
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

5-2018 

Cloud Anchor: An Exploration of Service Integrity Attestation with Cloud Anchor: An Exploration of Service Integrity Attestation with 

Hardware Roots of Trust Hardware Roots of Trust 

Christopher Alexander Craig 
University of Tennessee 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

Recommended Citation Recommended Citation 
Craig, Christopher Alexander, "Cloud Anchor: An Exploration of Service Integrity Attestation with Hardware 
Roots of Trust. " Master's Thesis, University of Tennessee, 2018. 
https://trace.tennessee.edu/utk_gradthes/5030 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268800321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F5030&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by Christopher Alexander Craig entitled "Cloud Anchor: 

An Exploration of Service Integrity Attestation with Hardware Roots of Trust." I have examined 

the final electronic copy of this thesis for form and content and recommend that it be accepted 

in partial fulfillment of the requirements for the degree of Master of Science, with a major in 

Computer Science. 

Maxfield J. Schuchard, Major Professor 

We have read this thesis and recommend its acceptance: 

Joseph B. Lyles, Stacy J. Prowell, Jinyuan Sun 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Cloud Anchor: An Exploration of

Service Integrity Attestation with

Hardware Roots of Trust

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Christopher Alexander Antone Craig

May 2018



c© by Christopher Alexander Antone Craig, 2018

All Rights Reserved.

ii



To my wife and dying ambition...

iii



Acknowledgments

I would like to thank my wife, my committee, and the musical stylings of Hail Mary Mallon

for getting me through this. In addition, I want to thank praise the wisdom of my advisor,

Max Schuchard and the entirety of the VolSec student group for giving me the tough love

my work so desperately needed.

iv



Abstract

Distributed computing has enabled developers and researchers to solve complex problems at

an impressive scale. Users implicitly trust these subtasks to be performed accurately and this

trust can be abused by malicious service providers who aim to compromise the integrity of the

system. These problems can be solved by using dedicated hardware; however it is expensive

or impossible to distribute this solution to all providers in a system. In this paper, we explore

InTest, a service integrity attestation framework that uses replay-based consistency checks

to detect malicious service providers without the use of dedicated hardware. We investigate

if its performance is affected by network topology, its accuracy in the face of incomplete

information, and if it can be improved by minimally utilizing dedicated hardware. Our

preliminary solution, Cloud Anchor, reduces the number of duplicated tasks by 30% while

providing identical detection rates as the prior solution.

v



Table of Contents

1 Introduction 1

2 Background 3

2.1 Distributed Systems and Cloud Environments . . . . . . . . . . . . . . . . . 3

2.2 Roots of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Trusted Platform Module . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 SGX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Byzantine Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Remote Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The IntTest Simulator 8

3.1 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 IntTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 IntTest Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Simulator Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Task Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Exploring the IntTest Framework 14

4.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Function Crossover Scenarios . . . . . . . . . . . . . . . . . . . . . . 16

4.2.2 Pipeline Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



4.3 Realistic Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Cloud Anchor 28

5.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Cloud Anchor Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusions 35

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 37

Appendices 40

A Additional Graphs and Figures . . . . . . . . . . . . . . . . . . . . . . . . . 41

Vita 45

vii



List of Tables

4.1 Function Densities for a Tall Pipeline . . . . . . . . . . . . . . . . . . . . . . 15

A1 Function Densities for a Wide Pipeline . . . . . . . . . . . . . . . . . . . . . 44

viii



List of Figures

3.1 Example of a replay-based consistency check . . . . . . . . . . . . . . . . . . 9

3.2 Complete consistency graph for function f . . . . . . . . . . . . . . . . . . . 9

3.3 Attestation Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 3 service functions, 10 providers each, 20% malicious nodes . . . . . . . . . . 15

4.2 3 service functions, 10 providers each, 20% malicious nodes, partial crossover 17

4.3 3 service functions, 10 providers each, 20% malicious nodes, partial crossover 18

4.4 Example of a Tall and Wide 27 Node Pipeline . . . . . . . . . . . . . . . . . 19

4.5 10 service functions, 3 providers each, 20% malicious nodes, no crossover . . 20

4.6 10 service functions, 3 providers each, 20% malicious nodes, crossover . . . . 21

4.7 10 service functions, 3 providers each, 20% malicious nodes, full crossover . . 22

4.8 Geometric Distribution of the wide and tall pipeline configurations . . . . . . 23

4.9 Graphing attestation graph densities for a wide pipeline . . . . . . . . . . . . 24

4.10 Three functions, 1000 data tuples, 20% malicious providers, no crossover . . 25

4.11 Ten functions, 1000 data tuples, 20% malicious providers, partial crossover . 26

4.12 Ten functions, 1000 data tuples, 20% malicious providers, full crossover . . . 27

5.1 Example of Cloud Anchor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Three functions, 1000 data tuples, no crossover . . . . . . . . . . . . . . . . . 31

5.3 Duplication frequencies of a wide pipeline with partial crossover . . . . . . . 32

5.4 Duplication frequencies of a wide pipeline with partial crossover . . . . . . . 33

5.5 Wide service pipeline, 1000 data tuples, partial crossover, with liars . . . . . 34

ix



A1 Three functions, 1000 data tuples, 20% malicious providers, partial crossover,

with liars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A2 Three functions, 1000 data tuples, 20% malicious providers, full crossover,

with liars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A3 Ten functions, 1000 data tuples, 20% malicious providers, no crossover, with

liars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x



Chapter 1

Introduction

Distributed systems can be a wonderful tool for solving widespread and difficult tasks by

allowing a user to effectively scale their workload, storage, and communication to the size of

their problem. This scalability makes it difficult to manage the integrity of this shared service

without proper administrative tools in place. Orchestration and configuration management

can be used to produce a resilient infrastructure but for environments that are sensitive to

interruptions, downtime can be costly. Remote attestation offers a way for administrative

systems to question a service provider and verifiers to submit proof of their integrity.

