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Introduction 

 As the field of neuroscience advances, it is becoming increasingly clear that the structure 

of the brain is directly associated with its function. Moreover, by investigating how alterations in 

the brain’s structure affects its functions, researchers are finding novel ways of detecting and 

treating various neurological and psychiatric disorders (Beyer et al., 2013). By mapping the 

brain’s neural pathways, researchers can reconstruct digital images of the brain for a variety of 

purposes. Due to the significance of these maps, the NIH founded the Human Connectome 

Project with the purpose of characterizing neural connectivity, function, and variability through 

the use of digital reconstructions of the human brain, also known as connectomes 

(“Connectome”, 2018). This paper seeks to provide a background on the field of connectomics as 

well as to detail our current work in the construction of connectomes capable of neuron-glia 

differentiation. 

 

 

 

Figure 1. A connectome of white matter fiber architecture produced by the Mark and Mary Stevens Neuroimaging and 

Informatics Institute at USC. Digital maps such as these help scientists uncover the relationship between structure and 

function in the brain. This connectome and others can be viewed at http://www.humanconnectomeproject.org. 



 

Macroscale Connectomics 

 Currently, there are two primary types of connectomes—macroscale and cellular. 

Macroscale connectomics has the advantage of being non-invasive and is finding increasing use 

within the medical field. Applications of macroscale connectomics include visualizing 

anatomical structures and abnormalities, observing changes in the brain, and for image-guided 

surgical planning (Despotović, Goossens, & Philips, 2015). Currently, macroscale connectomes 

are constructed using magnetic resonance imaging (MRI). MRIs function by aligning resonating 

hydrogen atoms using a magnetic field and measuring the radio waves emitted by the atoms as 

they return to their resting state. The intensity of the signal is dependent on the concentration of 

hydrogen atoms which in turn is dependent on the type of tissue present. This intensity is 

measured on a grayscale to produce a cross-sectional image (Berger, 2002). When multiple 

cross-sectional images are produced in sequence, a 3D image of the brain is produced. 

 Once a 3D volume is obtained, it is subjected to classification and segmentation. In brain 

MRIs, image elements are typically classified as either white matter, gray matter, or 

cerebrospinal fluid. Additional subclassification can be applied depending on the purpose of the 

connectome. Once image elements are classified, they are segmented into regions of similarly 

attributed elements to provide a semantically meaningful connectome (Despotović et al., 2015). 

In the medical field, MRIs can be segmented to display a variety of structural abnormalities, 

from tumorigenic regions to various types of head trauma-induced hemorrhages (Gong et al., 

2007). In addition, segmentation of MRIs is used to depict axonal projections for research-based 

purposes (Mori et al., 1999). 

 



Cellular Connectomics 

 Cellular connectomics provides an alternative view of neural connectivity and is the 

primary focus of our research. Due to the high resolution necessary to accurately map individual 

cells and their synapses, non-invasive techniques have less practical use in cellular connectomics 

(Kasthuri et al., 2015). As a result, these connectomes are not used clinically, but rather in a 

laboratory setting. Currently, image datasets used in cellular connectomics are primarily 

produced via serial electron microscopy (EM). In serial EM, tissue is sliced into slices 20-30 

nanometers in thickness, each of which is then imaged in series. The digital image series is then 

compiled into a 3-D representation of the unsliced brain sample (Kasthuri et al., 2015). The 

images produced by serial EM have extremely high resolution, and the slices used in the imaging 

typically range from 20-30nm in thickness (Dyer et al., 2017). Subsequent segmentation of these 

volumes can be done manually or via algorithm to provide a variety of data, from neuron 

densities to tracings of entire neural pathways. Classification types for image elements are 

abundant and depend on the aspects of neuronal connectivity being studied; some connectomes 

may focus on a particular type of neuron, while others, such as the mouse neocortex volume 

described in Kasthuri et al., classify multiple cellular and sub-cellular components (2015). 

Figure 2. Figure excerpt from Kasthuri et al. Digital reconstructions 

of the brain are allowing researchers to examine details regarding the 

connectivity of cells that were previously unobtainable. 



