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ABSTRACT 

In this work, a series of Reynolds averaged Navier-Stokes (RANS)-based computational 

fluid dynamics (CFD) simulations are presented to investigate the upstream region of a laminar-

turbulent transitional shockwave boundary layer interaction. RANS and delayed detached eddy 

simulation (DDES) methods are employed using the Spalart-Allmaras (SA) turbulence model in 

conjunction with a quadratic constitutive relation (QCR), with and without the amplification 

factor transport transition model. Neither fully turbulent (SA-QCR) nor transitional (SA-QCR-

AFT) RANS simulations met machine-zero-level because the simulations displayed unsteadiness 

inherit to the solution. Initial DDES simulations displayed the oscillatory behavior present in 

experimental data but, upon further inspection, found disturbances propagating from an upstream 

overset boundary. DDES simulations using a modified grid system did not exhibit any oscillatory 

behavior but provided further detail within the separation region. All the CFD simulations 

showed good agreement with experimental data, but SA-QCR cases did not predict an upstream-

influence shock. The RANS simulations under-predicted the UI shock location while the DDES 

simulations over-predicted the separation shock and triple-point height locations in comparison 

to experimental data. A single large vortex in the upstream region is captured by the RANS 

simulations while two vortices are present in the DDES simulations. Analysis of the flowfield 

consists of velocity profiles, surface pressure measurements, and surface skin frictions to locate 

regions of separation.  
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NOMENCLATURE 

Uppercase 

�⃑� , 𝐹 , 𝐺   - vectors of inviscid and viscous fluxes 

M  - Mach number 

Ncrit  - critical amplification factor 

Oik  - normalized rotation tensor 

P  - pressure 

Re  - Reynolds number 

Sij  - mean strain-rate tensor 

T  - temperature 

Ui  - mean velocity 

∀  - transformation matrix 

X1  - distance from refinement mesh leading edge to plate leading edge 

X2  - distance from refinement mesh trailing edge to plate leading edge 

 

Lowercase 

d  - distance to closest surface 

dc  - cylinder diameter 

e  - energy per unit mass 

h  - cylinder height 

htp  - triple point height 

�̃�  - amplification factor 

qi  - heat flux 

𝑞   - vector of conserved flow variables 

t  - time 

u, v, w  - Cartesian velocity components 
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𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅  - Reynolds stress tensor 

y+  - non-dimensional wall distance 

 

Greek 

𝛼  - angle of attack 

Δ  - maximum spacing of a grid cell 

𝜆𝑠,1  - separation shock standoff distance 

𝜆𝑠,2  - reattachment shock standoff distance 

𝜇   - molecular viscosity 

𝜇𝑡  - turbulent eddy viscosity 

𝜈  - kinematic viscosity 

𝜉, 𝜂, 𝜁  - generalized coordinates 

𝜌  - density 

𝜏𝑖𝑗  - turbulent stresses 

𝜔  - vorticity 

Ω  - vorticity magnitude 

 

Subscripts 

  - freestream condition 

0  - stagnation condition 

i  - inviscid 

v  - viscous 
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CHAPTER 1  

INTRODUCTION 

Shockwave boundary layer interactions (SBLI) are of growing interest in the high-speed 

flow research community. As advances in technology continue, the development of aerospace 

vehicles emphasizes the precision and accuracy of flow parameter predictions. In development of 

high-speed aerospace vehicles, SBLIs are a significant source of uncertainty. SBLIs pose a threat 

of early flow separation, acoustic loading and thermal loading, causing a potential for structural 

fatigue, engine unstart, and thermal heating.  

Due to the presenting challenges, a wealth of research since the 1950’s has been conducted 

on SBLIs [1-7]. Each study can be identified by the state of the incoming boundary layer and the 

shock generator geometry. The state of the incoming boundary layer can be laminar, turbulent, or 

transitional, while the shock generator geometry can be two-dimensional, axisymmetric, or three-

dimensional. Shockwave laminar boundary layer interactions (SLBLI) are accurately predicted 

computationally and experimentally [6]. Shockwave turbulent boundary layer interactions 

(STBLI) are inherently unsteady, posing technical challenges. A majority of the experimental 

and computational efforts for SBLIs has been for STBLIs, producing a wealth of knowledge and 

understanding behind the phenomena observed. Transitional shockwave boundary layer 

interactions (XSBLI) have seen a comparative lack of experimental studies. XSBLIs add 

additional complexities and uncertainties to the analysis and prediction of flow about an 

aerospace vehicle due to a transitional boundary layer. Although many efforts have been made, 

accurately predicting the instabilities in a high-speed transitioning boundary layer is still 

incomplete [8-11]. XSBLIs having a potential to occur on all high-speed vehicles and have been 

shown to be the source of maximum heat flux [12] furthering the need to accurately predict and 

account for the effects they attribute.   

In recent years, the improvement of computational fluid dynamics (CFD) capabilities has 

shown better agreement with experimental efforts in all flow regimes. Traditionally in CFD 
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simulations, scale-resolving methods such as large-eddy simulation (LES) and direct numerical 

simulation (DNS) were required to accurately predict SBLIs. As a result, simulations that solve 

for Reynolds-averaged Navier-Stokes (RANS) equations are traditionally regarded as being 

inadequate for the prediction of SBLIs. However, there have been recent advances in RANS-

based modeling with a focus on transition modeling. Transition modeling has significantly 

increased the predictive capabilities of RANS-based modeling in subsonic flows and has recently 

been altered to accommodate high-speed flows [13-16]. Simulations that solve the RANS 

equations are appealing due to their relatively low computational expenses in comparison to 

higher fidelity methods such as LES and DNS. Several computational studies have been 

performed on SLBLIs and STBLIs, but like experimental efforts, few computational studies have 

been conducted for XSBLIs.  

1.1 Goals and Research Approach 

The primary goal of the current study is to provide further understanding for a standing 

cylinder on a flat plate XSBLI. The study works to determine the limits and explore the 

capabilities of RANS-based modeling in predicting XSBLI phenomena, which complements the 

experimental efforts of Combs et al. [17] and Lash et al. [18-20] to study XSBLI phenomena 

generated by a standing cylinder on a flat plate. The experimental reference case [18-20] is 

simulated with the usage of a NASA developed and distributed CFD solver called OVERFLOW 

[21] using RANS and Delayed Detached Eddy Simulation (DDES) methods. All cases are 

simulated with the Spalart-Allmaras (SA) turbulence model in conjunction with the quadratic 

constitutive relation (QCR).  Each case was also simulated with and without the amplification 

factor transport (AFT) transition model. Simulations implementing the SA turbulence model are 

identified as turbulent interactions while the simulations applying SA-AFT model are identified 

as transitional interactions. 

 

In summary, the objectives of this thesis are as follows: 

• Determine to what extent RANS-based modeling can predict XSBLI flow phenomena as 

compared to experimental data 
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• Demonstrate the effectiveness of transition modeling for complex high-speed flows 

• Analyze possible origins of the inherent unsteady behavior in XSBLIs 
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CHAPTER 2  

LITERATURE REVIEW 

Aforementioned in Chapter 1, various studies performed for SBLIs can be identified by the 

geometry of the shock generator and the state of the boundary layer. An overview of recent work 

is presented for XSBLI characterized by the geometry of a shock generator. The geometry of a 

shock generator can be categorized as either two-dimensional, axisymmetric, or three-

dimensional configurations. Two-dimensional configurations consist of impinging shocks and 

compression ramps. Axisymmetric configurations are comprised of cylinder flares or double 

cylinders. Three-dimensional configurations consist of standing cylinders, blunt fins, and swept 

ramps. Common configurations for SBLI studies [4] are illustrated in Figure 2.1. First, recent 

efforts in two-dimensional configurations are discussed followed by axisymmetric and three-

dimensional geometries. 

 

 

 

Figure 2.1 Configurations for common SBLI studies (From Ref. [4]). 
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2.1 Two-Dimensional Configurations 

Two-dimensional configurations offer a simplified interaction case for XSBLIs. Typically, 

these configurations are more straightforward to conduct and analyze. Two-dimensional 

configurations are considered to be independent from the shock generator geometry, allowing for 

a freedom of design for test configurations [22]. Although far from the realistic three-

dimensional XSBLI, two-dimensional configurations provide a basis for experimental and 

computational studies. 

2.1.1 Impinging Shock 

Impinging shocks can be present in supersonic inlets or be the product of a shock generated 

by any object near a surface [1]. A schematic of the flowfield for an impinging shock incident is 

illustrated in Figure 2.2. An impinging shock causes the boundary layer to separate, triggering 

the development of a separation shock from a series of compression waves. Above the separation 

region, expansion waves turn the flow back towards the surface, which are then followed by a 

series of compression waves that guide the flow parallel to the surface. The second series of 

compression waves combine to form a reattachment shock. 

