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Abstract

Wearable sensors have been beneficial in assessing motor impairment after stroke. Individuals

who have experienced stroke may benefit from the use of wearable sensors to quantify and

assess quality of motions in unobserved environments. Seven individuals participated in a

study wherein they performed various gestures from the Fugl–Meyer Assessment (FMA),

a measure of post–stroke impairment. Participants performed these gestures while being

monitored by wearable sensors placed on each wrist. A series of MATLAB functions

were written to process recorded sensor data, extract meaningful features from the data,

and prepare those features for further use with various machine learning techniques. A

combination of linear and nonlinear regression was applied to frequency domain values from

each gesture to determine which can more accurately predict the time spent performing

the gesture, and the associated gesture FMA score. General performance suggests that

linear regression techniques appear to better fit paretic gestures, while nonlinear regression

techniques appear to better fit non–paretic gestures. A use of classifier techniques were used

to determine if a classifier can distinguish between paretic and non–paretic gestures. The

combinations include determining if a higher performance is obtained through the use of

either accelerometer, rate gyroscope, or both modalities combined. Our findings indicate

that, for upper–extremity motion, classifiers trained using a combination of accelerometer

and rate gyroscope data performed the best (accuracy of 73.1%). Classifiers trained using

accelerometer data alone and rate gyroscope data alone performed slightly worse than the

combined data classifier (70.2% and 65.7%, respectively). These results suggest specific

features and methods suitable for the quantification of impairment after stroke.
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Chapter 1

Introduction

Hemiparetic stroke is a form of stroke where an individual experiences more coordination

issues along one side than the other. Many individuals who experience stroke may undergo

physical or occupational therapy to regain motor coordination to a degree that they may

have possessed prior to stroke. Wearable sensors may allow for improvements in feedback of

therapy sessions as they can record motion data from individuals in a natural and unobserved

environment. Machine learning, a method of utilizing programs to predict outcomes and

interpret information based on previous experiences, may be used for various applications

with motion data post stroke, such as predicting features or classifying gestures.

A larger percentage of research in wearable sensors has been focused on lower extremities

than upper. While evaluating the motion data of upper extremities is more complex than

lower extremities, as the former has a larger range of motion than the latter, assessing upper

extremity gestures is a relevant goal for anyone recovering from stroke.

The research conducted in this study sought out to determine the nature that machine

learning can be applied to motion data post stroke. One avenue of research focused on how

the total time of gestures can be measured based on results of frequency domain values.

Another avenue of research focused on classifying gestures as paretic or non-paretic based on

features of various modalities with the use of the K-Nearest Neighbors (KNN) classifier. It is

hypothesized that the motion data recorded from accelerometers are more beneficial towards

recognizing paretic and non-paretic gestures than data recorded from rate gyroscopes.

1



Figure 1.1: Focus areas and conceptual framework of the proposed research.

Figure 1.1 illustrates several topics covered in this thesis. A primary goal was research

into the objective quantification of stroke severity with the use of wearable sensors. This

research can potentially impact the fields of computations and health science. A modest

amount of software was developed to organize and implement motion data for analysis via

machine learning methods like regression and cluster classification.

Chapter 2 discusses prior research that has been conducted regarding topics such as

hemiparetic stroke and their relevance to the thesis. Wearable sensors are discussed regarding

the importance of monitoring motion data in natural environments. Inertial sensing and

stroke is cited for relevance in functional assessments to assess effects of stroke in a

quantifiable value, the relevance of sensor modalities used to collect information, the type of

features measured from inertial data, the importance of gesture recognition, and the valid

use of machine learning.

Chapter 3 goes into detail about the software developed in MATLAB to interpret data

collected from wearable sensors for further implementation. A variety of software programs

and functions were written to efficiently automate many steps of the process, such as

interpreting raw data files and filtering to remove noise. Many programs included features

to allow for user-specified choices and importing large quantities of data into a special file

format to reduce processing time.

Chapter 4 covers research into predicting time domain measures of impairment. Data

from chapter three is utilized for a variety of linear and nonlinear regression models to

determine if a continuous model may be designed for a correlation between frequency domain

2



values and total time spent performing a gesture. A further analysis is conducted to

determine if the same concept can be applied to predict the a quantifiable score through

the use of frequency domain values.

Chapter 5 discusses research into differentiating between impaired and unimpaired

gestures. Data from chapter three is assessed by means of KNN classification techniques

to determine if a specific form of sensor modalities and data pre-processing can improve

classification performance. Several models were compared to determine the optimal

conditions.

Chapter 6 discusses several of the relevant findings taken from the research conducted in

chapters four and five. Results from both chapters are elaborated into credible findings that

may hold relevance to health sciences and stroke rehabilitation.

Chapter 7 concludes by summarizing the important factors related to the thesis. A

concise elaboration is presented regarding the importance of the research conducted, why it

was conducted, and how it may further ongoing medical research.
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Chapter 2

Background

2.1 Overview and Problem Motivation

Stroke is currently ranked the fifth largest cause of death behind heart disease and cancer.

In 2017, someone experienced a stroke, on average, every 40 seconds, while someone died of

a stroke every four minutes [1]. Individuals affected by stroke will experience loss of motor

coordination and require extensive physical, occupational, and speech therapy to regain

significant motor function.

Stroke results in the loss of coordination and other difficulties due to poor communication

between an individual’s brain and muscles. This causes weakened muscles and reduces

synergistic pattern capability activities where multiple muscles groups are active in a

cooperative pattern. A lack of muscle synergy in an individual post stroke may alternate

between utilizing several muscles incrementally compared to a more natural simultaneous

motion. Hemiparetic stroke is a form of stroke where an individual experienced a loss of

motor coordination on one side of the body. This weaker side of the body is referred to as

the ‘paretic’ side while the alternate side is referred to as non-paretic.

Individuals with hemiparetic stroke go on to live with numerous deficits. One such

deficit is known as learned nonuse. This phenomenon represents voluntary nonuse of the

limb (beyond the limitations resulting from the injury) [2]. It is thought that learned nonuse

generally evolves in the home setting. Specifically, when an individual attempts to use the

limb, they receive negative feedback in the form of slow movement, pain, or task failure. The
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individual chooses to use another limb, and thus reduces practice with the paretic limb. This

process is known as the ‘vicious cycle’ and leads to numerous detrimental comorbidities [3, 4].

It is thought that this process evolves primarily in the home setting, outside of the purview of

the health care professional. Thus, it is critically important to understand how individuals

behave outside of the clinical setting to understand the evolution of disease, and to fully

understand the effects of therapy.

2.2 Wearable Sensors for Monitoring Activity

Approaches to home monitoring have evolved with advances in technology. Generally, such

monitoring has limited validity when an individual is more cognizant of being monitored.

In early ecological validity studies, human monitoring was performed by other humans;

researchers followed participants and recorded their physical activity with pen and paper [5,

6]. While this provided accurate information, an individual is less likely to act naturally when

they know they are being observed. This implies that the documented activities are accurate

but not valid because the person performing the gestures is aware they are being observed

and recorded. Self-report logs allow people to practice and rate their own performances and

return the results to a physical therapist. However, self report data are known to suffer from

recall bias [7, 8]. Wearable sensors will be able to provide raw information recorded directly

from the people wearing them, with little bias. Figures 2.1 and 2.2 illustrate wearable sensors

used in motion analysis.

Figure 2.1: APDM Wearable Sensor for measuring linear acceleration and angular velocity
[9][10]
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Figure 2.2: Myo Armband Wearable Sensor for measuring motion with accelerometer, rate
gyroscope, and EMG sensors. [11]

Through monitoring individuals post-stroke in their everyday environment with wearable

sensors, their physical or occupational therapist can interpolate relevant information about

their physical activity and use that information to better assess what is the best course of

action for optimal recovery. It is important to monitor the physical activities of post-stroke

individuals in a home environment as the majority of their time will not be spent with a

therapist who can properly evaluate the accuracy of their actions. An individual may not

always be honest about the frequency that they are performing certain gestures or may be

performing a gesture incorrectly.

Improvements in efficacy, cost, and size of sensors have allowed for the development of

non-invasive devices suitable for external environments (outside of a research lab or medical

facility). While some individuals may consider wearable sensors to be intrusive to their

privacy, many individuals with disabilities applaud the use of rehabilitation technology in

the context of their home and community at a low cost [12]. The presence of wearable

sensors is generally forgotten after an initial adjustment period, assuming that the sensors

are positioned on rigid body parts, relatively small, and produce little to no heat while

active [13]. This suggests that the use of wearable sensors to assess physical activity of

individuals affected by hemiparetic stroke may be viable as many people are comfortable with

digital watches that incorporate various sensors to record and catalog physical activities, as

well as being inconspicuous enough that the individuals wearing the sensors will not notice

over time.

There are multiple versions of wearable sensors and technology designed for various

applications. Several fitness devices already exist with the intention of being worn by

6



an individual to measure activity, sometimes using a cell phone connected via Bluetooth

to process and analyze the information [14, 15]. Many commercial devices are capable of

measuring activity in the form of distance traveled or amount of calories burned, possibly

through measuring the swing of an arm.

2.3 Inertial Sensing and Stroke

Inertial sensors have emerged as useful tools for the management of stroke by recognizing

gestures and assessing quality of motion through machine learning techniques. The machine

learning techniques can be applied through the use of information derived from functional

assessments to quantify gesture performance and feature measurement to utilize meaningful

outcomes.

