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ABSTRACT 

 

 In the realm of catalysis, small nanoparticles have been an area of interest 

due to their high surface-to-volume ratio. This is even more so with gold 

nanoparticles in that gold only becomes catalytically active with small particles 

sizes. Thus, gold clusters are desirable given their uniformity, high surface-to-

volume ratio, and high catalytic activity. Given the nature of small gold particles to 

sinter, it was found to be advantageous to protect the particles using a gold-metal 

oxide core-shell configuration. Core-shell heterostructures have been utilized as a 

catalyst that is thermally stable and exhibits a synergistic effect between core and 

shell, resulting in increased catalytic activity. The research contained in this 

document discusses the synthetic procedure of a gold-144 cluster using a variation 

of the Brust-Schiffrin method followed by an iron oxide coating via post-selective 

oxidative treatment to create a gold-144 iron oxide core-shell structure. Shell 

thickness is varied depending on the amount of iron precursor used and studied 

under the particle’s catalytic efficiency with carbon monoxide oxidation. The gold-

144 iron oxide particles with Au:Fe mass ratios of 1:2, 1:4, and 1:6 were 

synthesized and then deposited onto silica via colloidal deposition. Using CO 

oxidation, each gold-144 iron oxide catalyst loaded onto silica gave varying 

degrees of full CO conversion depending on the thickness of the iron oxide layer. 

The 1:4 gold-144 iron oxide catalyst produced the best catalytic activity and was 

further investigated using 2-propanol conversion as well as thermal treatments 

using CO oxidation. Under CO oxidation, the 1:4 structure calcined at 300 degrees 

Celsius presented the best results, and the 1:4 ratio was still active at 100 degrees 

Celsius after thermal treatments. Under 2-propanol conversions, the data seems 

to suggest that core-shell structure provides a synergistic effect for acetone 

production, however, this cannot be concluded until further testing is 

accomplished. 
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CHAPTER ONE  
INTRODUCTION AND GENERAL INFORMATION 

Catalysis 

The word itself comes from the Greek roots cata- and -lysis, meaning ‘a 

breaking down’ and can be can be related by the breaking down of chemical 

barriers for a reaction.1 In 1794, the concept was first described in a book, by 

Elizabeth Fulhame, entitled An Essay on Combustion, where water was deemed 

a catalyst for oxidation-reduction reactions, in that it was required for the reaction 

to proceed, but was not consumed.2-3 The term is later coined by the scientist 

Jacob Berzelius in 1836,4 where he explains that “[c]atalytic power means that 

substances are able to awake affinities that are asleep at [said] temperature by 

their mere presence.”5 

Catalysis is a process in which a catalyst is a substance that increases the 

reaction rate by lowering the activation energy of a chemical process, without being 

consumed, in that it is both a reactant and a product (Figure 1). Further, catalysis 

can be categorized into two basic categories, homogeneous and heterogeneous 

 

 
Figure 1. Simple exothermic potential energy diagram. 
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catalysis. Homogeneous catalysis involves a one-phase system, where the 

catalyst and other reactants are in the same phase as one another, such as liquid 

or gas phase. Heterogeneous catalysis is a two-phase system, where the catalyst 

is typically in the solid phase, while the other reactants are in the gas or liquid 

phase. The reaction itself then occurs at the interface between the two phases. 

Kinetic Models 

There are three basic kinetic models for catalytically active surfaces: the 

Langmuir-Hinshelwood, the Eley-Rideal, and the Mars van Krevelen mechanisms 

(Figure 2). In the first mechanism, the Langmuir-Hinshelwood mechanism involves 

a partial polarization of gold (Au) atoms within the particle. In this mechanism, both 

reactants adsorb (or chemisorb) onto the surface. For carbon monoxide (CO) 

oxidation, molecular oxygen (O2) is activated when the O-O bond is stretched by 

electron transfer from Au.5 After which, surface diffusion facilitates interaction 

between the adsorbed molecules for a bimolecular reaction. Then, the product 

desorbs from the surface. The reaction at the surface, for this mechanism, is 

typically the rate limiting step, as shown below, in mechanism (1). 

In the second mechanism, the Eley-Rideal mechanism, one reactant adsorbs onto 

the surface, while the other reactant, still in the gas or liquid phase, interacts 

directly with the adsorbed species. This is followed by desorption of the reaction 

product. For CO oxidation on Au, CO would adsorb onto the surface, interact with 

half of an oxygen molecule, and then desorb as carbon dioxide (CO2). This 

mechanism is not as likely as the Langmuir-Hinshelwood mechanism because the 

oxygen would need to be activated in order to react with the chemisorbed CO. 

However, there has been some evidence that it is able to occur under certain 

circumstances.6 Under the third mechanism, the Mars van Krevelen mechanism 

applies to oxidations catalyzed by easily reducible oxides that will be able to 

 

 

(1) 
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release lattice oxide ions in order to oxidize the other reactant. The CO adsorbs 

onto the catalyst surface, an adjacent lattice oxygen is essentially released to 

interact with the adsorbed CO, and, then, CO2 is desorbed from the surface. The 

released lattice oxide ion creates a vacancy, which is then replaced by an O2- anion 

or the dissociation of molecular oxygen. 