 

 

 

 

Figure 2.2 Schematic of impinging shock flowfield structure (From Ref. [1]). Flow is from left to right. 
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Many experimental efforts involving impinging shock configurations attempt to gain a 

further understanding of heat flux properties (Stanton number) for re-entry vehicles [22-25]. The 

Stanton number is used to express the relationship between the wall shear force and the total heat 

transfer at the wall and is defined as  

 

 

 
(2.1) 

 

where h is the convection heat transfer coefficient and cp is the specific heat of the fluid.  Figure 

2.3 displays the measured Stanton numbers in Mach 6 flow from Willems et al. [25]. As 

observed, the XSBLI Stanton number, denoted by the red dotted line, exhibits an initial increase 

before reaching a maximum value. Additionally, several computational efforts [23, 26] have 

shown good agreement with experimental heat flux behavior as well as provide further detail on 

           

Figure 2.3 Measured Stanton number (From Ref. [25]). 
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other flow parameters. Figure 2.4 displays DNS computed skin friction coefficients at various 

locations. The computed skin friction coefficient drops below a laminar interaction value before 

exhibiting a strong gradient and peaking above a turbulent interaction. Figure 2.3 plots the LES 

computed wall pressures. Note that the initial growth in computed surface pressures observed in 

Figure 2.5 exhibits a similar structure observed in the measured Stanton numbers of Figure 2.3 

by the initial rise before the strong gradient. As previously stated, impinging shock 

configurations are two-dimensional simplifications of real-world three-dimensional boundary 

layers, but they provide a basis for which high fidelity simulation methods, such as DNS and 

LES, become possible. 

 

 

 

           

Figure 2.4 DNS computed skin friction coefficient (From Ref. [23]). 
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2.2 Axisymmetric Configurations 

Axisymmetric configurations provide a reduced dimensionality mean flow while mitigating 

contamination from wind tunnel wall effects. These configurations do not guarantee 

axisymmetric flow but have a greater chance of eliminating other sources of flow contamination 

such as spanwise effects [27]. Axisymmetric configurations provide more realistic geometries 

than two-dimensional configurations and are actually present on some aerospace vehicles. 

However, axisymmetric configurations do not always develop the three-dimensional boundary 

layers displayed in real-world aerospace vehicles. 

2.2.1 Cylinder Flair 

Cylinder flairs resemble the typical geometries found on rockets and reentry vehicles. A 

schematic of the flowfield for a cylinder flair is illustrated in Figure 2.6. The blunt body causes a 

bow shock to form upstream of the model. The region of interest occurs downstream of the bow 

shock where a separation shock is formed by an axisymmetric compression ramp (flair). Another 

 

Figure 2.5 LES computed wall pressure (From Ref. [26]). 
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shock forms at the reattachment point due to the change in slope of the geometry [28]. This 

reattachment point produces the largest peak heat transfer in the flowfield. The state of the 

incoming boundary layer affects the structure of the separation region [28].  

 

 

 

With heat transfer being of primary concern when designing re-entry vehicles, many 

cylinder flair configurations focus to understand the heat transfer behavior within a transitional 

boundary layer. A series of experiments conducted by Vandomme et al. [29], Bur et al. [30], and 

Benay et al. [27] of the ONERA program found that natural transition of the boundary layer 

resulted in a higher wall heat flux than a tripped boundary layer, thus recommending forcing 

transition to obtain a turbulent interaction. Additionally, the natural transition wall pressures, 

displayed in Figure 2.7, resembled a combination of the measurements seen by Estruch-Samper 

et al. [31] in separate laminar and turbulent interactions of Figure 2.8. The tripped boundary 

layer showed better agreement with turbulent interactions.  

 

 

Figure 2.6 Schematic of cylinder flair flowfield (From Ref. [28]). Flow is from left to right. 
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Figure 2.7 Wall pressure measurements (From Ref. [29]). 

 

Figure 2.8 Wall pressure measurements for a laminar (blue) and turbulent (red) interaction (From Ref. [31]). 
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2.3 Three-Dimensional Configurations 

2.3.1 Standing Cylinder 

Standing cylinders can represent any blunt object on aerospace vehicles protruding from the 

surface. A schematic of the flowfield for a standing cylinder configuration is illustrated in Figure 

2.9. The plate leading-edge forms an inviscid two-dimensional oblique shock. Blunt body flow 

forms a region of separation, denoted as the separation bubble, upstream of the standing cylinder, 

forming a separation shock. Flow reattachment further downstream forms a shock, identified as a 

reattachment (trailing) shock, which combines with the separation shock to form a bow shock 

upstream of the cylinder. As the boundary layer goes through laminar-turbulent transition, an 

upstream influence (UI) shock radiates from the separation (forward) shock that have only been 

observed for a transitional boundary layer [18]. 

 

 

 

Due to the three-dimensionality of the cylinder-induced XSBLI, the typical regions of 

interest have been the centerline plane upstream of the cylinder with additional flow diagnostic 

techniques incorporated on the upstream spanwise surface. The experimental efforts of Lash et 

al. [18] and Murphree et al. [32] highlighting the regions of interest are displayed in Figure 2.10 

 

Figure 2.9 Schematic of standing cylinder flowfield (From Ref. [18]). Flow is from left to right. 
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and Figure 2.11. In a transitional boundary layer, the SBLI phenomena resembles a laminar 

interaction towards the centerline plane and a turbulent interaction in the outward spanwise 

direction. Additionally, the computational studies of Lindorfer et al. [33] observed that XSBLIs 

initially resemble laminar interactions before exhibiting turbulent interactions along the 

centerline streamwise plane. 

Several flow diagnostics, such has Schlieren imaging and pressure sensitive paint (PSP), 

have been employed to analyze XSBLI phenomena. The separation shock of a cylinder-induced 

XSBLI exhibits unsteady behaviors as demonstrated in Figure 2.12 through Schlieren imaging. 

As seen through all experimental efforts in XSBLI, a pressure-rise can be an indication of a 

shock as shown by Dolling and Bogdonoff [34] in Figure 2.13. Since pressure-rise is shown 

regardless of the test configuration, computational and experimental behaviors of any 

configuration can be compared. 

 

 

 

  

Figure 2.10 XSBLI instantaneous Schlieren image (From Ref. [18]). Flow is from left to right. 
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(a)                                          (b)                                          (c)  

Figure 2.11 Kerosene-lampblack surface streakline visualization (a) turbulent (b) transitional (c) laminar 

boundary layer interactions (From Ref. [32]). Flow is from top to bottom. 

 

Figure 2.12 Time-accurate measurement of separation shock location upstream of cylinder-induced XSBLI 

(From Ref. [18]). 
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Figure 2.13 Centerline surface pressure measurements (From Ref. [34]). 
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2.4 Experimental Reference 

The experimental reference used for simulating XSBLIs is a standing cylinder mounted on a 

flat plate tested in the Mach 2, low-enthalpy, blowdown wind tunnel at the University of 

Tennessee Space Institute described in References [17-20]. The wind tunnel features a test 

section with a constant cross section of 203 mm x 203 mm (8” x 8”). The following inlet 

conditions are provided:  

• 𝑀∞ = 2.01 

• 𝑅𝑒 = 762,000 per inch 

• 𝑇0 = 513 R 

• 𝑃0 = 30.5 psi 

2.4.1 Model Geometry 

The experiments conducted use a 0.125”-diameter (dc), 0.500”-tall (h) cylinder model 

mounted to a flat plate in the wind tunnel. The strut-mounted flat plate measures 203 mm x 182 

mm (7.99” x 7.17”) and is inclined at a negative angle of attack of -6.3-degree to reduce the 

potential for leading edge separation. The plate features a sharp leading-edge angle of 10-

degrees. A CAD representation of the standing cylinder mounted to the flat plate is illustrated by 

Figure 2.14. 

 

 

 

 

Figure 2.14 CAD representation of the flat plate and cylinder geometry (From Ref. [18]). 
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2.4.2 Experimental Measurement Techniques 

Various flow visualization diagnostics were executed and provided a wealth of information 

about the shock structure observed in the experiments. XSBLI cases were conducted with the 

cylinder located 6-8 diameters downstream of the plate leading edge. High-speed Schlieren 

imaging [18-20], oil flow visualization [18, 19], pressure sensitive paint (PSP) [19], and particle 

image velocimetry (PIV) [17] techniques provided an analysis of the flowfield. 

