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Abstract

This work evaluates Tor users’ risk of de-anonymization in the presence of a network-level

adversary. We evaluate the likelihood that a Tor user, who is consuming modern web content,

will be susceptible to a traffic analysis or watermarking attack. This work shows that the

previously studied point-to-point model for Tor connections is not realistic and does not fully

capture the risk of de-anonymization for Tor users. We show these results by measuring

network paths along key parts of a Tor circuit. First, we measure the paths between the Tor

exit relays and web resources requested when accessing the Alexa Top 1000 websites. Then,

we use available and trusted traceroute data to approximate paths between Tor users and

likely guard nodes. Then, the intersection of these paths at an autonomous system level is

examined to determine if they share any elements. If the intersection of the paths is non-

empty, then a Tor user making a request with those paths is susceptible to de-anonymization.

Results from weighted selection of Tor exit and guard relays indicate that a Tor user

visiting a random Alexa Top 1000 website is susceptible to de-anonymization with 20%

probability for almost half of the Alexa Top 1000. Multiple resources account for significant

additional de-anonymization risk over the point-to-point model, and shorter network paths

to content distribution nodes do not effectively compensate. Moreover, examining the

intersection of paths to resources in the top-level domains of a website does not full eliminate

the risk of de-anonymization under the AS-Aware Tor problem.
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Chapter 1

Introduction

Onion routing systems, specifically the Tor project, provide anonymity for end-users by

means of a telescoping encryption system with VPN-like request passing. A Tor client will

create a ”circuit” of three relays; each relay has an associated public key. The Tor client

will encrypt a message with each relay’s key and address the encrypted message to the next

hop relay in the circuit. The message is then sent to the first relay in the circuit, the guard

relay, which decrypts it and forwards it to the next relay. This process continues until the

message reaches the exit relay, which removes the last layer of encryption and sends the

request contained in the message on behalf of the client. Each relay only knows the previous

hop and next hop of the message – in this way the client and destination are un-linkable to

any single hop on the message path [2].

An adversary that can observe both ends of the communication chain – the client-guard

and exit-destination paths – can link the client and destination via packet-size analysis

and traffic watermarking attacks [6]. Individuals can perform such attacks by controlling

a the guard and exit relays in a client’s circuit while an autonomous system (AS) can de-

anonymize users by observing traffic at any point along the two paths at the ends of the

Tor communication. The ability of an AS on the client-guard and exit-destination path to

de-anonymize Tor users is called the AS-Aware Tor problem, and it has been the subject

of many studies and attack efforts [7].

Recent studies like [7], however, model Tor connections as point-to-point tunnels and

use tools like wget to retrieve items from a single IP address through a Tor connection. In
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reality, though, modern Internet content, especially HTTP web pages, consist of resources

from multiple sources that are retrieved by the client at the time of the request or upon

page load. Moreover, modern web resources extensively request external resources after the

initial request by embedding requests in JavaScript through AJAX or other technologies.

Since these resources are heavily used and shared throughout the web, they are often hosted

on content distribution node(s) (CDN(s)) to make them more readily available to end-users.

This work analyzes the privacy implications of the previously unexamined effects that

CDNs and multi-domain web resources have on Tor connections with respect to the AS-

Aware Tor problem. To do this, we construct a system to request web content from each

Tor exit node, traceroute the AS-level path to the web resources for the Alexa Top 1000

from each exit, and determine the likelihood of the de-anonymization based on the likely

paths to guard nodes as generated by TorPS [5]. To do this, we use Python’s Stem library

to construct Tor circuits through various exit nodes. We then request all Alexa Top 1000

websites, record the resolved IP addresses for each resource requested, and then approximate

the AS-level path from each resolved IP to the exit node by tracerouting the IP addresses

with a RIPE ATLAS probe in the same AS as the exit node. Likely guard nodes are selected

for each exit node through TorPS, and the AS-level paths between guards and clients are

constructed through CAIDA traceroutes over the preceding four months. The intersection

of these AS-level paths are then calculated, showing the likelihood of an AS being on both

the client-guard and exit-destination path.

