

algorithm, and then present a few special cases and optimizations that affect context levels.

9



Algorithm 1 Calculate Context Levels

1: procedure Annotate(N,E)
2: CL[root]← 0
3: for n ∈ N in topological order do
4: maxCallerLevel← 0
5: for each incoming edge e = 〈p, n, l〉 of n do
6: maxCallerLevel← MAX(maxCallerLevel, CL[p])

7: CL[n]← maxCallerLevel + 1

• Special Case 1. If the node only has one caller, its context level equals its parent’s

level, since this subpath is unambiguous.

• Special Case 2. If the number of callers of node is not encodable with one slot (8

bits), the node is extended by however many levels needed to encode all its callers. For

example, if a node has 300 callers, its context level would be extended by one more

level, namely this node occupies two consecutive slots.

• Optimization 1. Semantically inlining calls can reduce the maximum depth of the

call graph. In example 3.2, edge DF and EF are semantically inlined. As a result,

the maximum depth of the call graph is reduced by one, and F now has 4 callers.

3.2.3 Perfect Encoding

We observe that there exists a perfect encoding for SCCE. In the most ideal case, each slot

will be fully used. In this case, SCCE’s representation is as compact as PCCE, but eliminates

the redundancy in PCCE’s instrumentation and naturally scales. Figure 3.2 is an example

such a perfect encoding. While this perfectness is unrealistic in real-word call graphs, it is

possible to compute an optimal SCCE encoding that is as close to the perfect encoding as

possible.

3.2.4 Instrumentation

During the instrumentation, it is not always the case that the callee just has exactly one

more level than the caller. There are the following two cases when there can be multiple

levels’ distance between the caller and the callee.

10



Algorithm 2 Calculate Context Levels

1: procedure Annotate(N,E)
2: CL[root]← 0
3: for n ∈ N do
4: v = 0
5: for each incoming edge e = 〈p, n, l〉 of n do
6: ctx[CL[n]]← v // ctx is the context array
7: ZeroFill(ctx[0], ctx[CL[n]− 1])
8: v ← v + 1

• Case 1. If the node occupies multiple levels (v can be greater than 256), v is stored

to these multiple slots allocated for the node, instead of just one slot. Same goes for

v > 65536 etc.

• Case 2. A forward edge exists, namely a node is found to be visited and also a

descendant of current node. This gap happens because a node always takes the

maximum static context level it can possible have among all paths. In such cases,

unused slots are zero filled.

As a simple optimization, multiple stores on one edge can be combined as storing to a

short, int or size_t type, depending on how many stores are combined if the combined

store is aligned.

3.2.5 Decoding

Due to the fact that each call site is stored at a separate slot in the context array, decoding

is simply iterating the slots up to current node’s level. Note that each slot should be checked

backwards down to the first slot, as the instrumentation is done bottom-up. This process

does not involve any unwinding and has the complexity of O(l) where l is the context level

of the current node.

3.2.6 Analysis

Compared to the encoding proposed in [11] (DACCE), as an alternative scalable encoding,

SCCE has much simpler instrumentation, and a linear-time decoding. Compared to PCCE,

11



SCCE also has simpler instrumentation, but may increase detection overhead, since it uses

a less compact representation. However, our analysis on the benchmarks show that this

increase in detection overhead is acceptable and can be further optimized with an ideal

encoding. In addition, by not instrumenting after the call returns, the original program

behavior is also retained better, since it will not interfere with some compiler optimizations

such as tail call optimization.

12



Chapter 4

Cyclic Context Encoding

In this chapter, we discuss our encoding scheme for call graphs involving cycles.

4.1 Overview

PCCE uses the same encoding space (the integer identifier) for both back edges and non-back

edges. As a result, on each back edge, a global state that represents the entire call graph

execution for cyclic instrumentation is saved to the stack.

In contrast, SCCE first partitions the call graph into a cyclic and an acyclic part and

encode the two parts independently. For the cyclic part, it saves a local state that represents

the execution in the cyclic part for cyclic instrumentation. We first introduce our independent

encoding as well as some concepts used by SCCE’s cyclic encoding.

4.2 Independent Encoding

SCCE first calculates the strongly-connected components (SCC) of the input call graph. The

SCCs naturally forms an directed acyclic graph. We define internal edges and external edges

as follows:

Definition 4.1. An internal edge is an edge that is inside a SCC in the call graph; An

external edge is an edge that connects two different SCCs in the call graph.

