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Abstract

In many scheduling problems involving tasks with multiple deadlines, there is typically

a large degree of flexibility in determining which tasks to serve at each time step. Given a

cost function it is often possible to cast a scheduling problem as an optimization problem

to obtain the most suitable schedule. However, in several applications, especially when the

schedule has to be computed in-line or periodically adjusted, the cost function may not be

completely known a priori but only partially. For example, in some applications only the cost

of the current allocation of resources to the tasks could be available. Under this scenario, a

sensible approach is to optimally allocate resources without compromising the schedulability

of the tasks. This work follows this approach by introducing a notion of partial ordering

on the set of feasible schedules. This partial ordering is particularly useful to characterize

which allocations of resources at the current time preserve the feasibility of the problem

in the future. This enables the realization of fast algorithms for real-time scheduling. The

model and algorithm presented can be utilized in different applications such as electric vehicle

charging, cloud computing and advertising on websites. [1]
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Chapter 1

Introduction

Scheduling is a decision-making process that allocates resources to tasks over a period of

time and in most cases, attempts to optimize their completion according to a given objective

function [2]. The resources and tasks can be of different nature based on the application, but

the mathematical models used to describe a scheduling problem share many characteristics.

The general problem consists of a set of tasks with potentially heterogeneous deadlines, where

all of the tasks cannot be attended to at the same time or instantaneously. Consequently,

a schedule is essential to ensure that all of the tasks are completed before their deadlines.

Linear programming is a prevalent tool to compute schedules and can also be used to optimize

with respect to a linear cost function [2]. Other optimization techniques are, of course, also

possible [3], [4]. In some applications, while the constraints are predetermined (such as

the demand and deadline), the cost function may not be completely known a priori, either

because it depends on exogenous factors, or because of privacy concerns in multi-agent

scenarios. Indeed the overall cost function might be given by the sum of the costs of the

specific actions taken at each time t, while the cost of future actions is not known. Since

the space of current actions is smaller than the space of all schedules, a characterization

of all admissible actions can lead to a computationally efficient algorithm. The algorithm

presented optimizes with respect to the current action instead of the global schedule while

guaranteeing that the deadlines will still be met. [1]
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1.1 Existing Scheduling Algorithms

Scheduling methods can be typically grouped into static and dynamic priority scheduling

algorithms, and this thesis is related to the area of dynamic priority scheduling. One

common dynamic algorithm is the least slack time (LST), and for a certain subclass of

dynamic scheduling problems such as a single processor system, the LST is a possible optimal

algorithm [5]. This algorithm is a deadline based priority strategy that gives the highest

priority to the tasks with the least slack (maximum amount of time that can pass until the

task must be served to meet its deadline). One natural question that arises after studying

this method is if all the different combinations of tasks that can be served while keeping

feasibility can be described using the notion of slack. This article will introduce a partial

order that compares sets of tasks and uses the partial ordering to investigate whether a

unique maximal slack exists that retains feasibility.

1.2 Potential Applications

Potential applications span several domains.

1.2.1 Electric Vehicle Charging

In the power grid, a fundamental concept is that supply must equal the demand constantly.

Traditionally, the output of the generators is assumed to be controllable while user demand

is treated to be inelastic [6]. However, the addition of wind and solar to the grid challenges

the convention that generation must satisfy all loads instantaneously. The variability of

alternative energy sources poses an obstacle to transitioning to a grid more reliant on

renewable energy. A strategy being explored changes the idea that the loads are rigid and

treats them as deferrable. For example, electric vehicle batteries and many other loads can

be considered to be flexible.

Various studies have been completed recently on supplying flexible loads with different

demand side schemes. Heuristic scheduling algorithms such as least slack first and earliest

deadline first are presented in [7] to demonstrate the possible scheduling of deferrable loads to
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utilize renewable energy sources. An energy delivery management method is developed in [8]

that shows consumers may receive a significant discounted price for EV charging by delaying

consumption. Other approaches [9] assume partial information given by the consumer and

create an efficient pricing method that incentives customers to reveal their true deadlines

regardless of actions by others. Furthermore, a non-causal algorithm is presented in [10] that

fulfills all the energy requirements for a group of deferrable loads without surplus or deficit.

The model presented in this article can be generally applied to a group of flexible loads that

are connected to the same bus so that there is an aggregate limit on how many tasks can be

served at the same time. [1]

1.2.2 Cloud Computing

Another problem that may fall under the model of this article is real-time scheduling of

tasks in the cloud [11]. The problem is to execute a large number of time-sensitive tasks

that need to be completed with limited computational power, and a schedule can lead to

efficient use of the resources by determining the use of the processors and the priority of the

tasks [12]. A general method to derive schedulability conditions for these types of systems is

presented in [13] where real-time tasks are considered with deadlines on a platform of identical

processors. A task splitting approach is explored in [14] for scheduling sporadic task systems

on multiprocessor platforms. The authors of [11] utilize an algorithm combining priority

based and EDF techniques to provide better performance by reducing the total execution

time of the tasks in cloud computing. The method presented in this thesis is different in

that all of the possible choices at the current time t can be determined, and then a suitable

action can be chosen to move forward with. [1]

1.2.3 Advertising on Websites

Recently web advertising has grown significantly into one of the largest forms of advertising.

While this source of income continues to grow, advertisers are placing more emphasis on

making their advertisements more efficient and targeted. Websites want to reach specific

groups with products that they are more likely to be interested in. This type of product
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placement not only benefits the advertisers, but also enhances the users experience while

on that website. The objective function for scheduling web advertising could be based on

identification characteristics such as user keyword searches. One way advertisements are

sold to publishers is through the traditional guaranteed market. In this scheme, advertisers

make a guaranteed contract with a website that commits to delivering a predetermined

number of advertisements within a certain period of time [15]. Furthermore, [15] addresses

the scheduling and capacity problem for certain cases of dealing with multiple guaranteed

contracts with different deadlines. Other work [16] attempts to ensure a unique number

of consumers see the advertisements while still ensuring the advertisements are shown the

predetermined number of times. A scheduling model could potentially be applied to this

type of advertising scheme to increase the success of the advertisements. [17]
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Chapter 2

Problem Formulation

A problem setup is considered that is analogous to the one described in [1] and [18]. First,

a definition for a task is introduced.

Definition 1 (Task). A task B is a 3-tuple (D,T, u) ∈ R3 where D > 0 defines the demand,

T is the deadline, i.e. the time left to satisfy such demand, and u > 0 is the maximum serving

rate.

In line with many practical applications, and with minimal loss of generality, a discretization

of time and of the parameters is introduced that defines the tasks. A unitary sampling time

is assumed and the following definition is introduced.

Definition 2 (Integer task). A task (D,T, u) is integer if T ∈ N and if D
u
∈ N.

The following discrete time model is introduced to describe the dynamic process of task

completion

xk+1 = xk + uk

x0 = −D

where xk ≤ 0 is the state of completion of the task, and uk ≥ 0 is the rate at which the task

is served (in a piece-wise constant way) during the k-th interval, namely between time k and

k + 1.

5



The constraint on the maximum rate and the deadline for task completion correspond

respectively to the inequalities

0 ≤ uk ≤ u, for k = 0, . . . , T − 1,

and the equality

xT = 0.

However, for practical purposes the case of multiple tasks is considered, the behaviors of

which are coupled by the fact that, at any time, the aggregate serving rate (the sum of the

rates at which different tasks are served) cannot exceed a given limit U .

Therefore, consider N tasks (D(i), T (i), u(i)), where i = 1, ..., N , and the following problem

is examined.

Problem 3 (Task scheduling problem). The task scheduling problem is defined as the

problem of deciding the variables u
(i)
k for k = 0, ..., T := max1≤i≤N T

(i) such that for any

task i = 1, ..., N

x
(i)
k+1 = x

(i)
k + u

(i)
k

x
(i)
0 = −D(i)

x
(i)

T (i) = 0

(2.1)

where x
(i)
k ≤ 0 is the state of task i at time k, and such that, at any time k,

0 ≤ u
(i)
k ≤ u(i) for i = 1, ..., N

N∑

i=1

u
(i)
k ≤ U.

(2.2)

The horizon of the problem is refereed to as [0, T ].

The following definitions are introduced as well.