2.3.1 Functional Assessments

Individuals undergoing physical therapy may be asked to perform a series of exercises to

better gauge the extent that individual has been affected by stroke. These exercises are

generally conducted by an occupational or physical therapist and measured by a quantifiable

metric.

Figure 2.3: Participant performing Fugl–Meyer Assessment under the guidance of a trained
occupational therapist.

The Fugl-Meyer Assessment (FMA) is an objective impairment index commonly used for

individuals undergoing stroke rehabilitation [16, 17, 18]. The FMA contains several gestures
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that are performed using the upper and lower-extremities of individuals and are scored based

on visual analysis by a trained physical therapist (Figure 2.3). Any gesture conducted in

the FMA by an individual is scored with a three-point ordinal scale based on the degree of

accuracy when performing gestures for a total score of 66. The gestures used in the FMA

focus primarily on range of motion and muscular synergy, starting from more simple gestures

focusing on the upper arm to multi-joint gestures to testing the efficacy of distal grip. This

will suggest that any data we collect from individuals performing gestures from the FMA will

be relevant to our research as they will have an emphasis on the range of motion performed

by the individual as well as coordination between portions of their upper extremities.

The Wolf Motor Function Test (WMFT) is a performance based assessment of upper

extremity functional capabilities for individuals post-stroke. The WMFT uses a six-point

ordinal rating scale for a total score of 75. Gestures performed in the WMFT are usually

arranged from lower to higher complexity, beginning with forearm exercises and ending with

finger and coordination exercises [19, 20, 21]. Much of the WMFT is very similar in nature

to the FMA, given that they both have individuals post-stroke perform similar gestures.

Wearable sensors, such as accelerometers, can be used with the FMA or WMFT to

interpret meaningful data. Data collected and analyzed from wearable sensors can be

accurate to the extent that FMA or WMFT scores can be predicted with relative accuracy

through the use of machine learning techniques [22, 23, 24, 25].

2.3.2 Sensors for Measuring Symptoms of Stroke

Several factors of an individual’s daily life are affected after experiencing a stroke. A loss

of coordination can cause symptoms such as impairment with posture, gait, limb use, and

other general activities.

The use of wearable sensors may also determine when an individual is performing a

gesture incorrectly. Some individuals may compensate for their paretic extremity by utilizing

their trunk or becoming more dependent on the non-paretic extremity [26, 27]. Such activities

can be seen as detrimental or counterintuitive to the intentions of physical therapy.

Accelerometers can be an efficient method for measuring stroke along upper extremities as

part of the interest is the use of measuring degrees of movement in an individual [28, 29, 30].
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Accelerometers are also sensitive enough to recognize the effect of gravity, and can be applied

to evaluating the orientation of an individual.

Wearable sensors can be utilized in measuring the acceleration and velocity of an

individual’s gait and providing feedback to improve the effect of therapy [31, 32, 33]. The

sensors can also be implemented to detect how often an individual is utilizing either upper

extremity, ensuring that an individual is less likely to be developing ’learned non-use’ [34, 35].

This can also be applied to recognize various activities of daily living (ADL), gestures that

are most commonly performed in an individual’s natural environment.

2.3.3 Features Extracted

Assessing and measuring features from motion data allows for large quantities of data to

be represented in smaller and more discrete values. This method can allow for professional

therapists who may not find the same meaningful information from raw Inertial Measurement

Unit (IMU) data to better understand and assess the quality of motion of an individual.

Analysis of motion data in the form of quantifiable metrics allows for the reduction in

computational requirements when measuring and assessing gestures with various techniques,

and also prevents model over-fitting. This may also compensate for data that may be

reflected due to being performed on opposite extremities and measured along different axes.

Previous studies have investigated the meaningfulness of several feature metrics based on

accelerometer data collected from upper extremities. Tested features include mean, median,

variance, standard deviation, signal magnitude area, root mean square, mean-squared jerk

cost, power ratios, jerk, and total peaks. Many of these values are time domain metrics,

which represent data in terms of the dimensions of amplitude and time.

Individuals post-stroke can experience issues with coordination and smoothness of motion

when performing gestures, resulting in sudden jerked motions. Jerk is measured as the rate

of change of acceleration with respect to time. It is worth measuring jerk as individuals

post-stroke will register higher jerk values when performing a gesture when compared to

someone who has not experienced a stroke [36]. Mean Square Jerk Cost is utilized a it can

measure smoothness while remaining independent of movement duration [37, 38, 39].
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The mean value and signal magnitude area (SMA) are used to measure the average value

of activity and total magnitude of activity over a period of time, respectively. These values

were utilized to represent an ’amount’ of motion. The root mean square (RMS) measures

the square root of the mean of the squares of a series of numbers and can represent the gross

muscle activation in a gesture [40, 41, 42]. While the mean value represents the average, the

median value is used as it can represent typical activity over a period of time [43, 44, 40, 42].

Standard deviation is a metric to measure the extent of deviation of a series of data

from the mean value. This also carries significance as the mean value is a component of the

feature and has been used for gesture recognition [42]. The total peaks is a measurement of

relative maximum peaks detected in the motion data, and has been in use prior for activity

recognition [42].

The power ratio consists as a ratio of a particular power spectrum across a complete

spectrum that was measured prior. The selected spectrum values were between 0.1 to 1 Hz,

1 to 2 Hz, and 2 to 10 Hz. The power ratio can determine a difference in activity between

paretic and non-paretic actions, as the paretic extremity will generally measure more of its

activity in the 2 to 10 Hz range than non-paretic [37].

Time domain features can be relevant for gesture recognition, as their is often a difference

between the time required to perform a gesture or activity between a paretic or non-paretic

extremity. They can simplify multidimensional raw data into singular values, similar to the

FMA or WMFT, resulting in easier use for physical therapists and non-engineers to extract

meaning from the data. These quantitative values are also more useful for machine learning

techniques.

2.3.4 Gesture Recognition

An important application of wearable sensors is the ability to recognize specific gestures

performed in the natural environment. Recognizing ADL can allow for sensors to accurately

interpret recorded data and to evaluate performance. Based on the position of wearable

sensors on the body, several gestures can be classified with high accuracy. Sensors on the

waist and ankle have been shown to be sensitive to gestures related to running, walking,
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sitting, and various other types of gait [45]. While these results are more focused on gait

and lower extremity, the concept suggests similar application for upper extremities.

2.3.5 Machine Learning

Machine learning is a broad suite of computational tools allowing computers to analyze

large quantities of data and is often used for separating and/or classifying data based

on probabilistic inference models [46]. If properly trained, a machine learning algorithm

can be applied to interpret and recognize large quantities of human data to assess relevant

information, such as the frequency a gesture is being performed and their accuracy.

While highly efficient, machine learning usually requires large quantities of data in order

to generate a relatively accurate and unbiased result as more data and larger sampling size

suggests that more average data will appear and outliers will have less of an influence on any

models created. Some versions of machine learning focus on binary classification methods,

which involve filtering data with two possible outcomes, while others are designed to classify

data with multiple outcomes based on proximity of other data samples [46]. Several machine

learning models are separating the collected data into two sets: a training and testing set.

Training sets are predominantly larger than the testing set and are used to generate a model

based on the utilized input values of the set and the respective output classifying values. The

testing set is used to assess the accuracy of the model built by the training set by running

the the testing set through the model and comparing the output classifications assumed by

the model against the output values previously recorded.

Linear regression is a fairly simple form of machine learning that is mainly used to

determine if a correlation exists between various statistical values. A linear regression model

is typically assessed by minimizing the total error, summation of distances between the data

points and the regression model. Linear regression is often an ideal place to start when

utilizing machine learning techniques by determining if a more simple technique can be

implemented before utilizing more complex models.

Bagging Forest and Decision Trees can be very ideal as they can classify data as well as

explain what choices were made in the model. Decision Trees are a form of machine learning

where data begins in a single node and branches are formed to separate data based on the
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measured value of one or more features if the following nodes have filtered one or more sets

of data that are classified. While models generated by a decision tree can explain how the

data is being filtered, it can take a large amount of processing time to generate a model.

K-nearest neighbors (KNN) is a form of machine learning that assesses data based on

proximity to local data values. Based on a choice of nearby data points or ’neighbors’, KNN

will classify documents based on their proximity to data points classified in the model created

from the testing set. If a data point is measuring proximity to various classifications, the

model will decide a classification based on the majority of neighbors closest to the unclassified

sample.

The use of machine learning is relevant as it can be utilized to approximate gestures

or assess the quality of gestures by interpreting values calculated from the motion data.

With large samples of gestures performed, machine learning methods like regression or KNN

classification can be applied to extracted features and potentially return meaningful results

from motion data that can supplement and improve the quality of therapy for individuals

post-stroke.

Wearable sensors demonstrate a capacity to operate in external environments with

minimal impact to the lives the people wearing them. With the improvements in sensor cost

and measurement accuracy, sensors are more viable in recording motion data from individuals

post-stroke for the use of machine learning applications. Through the implementation of

machine learning in human motion recorded from wearable sensors, relevant data may be

interpreted in a fashion that can benefit physical or occupational therapists by providing

feedback regarding the quality of everyday motion in patients.
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Chapter 3

Software Development and Data

Processing

3.1 Introduction

To maximize the efficiency of data analyses and to minimize the opportunity for errors,

a software framework was created using primarily MATLAB software. This framework

consisted of custom and existing MATLAB functions designed to read raw sensor data from

study participants, filter those data, extract meaningful features, and provide an indexing

tool capable of querying specific data corresponding to: participants; paretic/non–paretic

limb; gesture; and sensor modality. The details of this system are provided in the following.