13



Internal Edges Encoding

• SCC1: { ! }
• SCC2: { ", $ }
• On internal edges

• Before the call
• Push the edge

• After the call
• Pop the edge

• All internal edges are numbered 
uniquely in the graph

4

A

B C

%& ≪= ); %& += ,;
%& =≫ )

%& ≪= ); %& += .;
%& ≫= )

%& ≪= ); %& += );
%& ≫= )

%& ≪= ); %& += /;
%& ≫= )

Figure 4.1: SCCE’s cyclic instrumentation

Our insight is that the internal edges and external edges can be encoded independently.

During the decoding, the two parts will be concatenated to form a complete call sequence.

After partitioning the call graph into a cyclic part and an acyclic part, the cyclic part can

be encoded separately, and potentially in a smaller space.

The idea of SCCE’s cyclic encoding is also based on using slots. Instead of using one-

byte slots, the cyclic encoding uses one or more bits as a slot, which yield a more compact

representation but with more arithmetic operations. The insight on which we base our cyclic

encoding is that the cyclic part of the graph is often much smaller than the entire graph, and

thus encoding the cyclic contexts separately yields a more compact representation. SCCE

uses a separate integer identifier for the cyclic contexts, and on each internal edge, some

arithmetics are performed to encode this edge into the identifier. When the identifier is

about to overflow, it pushes it onto the stack and reset it.

The following example gives an overview of how SCCE partitions the graph and does

cyclic encoding. In this example, there are two SCCs - {A} and {B,C}. Edge AB is an

external edge, and the four edges between B and C are internal edges. The internal edges

are encodable with two bits, so each slot is two bits. Instrumentation code is shown on each

edge. Code in blue is inserted before the call, and code in red is inserted after the call.

Before doing the bit shifting, SCCE needs to check if the identifier is about to overflow by

checking if the highest slot is set. If it is set, the current identifier is pushed and reset. The

guard code is omitted in the figure for the same of clarity.

14



4.3 Cyclic Encoding

We give more details about SCCE’s cyclic encoding in this section.

For different SCCs, their internal edges are numbered in the same encoding space, instead

of with regard to that particular SCC. This is because only one stack is used to save execution

states from all SCCs, it makes the decoding and the implementation simpler to number all

internal edges uniquely.

One optimization is that not all internal edges need to be instrumented. The entry and

exit node inside a SCC can be determined via the acyclic part decoding. Given the entry

and the exit, to determine the path within the SCC, not all edges in the SCC need to be

instrumented. For example, if a node only has one incoming edge inside the SCC, that

edge does not need to be instrumented, because the node has an unambiguous caller. This

optimization slightly complicates decoding, as the acyclic contexts and the cyclic contexts

cannot be decoded separately. The cyclic contexts rely on the information from the acyclic

contexts, namely the entry and exit node, which makes the cyclic and acyclic part must be

decoded together in the same pass.

4.4 Cyclic Decoding

Decoding is performed in a similar way as acyclic decoding. The current identifier and

all integer identifiers in the stack need to be checked. Since each slot represents a taken

internal edge, decoding is straightforward. When the optimization above is applied, cyclic

decoding relies on information from the acyclic context. But it does not change the linear

time complexity.

4.5 Hybrid Encoding

Because of our independent encoding of the acyclic and cyclic contexts, a hybrid encoding

(HCCE) which uses PCCE to encode acyclic contexts, and SCCE for cyclic contexts

is also possible. This hybrid encoding is desirable for situations where PCCE has a

sufficient encoding space and detection happens relatively frequently. It is worth noting that
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independent encoding also reduces the encoding space pressure on the acyclic part, which

is separated out and has fewer edges than the entire call graph. For the largest benchmark

403.gcc in our benchmark suite, the maximum calling context number of any node in the

call graph is only about 1/22 of that of considering the entire call graph as PCCE does.

HCCE has similar decoding scheme as SCCE except the acyclic part. For the acyclic

part, it’ll just call PCCE’s decoding routine.
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Chapter 5

Evaluation

5.1 Overhead Categories

There are three categories of overheads.

• Instrumentation overhead. The overhead from executing the inserted code for each

instrumented call site.

• Detection overhead. The overhead from the need to detect calling contexts at

runtime. For event logging, detection involves recording the context as numeric

identifiers along with an event. For memory management, detection often involves

getting the context as numeric identifiers and storing it to a dictionary data structure

for later lookups. Decoding is not required for detection.

• Decoding overhead. The overhead from decoding the numeric representation into a

human readable call string.