 

 Unfortunately, EM segmentation is very costly in terms of time and storage—a cubic 

millimeter of brain tissue at 20nm resolution requires approximately two petabytes of storage and 

takes about three months to process (Dyer et al., 2017). Recently, this time and storage problem 

has been solved by using X-ray tomography in place of EM. Synchrotron X-ray microtomography 

is capable of producing cross-sectional images of centimeter-scale brain samples, thereby 

eliminating the need for imaging individual thin slices as seen in EM techniques. As such, the 

speed at which large-scale image datasets are produced is greatly increased (Dyer et al., 2017). For 

this reason, X-ray tomography is seen as the more viable option for large scale brain mapping. 

 

Use of neural networks in connectomics 

 Classification and segmentation of image datasets can be done manually by a trained 

observer. While this may be the most accurate way of tracing neural pathways, manual tracing of 

connectomes quickly loses feasibility as the size of the datasets increases. As mentioned above, a 

reasonably sized connectome, only one cubic meter in volume, contains two petabytes worth of 

information (Kasthuri et al., 2015). In order to make sense out of this amount of data, researchers 

have turned towards image processing algorithms. These algorithms greatly reduce the time it 

takes to classify and segment large image datasets. While they are generally not as accurate as 

manual tracing, this flaw is frequently compensated by manual checking of the algorithm, a task 

much less daunting than physically classifying and segmenting the entire dataset by hand 

(Egmont-Petersen, De Riddler, & Handels, 2002). 

 Image processing algorithms are able to address a variety of problems encountered in the 

analysis of large image datasets. Egmont-Petersen et al. outline the multiple processes that 



common neural networks use to produce meaningful output from an image (2002). These tasks 

include 1) preprocessing of the image to smooth edges and reduce noise, 2) data reduction and 

extraction of features of interest, 3) segmentation of similarly classified regions, 4) object 

detection and classification, and 5) image understanding, which outputs semantically meaningful 

information (Egmont-Peterson et al., 2002). Neural networks can be designed that address one or 

more of these functions. In the field of connectomics, segmentation and object 

detection/classification neural networks are of extreme importance and are responsible for the 

construction of 3-D brain maps. 

 In order to automatically construct a connectome, a machine algorithm must be capable 

of completing the following tasks: 

1) Preprocessing: Preprocessing algorithms are a means of reducing the number of 

extraneous variables within the dataset. In the case of macroscale connectomics, the skull 

is almost invariably removed as it does not typically contribute to the connectome (Gong 

et al., 2007). In the study of hemorrhages by Gong et al., gray matter is also removed 

(2007).  

2) Feature extraction: Any image can be broken down into multiple feature elements such 

as grayscale value, line segment orientation, and area (Gong et al., 2007). Objects within 

an image have specific values for these feature elements; based on the features present in 

an image region, the probability of the object’s presence within that region can be 

determined (Indolia et al., 2018). 

3) Classification: Once an object is detected by the algorithm, it is often necessary to 

know what this object is. Based on an object’s associated features, the algorithm can 

predict the likelihood that the object is associated with a specific classifier. Examples of 



classifiers used in connectomics include cell bodies, axonal projections, dendritic spines, 

as well as specific cell types (excitatory/inhibitory; neuronal/glial) (Kasthuri et al., 2015). 

4) Segmentation: A connectome is comprised of not a single image, but a group of 

images representing 3-D space. As such, one cell will be present in multiple images that 

are inputted into the algorithm. The algorithm therefore must be able to determine 

whether an object within an image is associated with an object in adjacent images. By 

segmenting image objects together, a 3-D representation of the single object is created 

(Kasthuri et al., 2015).   

 Convolutional Neural Networks (CNNs) are commonly used to construct connectomes 

from image datasets. These networks are biologically inspired and take advantage of the 

hierarchical system used in the mammalian visual pathway wherein complex features are 

detected from the presence of many simpler features (Fieres, Schemmel, & Meier, 2006). The 

first hidden layer of a CNN divides the image into small regions and extracts important simple 

features regarding these regions such as line segment orientations. Subsequent layers then piece 

these simple features together to detect increasingly complex shapes and eventually recognize 

whole objects within the image. Fieres et al. outline the steps a CNN takes towards whole object 

recognition as well as the biological foundations underlying this type of neural network (2006). 

This particular type of neural network is useful for constructing connectomes because it requires 

less computational effort than traditional neural networks through the use of their hierarchical 

system (Fieres et al., 2006). 