The intention of this section is to outline and explain the steps necessary for the use of

the MATLAB code used to read the data from the H5 files stored in the APDM IMU sensors

and interpret values that are relevant for further machine learning techniques. The APDM

IMU sensors store all collected data into a Hierarchal Data Format version 5 (HDF5/H5)

file. In order to properly analyze specific gestures and data, special programs were written

in order to achieve these goals. A combination of built-in and personalized functions were

implemented for the various steps in the process to organize all the relevant data. While

both the Regression and clustering studies incorporate their own unique MATLAB scripts,
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Figure 3.1: Diagram of code structure for MATLAB code Setup.m

both models utilize this script for the purpose of storing relevant values into a more efficient

and manageable format.

Several custom functions were previously designed by Sarvenaz Chaeibakhsh, a research

assistant. Further refinements were made to correct minor errors and bugs in the code.

3.2 Background

MATLAB is a programming language heavily derived from C++ and Python that has

a strong focus on matrix-based arithmetic [47]. MATLAB is also capable of utilizing a

multitude of libraries and packages, such as machine learning methods. For the majority

of procedures performed in MATLAB, we have used the Statistics and Machine Learning

Toolbox is used as it includes a variety of machine learning programs such as linear regression,

radial basis function, k-means clustering, and k-nearest neighbors clustering techniques.
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3.3 Methods

3.3.1 Main Function

All functions were written to be performed by a MATLAB script designated as Setup.m

to document various measures and perform necessary debugging techniques. Overall, the

purpose of Setup.m is to utilize a user-interface to select a participant, analyze a user-

selected gesture, extract several features into a special file for further machine learning

models, and produce relevant images. A diagram of the general structure of the MATLAB

script is presented in Figure 3.1.

3.3.2 Reading Input Files

The initial process is to begin importing the raw H5 data files from the APDM sensors into

a computer. The APDM sensors have a special docking setup that extract the H5 files and

label them with a time-stamp. A MATLAB function titled PatientCall.m was designed to

generate a user-interface that can allow an individual to select which participant data will be

analyzed. Depending on the choice selected by the user, the H5 data related to an individual

will be uploaded to the MATLAB program’s local memory for further use.

The H5 file selected by the user will then be loaded by a custom MATLAB function

titled H5Reader.m, which will take the raw H5 file and generate an output of the various

data formats measured. While the function generates an output of accelerometer, rate

gyroscope, magnetometer, quaternion orientation, sampling rate, and total time data, only

the accelerometer, rate gyroscope, sampling rate, and total time data were utilized in all

studies, as several sensors had corrupted magnetometer and quaternion orientation data.

H5Reader.m measured and processed all H5 files available from all five APDM IMU sensors.

3.3.3 Visual Analysis/Documentation

Having provided informed consent, participants were filmed while performing the FMA under

administration of a physical therapist. The recorded video footage was used to catalog

gestures and record any data for further use.
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At the beginning of each individual’s video, a therapist will either shake all five APDM

IMU sensors, or will tap an IMU located on the wrist three times. The intention behind

this was to synchronize IMU and video data using an excel spreadsheet. The spreadsheet

contained measurements of when each gesture from the FMA begins and ends for both paretic

and non-paretic upper extremities, and was titled for each individual who participated in the

study. The standard time and approximate video frame are documented to allow the data

related to each gesture to be compartmentalized for further assessment. Up to five attempts

by an individual to perform a gesture were documented into the Excel Spreadsheets. If a

participant did not perform one of the FMA gestures, then the values will be replaced with

“NaN”, which stands for ”Not A Number” and is interpreted by MATLAB as a non-existent

number. This is more efficient than ”0” or many other null values as MATLAB has several

logic functions that operate depending on if a NaN value is detected.

The data also contained an offset value that will be recorded in the Excel spreadsheet

read from PatientCall.m to offset delays between video and IMU data. This was usually

found by analyzing raw acceleration data from H5Reader.m, looking for the relative peaks

of data that coincide with the action performed by the physical therapist, and confirming

by determining if the acceleration profiles of various gestures appeared accurate with the

assumed offset value.

3.3.4 Gesture Cataloging

The data extracted from H5 files and documented with Excel spreadsheets will be utilized

in another custom MATLAB function, NewSampleRead.m, to isolate data relevant to each

gesture with each upper extremity.

NewSampleRead.m reads the documented Excel spreadsheet and records the documented

frame data. The relevant data were recorded in two structures labeled as ’Left’ or ’Right’

while all relevant FMA gestures are listed as the branches for both structures. The function

is only required to run once as the recorded frames apply to all gestures performed by an

individual’s paretic and non-paretic upper extremities.

Once the data has been filtered, a custom MATLAB function, GestureSaver30.m,

was used to compartmentalize the modality results into subsections based on documented
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video frames. The function requires the ’Left’ and ’Right’ structures generated by

NewSampleRead.m, the filtered data modalities, and a pair of values that designate the sensors

which represent the left and right extremity. The function will take the beginning and ending

frames documented for each gesture, divide by the framerate to more accurately correlate to

the sensor data, and repeat the process to document the acceleration, rate gyroscope, and

total time required to perform the gestures for each gesture performed by an individual.

The output is a structure documenting relevant data for one iteration of each gesture by

an individual. This process is repeated five times to process the maximum five documented

iterations of each gesture performed by an individual. This procedure is required to run five

separate times due to complications in creating structures of structures. The function will

also generate NaN values if the same value is read from the Excel spreadsheet.

3.3.5 Data Filtering

To remove noise from the sensor data, the accelerometer and rate gyroscope data were

filtered using the written MATLAB functions filtacc.m and filtgyro.m, respectively.

Both functions utilize another written MATLAB function, filtmake.m, which allows for

use of either lowpass, highpass, and bandpass Butterworth filters and controlling order and

cutoff frequencies. Both filtac.m and filtgyro.m use a fourth order Butterworth band

pass filter with cutoff frequencies of 0.1 and 10Hz. These cutoff frequencies were chosen as

anything below 0.1Hz can be considered noise from gravity, and anything above 10Hz can

be considered noise as a majority of human motion does not exceed 10Hz.

The intention of these functions are to filter noise from the acceleration and rate gyroscope

data that can be caused by jostling sensors or external interference while not removing

data that can be considered relevant to any experiments where the tremors experienced

by an individual’s paretic upper extremity can be visually observed and interpreted from

profile data. These functions filter data automatically for all three axis of a sensor modality

simultaneously, but only operate one sensor at a time, so a built-in looping function is

necessary to process all the modalities from all the sensors.
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3.3.6 Feature Extraction

After the gestures are cataloged and filtered, features considered relevant are measured from

the isolated portions of data corresponding to a specified gesture. A custom MATLAB

function, gesturetests.m, used the axis data (accelerometer or rate gyroscope) and total

time data to generate multiple features. The output of gesturetests.m are the mean,

median, standard deviation, total number of peaks, power ratio from 0.1-1Hz, power ratio

from 1-2Hz, power ratio from 2-10Hz, jerk, mean square jerk, average root mean square, root

mean square, initial peak value, signal mass average, and total time of the gesture.

This function will generate a feature for all three axes measured by a specific sensor mode.

The procedure is required to run five times to process all five gesture structures generated

previously by GestureSaver30.m.

3.3.7 Data Plotting

To assist with debugging, a custom MATLAB function, Testplot.m, was used to generate

plots of a user-selected gesture that contain both the acceleration and rate gyroscope profile

for both upper extremities from a gesture. The function also differentiates between paretic

and non-paretic gestures. This function was designed with the intention of comparing

the differences between paretic and non-paretic versions of various gestures and further

confirming the validity of previous offset values.

3.3.8 Data Compiling/Storage

To allow for data analysis, a MATLAB function was written to save extracted features. The

MATLAB function, DataCompiler.m, will take the output data from GestureSaver30.m,

run gesturetests.m, and store the resulting features in a .mat file for future use.

The intention of storing the extracted features into a .mat format is to reduce processing

time required to replicate machine learning models by keeping all features saved. The .mat

format was considered more ideal than writing results into a Microsoft Excel spreadsheet

as less data was required and minimized the risk of overwriting data. This procedure was
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performed for each individual gesture for each participant. A visual representation of the

.mat file is presented in Figure 3.2.

Figure 3.2: Conceptual representation of layered feature data storage in MATLAB .mat
files.
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Chapter 4

Predicting Measures of Impairment

4.1 Introduction

In continuous, in–home data sets, one outstanding challenge is how to segment gestures [48,

49]. In a lab setting with video data, relating sensor data to task performance is a fairly

trivial task. However, in continuous data, this process has not been solved. Segmentation

techniques (for instance, zero–crossings) have been utilized but these do not necessarily

determine gesture start and stop times. The goal of the current approach is to adapt a

technique typically used in speech and audio processing known as a moving window. Rather

than segmenting gestures, a moving window consists of a fixed number of data points that

‘slides’ along the collected data [50]. Features from each window are calculated, and a

variety of modeling techniques can then be used to match the windowed data to a known

template. The current approach is designed to determine if such features, extracted from

sliding windows, are predictive of segmented, time–domain features sensitive to impairment.

4.2 Background

The motivation of this assessment was to take values of frequency domain and determine

if it may be capable of predicting time. One form of processing and recognizing gestures

is gesture segmentation, which utilizes segmentation techniques to recognize gestures. Data

segmentation often involves the use of separating large streams of data into smaller portions

20



of data, either with or without any overlap in the segmented portions of data. [42, 51].