 

  
Figure 2. A) Langmuir-Hinshelwood, B) Eley-Rideal, & C) Mars van Krevelen 

mechanisms. Figure modified from reference.7 

 

Gold in Catalysis 

Gold was discovered as a viable catalyst in the 1980’s by Masatake Haruta, 

who found that it is an excellent catalyst for CO oxidation at low temperatures.8 

Based on these findings, gold has since been extensively investigated as a 

catalyst. An advantage of gold over many other noble metals is that humidity does 

not seem to depress its catalytic activity, but can actually enhance it.9 

Subsequently, gold was discovered to only be catalytically active as small 

nanoparticles, showing optimal catalytic activity in the range of 0.5-5.0 nm in 

diameter,10-12 as opposed to larger particles or bulk gold. In addition, it has also 

been predicted that, when gold NPs are below 3.5 nm (< 300 atoms), there is a 

metal-to-nonmetal transition that occurs for gold NPs where they become 

insulators.13 The observed change in electrical conductivity is due to quantum 
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confinement of electrons,14 where the NPs are near the size to that of the de 

Broglie wavelength of upper level electrons that are responsible for conduction. 

Catalytic reactions take place at the surface of the catalyst, and therefore, 

the larger the surface-to-volume ratio, the more catalytic sites that are available 

per volume. For this reason, NP/NC catalysts are synthesized with the thought of 

the smaller the better in order to increase surface-to-volume area and augment 

catalytic activity.  However, gold catalysts smaller than 2 nm are less stable15 and 

have not been as highly researched as their larger nanomaterial counterparts. In 

general, gold NPs are difficult to characterize because they cannot be fully 

elucidated under a single catalytic platform.16 In addition to multiple 

characterization methods there are also a few different kinetic mechanisms that 

are typically discussed for Au catalyzed reactions. 

For supported gold, this means that the support surface is playing an active 

role in the catalysis process. The mechanisms may vary from one type of catalyst 

to another. More than one mechanisms may be operating on the catalyst at the 

same time and mechanisms may be dependent on a given set of reaction 

conditions, such as temperature, humidity and partial pressures. Mechanisms may 

be broken up into four basic categories: involving only metallic gold, requiring 

simultaneous availability of metallic gold and cationic gold, collaboration between 

metal and support (a Mars van Krevelen type reaction), and proceeding with 

cationic species on the support (Figure 3).5  

In catalysis mechanisms that involve only the gold component, the gold 

must be fully reduced (Au0) to be catalytically active. Reducing gold typically 

requires thermal activation. By themselves, cationic gold species (Au1+ and Au3+ 

being the most common) are inactive, but can become catalytically active when in 

combination with Au0. Cationic Au may be either located at the interface between 

the metal and support17 or atomically dispersed in or on the support.18 Before 

moving on, a thorough review of gold nanoparticles, gold nanoclusters, and their 

applications in core-shell structures need to be looked at in-depth. 
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Figure 3. Possible pathways for CO oxidation over supported gold. Figure 

modified from reference.19 
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CHAPTER TWO  
LITERATURE REVIEW 

Part of the information in this chapter is taken with permission from Michelle 

Lukosi’s paper.20 

Gold Nanoparticles 

Due to their small size, gold nanoparticles are prone to sintering and 

aggregation, which reduces their catalytic activity and long-term stability for 

catalytic processes. Coalescence of gold nanoparticles has been predicted to 

occur via surface diffusion, which is curvature dependent, while taking into account 

the energy released due to surface reduction. In turn, the energy that is released 

will increase temperatures, and accelerate the sintering process.21 Bulk gold has 

a melting point of 1300 °C, but it’s Tammann temperature is at 395 °C.22 This is 

the temperature for which the mobility of the metal becomes measurable. For very 

small particles, this is the temperature at which they will sinter when in close 

proximity to one another. Using a core-shell framework is one such way that has 

been developed to protect the catalyst and prevent sintering, so that a plausible 

number of active sites are maintained. 

Gold Clusters 

As research into catalytic gold emerged, so did research into uniform 

catalysts that could deliver consistent and reproducible results. This opened the 

door to nanocluster catalysis. Thiolate-protected gold nanoparticles, first proposed 

by Brust and Schiffrin,23 has become the building block to obtaining a well-defined 

Aun(SR)m formula using specific Au-to-thiol ratios. Here, the cluster with a number 

of gold atoms, n, corresponds to a certain number of thiolate groups, m, 

encompassing a sulphur atom (S) and an organic rest group (R), which creates a 

monolayer surrounding the gold cluster.24-25   
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To be clear, the only real distinction between nanoclusters and 

nanoparticles is that the term cluster is used when referring to a system of known 

chemical composition and structure, whereas the term nanoparticle is used when 

a system is less precise and instead identified within a certain size distribution.26 

Understanding how to synthesize NCs with exact composition is desirable in 

creating a uniform product that will make it easier to reproduce findings, results, 

and to understand what catalytic properties can be associated with certain 

dimensions and morphologies. 

The Au144 nanocluster has been recognized as one of the larger, relatively 

stable, gold clusters.27-31 Its structure has been established experimentally, 

utilizing techniques such as electrospray ionization (ESI), matrix assisted laser 

desorption ionization mass spectrometry (MALDI-MS), scanning transmission 

electron microscopy (STEM), and X-ray spectroscopy.29, 32-34 Weissker et al. 

performed time-dependent density-functional theory (TD-DFT) calculations that 

show individual peaks representing discrete levels of the structures localized 

electronic states.35 This means there is a discrete energy band structure that 

develops for small clusters, hence there is a metal-to-nonmetal transition, similar 

to that of semiconductors.14 That being stated, gold nanoparticles by themselves 

tend to sinter easily, losing their catalytic ability. The smaller the particles, the more 

this sintering becomes a prominent issue. This is, in large part, why very small gold 

nanoparticles and clusters are difficult catalysts to effectively utilize. To stabilize 

gold nanoparticles, at the very least, they are loaded onto a support. The support 

is generally a metal oxide,36 but others have reported using other support types, 

such as carbon-based or titanium(IV) chloride supports.37-38 Even with different 

support structures, small Au nanoparticles, <10 nm in diameter, tend to sinter 

above room temperature.  