Existing remote attestation implementations [Shi et al., Eldefrawy et al., Seshadri et al.]

can effectively provide service integrity for their distributed systems, but either require

specialized hardware or kernel support. These requirements may be difficult or impossible

to deploy in a large-scale cloud or grid computing environments.

In this paper, we explore a software-only service integrity framework named IntTest which

uses an integrated graph analysis scheme to pinpoint malicious service providers. First, we

ask if IntTest is an efficient service integrity solution and show that it can accurately pinpoint

malicious providers with only a few edges in its graph-based solution. We then show how

its performance may vary given different service configurations. We demonstrate how it

performs suffers under realistic adversarial models. Finally, we reveal how IntTest can be

enhanced with minimal use of dedicated hardware through our solution: Cloud Anchor.

The rest of this paper is laid out as follows. Chapter 2 will provide relevant background

on cloud computing, remote attestation, and graph theory concepts used in the IntTest

1



solution. Chapter 3 will present the fundamental prior work to the IntTest solution, the

methodology behind the framework, and the intuition behind our simulation. In Chapter 4

we will explore the solution through our simulation and demonstrate its performance under a

variety of scenarios. Lastly, Chapter 5 reveals our improvement to the system Cloud Anchor

and preliminary results on its efficiency and effectiveness in the aforementioned environments.

Finally, Chapter 6 will present future work and our conclusions.

2



Chapter 2

Background

2.1 Distributed Systems and Cloud Environments

Distributed systems are modern computing architectures that have changed the way we

consume and process information. While simply defined as a system of computers attached

via a network, their utility can be expressed in a variety of Software-Oriented Architectures.

Service-Oriented Architectures are a novel design that offers attributes of the distributed

environment to the end user. Infrastructure-as-a-Service allows users to use the physical

infrastructure of the distributed system as if it were bare metal to control networking,

memory, and core cpu usage. This is accomplished via abstractions such as virtual

machines and cloud computing software. Platform-as-a-Service offers a base-of-operations

for developers to run and execute custom software on their machines. These programs do not

interact with the bare metal directly but are commonly used as development environments or

deployment platforms. Software-as-a-Service offers the user an application that is deployed

across the distributed network for scalability and availability.[Alonso et al.]

The proliferation of Service Oriented Architectures has lead to an increase in distributed

security concerns as each platform exposes portions of the network to malicious applications

and users who aim to break through those abstractions.

3



2.2 Roots of Trust

Trust anchors are a security primitive in which the item’s security is assumed and not

derived. In certificate chains, X509 root certificates provide the starting link in a chain

of trust. In distributed systems, they offer a guaranteed starting point for many trusted

computing environments or a location for a centralized trusted device. Hardware roots of

trust are essential in developing a robust, secure computing environment.

2.2.1 Trusted Platform Module

A Trusted Platform Module is an international standard for a secure coprocessor that

performs various tasks related to cryptographic keys to secure the host machine. The main

specification was designed by the Trusted Computing Group and provides a suite of hardware

components to enable a variety of features.

It is capable of providing a secure pseudorandom number generator for cryptographic

primitives and key generation and management. These features enable it to perform

attestation for protected services and trusted boot.[Morris]

2.2.2 SGX

Intel Software Guard Extensions are a set of extensions to the Intel architecture that can

guarantee confidentiality and integrity for application in spite of the operating system or any

higher privileged application on the device.[Costan and Devadas]

2.3 Byzantine Fault Tolerance

For a shared or distributed computing environment, a Byzantine fault is any fault or

disagreement when a result is presented to different observers. These can lead to in Byzantine

failures which is when a system loses service due to a Byzantine fault in any system that

require consensus.[Driscoll et al.]

The name itself comes from a colorful description of Byzantine generals at war who must

come to a consensus on when to sack an enemy city. The generals and their lieutenants

4



are mounted on different sides of the city and must communicate with messengers. The

challenge is to come to this consensus and guarantee the messages have not been modified or

misreported by a traitors messenger, lieutenant, or general. In spite of the anthropomorphic

representation of the problem, it appears frequently in distributed systems that must have

consistent information.[Lamport et al.]

If the functioning components of a Byzantine fault tolerant system are operating correctly,

they will continue to provide the system’s service with improved resiliency.

2.4 Graph Theory

The implementations extended in this paper depend on certain fundamental concepts in the

domain of graph theory: cliques and minimum vertex covers.

Cliques are a subset of vertices of an undirected graph such that every two distinct

vertices in the clique are connected by and edge or adjacent. Another way to view this

concept is that the subgraph formed by the edges and vertices of the clique is complete. A

maximal clique is a clique can not be increased by adding a single adjacent vertex in the

graph, meaning it is the largest complete subgraph of a graph. Finding the maximal clique

of a graph can be accomplished efficiently via the Bron-Kerbosh algorithm.