The rest of the paper is organized as follows: Section 2 details how an AS can de-

anonymize Tor users through various watermarking techniques and the state of the art in

threat mitigation. Section 3 will describe how the relevant data was collected through Tor

and how the effects of CDN and multi-domain web content are measured. Section 4.2 will

discuss the measurement results and how these results are interpreted. Section 4 provides a

model for the likelihood of de-anonymization of Tor users given the results of the previous

section. Finally, related work is discussed in Section 5 and the contributions are summarized

in Section 6.
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Chapter 2

Background

2.1 Onion Routing and the Tor Project

Onion routers are network systems that pass messages via multiple hops through multiple

network hosts from a client to a destination. Typically, they also provide layered encryption

and additional privacy-preserving features. The Tor Project is one of the most prolific onion

routing systems, and is the system this work focuses on. Thus, when we refer to ’Tor’, we

mean the onion routing system proposed by [2] and implemented by The Tor Project.

Tor provides un-linkability between a client and a server via a multiple hop message

passing system with layered encryption. This process is illustrated in Figure 2.1. The client

forms a ’circuit’ of 3 relays – a guard, middle, and exit – and obtains a public-key for each of

the relays. The client then encrypts its message in layers, first with the public key of the exit

relay, then with the public key of the middle relay, and finally again with the public key of

the guard relay. The client then sends its triple-encrypted message to the guard node. The

guard node decrypts the first layer of encryption on the message, but cannot remove the next

layer of encryption since it does not know the middle relay’s private key. After removing

the first layer of encryption, though, the guard now sees that the message is destined for the

middle relay selected by the client. The guard relay therefore forwards the message to the

middle relay, which repeats this process until the message finally reaches the exit relay. The

exit relay removes the final layer of encryption, revealing the plain text message. The exit

relay then sends the message to the end destination and repeats the process in reverse back
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to the client. The server, however, only sees a message coming from the exit node and hence

does not know that the client sent the message. Additionally, the exit relay only knows

that the message came from the middle relay, so it too does not know the identity of the

client. The only relay that knows the identity of the client is the guard node, but the guard

node does not know the identity of the destination server. In this way, the server does not

know the identity of the client, nor do the relays know the identity of both the client and

destination. Therefore, this system provides client-destination un-linkability, or anonymity.

2.2 De-Anonymization via Watermarking and Flow

Analysis

There were originally only a few theorized de-anonymization attacks on Tor. One obvious

attack would be if an adversary controlled all of the relays in use by a given client. Then,

the adversary would be able to decrypt all of the messages and find out who sent them by

tracing the hops back from the exit relay. A less obvious attack involves an adversary that

controls only the guard and exit node in use by a client, illustrated in Figure 2.2. In such

a scenario, the adversary can de-anonymize the client via latency watermarking and traffic

flow analysis.

In a latency watermarking attack, the adversary adds a unique pattern of brief delays

between packets when the guard node receives packets from the client. The adversary then

looks for a the same pattern of delays as the traffic is passed to the exit and out to the

server. If the adversary sees this same latency pattern as traffic is forwarded from the exit

to a server, then the adversary knows which client is attempting to talk to the server that is

the recipient of the watermarked traffic. The adversary can also perform traffic flow analysis

by counting the number of packets received by the guard node and sent by the exit node

in a given time period. Over a long enough period of time the adversary can correlate the

number of packets in particular traffic streams and likewise link a client and destination,

successfully de-anonymizing the Tor user.
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(a)

(b)

(c)

Figure 2.1: How Tor Works from [4]
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2.3 AS-Aware Tor Problem