Definition 4 (Action). The action at time k is defined as the vector in uk = (u
(1)
k ...u

(N)
k )

obtained by stacking the rates of the different tasks.

6



Definition 5 (Feasible schedule). Given the tasks (D(i), T (i), u(i)) for i = 1, ..., N , and an

aggregate limit U , a schedule (i.e. a sequence of actions) {uk}T−1k=0 is feasible if it solves the

task scheduling problem, i.e. it satisfies the constraints (2.1) and (2.2).

Definition 6 (Schedulable tasks). Given an aggregate limit U , the tasks (D(i), T (i), u(i))

for i = 1, ..., N , are schedulable if a feasible schedule for the corresponding task scheduling

problem exists.

The goal of the analysis presented in this thesis is to give necessary and sufficient

conditions so that the actions of the users meet the constraints of the task scheduling

problem. While implementing a schedule in real time, it is of paramount importance to

choose an appropriate action that does not compromise feasibility of the schedule in the

future.

The analysis is performed at time k = 0 and provides guarantees that, if the tasks

are schedulable to begin with, then a certain action u0 leaves the tasks in a schedulable

configuration over the horizon [1, T ]. Then the same approach can be iteratively applied.

An effective characterization of the set of all (and only) the admissible actions allows one

to determine an optimal action according to some cost criteria.

Consequently, the following definitions are introduced.

Definition 7 (Admissible action). Given the tasks (D(i), T (i), u(i)) for i = 1, ..., N , and an

aggregate limit U , an action

u0 =




u
(1)
0

...
u
(N)
0




is admissible if:

� it satisfies

0 ≤ u
(i)
0 ≤ u(i), i = 1, . . . , N, and

N∑

i=1

u
(i)
0 ≤ U,

� the tasks (D(i) − u(i)0 , T
(i) − 1, u(i)) are schedulable with the global constraint U .

A technical assumption is made with minimal loss of generality.

7



Assumption 8. The tasks (D(i), T (i), u(i)), i = 1, ..., N , are all integer tasks. Moreover,

there exist a common u, that we denote as the unit rate, such that

D(i)

u
∈ N,

u(i)

u
∈ N,

U

u
∈ N,

for all i = 1, ..., N .

Based on this, another definition is introduced.

Definition 9 (Integer schedule). Given a task scheduling problem, a schedule is integer if

all its elements are integer multiples of a unit rate u.

In this thesis, integer schedules will exclusively be focused on. This choice is reasonable in

the common practice, where most of the time tasks can be served at some quantized rate of

service (i.e. according to the number of processors assigned to the thread in a multiprocessor

system [2], or according to some of the EV battery charging standards where different levels

of charging speed are available).

It is worth remarking that, even if the problem of finding a solution to the scheduling

problem (2.1)-(2.2) becomes easier if the integer constraints are relaxed (and reduces to the

application of linear programming to load scheduling [19, 20]), a practical characterization

of all the feasible actions remains a difficult problem. On the other hand, the following result

shows that the restriction to integer schedules has no effect on the schedulability analysis of

the task scheduling problem.

Theorem 10. Consider a set of N tasks (D(i), T (i), u(i)), with an aggregate bound U , and

let Assumption 8 hold. The tasks are schedulable if and only if an integer schedule exists.

Proof. To prove Theorem 10, we will use the theorem that states if A is a totally unimodular

matrix while vectors b, c and constant u are integer, then the linear program

max cq subject to Aq = b and 0 ≤ q ≤ u (2.3)

will have an integer solution for q under the assumption that a solution exists [21].

The scheduling problem described in the problem formulation can be described with the

8



following equations

T (i)−1∑

k=0

u
(i)
k = D(i) for i = 1, . . . , N

y
(1)
k + . . .+ y

(U)
k +

N∑

i=1

u
(i)
k = U for k = 0, . . . , T − 1.

where the variables y are auxiliary variables to ensure that the equality for the consumption

is satisfied. These equations can be written in the form of a linear program (Equation 2.3)

where the constant u is 1 and A and b are selected according to

q =
[
u
(1)
0 ...u

(N)
0 u

(1)
1 ...u

(N)
T−1y

(1)
0 ...y

(U)
T−1

]′
.

From this description, it should be clear that b will always be integer because of Assumption 8.

Now we need to show that the matrix A will be totally unimodular. The A matrix will consist

of 0 and 1 entries and have at most two non-zero entries in each column. Consequently, A will

be totally unimodular according to a Theorem by Heller and Tompkins [21]. The conditions

have been satisfied for the linear program formulation of the scheduling problem to have

integer solutions. Therefore, if the tasks are schedulable, a feasible integer schedule will also

exist.

Moreover, there is no loss of generality by assuming that all tasks have the same rate

constraint u(i) = 1, since the general case can always be reformulated in this way, by

“splitting” each task into smaller tasks with homogeneous rate constraints [18].

Definition 11 (Aggregate serving rate). Given an action u0, the aggregate serving rate is

indicated as

‖u0‖1 =
N∑

i=1

u
(i)
0 . (2.4)

9



Chapter 3

Partial Ordering with Slack Vectors

3.1 Notion of Slack

The notion of slack from the area of multiprocessor scheduling [2] is used to create a partial

ordering relation.

Definition 12 (Slack). The slack of a task at time 0 is defined as

slack(B(i)) = s(i) := T (i) − D(i)

u(i)
. (3.1)

If the serving rate is assumed to be unitary u(i) = 1, Eq. 3.1 reduces to

slack(B(i)) = s(i) := T (i) −D(i). (3.2)

The slack represents the maximum idle time that the task can wait, before having to be

necessarily served, in order to meet its deadline.

Given a schedule {ul}k−1l=0 , we can find the slack of a task at time k (assuming u(i) = 1) with

slacku(B
(i), k) := (T (i) − k)− (D(i) −

k−1∑

l=0

u
(i)
l ). (3.3)

10



Based on this definition, a function SlackV ector is introduced on the action uk.

Definition 13 (Slack Vector). SlackV ector(·) maps u ∈ {0, 1}N into a vector of U entries

that can either be integers or ∞

SlackV ector : {0, 1}N → (N ∪ {∞})U . (3.4)

Let j be the number of tasks that are served in uk. The first j entries of SlackV ector(uk)

are the ordered slacks of the j tasks being served and the remaining (| U | −j) entries are

∞.

As an example, consider the case of an action serving tasks 2 and 3 among 5 tasks and

U = 3,

SlackV ector

([
0
1
1
0
0

])
=




s(2)

s(3)

∞




under the assumption that s(2) ≤ s(3).

It is possible to define a partial ordering relation between vectors of dimension U via the

following definition.

Definition 14 (Slack partial ordering). Let s′ and s′′ be two slack vectors with dimension

d. We say that

s′ 4 s′′

if the ith entry of s′ is less than or equal to the ith entry of s′′ for i = 1, ..., d.

Consequently, two vectors are not slack-comparable if neither of the following hold

s′ 4 s′′

s′ < s′′.

As an example, [ 13 ] 4 [ 24 ], while [ 14 ] and [ 23 ] are not slack-comparable.

11



3.2 Test Algorithm

In addition, an algorithm is taken from [18] that tests the schedulability of a given sets of

tasks. This algorithm will return true if a given set of tasks are schedulable.

Minimum Effort Algorithm

INPUT

� tasks: (D(i), T (i), 1), i = 1, ..., N

� aggregate limit: U

EXECUTE

1. INITIALIZE

� T := max1≤i≤N T
(i)

� u
(i)
k = 0 for 0 ≤ k < T , 1 ≤ i ≤ N

2. FOR k = T − 1 : −1 : 0

� Create ActiveTasks:= list of all tasks with deadline T (i) > k and demand D(i) >

0

� Compute NA := # of elements in ActiveTasks

� Order ActiveTasks according to their reverse slack r(i) := k + 1−D(i)

� For the first min(NA, U) tasks with least reverse slack r(i) in ActiveTasks,

decrease D(i) by 1 and assign u
(i)
k := 1

OUTPUT:

� schedulability: if D(i) = 0 for all i = 1, ..., N return TRUE otherwise return

FALSE

� schedule: u
(i)
k = 0 for 0 ≤ k < T , 1 ≤ i ≤ N

� effort: U :=
∑N

i=1 u
(i)
0

12



3.3 Slack Theorem

Given an admissible action, the following result (taken from [18]) shows that it is possible

to use the slack partial ordering to find other admissible actions.

