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Abstract

The emergence of smart grids has allowed for integrating new technologies in the power grid,

with information flowing across the system allowing for more efficient power delivery and

event response. Demand response is a new technology enabled by smart grids, which is a

program aiming to reduce or shift peak demand by varying the price of electricity or offering

incentives for changing consumption habits.

Despite demand response benefits, privacy advocates have raised concerns with informa-

tion leakages allowed by the type of high-resolution data collected by smart meters, as it can

reveal customer usage patterns and different parties can take advantage of that data. In this

thesis, a utility vs. privacy framework is developed to maximize the utility of using smart

meter data while also minimizing the privacy leakages from the smart meter.

Two frameworks are developed, the first, a fault localization technique for radial

distribution systems by using alarm processing through binary integer linear programming.

The second, a power scheduling tool that uses renewables, a battery, and appliance scheduling

to disguise the customer usage patterns by matching it to an average and the resulting

collected data is not revealing of any characteristics the customer wants to hide.

Fault localization was tested on two radial distribution systems, and locates the fault

every time, with the variation in time till detection depending on system size, how the

system is branched, fault location, and sampling rate. Power scheduling was tested using

simulated home data, different scenarios are run by varying battery, solar, appliance, and

privacy parameters, and results are compared for various sampling rates. Both frameworks

were successful in hiding privacy leakages based their respective privacy metric.

Future research on the fault localization could expand to find two faults simultaneously,

along with implementing an emergency mode to find faults quicker in a sampling cycle.

v



The power scheduling framework could expand to include thermostatically controlled load

scheduling, by implementing deep learning algorithms on each home and factoring in

variables such as historic data of weather, time of day, and day of week to determine how

thermostatically controlled loads could fit into the scheduling problem.
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Chapter 1

Introduction

This chapter serves as an introduction to the background of smart grids, demand response,

and data collection using smart meters. Afterwards, the motivation and contribution of the

thesis are discussed, and the thesis structure is presented.

1.1 Smart Grid

The existing U.S. power system has served the traditional needs well, but moving into the

future with new challenges such as, security threats, extreme weather events, along with new

market opportunities and a changing supply mix, there is a need to modernize the existing

grid into the so-called smart grid. There exist many improvements promised by smart grid

technologies. The main differences are shown in Table 1.1.

The most important distinction between the two grids is the extensive communication.

Two-way communication in a smart grid setting will save time and money, utilities no longer

have to dispatch a meter reader every month for billing purposes. New programs such as

Demand Response (DR) and time of day pricing can be introduced, and utilities will be able

to detect outages much quicker.

1



Table 1.1: Comparison Between Existing Grid and Smart Grid [30]

Existing Grid Smart Grid
Electromechanical Digital
One-way communication Two-way communication
Centralized generation Distributed generation
Few sensors Sensors throughout
Manual monitoring Self-monitoring
Manual restoration Self-healing
Failures and blackouts Adaptive and islanding
Limited control Pervasive control
Few customer choices Many customer choices

Figure 1.1: NIST conceptualization of Smart Grid [36]

2



The National Institute of Standards and Technology (NIST) developed a smart grid

concenptualization shown in Figure 1.1. Two-way communication is central to achieve the

anticipated benefits and requirements of a smart grid as defined by NIST, which are [36]:

1. Improving power reliability and quality;

2. Optimizing facility utilization and averting construction of back-up (peak load) power

plants;

3. Enhancing capacity and efficiency of existing electric power networks;

4. Improving resilience to disruption;

5. Enabling predictive maintenance and self-healing responses to system disturbances;

6. Facilitating expanded deployment of renewable energy sources;

7. Accommodating distributed power sources;

8. Automating maintenance and operation;

9. Reducing greenhouse gas emissions by enabling electric vehicles and new power sources;

10. Reducing oil consumption by reducing the need for inefficient generation during peak

usage periods;

11. Presenting opportunities to improve grid security;

12. Enabling transition to plug-in electric vehicles and new energy storage options;

13. Increasing consumer choice; and

14. Enabling new products, services, and markets.

By utilizing modern information technologies, the smart grid will be able to deliver power

in more efficient ways. It will also be able to respond to different events happening across

the system. It should be able to correctly match generation with load and keep transmission

lines near their rating. The smart grid in theory could optimize every aspect of the electric

grid to make it more efficient and lower costs overall for both consumers and utilities.
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1.2 Demand Response

Demand Response (DR) is a “demand side management program for reducing or shifting

peak demand by varying electricity prices or providing incentives to customers to change their

consumption patterns” [64]. The Department of Energy (DoE) defines DR as “a tariff or

program established to motivate changes in electricity use by end-use customers in response

to changes in the price of electricity over time or to give incentive payments designed to induce

lower electricity use at a time of high market prices or when grid reliability is jeopardized”

[5]. The Federal Energy Regulatory Commission (FERC) was required to prepare a report

assessing electric demand response resources across the country, along with the penetration

rate of advanced smart meters, in accordance with the energy policy act of 2005 [4]. FERC

was also required to perform a national assessment of DR potential along with developing a

national action plan for DR, in accordance with the energy independence and security act

of 2007 [6].

Since these two acts were established, DR is being slowly implemented across different

markets. DR has mostly been implemented in the industrial sector successfully, as large

facilities can curb their load in much larger and meaningful amounts that will be able to

help system operations during peak loading times. DR can help lower costs by helping

system operators to maintain a good load factor. Load factor is the average power demand

divided by the peak power demand, an ideal load factor would equal 1, which means the

load is steady throughout the day which would require no extra capacity to manage peak

loads.

DR can have the same effect of adding a generator to the system, but DR can respond

much faster with potentially high savings from functions such as peak shaving during high

loads times. It also help system operators balance variable generation and load without

having to call up expensive and costly generators. Residential DR has been introduced

into power markets to a much less degree than in the industrial sector. Load Serving

Entities (LSE) can provide services where they are able to create a DR report for each

household according to their unique power usage. DR programs have generally been

voluntary programs. Studies in [23, 58, 59] show demographics studies to understand who
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(a) Elechtromechanical Meter (b) Solid State Meter

Figure 1.2: Difference Between Meter Types

will most likely choose to enroll in a DR program, as it widely differs by demographics. For

example, a liberal leaning 26 year old democratic voter is much more likely to accept and

enroll in such a program than a conservative leaning 55 year old republican voter [20].

Other issues such as concern with privacy may also impact willingness to enroll in a

program. A residential DR program can be as simple as offering incentives to customers who

raise their thermostat setting or as involved and complex as scheduling different appliances

according to prices and the overall system load at a particular time.

1.3 Smart Meters

There is no current consensus on what the smart refers to in smart meters, or what features

should be included in these meters, but the simplest feature that all agree on is their ability

to communicate timely information about power usage back to the utility [65].

Figure 1.2 depicts the difference between an old electromechanical meter and the new

smart meter. The electromechanical meters require a meter worker to go out every month and

record a reading for all the customers in a service area for billing purposes. The new smart

meters can record that information and transmit it back to a centralized server that will

calculate the bill automatically and send it to the customer. This brings costs down for both

utilities and customers. There are many other benefits to smart meters and functionality
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that can support the grid. These benefits are listed in Table 1.2. Present meters are advanced

and can record measurements frequently, up to a thousand measurements per second [38];

however, with such detailed monitoring, the issue of privacy arises.

1.4 Privacy in Smart Grids

Due to the nature of smart grids and the technology they employ, large amounts of data are

continuously transmitted. Some of this data that can be considered highly sensitive, and

would be considered lucrative to acquire for marketing firms or malicious intention third

parties. The types of data that can impact peoples privacy includes: names, addresses,

bank account, meter data, billing, renewable capacity installed, and energy service providers

[72]. There are four different aspects of privacy considered by NIST, personal information,

personal privacy, behavioral privacy, and personal communication [30]. All those privacies

can be infringed upon by either utilities selling the data or the system being hacked.