The scenario where an adversary controls the guard and exit nodes is just a particular

instance of a more generalized attack scenario. If any network-level entity ever simultaneously

lies on the path between the client and guard and between the exit and server, then that

entity can de-anonymize the client via the same watermarking attack described in 2.2. In

terms of de-anonymization, controlling a part of the client-guard and exit-destination paths

is equivalent to controlling a guard and/or exit relay, respectively. Since the network entities

that transit traffic are typically internet service providers (ISP), or collections thereof, this

attack is considered feasible only at the level of autonomous systems (AS). An AS is a

collection of network routing entities, like ISPs or a singular ISP, that advertises routes to a

collection of IP address prefixes that it maintains. The feasibility of ASes to de-anonymize

Tor users if they control part of the client-guard and exit-destination routes is consequently

referred to as the AS-Aware Tor problem; it is illustrated in Figure 2.3. This attack has

been well studied by [7] and [5] and has been shown to be effective under a point-to-point

connectivity model.

6



Figure 2.2: Watermarking when an Adversary Controls Guard and Exit

Figure 2.3: AS-Aware Tor Attack Diagram
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Chapter 3

System Design

3.1 The Multiple-Destination Model

Previous research on the AS-Aware Tor problem considers Tor connections as point-to-point

communications – a single client connects to a single destination over Tor. Modern web

traffic, however, does not conform to this model, and our intuition suggests that most Tor

user traffic is web traffic as opposed to FTP or some other form. Modern websites frequently

load in resources from different domains. These resources are then retrieved by separate

requests made by the user to different domains and they could happen at different times

during or after the page load via HTML events or AJAX. Therefore, there are typically

multiple destinations per website visit, so the number of exit-destination connections is

greater than one for a single client. This increases the likelihood of an overlap in the client-

guard and exit-destination network paths over the point-to-point model. Popular websites

are typically cached in content distribution nodes (CDN), though, so these paths might be

shorter than those under the point-to-point model. The shorter paths would consequently

decrease the likelihood of an overlap in these paths. An illustration of this multi-destination

model is given in Figure 3.1, which also examines the measurement components of this

work. This work examines the effects that these two modern web content aspects have on

the AS-Aware Tor problem.
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3.2 Measuring Destinations per Website

The destinations are the resources that are contacted to complete a website load. Since

these resources could be requested via HTML events or JavaScript, a full-browser is needed

to emulate a normal Tor user. Therefore, the Selenium browser automation framework was

used to visit each website in the Alexa Top 1000. Since resource requests and IP addresses

will vary by the location of the request, each website must be requested through exit nodes

in distinct ASes. To do this, Python’s Stem library was used to programatically construct

Tor circuits through exit relays in distinct ASes. The websites are then requested by URL

through the constructed Tor circuits, allowing the exit relays to handle DNS resolution as

they normally would. The IP addresses that are resolved for each resources are then logged.

This process is repeated for each website and exit AS combination, and is illustrated in

Figure 3.1a.

3.3 Measuring Exit-Destination Paths

Since the destinations of each website are measured in 3.2, the paths between the exit relays

and these destinations must be measured to determine if they overlap with the client-guard

paths. The network path between two hosts can be determined by performing a traceroute

from one to the other. Unfortunately, Tor offers no way to perform traceroutes from exit

nodes, so the exit-destination paths must be approximated. The AS-level path between the

exit and destinations will determine the risk of de-anonymization in a scenario, so any host

with the same AS-level path as an exit relay will provide a sufficiently close traceroute to

the destinations. Since the finest-grained unit of routing on the internet is defined by the

/24 of the IP address space, a host in the same /24 as an exit relay will have roughly the

same AS-level path.

To approximate this path, RIPE Atlas probes are used to traceroute the destinations

from the same ASes as the exit relays. RIPE Atlas is a network measurement infrastructure

of volunteer-hosted probes around the world that allow individuals to request network

measurements at the cost of credits. For each exit relay, the RIPE Atlas probe in the
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same AS as the exit relay conducts a traceroute to the IP addresses of the resources loaded

for each website in the Alexa Top 1000. The IP-level traceroutes are then resolved to the

AS-level path between the exit relay and the destination resources using BGP data from

Routeviews. This provides the AS-level paths between the exit and destination resources as

shown in Figure 3.1b.