 

 

 



Objective of Research 

 Our research is ongoing and focuses on the construction and implementation of cellular 

connectomes. The study that is the focus of this paper has three main objectives: 

1) Identify visible differences in EM images of neurons/glia: The importance of glia in a 

variety of neuronal functions have only recently been recognized (Almad & Maragakis, 

2012). While images of glial cells can be identified among neuronal cells by a trained eye 

using qualitative identifiers such as shape, there is a surprising lack of known quantitative 

variables that can be used to distinguish between cell types in image datasets. 

Quantitative variables are necessary for automatic differentiation of cell types using 

neural networks, as computer algorithms rely on numbers to create predictive models. 

The primary goal of our study is to test the validity of the ratio of cell nuclei-to-body 

diameter as a quantitative identifier for neural and glial cells in a 3-D volume produced 

from serial EM.  

2) Translate EM study to X-ray images: Because of the benefits X-ray tomography 

provides in terms of speed and size, a secondary goal of our work is to determine the 

translational ability of our work using EM datasets to other datasets produced from X-ray 

imaging techniques. This will promote the transition of future studies from EM to X-ray 

data, which we anticipate will become the primary method of producing images used in 

cellular connectomics. 

3) Begin creating algorithm for automatic segmentation: Pending the success of our 

initial studies, we aim to begin designing an image-processing neural network capable of 

classifying and segmenting neuronal and glial cells to construct a connectome that 

distinguishes between cell types. By applying the results of our study to the construction 



1 The research included in this thesis was conducted under the supervision of Narayanan Kasthuri, MD, 
PhD at the Argonne National Laboratory. 

of connectomes, we hope to learn more about how the organization of glial cells affects 

brain functions. 

Procedure 

Analysis of EM Data 

 In our search for quantitative variables capable of distinguishing neural and glial cells, we 

chose to analyze the maximal diameter of each cell’s body in relation to the maximal diameter of 

the cell’s nucleus1. A portion of mouse cortical tissue from the S1 region was partitioned into 

slices using the automatic tape-collecting ultramicrotome (ATUM) and imaged with a scanning 

electron microscope as detailed by Kasthuri et al (2015). The resulting images were compiled 

into a single dataset. In order to perform the necessary manual annotations and measurements, 

the Volume Annotation and Segmentation Tool (VAST) program was utilized (Kasthuri et al., 

2015). This user interface system allows the user to scroll through each image, or slice, of the 3-

D volume and make drawings or annotations on either the individual slice or on multiple slices. 

For each cell, a line was drawn across the diameter of the cell on the slice where the cell 

appeared to have the greatest diameter. This process was repeated for each cells’ nucleus. To 

minimize bias, cells of both types were annotated without prior knowledge of which cells were 

glial or neuronal. Once the annotations were made for both cell bodies and nuclei, each cell was 

subsequently classified as either neuronal or glial. 

Figure 3. An EM image of a slice of S1 mouse tissue being viewed through 

the VAST program (Kasthuri et al., 2015). 



 

 

 Another feature of the VAST program is the inclusion of an (x,y,z) coordinate system 

that assigns each pixel in z slice an x and y value. This feature was utilized in the calculation of 

the length of the diameters. Using the (x,y) coordinates of the pixels at the terminal ends of each 

line in the distance formula 𝑑 = √( x2 −  x1)² +  (y2 − y1)², their diameters were calculated in 

pixels. Using the calculated distances, histograms were made of the distribution of cell body 

diameters, nuclei diameters, and the ratio of the two were made to assess whether any trends 

could be found. 

 

 

X-ray Data Comparison 

 As advances in 3-D image construction and analysis are made, researchers have been 

pursuing the construction of whole-brain scale cellular connectomes. In order to compensate for 

the tremendous amount of data and processing this will require, the transition from utilizing EM 

imaging to X-ray imaging in the construction of cellular connectomes is being pursued (Dyer et 

al.). As such, before a computational model is constructed to determine cell type, we wanted to 

Figure 4. Preliminary annotation of a cell using 

VAST. Pixels at each end of the annotation were 

used to calculate diameters of cells and their 

nuclei. 



2 Special thanks to Eva Dyer, PhD for running the X-ray sample analysis in her lab at Northwestern 
University. 

look into whether the values calculated in our EM data will be similar to a different brain sample 

of the S1 region mapped via X-ray. To do this, a neural network capable of measuring X-ray cell 

body diameters was used on a large sample of S1 tissue2. Meanwhile, the EM values were 

converted from pixels to micrometers so that the X-ray and EM values would use the same units. 