Privacy advocates are wary of smart meters, going as far as to advocate against them

and try to lobby local law makers to ban utilities from deploying smart meters. Utilities

have faced lawsuits to prevent the use of smart meters. Other people have unfounded

concerns against smart meters, such as radiation, fire hazard, and inaccuracy compared to

electromechanical meters, but these issues have been widely studied and have been proven

to be without basis [1]. Still, there are some legitimate concerns regarding smart meter

implementation, including the security of the system from hacking by third parties with

malicious intent or by data being sold to marketing firms. Because such data can reveal very

telling behavioral patterns of a homeowner and would allow thieves to find out when houses

are empty and will let companies start targeting advertisements even more.

Non-Intrusive Load Monitoring (NILM) algorithms have been developed which allows

the intricate detection of different appliances such as the HVAC, water heater, lights, and

even a phone charger, by just looking at the overall load curve of a household. With a 2

Hz sampling rate over 5 min. media content displayed over a TV can easily be identified as

shown in [37]. Even if smart meter data was sampled with a granularity of 30 min over 1.5

years, different of a household can be detected [14].
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Table 1.2: Smart Meter Benefits [62]

Stakeholder Benefit

Utility Customers
• Better access and data to manage energy

use
• More accurate and timely billing Improved
and increased rate options
• Improved outage restoration
• Power quality data

Customer Service and Field Operations • Reduced cost of Metering reading
• Reduced trips for off-cycle reads
• Eliminates hand-held meter reading

equipment
• Reduced call center transactions
• Reduced collections and connects

disconnects
Revenue Cycle Services - Billing, Ac-
counting, Revenue Protection

• Reduced back office re-billing

• Early detection of meter tampering and
theft
• Reduced estimated billing and billing errors

Transmission and Distribution
• Improved transformer load management

Improved capacitor bank switching
• Data for improved efficiency, reliability of
service, losses, and loading

Marketing and Load Forecasting
• Improved data for efficient grid system

design Power quality data for the service areas
• Reduced costs for collecting load research
data

Utility General • Reduced regulatory complaints
• Improved customer premise safety and risk
profile
• Reduced employee safety incidents

External Stakeholders • Improved environmental benefits
• Support for the Smart Grid initiatives
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1.5 Motivation

With the ongoing efforts to modernize the power grid into a more green smart grid, several

different programs have been developed to help achieve that goal, one of them is DR, demand

response will help bring down costs to utilities and customer alike, along with bringing down

greenhouse gases used by expensive generators that get turned on during peak loading times

to help get generation to match the load so the system can function reliably. DR programs

coupled with smart meters requires privacy concerns to be fully addressed for gaining public

acceptance. This thesis will focus on developing an approach for a mutually beneficial trade

off between the privacy infringed by gathering data and the utility gains from the data.

Specifically, this work proposes minimizing privacy infringement while satisfying utility data

needs for grid functions. In this thesis, two different utility functions are addressed from

a privacy point-of-view: outage detection in a simple radial distribution grid and a DR

program using appliance scheduling.

1.6 Contribution

Designed a fault localization alarm processing technique which uses an iterative set covering

technique in a Linear Program with incoming data to find the location of the fault on a

radial distribution system in the shortest time possible while keeping privacy leakage to a

minimum.

Designed a mixed integer linear program formulation to prevent privacy leakages by

masking the customers power usage through scheduling appliances, renewable resources,

and battery to either maximize privacy or cost savings on electric bill.

1.7 Thesis Structure

In chapter 2, a literature review on the current privacy hiding schemes, such as, battery and

load level hiding, along with current existing appliance scheduling models is given. Chapter

3 will focus on the problem of outage detection using a binary integer linear programming

model. Chapter 4 will address the problem of appliance scheduling to optimize user selection
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parameters so the user will be able to select between preserving privacy or lowering costs.

This will be solved using a mixed integer linear programming model. Chapter 5 will analyze

the results and make recommendations for future work that could be done to further optimize

these models and add new models to tackle other utility problems.
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Chapter 2

Literature Review

A literature review is conducted for material applicable to demand response in smart grids,

privacy concerns, alarm processing, mixed integer linear programming, utility of smart meter

data, dynamic time of day pricing, and existing solutions to the privacy vs. utility problem.

2.1 Demand Response in Smart Grids

Smart grids allow enhanced energy management through the deployments of smart metering

infrastructure (SMI) as part of a global green initiative. From a utility perspective, smart

meters should meet the following goals [63]:

1. Enable critical peak billing and support dynamic pricing

2. Support tamper and energy theft alarms

3. Support power failure and restoration notifications

4. Support residential demand response

These goals are accomplished by the smart meters ability to collect high-resolution

energy data, which lets the utility forecast load demand and the ability to provide improved

service to consumers in the form of variable pricing [67], an important realization of that

pricing structure comes in in the form of demand response (DR), where customers change

their consumption patterns in a reaction to changing prices or incentives offered by their
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Figure 2.1: Peak Shaving as a result of a DR program [75]

utility provider, and in some cases the utility provider could have direct access to customers

appliances to control them in the case of system instability [7]. DR also provides the ability

to shave peak power consumption as shown in Figure 2.1. This can help decrease costs, even

a 5% load reduction can provide up to 50% price curtailment, and that is because electricity

generation costs raise exponentially when the power generation capacity is near its maximum

limit and expensive generators need to come on-line to compensate for the increased peak

load [8].

DR can be split into two different categories [35], price based demand response (PDR)

and incentive based demand response (IDR), where PDR is based on the electric company

displaying day ahead pricing and the customer can react to those prices independently to

save electricity cost, and IDR where the customer directly responds to the utilities request
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to curb their load at a certain time. And depending on the type of IDR program, the time

interval for measurements could vary from hours to seconds based on different triggering

conditions [43] although this could potentially pose serious threats to customer privacy [15].

The unique challenge that IDR poses is that the metering data needs to be attributable to

a certain customer for the purpose of tracking demand curtailment responses and monetary

incentives to be rewarded as well as the need for that data to be fine-grained to allow the

maximum benefit to the utility company.

2.2 Utility of Smart Meter Data

Privacy related issues to smart meter data have been addressed in the previous sections

of this thesis, this section deals with the utility functions a load serving entity or a utility

company can gain from using that data. The different functions utilities can accomplish

relate to the granularity of the data received by the smart meter, Figure 2.2 shows that a

granularity of 30 min can only reveal active\inactive periods of occupancy, but in Figure

2.3 with a granularity of 1 min, more privacy concerns start arising, as specific appliances

turning on and off can be detected thereby exposing even greater privacy of the user.

However, the higher the granularity of the received data, the more utility a power

company can extract value from that data. In the case where data is only read once a

month, the data can only indicate the amount to be billed for a customer, and possibly

Figure 2.2: Demand data for a single dwelling averaged over 30 min. [41]
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Figure 2.3: Demand data for a single dwelling averaged over 1 min. [41]

general occupation, in terms of this home is occupied or not, but a granularity of say, 1-min,

can forecast exact demand in a specific area and help achieve DR. There are many utility

functions that could be achieved by smart meter data as outlined in [60]. They include:

2.2.1 System Balancing and Transmission Network Power Flows

System operators constantly have to manage load and generation to maintain system

frequency, and maintain secure operating regions for the system, this is usually done in

bulk by looking at data coming in from substations. With the inclusion of smart meter data,

and proper load modeling, the data could prove much more useful in knowing how to schedule

generation across the network, historic data from several places could be an indication that

a certain area will require more generation than another at some time, so system operators

could be ready for that, this data will facilitate the integration of distributed generation and

will allow more secure grid operation.

2.2.2 Demand Reduction

With the concept of dynamic time of day pricing, some consumers will want to decrease their

usage during expensive peak times, and shift it to cheaper off-peak times. This will help

them save costs on electricity bills, along with helping provide peak-shaving for the utility.

Feedback from the smart meter to the homeowner could be useful in showing when they

consume the most, and help them curtail their usage when needed.
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2.2.3 Demand Response

The many benefits of demand response were included in an earlier section, and without

fine-grained smart meter data, it would be near impossible to implement a DR system.