Bron-Kerbosh is an efficient algorithm discovered by Dutch computer scientists Coenraad

Bron and Joep Kerbosch in 1973. It’s a recursive backtracking algorithm that, given 3 sets,

will discover all maximal cliques of a graph in the set.[Bron and Kerbosch]

Another important concept of graph theory to understand for this paper are vertex covers

and specifically the minimum vertex cover of a graph. A vertex cover is defined as a subset

of vertices in a graph such that all edges of the subset are incident to at least one vertex in

the larger graph. More simply, it’s a set S of vertices of G such that every edge of G has

at least one of member of S as an endpoint. A minimal vertex cover is the smallest set of

vertices whose edges cover the entire graph. While the concept seems simple, finding the

minimum vertex cover of a graph is a classically NP-Complete problem. The approaches

used in the paper can approximate the minimum vertex cover in a timely manner due to the

size of the graphs produced.[Karakostas]

5



2.5 Remote Attestation

Remote Attestation is a concept that allows a computer’s integrity to be evaluated by a

remote party. This is commonly performed to check for unknown malware present in the

memory (persistent or volatile) of a system. Its utility can be extended to detect insufficient

configurations, objectionable system properties, or benign software that may not comply

with the party’s license agreements.[Lpez and Zhou]

The concept of remote attestation the relationship between two machines: an attestor and

a verifier. Similar to its legal definition, the attestor is one who attests to the integrity of the

system by providing their signature or checksum. The verifier is the individual or system that

is initializing the challenge and verifying the received checksum. Common implementations

require computing a checksum or token that will either produce an incorrect result or cause

a measurable delay if modified.[Francillon et al.]

Sharing a symmetric key, the verifier submits a challenge to the attestor with a nonce

and expects the result in a limited amount of time to constrain any efforts from malicious

attacker to forge a legitimate response. The attestor must prove they have a legitimate

section of software loaded into memory. They combine the requested value with the nonce,

sign the response, and return it to the verifier. The verifier checks the signature and the

response from the attestor.[Shi et al., Eldefrawy et al., Seshadri et al.]

Remote attestation frameworks can be used in a variety of environments but are simply

demonstrated in a distributed network. Distributed networks can be meticulously managed

to ensure each node is performing as intended with an unmodified firmware with untampered

input however this does not scale with the growth of these networks. To ease the overhead

required to manage distributed nodes, hardware trust anchors can used to manage keys,

attest sections of memory. Most remote attestation frameworks that use trust anchors assume

they are applied on all critical nodes of a network and concern themselves with efficient

management of the attestation metadata. While hardware anchors can successfully check

the integrity of nodes in a distributed network, there are many cases in which a hardware

anchor is unavailable for a node, or the critical service is provided by a third party. In these

6



cases, software-only approaches are novel ways to accomplish network integrity without

additional hardware.[Lpez and Zhou]

Software-only remote attestation schemes have been developed to attest memory regions,

process integrity, and even controlled execution. SCUBA[Eldefrawy et al.], a software-only

approach based on it’s predecessor Pioneer[Seshadri et al.], is able to attest to memory

regions of the remote system by ensuring the checksum is calculated atomically. Another

method, BIND[Shi et al.] is able to attest to the memory region of an application nd its

output to verify not only the applications integrity but it’s output. These functions can

be extended to run processes in a controlled manner by passing the controlled execution

environment to the critical application. The benefit of these approaches are the exclusion of

dedicated hardware but recent improvements to hardware trust anchors can guarantee these

properties more efficiently and effectively.

Most implementations required trusted hardware to be ubiquitous throughout the

environment Others required a third-party to confirm memory regions or signatures. Initial

implementations of this are can be improved with a costly oracle, but not a hybrid solution.

7



Chapter 3

The IntTest Simulator

3.1 Preliminary Work

As mentioned in the prior section, cloud computing is an effective means of solving complex

problems with distributed, parallel solutions. In particular, data-stream processing services

appear to be an effective use of the scalability and distribution cloud computing offers; but

when many tasks are distributed to disparate service providers, the ability to fully control

those services becomes increasingly difficult. To combat this problem, RunTest and its

similar frameworks were devised to guarantee the service remained intact as its modular

components were distributed to other service providers.

RunTest[10] is a lightweight attestation scheme that determines dataflow integrity

by graphing and analyzing consistency relationships between service providers without

additional hardware. RunTest expected If two service providers are functionally equivalent

and produce different results from the same input, one can be considered malicious. These

replay-based consistency checks are used to effect the edges of a consistency graph for each

function in processing pipeline.

Consider the following graph in Figure 3.1. For the given data processing pipeline, there

are three service functions f, g, h that are processing data in stages by providers 1 − 9. As

data flows through the pipeline, the RunTest framework will record a percentage of the full

data-paths at random. It then sends the same input values along a different service path. If

two service providers were given the same inputs and the same outputs were produced, the

8



Figure 3.1: Example of a replay-based consistency check

service integrity is preserved and these providers are considered bengin. If the values differ,

it can be assumed that one of the given outputs is invalid and its creator is malicious.