In the interest of overcoming this issue, core-shell structures have been 

investigated,39-47 where the gold nanoparticle is the core with a protective, often 

metal oxide, shell. This allows the gold to retain its size and shape, which 
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preserves its catalytic ability under thermal and mechanical stress. These core-

shell structures have not yet been investigated for small gold clusters, due to the 

cluster’s delicate nature. Given the large increase in surface-to-volume ratio for 

cluster-sized core-shell structures, they are a potential effective catalyst, exhibiting 

more catalytic sites compared to larger particles of the same volume. For this 

reason, research into their stabilization is key. 

Core-Shell Particles 

There are several benefits for catalysts utilizing the core-shell design. In this 

catalyst formation, a thermally stable shell, in theory, protects the catalytic noble 

metal core when exposed to elevated temperatures, which allows the core to retain 

its crystal size and structure.42 Secondly, they can retain their catalytic properties 

after repeated cycles due to the configuration’s stability. Thirdly, when properly 

designed, the core-shell structure can enhance the catalytic performance of the 

nanostructure due to the synergistic effects between the core and shell.48-49  

In the core-shell morphology, the shell is typically a metal oxide that can act 

as an electron transfer agent and also provide strong metal support interaction 

(SMSI). SMSI refers to the robust interaction that can occur between a catalytic 

metal (e.g. gold) and the oxide support, or shell in this case. Different metal oxide 

supports have been shown to provide different SMSIs, which have the ability to 

create these contact zones with enhanced catalytic properties for certain 

reactions.50 For this reason, the metal oxide support should consider shell porosity, 

magnetic behavior, electronic properties, thermal stability, crystalline structure 

and, ultimately, how it fits with the specific needs of the application. Just as gold 

behaves differently on the nanometer scale, so do many other elements, for which 

a comprehensive study on such behaviors and the possible combinations is 

complicated. Furthermore, there are differing views on whether the site of catalysis 

happens at the surface of the noble metal core, between the core and shell 

matrices, or on the shell itself, which would make a study of direct core and shell 
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combinations all the more important in how they would either enhance or dampen 

catalytic activity. 

There are many different ways to synthesize core-shell structures, but they 

can be separated into three basic categories: seed-mediated growth, post 

selective oxidative treatment, and one-pot chemical synthesis (Figure 4). Seed-

mediated growth is the process where the noble metal core, or seed, is 

synthesized first and then followed by epitaxial growth of the metal oxide shell onto 

the noble metal. One-pot synthesis is the simultaneous formation of the noble 

metal core and metal oxide shell. One-pot synthesis is attractive for its ease and 

simplicity, but makes it quite difficult to fine-tune the core and shell dimensions and 

structure. Post selective oxidation is usually applied to a bimetallic system, or alloy, 

and upon heating the component that is more easily oxidized will be drawn out, 

typically leaving a noble metal core with a metal oxide shell. However, this method 

can also be quite difficult to control the morphologies of the core-shell structure.  

 

 

Figure 4. Three different synthetic pathways for Au-metal oxide core-shell 

structures.20 
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Typically, when discussing core-shell structures it is represented by 

NM@MOx, where the noble metal, NM, core is fully encapsulated, @, by a metal 

oxide, MOx, and a non-encapsulated structure is mostly represented by NM/MOx 

notation, where the noble metal is on top of a metal oxide support. 

Of the synthetic methods, there are many different metal oxides than can 

be used as a shell. Different noble metals act differently from one another with the 

same metal oxide shell, and exhaustive experimental research has sought the 

optimum combination of core and shell for various catalytic processes. This non-

exhaustive list of potential metal oxides (Table 1) exhibits different properties in 

the catalytic process. It should be noted that the given band gap energies listed in 

Table 1 are those that have been observed for bulk metal oxides. However, non-

oxygen containing semiconductors have also been investigated, such as the 

monocrystalline cadmium selenide (CdSe) shell.51 Due to quantum confinement of 

electrons in a nanoparticle, the bandgap can  shift to a higher energy when the 

radius of the particle is decreased to a size where the free electron wavelength 

(calculated using de Broglie’s equation) in a semiconductor is on the order of the 

size of the nanoparticle.52-53 This can be visualized by realizing that the number of 

electrons, and therefore available states, within the system are not sufficient to 

create the “bands” of a bulk material. For small particles, the available states 

resemble a bandgap, but the separation is larger than that in a bulk material. 

In the case of a core-shell structure, the situation becomes more 

complicated. The core-shell structure is essentially a heterostructure, between the 

core and the shell. The interface between the two regions of the heterostructure 

will define how electron transfer across the shell can take place to enable efficient 

catalysis. The shell is typically much larger than the core, but even in the case of 

a monolayer-thick shell, as long as the shell particles are periodically bonded 

together in a regular crystalline structure, the electrons are only confined in one 

dimension, complicating the analysis. The challenge of understanding the electron 

transport in the core-shell structure is further complicated by the existence of 

defects, such as Frenkels and interstitials, which alter the delicate electronic  
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Table 1. Metal Oxide Bulk Applications.  