Schlieren imaging provides a qualitative flow visualization and was integrated to obtain 

time-resolved shock location measurements. The flow phenomena of XSBLIs typically visible in 

a Schlieren image analysis are provided in Figure 2.15. Temporal variations of the separation 

(forward) shock, reattachment (trailing) shock, and upstream influence were analyzed. Surface 

oil flow visualizations offer additional qualitative results by displaying the mean characteristics 

of the flow providing a direct comparison to the separation distances observed by Schlieren 

imaging. PIV identifies the prominent separation regions upstream of the standing cylinder.  

The computational simulations of this work were primarily compared to the Schlieren 

imaging of Lash et al. [18-20]. Thus, the parameters of interest are the location of the separation 

(𝜆𝑠,1) and reattachment shocks (𝜆𝑠,2), the triple point height (htp), and the upstream influence (UI) 

shock location. 
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Figure 2.15 Instantaneous Schlieren image of XSBLI phenomena features of interest (From Ref. [18]). Flow is 

from left to right. 
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CHAPTER 3  

METHODOLOGY 

3.1 Governing Equations 

OVERFLOW 2.2 [21] solves for the Navier-Stokes equations in generalized coordinates 

which Pulliam and Steger [35] write as  

 

 

 
(3.1) 

 

The vector of conserved variables can be written as 

 

 

 

(3.2) 

 

where 𝜌 is the density, u, v, and w, are velocities in the x, y, and z directions, and e is the total 

energy. J-1 is a transformation matrix converting the conserved variables from Cartesian to 

generalized coordinates. Inviscid flux vectors are defined in Cartesian coordinates as follows  

 

 

 

(3.3) 
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where p is the pressure and U, V, and W are contravariant velocities are 

 

 

 

(3.4) 

 

The viscous flux vectors are written as 

 

 

 

(3.5) 

 

and 

 

 

(3.6) 
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where ij are the turbulent shear stresses,  is the ratio of specific heats,  is the coefficient of 

thermal conductivity, and Pr is the Prandtl number. The coordinate transformations in arbitrary 

curvilinear space are given by 

 

 

 

(3.7) 

 

and  

 

 
 (3.8) 

 

3.2 Grid Generation 

The generation of the grid system was performed using Chimara Grid Tools v2.1 [36]. The 

flat plate is defined as being 0.25” thick with a 10-degree knife-edge which matches the 

experimental reference. Coarse and fine grid systems are used for simulations with the latter 

being a modified version of the initial grid system, correcting for initial observed disturbances. 

Each piece of geometry has its own grid system connected through overset connectivity 

illustrated in Figure 3.1: tunnel, flat plate, refinement region, cylinder, and cylinder patch. The 

cylinder patch eliminates a singularity point on top of the cylinder. 

The initial grid system totals 14.9 million grid points amongst the five meshes. The cylinder 

features 201 axisymmetric points along the circumference with 95 axial points and 45 wall-

normal points. The cylinder patch on top of the cylinder is a 65x65x51 overset grid patch 

matching the spacing constraints of the cylinder. A refinement mesh was placed around the 

cylinder to capture XSBLI phenomena. The 0.5”-wide refinement mesh features 0.005”x0.005” 

spacing in the streamwise and spanwise directions. The wall spacing for all viscous walls is 
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1.8x10-5 inches corresponding to a y+ ≈ 2/3. In the refinement region, the wall spacing grows 

geometrically until reaching 0.005”, above which the spacing is isotropic. The flat plate and 

tunnel feature a spanwise spacing of 0.01” at the centerline and geometrically grow to 0.1” at the 

outward edge. The flat plate and tunnel meshes are each 2” wide, yielding a narrower test section 

than the experiment (8”). Although narrower than the experiment, the grid was designed so that 

the reflected shocks are downstream while providing computational savings. The centerline 

plane and surface mesh of the initial grid system are displayed in Figure 3.2. 

The modified grid system totals 28.0 million grid points with the primary modification 

implemented on the refinement mesh. The refinement mesh was essentially moved further 

upstream with the trailing-edge positioned closer to the cylinder and leading-edge nearly flush 

with the flat plate leading-edge to fully capture the shock structure. The trailing-edge positioning 

was determined from the sonic line downstream of the cylinder obtained by the initial grid 

system’s simulation displayed in Figure 3.3. Additionally, the refinement mesh was expanded to 

1.6” in the spanwise direction to capture more of the separation shock. The isotropic region was 

widened to 1” in the spanwise direction with the spacing geometrically growing out to 1.6” wide. 

Lastly, the refinement mesh was tended in the wall-normal direction to match the wall-normal 

height of the flat plate mesh. Additional grid points in the wall-normal direction were placed near 

the wall to provide a smoother transition from the wall spacing to the specified 0.005” spacing of 

the refinement mesh. The next modification was implemented on the cylinder patch to match the 

height of the cylinder mesh in the wall-normal direction. Figure 3.4 displays the centerline plane 

and surface mesh of the modified grid system. Table 3.1 compares the refinement block’s 

dimensions and spacing of both grid systems. 𝑋1 represents the distance between the plate and 

refinement leading-edges while 𝑋2 represents the distance from the plate leading-edge to the 

refinement trailing-edge. 
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Figure 3.1 Meshes in grid system: tunnel (white), flat plate (green), refinement region (blue), cylinder (pink), 

and cylinder patch (red). 
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(a) 

 

 

(b) 

Figure 3.2 Initial grid system (a) mid-span plane of the grid system after hole cutting, (b) cylinder surface and 

refinement region. 
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Table 3.1 Comparison of the refinement blocks. 

 Initial Grid System Modified Grid System 

Dimensions 401 x 101 x 187 343 x 241 x 251 

Width (in) 0.5 1.6 

X1 (in) 0.50 0.04 

X2 (in) 2.50 1.75 

 

 

  

 

Figure 3.3 Subsonic Mach contours and specified sonic line for grid refinement. Flow is from left to right. 
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(a) 

 

 

(b) 

Figure 3.4 Modified grid system (a) mid-span plane of the grid system after hole cutting, (b) cylinder surface and 

refinement region. 
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3.2.1 Overset Connectivity 

Overset connectivity was developed using OVERFLOW’s internal routine called domain 

connectivity function (DCF) with XRAY hole cutters [37] that were defined using GENX, a 

domain connectivity pre-processor within Chimera Grid Tools. XDELTA definitions, which are 

the offset of the hole from the surface defined through XRAY hole cutters, were chosen to 

ensure sufficient overlap with zero orphan points. Three holes were created as is evident in 

Figure 3.6a. Holes were cut from the tunnel, flat plate, and refinement mesh to allow 

connectivity amongst all five meshes. The primary alteration in the modified grid system 

expanded the hole containing the refinement mesh to capture more of shock system on a single 

mesh and minimize the influence of overset boundaries. As seen by differences in Figure 3.4a 

and Figure 3.5a, the hole was additionally expanded in the wall-normal direction. The hole 

generated in the each of the initial grid system’s mesh (tunnel, flat plate, and refinement mesh) 

had an XDELTA value of 0.5”, 0.02”, and 0.001” respectively. The modified grid system held 

the same XDELTA values with the exception of 0.01” for the flat plate mesh. The angle of attack 

of the model geometry and position of the cylinder were defined using the transformation 

features available in OVERFLOW. 

3.2.2 Boundary Conditions 

The flat plate and cylinder surfaces are specified as viscous (no-slip), adiabatic walls. As 

previously mentioned, all viscous walls feature a wall spacing of 1.8x10-5 inches. All the test-

section walls of the tunnel are specified as inviscid (slip) walls. The tunnel inlet conditions are 

specified with a Mach number of 2.01, Reynolds number of 762,000 per inch, and a static 

temperature of 283.7 R. For numerical purposes, startup iterations were performed with a 

subsonic tunnel inlet Mach number of 0.8 before applying the supersonic condition. The outlet 

conditions of the tunnel are based on Riemann invariants of the inlet flow. 

3.3 Numerical Formulation 

OVERFLOW features a wide variety of implicit solvers and inviscid flux algorithms and 

incorporates several popular turbulence/transition models. For the work presented, simulations 
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used a fifth-order accurate WENO upwind spatial discretization scheme [38] with the HLLE++ 

fluxes of Tramel, Nichols, and Buning [39]. An entropy-smoothing parameter (𝛿 = 5) was 

applied, mitigating slip lines created when the shocks are oblique to the grid [39]. No additional 

artificial dissipation was required to stabilize the solution. An implicit SSOR algorithm [40] was 

employed for both RANS and DDES simulations. The implicit SSOR algorithm [40] was chosen 

for its robustness in high-speed flows. The simulations consisted of a subsonic run at a Mach of 

0.8 for 1000 steps to initialize the flow, a supersonic run at a Mach of 2.01 for 10000 steps to 

obtain a steady RANS solution, and a DDES run for 2000 steps to obtain an unsteady solution. A 

non-dimensional time-step of 0.005 (based on free-stream velocity) was chosen for DDES 

simulations to provide a convective Courant-Friedrichs-Lewy (CFL) number of approximately 1 

within the region of interest resulting in two convective flow-throughs. 