Figure 3.2: Complete consistency graph for function f

RunTest builds a weighted graph by comparing the intermediate and final results of each

functionally equivalent service provider with each other. This can pinpoint which provider in

the processing pipeline is modifying the result. The inital approach incurrs a high overhead

since the duplications require a full run through the processing pipeline to produce redundant

results. The authors of their respective papers developed IntTest to alleviate the attestation

overhead and reduce false positives.

3.2 IntTest

IntTest[8] is an attestation scheme that builds upon its predecessor RunTest[10] by

abandoning weighted graphs in favor of simple per-function consistency graphs and a global

9



inconsistency graph. Relationships between service providers are still determined using

replay-based consistency checks which process verified input values across different service

providers and compare their results. Instead of subtracting values from a weighted edge, an

edge is placed in the function’s consistency graph if they agree. Alternatively, an edge is

placed in global inconsistency graph if these values disagree.

(a) Consistency Graphs (b) Inconsistency Graph

Figure 3.3: Attestation Graphs

After all input has been processed and our graphs have been formed, IntTest iterates

through each graph to pinpoint malicious service providers. Following the pseudocode in

Figure 1

The algorithm is divided into two halves that first analyze the global inconsistency graph

followed by each consistency graph. The inconsistency graph is connecting edges between

two disjoint sets of consistent and inconsistent nodes. This bipartite graph has a minimum

vertex cover containing the most inconsistent service providers. The pinpoint algorithm uses

this as a lower estimate for the number of malicious service providers we assume to be in

the system. Our upper-bound is constrained to bn/2c. The algorithm iterates over each

provider in the graph and calculates the sum of its neighborhood and remaining edges in the

node’s residual graph. If the sum is above our estimate K, the provider will be pinpointed

as a suspicious node and added to the set Ω.

10



Algorithm 1 Pinpiont Malicious SPs (G,Gi)

function PinpointMaliciousSPs(G,Gi)
2: for every K ∈ [|CG|, bN/2c] do

Ω = ∅, R = ∅
4: for every node p in G do

compute |Np|+ |CG′
p
| > K

6: if |Np|+ |CG′
p
| > K then

Ω = Ω ∪ {p}
8: end if

end for
10: final malicious node set R = R ∪ Ω

if R = ∅ then
12: continue

else
14: for every Gi do

compute Mi

16: set Ωi to the subset of Ω appearing in Gi

if Ωi ∩Mi 6= ∅ then
18: R = R ∪Mi

end if
20: end for

end if
22: end for

end function

The second half iterates through each consistency graph searching for the maximal clique,

which represents the largest group of consistent nodes for that function. If any values are

missing from that group, they are added to the malicious set Mi for further analysis.

In the final stage we search for providers present in both Mi and Ω and add their groups

to the final set of malicious nodes R.

3.3 IntTest Simulator

The simulator has been developed in Python to fully replicate an implementation of the

IntTest[8] attestation framework. Unlike its predecessor RunTest[10], IntTest investigates

service integrity with two separate graphs that represent consistency and inconsistency

relationships between service providers. These results are collected and processed in turn to

produce a list of potentially malicious nodes.

11



The original was developed to operate in the NCSU virtual computing laboratory[vcl]

which is similar to Amazon’s Elastic Cloud service[ama]. The original authors deployed an

instance of IBM System S[str], a high-performance stream processor, and manage the input

and output values for all participating service providers. The simulator abstracts the task

processing dataflow into a simple pipeline to investigate the overload incurred by duplicating

results without the additional overhead of the underlying system.

3.4 Simulator Data Structures

To abstract the nuanced operations of the System S the simulator uses a combination of

simpler data structures known as Tasks, Functions, and Nodes. Tasks are defined as a

series of functions that iterate through the pipeline processing functions f1, f2, . . . , fn for

n functional stages. A task does not have to strictly follow an iterative pipeline in the

simulation but we follow the example set in the IntTest implementation.

A Function represents an independent piece of the dataflow pipeline which is simply

implemented to pass along boolean values to the next stage in the pipeline. As with the

source material, our functions must be input-deterministic.

Nodes are simple data objects that can be labeled malicious or benign at the start of the

simulation. If a nodes input and return values remain True, the node is considered benign and

will report an unmodified output state. A malicious node will always return False and fail

our distance measures. A Node may support multiple functions, but we choose to explore the

effectiveness of the attestation scheme may benefit from various levels of functional crossover

in Chapter 4.

3.4.1 Task Processing

When a task is processed it undergoes the process described in Section 3.2 and each full run

of the pipeline is compared to a functionally equivalent duplicate. For IntTest to make a valid

comparison the inputs must be equivalent for two nodes to be fairly compared. This is true

for intermediate results as well. As a task is processed, the input for each service provider

is recorded. Once the task is finished processing, its return values are compared and edges

12



are formed in their respective attestation graphs. This is sufficient for most data processing;

but a benign node may perform the function correctly on tainted input data. Keeping this

in mind, the Node’s output value only report on the individual node’s performance on the

given input data, to more accurately reflect a proper evaluation function for each pipeline

stage.

13



Chapter 4

Exploring the IntTest Framework

IntTest was designed for Service-Oriented architectures that process data through known

functionally equivalent service providers in a series. The framework can compare intermedi-

ate values in an efficient manner to devise suspicious service providers and bypass their

influence on the distributed system. In our investigation, we ask if IntTest excessively

duplicates tasks to fill its attestation graphs. We inquire how the performance of the

framework changes in the face of different service configurations and a realistic attack model.