This process can be difficult to process and recognize gestures, due to variations in gesture

time. This process is based off of continuous analysis, utilizing the frequency domain values

measured at any instance to predict the total time. [52].

4.3 Methods

When implementing machine learning techniques, it is always worthwhile to begin with

more simplistic models. Linear regression is one of the more fundamental forms of machine

learning. Previous research had discussed how gestures performed with paretic extremities

generally took longer than gestures performed with non-paretic extremities, and a difference

in measurement of frequency domain values between paretic and non-paretic motion data.

A method of predicting the total time of a gesture based on frequency domain values may

serve as a method to assess the quality of upper extremity gestures. In this application,

regression was considered to be a relevant field of study. Regression is a form of machine

learning that generates an approximate output through the use of an unknown function and

previous instances of input and their respectively known output values. This technique can

be used to measure the significance of particular values to predict the values of a desired

output.

4.3.1 Participants

Seven participants who had experienced stroke and met inclusion criteria were recruited

from the University of Tennessee Medical Center (Table 4.1). All participants were recruited

according to the rules of the Institutional Review Board of the University of Tennessee.

The participants were asked to perform the FMA while wearing the IMU sensors

utilized for this research, where the motion data profiles for each gesture were recorded

and documented. An instance of the motion data is presented in Figure 4.1.
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Table 4.1: Demographics of Study Participants

Participant ID# Study ID# Gender Impairment Age (years) FMA Score
5 1 F R 24 59
7 2 F R 67 48
8 3 F L 68 53
9 4 M R 86 36
10 5 F L 43 45
12 6 F R 86 30
13 7 M R 64 27

4.3.2 Initial Data Partition

Through the application of several written MATLAB functions, The measured features for

all individuals who performed the FMA were recorded into a large stacked structure.

4.3.3 Regression Models

The linear and nonlinear regression models generated through the linear and nonlinear fitting

functions, fitlm.m and fitnlm.m, respectively, both utilize the same series of equations to

determine if there is any difference in the error values. The general equation for the regression

analysis is presented as t = a ∗ x3 + b ∗ y2 + c ∗ z, where t represents the predicted output

of the equation, and x, y, and z represent the features selected for the analysis, respectively.

The values a, b, and c represent the weighted values that are generated by the regression

models.

The combinations of frequency domain variables were selected to be only variables that

belong to the same frequency range or to the same measured axis. The equations with

variables that are in the same frequency domain range were chosen based on previous findings

that frequency values measured from paretic gestures have a tendency to measure more values

in a particular frequency range [37]. The equations with variables that are all measured along

the same directional axis were chosen under the assumption that some gestures mainly require

only one degree of freedom, such as shoulder flexion or shoulder abduction.
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4.3.4 Linear Models

The MATLAB program, NewRegression.m, was written to run a large variety of linear

regression fitting functions using data cataloged from recorded values from individuals who

had previously performed the FMA. The results were documented into a spreadsheet for

further assessment. The use of linear regression begins with generating a table containing the

frequency domain values and total completion time for each gesture. Values that contained

missing data were filtered as some gestures contained fewer gestures than others.

The tables were split into a training and testing set to test any models that will be

generated within the program. A MATLAB function, LinearRandomizer.m, was written to

consistently generate a randomized training and testing set that are closest to a determined

ratio. The function was set such that each iteration will generate training and testing sets

where the training set comprised of approximately 75% of the total data.

The pre-built MATLAB function, fitlm.m, is implemented to generate 36 linear models

that attempt to fit the various combinations of frequency domain features to the desired

output value through the use of training models. Values relevant to the training models, such

as weights and intercepts, were documented and recorded on a separate spreadsheet.fitlm.m

operates with a variety of options to customize linear fitting models, such as allowing

intercept values, allowing robust fitting, and labeling input and output variables for

clarification. The default setting to allow intercept values to be generated in the fitting

models was allowed as forcing the fitting model to begin at zero would greatly reduce

accuracy of any model generated. These fitted models are intended to operate in small

windows and removing the intercept value may overgeneralize the results. The robust fitting

option was not implemented in the analysis as a variety of robust fitting options are available

in MATLAB and would increase the complexity of the regression function.

The pre-built MATLAB function, predict.m, is utilized to predict the output values

through the training models and testing set values. The function, LinearErrorTest.m,

performs two versions of error analysis. These two forms of error analysis are the squared

error and absolute error equations and are utilized for measuring error in regression
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models [46].

Squared Error: E(g|X) =
1

N

N∑
t=1

[rt − g(xt)]2 (4.1)

Absolute Error: E(g|X) =
1

N

N∑
t=1

|[rt − g(xt)]| (4.2)

The error values are also recorded in an Excel spreadsheet for further analysis.
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Figure 4.1: Accelerometer and rate gyroscope data for the Out of Synergy, Shoulder
Abduction task for the paretic and non–paretic limbs of Participants 1 and 5. These data
demonstrate patient variability as well as the typically larger amplitude and shorter duration
of paretic limb performance.

4.3.5 Nonlinear Models

The MATLAB program, NewRegression Nonlinear.m, was written to run a large variety

of nonlinear regression models using the same data as in the linear model analysis. Similar

to the linear model, a table is also created to record the same values and filter all missing

data.

The tables were split into a training and testing set to test any models that will be

generated within the program. A MATLAB function, LinearRandomizer.m, was written to

consistently generate a randomized training and testing set that are closest to a determined

ratio. The function was set such that each iteration will generate training and testing sets

where the training set comprised of approximately 75% of the total data.
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The pre-built MATLAB function, fitnlm.m, is implemented to generate the same 36

models from the linear analysis to create nonlinear regression models that predict the total

time spent performing a gesture against various combinations of frequency domain features

through the use of the training sets. Values relevant to the training models, such as weights

and intercepts, were documented and recorded on a separate spreadsheet.fitnlm.m operates

with a variety of options to customize linear fitting models, such as limiting attempts at

fitting, allowing robust fitting, and labelling input and output variables for clarification.

These fitted models are intended to operate in small windows and removing the intercept

value may overgeneralize the results. The robust fitting option was not implemented in the

analysis as a variety of robust fitting options are available in MATLAB and would increase

the complexity of the regression function. The option to search and remove any samples that

contained missing or invalid values from the analysis was left active as a secondary check to

ensure that the analysis operates as intended. The default value for iteration attempts to

minimize error was kept at the default value of 200 as it appeared to be a reasonable number

of attempts for each equation to be analyzed and return a relative degree of accuracy.

The pre-built MATLAB funciton, predict.m, is utilized to predict the output values

through the training models and testing set values. This process utilizes the same function

from the linear models, LinearErrorTest.m, to perform error analysis.

4.3.6 Fugl-Meyer Data

The linear and nonlinear regression model fits were recreated where the output values are the

Fugl-Meyer scores recorded for each individual when performing the gestures. A unique set

of gesture features was created as the Fugl-Meyer score only applies to the gesture attempt

that was the most accurate. The video footage of each individual’s FMA was reviewed to

visually assess the most optimal gesture attempts. These gestures were collected through

the use of the written MATLAB program, FMA Score Setup.m, and saved into a .mat file

for convenience.

Modified versions of the linear and nonlinear regression fitting programs,

FMA Linear Regression.m and FMA Nonlinear Regression.m, were written to process,

generate models, and document error values using FMA scores as an alternative to gesture
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time duration. Both programs utilize the same functions to generate training and testing

sets, generate models, test models, predict values from testing sets, and measure error values

from predicted values.

4.4 Results

4.4.1 Linear Time-based Regression

Tables 4.2 and 4.3 illustrate that the squared error for paretic and non-paretic linear

regression models are lower than the absolute errors. The error values for either error metric

for non-paretic regression models are lower than nonlinear regression models for paretic

gesture errors. The paretic gesture with the lowest squared error and absolute error is Out

of Synergy, Shoulder Flexion. The non-paretic gesture with the lowest squared error and

absolute error is Flexor Synergy.

4.4.2 Nonlinear Time-based Regression

Tables 4.4 and 4.5 illustrate that the squared error for paretic and non-paretic nonlinear

regression models are lower than the absolute errors. The error values for either error metric

for non-paretic regression models are lower than nonlinear regression models for paretic

gesture errors. The paretic gesture with the lowest squared error and absolute error is Out

of Synergy, Shoulder Abduction. The non-paretic gesture with the lowest squared error and

absolute error is Out of Synergy, Shoulder Flexion.

4.4.3 Linear FMA-based Regression

Tables 4.6 and 4.7 illustrate that the squared error for the FMA-based linear regression

models appear to be higher than the absolute error values measured for a majority of flexor,

extensor, wrist, and coordination-based gestures. The squared error values for the modified

FMA-based linear regression models appear to be lower for than the absolute error with

exception to Extensor (Elbow Extension and Forearm Pronation), coordination tremor, and

coordination dysmetria. Some models generate error values that were equivalent for all tested
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regression models for both FMA and modified FMA-based linear regression models. Some

equations generated results where all equations were measured with the same error values,

and are documented as ‘All Equal.’

4.4.4 Nonlinear FMA-based Regression

Tables 4.8 and 4.9 illustrate that the squared error values for the FMA-based nonlinear

regression models were larger than absolute error values with the exception of all wrist-based

gestures, coordination dysmetria, and coordination speed. The squared error values for the

modified FMA-based nonlinear regression were either equal or lower than the absolute error,

with the exception of coordination tremor and coordination dysmetria. The gesture with

the lowest squared error and absolute error for the FMA-based nonlinear regression model is

Coordination Dysmetria. The gesture with the lowest squared error and absolute error for the

modified FMA-based nonlinear regression model is Out of Synergy, Pronation/Supination.