Theorem 15. Consider the tasks B(i) = (D(i), T (i), 1) for i = 1, ..., N , together with the

aggregate constraint U , and let Assumption 8 hold. Let u0 be an admissible action. Then

any action v0 is also admissible if

SlackV ector(v0) 4 SlackV ector(u0).

In other words, Theorem 15 states that if an action is admissible, then an action smaller

in slack, in the sense provided by the relation “4”, is also admissible.

Proof. Assume that there is a feasible integer scheduling where u
(i1)
0 = . . . = u

(iM )
0 = 1, Let

j be a task such that u
(j)
0 = 0 and s(j) ≤ s(im) for some 1 ≤ m ≤M . We will first prove that

the decision where

v
(i1)
0 = . . . = v

(im−1)
0 = v

(im+1)
0 = . . . = v

(iM )
0 = 1

v
(im)
0 = 0

v
(j)
0 = 1

v
(i)
0 = 0 for i 6= j, i1, ..., iM .

is admissible.

Without any loss of generality assume m = M . Let us consider first the case where

T (iM ) ≤ T (j). If T (iM ) ≤ T (j), and since s
(j)
0 ≤ s

(iM )
0 , there is a time k such that 0 < k ≤ T (iM )

and u
(iM )
k = 0, u

(j)
k = 1. Thus, it is possible to make the j-th task to be served in place of

the iM -th one at time 0 and vice-versa at time k without violating the constraints of the

problem, as depicted in the following figure (3.1).

13
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Figure 3.1: Switch Part A

Now, let T (iM ) > T (j). If there is a time 0 < k ≤ T (iM ) where u
(iM )
k = 0 and u

(j)
k = 1,

we can operate the same switch as before. Otherwise, since u
(j)
0 = 0, there must be a time

0 < k′ ≤ T (j) where both the j-th and the iM -th batteries consume, namely u
(iM )
k′ = 1,

u
(j)
k′ = 1. Since T (iM ) > T (j), there also must be a time T (j) < k′′ ≤ T (iM ) where neither the

j-th nor the iM -th batteries consume. Now move the consumption of the iM -th battery from

k′ to k′′. This is always possible: if at time k′′ we have that
∑N

i=1 uk′′ < U no constraint is

violated, otherwise it is possible to find a battery j′ 6= j, iM such that u
(j′)
k′′ = 1, u

(j′)
k′ = 0

and anticipate its consumption at time k′. After this switch we have that at time k′ the

iM -th battery does not consume while j-th does. Switching consumption beetween the two

batteries at time 0 and k′ is now possible without violating any constraint and the assertion

is proved. This scenario is depicted in the following figure (3.2).

T (j) T (im)

im

j j

im im im

j′

k′ k′′
time

sc
h
ed
u
le
d
ta
sk

s

Figure 3.2: Switch Part B

Iterated application of the same reasoning allow to prove that any decision v0 such that

‖v0‖1 = ‖u0‖1 and such that SlackV ector(v0) 4 SlackV ector(u0), is also admissible (as

it is the first decision in a feasible schedule). Finally, we conclude that this is also true in

14



the case in which ‖v0‖1 > ‖u0‖1 (and therefore in all cases in which SlackV ector(v0) 4

SlackV ector(u0)), because that simply means that other tasks have been served at time 0,

together with the ones served by the feasible schedule, necessarily yielding another feasible

schedule.

One direct consequence of Theorem 15 is that the Least Slack Time (LST) Algorithm

can be used as another feasibility test for the specific scheduling problem described in the

problem formulation. Indeed if there is an admissible action, the least slack action will be

an admissible action as well because it will be “4” than all other admissible actions. If a

schedule with the initial action that has the least slack vector is not admissible, then no

initial action will be admissible and the group of tasks will not be schedulable.
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Least Slack Time (LST) Algorithm

INPUT

� tasks: (D(i), T (i), 1), i = 1, ..., N

� aggregate limit: U

EXECUTE

1. INITIALIZE

� T := max1≤i≤N T
(i)

� u
(i)
k = 0 for 0 ≤ k < T , 1 ≤ i ≤ N

2. FOR k = 0 : 1 : T − 1

� Create ActiveTasks:= list of all tasks with deadline T (i) > k and demand D(i) >

0

� Compute NA := # of elements in ActiveTasks

� Order ActiveTasks according to their slack s(i) := T (i) −D(i) − k

� For the first min(NA, U) tasks with least slack s(i) in ActiveTasks, decrease D(i)

by 1 and assign u
(i)
k := 1

OUTPUT:

� schedulability: if D(i) = 0 for all i = 1, ..., N return TRUE otherwise return

FALSE

� schedule: u
(i)
k for 0 ≤ k < T , 1 ≤ i ≤ N

16



Chapter 4

Unique Maximal Slack Element

4.1 Unique Maximal Slack Element Theorem

Using the partial ordering relation described in the previous chapter, a maximal slack vector

can be found to help determine all the admissible actions [1].

Theorem 16. Given a feasible scheduling problem P , all the maximal actions have the

same slack vector.

Proof. See Chapter 5.

From Theorem 16, it is known that all the maximal admissible actions have the same

slack vector ŝ. From the knowledge of this unique slack vector it becomes possible to test if

any given action u0 is admissible. Indeed, SlackV ector(u0) 4 ŝ if and only if u0 is admissible.

Thus, the knowledge of ŝ completely characterizes the set of all possible admissible actions.

The problem then becomes to find ŝ in an efficient way.

17



Maximal Element Algorithm

INPUT

� The ordered set of all tasks in ascending order of slack augmented with U auxiliary

tasks {B(1), B(2), ..., B(N), B(N+1), ..., B(N+U)}.

� B(N+1), ..., B(N+U) are special tasks such that slack(B(N+1)) = ... = slack(B(N+U)) =

∞.

EXECUTE

� INITIALIZE

– Let action u = {B(i1), B(i2), ..., B(iU )} and i1 = 1, i2 = 2, ..., iU = U .

– Let iU+1 = N + U + 1

� FOR d = U : −1 : 1

– Let j = d

– WHILE (u is admissible AND ‖u‖ ≥ d AND j + 1 < id+1)

* Let {B(i1), B(i2), ..., B(iU )} be the tasks served in u in ascending order of slack.

* Take action u and set task B(id) to B(j+1).

* IF (slack(B(j+1)) ==∞) THEN remove B(id) in action u.

* j = j + 1

– Check the admissibility of action u.

– IF (u is not admissible) THEN take action u and set task B(id) to B(j−1).

OUTPUT:

� ŝ = the slack vector of u.
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4.2 Examples

4.2.1 Infinity Example

A schedule in Figure 4.1 is shown with the initial action serving B(3) and B(4) corresponding

to a slack vector of [1, 1,∞]ᵀ. A gray box indicates that at time 0 the task i is served

(u
(i)
k = 1) while a white box indicates that the task is idle (u

(i)
k = 0). The shaded boxes

show a possible projected schedule for the future providing that the chosen action at time 0

is admissible. Each box also contains the numerical values of D(i). As all the demands are

served for all tasks after the iteration at time k = 4, the problem is schedulable.

The problem in Figure 4.1 shows an example where the maximal slack vector for the

initial action does not reach the aggregate bound. The aggregate bound is U = 3, but only

two tasks need to be served initially to keep schedulability for this example. The maximal

slack vector is determined to be ŝ = [1, 1,∞]ᵀ and the ∞ shows that a third task is not

served in this action. Using this ŝ, the initial action was chosen to be tasks B(3) and B(4) in

Figure 4.1. However, these tasks are not the only ones that could be chosen to correspond

to the maximal slack vector. Tasks B(1) or B(2) could have been chosen to be served in the

initial action as well since s(1) = s(2) = s(3) = s(4) = 1. Also, it is possible to serve another

task, with any slack z, together with the two tasks chosen in this example, as [1, 1, z]ᵀ 4

[1, 1,∞]ᵀ for any z. [1]

4.2.2 Scalar vs. Vector Example

A schedule in Figure 4.2 is shown with the initial action serving B(1), B(4) and B(7)

corresponding to a slack vector of [0, 1, 3]ᵀ. A gray box indicates that at time 0 the task i

is served (u
(i)
k = 1) while a white box indicates that the task is idle (u

(i)
k = 0). The shaded

boxes show a possible projected schedule for the future providing that the chosen action at

time 0 is admissible. Each box also contains the numerical values of D(i). As all the demands

are served for all tasks after the iteration at time k = 3, the problem is schedulable.