Metal 
Oxide 

Chemical 
Formula 

Band Gap 
(eV) Significant Findings Reference 

Zinc Oxide ZnO 3.3 Investigated for methanol 
steam reforming 

54-55 

Titania TiO2 3.2 
High rate of electron-hole 
recombination and 
thermal stability 

49, 56-57 

Tin(IV) 
Oxide SnO2 3.6 

Application in gas sensors 
(high sensitivity, low 
operating temperatures); 
n-type semiconductor 

58-61 

Zirconia ZrO2 5.0 
Hydrophobic; crystal 
structures: monoclinic, 
cubic, and tetragonal 

62-64 

Ceria CeO2 3.8 Used for diesel soot 
combustion 

47 

Cuprous 
Oxide Cu2O 2.2 

Large light absorption 
coefficient and good 
photocatalytic activity; p-
type semiconductor 

65 

Iron Oxide FeOx 1.8-2.0 Paramagnetic, easy for 
magnetic separation 

39, 66 

Manganese 
Oxide MnO 3.0 Poor electron conductivity 44, 66  

Silicon 
Oxide SiO2 9.1 

Good insulator; porous, 
allows access to catalytic 
core  

66-67 
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structure of the system. This modification can either benefit or hinder the desired 

catalysis process, analogously understood through the investigation of graphene 

in nanoelectronics.68 Therefore, it can clearly be seen that a complete description 

of the core-shell structure requires a full quantum mechanical analysis, including 

all possible variations to the structure, to fully explain experimental results. This 

topic, however, is outside the scope of this document, and only mention of the 

core-shell structures used and the results obtained are presented. 

Core-Shell Syntheses 

Seed-mediated Growth 

Seed-mediated growth is the process during which noble metal 

nanoparticles are synthesized first, producing the seed, followed by formation of 

the oxide shell around the noble metal core. This is the most common process in 

developing the core-shell structures. This method of synthesizing core-shell 

heterostructures requires epitaxial growth of the metal oxide shell onto the noble 

metal core. It is believed that this type of growth requires a certain amount of lattice 

mismatch (<2%) between the core and shell.69 The interfacial energy between the 

noble metal core and the metal oxide shell can be attributed to this lattice 

mismatch.70-73 Several reports point out that a porous oxide shell is necessary 

because the catalysis is believed to occur at the noble metal core, between the 

shell and core matrices and not at the shell exterior.74-75 

The gold-copper(I) oxide core-shell structure (Au@Cu2O) has been widely 

investigated over the last few years.65, 76-79 Liu et al. found that gold and copper 

had a 4.5% lattice mismatch, which is why the cuprous oxide shell forms a compact 

shell as opposed to amorphous islands over the gold core. They synthesized gold 

nanoparticle seeds by mixing chloroauric acid (HAuCl4·3H2O) and water under 

reflux followed by an injection of trisodium citrate solution and further refluxed to 

obtain Au seeds with a diameter of approximately 60 nm. Under an ice bath, 

polyvinylpyrrolidone (PVP), sodium citrate (as a reducing agent), and copper 
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sulfate (CuSO4) were added to the Au seed solution. The mixture was then diluted 

with sodium hydroxide (NaOH) and ascorbic acid to create Au@Cu2O core-shell 

structures with the core size retaining its diameter of 60 nm and a copper(I) oxide 

(Cu2O) shell approximately 20 nm thick. This structure is shown in the scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) images 

(Figure 5).76 Similarly, Kong et al. synthesized gold nanorod (NR) seeds by mixing 

HAuCl4·3H2O, cetyltrimethylammonium bromide (CTAB), and a solution of ice-cold 

sodium borohydride (NaBH4) in water. Another solution of CTAB, water, 

HAuCl4·3H2O, silver nitrate (AgNO3), and ascorbic acid was called the “growth” 

solution to which the seed solution was injected while stirring at 26 °C for 12 hours 

to produce the Au NRs. In order to get a Cu2O shell with octahedral framework 

they added the Au NR solution to a solution containing copper(II) nitrate trihydrate 

(Cu(NO3)2·3H2O), sodium dodecyl sulfate (SDS), and water, followed by the 

addition of NaOH and then adding dropwise a hydrazine hydrate and water 

solution. Size of the products could be predicted and controlled by adjusting the 

volume of Au seed solution. Average edge size of the octahedral was 158 nm, as 

can be seen in the high-annular angle dark field (HAADF) STEM image in Figure 

6.65 

The morphology of the shell can be controlled. Wang et al. synthesized 

rhombic dodecahedral and edge- and corner-truncated gold nanoparticles to 

control the overall morphology of the Au@Cu2O core-shell heterostructures 

(Figure 7). Rhombic dodecahedra gold nanocrystals had a diameter of ~90 nm, 

and with varying amounts of the reductant (hydroxylamine hydrochloride, 

NH2OH·HCl) they were able to obtain cubic, cuboctahedra, and octahedral 

structures with average diameters of 304, 345, and 373 nm, respectively. Edge- 

and corner-truncated octahedral gold nanocrystals had a diameter of ~85 nm, and 

while increasing the volume of the reductant, they were able to obtain 

heterostructures that evolved from face-raised cubic to cuboctahedral and  
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Figure 5. A) SEM image and B) TEM image of Au@Cu2O core-shell NPs with the 

shell thickness about 20 nm. Figure modified from reference.76 

 

 

Figure 6. HAADF-STEM image of AuNR@Cu2O heterostructure. Figure modified 

from reference.65 

 

 