Some equations generated results where all equations were measured with the same error

values, and are documented as ‘All Equal.’

27



Table 4.2: Results from Linear Analysis (Paretic)

Gesture Opt Eq. Sq Diff Err Abs Diff Err
Flexor Synergy t = pxa3

z = pxc2
z + pxbz 0.0491 0.16054

Extensor Synergy t = pxc3
z + pxb2

z + pxaz 0.01329 0.09933
Synergies, Hand to Lumbar t = pxb3

y + pxa2
y + pxcy 0.02175 0.08507

Synergies, Shoulder Flexion t = pxa3
x + pxb2

x + pxcx 0.00188 0.03581
Synergies, Pronation/Supination t = pxc3

y + pxa2
y + pxby 0.02108 0.11871

OoS, Shoulder Abduction t = pxc3
x + pxa2

x + pxbx 0.00386 0.04638
OoS, Shoulder Flexion t = pxb3

y + pxb2
z + pxbx 0.17782 0.32221

OoS, Pronation/Supination t = pxa3
x + pxa2

y + pxaz 0.00738 0.08127
Wrist-Stability, elbow at 90 t = pxb3

x + pxa2
x + pxcx 0.01097 0.1017

Wrist-Flexion/extension,elbow at 90 t = pxc3
z + pxc2

x + pxcy 0.24438 0.2976
Wrist-Stability, elbow at 0 t = pxa3

z + pxa2
y + pxax 0.07203 0.22022

Wrist-Flexion/extension, elbow at 0 t = pxc3
y + pxc2

x + pxcz 0.01423 0.07911
Wrist Circumduction t = pxa3

z + pxa2
y + pxax 0.27423 0.36172

Coordination Tremor t = pxa3
z + pxa2

x + pxay 0.0032 0.0504
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Table 4.3: Results from Linear Analysis (Non-Paretic)

Gesture Opt Eq. Sq Diff Err Abs Diff Err
Flexor Synergy t = pxa3

z + pxb2
z + pxcz 0.00079 0.01954

Extensor Synergy t = pxb3
x + pxa2

x + pxcx 0.03394 0.14153
Synergies, Hand to Lumbar t = pxb3

z + pxc2
z + pxaz 0.00832 0.08459

Synergies, Shoulder Flexion t = pxa3
x + pxb2

x + pxcx 0.00545 0.07156
Synergies, Pronation/Supination t = pxc3

z + pxa2
z + pxbz 0.097 0.29371

OoS, Shoulder Abduction t = pxc3
y + pxb2

y + pxay 0.02609 0.15634
OoS, Shoulder Flexion t = pxa3

x + pxb2
x + pxcx 0.02451 0.13161

OoS, Pronation/Supination t = pxa3
x + pxa2

z + pxay 0.00324 0.04374
Wrist-Stability, elbow at 90 t = pxc3

x + pxb2
x + pxax 0.03 0.16796

Wrist-Flexion/extension,elbow at 90 t = pxb3
x + pxa2

x + pxcx 0.11668 0.30069
Wrist-Stability, elbow at 0 t = pxc3

x + pxb2
x + pxax 0.0037 0.06031

Wrist-Flexion/extension, elbow at 0 t = pxb3
x + pxa2

x + pxcx 0.93606 0.63567
Wrist Circumduction t = pxa3

x + pxb2
x + pxcx 0.10599 0.2707

Coordination Tremor t = pxa3
x + pxa2

z + pxay 0.02275 0.12186
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Table 4.4: Results from Nonlinear Analysis (Paretic)

Gesture Opt Eq. Sq Diff Err Abs Diff Err
Flexor Synergy t = pxa3

z + pxb2
z + pxcz 0.10584 0.26799

Extensor Synergy t = pxa3
y + pxa2

x + pxaz 0.01657 0.11333
Synergies, Hand to Lumbar t = pxa3

y + pxb2
y + pxcy 0.00931 0.08599

Synergies, Shoulder Flexion t = pxc3
x + pxb2

x + pxax 0.01447 0.09293
Synergies, Pronation/Supination t = pxa3

z + pxa2
x + pxay 0.048 0.17744

OoS, Shoulder Abduction t = pxa3
y + pxa2

z + pxax 0.00215 0.03053
OoS, Shoulder Flexion t = pxb3

y + pxc2
y + pxay 0.00452 0.05846

OoS, Pronation/Supination t = pxb3
z + pxa2

z + pxcz 0.01521 0.1019
Wrist-Stability, elbow at 90 t = pxa3

x + pxb2
x + pxcx 0.0124 0.10874

Wrist-Flexion/extension,elbow at 90 t = pxc3
x + pxb2

x + pxax 0.00913 0.06211
Wrist-Stability, elbow at 0 t = pxa3

x + pxb2
x + pxcx 0.01677 0.11428

Wrist-Flexion/extension, elbow at 0 t = pxb3
z + pxb2

y + pxbx 0.00406 0.05563
Wrist Circumduction t = pxc3

x + pxb2
x + pxax 0.00602 0.07227

Coordination Tremor t = pxa3
y + pxa2

z + pxax 0.00313 0.05049
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Table 4.5: Results from Nonlinear Analysis (Non-Paretic)

Gesture Opt Eq. Sq Diff Err Abs Diff Err
Flexor Synergy t = pxb3

z + pxa2
z + pxcz 0.00233 0.04193

Extensor Synergy t = pxc3
z + pxc2

x + pxcy 0.02011 0.10493
Synergies, Hand to Lumbar t = pxa3

z + pxb2
z + pxcz 0.00343 0.04834

Synergies, Shoulder Flexion t = pxa3
x + pxb2

x + pxcx 0.0018 0.03111
Synergies, Pronation/Supination t = pxc3

y + pxc2
z + pxcx 0.00634 0.062

OoS, Shoulder Abduction t = pxa3
y + pxc2

y + pxby 0.00469 0.03968
OoS, Shoulder Flexion t = pxb3

z + pxb2
x + pxby 0.000028 0.00529

OoS, Pronation/Supination t = pxa3
y + pxa2

x + pxaz 0.00072 0.01949
Wrist-Stability, elbow at 90 t = pxa3

z + pxa2
x + pxay 0.00217 0.04403

Wrist-Flexion/extension,elbow at 90 t = pxc3
y + pxa2

y + pxby 0.0027 0.04743
Wrist-Stability, elbow at 0 t = pxc3

x + pxa2
x + pxbx 0.00072 0.02428

Wrist-Flexion/extension, elbow at 0 t = pxc3
z + pxa2

z + pxbz 0.0045 0.06449
Wrist Circumduction t = pxb3

x + pxa2
x + pxcx 0.00109 0.02953

Coordination Tremor t = pxb3
x + pxc2

x + pxax 0.00074 0.02316
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Table 4.6: Results from Linear FMA Analysis

Gesture Opt Eq. Sq Diff Err Abs Diff Err
Flexor-Elevation t = pxb3z + pxa2z + pxcz 0.130336 0.356801
Flexor-Shoulder Retraction t = pxb3z + pxa2z + pxcx 0.130336 0.356801
Flexor-Abduction(at least 90) t = pxb3x + pxc2x + pxax 0.121482 0.344261
Flexor-External Rotation All Equal 2.966892 1.274831
Flexor-Elbow Flexion t = pxb3y + pxb2x + pxbz & t = pxb3y + pxb2z + pxbx 6.692356 2.580006
Flexor-Forearm Supination t = pxc3x + pxb2x + pxax 0.238191 0.460558
Extensor-Shoulder add./int.rot All Equal 1.722568 1.186177
Extensor-Elbow Extension t = pxa3x + pxa2z + pxay & t = pxa3z + pxa2x + pxay 2.542927 1.21927
Extensor-Forearm pronation t = pxa3x + pxa2z + pxay & t = pxa3z + pxa2x + pxay 2.542927 1.21927
Movement combining synergies-Hand to Lumbar spine t = pxb3y + pxb2x + pxbz 1.605669 1.265285
Movement combining synergies-Shoulder flexion to 90 t = pxc3x + pxb2x + pxax 0.145824 0.289636
Movement combining synergies-Pronation of forearm t = pxa3y + pxc2y + pxby 1.215257 0.965828
Movement out of synergy-Shoulder abduction to 90 All Equal 3.686884 1.762316
Movement out of synergy-Shoulder flexion 90-180 t = pxa3x + pxb2x + pxcx & t = pxa3x + pxc2x + pxbx & t =

pxb3x +pxa2x +pxcx & t = pxb3x +pxc2x +pxax & t = pxc3x +
pxa2x + pxbx & t = pxc3x + pxb2x + pxax

0.068601 0.261917

Movement out of synergy-Pronation of forearm t = pxa3z + pxb2z + pxcz 3.151402 1.759335
Wrist-Stability, elbow at 90, shoulder at 0 t = pxc3x + pxc2z + pxcy 4.428973 1.739308
Wrist-Flexion/extension,elbow at 90, shoulder at 0 t = pxa3y + pxb2y + pxcy 3.175785 1.554728
Wrist-Stability, elbow at 0, shoulder at 30 t = pxc3x + pxc2y + pxcz 3.275699 1.809865
Wrist-Flexion/extension, elbow at 0, shoulder at 30 t = pxb3y + pxc2y + pxay 0.879418 0.809071
Wrist Circumduction t = pxb3x + pxc2x + pxax 0.840987 0.907166
Coordination-Tremor t = pxa3x + pxa2y + pxaz & t = pxa3y + pxa2x + pxaz 6.420031 2.533765
Coordination-Dysmetria t = pxc3x + pxc2y + pxcz 2.300377 1.37417
Coordination-Speed t = pxc3y + pxb2y + pxay 2.319446 1.227444
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Table 4.7: Results from Modified Linear FMA Analysis