The example in Figure 4.2 shows that a scalar such as the sum of the slacks does not

necessarily determine admissibility of an action. A vector is needed to determine admissibility

19



Tasks B(1) B(2) B(3) B(4) B(5) B(6)

Demand D(i) 4 2 2 3 2 1

Deadline T (i) 5 3 3 4 5 5

Slack s(i) 1 1 1 1 3 4

U = 3

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

N∑

i=1

u
(i)
k 2 3 3 3

k 210 3

D=2D=0

D=0

D=1

D=1 D=1

D=1

D=2

D=0

D=0 D=0 D=0

D=1D=0

D=3D=1
s(1) = 1

s(2) = 1

s(3) = 1

s(4) = 1

s(5) = 3

s(6) = 4

D=0

D=4

4

D=2

D=2

D=2 D=3

D=0 D=2

D=1

3

Figure 4.1: Infinity Example Schedule
[1] © 2017 IEEE
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Tasks B(1) B(2) B(3) B(4) B(5) B(6) B(7)

Demand D(i) 4 1 1 1 2 2 1

Deadline T (i) 4 2 2 2 4 4 4

Slack s(i) 0 1 1 1 2 2 3

U = 3

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

N∑

i=1

u
(i)
k 3 3 3 3

k 210 3

D=3D=1

D=0

D=0

D=1 D=1

D=1

D=1

D=0

D=0 D=0 D=2

D=1 D=1 D=1 D=1

D=2D=1D=0

D=4D=2
s(1) = 0

s(2) = 1

s(3) = 1

s(4) = 1

s(5) = 2

s(6) = 2

s(7) = 3

D=1

Figure 4.2: Scalar vs. Vector Example
[1] © 2017 IEEE
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of an action. This scheduling problem consists of a set of 7 integer tasks with heterogeneous

deadlines with U = 3 where the maximal slack vector is determined to be ŝ = [0, 1, 3]ᵀ. Even

though ŝ has the same sum as the slack vector [0, 2, 2]ᵀ, this slack vector does not correspond

to an admissible initial action, and this can be seen in the Figure 4.2. Actions with slack

vectors of [0, 1, 2]ᵀ or [0, 1, 3]ᵀ are both admissible because they are both smaller in slack

than ŝ. [1]

4.2.3 Auction Example

A schedule in Figure 4.3 is shown with the initial action serving B(1), B(3), B(6), and B(7)

corresponding to a slack vector of [0, 1, 3, 4]ᵀ. A gray box indicates that at time 0 the task i

is served (u
(i)
k = 1) while a white box indicates that the task is idle (u

(i)
k = 0). The shaded

boxes show a possible projected schedule for the future providing that the chosen action at

time 0 is admissible. Each box also contains the numerical values of D(i). As all the demands

are served for all tasks after the iteration at time k = 7, the problem is schedulable.

After determining the maximal slack vector ŝ, all of the admissible actions at time zero

are known because every action with a slack vector less than ŝ will also be an admissible

action. This information can be used to implement an optimal policy when the cost of the

current action is available and the cost of future actions is still to be revealed. For example,

we could consider a service that guarantees the completion of a task by deadline T . To

participate the user must pay an entry fee, but the user may decide to modify its priority

and bid in order to be served at specific time slots. A scheme of this kind can be used to

implement a demand response mechanism to supply energy to different flexible loads while

at the same time take into account their time preferences.

The example in Figure 4.3 is a set of 9 integer tasks with heterogeneous deadlines with

U = 4, and an attempt is made to maximize the profit based on a bidding system assuming no

a-priori knowledge of the future bids. By using the Maximal Element Algorithm, the maximal

slack vector for this problem at time 0 is computed and ŝ = [0, 2, 3, 5]ᵀ. Consequently any

action with a smaller slack vector than the maximal slack element is also admissible. In the

example, the slack of B(1) is 0 and must be served until it is completed. Therefore, the slack

vector [0, 1, 3, 4]ᵀ (corresponding to B(1), B(3), B(6), B(7)) would maximize the profit from
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Tasks B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) B(9)

Demand D(i) 4 3 5 2 6 5 3 1 2

Deadline T (i) 4 4 6 4 8 8 7 6 8

Slack s(i) 0 1 1 2 2 3 4 5 6

Bid p(0) $1.5 $2.1 $5.8 $1.9 $2.5 $3.5 $3.7 $2.3 $7.1

U = 4

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

N∑

i=1

u
(i)
k 4 4 4 4 4 34 4

k 210 3 4 5 6 7

D=3D=1

D=0

B(8)

B(9)

D=5

D=6

D=1

D=0 D=0

D=0 D=0 D=0 D=0

D=0 D=0 D=0 D=0 D=0 D=0

D=1

D=2

D=1

D=0

D=1 D=1 D=1 D=1

D=1 D=1 D=1 D=1 D=1

D=1

D=1

D=2

D=2

D=2

D=2D=2D=1

D=2

D=2

D=2

D=3

D=3

D=3

D=3

D=4

D=4

D=4

D=5

D=5

D=4

D=3

D=2

D=1

s(1) = 0

s(2) = 1

s(3) = 1

s(4) = 2

s(5) = 2

s(6) = 3

s(7) = 4

s(8) = 5

s(9) = 6

Figure 4.3: Auction Example
[1] © 2017 IEEE
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the bids. Even though B(9) has the highest bid, it is not possible to serve this task initially

or schedulability for the problem would be lost. [1]

4.3 Incoming Arrivals

One of the next areas that should be studied is the incorporation of incoming arrivals (tasks).

To make this algorithm more practical, being able to determine whether new tasks can be

added to the system while keeping feasibility is important. In Chapter 2, the Minimum

Effort Algorithm was used to test if an action was admissible. This algorithm waits as long

as possible to serve a task while still meeting the demands if possible. The advantage to this

method is that it is simple to determine if one task can join the system because any remaining

capacity (referring to when the U is not met) will be available as soon as possible. Then the

new demand and deadline of an incoming task can be compared to the remaining capacity

quickly to determine whether the incoming task can be added to the system while keeping

feasibility. A setback to this method is that while multiple tasks can be quickly tested if

they can join the schedule while keeping feasibility, after one task is added to the schedule,

the new schedule is not necessarily the new Minimum Effort schedule. Consequently, there

may be a scenario when multiple tasks are attempting to join the system where the scheduler

does not allow a task to enter, but there may be a different schedule that would allow the

task to enter. Attempting to keep the Minimum Effort schedule while adding tasks is one

area that could be explored in the future or other methods allowing the addition of tasks to

the initial system.
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Chapter 5

Proving The Unique Maximal Slack

Element Theorem

This chapter contains the definitions, lemmas, and theorems used to come to the conclusion

of Theorem 16. [17]

5.1 Common and Difference Tasks

When comparing the tasks that are served in two integer actions, the tasks can be divided into

two categories of being common or difference tasks. The following definition is introduced

for this comparison of two actions.

Definition 17 (Common and Difference Tasks). Consider two integer actions u0 and v0.

The set of common tasks between u0 and v0 is the vector of tasks

C(u0, v0) = (B(i1), B(i2), ..., B(in))

such that s(i1) ≤ s(i2) ≤ ... ≤ s(in) and B(ik), for k = 1, ..., n, are all the n tasks such that

u
(ik)
0 = v

(ik)
0 = 1.

The set of difference tasks is u0 and v0 is the vector of tasks

C(u0, v0) = (B(i1), B(i2), ..., B(in))

such that s(i1) ≤ s(i2) ≤ ... ≤ s(in) and B(ik), for k = 1, ..., n, are all the n tasks such that

u
(ik)
0 = 1 and v

(ik)
0 = 0.
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As an example, let action u0 =

[
1
0
1
1
0

]
and action v0 =

[
0
0
1
1
1

]
. The common tasks are

C(u0, v0) = (B(3), B(4)) under the assumption s(3) ≤ s(4). The difference tasks are C(u0, v0)
= (B(1)) and C(v0, u0) = (B(5)).