Lastly, we wonder how the existing implementation can be improved if given a costly oracle

to derive the integrity of a provider.

4.1 Efficiency

The IntTest framework operates under the expectation that all pipeline functions will be

thoroughly attested and their function graphs should be as dense as possible. They come

to rhis step by choosing a percentage of input values to be used for random replay-based

consistency checks. To avoid detection they must randomize the input values and their paths

to ensure the attacker is unable to predict when they may be attested and avoid detection.

This implies there are many redundant consistency checks in which a pair of providers has

already been checked. We inquire whether a complete function graph and inconsistency

graph are necessary for a complete evaluation or can the effort of searching for the last few

unattested pipeline paths?

14



We tested this with a pipeline of three functions with ten unique nodes to service each

function. 20% of the total pool of providers are classified as malicious and we perform our

service checks over 1000 unique data inputs to iterate over the duplication percentage. The

malicious nodes were consistent as duplications increased and the results were the average

of ten runs. This will reflect how many consistency checks are required to attain an accurate

classification.

Figure 4.1: 3 service functions, 10 providers each, 20% malicious nodes

Table 4.1: Function Densities for a Tall Pipeline

Duplication Percentage Function f1 Function f2 Function f3

20% 0.98 0.82 0.89

30% 0.98 0.96 0.93

40% 1.0 1.0 1.0

50% 1.0 1.0 1.0

15



Figure 4.1 shows that IntTest reaches near 100% true positive rates within the first few

checks. Following that, false positives are less than 10% within 200 duplications. Table 4.1

shows the function densities are not fully formed at 20% duplications yet we can easily

arrive at an accurate classification of malicious nodes. IntTest dictates that we would have

to perform another 200 duplications until the conditions are satisfied for analysis.

4.2 Performance

We can conclude that there is an unnecessary amount of redundancy needed to form dense

attestation graphs, but is this true for all service pipeline configurations? To explore this

concept we will first evaluate function pipelines with multi-purpose nodes and then pipelines

that change the ratio of providers to service functions.

4.2.1 Function Crossover Scenarios

Service providers do not have to be dedicated to a single service and can support a variety

of functions. This crossover can be extremely helpful in the aforementioned service-integrity

frameworks. Consistency graphs contain attestation information on one function and its

service providers; but a malicious provider can be more easily discovered if they tamper

multiple functions and appear in multiple graphs. In our evaluation, we divided the

multifunctionality of a service provider into three configurations to accommodate different

distributed system environments: None, Partial, and Full.

No Crossover

This configuration considers that each service provider only support a single function. This

would be describe a dedicated distributed system that may lacks redundancy but each

provider is highly specialized to handle the task. Figure 4.1 reflects this configuration state

and will be our baseline for performance comparisons. We can see from Table 4.1 that it can

form three complete function graphs at 400 duplications and accurately classify benign and

malicious nodes.

16



Partial

Partial crossover considers the jobs are evenly distributed across service providers and every

node supports at least two service functions. This scenario represents a highly-available

distributed system, in which certain functions are widely distributed across dedicated nodes.

These nodes may perform other tasks but are not solely dedicated to serving a single purpose.

Figure 4.2: 3 service functions, 10 providers each, 20% malicious nodes, partial crossover

As Figure 4.2 shows, there is a slight, but improved performance. The intuition is that

these malicious providers should be present in multiple consistency graphs. Since a malicious

node and a benign node will always disagree, fewer consistency checks are required to discern

the presence of a malicious provider.

Full

The Full crossover configuration represents an environment in which all service providers are

capable of handling every function. This is similar to a job pool scenario where there are no

dedicated providers and all tasks are simply distributed to whichever provider is available.

17



Figure 4.3: 3 service functions, 10 providers each, 20% malicious nodes, partial crossover

Interestingly, the evidence shows that IntTest has a difficult time handling this scenario.

It can easily detect malicious nodes but can not discern malicious from benign and begins to

classify the vast majority of nodes as malicious. Function densities show at 1000 duplications

show that f1 has only 88% of the edges in its function graph, f2 has 79% density, and f3 has

only 68% density. Meaning the maximal clique for each function graph is not fully-formed

and performance can ultimately be hindered by multifunctionality.

4.2.2 Pipeline Configuration

In addition to service crossover, the number of service functions supported by a single data-

processing pipeline may not be small. For our evaluation we consider two types of pipeline

configurations depending on the ratio of service providers to service functions.

18



(a) Tall Service Pipeline

(b) Wide Service Pipeline

Figure 4.4: Example of a Tall and Wide 27 Node Pipeline

Tall Service Pipelines

Pipeline configurations in which there are fewer service functions than there are service

providers are considered to be Tall. The testing parameters above displayed a simple pipeline

of three service functions with ten providers for each function. Figure 4.1, Figure 4.2, and

Figure 4.3 display the accuracy and performance of the IntTest framework under the three

aforementioned crossover configurations.

Wide Service Pipelines

Wide service pipeline configurations have many service functions but only a small relative

number of service functions to support each function. This can be seen in Figure 4.4a, in

19



which input must pass through nine service functions and only three service providers can

support each effort.

To explore Wide pipeline configurations, our pipeline consisted of ten service functions

and three providers for each function.