Second-order time accuracy was achieved with the backward differentiation formula 

(BDF2) scheme. For the initial grid system, dual-time stepping was utilized to converge the 𝐿𝑖𝑛𝑓-

norm of the right-hand side (RHS) by three orders of magnitude per time step. With the same 

convergence criterion as dual-time stepping, Newton sub-iterations were executed for the 

modified grid system due dual-time stepping’s tendency to dampen the turbulent wake structures 

observed in the DDES simulations. DDES-SA-QCR required approximately 30 Newton sub-

iterations to converge while DDES-SA-QCR-AFT called for the specified maximum 50 sub-

iterations. 

3.3.1 Weighted Essentially Nonoscillatory (WENO) Spatial Discretization 

A fifth-order approximation using WENO spatial discretization consists of three third-order 

approximations as illustrated in Figure 3.5 [38]. The WENO discretization presented follows that 

of Henrick et al. [41] and Merriman [42] which the fifth-order conservative variables are 

 

 
 (3.9) 

 

 
 (3.10) 

 



 

28 

 

where the third-order approximations are computed from the conservative variables at the nodes 

as 

 

 

 

(3.11) 

 

 

 

(3.12) 

 

 

 

The weights (w) are given by 

 

 

 
(3.13) 

 

 

Figure 3.5 Stencil for fifth-order WENO methodology (From Ref. [29]) 
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where k are the optimal weight values: 1 = 0.1, 2 = 0.6, and 3 = 0.3. Smoothness indicators (k) 

increase the numerical dissipation when large variations in the flow are present and are given by 

[43] 

 

 

 

(3.14) 

 

 

 

(3.15) 

 

3.3.2 Backward Differentiation Formula (BDF) 

A backward differentiation formula (BDF) is used to solve the general initial value problem  

 

  (3.16) 

 

To attain a second-order BDF (BDF2) approximation of the derivative term, Taylor series 

approximations of points i, i-1, and i-2 are computed as follows 

 

 

 

(3.17) 

 

where i is the point of interest and h is the step size. The linear system of equations is represented 

by 

 

 

 

(3.18) 
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where A = 3/2, B = -4/2, and C = 1/2. Thus, the approximation of the general initial value 

problem using a BDF2 approximation is 

 

 
 

(3.19) 

 

3.3.3 Turbulence/Transition Modeling 

The turbulence model used in the simulations is the one-equation Spalart-Allmaras (SA) 

eddy-viscosity model [44] in conjunction with the quadratic constitutive relation (QCR2000) 

[45] for the initial grid system and the updated version (QCR2013) [46] for the modified grid 

system as the work transitioned from OVERFLOW 2.2l to OVERFLOW 2.2n. QCR has been 

shown to improve juncture and corner flow [45]. A curvature/rotation correction term was 

included to better account for curvature and rotational effects. In addition, the amplification 

factor transport (AFT) model of Coder [47] was used to capture laminar-turbulent transitional 

effects. The turbulence model had a time-step equal to the flow solver time-step and a freestream 

turbulence level of 2.8x10-7. A freestream turbulent kinetic energy of 3.91x10-6, resulting in Ncrit 

= 5 (critical amplification factor), was chosen to influence transition to occur upstream of the 

standing cylinder. The process of determining Ncrit = 5 will be elaborated upon in the Chapter 4.  

3.3.3.1 Spalart-Allmaras Turbulence Model (SA-RC-QCR) 

The solution of the one-equation turbulence model achieves closure of the Reynolds stress 

tensor. The Reynolds stresses are defined as 

 

  (3.20) 

 

where the mean strain-rate tensor (Sij) is  

 

 

 
(3.21) 
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and Ui is the mean velocity. The turbulent eddy viscosity (𝜇𝑡) is given by 

 

 

 
(3.22) 

 

where 𝜈 is the kinematic viscosity, and 𝜈 is solved using 

 

 
(3.23) 

 

 

 
(3.24) 

 

d is the distance to the closest surface. The function fw is as follows, 

 

 

(3.25) 

 

The function ft2 serves to enable laminar-turbulent transitional effects of which will be discussed 

in Section 3.4.2.2. During simulations of a turbulent interaction, ft2 is suppressed by 

OVERFLOW. The calibration constants are cb1 = 0.1355, 𝜎 = 2/3, cb2 = 0.622, 𝜅 = 0.41, cw2 = 

0.3, cw3 = 2, cν1 = 7.1, and  

 

 

 
(3.26) 

 

QCR redefines the turbulent stress tensor that the SA turbulence model uses. The QCR2000 

[45] turbulent stress tensor is defined as 
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  (3.27) 

 

The turbulent stresses are defined by the linear Boussinesq relation, 

 

 

 
(3.28) 

 

where the last term is neglected by OVERFLOW for one-equation turbulent models. Oik is a 

normalized rotation tensor defined as 

 

 

 

(3.29) 

 

The calibration constant Cnl1 is specified to be 0.3. QCR2013 [46] is similar to QCR2000 with 

the only difference occurring in the turbulent stresses defined as 

 

  (3.30) 

 

 

 
(3.31) 

 

and calibration constant Cnl2 is specified as 2.5. 

DDES [48, 49] is used to provide a higher fidelity simulation in the separated flow region. 

DDES is a hybrid RANS/LES methodology that provides RANS-based modeling in near-wall 

regions and LES-like behavior elsewhere, does so by altering the length scale used in the SA 

equation 

 

  (3.32) 
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where d is the distance to the closest surface, fd is a function set to equal 0 in the near-wall 

region, CDES is a calibration coefficient specified as 0.65, and Δ is the maximum spacing of the 

grid cell. 

3.3.3.2 Amplification Factor Transport Transition Model (AFT2017b) 

The AFT2017b transition model [47] is an enhancement to the transition model of Coder 

and Maughmer [50] and Coder [51]. AFT2017b solves two transport equations for the 

amplification factor  

 

 

 
(3.33) 

 

and modified intermittency 

 

 

(3.34) 

 

where Ω is the vorticity magnitude, 𝜇 is the molecular viscosity, and 𝜎n = 1. Transition is 

considered to occur once the amplification factor (�̃�) reaches a critical amplification factor (Ncrit). 

Ncrit is calculated through Mack’s relation [52], 

 

 
 

(3.35) 

 

 

 
(3.36) 
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The amplification factor transport equation (Equation 3.33) describes the growth and 

development of the approximate amplitude of the maximum Tollmien-Schlichting instability in 

the boundary layer (amplification factor) based on linear stability theory [53]. An integral shape 

factor, H12, as 

 

 

 
(3.37) 

 

where a local shape factor, HL, is based on the work of Mentor [54]  

 

 

 
(3.38) 

 

The function Fcrit is defined as 

 

 

 
(3.39) 

 

 

 
(3.40) 

 

 

 
(3.41) 

 

 

 
(3.42) 

 

The function Fgrowth is defined as 
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(3.43) 

 

where Drela and Giles [53] developed the functions l(H) and m(H) defined as 

 

 

(3.44) 

 

and 

 

 

 

(3.45) 

 

The modified intermittency transport equation (Equation 3.34) is based on the Menter 

intermittency model [54]. The function definitions are 

 

 

 
(3.46) 

 

 

 

(3.47) 

 

  (3.48) 

 

 

 
(3.49) 

 

Calibration constants [54] for the modified intermittency transport equation are c1 = 100, c2 = 

0.06, c3 = 50, and  = 1.0. 
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The AFT transition model interacts with the SA turbulence model through the redefined 

function ft2 as 

 

  (3.50) 

 

where ct3 = 1.2. For DDES simulations, the modified fd function 

 

  (3.51) 

 

ensures that the LES-branch does not become active in an attached, laminar boundary layer. 
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CHAPTER 4  

RESULTS AND DISCUSSION  

This chapter highlights the RANS and DDES simulations. The determination of Ncrit will be 

discussed as well as a qualitative and quantitative comparison of the simulated XSBLI 

phenomena to the experimental data. The flow parameters analyzed are surface pressures, 

velocity profiles, and surface skin frictions. As previously mentioned, the simulations were 

obtained through the NASA-developed OVERFLOW solver with the cylinder leading-edge 

positioned 7 diameters downstream of the plate leading-edge. OVERFLOW 2.2 is a three-

dimensional time-marching implicit RANS compressible gas dynamics solver that uses 

structured overset grid systems [21]. RANS simulations are defined as fully turbulent (SA-QCR) 

and transitional (SA-QCR-AFT) while DDES simulations are as DDES-SA-QCR and DDES-

SA-QCR-AFT for fully turbulent and transitional simulations 

4.1 Determination of Ncrit 

SA-QCR-AFT simulations have the option of influencing the location of laminar-turbulent 

transition within the boundary layer. By specifying the value of Ncrit in the simulations, transition 

is predicted at a respective location along the streamwise direction of the flat plate. Lower Ncrit 

values allow for boundary layer transition to occur further upstream. Combs et al. [17] and Lash 

et al. [18-20] positioned the cylinder such that the separation shock would introduce a SBLI 

within a transitioning boundary layer. As such, the objective of the computational study was to 

replicate the experimental condition. The objective was completed by studying the surface skin 

friction (normalized vorticity magnitude) along the flat plate geometry for varying values of Ncrit. 