5.2 Minimum and Maximum Action

Another definition is introduced.

Definition 18 (Minimum Action). Consider two integer actions u0 and v0. Let C(u0, v0)
= (B(i1), B(i2), ..., B(in)) and C(v0, u0) = (B(j1), B(j2), ..., B(jl)). Without loss of generality,

assume that
∥∥C(u0, v0)

∥∥
1
≤
∥∥C(v0, u0)

∥∥
1

meaning n ≤ l. The definition min(u0, v0) returns

the action m with the following properties:

� m(i) = 1 if B(i) ∈ C(u0, v0)

� also for k = 1, ..., n

– m(ik) = 1 and m(jk) = 0 if slack(B(ik)) ≤ slack(B(jk))

– m(ik) = 0 and m(jk) = 1 if slack(B(ik)) > slack(B(jk))

� for k = n, ..., l

– m(jk) = 1

� all the other non-specified entries in the action are equal to zero.

In addition, another definition is needed.

Definition 19 (Maximum Action). Consider two integer actions u0 and v0. Let C(u0, v0)
= (B(i1), B(i2), ..., B(in)) and C(v0, u0) = (B(j1), B(j2), ..., B(jl)). Without loss of generality,

assume that
∥∥C(u0, v0)

∥∥
1
≤
∥∥C(v0, u0

∥∥
1

meaning n ≤ l. The definition max(u0, v0) returns

the action M with the following properties:

� M (i) = 1 if B(i) ∈ C(u0, v0)
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� also for k = 1, ..., n

– M (ik) = 0 and M (jk) = 1 if slack(B(ik)) ≤ slack(B(jk))

– M (ik) = 1 and M (jk) = 0 if slack(B(ik)) > slack(B(jk))

� for k = n, ..., l

– M (jk) = 0

� all the other non-specified entries in the action are equal to zero.

Consider the following example for applying the min and max definition where action

u0 =

[
1
0
1
0
1

]
and action v0 =

[
0
1
1
1
0

]
. First, one needs to determine the common and difference

tasks. The common tasks are C(u0, v0) = (B(3)). The difference tasks are C(u0, v0) =

(B(1), B(5)) and C(v0, u0) = (B(2), B(4)). Under the assumption that s(1) ≤ s(2) ≤ ... ≤ s(5),

the returned minimum action will be m =

[
1
0
1
1
0

]
and the returned maximum action will be

M =

[
0
1
1
0
1

]
.

5.3 Two Actions That Differ in One Task

Lemma 20. If two actions differ in only one task meaning
∥∥C(u0, v0)

∥∥
1

=
∥∥C(v0, u0)

∥∥
1

= 1

then the two actions are slack-comparable.

Proof. Consider two integer actions u0 and v0 where C(u0, v0) = (A) and C(v0, u0) = (B).

With no loss of generality, assume slack(A) < slack(B). The vectors SlackV ector(u0)

and SlackV ector(v0) can be organized into four different subvectors. In the first subvector

for both slack vectors, only the slacks with s(i) ≤ slack(A) will be considered. The

second subvector for SlackV ector(u0) will hold slack(A) while the second subvector for

SlackV ector(v0) will include the slacks with slack(A) < s(i) ≤ slack(B). The third subvector

for SlackV ector(u0) will hold the slacks with slack(A) < s(i) ≤ slack(B), and the third

subvector for SlackV ector(v0) will hold slack(B). The fourth subvector for both slack

vectors will be the same with slacks having s(i) > slack(B). In Figure 5.1, the organization
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of the slack vectors is shown. Since the two slack vectors are sorted and SlackV ector(u0) is

less than SlackV ector(v0) element wise, SlackV ector(u0) 4 SlackV ector(v0).

s(i) ≤ slack(A)

slack(A) < s(i) ≤ slack(B)

s(i) > slack(B) s(i) > slack(B)

s(i) ≤ slack(A)

slack(A) < s(i) ≤ slack(B)
A

B

=

<

≤

≤

=

s(u0) s(v0)

Figure 5.1: Lemma 20 Visualization.

5.4 Corollary to Two Actions Differing in One Task

Lemma 20 can be extended to the following situation.

Corollary 21. Consider two integer actions u0 and v0 where C(u0, v0) = (A1, ..., Am) and

C(v0, u0) = (B1, ..., Bm) with the following relations:

slack(Ai) ≤ slack(Ai+1) for i = 1, ...,m− 1

slack(Bi) ≤ slack(Bi+1) for i = 1, ...,m− 1

slack(Ai) ≤ slack(Bi) for i = 1, ...,m.

With these relations, SlackV ector(u0) 4 SlackV ector(v0) must be true.

Proof. The straight forward proof can be completed with induction on m where the base

step m = 1 is given by Lemma 20.
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5.5 Actions That Are Not Slack-Comparable

Lemma 22. Consider two integer actions u0 and v0 where C(u0, v0) = (A,D) and C(v0, u0)
= (B,C). With no loss of generality, assume slack(A) ≤ slack(D) and slack(B) ≤ slack(C).

u0 and v0 are not slack-comparable iff one of the following holds:

i) slack(A) < slack(B) and slack(D) > slack(C)

or

ii) slack(A) > slack(B) and slack(D) < slack(C)

Proof. “=⇒” This statement will be proven by contradiction. Assume that both i) and ii)

do not hold:

i′) slack(A) ≥ slack(B) or slack(D) ≤ slack(C)

and

ii′) slack(A) ≤ slack(B) or slack(D) ≥ slack(C)

Case 1 : slack(A) ≥ slack(B) and slack(A) ≤ slack(B)

Due to the constraints in this case, slack(A) = slack(B) must be true. If a pair of tasks

in two actions are different but have the same slack, then either task can be served in one

of the actions without affecting the admissibility characteristic of that action (Theorem 15).

Therefore, with no loss of generality, C(u0, v0) = (D) and C(v0, u0) = (C). Using Lemma 20,

the actions will be slack-comparable.

Case 2 : slack(D) ≤ slack(C) and slack(A) ≤ slack(B)

Create a new action, l0, with the following tasks C(u0, v0)
⋃

(A,C). Hence, C(u0, l0)
= (D) and C(l0, u0) = (C) and using Lemma 20, one can determine SlackV ector(u0) 4

SlackV ector(l0). In addition, C(v0, l0) = (B) and C(l0, v0) = (A) and using Lemma 20,

one can determine SlackV ector(l0) 4 SlackV ector(v0). With this information, it can be

determined that u0 and v0 are slack-comparable: SlackV ector(u0) 4 SlackV ector(l0) 4

SlackV ector(v0).

Case 3 : slack(A) ≥ slack(B) and slack(D) ≥ slack(C)

Create a new action, l0, with the following tasks C(u0, v0)
⋃

(A,C). Hence, C(u0, l0)
= (D) and C(l0, u0) = (C) and using Lemma 20, one can determine SlackV ector(l0) 4
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SlackV ector(u0). In addition, C(v0, l0) = (B) and C(l0, v0) = (A) and using Lemma 20,

it can be determined that SlackV ector(v0) 4 SlackV ector(l0). With this information,

one can determine u0 and v0 are slack-comparable: SlackV ector(v0) 4 SlackV ector(l0) 4

SlackV ector(u0).

Case 4 : slack(D) ≤ slack(C) and slack(D) ≥ slack(C)

Due to the constraints in this case, slack(C) = slack(D) must be true. If a pair of tasks

in two actions are different but have the same slack, then either task can be served in one

of the actions without affecting the admissibility characteristic of that action (Theorem 15).

Therefore, with no loss of generality, C(u0, v0) = (A) and C(v0, u0) = (B). Using Lemma 20,

the actions will be slack-comparable.

These four cases show that if both i) and ii) do not hold, then the two actions will be

slack-comparable. Therefore, the contrapositive will be true as well: If two actions are not

slack-comparable, then either i) or ii) hold (since i) and ii) are mutually exclusive).

Proof. “⇐=” One can organize u0 and v0 into seven different subvectors to show that these

two actions will not be slack-comparable while condition i) holds. The organization for the

slack vectors is shown in Figure 5.2, and the Figure shows that while the actions are sorted,

neither SlackV ector(v0) 4 SlackV ector(u0) or SlackV ector(u0) 4 SlackV ector(v0) hold.