Gesture Opt Eq. Sq Diff Err Abs Diff Err
Flexor-Elevation t = pxb3x + pxb2y + pxbz & t = pxb3x + pxb2z + pxby & t = pxb3y +

pxb2x + pxbz & t = pxb3y + pxb2z + pxbx & t = pxb3z + pxb2x + pxby &

t = pxb3z + pxb2y + pxbx

0.55974 0.74777

Flexor-Shoulder Retraction t = pxb3x + pxb2y + pxbz & t = pxb3x + pxb2z + pxby & t = pxb3y +

pxb2x + pxbz & t = pxb3y + pxb2z + pxbx & t = pxb3z + pxb2x + pxby &

t = pxb3z + pxb2y + pxbx

0.33629 0.52431

Flexor-Abduction(at least 90) t = pxa3x + pxa2y + pxaz & t = pxa3x + pxa2z + pxay & t = pxa3y +

pxa2x + pxaz & t = pxa3y + pxa2z + pxay & t = pxa3z + pxa2y + pxax

0.10891 0.30864

Flexor-External Rotation All Equal 0.5 0.5
Flexor-Elbow Flexion t = pxb3x + pxb2y + pxbz & t = pxb3x + pxb2z + pxby & t = pxb3y +

pxb2x + pxbz & t = pxb3y + pxb2z + pxbx & t = pxb3z + pxb2x + pxby &

t = pxb3z + pxb2y + pxbx

0.22659 0.47291

Flexor-Forearm Supination t = pxa3x + pxb2x + pxcx & t = pxa3x + pxc2x + pxbx & t = pxb3x +
pxa2x + pxcx

0.53305 0.68672

Extensor-Shoulder add./int.rot All Equal 1 1
Extensor-Elbow Extension t = pxc3x + pxa2x + pxbx 0.71367 0.62908
Extensor-Forearm pronation t = pxc3x + pxa2x + pxbx 0.71367 0.62908
Movement combining synergies-Hand to Lumbar spine t = pxb3x+pxb2y+pxbz t = pxb3x+pxb2z+pxby & t = pxb3y+pxb2x+pxbz

& t = pxb3y + pxb2z + pxbx & t = pxb3z + pxb2x + pxby & t = pxb3z +

pxb2y + pxbx

0.40758 0.63641

Movement combining synergies-Shoulder flexion to 90 t = pxa3z +pxc2z +pxbz & t = pxb3z +pxc2z +pxaz & t = pxc3z +pxa2z +
pxbz & t = pxc3z + pxb2z + pxaz

0.0647 0.24262

Movement combining synergies-Pronation of forearm t = pxa3z + pxc2z + pxbz 0.2182 0.44179
Movement out of synergy-Shoulder abduction to 90 All Equal 1 1
Movement out of synergy-Shoulder flexion 90-180 t = pxa3x + pxb2x + pxcx & t = pxa3x + pxc2x + pxbx & t = pxb3x +

pxa2x + pxcx & t = pxb3x + pxc2x + pxax & t = pxc3x + pxa2x + pxbx &
t = pxc3x + pxb2x + pxax

0.068601 0.261917

Movement out of synergy-Pronation of forearm t = pxb3z + pxc2z + pxaz & t = pxc3z + pxb2z + pxaz 0.04248 0.16206
Wrist-Stability, elbow at 90, shoulder at 0 t = pxa3x + pxb2x + pxcx & t = pxa3x + pxc2x + pxbx & t = pxb3x +

pxa2x + pxcx & t = pxc3x + pxa2x + pxbx

0.02033 0.13149

Wrist-Flexion/extension,elbow at 90, shoulder at 0 All Equal 0.5 0.5
Wrist-Stability, elbow at 0, shoulder at 30 t = pxa3x + pxc2x + pxbx & t = pxb3x + pxc2x + pxax 0.46065 0.56497
Wrist-Flexion/extension, elbow at 0, shoulder at 30 All Equal 0.5 0.5
Wrist Circumduction t = pxa3x + pxb2x + pxcx & t = pxb3x + pxa2x + pxcx 0.2572 0.37601
Coordination-Tremor t = pxc3z + pxc2y + pxcx 1.23423 1.05579
Coordination-Dysmetria t = pxa3y + pxc2y + pxby & t = pxb3y + pxc2y + pxay 1.88914 1.12425
Coordination-Speed t = pxa3y + pxc2y + pxby & t = pxb3y + pxc2y + pxay 0.05191 0.22784
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Table 4.8: Results from Nonlinear FMA Analysis

Gesture Opt Eq. Sq Diff Err Abs Diff Err
Flexor-Elevation t = pxa3

z + pxb2
z + pxcz 19.84509 4.099171

Flexor-Shoulder Retraction t = pxa3
z + pxb2

z + pxcz 19.84509 4.099171
Flexor-Abduction(at least 90) t = pxa3

x + pxa2
y + pxaz 24.84882 4.8836

Flexor-External Rotation All Equal 25.6274 4.93
Flexor-Elbow Flexion t = pxa3

y + pxb2
y + pxaz 13.37032 3.22738

Flexor-Forearm Supination t = pxa3
y + pxb2

y + pxcy 18.28482 3.651849
Extensor-Shoulder add./int.rot All Equal 17.1421 4.11
Extensor-Elbow Extension t = pxc3

y + pxc2
x + pxcz 5.461308 1.657551

Extensor-Forearm pronation t = pxc3
y + pxc2

x + pxcz 5.461308 1.657551
Movement combining synergies-Hand to Lumbar spine t = pxc3

x + pxc2
z + pxcy 4.998796 2.130839

Movement combining synergies-Shoulder flexion to 90 t = pxa3
x + pxa2

z + pxay 9.099362 3.006457
Movement combining synergies-Pronation of forearm t = pxa3

y + pxa2
z + pxax 1.818578 1.327413

Movement out of synergy-Shoulder abduction to 90 All Equal 4.20345 1.965
Movement out of synergy-Shoulder flexion 90-180 Err Err Err
Movement out of synergy-Pronation of forearm t = pxa3

x + pxa2
y + pxaz 6.584486 2.560697

Wrist-Stability, elbow at 90, shoulder at 0 t = pxb3
x + pxc2

x + pxax 0.284018 0.381928
Wrist-Flexion/extension,elbow at 90, shoulder at 0 t = pxc3

z + pxb2
z + pxaz 0.097153 0.238633

Wrist-Stability, elbow at 0, shoulder at 30 t = pxc3
y + pxa2

y + pxby 0.866339 0.903895
Wrist-Flexion/extension, elbow at 0, shoulder at 30 t = pxa3

z + pxa2
y + pxax 0.079325 0.209875

Wrist Circumduction t = pxb3
x + pxa2

x + pxcx 0.495568 0.650132
Coordination-Tremor t = pxa3

y + pxc2
y + pxby 0.814573 0.800932

Coordination-Dysmetria t = pxc3
y + pxc2

x + pxcz 0.005217 0.067957
Coordination-Speed t = pxc3

x + pxc2
z + pxcy 0.189099 0.43402
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Table 4.9: Results from Modified Nonlinear FMA Analysis

Gesture Opt Eq. Sq Diff Err Abs Diff Err
Flexor-Elevation t = pxb3

x + pxb2
y + pxbz 0.33398 0.55697

Flexor-Shoulder Retraction t = pxa3
z + pxb2

z + pxcz 0.18644 0.36439
Flexor-Abduction(at least 90) t = pxa3

y + pxa2
z + pxax 0.1081 0.31167

Flexor-External Rotation All Equal 0.5 0.5
Flexor-Elbow Flexion t = pxb3

x + pxb2
y + pxbz 0.07725 0.21023

Flexor-Forearm Supination t = pxb3
y + pxb2

x + pxbz 0.46384 0.6502
Extensor-Shoulder add./int.rot All Equal 1 1
Extensor-Elbow Extension t = pxa3

z + pxa2
y + pxax 0.24621 0.46361

Extensor-Forearm pronation t = pxa3
z + pxa2

y + pxax 0.24621 0.46361
Movement combining synergies-Hand to Lumbar spine t = pxb3

y + pxb2
x + pxbz 0.2661 0.3822

Movement combining synergies-Shoulder flexion to 90 t = pxc3
z + pxb2

z + pxaz 0.09673 0.29684
Movement combining synergies-Pronation of forearm t = pxb3

z + pxb2
y + pxbx 0.01748 0.1317

Movement out of synergy-Shoulder abduction to 90 All Equal 1 1
Movement out of synergy-Shoulder flexion 90-180 Err Err Err
Movement out of synergy-Pronation of forearm t = pxb3

z + pxc2
z + pxaz 0.0011 0.0277

Wrist-Stability, elbow at 90, shoulder at 0 t = pxa3
x + pxb2

x + pxcx 0.00592 0.07656
Wrist-Flexion/extension,elbow at 90, shoulder at 0 All Equal 0.5 0.5
Wrist-Stability, elbow at 0, shoulder at 30 t = pxa3

x + pxb2
x + pxcx 0.22784 0.38499

Wrist-Flexion/extension, elbow at 0, shoulder at 30 All Equal 0.5 0.5
Wrist Circumduction t = pxa3

y + pxa2
z + pxax 0.07025 0.24348

Coordination-Tremor t = pxb3
y + pxc2

y + pxay 5.14305 1.96445
Coordination-Dysmetria t = pxa3

y + pxc2
y + pxby 1.49395 0.94765

Coordination-Speed t = pxa3
y + pxc2

y + pxby 0.00377 0.05414
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4.5 Discussion

4.5.1 Nonlinear vs. Linear for Paretic

Our results suggest that Nonlinear and Linear regression models for gestures performed

with a paretic extremity may perform more optimally depending on the gesture in question.