Figure 7. Different Au core nanoparticle structures (top) forming different Cu2O 

shell configurations (bottom) with a scale bar = 100 nm. Figure modified from 

reference.78 
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truncated octahedral structures with average diameters of 283, 331, and 363, 

respectively. Icosahedral gold nanocrystals could produce Au@Cu2O core-shell 

stellated icosahedra and truncated stellated icosahedra structures by increasing 

the reductant volume. The trisoctahedral gold nanocrystals had diameters of ~90 

nm, and with varying amounts of the reductant they could get cubic, cuboctahedra, 

and face-raised octahedral structures, in order of increasing reductant, with 

diameters of 340-380 nm. Au@Cu2O core-shell cubes and face-raised cubes were 

shown to be inactive in the photodegradation of methyl orange, but face-raised 

octahedral was shown to have the best catalytic performance, with octahedral 

structures to be the second runner up. They believe that the presence of v-shaped 

edges with the gold core enhances the catalytic activity.78 

One of the advantages of having an iron oxide shell as opposed to a 

different metal oxide is that the catalyst has the potential to be easily recovered 

using magnetic separation, which is one of the major reasons why it is so attractive 

for this type of structured catalyst.39 Lin and co-workers created gold-iron(II,III) 

oxide (Au-Fe3O4) flower-like and dumbbell shaped structures using thermal 

decomposition of an iron oleate complex (Fe(OL)3) in the presence of Au seeds 

that ranged between 5-10 nm and refluxed at 310 °C. When the Au seeds were 

small dumbbell shaped heterostructures with a diameter of 12-16 nm were formed 

and when larger Au seeds were used (7-13 nm) flower-like heterostructures in the 

range of 20-28 nm were produced (Figure 8). Similarly, Yin et al. have synthesized 

gold-iron(III) oxide (Au@Fe2O3) core-shell structures, but used thiolated gold 

nanoparticle seeds instead of PVP or other applicable ligand, to control the iron 

oxide shell.40 HAuCl4·3H2O, water, tetraoctylammonium bromide (TOABr), and 

toluene were vigorously mixed; to which 1-dodecanethiol and NaBH4 were added 

with continued stirring followed by separation of the organic phase to obtain thiol 

coated gold nanoparticles. The thiolated gold nanoparticles were then coated with 

iron pentacarbonyl (Fe(CO)5), attached to a support and then pretreated to remove 

the thiol ligands to obtain Au@Fe2O3 core-hollow shell nanoparticles. The average 

size of the Au nanoparticles were estimated to be 2.5 nm with varying Fe2O3 shell 
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thicknesses of 1, 2, 3, and 4 nm, depending on the amount of Fe(CO)5 added. This 

core-shell structure was then loaded onto a silica (SiO2), titania (TiO2), carbon (C), 

or α-Fe2O3 support.40 

 

 

Figure 8. TEM images of A) 5 nm Au NPs, B) dumbbell-like Au-Fe3O4 

heterostructures, D) 10 nm Au NPs, and E) flower-like Au-Fe3O4 heterostructures; 

C) and F) are high-resolution transmission electron microscopy (HRTEM) images 

of dumbbell- and flower-like Au-Fe3O4 heterostructures, respectively. Figure 

modified from reference.39 

 
Cobalt(II,III) oxide (Co3O4) is considered to be very active to catalyze the 

oxygen evolution reaction (OER) when combined with a conductive metal core. 

Yan’s group produced such a structure employing a gold core encapsulated by a 

cobalt oxide shell. They reduced HAuCl4·3H2O with tert-butylamine borane (TBAB) 

and utilized oleylamine as a surfactant to create Au NCs. This was followed by 

epitaxial growth of cobalt oxide onto the Au NCs with cobalt(II) acetylacetonate 

(Co(acac)2) and TBAB in conjunction with oleylamine and oleic acid, then loaded 

onto carbon and calcined in air. As a result, gold-cobalt oxide core-shell structures 

(Au@Co3O4) with a core diameter of ~3.5 nm, a shell thickness of 2 nm, and an 

overall diameter of about 8 nm were successfully synthesized. However, the cobalt 

oxide shell appeared to be amorphous.41 



 

17 
 

Another synthesized core-shell nanoparticle of interest is gold-zinc oxide 

(Au@ZnO) core-shell structures.70 It was synthesized by first stabilizing the gold 

NPs with citrate and then treating them with a thiol ligand, 4-mercaptobenzoic acid, 

at 60 °C for 2 hours. After isolation, the gold nanoparticles were dispersed in a 

PVP solution with hexamethylenetetramine (HMTA) and zinc nitrate (Zn(NO3)), 

and subsequent incubation yielded the desired core-shell structure. The use of 

PVP was found to be a critical step in tuning the interfacial energies, controlling 

the epitaxial growth, and stabilizing the overall structure. The efficacy of PVP rests 

in its complex charge distribution, where the non-polar end interacts with the 

hydrophobic thiol ligands attached to the gold core and the polar end interacts with 

the ZnO shell (Figure 9). The resulting gold cores were measured to be 40 nm in 

size with a shell of 40 nm thick, making the heterostructure 120 nm in diameter. 