As of now we only evaluate instrumentation and detection overhead, since decoding is

usually not used online.
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5.2 Platform Description

We ran all of the experiments on an Intel(R) Core(TM) i5-4590 3.3GHz CPU. The OS is

RHEL server release 7.4 (Maipo). All benchmarks were compiled using LLVM 4.0 (version

4.8.5) with -O3.

5.3 Benchmarks

Our evaluation employs the standard SPEC CPU 2006 C/C++ benchmark suite [CPU].

Both profiling and performance evaluation runs use ref inputs. 400.perlbench, 471.omnetpp,

483.xalancbmk are excluded because of tool chain errors. All benchmarks are preprocessed

with the following two phases.

• Indirect call target profiling. We first profile the executed indirect call sites with

the ref inputs to get a set of possible targets for each site.

• Indirect call site promotion. We promote the executed indirect call sites same way

as how [ICP] describes.

Due to the indirect call promotion, in our evaluation, we consider the partial call graph

that is reachable by the ref inputs. All characteristics we obtained are in terms of this

partial call graph.

5.4 Implementation

Because this project is still ongoing, the current implementations for both acyclic encoding

and cyclic encoding do not use the most compact representations for every benchmark.

Specifically, for the acyclic encoding, we haven’t implemented the optimization that reduces

the maximum depth of the call graph. In other words, the encoding is not optimal. For the

cyclic encoding, we are currently always using slots that are at least one byte, instead of

the minimal amount of bits needed to encode internal edges. However, even so, our analysis

based on the execution statistics still show a significant edge of our approach over current

state-of-the-art.
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Table 5.1: Call Graph Characteristics

Bench Nodes Total Edges Back Edges

401.bzip2 58 2891 0
403.gcc 2326 199552 4325
429.mcf 35 580 1
433.milc 135 6656 0
444.namd 72 8350 0
445.gobmk 1632 38881 71
447.dealII 776 85186 29
450.soplex 300 18312 4
453.povray 696 66353 1026
456.hmmer 176 9373 7
458.sjeng 103 4848 7
462.libquantum 53 1123 11
464.h264ref 347 21860 42
470.lbm 28 327 0
473.astar 70 2342 0
482.sphinx3 175 9899 6

5.5 Benchmark Characteristics

Table 5.1 shows the general call graph characteristics of the benchmarks. Column Nodes is

the number of functions in the call graph. Total Edges and Back Edges show the number of

total edges and back edges respectively.

Table 5.2 shows the call graph characteristics related to PCCE. Column Max CC Num

is the maximum number of contexts of any node in the graph. This number determines

how large the acyclic identifier needs to be. Back Edges and Dynamic Back Edges show

the number of static back edges and dynamically executed back edges respectively. On each

dynamic back edge, PCCE pushes an identifier that is large enough to encode Max CC Num.

Table 5.3 shows the call graph characteristics related to SCCE. Column Maximum Depth

is the maximum context level of any node in the graph (maximum depth of the call graph).

Internal Edges (aka the edges inside SCCs) and Dynamic Internal Edges show the number of

static internal edges and dynamically executed internal edges respectively. We can observe

that only 4 out of 16 benchmarks have over 8 maximum depth. For depths that are less
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Table 5.2: PCCE Characteristics

Bench Max CC Num Back Edges Dynamic Back Edges

401.bzip2 69 0 0
403.gcc 1.84E+19 4325 2.88E+09
429.mcf 9 1 1.43E+08
433.milc 995 0 0
444.namd 84 0 0
445.gobmk 2.67E+16 71 2.35E+08
447.dealII 3525 29 1.35E+08
450.soplex 1396 4 2180
453.povray 1.74E+19 1026 7.65E+08
456.hmmer 1585 7 30
458.sjeng 32416 7 5.03E+08
462.libquantum 8621 11 0
464.h264ref 5.20E+08 42 0
470.lbm 3 0 0
473.astar 306 0 0
482.sphinx3 1562 6 2.54E+07

than 8, the entire array can be read as a 64-bit integer, thus no extra detection overhead is

introduced. For depths that are over 8, the array can also be checked with strides to make

detection overhead acceptable.

5.6 Pushed Bytes Analysis

The number of bytes pushed is a key factor affecting the instrumentation overhead for highly

recursive applications. We use 403.gcc as an example to show how the number of bytes

is reduce with our cyclic encoding, and then show the reduction for all cyclic benchmarks.

Our following comparison is between PCCE and HCCE, so this shows the effect of SCCE’s

cyclic encoding.