The Ncrit value was chosen such that transition occurred naturally along the surface without the 

presence of additional flow features. Therefore, the model geometry did not include the standing 

cylinder.  
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Figure 4.1 displays the boundary layer transition location along the flat plate for each 

respective Ncrit value. The occurrence of laminar-turbulent transition within the boundary layer 

can be regarded as the deviation of the surface skin friction from the general trend observed by 

all Ncrit values. A Ncrit value of 5 introduces a transitional boundary layer at approximately 6 

diameters downstream of the plate leading-edge. This allows for a boundary layer transition to 

occur approximately 1 diameter upstream of the standing cylinder leading-edge.  

 

 

4.2 RANS Results 

RANS simulations did exhibit the XSBLI phenomena present in the experiment but did not 

fully converge, obtaining a normalized residual on the order of 10-3 for both SA-QCR and SA-

QCR-AFT simulations in the region of interest. Note that SA-QCR simulations did show better 

convergence approaching a normalized residual on the order of 10-4. Due to the less than optimal 

convergence, the XSBLI phenomena were compared with the experimental date in a primarily 

 

Figure 4.1 Laminar-turbulent transition locations along a flat plate geometry for Ncrit values 5-9. 
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qualitative manner. Additional analysis of the flow parameters was conducted to provide 

predictive capabilities of steady RANS in capturing XSBLI phenomena. Solutions on the initial 

grid system provide only a visual comparison of the flow features while the modified grid system 

provides both a qualitative and quantitative comparison to experimental data.  

4.2.1 SA-QCR Results 

As expected, SA-QCR simulations on either grid system do not predict an UI shock. 

Because laminar-turbulent transition is not modeled, the predicted XSBLI phenomena replicate 

the experimental work of Lash et al. [18-20] with the cylinder positioned 25 diameters 

downstream of the plate leading-edge. The computed density-gradient magnitude contours (i.e. 

numerical Schlieren) for both grid systems are visually represented in Figure 4.2. The distorted 

section of the oblique shock upstream of the cylinder is due to the mesh being too coarse to 

properly capture the flow feature. The distortion does not directly affect the flow physics 

downstream in the SA-QCR simulations; however, it was found to influence the DDES-SA-QCR 

simulations. This phenomenon will be further discussed in Section 4.3.  

Nevertheless, SA-QCR simulations did capture the separation and reattachment shocks. 

Additionally, the SA-QCR simulations captured the separation region located between the 

separation and reattachment shocks. Table 4.1 compares the triple point height, separation shock 

distance, and reattachment shock distance to the experimental reference time-averaged values. 

Note the accuracy of the measurements are ±0.36% for htp, ±0.22% for 𝜆s,1, and ±1.35% for 𝜆s,2 

due to the refinement mesh spacing. The SA-QCR simulations of both grid systems produce 

similar measurements to one another. Additionally, the SA-QCR simulations show good 

agreement with the measurements of htp, 𝜆s,1, and 𝜆s,2 in the experimental reference 

Computed Mach contours for the SA-QCR simulations are shown in Figure 4.3. The same 

flow features prominent in the numerical Schlieren images are observed by the Mach contour 

plots. The blue and green contours emphasize the subsonic separation region, displaying one 

large vortex. Additionally, an indentation of the Mach contours appears just downstream of the 

separation-reattachment shock intersection. A secondary indentation develops downstream of the 

subsonic separation region, located at the cylinder-plate junction. 
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Table 4.1 Measurements of XSBLI phenomena for SA-QCR simulations 

 Initial Grid System Modified Grid System Experimental Reference [18] 

htp/dc 1.45 1.44 1.39 

𝜆s,1/dc 2.19 2.16 2.24 

𝜆s,2/dc 0.38 0.40 0.37 

 

 

 

(a) 

 

(b) 

Figure 4.2 Numerical Schlieren of SA-QCR simulations for the (a) initial grid system (b) modified grid system. 

Flow is from left to right. 
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(a) 

 

(b) 

Figure 4.3 Mach contours of SA-QCR simulations for the (a) initial grid system (b) modified grid system. Flow 

is from left to right. Note the slight variation in contour values; the purpose of these images is to visually 

compare the differences in flow features. 
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4.2.1.1 Surface Pressures 

The non-dimensional surface pressure contours provide further insight on the separation 

shock and reattachment shock locations denoted as the region of separation. As previously 

mentioned, the UI shock is not present in the SA-QCR simulations. Experimental efforts to 

display and measure the surface pressure for a standing cylinder configuration have been 

conducted by Lash et al. [19] through the use of fast-response PSP imaging. 

The calculated surface pressure contours are presented in Figure 4.4. The separation shock is 

evident through the sharp pressure gradient denoted by the color change from blue to green. The 

reattachment shock is present through the thin region of a gradient just upstream of the cylinder, 

producing similar pressures to the freestream surface pressure. Note the higher resolution on both 

the separation shock and reattachment shock in the spanwise direction of the modified grid 

system. Surface pressures in the spanwise direction seems to be visually symmetric about the 

centerline.  

Further detail of the calculated surface pressures is given through the off-center surfaces 

pressures plotted in Figure 4.5. The off-center surface pressures were computed on the surface 

±0.5dc and ±1.0dc in the spanwise direction. Each pair of off-center surface pressures show no 

discernable difference in magnitude and peak locations in the region of interest. Local strong 

gradients in the surface pressure reveal the locations of the separation and reattachment shocks. 

The peaks in surface pressure occur further downstream as the distance in the spanwise direction 

is increased displaying the curvature of the shock system about the cylinder. Note that all 

centerline and off-center surface pressures were computed from the modified grid system 

simulations. 

 

  



 

43 

 

 

  

 

(a) 

 

(b) 

Figure 4.4 Surface pressure contours of SA-QCR simulations for the (a) initial grid system (b) modified grid 

system. Flow is from the bottom-left to top-right. 
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Figure 4.5 SA-QCR-computed off-center surface pressures normalized by freestream surface pressure. Zero 

denotes the location of the cylinder leading edge. 
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4.2.1.2 Velocity Profiles 

The streamwise velocity profiles located upstream of the UI shock, downstream of the UI 

shock, and within the separation region are given by Figure 4.6. Note that the UI shock is not 

present in the SA-QCR simulations but is used for reference from the SA-QCR-AFT simulations 

to define the location of the velocity profiles. The location of the velocity profiles will be further 

discussed in Section 4.2.2.2. The velocity profile downstream of the UI shock and upstream of 

the UI shock both have initial values of zero before abruptly increasing to approximately 1.04. 

The velocity profile just downstream of the UI shock shows that a phenomenon slightly delays 

the growth of the streamwise velocity. The separation region velocity profile begins as upstream 

flow near the surface denoting a vortex is circulating in the region. The region of the initial 

plateau in the separation velocity profile indicates the height of the separation bubble. The 

secondary plateau represents the separation shock location. The final velocity gradient present in 

all the velocity profiles is representative of the inviscid oblique shock. 

  

 

Figure 4.6 SA-QCR-computed velocity profiles normalized by freestream velocity downstream of the inviscid 

oblique shock. 
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4.2.2 SA-QCR-AFT Results 

Unlike the SA-QCR simulations, the SA-QCR-AFT simulations captured the UI feature, but 

it resembled a compression wave more than a true shock. The numerical Schlieren images are 

illustrated in Figure 4.7. The UI shock appears less prominent than the separation and 

reattachment shocks, but with the addition of the UI shock, the separation shock appears to be 

weakened. Note that the UI shock intersects the overset grid boundary of the coarse mesh in the 

initial grid system which partially motivated the modified grid system.  

The measurements of the XSBLI phenomena are presented in Table 4.2. Note the previously 

mentioned uncertainties still apply as well as an uncertainty of the UI shock location (UI/dc) as 

±0.12%. The SA-QCR-AFT simulations tended to over-predict the relevant features the 

experimental data while the turbulent simulations under-predicted the separation shock location.  