3.4 Client-Guard Paths and Relay Selection

To measure the Client-Guard paths, a similar AS-level path approximation is obtained like

that described in 3.3. CAIDA Ark traceroutes are used instead of RIPE Atlas traceroutes

since the amount of guard relays vastly outnumbers the number of potential exit relays

for a Tor circuit. The traceroutes to the same /24 address spaces of guard relays is used

as an approximation of client-guard paths, where the client is the CAIDA Ark performing

the traceroute. With the client-guard paths known, Tor relays must be selected based on

available measurement vantage points. Therefore, only exit relays that have a RIPE Atlas

probe in the same AS are considered. Likewise, only guard relays that share an AS with a

CAIDA traceroute target are considered in this measurement. Once the potential guard and

exit relays are known, like in Figure 3.1c, the client-guard paths can be approximated from

the CAIDA traceroutes, resulting in full knowledge of the path except for the middle relay

path. The known measurement components are summed up in Figure 3.1d.
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(a) Destinations Measured with Selenium (b) Exit-Destination Paths Measured with
RIPE

(c) Known Relays (d) Complete Path Sans Middle Relay

Figure 3.1: Measurement Components to Evaluate Risk of De-Anonymization
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Chapter 4

Evaluation

4.1 Tor Circuit Simulation

To evaluate the risk of de-anonymization, the likelihood of an overlap in client-guard and

exit-destination paths must be determined for each combination of client AS, guard AS, exit

AS, and domain. Tor circuit construction is not random, however. The exit relay is first

selected based on its bandwidth, the middle is selected based on the bandwidth of the exit,

and likewise the guard is selected based on the bandwidth of the middle. Additional caveats

are made based on the reputation of certain relays. Fortunately, prior work on simulating

this path selection algorithm has already been done by [5] with their path simulator TorPS.

TorPS, Tor Path Simulator, takes as input a consensus document, which details the Tor

relays available for circuits and generates circuits based on the Tor path selection algorithm.

Using TorPS, the multinomial probability of guard and exit relays was calculated – the

likelihood that a relay occurs is directly proportional to its frequency of occurrence in TorPS.

Our simulator then used these probabilities to choose simulate Tor circuit construction along

with a uniform sampling of all client ASes, which is equivalent to the ASes of the CAIDA

Arks. We generate 1000 circuits, consisting of a client AS, guard relay, and exit relay, and

determine if the client-guard and exit-destination paths intersect for each website in the

Alexa Top 1000. Using the CAIDA Ark traceroutes between the client AS and guard relay,

we determine the client-guard path. Then, for each resource loaded in from a website, the

path from the exit to that resource is retrieved from the RIPE Atlas probes’ traceroutes.
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Now that we have both the client-guard and exit-destination paths, we take the intersection

of the client-guard path and the path between th exit and each resource. If any of these

intersections are non-empty, then that client is susceptible to de-anonymization when visiting

that website.

4.2 Results of Path Intersections

There are 114 distinct ASes that contain both a Tor exit relay and a RIPE Atlas probe, 130

distinct ASes that were the target of a CAIDA traceroute, and 203 distinct ASes that host

a CAIDA Ark monitor. This corresponds to 114 potential exit ASes, 130 possible guard

ASes, and 203 possible client ASes in this simulation. There are roughly 3 million possible

combinations of these data points. We generate 1000 circuits, consisting of a client, guard,

and exit AS, selected by the probabilities described in the prior section. For each domain,

the exit-destination paths are intersected with the client-guard paths to determine if there is

any intersection. The results of these intersections suggest that the risk of de-anonymization

is greater than 20% for more than half of all the websites in the Alexa Top 1000, as indicated

by the CDF illustrated in Figure 4.1a.