2.2.4 Retail Billing

Retail billing is a very important part of the power market, and up until recently, and in

many areas, workers must be dispatched to physically look at a meters reading and record it

and report back to the utility to calculate how much each household owes on their monthly

bill. Smart meters need only send the usage once a month to perform the same function.

2.2.5 Wholesale Settlement

Wholesale settlement refers to the market operations in the electrical system, with fine-

grained meter data, weather, and historical data, the utility provider could purchase exact

amounts of generated power to serve to their distribution network customers.

2.2.6 Fast Demand Response

Fast demand response refers to the utility having direct control over different appliances,

usually Thermostatically Controlled Loads (TLC)s. Where the utility can turn off these

loads in the case of near system collapse, or can send out control signals to regulate the total

power demand at a certain time.

2.2.7 Distribution System Operation and Planning

The medium and low voltage network that is operated by the local load serving entity could

benefit greatly from fine-grained meter data by allowing the operators to follow trends in

power usage and plan for the future. It also allows them to better operate the network in

day to day operations.
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2.2.8 Voltage and Power Quality

Smart meters can readily be fitted to test and measure voltage along with power sampling

which it can relay back to the utility in case a measurement outside the limits is reported.

The voltage data that can be measured could include stead-state voltages, flickers, and

harmonics, all of which are of interest to the network operators who can use that data to

maintain the optimal voltage level and quality.

2.2.9 Outage Detection and Fault Localization

With incoming smart meter data, no longer will homeowners have to call in a power outage,

the occurrence and location of a fault is automatically detected and depending on the

sampling rate of the data could be instantaneous.

2.2.10 Operation Nearer to Limits

Find-grained meter data will allow the operators to operate the system nearer to its designed

limits by allowing them to distributed generation to serve the immediate surrounding area,

which would not require generated power to travel far among the transmission lines and lead

to network losses and lines not being fully utilized.

2.2.11 Planning Reinforcement

Distribution networks are designed to meet the demand of certain areas without exceeding

the thermal limits of power cables and equipment, along with keeping the voltage within

limits. But with the constant change in new home additions to an area, and upgrading the

different appliances within a home, the amount of power used by certain areas can differ over

time, and smart meter data will allow the utility to make informed decisions on where the

load will increase in the future, so the process of upgrading lines and equipment to higher

ratings can be done more efficiently and economically.
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Figure 2.4: Example 1 of Demand Profile from Individual Household Record [40]

2.3 Privacy Concerns

Despite all the aforementioned benefits DR can bring, privacy leakages can limit acceptance.

DR paired with SMI technologies generates high-resolution data allowing customers usage

patterns to be observed and taken advantage of whether by their utility company or

a malicious third party, and without proper control techniques for privacy preserving,

customers participating in DR programs or even just having a smart meter installed could

face unpleasant privacy infringement experiences, such as, loss of personal information and

their habits disclosed through their energy usage [61, 54].

Consumers habits can be determined by looking at their overall energy usage, and that is

made possible with the Non-Intrusive Load Monitoring (NILM) algorithms [48], and steady

state monitoring techniques can be used to identify loads with typical on/off patterns such as

coffee makers and refrigerators. This can be seen in Figure 2.4 and Figure 2.5, the different

appliances can be identified by looking at the overall load profile.

Other characteristics that can be identified by looking at energy usage patterns are the

number of occupants, whether the home is occupied, whether all the adults work for pay,
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Figure 2.5: Example 2 of Demand Profile from Individual Household Record [40]

the duration the home is occupied, or even the retirement status of the head of household

[11]. Aside form power consumption data, privacy can be disclosed in other ways as well.

DR systems contain several kinds of data: power consumption, control commands, events,

and alarms [54]. There are many things that can be affected by privacy leakages. For

example, when electricity is expensive at peak times, if a customer choses to turn off their

air conditioner, or raise their thermostat even thought the temperature outside is hot, this

behavior can deduce that this particular customer prefers financial savings to comfortable

temperatures. Table 2.2 shows a summary of privacy concerns related to smart meters.

Financial wellbeing can also be deduced from usage patterns, if at a certain time, the

price varies, and a customer has not scheduled any appliances to shift to off peak hours, it

can show the customers financial rationality. If a customer reschedules a dishwasher task to

midnight, it can infer that the customer does not pay attention to the neighbors reaction

to the noise it induces. [50]. Another thing that can be inferred from privacy leakages is
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Table 2.1: Private Questions and Answers that Fine-Grained Power Consumption Data
Reveals [63]

Question Pattern Granularity
Where you home during
your sick leave?

Yes: Power activities during the day
Hour/Minute

No: Low power usage during the day

Did you get a good
nights sleep?

Yes: No power events overnight for at
least 6 hours Hour/Minute
No: Random power events overnight

Did you watch the game
last night?

Yes: Appliance activity matching TV
program Minute/Second
No: No power event in accordance with
game showtime

Did you leave late for
work?

Yes: Last power event time later than
Google maps estimated travel time Minute
No: Last power event time leaves
enough time for commute

Did you leave your child
home alone?

Yes: Single person activity pattern
Minute/Second

No: Simultaneous power events in
distinct areas of the house

Did you eat a hot or
cold breakfast?

Hot: Burst of power events in the
morning (microwave/coffee machine/
toaster)

Second

Cold: No power event matching hot
breakfast appliances

appliance malfunction. In a DR program with Direct Load Control (DLC) if a utility sends

a signal for an appliance to turn on at a certain time, and the energy pattern does not reflect

that appliance, then it can be inferred that the appliance has malfunctioned. Then targeted

advertisements can be sent to that consumer on repair services or replacement appliances.

Power profiles that show very low usage during the day can infer that the customer is away

at work, or away for the weekend, or whether this certain occupancy is a summer home or a

full-time residence. With the right model, and the right training data and contextual clues,

for scientific, curious or malicious third parties, the possibilities of what can be inferred from

energy usage profiles are nearly endless. A protection scheme to protect that data is vital.

[50]
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Table 2.2: Summary of privacy concerns related to smart meters

Application Group Example Concerns References

Illegal uses
• Burglars finding out when homes are

unoccupied.
[53] [61] [67]

[18] [49]• Stalkers tracking the movements of their
victims.

Commercial uses

• Targeted advertising: use of individual or
aggregated household smart meter data to target
advertising at a specific household or individual.

[53] [67] [18]
[10] [16]

• Insurance adjusting e.g. do you tend to leave
your appliances on when away from home?

Uses by law
enforcement agencies

• Detection of illegal activities e.g. sweatshops,
unlicensed commercial activities, and drug pro-
duction.

[53]

• Verifying defendants claims e.g. that they were
at home all evening.

Uses by other parties
for legal purposes

• In a custody battle: do you leave your child
home alone? [67]
• In a landlordtenant dispute: is the property

over-occupied?

Use by family
members and other
co-inhabitants

• One householder spying on another e.g. parents
checking if their children are sleeping or staying up
late playing video games.

[39]

• Partners investigating each others behavior.

Another important, often overlooked privacy concern, is the issue of feedback and privacy

within the confines of one home itself, such as different co-occupiers of a household infringing

upon the privacy of others in the same household. In a household with smart meters sampling

every 30 min, the only information that could be revealed from one person to another is

whether the house is occupied, and that, according to [39] is information that has already

been volunteered once shared occupancy was agreed upon, so no extra information is revealed

in this case; however, if the sampling time was lower, such as 1-minute, the person who the

utility is in their name can see the different activities their roommates, spouse, or kids are

doing at certain time, which exposes those peoples privacy. This can create intra-home trust

issues.
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The privacy consequences of implementing smart grids are hard to anticipate for two

reasons [69]:

1. The full range of technological capabilities and information extraction possibilities have

not been laid out fully.