 

Table 4.2 Measurements of XSBLI phenomena for SA-QCR-AFT simulations 

 Initial Grid System Modified Grid System Experimental Reference [18] 

htp/dc 1.50 1.48 1.39 

𝜆s,1/dc 2.42 2.28 2.24 

𝜆s,2/dc 0.38 0.40 0.37 

UI/dc 3.35 3.24 3.90 - 4.20 

 

 

The visualization of the UI shock existing as a compression wave is further emphasized by 

the Mach contours in Figure 4.8. Rather than representing a single feature as shown in the 

numerical Schlieren images, the UI feature appears to emerge from the separation shock. All 

other XSBLI phenomena show good agreement with the SA-QCR RANS simulations. Due to the 

aforementioned overset boundary condition of the initial grid system, a subtle variation in Mach 

contours is located in the upper region upstream of the cylinder. 
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(a) 

 

(b) 

Figure 4.7 Numerical Schlieren images of SA-QCR-AFT simulations for the (a) initial grid system (b) modified 

grid system. Flow is from left to right. 
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(a) 

 

(b) 

Figure 4.8 Mach contours of SA-QCR-AFT simulations for the (a) initial grid system (b) modified grid system. 

Flow is from left to right. Note the slight variation in contour values; the purpose of these images is to visually 

compare the differences in flow phenomena. 
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Another flow parameter used in studying the behavior of XSBLI phenomena is the 

centerline surface skin friction plotted in Figure 4.9. A decrease in skin friction is associated with 

an increase in boundary layer thickness for zero pressure gradient. The SA-QCR simulation has a 

prominent shock denoted by the sharp increase in skin friction after the initial decrease. The SA-

QCR-AFT simulation, however, has two gradual increases in the skin friction indicating the UI 

feature and separation shock locations. The gradual increase indicates the shocks are weaker 

representing a behavior more similar to a compression wave. The initial increase in boundary 

layer thickness behaves like a compression ramp reinforcing the presence of a UI feature. 

Additionally, the UI feature causes the boundary layer to thicken, conversely, obscuring the 

origin of the phenomenon.  

Additional skin friction analysis is plotted in Figure 4.10 and Figure 4.11, displaying the 

regions of separation along the plate and cylinder surface. A region of separation is denoted by a 

negative value in the spanwise vorticity. On the plate surface, RANS simulations produce one 

large vortex, showing good agreement with the results of Lindorfer et al. [33] However, the SA-

QCR-AFT simulation predicts separation further upstream, corresponding with the UI shock 

location. On the leading-edge of the cylinder surface, three regions of separation are apparent. 

Note that these regions are significantly smaller in size than the separation regions along the 

plate surface. These three regions correspond roughly with the location of the triple-point height, 

the interaction of the reattachment shock and separation bubble, and the cylinder-plate junction. 

The vortex at the shock-separation interaction is significantly weaker than the other vortices 

predicted. 
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Figure 4.9 Steady normalized surface skin friction along the centerline. 
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Figure 4.10 Steady normalized vorticity in the spanwise direction along the plate centerline. 

 

Figure 4.11 Steady normalized vorticity in the spanwise direction along the cylinder centerline. Note the log 

scale on the y-axis. 
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4.2.2.1 Surface Pressures 

The computed surface pressures are pictured in Figure 4.12. The presence of the UI feature 

is evident upstream of the separation shock. As previously mentioned, the UI feature appears to 

emerge from the separation shock. Additionally, the reattachment shock is more prominent in the 

SA-QCR-AFT simulations than the SA-QCR simulations. All other XSBLI phenomena show 

good agreement with the SA-QCR simulations and the experimental data. The UI feature is 

contained within the refinement mesh of the initial grid system which is the motivation behind 

expanding the refinement mesh in the spanwise direction. The UI feature in the modified grid 

solution shows better agreement with the experimental reference in the spanwise direction 

extending outward to the tunnel walls. 

Further detail of the computed surface pressures is plotted in Figure 4.13 and Figure 4.14. 

The SA-QCR simulation agrees with the experimental XSBLI data in terms of matching the peak 

pressure location. However, the SA-QCR simulation does not predict the initial pressure increase 

around x/d = -5 which represents the UI feature, and it over-predicts the magnitude of the surface 

pressures after separation. Similar to the turbulent simulations, the SA-QCR-AFT simulation 

over-predicts the value of the peak surface pressures, but the SA-QCR-AFT centerline surface 

pressures show better phenomenological agreement with the experimental data with the 

indication of a gradual increase before the separation region. This gradual increase indicates that 

a UI feature is influencing the separation region, promoting separation to occur further upstream. 

This region upstream of the separation shock is further enforced by the velocity profile 

downstream of the UI feature that will be discussed in Section 4.2.2.2. The off-center surface 

pressures in Figure 4.14 display similar results to the SA-QCR simulations. Similar to the 

centerline surface pressures, a UI feature is indicated by the gradual rise in the surface pressure 

upstream of the separation shock. The pair of off-center surface pressures show no discernable 

difference in the spanwise direction within the region of interest.  
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(a) 

 

(b) 

Figure 4.12 Surface pressure contours of SA-QCR-AFT simulations for the (a) initial grid system (b) modified 

grid system. Flow is from bottom-left to top-right. 
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Figure 4.13 SA-QCR-AFT computed centerline surface pressures normalized by freestream surface pressure. 

Zero denotes the location of the cylinder leading edge. 
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Figure 4.14 SA-QCR-AFT computed off-center surface pressures normalized by freestream surface pressure. 

Zero denotes the location of the cylinder leading edge. 
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4.2.2.2 Velocity Profiles 

Three locations of interest were identified for extracting velocity profiles. These are 

illustrated in Figure 4.15. The velocity profile upstream of the UI feature depicts the flow with 

no influence from the XSBLI phenomenon. The velocity profile downstream of the UI feature 

was selected to study the effects the UI feature had on the boundary layer characteristics. Lastly, 

velocity profile in the separation region was specified to obtain further detail of the separation 

region developed by the XSBLI phenomena.  

Figures 4.16-19 plot the SA-QCR-AFT and SA-QCR computed velocity profiles in each 

location including a near-wall profile of the separation region where only the shear layer is 

present. Figure 4.16 depicts the region upstream of the UI feature. Both RANS simulations 

behave similarly with a slight deviation occurring in the near-wall region. Downstream of the UI 

feature, shown in Figure 4.17, the SA-QCR-AFT simulation has a prolonged region of lower 

streamwise velocity due to the presence of the UI feature. Additionally, the SA-QCR-AFT 

simulation predicts flow propagating upstream within the subsonic boundary layer while the SA-

QCR simulation does not. The upstream flow further highlighted that separation is present 

further upstream in the SA-QCR-AFT simulation. Within the separation region, plotted by 

Figure 4.18, the SA-QCR-AFT simulation has a near-linear increase consisting of two peaks in 

velocity whereas the SA-QCR simulation has a singular sharp gradient representing the 

separation shock. The first local peak in the SA-QCR-AFT simulation is depicted as the 

separation shock showing a larger gradient than the second local peak, portraying the UI feature. 

The comparison between the two gradients further emphasizes that the UI feature behaves as a 

compression wave in the SA-QCR-AFT simulations. Lastly in Figure 4.19, the near-wall 

velocity profile of the separation region exhibits a vortex present in the region indicated by the 

advancement of flow upstream. Both simulations behave similarly, seeming to capture only one 

large vortex, but the SA-QCR-AFT simulation predicts a stronger vortex due to the larger 

magnitude in upstream velocity.  
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(a) 

 

(b) 

 

(c) 

Figure 4.15 Location of velocity profiles (a) upstream of UI shock (b) downstream of UI shock (c) separation 

region. 
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Figure 4.16 Steady velocity profiles upstream of UI shock normalized by freestream velocity downstream of the 

inviscid oblique shock. 

 

Figure 4.17 Steady velocity profiles downstream of UI shock normalized by freestream velocity downstream of 

the inviscid oblique shock. 
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Figure 4.18 Steady velocity profiles in separation region normalized by freestream velocity downstream of the 

inviscid oblique shock. 