When every provider for each function is distinct, we notice a considerable performance

impact. Figure 4.5 reveals true positive rate at 34% while false positives remain low. If there

is partial crossover, performance is not as great as its tall counterpart. Figure 4.6 shows

that having multi-function providers makes malicious nodes easier to pinpoint, however false

positives are difficult to remove without additional duplications. If in a job pool scenario

with full crossover, Figure 4.7 shows we are completely unable to discern a malicious node

from a benign one. The function graph density for this graph can be found in Table A1.

Figure 4.5: 10 service functions, 3 providers each, 20% malicious nodes, no crossover

If we take a moment to consider why the wide configuration caused such poor

performance, there is a key difference in the way IntTest analyzes pipelines. The framework

can only make a valid comparison between two providers if the input is identical. For the

20



Figure 4.6: 10 service functions, 3 providers each, 20% malicious nodes, crossover

first tall pipeline, one must only select three providers from a specific test pool. For our

wide pipeline, we must select ten providers and our odds are higher of selecting a malicious

node that would effect our given input path. Figure 4.8 shows the geometric distribution of

each service function pipeline with %20 of our providers being malicious. The cumulative

distribution function of this distribution shows that we are much more likely to encounter a

malicious node in our service path if we are given a wide pipeline as opposed to a tall one.

If IntTest is unable to make valid comparisons, it will have a difficult time classifying

malicious providers. Figure 4.9 shows how this effects the per-function consistency graphs

for a wide pipeline. Graphs for the first three functions are able to become complete graphs

fairly quickly as more duplications are added to its analysis. The next three functions come

closer to complete graphs but they require significantly more duplications. Functions f4,f5,

and f6 struggle at 600 duplications and function graphs for f7 and f8 are appear to not

converge after 1000 duplications.

21



Figure 4.7: 10 service functions, 3 providers each, 20% malicious nodes, full crossover

It appears much of IntTest’s performance can be dictated by the pipeline’s configuration

and we are unable to improve its detection capabilities with additional duplications. In

particular, the information available for analysis becomes more sparse as the pipeline adds

more service functions. While a complete graph is not required for correct classification,

it is easier to have false positives if no comparisons are made between benign nodes. This

analysis was performed under the assumption that malicious providers will always report an

incorrect value when attested, however what where to happen if the attack model were more

realistic?

4.3 Realistic Attack Model

The original IntTest attack model only considered the scenario in which the malicious

provider compromise the integrity of the service function every time it is asked. RunTest[10],

its predecessor, used weighted graphs to derive the inconsistency of a provider. This is not

22



Figure 4.8: Geometric Distribution of the wide and tall pipeline configurations

the case for this service framework, which will permanently classify a node malicious on its

first offense. While a reasonable scenario, it is not realistic as a malicious provider may lay

in wait and risk detection compromising a particular input value. To analyze this scenario,

we enable the malicious provider to lie and report as a benign node with a probability of

50%.

As our previous section demonstrated, its performance is largely dependent on the

pipeline configuration. We suspect that tall pipelines will be fairly resistant to this level of

tampering. As stated in Section 4.2.2 there many service paths chosen for service integrity

checks and each have a relatively small path of three service functions. There is less likelihood

that a malicious node will be in the path than a wide pipeline. The Figure 4.10 confirms our

suspicions and is able to quickly arrive at the correct number of malicious nodes and benign

nodes at 200 duplications; however the averages are noticeably more volatile with malicious

nodes changing their answers.

23



(a) Functions f1,f2,f3 (b) Functions f4,f5,f6 (c) Functions f7,f8,f9

Figure 4.9: Graphing attestation graph densities for a wide pipeline

Performance already suffered under wider pipelines and the same is true when the attack

model has changed. Figure 4.11 shows the performance similar performance but with much

more volatility. There are certain configurations that appear extremely difficult if near

impossible, such as Figure 4.12. It appears that in the face of lying adversaries, IntTest’s

performance can only worsen. In the following section, we explore how a physical trust-

anchor can improve the performance and efficiency of the IntTest framework.

24



Figure 4.10: Three functions, 1000 data tuples, 20% malicious providers, no crossover

25



Figure 4.11: Ten functions, 1000 data tuples, 20% malicious providers, partial crossover

26



Figure 4.12: Ten functions, 1000 data tuples, 20% malicious providers, full crossover

27



Chapter 5

Cloud Anchor

Cloud Anchor builds upon the framework laid out by Juan Du, Wei Wei, Xiaohui Gu, and

others in the RunTest[10], AdaptTest[9], IntTest[8] attestation schemes.

The Chapter 3 and Chapter 4 enumerated many of the advantages of a software-only

service integrity framework as well as its limitations. We investigate the merit of adding

trusted hardware to facilitate the role of an oracle for this solution. Instead of implementing

hardware ubiquitously throughout the distributed network, we can attest to the integrity

of a provider. We show that it fundamentally changes the efficiency of the framework and

enables it to tackle difficult pipeline configurations.

5.1 Intuition

IntTest is a software-only integrity framework, whose primary advantage to remotely attest

nodes one can not modify with physical hardware. In IoT distributed networks the service

providers are small, embedded devices and power consumption is a priority. For many

cloud environments, the service providers may be a third-party who would not permit a new

device into their infrastructure. Many solutions such as Intel SGX2.2.2 and TPMs2.2.1 are

being used by service providers to offer their services trusted enclaves. Alternatively, we may

control one service as a means for comparison and use the aforementioned remote attestation

features to produce our own oracle.