2. Our concept of privacy in this space is poorly defined and constantly shifting.

What we do know is that smart meters despite creating privacy concerns are absolutely

indispensable in the context of transforming our energy system into a smart one. as a smart

grid will allow many different utilities while tremendously saving costs, peak load reduction,

load shaping, more efficient network management, and DR. Ref. [67] cites a list of other

privacy sensitive characteristics that can be inferred from electricity load data such as if

the house is occupied, personal habits, and routines. In [45], a view of privacy in smart

meter information is presented where the authors identify that privacy issues relating to

energy usage are an inference violation, rather than an identity violation. The authors have

also proposed three different privacy metrics: a relative entropy metric, classification using

clustering, and a correlation/regression metric.
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Table 2.3: Utility vs. Privacy
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The importance of personal behavior privacy has been outlined in several studies [53, 78].

The NIST smart grid interoperability panel has outlined that the access to new energy usage

data that is created and sent by smart meters, such as, unique load signatures of different

electronics and appliances opens up more opportunities for general privacy invasion. Ref.

[18] suggests there will always be temptation to sell private information as there will always

be an interested buyer of that information, which includes: energy usage and appliance data.

Therefore, the necessity to create a well balanced privacy framework that will still provide the

greatest utility to the electric companies , i.e., such a framework will accommodate legitimate

interests and objectives in a fair manner while preserving the privacy of consumers and not

sacrificing the utility for providers of energy. Table 2.3 shows a breakdown of Utility vs.

Privacy based on the data collected by the smart meter, the data sampling interval, and

where the data is relayed. The Table was compiled from many sources [60, 63, 61, 67, 18,

49, 53, 67, 18, 10, 16, 39], and was assembled to support this document.

2.4 Mixed Integer Linear Programming

The main approach to modeling and solving linear mathematical models that seek to

optimize a measure of performance is called Linear Programming (LP) or linear optimization.

Traditional applications of LP have been used to solve problems such as production

scheduling, finding the perfect mix or balance in a chemical solution or recipe, and in terms

of power systems, solving the economic dispatch problem. More recently it is being used in

the artificial intelligence and information technology fields to optimize pattern recognition

problems [12]. As opposed to a normal LP problem where the optimal value of different

variables or answers to a problem could be any value, a MILP has specific variables where the

only solution could be an integer, this can be used, for example, in production problems, as it

is not possible to build say 8.7 units, so the logical answer must be 7 or 8. A popular solver

for MILP is to implement the Branch-and-Bound Algorithm. Which can be summarized

as a divide-and-conquer approach, as it attempts to solve the initial problem by solving

normal LP relaxations of a sequence of smaller subproblems. Some solvers also implement

different advanced techniques such as pre-solving, generating cutting planes, and applying
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primal heuristics to improve the algorithm efficiency. The standard form for MILP problems

is shown in Equation 2.1 [42].

max z = cTx

w.r.t.

Ax = b

x ≥ 0

xi → Integer

(2.1)

In this formulation the ith value of x is an integer, chosen by however the problem is setup

to be solved.

2.5 Alarm Processing

Alarm processing in the context of power systems means that a control center needs to

interpret large numbers of alarms under different conditions and to categorize the events

that have happened to trigger those alarms. The alarm processing problem is an efficient

way to deal with the developments in the field of information technology when it comes

to SCADA systems. The solution to the alarm problem can be addressed by knowledge-

based systems instead of having each alarm separately categorized to be triggered when a

certain event or contingency of events happens [24]. The principal concern with alarms in a

power system is the so-called multiple alarms on one event problem, which can be defined

as a diagnostics problem. An attempt to solve the alarm processing problem uses the set

covering [77]. This categorizes every event that could trigger a certain alarm, and then in the

case of multiple alarms being triggered, it finds the least number of events that could lead

to those alarms being triggered. In the context of power system, this can be described as a

transmission line outage, where the operator receives the information that several areas have

lost power, and after processing all the alarms for those places. It leads them to knowing

which transmission line is out, and then repair crews can be dispatched to that line [9].

Alarms here can be defined as an element of a set referred to as an alarm set. Every member

of an alarm set will is associated with the occurrence of a representing alarm, and an event
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can be described as in [24]:

ei → Ai where i = 1, 2, ..., ne

and,

ei ∈ Es

and,

Ai = {ak|ak ∈ As ∧ k ∈ NA} where NA = {1, 2, ...na}

ei is the event i, Ai are the alarms associated with e, → is the relationship between ei and

Ai, ne is the number of events,na is the number of alarms, Es is all possible events, and As

is all possible alarms.

Table 2.4: System Set of Alarms [24]

Code Alarm Message Description
a1 Any circuit breaker position changes
a2 Any pair of circuit breaker positions changes closing or opening
a3 Circuit breaker position changes to on
a4 Circuit breaker position changes to off
a5 Circuit breaker position leaving the off position
a6 Any trip commands
a7 Trip commands of bus-bar protection devices
a8 Trip commands of transformer protection devices
a9 Any indications of starting relays (neutral or phase)
a10 Indications of starting relays (phase only)
a11 Any indication about blocking of automatic re-closing

Table 2.4, Table 2.5, and Table 2.6 show an example of alarm processing in the power

systems domain. As seen in Table 2.6, if the operator receives alarm code a1 ”Any circuit

breaker position changes” it could mean any one of events e1, e2, e3, e4, e5, e6, e9, and e10,

have occurred. If alarm code a2 was also received by the operator, it narrows the events down

to only e9 ”Switching operation”. This in essence explains the alarm processing problem and

how it can be applied to the field of power systems.
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Table 2.5: System set of Events [24]

Code Event Description
e1 Fault on bus-bar
e2 Tripping of transformers
e3 Tripping after closing
e4 Tripping of lines
e5 Unsuccessful fast re-closing
e6 Successful fast re-closing
e7 External incident
e8 Blocked re-closing
e9 Switching operation
e10 Maintenance activities

Table 2.6: Relationship between Alarms and Events [24]

Event Alarm Group Set of Alarms
e1 A1 a1 a4 a6 a7
e2 A2 a1 a4 a6 a8
e3 A3 a1 a4 a5 a9 a10
e4 A4 a1 a4 a9 a10
e5 A5 a1 a3 a4 a9 a10
e6 A6 a1 a3 a9
e7 A7 a9
e8 A8 a11
e9 A9 a1 a2
e10 A10 a1

2.6 Dynamic Time of Day Pricing

With the introduction of smart meters, utilities can now record consumer power usage at

much higher rates than under the traditional monthly meter reads. Using these readings,

utilities can implement different Time of Day (TOD) pricing programs, where prices depend

on the market conditions and can fluctuate from hour to hour. Customers can choose

to use the more power consuming appliances such as their dishwasher or dryer at a time

when electricity is cheaper. Those times will also be times when there is less strain on the

power system, so a TOD program when implemented will benefit both utility and consumer
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by saving costs and improving system operations [3]. Most residential customers purchase

electricity by having a constant rate that they get billed at the end of the month; however

a significant minority of consumers have their kWh price rise marginally as more power is

consumed and the prices rise for the utility to buy power that will be delivered. These prices

do not depend on which time the power is consumed.

Figure 2.6: Time of Day Pricing [3]

There are several different pricing models that can be implemented in a TOD pricing

program [2]. All programs seek to persuade people to move their load as much as possible to

non peak times, whether by increasing price during peak times, or offering discounts during

non peak times. The overall goal of TOD pricing is to reduce strain on the system. Several

of these different pricing options are given in Figure 2.6. The most common dynamic pricing
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is the time-of-use (TOU) pricing in which the price of electricity varies with the time of

day or week. TOU is not considered dynamic as the prices are set either the day before, or

sometimes even weeks or months in advance. The consumer can then plan on when to use

heavy loads based on the prices at certain times. Critical peak pricing (CPP) is also a form

of dynamic pricing where the utility will increase the price of electricity at a time where

they want to curb demand and decrease it at a time where they want to shift that decreased

demand to. This enables a shaped demand profile closer to leveled which helps to stabilize

pricing and system operations [17]. No matter which type of dynamic pricing is used, it

remains one of the crucial parts in enabling a successful demand side management program.