In a similar way, the actions can be sorted under condition ii) to show that they are not

slack-comparable. Consequently, u0 and v0 are not slack-comparable while i) or ii) hold.

5.6 Actions That Are Not Slack-Comparable and Dif-

fer in Two Tasks

The following theorem shows that given two admissible actions that are not slack comparable

with
∥∥C(u0, v0)

∥∥
1

=
∥∥C(v0, u0)

∥∥
1

= 2, another admissible action can be found.

Theorem 23. Consider the scheduling problem with tasks B(i) = (D(i), T (i), 1) for i =

1,...,N together with aggregate constraint U , and let Assumption 8 hold. Let u0 and v0 be

admissible actions at time t = 0 that differ only in two tasks:
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s(i) ≤ slack(A)

slack(A) < s(i) ≤ slack(B)

s(i) ≤ slack(A)

slack(A) < s(i) ≤ slack(B)
A

B

=

<

≤

≤

=

s(i) < slack(D)

D

>

≥

=

slack(B) < s(i) ≤ slack(C)

s(v0)s(u0)

slack(B) < s(i) ≤ slack(C)

slack(C) < s(i) ≤ slack(D)

s(i) < slack(D)

C

slack(C) < s(i) ≤ slack(D)

≥

Figure 5.2: Lemma 22 Visualization.
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u0 = C(u0, v0)
⋃ C(u0, v0)

v0 = C(v0, u0)
⋃ C(v0, u0)

where C(u0, v0) = (A,D) and C(v0, u0) = (B,C). Assume the slack vectors of the tasks follow

these relations:

slack(A) < slack(B) ≤ slack(C) < slack(D).

Then the action:

p0 = (B,D)
⋃ C(u0, v0)

is admissible. In addition, the new action will have the following slack relations:

SlackV ector(u0) 4 SlackV ector(p0) and SlackV ector(v0) 4 SlackV ector(p0).

Proof. The proof is in Appendix A.

5.7 Maximal Element When Two Actions Serve The

Same Number Of Tasks

Lemma 24. Given a schedulable problem, if u0 and v0 are maximal actions and
∥∥C(u0, v0)

∥∥
1

=
∥∥C(v0, u0)

∥∥
1
, then SlackV ector(u0) = SlackV ector(v0).

Proof. This lemma is proven by contradiction. Let u0 and v0 be two maximal admissible

actions with distinct slack vectors. Since u0 and v0 are both maximal and have different

slack vectors, they are not slack-comparable. There is no loss of generality if the tasks in

C(u0, v0) are allowed to have different slacks compared to the tasks in C(v0, u0). Indeed, if a

pair of tasks in u0 and v0 are different but have the same slack, then using Theorem 15 one

can replace the task in u0 with the task in v0 obtaining a new action that is still admissible.

Let m = min(u0, v0) and M = max(u0, v0).
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Observe that any task in C(u0, v0) must either be in m or in M . Thus, partition the tasks

in C(u0, v0) in the following way. (A1, ..., AnA
) are the tasks in C(u0,M) and (D1, ..., DnD

) are

the tasks in C(u0,m) where there is no loss of generality by assuming slack(Ai) ≤ slack(Ai+1)

for i = 1, ..., nA−1 and slack(Di) ≤ slack(Di+1) for i = 1, ..., nD−1.

Observe that any task in C(v0, u0) must either be in m or in M . Thus, partition the tasks

in C(v0, u0) in the following way. (B1, ..., BnB
) are the tasks in C(v0,M) and (C1, ..., CnC

) are

the tasks in C(v0,m) where there is no loss of generality by assuming slack(Bi) ≤ slack(Bi+1)

for i = 1, ..., nB−1 and slack(Ci) ≤ slack(Ci+1) for i = 1, ..., nC−1.

Since
∥∥C(u0, v0)

∥∥
1

=
∥∥C(v0, u0)

∥∥
1
, we have that nA = nB and nC = nD. By the

construction of m and M , we have that slack(Ai) < slack(Bi) and slack(Ci) < slack(Di).

We have nA ≥ 1 and nD ≥ 1, otherwise u0 and v0 would be slack-comparable, according to

Lemma 20.

The minimum actionm contains C(u0, v0)
⋃

(A1, ..., AnA
)
⋃

(C1, ..., CnC
) so SlackV ector(m) 4

SlackV ector(u0) and SlackV ector(m) 4 SlackV ector(v0) implying that m is admissible.

Follow these iterative steps.

1. Create a new action, u′0, by taking m and replacing the task C1 with task D1. u′0

contains C(u0, v0)
⋃

(A1, ..., AnA
)
⋃

(D1, C2, ..., CnC
). According to Corollary 21, u′0

will still be admissible because it will be smaller in slack than u0.

2. Create a new action, v′0, by taking m and replacing the task A1 with task B1. v′0

contains C(u0, v0)
⋃

(B1, A2, ..., AnA
)
⋃

(C1, ..., CnC
). According to Corollary 21, v′0

will still be admissible because it will be smaller in slack than v0.

3. Since C(u′0, v′0) = (A1, D1) and C(v′0, u′0) = (B1, C1), u
′
0 and v′0 are not slack-comparable

according to Lemma 22. Therefore, we can create a new admissible action q1 according

to Theorem 23.

� q1 contains C(u0, v0)
⋃

(B1, A2, ..., AnA
)
⋃

(D1, C2, ..., CnC
).

4. Create a new action, u′1, that contains C(u0, v0)
⋃

(A1, ..., AnA
)
⋃

(D1, D2, C3, ..., CnC
).

According to Corollary 21, u′1 will still be admissible because it will be smaller in slack

than u0.
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5. Since C(u′1, q1)=(A1, D2) and C(q1, u′1)=(B1, C2), u
′
1 and q1 are not slack-comparable

according to Lemma 22. Therefore, we can create a new admissible action q2 according

to Theorem 23.

� q2 contains C(u0, v0)
⋃

(B1, A2, ..., AnA
)
⋃

(D1, D2, C3, ..., CnC
).

6. Iterate steps from 4 to 5 nC times creating a sequence of actions q1, ..., qnC
where

qnC
= C(u0, v0)

⋃
(B1, A2, ..., AnA

)
⋃

(D1, D2, ..., DnD
).

� Observe that C(u0, qnC
) = (A1) and C(qnC

, u0) = (B1).

The actions qnC
and u0 are slack-comparable according to Lemma 20 providing

as a contradiction SlackV ector(u0) 4 SlackV ector(qnC
) but not SlackV ector(qnC

) 4

SlackV ector(u0).

5.8 Proof for Theorem 16

By contradiction assume u0, v0 are two maximal actions where SlackV ector(u0) and

SlackV ector(v0) are not slack-comparable. If
∥∥C(u0, v0)

∥∥
1

=
∥∥C(v0, u0)

∥∥
1
, then Lemma 24

gives the assertion.

Therefore, let us consider the case where
∥∥C(u0, v0)

∥∥
1
6=
∥∥C(v0, u0)

∥∥
1
. This implies that

‖u0‖1 6= ‖v0‖1. With no loss of generality, let ‖u0‖1 < ‖v0‖1. From the scheduling problem

P let us define a new scheduling problem P ′ that has the same aggregate constraint U , the

same tasks B(i), ..., B(N) of P and M = TU −
N∑
i=1

D(i) additional “phantom tasks”:

B(N+1) = B(N+2) = ... = B(M) = (1, T, 1).

P ′ is still feasible. Indeed, let {wk}T−1k=0 be a schedule for P .
T∑
k=1

‖wk‖1 =
N∑
i=1

D(i). For each wk

such that ‖wk‖1 < U define w′k as an action serving the same tasks as in wk and U − ‖wk‖1
phantom tasks that have not been served in the interval [0, K − 1]. The schedule {w′k}T−1k=0 is

obviously feasible for P ′. Also, observe that P is a relaxation of P ′: if {w′k}T−1k=0 is a feasible

schedule for P ′, a feasible schedule {wk}T−1k=0 for P can be obtained by removing from each
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action w′k the phantom tasks. As a consequence the slack vector SlackV ector(w0) is given

by replacing in SlackV ector(w′0) the slacks of the phantom tasks (that are all equal to T −1)

with ∞. Also, observe that each admissible action w′0 for P ′ is such that ‖w′0‖1 = U . An

example of creating a new schedule with phantom tasks is shown in Figure 5.3. (Figure 5.3

shows a hypothetical schedules for P and P ′. In the schedule for P , the dots represent a

task being served while a blank space is a place holder representing that another task could

be served at that time step. P ′ takes P and adds M phantom tasks, and the Xs in the

schedule for P ′ represent phantom tasks being served.)