 

 

Figure 9. The Au−ligand−ZnO and the Au−ligand−PVP−ZnO interactions in 

Au@ZnO heterostructures. Figure modified from reference.70 

 
Aside from the dense-packed Au-oxide NPs, yolk-shell heterostructures 

have also been created. Lin et al. synthesized three different yolk-shell 

heterostructures, all using a mesoporous silicon oxide shell (mSiO2) and a gold 

core NR.  The Au NR was surrounded by silver (Ag), which was then surrounded 
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by mSiO2 (AuNR@Ag@mSiO2). Another with a Au core NR surrounded by another 

Au layer and then by mSiO2 (AuNR@Au@mSiO2), and finally a yolk-shell structure 

with a gold NR core within a void gold shell which was then surrounded by mSiO2 

(AuNR@void@Au@mSiO2). The gold NR seeds were first synthesized by 

combining HAuCl4·3H2O, CTAB, and a cold solution of NaBH4 and water. Then, 

after 2 hours this solution was added to another solution containing HAuCl4·3H2O, 

CTAB, AgNO3, and L-ascorbic acid. For all three nanostructures, the Au NR seeds 

were dispersed in water with NaOH, and 20% tetraethyl orthosilicate (TEOS), 

which generated AuNR@mSiO2 structures. In order to prepare the core-shell 

AuNR@Ag@mSiO2 structure, the AuNR@mSiO2 solution was combined with 

water, hydroquinone, sodium citrate, citric acid (to adjust to pH of 4), and AgNO3 

at 60 °C (Figure 10). In preparing the AuNR@Au@mSiO2 structure, the 

AuNR@mSiO2 solution was mixed with water, a HAuCl4 solution, and ascorbic 

acid. To prepare the yolk-shell AuNR@void@Au@mSiO2 structure, a solution of 

the AuNR@Ag@mSiO2 particles was injected with varying volumes of HAuCl4 

solution. In order to control the shell thicknesses, the authors simply varied the 

volume of TEOS that was added to the initial AuNR@mSiO2 structures.80 

 

 

Figure 10. Fabrication of the AuNR@Ag@mSiO2 core-shell structures. Figure 

modified from reference.80 

 

The core-shell heterostructure containing a tin oxide shell (Au@SnO2) was 

synthesized by Tripathy et al. where the gold core was synthesized using the 

common reduction of HAuCl4, which was combined with trisodium citrate 

dehydrate and water while heated. An ultrasound assisted method was used for 
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the seeded growth of the Au@SnO2 heterostructure by adding NaOH (to adjust pH 

to 10) and sodium hexahydroxostannate (Na2SnO3·3H2O) for which the shell 

formation was monitored via UV-visible spectroscopy. After the tin containing 

reagent was added, the solution reacted for 90 minutes and then was washed with 

water, to obtain the Au@SnO2 core-shell structure with a gold core of 10-12 nm 

with face-centered cubic conformation and a SnO2 shell that was 10 nm thick with 

tetragonal geometry.42 The same method was adapted by Chung et al. to produce 

gold cores of 10 nm with a SnO2 shell of 8 nm.81 Similarly, Wu and co-workers 

prepared silver core and tin oxide shell (Ag@SnO2) nanoparticles. Briefly, they 

combined AgNO3, water, NaBH4, and trisodium citrate. Then, NaOH (to adjust pH 

to 10) and Na2SnO3·3H2O were added at four intervals, every 30 minutes, while 

heated to 60 °C to obtain the desired core-shell structure. The silver core had a 

diameter of approximately 15 nm and the SnO2 shell was roughly 10 nm thick.82 

Titanium oxide has been a common and popular choice as an oxide shell 

because of its thermal stability57 and electronic properties.49 Chen et al. 

synthesized Au@TiO2 core-shell structures by combining a HAuCl4 solution, 

sodium citrate solution, and PVP with heat, and afterwards added a titanium(IV) 

butoxide solution with ethanol to obtain the gold seeds. TiO2 was then nucleated 

onto the gold core surface, purified by semipermeable membrane technique, dried, 

and then varying samples were annealed to 300 °C, 500 °C, and 700 °C. The gold 

core had a diameter of 10-15 nm and the shell was 1-3 nm thick. Although the shell 

was not uniform, they assured that there was complete coverage of the gold core. 

Without any post-heating, the TiO2 shells were amorphous, while heating to 300 

°C and 500 °C produced anatase TiO2 shells and heating to 700 °C produced rutile 

TiO2 shells. In each case, however, it is important to note that the gold core showed 

no oxidation and was in a metallic state (Au0).74 Yin’s group followed the same 

procedure, but used titanium tetraisopropoxide (TTIP) instead of titanium(IV) 

butoxide,83 while Fang et al. used TiCl3 and poly(sodium 4-styrenesulfonate) 

(PSS).84 Gold is the only noble metal that does not have a stable oxidation state.85 

This synthesis can be extended to silicon oxide shells using the PVP ligand86 and 
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without the PVP ligand, using a silane coupling agent instead,87-88 cerium oxide 

shells that use a reductant other than sodium citrate,89-90 and even bimetallic 

colloids (Au@Ag).91 Xu’s group produced the same flower-like core-shell 

structures, but, in addition to Au, also synthesized the titania shell with platinum 

(Pt) and palladium (Pd) cores. The only reported core-shell structure dimensions 

reported for these heterostructures was a wide range of 250-450 nm.56 Wu et al. 