This type of pricing, while popular with economists is not so popular with regulators and

consumers, e.g., [25] has shown that customers will responds positively to an opt-in type of

dynamic pricing program.

2.7 Previous Privacy Solutions

Most smart meters currently deployed do not have any active measure to preserve

privacy, and the studies that have come out have been purely theoretical with little real

implementation. Different studies have involved several different ways to achieve privacy

preservation those ways are shown in this section. The different papers that cover this

topic will be analyzed and their different approaches discussed. It should be noted that this

section only covers the power scheduling problem, and previous solutions to that problem,

and not the fault localization problem, as there does not currently exist any fault localization

technique that regards privacy protection in the literature and this thesis is the first to

propose such a measure.

There are many works in literature that address privacy concerns using encoding,

decoding, and encryption, for many different areas of study. In [35, 50, 69] are sources

covering the smart grid, and how important it is to have this kind of technology on

all ends of smart meters that transmit and receive data. In [35] identity-committable

signatures and partially blind signatures, which are cryptographic methods, are used for

an IDR program which enables the utility to compute individual DR participation and
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rewards while preserving consumer privacy, as well as saving that data and allowing it

to be accessible later on in case of legal disputes or any other reason that would require

access to the data. An investigation of a new set of privacy threats focusing on financial

rationality versus inconvenience is performed in [50], along with the design of a privacy

protection protocol based on attributed-based encryptions, where two privacy leakage models

are formulated: a Benefit Inconvenience Evaluation where the financial benefit resulting from

appliance scheduling is compared with the inconvenience that it causes, and a Rationality

Inconvenience Ratio where the customers rationality for rescheduling appliances is compared

with their discomfort at every time instance. Signal perturbation along with encoding and

decoding to quantify a privacy utility trade off region is used in [69]. A rate distortion

leakage trade off is found by proposing a general theoretical framework that brings most

current treatments of the privacy utility trade off into a single model, and the spectrum of

abstract privacy-utility choices is looked at and maximal points on the trade off curve are

found.

A battery is a potential tool in protecting smart meter privacy as it can move energy from

one time slot to another. A stochastic energy system of a house with a battery is proposed

in [76]. The battery is represented by a finite state model and used for information leakage

reduction. DR programs is proposed by using a battery for rate distortion and perturbation

[82].

Appliance scheduling and elastic demand allows users to move their appliance start times

around to hide their energy usage. An online control algorithm that determines the observed

load profile by solving an optimization problem with unobservable parameters is proposed

in [81], and the original load profiles cannot be recovered, therefore it is considered safe from

precise load change recover attacks. A Monte-Carlo simulation based approach is proposed

in [21] to jointly optimize the cost of electricity and privacy. A wallet-friendly privacy

protection approach is proposed in [46] using stochastic dynamic programming.

Several different papers have attempted to use PV or renewable energy sources in general

to help protect the users privacy [11, 34, 74, 45]. This is done by using solar and weather

forecasts along with the expected load profile of a household to schedule the demand

accordingly. In [11], PV panels are used alongside a battery demand to schedule appliances
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in order to minimize privacy infringements, two methods are designed, one which tries to

maximize the profits of the house by exploiting day ahead prices, elastic demand, and the

battery. The other method obfuscates the smart meter readings before sending them to

the utility company, while maintaining the validity of those values for billing purposes. A

stochastic alternative energy source is utilized in [34] instead of a battery for hiding the energy

consumption profile, the alternative energy source could be a PV system or another utility

provider. A combination of an alternative energy source, a battery, and an energy harvesting

device is used in [74] for increasing smart meter privacy. The system is presented as a finite

state model and shows a trade off between reducing information leakage and wasted energy

rate. Electrical routing through a combination of rechargeable batteries and alternate power

sources along with a power mixing algorithm is proposed in [45] to moderate the effects

of NILM algorithms, the protection level is evaluated by measuring relative entropy and

correlation.

An online control algorithm with low computational complexity that protects smart meter

data privacy along with reducing the cost of electricity is proposed in [80], which is achieved

by using energy storage devices along with elastic demand for appliance scheduling. A

dynamic programming framework is used with realistic battery constraints to protect smart

meter data privacy in a cost effective manner. There have been several works trying to

increase privacy by creating doubt in the data, and giving it less meaningful values by

adding noise or perturbing data between the sources [13, 69, 66, 83, 28]. Random noise

sampled from a uniform distribution is added to the meter data in [13], and the impact on

privacy and billing is investigated. Partial information hiding by introducing uncertainty

about individual values in a time series set by using noise addition perturbation is proposed

in [66], which makes averaging to attempt to recover the data useless as the uncertainty

cannot be eliminated. A BLH method is proposed in [83, 28]. In [83], differential privacy

is achieved by randomizing the BLH method which adaptively updates the algorithm based

on the context and constraints. Ref. [28] shows that a load based load hiding (LLH) can

achieve the same results as a BLH method by controlling a thermostatically controlled load,

i.e., water heater to add random noise in order to perturb the data.
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A third party escrow service, along with randomized time intervals for data collection

is proposed in [27] to keep track of attributable and anonymous load data profiles. A

neighborhood level aggregation privacy-enhancing design along with cryptographic methods

is suggested in [51] for smart meter data communication. An Artificial Neural Network

(ANN) using Kohonen Self Organizing Maps [26], along with cryptographic methods was

proposed in [64] to hide appliance usage.
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Chapter 3

Modeling Methodology

This chapter covers the model construction for the different problems: the fault localization

problem, and the power scheduling problem. These problems were selected to find a way to

solve by maximizing the utility while minimizing the privacy infringement on the customers

from the collected data.

3.1 Fault Localization

Fault localization here refers to finding a fault on a simple radial distribution system such

as in Fig. 3.1. As seen in the figure, if a fault were to occur on bus 11, it would cause a loss

of power for all the homes on buses 11-15, and likewise, a fault on bus 3 would cause a loss

of power for all the homes to the right of it, while keeping the power intact for the homes

on buses 1 and 2. Using this kind of simple radial distribution system, this section will find

a way to detect the location of a fault quickly without needing people to call in and report

their power out to their utility company, and it will do that in a way that will require the

least amount of data collection so it limits revealing other home energy use characteristics.

Current existing fault localization techniques for distribution systems do a good job of

finding the location of faults in a timely manner [47, 71, 79, 70]. However, these techniques are

not designed with privacy protection in mind, and in these systems, the utility has a constant

data stream coming from users, which as shown before can leak privacy information of the

users. From Table 2.3, it can be seen which privacy issue is affected by how often information
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Figure 3.1: Simple Radial Distribution System

is sampled, and it shows that for fault localization the more frequent the information is

coming in, the faster a fault can be detected. This system is designed to have a high fault

detection time while keeping the infringed privacy to a minimum. We will show how that is

accomplished based on the ultimate shape of the radial distribution system, along with the

number of houses in the system.

A widely accepted definition of privacy in the literature is based on having access to

information, where the more information is revealed, the less privacy the entity whose

information is revealed has [56, 52, 55]. The proposed fault localization system looks at

privacy in an implicit way, or a privacy-by-design method, where it tries to use the least

amount of information possible to detect a fault in the quickest time possible. Tt tries to

bridge the gap between the two different sides of Table 2.3, where it can achieve the utility of

outage detection and fault location, while infringing on the least amount of privacies listed on
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Figure 3.2: Radial Distribution System Chosen

the other side of the table. The idea here is to use alarm processing which uses set covering

to find the location of the fault when it occurs by sampling each home every Ts that will be

chosen to find the fault location quickly but not reveal privacy features of any home. If a

neighborhood had H homes, than there will be another variable that is determined according

to Equation 3.1

Th =
H

Ts
(3.1)

From Equation 3.1 Th is the frequency at which data is received into the fault localizer,

and the bigger H is, the higher that frequency, the faster a fault can be detected. Thus, a

fault on a radial distribution system with 25 homes can be detected faster than one with 15.
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Table 3.1: Data for Radial Distribution System shown in Fig. 3.2

FAULT LOCATION
M F A B C D E

Sum Order
T A B C D E A B C D E 12 23 12 23 12 23 12 23 12 23

H
O

U
S
E

S

A1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 7
A2 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 15 12
A3 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 14 15
B1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 17 3
B2 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 16 8
B3 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 15 13
C1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 18 1
C2 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 17 4
C3 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 16 9
D1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 18 2
D2 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 17 5
D3 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 16 10
E1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 17 6
E2 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 16 11
E3 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 15 14
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The radial distribution which the fault localization is designed for is shown in Figure 3.2.