 

Figure 4.19 Near-wall steady velocity profiles in separation region normalized by freestream velocity 

downstream of the inviscid oblique shock. 
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4.3 Hybrid RANS/LES (DDES) Results 

DDES methods were employed to capture the dynamic behavior in the XSBLI phenomena 

as seen in the experimental data. The DDES simulations were run with SA-QCR and SA-QCR-

AFT methods providing further detail in the separation region. The initial grid system 

simulations showed promising results with predicted dynamic behavior, but these results were 

called into question due to the grid system. As such, the initial grid system will not be used for 

any DDES comparisons to the experimental data. The modified grid system simulations reached 

a visually converged state after transitioning from a RANS solution to a hybrid RANS/LES 

solution from which visual and quantitative results are obtained  

4.3.1 DDES-SA-QCR Results 

Consistent with the RANS results, the DDES-SA-QCR simulations did not capture an UI 

shock. As the simulation progresses from a RANS-based modeling solution to a hybrid 

RANS/LES solution, the bifurcated shock system expands both upstream and in the wall-normal 

direction. Curvature of the reattachment shock towards the separation region then occurs after 

the shock system expansion. Additionally, an expansion wave forms just downstream of the 

separation shock, redirecting the flow back towards the plate further upstream than the 

reattachment shock location. As such, the separation region is significantly reduced in relation to 

the RANS simulations. However, once these features have formed, the simulations reach a 

visually converged state illustrated in Figure 4.20.  

The converged Mach contours displayed in Figure 4.21 provide further detail on the 

expansion wave present within the separation region. The expansion wave immediately increases 

the downstream streamwise velocity. The sharp increase in the velocity and accompanying 

expansion wave is not present in the RANS simulations. In the near-wall region below the 

expansion wave, the subsonic region contains a curved profile at the end of the increase in 

separation thickness. Additionally, small separation pockets appear to form at the surface just 

upstream of the reattachment shock.  
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Figure 4.20 DDES-SA-QCR numerical Schlieren image after convergence. Flow is from left to right. 

 

Figure 4.21 DDES-SA-QCR Mach contours after convergence. Flow is from left to right. 
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4.3.1.1 Surface Pressures 

The computed DDES-SA-QCR surface pressures are displayed in Figure 4.22. As 

previously discussed, an expansion wave appears to reattach the flow to the surface in addition to 

developing small pockets in the separation region. The computed surface pressures exhibit a 

similar behavior in the reattachment region. A smaller region of separation occurs than the 

RANS simulations and a larger region of reattachment forms. Within the reattachment region, 

several pressure fluctuations can be seen indicating a potential for small separation pockets. The 

surface pressures appear to be visually symmetric in the spanwise direction. 

Further insight on the computed surface pressures is revealed by the off-center surface 

pressures plotted in Figure 4.23. The off-center surface pressures confirm that simulation is 

symmetric in the spanwise direction with each pair of surface pressures showing no discernable 

difference in magnitude and local peak location in the region of interest. Approximately 0.75 

diameters upstream of the cylinder leading edge, an oscillatory behavior occurs indicating a 

potential for small regions of separation. Two regions of separation are implied by the two local 

peaks. Additionally, the surface pressure in these regions of local separation drops below the 

freestream surface pressure. After the initial rise in pressure, an indication of the separation 

shock, the pressure sharply declines where the RANS simulations display a gradual decline. The 

sharp favorable gradient around x/d = -1.5 further emphasizes the existence of an expansion 

wave in the separation region.  
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Figure 4.22 Instantaneous DDES-SA-QCR surface pressure contours after convergence. Flow is from bottom-

left to top-right. 

 

Figure 4.23 Instantaneous DDES-SA-QCR off-center surface pressures after reaching convergence normalized 

by freestream surface pressure. Zero denotes the location of the cylinder leading edge. 
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4.3.1.2 Velocity Profiles 

The DDES-SA-QCR velocity profiles exhibit similar behaviors to the SA-QCR simulation; 

however, the velocity profile that passes through the separation region differs from the RANS to 

DDES simulation. Not only is the separation region larger, attributable to DDES because grid-

induced separation can occur, but the separation bubble slows down the flow while the RANS 

simulation held the flow at a constant velocity across the wall-normal direction. This relation can 

be seen through the Mach contours of Figure 4.21 by the thin region of subsonic flow, denoted as 

the blue contour. While the magnitude of the streamwise velocity is approximately equal in this 

region for both simulations, the DDES simulation reaches a higher velocity closer to the plate 

surface. Again, this can be visualized in the Mach contours by the thin region of higher velocity 

flow just below the separation bubble. 

 

  

 

Figure 4.24 Instantaneous DDES-SA-QCR velocity profiles normalized by freestream velocity downstream of 

the inviscid oblique shock. 
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4.3.2 DDES-SA-QCR-AFT Results 

As previously mentioned, the initial grid system displayed a dynamic behavior of the XSBLI 

phenomena. The time progression of the DDES-SA-QCR-AFT numerical Schlieren images for 

the initial grid system is portrayed in Figure 4.25. Note that this simulation is affected by the 

disturbances propagating from the overset boundary. Once a larger refinement region was 

implemented into the modified grid system, the dynamic behavior was not reproduced, implying 

that the overset boundary contributed to the unsteadiness. Similar to the DDES-SA-QCR 

simulation, as the DDES-SA-QCR-AFT simulation applied a hybrid RANS/LES turbulence 

closure, the bifurcated shock system expanded outward. During the expansion, the UI feature 

radiated from the separation shock similarly to the experimental reference; however, the 

simulation converged to the numerical Schlieren image displayed in Figure 4.26 after the initial 

expansion. All XSBLI phenomena in the DDES-SA-QCR simulation are present in the DDES-

SA-QCR-AFT simulation with the addition of the UI feature. The UI feature appears to behave 

as a compression wave and weakens the strength of the separation shock downstream, showing 

similar behaviors to the RANS simulation.  

Measurements of the DDES XSBLI phenomena are presented in Table 4.3. The DDES 

simulations over-predict the separation shock standoff distance and triple point height. Unlike 

the SA-QCR simulation, the DDES-SA-QCR-AFT simulation shows good agreement with the 

experimental measurement in regard to the UI shock location. Note that the simulation positions 

the UI feature approximately 1 diameter upstream of the separation shock, whereas the 

experimental reference has the time-averaged UI shock location approximate 1.7 diameters 

upstream. 

The converged DDES-SA-QCR-AFT Mach contours are displayed in Figure 4.27. All 

DDES simulations predict a supersonic region near the surface of the separation region. A 

primary difference in the separation region of the two DDES simulations is the region just below 

the expansion fan. The DDES-SA-QCR simulation predicts a strong initial separation, denoted 

by the sharp curvature of the Mach contour whereas the DDES-SA-QCR-AFT simulation 

predicts a gradual rise the Mach contour. Additionally, the UI feature and separation shock of the 
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0.2239 s                                       0.2488 s                                       0.2736 s 

       

0.2985 s                                       0.3233 s                                       0.3483 s 

       

0.3731 s                                       0.3980 s                                       0.4229 s 

Figure 4.25 Time progression of initial grid DDES-SA-QCR-AFT numerical Schlieren images. Flow is from left 

to right. Note that what initially is seen as dynamic behavior due to transitional effects, is seen as disturbances 

propagating from the overset boundary. 
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Table 4.3 DDES XSBLI measurements. 

 SA-QCR SA-QCR-AFT Experimental Reference [18] 

htp/dc 1.96 2.28 1.39 

𝜆s,1/dc 2.64 2.96 2.24 

𝜆s,2/dc 0.40 0.40 0.37 

UI/dc n/a 3.92 3.90 - 4.20 

 

 

 

Figure 4.26 DDES-SA-QCR-AFT numerical Schlieren after reaching convergence. Flow is from left to right. 
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DDES-SA-QCR-AFT simulation does not decelerate the flow as much as the single separation 

shock of the DDES-SA-QCR simulation. The phenomenon further indicates that the UI feature 

weakens the separation shock. 

Displayed in Figure 4.28 are the computed surface skin friction distributions along the 

centerline for the DDES-SA-QCR and DDES-SA-QCR-AFT simulations. The DDES predicted 

surface skin frictions show a similar behavior to the RANS simulations with additional detail in 

the separation region. As expected, the transition simulation captures the same phenomenon of a 

steady decline before the UI feature. All prominent features are brought further upstream due to 

the implementation of DDES methods.  

Further detail of the surface skin friction is provided in Figure 4.29 and Figure 4.30. The 

DDES-SA-QCR-AFT simulation captures separation further upstream than the DDES-SA-QCR 

simulation. Additionally, both simulations capture two regions of separation on the plate surface. 

The DDES-SA-QCR-AFT simulation captures a large separation region from the UI feature to 

the reattachment shock in addition to the separation region between the reattachment shock and 

the cylinder leading-edge. The DDES-SA-QCR simulation, however, captures a smaller 

separation region from the separation shock to the approximate location of the expansion wave 

within the separation bubble. The larger separation region occurs at the approximate location of  

 

Figure 4.27 DDES-SA-QCR-AFT Mach contours after reaching convergence. Flow is from left to right. 
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Figure 4.28 Unsteady normalized surface skin friction. 
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Figure 4.29 Unsteady normalized vorticity in the spanwise direction along the plate. 