28



Armed with a way to confirm the integrity of a provider we can trust their output, we

can use this trust in addition to our consistency and inconsistency relationships to maintain

application integrity and improve efficiency.

5.2 Cloud Anchor Implementation

Cloud Anchor aims to use the trust of an oracle and distribute that trust throughout the

consistency and inconsistency relationships. This is accomplished by selecting an arbitrary

node as our anchor. We will use the oracle to derive the integrity of this node. Once the

node is marked as an anchor, we continue to use the service pipeline identical to the IntTest

framework. We’ll use replay-based consistency checks to duplicate output for comparison to

another path. We enter a special case if these duplications are with an anchor. If a node

is being compared to an anchor and the input and output values are identical, the node

is considered to be anchored and is added to a set of anchored nodes. Since the nodes are

input-deterministic, comparisons to an anchored node can be considered a direct comparison

to the anchor. Duplications with any member of this anchored set to any member outside

the set will resolve connections made to all anchored members.

Consider Figure 5.1. This graph demonstrates the number of duplications required to

achieve a complete consistency graph for function f in Figure 3.1. IntTest would have to

perform at least three duplications to compare the inputs and outputs between providers 1,

4, 7. In the example above, we discover that 1 and 4 are consistent. In another, 4 and 7 are

inconsistent. We know that provider 1 was already demonstrated to be equivalent to provider

4, yet we must run a novel duplication between providers 1 and 7 to fill the consistency

graph. For Cloud Anchor, consistency checks are transitive and results are propagated to

all anchored nodes. It should be noted that replay-based consistency checks are evaluated

per-function, and in our evaluation we select the node with this most multifunctionality to

distribute that trust to as many service functions as possible.

29



(a) Before Cloud Anchor

(b) After Cloud Anchor

Figure 5.1: Example of Cloud Anchor

5.3 Preliminary Results

We evaluated Cloud Anchor under the same guidelines as IntTest. In addition, we we limited

our evaluation to have a single anchor which is the provider who supports the most service

functions. Finally, we iterated through all the previous pipeline configurations.

We noticed an immediate performance change for tall pipelines. The number of service

functions they support are only a few but many duplications are required to increase the

density of each service function. Figure 5.2 shows our performance was slightly better but

significant improvement came when analyzing full crossover for a tall pipeline in Figure 5.4.

IntTest was completely unable to resolve false positives in 1000 duplications yet, Cloud

Anchor has correctly classified all malicious within 400 duplications.

The wide piplines appear to have similar performance to IntTest because the benefits of

using trust transitivity are minimal when the number of service providers in the anchored

30



Figure 5.2: Three functions, 1000 data tuples, no crossover

function are small, as Figure. This can be improved by with more crossover. In this scenario,

a single anchored provider can effect multiple service functions. Figure 5.4 shows that we

can improve the false positive rate over 1000 duplications by 10%.

There are some limitations with this solution. Like its predecessor, if the majority of

providers are malicious for a pipeline function. If the service function has no root of trust,

the minority will be incorrectly classified as malicious. This problem can be remedied by

guaranteeing an anchor in every service function. In our test environment, we aim to use

the oracle as little as possible and used a single anchor. In addition, Cloud Anchor performs

poorly when malicious nodes lie. Figure 5.5 shows an extremely volatile graph with a non-

zero false negative rate. In these cases, we detected that a malicious node lied when being

attested to the anchor and was added to the anchored set. As in the previous case, this can

be corrected with the continued use of an oracle and is a topic for future work.

31



(a) IntTest

(b) Cloud Anchor

Figure 5.3: Duplication frequencies of a wide pipeline with partial crossover

32



(a) IntTest

(b) Cloud Anchor

Figure 5.4: Duplication frequencies of a wide pipeline with partial crossover

33



Figure 5.5: Wide service pipeline, 1000 data tuples, partial crossover, with liars

34



Chapter 6

Conclusions

6.1 Future Work

The current implementation of Cloud Anchor has many of the same limitations as its

predecessor. If the majority of providers for a certain function are malicious, the

implementation will incorrectly classify the minority. Also, if they are infrequently malicious,

they may escape replay-based checks altogether.

Pipeline density is a constant problem for wide service pipelines. Wenever the data itself

is being used as a means for validation, the compromise of that token can lead to a loss

of information further down the pipeline. We suspect evaluating the pipeline in stages and

removing nodes from the pipeline before input is fully processed can be a means to remedy

this particular problem in future iterations.

Lastly, we intend to explore an implementation of the Cloud Anchor framework in a

live, distributed environment. Cloud Anchor uses trust transitivity to quickly add edges

to consistency attestation graphs, but we believe it can be used solve other problems for

services that do not exist entirely within a secure enclave.

6.2 Conclusion

We explored IntTest the software-only service integrity framework, its benefits and its

limitations. We demonstrated its inefficiency and which configurations lead to improved

35



or diminished performance. We showed how it responds to a realistic attack model and

described a potential solution in Cloud Anchor. This solution uses an oracle to establish a

root of trust and propagates that through the same graph analysis scheme used in IntTest.