The accompanying data with which can be used mathematically in the alarm processing

system is shown in Table 3.1. If a fault occurs at the transformer T all houses lose power,

and if a fault occurs at φFC then all the houses on feeder C lose their power, and so on.

The order of sampling of the houses is determined by taking the summation of all the rows

shown in Table 3.1 and then starting with the highest sum until it gets to the lowest sum

(if two have the same sum, any random order is taken) and then repeating the process after

all houses are sampled. The order is also shown in the table here.

minimize

z = cTx

w.r.t.

Aeqx = beq

0 ≤ x ≤ 1

x = integer

(3.2)

When a new data point arrives, the first consideration is whether the reading shows that

the house has power or no power. If it does have power, then the program continues running

normally and waiting for the next sample. If it shows no power, then the program runs a

linear program as shown in 3.2 where the A and b matrices from Equation 3.2 start increasing

in size, with each data point. The A matrix adds a new row depending on which house was

just sampled. From Table 3.1, if house A1 was sampled, then the first row of data in the

table is appended to the A matrix, and the b matrix gets appended by a 0 or 1 depending on

if the house sampled has power or not. This process keeps getting repeated until the fault is

located. The process is shown in the flowchart in Figure 3.3. The utility company will then

be able to dispatch repair crews. This process could happen very quickly, especially in the

more populated areas and utilities will no longer have to rely on people reporting outages

by calling them in. For alarm processing, there is no real value for the objective function to

minimize or maximize so it is not an important part of the linear program thus c = 1.
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Figure 3.3: Flowchart with Fault Localization Process

3.2 Power Scheduling

Power scheduling refers to solving the mixed integer linear program problem to schedule

appliances, solar power, and the battery to try and mask the power usage from the utility

by modifying the expected load profile so the data seen by utility is not useful for detecting

characteristics of the home while still being valid for retail billing. A widely accepted

definition of privacy in a smart meter setting is yet to be agreed upon, but an accepted

suggested definition when it comes to power scheduling is when it is not possible to distinguish

specific appliance loads from the total power consumption [45]. Using this perspective, a

very high degree of privacy can be achieved by keeping the load profile a constant flat value

as seen in [73]. However, this can be difficult to and inconvenient and not practically viable
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Figure 3.4: Average Load Profile

to keep a constant load profile due to real consumption patterns, realistic appliance, solar,

and battery parameters.

It is shown in [32] and [31] that using a more general and flexible target load profile,

and jointly minimizing the cost of energy along with the deviation between the smart meter

reading and the targeted load profile is an acceptable measure of privacy. It can also be seen

in [76, 74, 33] that a user’s energy consumption profile is defined as a randomly generated

time series data and the information leakage is measured by comparing that profile to the

average mutual information and the deviation from that average is defined as the information

leakage rate. Minimizing that mutual information leakage can be interpreted as a way of

improving privacy for smart meter users. Mutual information leakage, or deviation from a

defined average, has also been considered in the computational field, [57], and the computer

security field [19].

This model will achieve privacy by scheduling appliances, solar power, and a battery to

minimize the deviation from the average load profile shown in Figure 3.4, this notion of

privacy is proven to be and adequate measure of privacy and follows from [31, 32]. The

contribution of this thesis is designing the power scheduling technique which uses mixed
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integer linear programming to achieve this feature. The idea here is that the user will be

able to select the desired privacy vs. cost savings assuming a dynamic time of day pricing

model. If the user cares more about savings on their energy bill, they would schedule their

appliances to run at night, when the price of electricity is the cheapest, and if they cared

more about hiding their privacy, it would schedule the power in a way that would make the

load profile not reveal very much to the load serving entity that receives the smart meter

data.

The power scheduling problem is solved by formulating it as a mixed binary-integer linear

programming problem, the binary variables for each component is the on/off state in that

time period. Equation 3.3 shows how the problem will be broadly formulated. The detailed

problem formulation will be shown at the end of the section in Equation 3.13 after all the

components of the model are introduced.

min .cTx

w.r.t.

Aeqx = beq

Ax ≤ b

0 ≤ x ≤ 1

x = integer

(3.3)

3.2.1 Appliances

Appliance scheduling is a major part of the scheduling problem as they are the among the

largest power consumers in the household (washer, dryer, dishwasher, etc...) and the nature

of their usage allows shifting to later times. In addition, their use is generally required non

time essential, e.g., a dishwasher can be programmed to run at 2:00 AM instead of 6:00 PM

and help cut the cost of running it in half while helping to mask the privacy of its usage.

U = µ1, µ2, µ3...µ|U |

K = k1, k2, k3...k|K|
(3.4)
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Equation 3.4 shows that for every time slot appliance µi there exists a time slot k.

Equation 3.5 shows that variable tki refers to whether appliance µi is on or off at that time

period. Equation 3.6 ensures that once an appliance remains on throughout its scheduled

runtime and does not get scheduled randomly. Equation 3.7 shows that variable δ is used

as a binary variable to select the appliance starting time and whether the appliance is used

that day. Finally, 3.8 shows whether the appliance starts at a certain time or not as well as

ensuring that the appliance runtime is concurrent.

tki =

 1 if appliance µi is on at time slot k

0 otherwise
(3.5)

∑
k∈K

tki ≤M(1− δki )− di i ∈ U (3.6)

∑
k∈K

δki =

 1 if appliance µi is used that day

0 otherwise
i ∈ U (3.7)

δki =

 1 if appliance µi starts at time slot k

0 otherwise
(3.8)

3.2.2 Battery

The battery is an essential part of the scheduling problem, as it allows additional capacity

of moving energy from one time slot to another one without it being used. It can be used

both for preserving privacy as well as saving on costs by charging at night when energy is

cheap, or from the extra solar generation that goes unused can then being used during peak

expensive times. Equation 3.9 shows that the battery’s initial charge is half its capacity and

that at the end of the day, the amount charged and discharged ends up the same. Equation

3.10 shows that the minimum charge and discharge rate allowed in the model is to be more

than 0 and less than the charge/discharge rate β. Equation 3.11 ensures that while charging

and discharging throughout the day, the battery charge never gets below 0 or above it’s

capacity.
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∑
k∈K

B+ (k)−B− (k) =
Bc

2
(3.9)

0 ≤ B+ (k) ≤ β

0 ≤ B− (k) ≤ β
(3.10)

0 ≤
Bc/β∑
i=1

∑
B+ (k)−B− (k) ≤ Bc (3.11)

3.2.3 Solar

The solar is included to show that this kind of framework can easily be integrated with

renewable energy as well as energy storage. Equation 3.12 shows how the solar power for

the system is calculated.

P s (k) = sη × skw × sr (k) (3.12)

3.2.4 Complete Scheduling Model

Equation 3.13 shows how the final model is formulated, all the variable explanations can be

found in the nomenclature section of the document, this formulation will try to find the best

time to turn appliances on/off as well as charge and discharge the battery, and the solar

forecast based on solar radiance data to minimize the infringed upon privacy. Equation

?? shows how this function will be evaluated by taking the root mean square error and

comparing it to data that has not been run through the model.
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minimize

z =
∑
k∈K

{
(1− α)

(
CT
p (k)P (k)

)
+ (α)

∣∣P (k)− V̄ (k)
∣∣}

where

P (k) =
∑
k∈K

(∑
i∈U

(P i
a (k)) + Pb (k) +B+ (k)−B− (k)− Ps (k)

)
and

V̄ (k) = V + (k)− V − (k)

w.r.t.∑
k∈K

tki ≤M(1− δki )− di i ∈ U∑
k∈K

B+ (k)−B− (k) = Bc

2

0 ≤ B+ (k) ≤ β

0 ≤ B− (k) ≤ β

0 ≤
Bc/β∑
i=1

∑
k∈K

B+ (k)−B− (k) ≤ Bc

(3.13)
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Chapter 4

Results and Conclusions

This chapter shows the result of both frameworks with varying parameters. The results are

analyzed and appropriate conclusions are drawn, and a potential direction for future work

is outlined.