 

Figure 4.30 Unsteady normalized vorticity in the spanwise direction along the cylinder. Note the log scale on the 

y-axis. 
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the aforementioned Mach curvature to the cylinder leading-edge. Along the cylinder leading-

edge, three regions of separation are predicted in approximately the same locations as the RANS 

simulations. The first predicted separation (y/dc ≈ 0.1-1.0) decreases in strength by a factor of 

two with the DDES-SA-QCR-AFT simulation being weaker than the DDES-SA-QCR. The 

second separation (y/dc ≈ 1.0) increased in strength by a factor or two for the fully-turbulent 

simulation and decreased by a factor of two for the DDES-SA-QCR-AFT simulation. 

Additionally, the DDES-SA-QCR-AFT simulation computed the location to be closer to the 

plate surface. The final separation (y/dc ≈ 0.01) in the DDES-SA-QCR simulation remained 

consistent with the RANS simulations. However, the DDES-SA-QCR-AFT simulation saw a 

significant decrease in strength while translating closer to the plate surface. 

4.3.2.1 Surface Pressures 

DDES-SA-QCR-AFT computed surface pressures are illustrated in Figure 4.31. The region 

of reattachment expands further outward in the spanwise direction than the DDES-SA-QCR 

simulation. Additionally, the reattachment region maintains its width in the spanwise direction 

whereas the DDES-SA-QCR tapers off. Again, the simulation is visually symmetric in the 

spanwise direction.  

 

 

 

Figure 4.31 DDES-SA-QCR-AFT surface pressure contours after reaching convergence. Flow is from bottom-

left to top-right. 
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Further detail provided for the computed centerline surface pressures is plotted in Figure 

4.32 with a final analysis of both SA-QCR-AFT and DDES-SA-QCR-AFT surface pressures 

plotted in Figure 4.33. The unsteady centerline pressures behave similarly to their representative 

RANS pressures but have the local peak magnitudes further upstream. Additionally, the 

minimum pressures, located in the separation region, have values below the freestream surface 

pressure. This behavior was also in the laminar interaction of Lindorfer et al. [33]. Initially, the 

the SA-QCR-AFT and DDES-SA-QCR-AFT simulations exhibit behavior of a laminar 

interaction displayed by the initial rise in pressure before the sharper gradient. Within the 

separation region, the surface pressures show good agreement with the turbulent interaction in 

magnitude and shape. Note that the locations of the phenomena vary due to the simulations being 

conducted with the cylinder location at a x/dc = 7 while the simulations of Lindorfer et al. were 

conducted at a cylinder location of x/dc = 25 which would be fully in the turbulent region. The 

SA-QCR-AFT surface pressures display similar behavior to the turbulent interaction from the 

reattachment shock location to the cylinder leading-edge. However, the DDES-SA-QCR-AFT 

surface pressures show good agreement with the laminar interaction from the reattachment shock 

location to the cylinder leading-edge and predicts values of surface pressure below the 

freestream value. All simulations presented in this work, as well as the work by Lindorfer et al. 

[33], show good agreement in predicting the maximum surface pressures just upstream of the 

cylinder leading-edge. Unfortunately, the CFD simulations did not capture the peak surface 

pressure exhibited by the experimental reference. 

Figure 4.34 displays the off-center surface pressures of the DDES-SA-QCR-AFT 

simulation. The DDES-SA-QCR-AFT surface pressures show good agreement with DDES-SA-

QCR surface pressures with the exception of the gradual rise exhibited just upstream of the 

separation shock location produced by the UI shock. The DDES-SA-QCR-AFT simulation did 

not capture the spike present within the first local peak predicted by the DDES-SA-QCR 

simulation.  
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Figure 4.32 SA-QCR-AFT DDES centerline surface pressure after reaching convergence normalized by 

freestream surface pressure. Zero denotes the location of the cylinder leading-edge. 
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Figure 4.33 Comparison of both RANS and DDES-SA-QCR-AFT simulations. Zero denotes the location of the 

cylinder leading-edge. 
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Figure 4.34 DDES-SA-QCR-AFT off-center surface pressure after reaching convergence normalized by 

freestream surface pressure. Zero denotes the location of the cylinder leading-edge. 
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4.3.2.2 Velocity Profiles 

The velocity profiles at each respective location are provided through Figures 4.35-38. All 

velocity profiles show good agreement with the RANS simulations. Within the separation region, 

however, both DDES simulations predict a much larger separation height given by the taller 

triple-point height plotted in Figure 4.38. Additionally, a subsonic shear layer is exhibited just 

above the supersonic pockets indicated by the initial decrease in the velocity, whereas the RANS 

simulations predicted only an increase in velocity. Near the wall, the velocity is decreased 

approximately by a factor of two, which indicates a stronger vortex structure. After the 

separation shock location, denoted by the second spike in velocity, the DDES-SA-QCR-AFT 

simulation predicts the influence of the UI feature is approximately 0.75 y/dc whereas the SA-

QCR-AFT simulation predicts an influence of approximately 1 y/dc indicating that the UI feature 

is closer to the separation shock. 

 

 

 

Figure 4.35 Unsteady velocity profiles upstream of UI shock normalized by freestream velocity downstream of 

the inviscid oblique shock. 
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Figure 4.36 Unsteady velocity profiles downstream of UI shock normalized by freestream velocity downstream 

of the inviscid oblique shock. 

 

Figure 4.37 Unsteady velocity profiles in separation region normalized by freestream velocity downstream of the 

inviscid oblique shock. 



 

78 

 

 

 

Figure 4.38 Near-wall unsteady velocity profiles in separation region normalized by freestream velocity 

downstream of the inviscid oblique shock. 
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CHAPTER 5  

CONCLUSIONS 

To study the capabilities of RANS-based modeling in simulating XSBLI phenomena, a 

series of RANS and DDES simulations were performed at M = 2.01. Each set of simulations 

consisted of a SA-QCR and SA-QCR-AFT case. Key parameters of interest were the separation 

shock standoff distance (𝜆𝑠,1), reattachment shock standoff distance (𝜆𝑠,2), triple point height 

(htp), and upstream-influence (UI) shock location. 

RANS simulations showed good agreement with the empirical measurements of htp, 𝜆𝑠,1, 

and 𝜆𝑠,2. As anticipated, SA-QCR simulations did not capture the UI shock. SA-QCR-AFT 

simulations under-predicted the UI shock location, and the simulated UI shock appeared to 

resemble a compression wave and weakened the downstream separation shock. 

The DDES-SA-QCR and DDES-SA-QCR-AFT simulations of the initial grid system 

captured the dynamic behavior of the shock system observed in the empirical data, but it was 

later determined that the overset boundary generated disturbances due to an interaction with the 

separation shock. Thus, a modified grid system was implemented for the simulations, in which 

the refinement region about the cylinder was extended upstream. Once DDES simulations were 

performed using the modified grid system, the simulations reached a visually converged state 

where all upstream flow features became spatially fixed. At the visually converged state, DDES 

simulations over-predicted htp and 𝜆𝑠,1, but showed good agreement with the empirical 𝜆𝑠,2 and 

UI shock location. 

Analysis of the surface pressures indicated that they are symmetric along the spanwise plane 

in the region of interest. Off-center surface pressures exhibited similar behaviors to the 

respective centerline surface pressures in the upstream region. SA-QCR-AFT and DDES-SA-

QCR-AFT simulations captured a gradual increase before the sharp gradient observed in both 

cases. The gradual increase showed similar behavior to the computational laminar interaction 
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[33] before displaying behaviors of a turbulent interaction in the separation region. At the 

reattachment shock location, the DDES-SA-QCR-AFT simulation saw a decrease in pressure 

below the freestream value, representative of a laminar interaction, while the SA-QCR-AFT 

simulation maintained a pressure above the freestream value, representative of a turbulent 

interaction.  

The surface skin friction provided further insight on potential mechanisms forming the UI 

shock. The SA-QCR-AFT and DDES-SA-QCR-AFT simulations saw a gradual decrease 

upstream of the UI shock location. A decrease in surface skin friction can be related to an 

increase in the boundary layer thickness, thus implying that a boundary layer thickening 

generates a compression ramp, producing an UI shock. Without the UI shock, the boundary layer 

does not produce behavior similar to a compression ramp in the SA-QCR and DDES-SA-QCR 

simulations. Consequently, the UI shock reinforces the upstream boundary layer thickening, but, 

no conclusive origin of the phenomenon has been identified at present. 

Lastly, the spanwise vorticity displays the regions of separation along the plate and cylinder 

surface. The RANS simulations captured one large vortex in the separation region of the plate 

while DDES simulations produced two smaller vortices. Along the cylinder leading-edge, three 

regions of separation appear for all simulations approximately located at the cylinder-plate 

junction, the interaction of the reattachment shock and separation bubble, and htp.  
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