Since all admissible actions in P ′ serve U tasks, from Lemma 24 all the maximal

admissible actions have the same slack vector. Let ŵ′0 be a maximal admissible action

for P ′ such that the number of phantom tasks served at time zero is maximized as well. At

the same time, let u′0 and v′0 be the two admissible actions for P ′ obtained from u0 and v0

in P and by serving U − ‖u0‖1 and U − ‖v0‖1 phantom tasks respectively.

Since ŵ′0 is maximal we have SlackV ector(ŵ′0) < SlackV ector(u′0) and SlackV ector(ŵ′0) <

SlackV ector(v′0). Observe that ŵ′0 serves at least as many phantom tasks as u′0 and strictly

more phantom tasks than v′0 does. Indeed let nu and nw be the number of phantom tasks

served by u′0 and w′0 respectively. If by contradiction, nu > nw, there is at least one phantom

served by u′0 and not by w′0. Since SlackV ector(w′0) < SlackV ector(u′0), there are at least as

many tasks with slack equal to T - 1 served by SlackV ector(w′0) as in SlackV ector(u′0). Thus,

we can replace one non-phantom task in w′0 with another phantom task using Theorem 15.

This contradicts the fact that w′0 is a maximal action serving the largest number of phantom

tasks.

Define ŵ0 as the action obtained from ŵ′0 by removing the phantom tasks. ŵ0 is feasible

for P and SlackV ector(ŵ0) is obtained by replacing the slacks of the phantom tasks with

∞. Now SlackV ector(ŵ0) < SlackV ector(v0) but not SlackV ector(v0) < SlackV ector(ŵ0)

because ŵ′0 serves more phantom tasks than v′0, leading to a contradiction since v0 is a

maximal action.
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Figure 5.3: Phantom Task Schedule
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Chapter 6

Conclusion

For a constrained dynamic scheduling problem, this thesis provides an efficient algorithm

to determine all the admissible actions at the current time step. All the admissible actions

can be found using a partial ordering approach by finding the maximal slack element. This

element can be determined by using the Maximal Element Algorithm and then a scheme can

implemented to optimize with respect to the current action instead of the global schedule

while keeping feasibility [1]. The algorithm in this thesis can be utilized to create fast

algorithms for dynamic scheduling problems in a scenario where future costs are not known a

priori. For future work, information about future bids could be incorporated into optimizing

the schedule to a cost function. Also, incoming tasks to the system need to be further

explored.
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A Proving Theorem 23

The following theorem shows that given two admissible actions that are not slack comparable

with
∥∥C(u0, v0)

∥∥ =
∥∥C(v0, u0)

∥∥ = 2, another admissible action can be found.

Consider the scheduling problem with tasks B(i) = (D(i), T (i), 1) for i = 1,...,N together

with aggregate constraint U , and let Assumption 8 hold. Let u0 and v0 be admissible actions

at time t = 0 that differ only in two tasks:

u0 = C(u0, v0)
⋃ C(u0, v0)

v0 = C(v0, u0)
⋃ C(v0, u0)

where C(u0, v0) = (A,D) and C(v0, u0) = (B,C). Assume the slack vectors of the tasks follow

these relations:

slack(A) < slack(B) ≤ slack(C) < slack(D).

Then the action

p0 = (B,D)
⋃ C(u0, v0)

is admissible. In addition, the new action will have the following slack relations:

SlackV ector(u0) 4 SlackV ector(p0) and SlackV ector(v0) 4 SlackV ector(p0).

Proof:

Consider the following scheduling problem with two schedules: U and V .

At a generic time τ , let uτ and vτ be the sets of tasks (actions) that are served in schedule

U and in schedule V , respectively.

In the U schedule, at time 0, we have that

u0 = (A,D)
⋃ C(u0, v0).

At time 0, the slacks of the tasks A,B,C,D satisfy

slack(A) < slack(B) ≤ slack(C) < slack(D).
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In the time steps after time 0, both schedules are generated by a policy that follows the

same common admissible actions for as long as possible. Let t be the time step at which the

two schedules need to differ, i.e. there is no action which is an admissible action for both

the schedules at time t. This event necessarily needs to happen because the two schedules

are both feasible, but u0 6= v0. At time t the action chosen for each schedule will be the least

slack action.

τ = 0 : C(u0, v0) = (A,D) and C(v0, u0) = (B,C)

1 ≤ τ ≤ t− 1 : uτ = vτ

τ = t : uτ 6= vτ

Notice that at time t, the following relations are true.

slacku(X, t) = slackv(X, t) for any task X different from A,B,C,D

slacku(A, t) = slackv(A, t) + 1 slacku(A, t) > slackv(A, t)

slacku(B, t) = slackv(B, t)− 1 slacku(B, t) < slackv(B, t)

slacku(C, t) = slackv(C, t)− 1 slacku(C, t) < slackv(C, t)

slacku(D, t) = slackv(D, t) + 1 slacku(D, t) > slackv(D, t)

Using these slack relations and the fact that the action chosen at time t will be the least

slack, the following statements must be true.

If A ∈ ut, then A ∈ vt.
If B ∈ vt, then B ∈ ut.
If C ∈ vt, then C ∈ ut.
If D ∈ ut, then D ∈ vt.

At time t, it is known that tasks B,C cannot be completed in schedule U and that

tasks A,D cannot be completed in schedule V . Using this information, it is known that the

deadlines of tasks A,B,C,D have not yet passed.

TA, TB, TC , TD > t

The goal is to find a feasible schedule P that has an initial action at time 0 such that
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p0 = (B,D)
⋃ C(u0, v0).

Remark. If the schedule P with p0 = (C,D)
⋃ C(u0, v0) is feasible then there exists a schedule

with the initial action (B,D)
⋃ C(u0, v0).

In some cases the schedules can be easily rearranged to prove that (B,D)
⋃ C(u0, v0) is

an admissible action at time 0. These are the cases (referred to as Scenario I) in which

� B ∈ ut and A /∈ ut, or

� C ∈ ut and A /∈ ut, or

� D ∈ vt and B /∈ vt, or

� D ∈ vt and C /∈ vt.

Another way to write the conditions for the cases in Scenario I is

(B ∈ ut or C ∈ ut) and A /∈ ut
or

(B /∈ vt or C /∈ vt) and D ∈ vt

At time t, either
∥∥C(ut, vt)

∥∥ =
∥∥C(vt, ut)

∥∥ = 1 or
∥∥C(ut, vt)

∥∥ =
∥∥C(vt, ut)

∥∥ = 2 must be

true.

All the cases for the differing number of elements are considered and the following notation

is introduced

ut = u′t ∪ qt and vt = v′t ∪ qt

where u′t ∩ v′t ⊆ {A,B,C,D} and qt ∩ {A,B,C,D} = ∅.
It is important to note that ‖u′t‖ = ‖v′t‖ and that ‖u′t‖ = 1, 2, 3 or 4.

Therefore, the only cases (referred to as Scenario II) that need to be considered and

proven are those where

� B /∈ ut or A ∈ ut, and
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� C /∈ ut or A ∈ ut, and

� D /∈ vt or B ∈ vt, and

� D /∈ vt or C ∈ vt.

Another way to write the cases for Scenario II is

� (B /∈ ut and C /∈ ut) and (B ∈ vt and C ∈ vt) or

� A ∈ ut and (B ∈ vt and C ∈ vt) or

� (B /∈ ut and C /∈ ut) and D /∈ vt or

� A ∈ ut and D /∈ vt

Cases in which ‖u′t‖ = ‖v′t‖ = 1

Case 1: u′
t = {A} , v′

t = {B} or {C} or {X}

� Based on the problem configuration it has been determined if A ∈ ut, then A ∈ vt.

However, we have a contradiction in this case that A /∈ vt and therefore is not possible.

Case 2: u′
t = {X} , v′

t = {B}

� Based on the problem configuration it has been determined if B ∈ vt, then B ∈ ut.