These findings may suggest that due to the varying level of complexity in a gesture, as well

as variables in performance of gestures, it is more difficult to perform regression analysis

on paretic data. Dokkum et al. discuss that hemiparetic movement involves more sub-

movements and results in a less smooth trajectory [53]. This is only increased for gestures

that require inter-joint coordination and are not treating the upper extremity as a rigid body,

resulting in more variance in the measured data. Regression models can attempt to overfit

data when there is more variation in the input data. Nonlinear models are more likely to

overfit data with higher variance, while linear regression models are less capable due being

more limited in robust nature [46].

These findings can show relevance in further research towards gesture recognition in

paretic upper extremities. These results demonstrate that models utilized for paretic gestures

should be considered with respect to the particular gesture when implementing linear or

nonlinear regression models. Some limitations in the study include the limitation of samples

for use in the study, as smaller samples may increase the likelihood of machine learning

algorithms carrying bias in any analysis. This could be improved in further research by

collecting data from more participants to expand the data sample size implemented. Further

research could look into the use of other regression models, such as logarithmic regression.

4.5.2 Nonlinear vs. Linear for Non-paretic

Our findings suggest that Nonlinear and Linear regression models for gestures performed

with a non-paretic extremity generally perform more accurately with a nonlinear model as

compared to a linear model. These findings may suggest that while nonlinear models may

be more complex, they are generating more accurate results. While non-paretic extremities

are still affected by hemiparetic stroke, their performance is relatively closer to how they
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performed prior to stroke. When there are a relatively abundant amount of samples and a

relatively low value of variance, regression models operate the most ideally [46].

These findings can show relevance in further research towards gesture recognition in non-

paretic upper extremities. Unlike the results with comparing nonlinear and linear regression

models for paretic gestures, these results suggest that nonlinear regression models are much

more ideal for any regression model.

Some limitations in the study are mentioned prior with with comparing linear and nonlin-

ear gestures in that there are a small sample size utilized in this research. Recommendations

for further research have also been mentioned prior regarding logarithmic regression.

4.5.3 Paretic vs. Non-paretic

Overall results between Paretic and Non-paretic based models suggest that regression models

generally produce more accurate models for non-paretic gestures as compared to paretic.

This can suggest that non-paretic gestures are more capable of predicting with regression

models than non-paretic. Dokkum et al. discuss the larger amounts of sub-movements in

hemiparetic stroke and Alpaydin discusses how regression models have a tendency to generate

more accurate models when there is less variation [53, 46].

This may be relevant to fields such as computer or health science, as it may be work

performing regression models for paretic extremities based on models derived for non-paretic

extremities.

Some limitations in the study are mentioned prior with with comparing linear and nonlin-

ear gestures in that there are a small sample size utilized in this research. Recommendations

for further research have also been mentioned prior regarding logarithmic regression.
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Chapter 5

Differentiating between Paretic and

Non-Paretic Limb Performance

5.1 Introduction

A number of features, from visual inspection, differentiate paretic and non–paretic limb

performance. Many of these features are time domain dependent [54]. The goal of the

current approach is to determine if a broader set of features are useful for differentiating

between paretic and non–paretic limb performance. If successful, such a tool may be useful

for tracking changes in paretic limb capability over time in continuous in–home data.

5.2 Background

Individuals affected by stroke will have a likelihood to perform movements in a method that

is not consistent with how they will perform prior. Hemiparetic movements will often appear

more rigid and contain more discrete, smaller movements to correct their trajectory due to

neuromotor noise [53].

Clustering techniques such as k–nearest neighbors have primarily been used to distinguish

between different types of gestures using wearable sensor data. In previous studies, the

application of KNN with accelerometer data has proven useful recognizing specific physical
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activities using lower extremities, differentiating between types of daily activities, and

predicting neurological episodes [55, 56, 57].

5.3 Methods

KNN is a machine learning classifier that assesses data based on proximity to other data

points and their relative classification. The intention of using a clustering technique is that

while there are many ways an individual may have an impairment, individuals who are not

impaired will generate fairly consistent results. Using statistical features from individuals

who have experienced a hemiparetic stroke, it is believed that KNN may be capable to

discern between gestures that are either paretic or non-paretic based on the values of these

statistical features.

The APDM wearable sensor is capable of measuring both linear acceleration and angular

velocity through tri-axial accelerometers and rate gyroscopes, respectively. While the costs

of sensors have slowly decreased and allowed for this sort of technology to be applied in more

commercial environments, a sensor that only measures one metric with minimal difference in

efficacy will be more cost efficient. Any instance of a sensor that only uses a single modality

will be more ideal from a financial perspective to finance and utilize for practical applications.

Part of the experiment is to determine if a binary KNN classifier can be applied to upper

extremity gestures of individuals post stroke. A large quantity of samples from all relevant

FMA gestures are utilized for the KNN algorithms implemented from both paretic and non-

paretic upper extremities, along with a variety of parameters relating to modalities collected

from the APDM wearable sensors.

5.3.1 Model Setup

To run the KNN analysis, a series of sets needed to be generated in order to create a model

and test and validity or efficacy of the model. To run a KNN analysis, a portion of the

collected data, usually between 50% to 75% of the total data, is documented as the training

set and is used to create a classifier model. This classifier model is designed to classify and
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interpret data based on the samples and results from the training set with the assumption

that the training set represents an average population with minimal bias.

The remaining portion of data is referred as the testing set and is used to measure the

accuracy of the classifier model by comparing the output classifications predicted by the

model against the output classifications documented in the samples. Normally the accuracy

of a binary classifier can be measured through a confusion matrix, which measures the total

instances that sample was classified as any number of times a sample was classified and

whether that is the correct classification.

5.3.2 Software Implementation

Several custom and built-in MATLAB functions were used in this analysis. Using the .mat

files generated prior from the Setup.m MATLAB script, extracted features belonging to

either accelerometer or rate gyroscope modalities were stored into respective matrices using

the written MATLAB script, MatrixMaker.m, along with a third matrix that classifies each

sample as either paretic or non-paretic. The output matrices created by the function

contained only accelerometer-based features, only rate gyroscope-based features, or a

combination of both features.

The matrices were later split into two smaller matrices for training and testing sets. The

written MATLAB script, MatrixRandomizer.m, uses a consistent random number generator

to randomize all data sets such that the randomized orientation of all samples will match the

randomized orientation of the classifier values. The script also duplicates each matrix as it is

intended to compare the results of the same sets where one undergoes principle component

analysis (PCA) and the alternative sets do not undergo PCA.

A simple MATLAB function was written, confmat.m, to calculate the accuracy of all

KNN models using the measurements used in a confusion matrix. While a confusion

matrix will have four possible outcomes (True Positive, True Negative, False Positive,

False Negative), the MATLAB function combines the both true outputs and both false

outputs. Despite the difference in categorization, the measurement of accuracy is the

same as it measures the total number of accurate or true measurements over all attempted

measurements.
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The primary MATLAB script, KNNAnalysis.m, performed the KNN analysis on six

unique combinations of values to determine which set of parameters may have the highest

accuracy. For each unique set, the documented training set is implemented in the built-in

function, fitcknn.m, which generates a KNN-based training model using the training set

and associated output classification as input values. Using the testing set parameters, the

built-in MATLAB function predict.m uses the testing set and prior KNN model developed

by fitcknn.m to predict the output values for the testing set using the KNN training model.

The overall accuracy of the model is assessed by comparing the classifier outputs generated

by predict.m against the classifier outputs previously documented from the samples and

calculated through confmat.m.

5.3.3 Comparing Models

The KNN analysis was conducted on six sets of data to determine the level of accuracy

achieved with the provided data. The first three sets included a set containing only

accelerometer-based features, a set containing only rate gyroscope-based features, and a

set containing both accelerometer and rate gyroscope-based features. The first three sets

only received z-standardization in terms of data pre-processing in order for each feature

used in the study to have more influence due to larger values instead of variability. Z-

standardization is a form of data pre-processing that standardizes all values such that they

have a mean of zero and standard deviation of one. This standardization technique is used

as it is common for various machine learning applications to ensure that a feature is not

interpreted as more significant than another feature because of numeric value instead of a

The second three sets include the same variety of modality-based features, but was also

subject to principle component analysis, which modifies the data such that each column of

data is linearly independent and organized based on variability.
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5.4 Results

This section was originally published by Zachariah Nelson and Eric Wade:

Relative Efficacy of Sensor Modalities for Estimating Post-Stroke Motor

Impairment, IEEE Engineering in Medicine and Biology, Honolulu, HI, 2018

The class posterior probabilities of the six KNN analyses were utilized to determine model

performance. For the z−normalized data without PCA, the combined data sets performed

the best, with accelerometer–only showing reduced performance. Rate Gyroscope–only

model performed the worst of the three. For the PCA data, the combination performed

identically to the rate gyroscope–only model, and both better than the accelerometer–

only. In both the accelerometer– and rate gyroscope–only datasets, the application of

PCA improved model performance. However, the application of PCA slightly decreased

the performance of the combination model. The results are presented in Table 5.1

Table 5.1: Results from KNN Analyses

Features z−norm z−norm + PCA
Accelerometer 70.15% 72.38%
Rate gyroscope 65.67% 69.40%
Accelerometer & Rate gyro 73.13% 72.38%

5.5 Discussion

This section was originally published by Zachariah Nelson and Eric Wade:

Relative Efficacy of Sensor Modalities for Estimating Post-Stroke Motor

Impairment, IEEE Engineering in Medicine and Biology, Honolulu, HI, 2018

5.5.1 Relative Performance of Sensor Modalities

The classification errors of the z−standardized data indicate that when taken alone, the

accelerometer demonstrates better performance than the rate gyroscope. The use of both

sensor modalities results in the best performance, suggesting they contain complementary
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information. The differences in individual sensor modality performance may be due to the

properties of the movements. Since impairment can be described as joint level limitations,

FMA task performance depends on joint range–of–motion. Thus, a more impaired individual

may have reduced motion amplitude proportional to reduced joint capability. A translational

sensor (e.g., the accelerometer) may therefore be more sensitive to the FMA tasks.