We showed how it greatly improves the efficiency of the previous framework and how

trust transitivity may be an effective means for handling service-integrity for hybrid trust

environments.

36



Bibliography

37



[ama] Amazon web services (AWS) - cloud computing services. 12

[str] Stream computing platforms, applications, and analytics - IBM. 12

[vcl] VCL. 12

[Alonso et al.] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web Services: Concepts,

Architectures and Applications. Data-Centric Systems and Applications. Springer-Verlag.

3

[Bron and Kerbosch] Bron, C. and Kerbosch, J. Algorithm 457: Finding all cliques of an

undirected graph. 16(9):575–577. 5

[Costan and Devadas] Costan, V. and Devadas, S. Intel SGX explained. 4

[Driscoll et al.] Driscoll, K., Hall, B., Paulitsch, M., Zumsteg, P., and Sivencrona, H. The

real byzantine generals. In The 23rd Digital Avionics Systems Conference (IEEE Cat.

No.04CH37576), volume 2, pages 6.D.4–61–11 Vol.2. 4

[8] Du, J., Dean, D. J., Tan, Y., Gu, X., and Yu, T. Scalable distributed service integrity

attestation for software-as-a-service clouds. 25(3):730–739. 9, 11, 28

[9] Du, J., Shah, N., and Gu, X. Adaptive data-driven service integrity attestation for

multi-tenant cloud systems. In Proceedings of the Nineteenth International Workshop on

Quality of Service, page 29. IEEE Press. 28

[10] Du, J., Wei, W., Gu, X., and Yu, T. RunTest: assuring integrity of dataflow processing

in cloud computing infrastructures. In Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security, pages 293–304. ACM. 8, 9, 11,

22, 28

[Eldefrawy et al.] Eldefrawy, K., Tsudik, G., Francillon, A., and Perito, D. SMART: Secure

and minimal architecture for (establishing dynamic) root of trust. In NDSS, volume 12,

pages 1–15. 1, 6, 7

38



[Francillon et al.] Francillon, A., Nguyen, Q., Rasmussen, K. B., and Tsudik, G. A

minimalist approach to remote attestation. In 2014 Design, Automation Test in Europe

Conference Exhibition (DATE), pages 1–6. 6

[Karakostas] Karakostas, G. A better approximation ratio for the vertex cover problem.

5(4):41:1–41:8. 5

[Lamport et al.] Lamport, L., Shostak, R., and Pease, M. The byzantine generals problem.

4(3):382–401. 5

[Lpez and Zhou] Lpez, J. and Zhou, J. Wireless sensor network security. Ios Press. 6, 7

[Morris] Morris, T. Trusted platform module. In Encyclopedia of Cryptography and Security,

pages 1332–1335. Springer, Boston, MA. DOI: 10.1007/978-1-4419-5906-5 796. 4

[Seshadri et al.] Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., and Khosla,

P. Pioneer: verifying code integrity and enforcing untampered code execution on legacy

systems. In ACM SIGOPS Operating Systems Review, volume 39, pages 1–16. ACM. 1,

6, 7

[Shi et al.] Shi, E., Perrig, A., and Van Doorn, L. Bind: A fine-grained attestation service

for secure distributed systems. In Security and Privacy, 2005 IEEE Symposium on, pages

154–168. IEEE. 1, 6, 7

39



Appendices

40



A Additional Graphs and Figures

Figure A1: Three functions, 1000 data tuples, 20% malicious providers, partial crossover,
with liars

41



Figure A2: Three functions, 1000 data tuples, 20% malicious providers, full crossover, with
liars

42



Figure A3: Ten functions, 1000 data tuples, 20% malicious providers, no crossover, with
liars

43



Table A1: Function Densities for a Wide Pipeline

Trial Number f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 0.87 0.78 0.6 0.5 0.37 0.26 0.17 0.12 0.08 0.06

2 0.9 0.76 0.63 0.48 0.37 0.29 0.17 0.13 0.11 0.07

3 0.91 0.81 0.65 0.47 0.39 0.25 0.22 0.15 0.11 0.08

4 0.89 0.77 0.67 0.49 0.39 0.3 0.19 0.14 0.09 0.06

5 0.89 0.77 0.64 0.49 0.38 0.31 0.21 0.15 0.11 0.07

6 0.89 0.78 0.67 0.49 0.39 0.29 0.21 0.14 0.1 0.05

7 0.9 0.82 0.65 0.5 0.4 0.27 0.17 0.13 0.08 0.06

8 0.91 0.77 0.65 0.52 0.38 0.31 0.22 0.13 0.09 0.06

9 0.88 0.8 0.63 0.49 0.36 0.25 0.19 0.12 0.09 0.07

10 0.89 0.79 0.64 0.5 0.39 0.26 0.16 0.1 0.06 0.04

44



Vita

Christopher Craig is a Software Engineer, Penetration Tester, and Technology enthusiast

who is working on completing his Master’s Degree in Computer Science at the University

of Tennessee. Christopher is a full-time employee at Oak Ridge National Labs as a Cyber

Security Software Engineer developing novel technologies in 10Gb/s load balancing, network

security, and distributed system security.

45


	Cloud Anchor: An Exploration of Service Integrity Attestation with Hardware Roots of Trust
	Recommended Citation

	tmp.1543871168.pdf.zZQlE