4.1 Fault Localization

The fault localization model was tested on two different radial distribution systems, system

1 and system 2 shown in Figure 4.1 and Figure 4.2 respectively, with the location of homes

shown on the busses denoted by a O and fault locations denoted by a red dot. The

accompanying data for the systems is given in Appendix B, in Table B.1 continued in Table

B.2, Table B.3 continued in Table B.4, respectively. Table 4.1 and Table 4.2 show the number

of iterations it takes on both systems for each fault to be found after testing the framework

for all possible fault locations.

42



Figure 4.1: Radial System 1 [22]

Figure 4.2: Radial System 2 [29]
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Table 4.1: Iterations Needed to Find Fault Location on System 1

Fault

Location

Iteration
s

Fault

Location

Iteration
s

Fault

Location

Iteration
s

Fault

Location

Iteration
s

1 1 8 7 15 12 22 19

2 2 9 9 16 18 23 24

3 3 10 11 17 21 24 23

4 4 11 10 18 17 25 25

5 6 12 14 19 15 26 27

6 5 13 13 20 22 27 26

7 8 14 16 21 20 28 28

Table 4.2: Iterations Needed to Find Fault Location on System 2

Fault

Location

Iteration
s

Fault

Location

Iteration
s

Fault

Location

Iteration
s

Fault

Location

Iteration
s

1 6 10 27 18 13 26 30

2 9 11 5 19 16 27 31

3 12 12 1 20 18 28 32

4 15 13 2 21 20 29 33

5 17 14 3 22 22 30 5

6 19 15 4 23 24 31 8

7 21 16 7 24 26 32 11

8 23 17 10 25 28 33 14

9 25
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Figure 4.3 and Figure 4.4 show for both systems the number of iterations it takes to find

each fault given how many possible faults affect each home.
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Figure 4.3: Number of Iterations Needed to Find Fault Based on How Many Possible Faults
Affect a House for System 1
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Figure 4.4: Number of Iterations Needed to Find Fault Based on How Many Possible Faults
Affect a House for System 2
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It can be seen from Figure 4.3 that the trend follows that the more possible faults affecting

a house, the more iterations it would take to find the fault on that house. In Figure 4.4, it

is seen that there are two increasing trends with a cutoff between them, as the overall shape

of the radial distribution system along with the number of houses in the system and the

number of possible faults affecting each house all have an affect on the number of iterations

it will take to locate a fault.

Table 4.3 shows the mean time to find a fault on the system given different sampling rates

in a home which is found using 3.1. An acceptable sampling period for both system 1 and

2 could be either 15 min or 30 min, these sampling rates provide adequate fault detection

time while keeping the users privacy intact and not revealing too much information about

the household. If a 15 min sampling time was chosen, the major appliances such as the

washer, dryer, dishwasher, could be detected, but with a 30 min sampling time, only the

HVAC and water heater would be detected, which would allow a third party observer to

make some inferences about the user but not as many inferences as opposed to a 1, 5, or

15 min sampling time would allow. The in home sampling time, which is divided by the

number of homes in the radial system is also a critical to how the sampling can be staggered

so as to decrease the time the system gets the samples. The more homes in a system, and

the lower sampling time in a home, the faster a fault can be located.

Table 4.3: Mean Fault Detection Time Given Different Sampling Rates

Sampling Rate
Mean Detection Time
System 1 System 2

1 min 31 sec 29 sec
5 min 2.6 min 2.5 min
15 min 7.7 min 7.4 min
30 min 15.5 min 14.7 min

1 hr 31.1 min 29.5 min
2 hr 62.1 min 59.2 min
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4.2 Power Scheduling

As shown in 3 the Power Scheduling framework will use appliances, solar energy, and a

battery to match the average power load, and minimize the deviation from that average in

order to better preserve privacy. The selected average load profile used is shown in Figure 3.4.

This data is taken from the Dynamic Simulation Tool in [44]. There will be three appliances

used and their parameters are outlined in Table 4.4. The solar and battery parameters

will be varied for different testing scenarios. The performance of this framework is tested

by taking the root mean square of the deviation from the average load profile as shown in

Equation 4.1.

RMS =

√
1

K

∑
k∈K

(
P (k)− V̄ (k)

)2
(4.1)

Table 4.4: Appliances Used in Testing Power Scheduling

Number Appliance Power Demand [watts] Duration [min]
1 Washer 800 40
2 Dryer 3100 90
3 Dishwasher 1250 120

Table 4.5 shows 14 different scenarios where the privacy index α, solar system size

Skw, battery capacity Bc, and battery charging/discharging rate β were varied to produced

different results, the RMS deviation calculated using Equation 4.1 is also shown for different

sampling times and the price of electricity is also shown for the different scenarios.

The Figures for the Power Scheduling framework test are included in Appendix A, for

each scenario, there are 5 figures: One that shows the smoothed power usage compared to

the average load profile showing when the appliances get scheduled, and four that show the

power usage compared to the average load profile with different sampling rates of (5 min, 15

min, 30 min, 60 min).
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Table 4.5: RMS Results for Different Sampling Rates Under Varying System Parameters

Scenario α Skw [kW] Bc [kW] β [kW/hr]
Sampling Time RMS

Price of Electricity [$]
5 min 15 min 30 min 60 min 120 min

1 1 5 5 0.5 509.39 136.79 50.77 17.43 6.91 4.29
2 0 5 5 0.5 526.52 142.65 56.77 20.44 9.92 2.89
3 0.15 5 5 0.5 508.81 136.32 50.78 17.27 6.80 4.22
4 1 0 0 0 502.17 134.19 49.92 17.19 6.92 4.28
5 0 0 0 0 490.35 127.06 47.74 15.61 7.37 3.50
6 1 0 5 0.5 509.39 136.79 50.77 17.43 6.91 4.29
7 1 0 10 1 536.01 145.47 52.90 18.13 6.91 4.29
8 1 0 15 2.5 673.55 179.56 66.53 20.09 7.78 4.33
9 1 0 50 5 1109.00 320.91 94.89 32.89 6.91 4.33
10 0 5 5 1 525.05 137.99 49.26 17.14 7.09 3.17
11 0 10 5 1 549.93 148.50 56.65 22.07 9.91 2.53
12 0 15 5 1 584.43 162.49 65.76 27.61 12.89 1.89
13 1 25 100 10 2051.37 600.68 166.95 58.41 6.91 4.38
14 0 25 100 10 2096.63 616.12 175.47 67.46 19.85 0.24
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Figure 4.5: Solar Utilization for Scenario 1

From looking at Table 4.5, along with the relevant Figures relating to scenario 1 and 2 in

Appendix A, the RMS value for the deviation from the average load profile was lower when

optimizing for privacy vs. cost savings, and according to the privacy metric used for this

framework as mentioned in [31, 32], it does in fact increase the privacy of the user. Figure

4.5, Figure 4.6, and Figure 4.7 show the solar utilization for scenarios 1, 2, and 3 respectively,

it can be seen that when optimizing for privacy in scenario 1 Figure 4.5, the model may not

even use any of the available solar energy. And when optimizing for cost in scenario 2, Figure

4.6 it will use all the available solar energy, and when choosing an in-between value of [0,

1] for the privacy index in scenario 3, Figure 4.7, the model will utilize some of the solar

energy.
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Figure 4.6: Solar Utilization for Scenario 2

Figure 4.7: Solar Utilization for Scenario 3
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4.3 Future Work

For the fault localization framework, future work could include expanding the table data for

a radial system to be able to detect two faults at the same time, along with including an

emergency model that would change how the samples are taken based on previous readings.