also synthesized a Pt@TiO2 core-shell structure similar to Zhang’s procedure with 

only a few modifications, which allowed them to get different structures; instead of 

flower-like structures the shell formed wedge shaped petals.49 Bakhmutsky’s and 

co-workers did a combination of palladium or platinum cores with titania or zirconia 

shells. They were able to produce noble metal cores of 2 nm in diameter and 

amorphous metal oxide shells that were 2-4 nm thick for the titania shell and 2-3 

nm thick for the zirconia shell.63 

Moreover, the yolk-shell structure has been achieved in Au-metal oxide 

nanostructures. For example, Au@ZrO2 yolk-shell heterostructures that were 

prepared by Schüth’s group. The Au core was first coated with silica, which served 

as a sacrificing template and was leached away after coating with zirconia. For the 

zirconia shell, the prior resulting solution was then injected with Lutensol AO5 

followed by zirconium(IV) butoxide (Zr(OBu)4) and after 1 hour of stirring left to sit 

for 3 days. The colloid was then treated with NaOH for 16 hours followed by a fresh 

solution of NaOH for 12 h more in order to remove the silica layer. The resulting 

solution was washed with water and ethyl t-butyl ether to obtain the Au@ZrO2 yolk-

shell structure (Figure 11).62, 92 

A Au core with a cerium oxide shell (Au@CeO2) was synthesized by Qu et 

al. by first preparing Au@GCEC (GCEC, the gel of citric acid-ethylene glycol-Ce3+), 

which was the precursor to Au@CeO2, by combining Au NPs, citric acid, ethylene 

glycol and Ce3+ ions under a 500 W Xe (xenon) arc lamp which irradiated the 

mixture. The Au@GCEC precursor created a shell 1-13 nm thick depending on the 

length of irradiation time applied. Once the Au@GCEC structure was calcined it 



 

21 
 

produced Au@CeO2/SiO2 giving a gold core of about 17 nm and a CeO2 shell of 8 

nm thick.93 Li and co-workers also synthesized a Au@CeO2 structure using CTAB 

as a stabilizer, while sequentially adding an EDTA-NH3 mixture and a cerium 

nitrate (Ce(NO3)3) solution.94 

 

 

Figure 11. Fabrication process of Au@ZrO2 yolk-shell structure and TEM images 

at each stage. Figure modified from reference.92 

 

Post Selective Oxidation Treatment  

Another popular methodology to fabricate core-shell structures is through 

post selective oxidation. This process is typically applied in bimetallic systems, of 

which upon heating/annealing/calcining the easily oxidized component can be 

drawn out, leaving the noble metal as the core with a metal oxide shell. This 

method provides great flexibility for the composition of metal core and oxide shell 

by choosing various bimetallic starting materials. However, with this process it 

seems to be very difficult to fine-tune the shell thickness surrounding the core of 

which can typically be accomplished using seeded growth.  

The Au@MnO core-shell structure was synthesized by mixing gold 

nanoparticles, manganese(II) acetylacetonate (Mn(acac)2), and potassium 
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triethylborohydride (KBEt3H) at high temperatures to create a AuMn alloy. The 

strong reducing agent, KBEt3H, was used here to reduce Mn2+ to Mn0. The AuMn 

alloy was then annealed in air at 170 °C to create the Au@MnO core-shell 

heterostructures that were about 5 nm in diameter 44.  The core-shell structure 

formation was highly dependent on the Au:Mn ratio and only when the ratio was 

closest to one, Au44Mn56 (Figure 12A), was the core-shell Au@MnO formed. 

Otherwise, when the Au:Mn ratio was greater than one, flower-like structures were 

formed (Au67Mn33) and, when the Au:Mn ratio was a lot lower than one, dumbbell 

shaped structures were formed (Au35Mn65) as seen in Figure 12B.44  

Using a self-templating technique, Qi et al. synthesized the Au@CeO2 core-

shell structure, where HAuCl4·3H2O and CeCl3 are mixed in an aqueous solution 

containing glucose and urea under hydrothermal conditions, followed by the post 

selective oxidation treatment by calcination (Figure 13A). They produced 

nanoparticles of about 178 nm in diameter with a gold core of roughly 17 nm while  

the CeO2 shell was composed of nanoparticles of about 9 nm (Figure 13B).75 

Zhu et al. synthesized the Au@TiO2 core-shell structure via a reverse 

micelle method followed by annealing. The Au@TiO2 core-shell heterostructures 

had a diameter of about 20 nm, with a gold core size of 9-12 nm and a titania shell 

3-5 nm thick. The core-shell structures showed some non-uniformity in the shell 

thickness, but the gold cores were fully enclosed.45 Kaneda’s group also utilized 

the reverse micelle method to create a Au@CeO2 core-shell structure. A micelle 

solution containing Au3+ and Ce3+ was combined with NaOH to yield the core-shell 

structure containing the Au0 and Ce4+ oxidation states. They obtained Au cores 

with a diameter of 8.6 nm surrounded by spherical CeO2 NPs that were 2 nm in 

diameter with a shell thickness of ~5.5 nm for heterostructures of 20 nm thick.46 

Au@SnO2 core-shell structures were formed by Xie’s group with gold cores 

of 15 and 40 nm with a shell thickness of  6-7 nm for both seed sizes. A SnCl2 

solution, pre-made Au nanoparticle seeds and NaBH4 were mixed. Then, the AuSn 

alloy, dispersed in ethanol, was distributed onto a silicon support and air dried  
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Figure 12. A) STEM-EELS 2D mapping of C-Au44Mn56 after annealing and B) 

synthesis of Au-MnO heterostructures. Figure modified from reference.44 

 

 

Figure 13. A) Synthesis of Au@CeO2 core-shell structures and B) HAADF-STEM 

mapping image of one Au@CeO2 heterostructure. Figure modified from 

reference.75 
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before being annealed at 850 °C to create the noble metal core-metal oxide shell 

structure. There were small defects in the SnO2 shell due to the different diffusion 

rates of the oxygen and tin atoms, for which the oxygen atoms were faster. These 

defects may offer more pathways for interacting molecules to directly contact the 

catalytic core.61 

One-Pot Chemical Synthesis 

One-pot synthesis refers to the simultaneous formation of both the noble 

metal cores and the metal oxide shells. This is not a widely applied synthesis for 

core-shell structures because it is hindered by the difficulties of fine tuning core-

shell structures and controlling their morphology. However, it is a popular tactic to 

attempt for its ease and simplicity, especially where industrial purposes are 

concerned.  