For PCCE, 403.gcc has a maximum of 1.84E+19 calling contexts, so 8 byte is required

for the PCCE id. The dynamic number of back edges is 2.88E+09. On each back edge,

PCCE pushes the 8-byte id, as well as the taken edge, which is represented by one or two

bytes. Therefore, the total number of pushed bytes is more than 8 * 2.88E+09 = 2.30E+10.
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Table 5.3: SCCE Characteristics

Bench Maximum Depth Internal Edges Dyanmic Internal Edges

401.bzip2 4 0 0
403.gcc 21 13364 5.15E+09
429.mcf 1 1 1.43E+08
433.milc 6 0 0
444.namd 2 0 0
445.gobmk 38 104 4.42E+08
447.dealII 7 29 1.35E+08
450.soplex 7 4 2180
453.povray 19 2817 1.35E+09
456.hmmer 5 8 32
458.sjeng 7 7 5.03E+08
462.libquantum 7 14 0
464.h264ref 15 87 7.62E+04
470.lbm 1 0 0
473.astar 6 0 0
482.sphinx3 7 6 2.54E+07

For HCCE, there are 13364 internal edges statically, which is encodable with 2 bytes.

The dynamic number of internal edges is 5.15E+09, so the total number of pushed bytes is

2 * 5.15E+09 = 1.03E+10, and thus saving more than half of the bytes than PCCE.

Table 5.4 shows that the number of bytes pushed by PCCE divided that of HCCE for

benchmarks that have cycles. This calculation assumes the most compact representation for

PCCE. It shows on average, HCCE only pushes about a half of what PCCE pushes. Note

that the reason why 464.h264ref has a ratio of infinite is because the dynamic executed

back edge number is 0 for PCCE, but the dynamic executed internal edge number is positive

for HCCE. This is possible because there are paths that include internal edges but not back

edges.

5.7 Checked Bytes Analysis

Detection overhead depends on the number of bytes that needs to be checked for detection.

Table 5.5 shows that the number of bytes checked for detection by PCCE divided that of

HCCE for benchmarks that check cycles during detection time. Similarly, for 464.h264ref,
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Table 5.4: Pushed Bytes (HCCE divided by PCCE)

Bench Pushed Bytes (HCCE / PCCE)

403.gcc 0.446627959
429.mcf 1
445.gobmk 0.234686693
447.dealII 0.5000005
450.soplex 0.5
453.povray 0.441501104
456.hmmer 0.533333333
458.sjeng 0.5
464.h264ref INF
482.sphinx3 0.5
Average 0.509165021

Table 5.5: Checked Bytes (HCCE divided by PCCE)

Bench Checked Bytes (HCCE / PCCE)

403.gcc 0.333948
445.gobmk 0.557305
447.dealII 0.796661
453.povray 0.626218
464.h264ref 1.414741
Average 0.7457746

HCCE checked more bytes than PCCE. On average, even considering 464.h264ref, HCCE

checks about 75% of the number of bytes PCCE has to check for recursive applications.

5.8 Observations

SCCE typically reduces the number of bytes pushed and checked dynamically to 1/2 - 1/4 of

PCCEs. This improvement is based on the fact that most SCCs in the call graph are small.

The same technique may not work well for other graphs such as CFG (control flow graph)

which typically has more back edges and internal edges.
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5.9 Performance Evaluation

As stated earlier, we are still ongoing and we currently do not have the most efficient

implementation of both SCCE’s acyclic encoding as well as cyclic encoding. We haven’t

had performance results from which we can make strong conclusions at this moment.
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Chapter 6

Future Work

As we are still working the project, the first priority is to finish our final implementation.

Besides, we will also switch to larger-scale applications that are not encodable with PCCE.

We want to measure the instrumentation and detection overhead of our acyclic encoding

on these benchmarks that PCCE cannot handle directly. So far we’ve only shown a byte-

analysis of the benefits of SCCE’s cyclic encoding. To evaluate the performance benefits,

we want to find highly recursive applications and compare the performance of our encoding

with PCCE’s.
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Chapter 7

Conclusion

We first present a scalable and efficient encoding scheme for large-scale acyclic call graphs

that do not fit into PCCE’s encoding space. We then present an efficient encoding scheme

for cyclic contexts that pushes only 50% and checks only 75% of the bytes PCCE has to

push or check, by evaluating on CPU 2006 benchmark suite. We have shown great potentials

of both our acyclic and cyclic encodings for large-scale highly recursive application, and we

will continue the evaluation as stated in future work section.
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