The scheduling system could be expanded to include HVAC and water heater data by using

deep learning techniques and using historical data for weather, time of day, day of week, etc.

for each home and factoring it into the scheduling problem.
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A Result Figures

A.1 Power Scheduling Scenario 1
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Figure A.1: Scenario 1 Appliance Scheduling
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Figure A.2: Scenario 1 5 min. Sampling
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Figure A.3: Scenario 1 15 min. Sampling
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Figure A.4: Scenario 1 30 min. Sampling
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Figure A.5: Scenario 1 60 min. Sampling
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A.2 Power Scheduling Scenario 2
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Figure A.6: Scenario 2 Appliance Scheduling
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Figure A.7: Scenario 2 5 min. Sampling
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Figure A.8: Scenario 2 15 min. Sampling
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Figure A.9: Scenario 2 30 min. Sampling

68



00:00 05:00 10:00 15:00 20:00

Time of Day

0

500

1000

1500

2000

2500

3000

3500

4000

P
o

w
e

r 
D

e
m

a
n

d
 [

W
a

tt
s
]

60 Min Sampling Rate

Average Power Demand

Total Power Usage

Figure A.10: Scenario 2 60 min. Sampling

A.3 Power Scheduling Scenario 3
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Figure A.11: Scenario 3 Appliance Scheduling
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Figure A.12: Scenario 3 5 min. Sampling
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Figure A.13: Scenario 3 15 min. Sampling
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Figure A.14: Scenario 3 30 min. Sampling
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Figure A.15: Scenario 3 60 min. Sampling
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A.4 Power Scheduling Scenario 4
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Figure A.16: Scenario 4 Appliance Scheduling

00:00 05:00 10:00 15:00 20:00

Time of Day

0

2000

4000

6000

8000

10000

12000

P
o
w

e
r 

D
e
m

a
n
d
 [
W

a
tt
s
]

5 Min Sampling Rate

Average Power Demand

DR Scheduling

Figure A.17: Scenario 4 5 min. Sampling
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Figure A.18: Scenario 4 15 min. Sampling
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Figure A.19: Scenario 4 30 min. Sampling
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Figure A.20: Scenario 4 60 min. Sampling

A.5 Power Scheduling Scenario 5

00:00 05:00 10:00 15:00 20:00

Time of Day

0

500

1000

1500

2000

2500

3000

3500

P
o

w
e

r 
D

e
m

a
n

d
 [

W
a

tt
s
]

Average Power Demand

DR Scheduling

DishWasher

Washer

Dryer

Figure A.21: Scenario 5 Appliance Scheduling
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Figure A.22: Scenario 5 5 min. Sampling
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Figure A.23: Scenario 5 15 min. Sampling
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Figure A.24: Scenario 5 30 min. Sampling
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Figure A.25: Scenario 5 60 min. Sampling
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A.6 Power Scheduling Scenario 6
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Figure A.26: Scenario 6 Appliance Scheduling
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Figure A.27: Scenario 6 5 min. Sampling
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Figure A.28: Scenario 6 15 min. Sampling
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Figure A.29: Scenario 6 30 min. Sampling
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Figure A.30: Scenario 6 60 min. Sampling

A.7 Power Scheduling Scenario 7
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Figure A.31: Scenario 7 Appliance Scheduling
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Figure A.32: Scenario 7 5 min. Sampling
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Figure A.33: Scenario 7 15 min. Sampling
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Figure A.34: Scenario 7 30 min. Sampling
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Figure A.35: Scenario 7 60 min. Sampling
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A.8 Power Scheduling Scenario 8
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Figure A.36: Scenario 8 Appliance Scheduling
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Figure A.37: Scenario 8 5 min. Sampling
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Figure A.38: Scenario 8 15 min. Sampling
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Figure A.39: Scenario 8 30 min. Sampling

83



00:00 05:00 10:00 15:00 20:00

Time of Day

-1000

0

1000

2000

3000

4000

5000

6000

P
o
w

e
r 

D
e
m

a
n
d
 [
W

a
tt
s
]

60 Min Sampling Rate

Average Power Demand

Total Power Usage

Figure A.40: Scenario 8 60 min. Sampling

A.9 Power Scheduling Scenario 9
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Figure A.41: Scenario 9 Appliance Scheduling
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Figure A.42: Scenario 9 5 min. Sampling
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Figure A.43: Scenario 9 15 min. Sampling
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Figure A.44: Scenario 9 30 min. Sampling
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Figure A.45: Scenario 9 60 min. Sampling
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A.10 Power Scheduling Scenario 10
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Figure A.46: Scenario 10 Appliance Scheduling
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Figure A.47: Scenario 10 5 min. Sampling
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Figure A.48: Scenario 10 15 min. Sampling
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Figure A.49: Scenario 10 30 min. Sampling
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Figure A.50: Scenario 10 60 min. Sampling

A.11 Power Scheduling Scenario 11
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Figure A.51: Scenario 11 Appliance Scheduling
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Figure A.52: Scenario 11 5 min. Sampling
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Figure A.53: Scenario 11 15 min. Sampling

90



00:00 05:00 10:00 15:00 20:00

Time of Day

-2000

-1000

0

1000

2000

3000

4000

5000

P
o
w

e
r 

D
e
m

a
n
d
 [
W

a
tt
s
]

30 Min Sampling Rate

Average Power Demand

Total Power Usage

Figure A.54: Scenario 11 30 min. Sampling
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Figure A.55: Scenario 11 60 min. Sampling
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A.12 Power Scheduling Scenario 12
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Figure A.56: Scenario 12 Appliance Scheduling
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Figure A.57: Scenario 12 5 min. Sampling
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Figure A.58: Scenario 12 15 min. Sampling
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Figure A.59: Scenario 12 30 min. Sampling
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Figure A.60: Scenario 12 60 min. Sampling

A.13 Power Scheduling Scenario 13
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Figure A.61: Scenario 13 Appliance Scheduling
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Figure A.62: Scenario 13 5 min. Sampling
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Figure A.63: Scenario 13 15 min. Sampling
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Figure A.64: Scenario 13 30 min. Sampling
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Figure A.65: Scenario 13 60 min. Sampling
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A.14 Power Scheduling Scenario 14
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Figure A.66: Scenario 14 Appliance Scheduling
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Figure A.67: Scenario 14 5 min. Sampling
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Figure A.68: Scenario 14 15 min. Sampling
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Figure A.69: Scenario 14 30 min. Sampling
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Figure A.70: Scenario 14 60 min. Sampling
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Table B.1: Data for Radial Distribution System shown in Fig. 4.1

Fault Location
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

H
O

U
S
E

S

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
16 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
18 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1
19 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1
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Table B.2: Cont. Data for Radial Distribution System shown in Fig. 4.1

Fault Location
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

H
O

U
S
E

S

21 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1
22 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
24 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1
25 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1
26 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0
27 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
28 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1
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Table B.3: Data for Radial Distribution System shown in Fig. 4.2

Fault Location
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

H
O

U
S
E

S

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
20 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
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Table B.4: Cont. Data for Radial Distribution System shown in Fig. 4.2

Fault Location
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

H
O

U
S
E

S

21 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
22 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
23 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
24 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
26 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
29 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

104104104



Vita

Albraa Bahour was born in Nashville, TN. He received a Bachelor of Science degree in

Electrical Engineering from Tennessee State University in 2015. In 2016, he began graduate

studies at the University of Tennessee toward a Master of Science in Electrical Engineering

with a focus on Power Systems. His interests include smart grids, demand response, power

system stability, power system planning, energy economics, and grid optimization.

105


	Data Analytics for Privacy in Smart Grids
	Recommended Citation

	tmp.1543872582.pdf.GEZON