While the algorithm used is capable of determining cell body diameters, it cannot give values for 

the nuclei diameters. To determine whether the nuclei are of comparable diameters and to 

confirm the accuracy of the algorithm, manual annotation will be required. 

Algorithm design 

 Although more data will be needed before we can begin writing and training an algorithm 

for automatic segmentation and classification of neurons and glia, we began planning a general 

design for our neural network. Fortunately, the Human Connectome Project encourages open-

sourcing information regarding connectomes, datasets, and algorithms. As such, we reviewed the 

literature to determine whether neural networks already available can aide us in our goal of 

constructing a cell type-based connectome. The details regarding our design and literature 

findings are detailed below. 

 

Results 

Analysis of EM Data 

 Using a 2 tailed T-test, we can conclude that there is a significant difference between the 

neuronal ratio and glial ratio (p= 1.003E-8). Although some overlap occurs between the ratios of 

the two cell types, there is much less overlap observed when looking at either the nuclei or cell 

bodies’ diameters. This suggests that looking at either statistic alone would be sufficient to 

determine with a high degree of accuracy whether a cell is neuronal or glial. In cases where a cell 



 

or its nucleus’s diameter falls in the area of overlap, using both distances may be enough to 

determine the cell type. More samples of the cell could further reduce this overlap to provide a 

more accurate prediction of cell type.  

 

 X-ray Data Comparison 

 The computer algorithm used to measure and analyze cell diameters found two peaks in 

its distribution, as seen in Figure 6. These peaks in distribution are of similar size to the peak 

distributions of cells identified as neurons and glia in EM data. Although manual annotation is 

still being completed to confirm the algorithm’s data, the similarity of the preliminary values 

suggests that cells in X-ray data can be assigned as either neurons or glia based on the 

assignment of cells of similar length in EM data. If the manual annotation can also confirm the 

similarity of X-ray and EM nuclei diameters, then work can be done to begin designing an 

algorithm capable of distinguishing cell types within X-ray tomography brain samples. 
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Figure 5. A. Histogram representing the frequency in which ranges of ratios of cell body diameters to 

nuclei diameters for both neurons and glia were observed. Subset are histograms depicting frequencies 

of B. nuclei and C. cell body diameters were observed for neurons and glia. 

 



 

 

 

 

 

 

Image Processing Network 

 The ultimate goal of this project is to utilize neural networks to create a connectome that 

distinguishes neuronal and glial cells based on the relative size of their nuclei. In order to achieve 

this goal, the algorithm should be able to complete the following tasks: 

1. Preprocessing: To reduce the amount of extraneous data available in future steps, the 

algorithm should first eliminate blood vessels and extracellular matrix (ECM). This can 

be accomplished by grayscale detection of blood vessels and texture/gradient-based 

detection of ECM. Furthermore, grayscale and texture/gradient-based detection of 

membrane structures is necessary for automatic annotation of cell body and nuclear 

membranes. 

2. Extraction of Features: Once membranes have been identified, several features 

regarding the membranes should be extracted. Features such as spatial associations with 

other membranes in the (x,y,z) plane, diameter, grayscale value, and pixel gradient. 

3. Classification of membrane type: based on extracted membrane features, membranes 

in each slice should be classified as cellular or nuclear.  

4. Segmentation: By combining associated membranes from each slice of the dataset, a 

connectome of the cells and their associated nuclei can be produced. 

 Peak in 

Distribution of 

Glia 

Peak in 

Distribution of 

Neurons 

X-ray 8.45 μm  17 μm 

Electron 

Microscopy 

9.6 μm 16.8 μm  

Figure 6. Peak distribution of cell diameters in EM and X-

ray data. 



 

5. Classification of cell type: using the extracted data regarding the major axis length of 

both types of membranes, a prediction regarding the cell type (neuron vs glia) is made.  

 

 Due to the overlap in the distributions of cell diameters, nuclei diameters, and the ratio 

between the two for neurons and glia, a neural network capable of automatically distinguishing 

between neurons and glia will need to consider all three distributions when determining the cell 

type. However, we acknowledge that even when using all three measurements in conjunction 

with each other, there will likely be situations in which a cell’s type cannot be determined with a 

high degree of probability. As such, it will be useful to include a confidence output, so that cells 

automatically classified with a low degree of confidence may be flagged to be checked manually. 