This can become relevant to choices in sensors used for therapy, as it is demonstrated

that multiple modalities will be beneficial to performance. Limitations to the analysis were

mentioned prior in chapter four regarding sample size. Further exploration of this concept

may require the use of other assessments that measure disability at the impairment level of

the ICF model.

5.5.2 Relative Performance of PCA

Given the number of features, we sought to investigate if the commonly used PCA feature

selection method will alter the performance of the classifier as a reduced feature set will likely

result in improved computational cost, relevant to the eventual deployment of this approach.

Despite the improvement in accelerometer and rate gyroscope alone classifiers, the PCA

transformed data resulted in no difference between rate gyroscope alone and the combined

accelerometer an rate gyroscope data. Further, when compared to the z−standardized data,

the accuracy of the combined classifier decreased. This may be due to the underlying nature

of the complementary information of the accelerometer and rate gyroscope; specifically, if

the variability in these data are uniformly aligned with one of the principal components, the

other orthogonal components may cause the two classes to be indistinguishable [58].

The implication of this research can benefit stroke rehabilitation as the results imply that

the PCA may reduce the accuracy of the classifier. Further analyses will explore dimensional

reduction approaches (such as kernel PCA, which may mitigate this variability limitation)

to determine the role, and relative importance, of the full feature set.
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5.5.3 Overall Model Performance

While other systems using sensor data and functional assessments demonstrate higher

classification accuracies, our results differ due to the overall purpose of the approach of the

current study. Other research including our own, has addressed the problem of comparing or

predicting assessment scores using sensor data [59, 24, 60, 61, 62]. The goal here is ultimately

to use continuously monitored motion data to track longitudinal changes in impairment, as

measured by motor activity. Though new segmenting techniques are being developed, the

variability associated with upper extremity task performance renders it difficult to train

recognition models for every type of activity. Therefore, features sensitive to impairment

that may be taken, for instance, from sliding window data (e.g., frequency domain features,

jerk, signal magnitude area) may be ideal for such continuous monitoring. Models capable

of incorporating these metrics may prove useful for the eventual application domain.
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Chapter 6

Discussion

6.1 Regression

6.1.1 Comparison of Linear and Nonlinear Models

Our findings suggest that nonlinear regression models generate more accurate prediction

models than linear regression models when analyzing non-paretic Data, while only specific

nonlinear regression models yielded more accurate predictions than linear with respect to

paretic gestures. These results may advocate that nonlinear models may perform more

efficiently or equivalently to linear models for non-paretic gestures. Nonlinear models are

more complex and can allow for regression models to fit the data more accurately than

linear [46]. The low error values may also recommend that total gesture time may be

predicted through the use of frequency domain features.

These findings may be relevant to physical and occupational therapists as they

demonstrate that a model can be developed that can compare frequency domain values

to a continuous range of values, potentially allowing for therapists to better measure the

rate of improvement an extremity may perform specific gestures.

The relevance of the findings are that a more efficient regression model could yield

more accurate results from sensor data and assist in providing feedback to a physical or

occupational therapist and improve quality of therapy sessions for individuals post-stroke.
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The sample size of the participants was small with respect to the research conducted. The

amount of some recorded gestures are less than other gestures, as the frequency of successful

performances varied between participants. This can suggest that further study with larger

samples may produce models for some gestures that are more accurate.

6.1.2 Comparison of Total Samples to FMA Scores

Results from the FMA-based regression models propose that linear models using only paretic

gesture data to predict FMA scores may be the most efficient model. This is likely that the

use of six variables instead of three may have over-defined the model [63]. This can be

relevant to the topic of measuring gesture performance against a quantifiable values such as

the FMA.

The sample size of the participants was small with respect to the research conducted. The

amount of some recorded gestures are less than other gestures, as the frequency of successful

performances varied between participants. It is also worth considering that FMA scores are

meant to be discrete values and regression models are more designed for continuous values.

The FMA only scores the optimal gesture in any session, so the sample size was severely

diminished for all FMA-based regression models. This can propose that further study with

larger samples may produce models for some gestures that are more accurate.

6.2 Clustering

6.2.1 Significance of Analyzed Modalities

Our findings propose that a binary KNN classifier performs optimally when features from

both accelerometer and rate gyroscope sensors are utilized as compared to use individually.

This suggests that the output values from both sensor modalities may provide complimentary

information. These findings can also recommend that wearable sensors may not benefit from

the use of PCA if both modalities are utilized, as the accuracy of the KNN model decreased.

Our binary classification of upper-extremity motion quality was less accurate than the

analysis performed by Dolatabadi et al. [64]. It should be noted, however, that their analysis

46



was towards differentiating the gait performance of healthy individuals and individuals post

stroke, while our analysis has been focused on differentiating between paretic and non-

paretic upper extremity gestures of individuals post stroke. It can also be noted that their

analysis utilized features derived from the orientation of appendages and average velocity

from motion-capture sensors, whereas our analysis utilized features derived from linear

acceleration and angular velocity from IMU sensors.

The relevant importance of these results can suggest that wearable IMU sensors can

recognize upper extremity gestures as either paretic or non-paretic. As mentioned prior, this

could benefit individuals post-stroke undergoing therapy.

The sample size utilized in research was relatively small as some subjects can not be used

due to missing data from faulty sensors. As mentioned in Chapter 4, the results are limited

by a smaller sample size.

A subject that remains to be explored is if modality accuracies can improve if more than

one IMU sensor is utilized when measuring each extremity. It can be relevant to determine

if more accurate results may be obtained if features measured from sensors located along

the upper arm or trunk are also assessed. Further research can be performed regarding

the validity of the modality accuracies with a more robust sample or if both modalities are

unnecessary when analyzing specific gestures. Another topic of research can be to determine

if KNN can be applied to recognizing FMA scores, as these results may be more meaningful

to occupational therapists providing feedback is sensors can assess that a particular gesture

is showing improvement with respect to the FMA.

Stroke is a serious illness that requires extensive physical therapy to overcome. Use of

sensors with modalities that can provide greater accuracy can allow for physical therapy to

be supplemented with information collected from an individual’s home environment.

There are a few results from the analysis to take away from the thesis. Analysis of

KNN proposes that combinations of accelerometer and rate gyroscope modalities leads to

more accurate measurement of paretic and non-paretic extremities as compared to individual

modality use. The regression analysis suggests that nonlinear models are generally more

accurate than linear models. These results may hold relevance in the concept of neuroscience

and neurorehabilitation, as the KNN results submits the relevance of multiple modalities
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providing more accurate results when analyzing gestures post stroke and the regression

results proposes that particular models for each gesture may result in optimal prediction

of gesture time through methods such as ”window mapping”. These methods can be

applicable to health sciences by demonstrating the promising concept of gesture recognition

of sensors worn in external environments to supplement and provide feedback for physical

and occupational therapy.

6.3 Contributions

Relevant contributions to the subject include the development of MATLAB programs that

import H5 files, extracting meaningful motion data from those files, and performs a variety

of signal processing and feature extraction functions. While this is not relevant to a large

scientific community, this does hold significance for future researchers to have a more

streamlined approach to processing IMU sensor data.

Contributions made with respect to regression methods include opening the possibility

for further analysis of testing linear and nonlinear regression to measure to predict results

based on frequency domain values. This work has also contributed to promote the concept

that FMA scores could be measured through the use of frequency domain values.

Further contributions were made for KNN classification as this work demonstrates that

gestures can be recognized between paretic and non-paretic. We have also contributed to the

neurorehabilitation by demonstrating that more accurate results are achieved through the

use of combining accelerometer and rate gyroscope modalities instead of only implementing

a single modality.
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Chapter 7

Conclusion

The purpose of this research study was to investigate the application of machine learning

techniques to quantitative motion data for individuals post stroke. Through wearable

sensors, therapists may receive more feedback regarding the activity levels of patients and

where how to better focus future sessions. While more accurate results may currently be

achieved from video capturing systems in a lab environment, wearable sensors can be utilized

in external environments and provide recommendations to the participant in use of the

sensors will act in a more natural fashion.

Analysis of linear and nonlinear regression models to predict total gesture time through

the use of frequency domain values suggest that nonlinear models are equal or more accurate

when compared to linear models.

Comparison of accuracy in gesture recognition with through KNN of various modalities

propose that combining features from accelerometers and rate gyroscopes result in the most

accurate results. The measured accuracy may advocate that KNN and the features utilized

may warrant future research in classifying performance of upper extremities post stroke.
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