However, we have a contradiction in this case that B /∈ ut and therefore is not possible.

Case 3: u′
t = {X} , v′

t = {C}

� Based on the problem configuration it has been determined if C ∈ vt, then C ∈ ut.

However, we have a contradiction in this case that C /∈ ut and therefore is not possible.

Case 4: u′
t = {D} , v′

t = {A} or {B} or {C} or {X}

� Based on the problem configuration it has been determined if D ∈ ut, then D ∈ vt.

However, we have a contradiction in this case that D /∈ vt and therefore is not possible.

Case 5: u′
t = {X} , v′

t = {A}
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� The slacks of tasks slacku(X, t), slackv(X, t), slacku(A, t), slackv(A, t) exist and are

defined because tasks A and X are not completed by time t.

� If slacku(X, t) ≥ slacku(A, t), then could serve A in u′t = {A} meaning the schedules

would be the same for ut and vt. Based on the problem setup, the schedule has to be

different at time t. Therefore, slacku(X, t) < slacku(A, t) must be true.

� If slackv(A, t) ≥ slackv(X, t), then could serve X in v′t = {X} meaning the schedules

would be the same for ut and vt. Based on the problem setup, the schedule has to be

different at time t. Therefore, slackv(A, t) < slackv(X, t) must be true.

� Thus using these properties and the initial relations we can determine the following

relation

slackv(A, t) < slackv(X, t) = slacku(X, t) < slacku(A, t) = slackv(A, t) + 1

If this relation holds, slackv(X, t) and slacku(X, t) could not be integer. However, all

the slacks must be integer based on the problem set up. Therefore, this case is not

possible.

Cases in which ‖u′t‖ = ‖v′t‖ = 2

Case 6: u′
t = {A,B} or {A,C} or {A,D} or {A,X} , v′

t = {B,C} or {B,X}

or {C,X}

� Based on the problem configuration it has been determined if A ∈ ut, then A ∈ vt.

However, we have a contradiction in this case and it is not possible.

Case 7: u′
t = {A,C} or {A,D} or {A,X} or {D,X} , v′

t = {A,B} or {B,C}

or {B,X}

� Based on the problem configuration it has been determined if B ∈ vt, then B ∈ ut.

However, we have a contradiction in this case and it is not possible.

Case 8: u′
t = {A,B} or {A,D} or {A,X} or {D,X} , v′

t = {A,C} or {C,X}

� Based on the problem configuration it has been determined if C ∈ vt, then C ∈ ut.

However, we have a contradiction in this case and it is not possible.
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Case 9: u′
t = {A,D} or {D,X} , v′

t = {A,X}

� Based on the problem configuration it has been determined if D ∈ ut, then D ∈ vt.

However, we have a contradiction in this case and it is not possible.

Case 10: u′
t = {A,B} , v′

t = {A,X}

� Since task A has been served once more in schedule U compared to schedule V at time

t, ∃ t̂ : t < t̂ < TA such that A /∈ ut̂.

� Denote a task as Z that is in ut̂ but not in ut. This task Z must exist because task

A is in ut but not in ut̂ meaning there is at least one task different between actions ut

and ut̂.

� First, a task Z is moved from ut̂ to replace B in ut. Then move task B from ut to

replace task A in u0 and finally move A from u0 to ut̂ to obtain a feasible schedule that

meets the goal.

A

D

q0

B

C

q0

0

A

B

qt

A

X

qt

t

U

V

ut̂ \ Z

vt̂

t̂

Z

Figure A.1: Case 10 Visualization.

Case 11: u′
t = {A,C} , v′

t = {A,X}

� Since task A has been served once more in schedule U compared to schedule V at time

t, ∃ t̂ : t < t̂ < TA such that A /∈ ut̂.
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� Denote a task as Z that is in ut̂ but not in ut. This task Z must exist because task

A is in ut but not in ut̂ meaning there is at least one task different between actions ut

and ut̂.

� First, a task Z is moved from ut̂ to replace C in ut. Then move task C from ut to

replace task A in u0 and finally move A from u0 to ut̂ to obtain a feasible schedule that

meets the goal.
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Figure A.2: Case 11 Visualization.

Cases in which ‖u′t‖ = ‖v′t‖ = 3

Case 12: u′
t = {A,B,C} or {A,B,D} or {A,B,X} or {A,C,D} or {A,C,X}

or {A,D,X} , v′
t = {B,C,D} or {B,C,X}

� Based on the problem configuration it has been determined if A ∈ ut, then A ∈ vt.

However, we have a contradiction in this case and it is not possible.

Case 13: u′
t = {A,C,D} or {A,C,X} or {A,D,X} , v′

t = {A,B,C} or {A,B,X}

� Based on the problem configuration it has been determined if B ∈ vt, then B ∈ ut.

However, we have a contradiction in this case and it is not possible.

Case 14: u′
t = {A,B,D} or {A,B,X} or {A,D,X} , v′

t = {A,B,C} or {A,C,X}

� Based on the problem configuration it has been determined if C ∈ vt, then C ∈ ut.

However, we have a contradiction in this case and it is not possible.
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Case 15: u′
t = {A,B,D} or {A,C,D} , v′

t = {A,B,X} or {A,C,X}

� Based on the problem configuration it has been determined if D ∈ ut, then D ∈ vt.

However, we have a contradiction in this case and it is not possible.

Case 16: u′
t = {A,B,C} , v′

t = {A,B,X}

� Since task A has been served once more in schedule U compared to schedule V at time

t, ∃ t̂ : t < t̂ < TA such that A /∈ ut̂.

� Denote a task as Z that is in ut̂ but not in ut. This task Z must exist because task

A is in ut but not in ut̂ meaning there is at least one task different between actions ut

and ut̂.

� First, a task Z is moved from ut̂ to replace B in ut. Then move task B from ut to

replace task A in u0 and finally move A from u0 to ut̂ to obtain a feasible schedule that

meets the goal.
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Figure A.3: Case 16 Visualization.

Case 17: u′
t = {A,B,C} , v′

t = {A,C,X}

� Since task A has been served once more in schedule U compared to schedule V at time

t, ∃ t̂ : t < t̂ < TA such that A /∈ ut̂.
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� Denote a task as Z that is in ut̂ but not in ut. This task Z must exist because task

A is in ut but not in ut̂ meaning there is at least one task different between actions ut

and ut̂.

� First, a task Z is moved from ut̂ to replace C in ut. Then move task C from ut to

replace task A in u0 and finally move A from u0 to ut̂ to obtain a feasible schedule that

meets the goal.
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Figure A.4: Case 17 Visualization.

Cases in which ‖u′t‖ = ‖v′t‖ = 4

Case 18: u′
t = {A,B,C,D} or {A,B,C,X} or {A,B,D,X} or {A,C,D,X},

v′
t = {B,C,D,X}

� Based on the problem configuration it has been determined if A ∈ ut, then A ∈ vt.

However, we have a contradiction in this case and it is not possible.

Case 19: u′
t = {A,C,D,X} , v′

t = {A,B,C,D} or {A,B,C,X}

� Based on the problem configuration it has been determined if B ∈ vt, then B ∈ ut.

However, we have a contradiction in this case and it is not possible.

Case 20: u′
t = {A,B,D,X} , v′

t = {A,B,C,D} or {A,B,C,X}
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� Based on the problem configuration it has been determined if C ∈ vt, then C ∈ ut.

However, we have a contradiction in this case and it is not possible.

Case 21: u′
t = {A,B,C,D} , v′

t = {A,B,C,X}

� Based on the problem configuration it has been determined if D ∈ ut, then D ∈ vt.

However, we have a contradiction in this case and it is not possible.

Case 22: u′
t = {A,B,C,X} , v′

t = {A,B,C,D}

� Since task A has been served once more in schedule U compared to schedule V at time

t, ∃ t̂ : t < t̂ < TA such that A /∈ ut̂.

� Denote a task as Z that is in ut̂ but not in ut. This task Z must exist because task

A is in ut but not in ut̂ meaning there is at least one task different between actions ut

and ut̂.

� First, a task Z is moved from ut̂ to replace B in ut. Then move task B from ut to

replace task A in u0 and finally move A from u0 to ut̂ to obtain a feasible schedule that

meets the goal.
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Figure A.5: Case 22 Visualization.
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