However, some resources are loaded in for nearly all websites; gstatic, for instance, is

loaded into roughly 90% of the websites in the Alexa Top 1000, so being able to link a client

to gstatic does not reveal much about the website the client is visiting. To determine the risk

of de-anonmyization of more identifying resources, we examine the intersection of the client-

guard paths with the exit-destination paths of resources with the same top-level domain

(TLD) of the website that the client is visiting. The CDF of these TLD path intersections

in Figure 4.1b indicate that there is still a non-trivial risk of de-anonymization. Examining

only paths to resources with the same TLD only reduces the number of websites with greater

than 20% chance of de-anonymization to roughly 400 websites.

Moreover, these distinct resources are typically located in distinct /24 IP address spaces,

which are likely to have distinct AS-level paths. As shown in Figure 4.2, the average

number of resources loaded in a website are almost directly proportional to the number

of distinct /24s. Most content is not co-cached in the same CDN, if at all, so there are

13



(a) CDF of Non-Empty Intersection by Website

(b) CDF of Non-Empty Intersection of Top-Level Domain Paths vs All

Figure 4.1: Risk of De-Anonymization over Websites
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not many reductions in the number of paths. Therefore, the multiple resources contribute

significantly to the risk of de-anonymization, and the shorter paths to CDNs do not

significantly compensate for these additional paths. In comparison to the point-to-point

model, a traceroute to the main resource in the NY Post website yielded a 21% chance of

de-anonymization against an active AS adversary while loading all resources yields a 35%

chance of de-anonymization.
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(a) CDF of Average Resources by Website

(b) CDF of Average /24s by Website

Figure 4.2: Average Resources vs /24s
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Chapter 5

Related Work

Related work on the AS-Aware Tor problem provides only partial countermeasures and

does not reflect the multiple connections to CDNs that server cached content. Work by [3]

collected actual Tor data, but did not collect any data on connection context in order to

preserve user privacy. The results of the work suggest that client traffic is heavily generated

by a few ASes and that there are a few ASes which are nearly unavoidable in terms of

servicing client-guard and exit-destination paths. The authors only collected data pertaining

to a small number of websites, though, and the modern web topology may have have changed

significantly since the time of its writing.

A low-latency solution to AS-Aware Tor path selection was proposed in [1], which

accounts for possible multiple destinations per Tor connection. The solution, however,

inferred AS relationships based on BGP data, which as the authors point out is not a

perfect prediction of the AS-level paths between relays. Additionally, the path selection

requires prior knowledge of the destination location, which requires either a hard-coded IP

addresses or out-of-band DNS requests. In addition to the un-avoidable ASes pointed out by

[3], the path taken to avoid particular ASes may be sufficient information to fingerprint the

destination of Tor connections. There are also latency increases as a trade-off for a supposed

increase in anonymity.
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Chapter 6

Conclusion

In this work we show that the previously studied point-to-point model of Tor connections

does not capture the full risk of de-anonymization under the AS-Aware Tor problem. The

results suggest that the multiple destinations visited per website request account for a

significant portion of the risk of de-anonymization and that the shorter paths to CDNs

do not compensate for the increased risk of visiting multiple destinations per website load.

Moreover, the number of distinct /24s visited per resource is nearly proportional, suggesting

that co-cached content is sparse. The significance of these results across a wide variety of

measurement vantage points and relay selections indicate that these risks are very much real

to current Tor users.

6.1 Future Work

The measurement system and data collected during this work provides many more

opportunities for analysis and possible countermeasures. A network level adversary may

not be able to discern a client’s destination from a single resource that is widely shared

across websites, but there has been significant work in fingerprinting website access via

the advertisements and resources loaded. Specifically, some resources may be indicative of

particular website accesses. In the future, we would like to determine how the anonymity set

of website shrinks as particular resource requests are made known to a network adversary.

Locating co-cached content and CDNs in the network topology would also be useful to
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avoid long paths between exits and destinations. In reference to 5, there are some proposed

solutions to the AS-Aware Tor problem that should be vetted by this methodology and

system. Specifically, the solutions in [1] should be examined under the multiple destination

model and the path selection should be tested under a fingerprinting attack.
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