In addition, the inclusion of a confusion matrix will aid in the identification of falsely classified 

cells.  Once automatic segmentation is achieved, we can modify the neural network to include 

other identifying information such as spatial distributions to further increase the confidence of 

correct segmentation.  

 In addition to outlining the major tasks we believe are necessary for our algorithm to 

accomplish, we also searched the available literature for currently existing neural networks that 

may be capable of learning to create cell type-based connectomes. RhoANA is an open-sourced 

semi-automated segmentation tool that has been shown to adequately classify membrane 

structures in large EM datasets and may prove useful in our studies (Kasthuri et al., 2015). 

Because this algorithm has already been trained and shown to effectively segment cells, it may 

be able to accomplish the goals we have outlined for our algorithm with the use of some 

modifications. 

 



 

 

Future Directions 

Additional Classification of EM data 

 Our current data focuses only on cells located within the S1 region of mouse cortical 

tissue. By similarly analyzing other brain regions, we hope to gain a whole-brain understanding 

of how neurons and glia differ in size and nuclear content. Furthermore, additional classification 

of other S1 datasets will be useful in confirming our results and reducing the overlap in 

distributions seen for our measurements. By building a larger database of manually classified 

EM data, we can begin to build a substantial training set for an algorithm capable of 

automatically classifying cell types. 

 

Segmentation of Nuclei in X-ray dataset 

 A secondary goal of this study is to determine whether analyses of X-ray datasets 

produces results that are similar to our EM dataset. Using available data, we determined that the 

cell body distributions of neurons and glia have similar peaks in both X-ray and EM S1 datasets. 

However, there currently is not any data regarding the distribution of nuclei diameters for cells in 

X-ray volumes. Additional manual segmentation of X-ray datasets is therefore needed to confirm 

that our EM results are reproducible in X-ray volumes. This proves to be difficult, as X-ray 

images typically favor volume over resolution, so nuclei are significantly more difficult to 

distinguish by the human eye. Nevertheless, proving that our results are reproducible using X-ray 

imaging will aid in the transition from EM to X-ray segmentation, a necessary step in producing 

whole-brain connectomes. 

 

 



 

Construction of Automatic Segmentation Algorithm 

 In addition to using membrane diameters to differentiate between neurons and glia, there 

are likely other quantitative variables that can aid in automatically classifying cell types. The 

area of a cell or nucleus, which is strongly associated with its diameter, is an obvious variable of 

interest and may provide distributions with less overlap. Similarly, considering the total volume 

of both a cell and its nucleus is a variable that is relatively easy to measure. Other variables, such 

as pixel gradient and grayscale value, are less obvious to the human observer but may still help 

minimize false classification in machine algorithms. Using weakly supervised neural networks, 

we may be able to discover other variables that can be used in conjunction with our results to 

improve the distinguishability of cell types. 

Conclusion 

 We have laid the groundwork for our ongoing research regarding cell-type differentiation 

for cellular connectomics. Our initial survey of our EM dataset suggests that there is a correlation 

between cell type (neuron or glia) and the size of its body and nucleus. Furthermore, the results 

of our EM dataset appear to be in conjunction with X-ray data, at least in regard to cell bodies. 

Our current success has encouraged us to continue manually segment and classify cells in order 

to create a sizeable dataset sufficient for use as a training set for a CNN capable of distinguishing 

cell type based on body and nucleus diameter. It has also prompted us to further investigate the 

translational significance of our work to X-ray based connectomics. 

 Our research has multiple applications in various areas of neuroscience. By improving 

and expanding on connectomic data, we are becoming increasingly aware of how the structure of 

the brain is critical to its function. This has allowed us to make huge advancements in the 

medical field, where connectomes are being used to diagnose patients with a variety of disorders 



 

(Despotović et al., 2015). Moreover, our data expands on the currently existing literature on the 

properties of glial cells. These cells are proving to play a critical role in a variety of neurological 

disorders; once thought to play a passive role in the nervous system, these cells have now been 

liked to disorders such as multiple sclerosis, neuromylitis optica, and alzheimers (Fields, 2010). 

By focusing our attention on the structural nature of glia through cellular connectomics, we hope 

to further understand their importance in maintaining normal brain function. 
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