Dong’s group used reverse micelle systems that contained an aqueous 

solution of HAuCl4 and another containing TiCl3 and then simply combined all 

reagents and stirred the solution for 1 hour at 60 °C to obtain Au@TiO2 core-shell 

structures (Figure 14A). The aqueous solution formed reverse micelles in 

cyclohexane and poly(oxyethylene) nonylphenyl ether, which acted as the 

constrained reaction system for the redox reaction between Au3+ and Ti3+ to form 

nanosized particles. They obtained a gold core of size 40 nm and a TiO2 shell of 

5nm thick (Figure 14B-C).95 

Using a new gas bubbling-assisted membrane reduction-precipitation 

(GBMR/P) method, created by Wei et al. specifically for this synthesis, this group 

was essentially able to turn a multi-step process into a one step process. Into 

Beaker I (Figure 15A), they added a PVP solution, HAuCl4·3H2O, the zirconia 

support (ZrO2), and cerium nitrate (Ce(NO3) 3·H2O). Then, to Beaker II, they added 

NaBH4 and, once it was consumed, a precipitating agent (NH3·H2O). Hydrogen 

gas was used for bubbling which aided in creating a homogeneous mixture and 

continued to bubble the mixture for 1 hour after everything was added and then 

calcined to 500 °C to obtain the Au@CeO2 core-shell structure (Figure 15B). The  
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Figure 14. A) Synthesis of Au@TiO2 core-shell heterostructure using reverse 

micelle method B) TEM and C) elemental mapping of Au@TiO2 core-shell 

heterostructure. Figure modified from reference.95 

 

 

Figure 15. A) Diagram of the gas bubbling-assisted membrane reduction-

precipitation (GBMR/P) device for synthesis of ZrO2-supported Au@CeO2 core-

shell heterostructure B) one-pot synthesis of Au@CeO2/ZrO2 using the GBMR/P 

method. Figure modified from reference.47 
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thickness of the CeO2 shell was 1-2 nm, while the size the Au@CeO2 

heterostructure over the ZrO2 support were 3-11 nm in diameter (mean diameter 

3.7 nm).47 

A core-shell structure of Ag@MSNs (MSNs = mesoporous silica spherical 

nanoparticles) was synthesized by combining AgNO3, formaldehyde, CTAB, 

TEOS, and NaOH at 80 °C, and then removing the CTAB with an ethanol solution. 

Synthesized by Han et al., these heterostructures were approximately 65 nm in 

diameter with a silver core of about 15 nm.96 

Similarly, using a one-pot hydrothermal process, a Ag@Fe3O4 flower-like 

core-shell heterostructures were synthesized by Jiang’s group by combining 

polyacrylamide (PAM), sodium citrate, Fe(NO3)3, and AgNO3, all in an aqueous 

solution. Nanostructures were roughly 200 nm with Ag core sizes ranging from 50 

to 100 nm and had a non-ordered mesoporosity, where the pore sizes were found 

to be around 7.5 nm. By varying the concentrations of the silver and iron containing 

precursors they found that the core size could be adjusted; increasing the Ag 

concentration increased the core size while increasing the Fe concentration 

decreased the core size.97 Both Jiang’s and Han’s methods are considered to be 

green chemistry because there were no harmful reagents utilized. The Ag@ZnO 

core-shell structure was synthesized by Aguirre et al., which had Ag nanoparticles 

of sizes 20-30 nm, surrounded by 10 nm of ZnO units.54 

Au-Metal Oxide Core-Shell Structures: CO Oxidation 

Shell Thickness on Catalytic Activity 

For CO oxidation, it was shown that the Au@Fe2O3/SiO2, Au@Fe2O3/TiO2, 

Au@Fe2O3/C, and Au@Fe2O3/Fe2O3 core-shell catalysts were more active than 

their non-encapsulated versions, Au/SiO2, Au/TiO2, Au/C, and Au/Fe2O3, 

respectively. However, using different supports for the Au@Fe2O3 core-shell 

structure (with a shell of 2 nm) did not seem to affect its catalytic activity. In 

studying the shell thickness and its effect on catalytic activity, where the Au core 
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was approximately 2.5 nm and the iron oxide shells were 1, 2, 3, and 4 nm thick, 

it was found that the CO conversion for these structures at -40 °C were 85%, 32%, 

44%, and 23%, respectively. The thinner the metal oxide shell, the greater the CO 

conversion and also the larger the rate of the reaction for the conversion.40 

Core Size on Catalytic Activity 

Not only does shell thickness affect catalytic activity, but the size of the 

noble metal core can also play an important role in the effectiveness of the catalyst. 

In order to study the effect of the core size on CO oxidation, Zhang’s group 

synthesized gold cores of varying sizes with a ceria shell. They found that the CO 

conversion of Au@CeO2/SiO2 was indirectly proportional with the gold core particle 

size, increasing with decreasing gold particle size, where they tested gold core 

sizes of 11, 17 and 32 nm.93 Using a TiO2 shell with a Au core, Chen et al. also 

discovered that CO oxidation was dependent on the size of the gold core within 

the core-shell nanoparticle. It was determined in previous studies that CO 

conversion was more successful with a small catalyst (between 2-5 nm),11 

however, in this particular study, they synthesized a gold core size of 10-15 nm 

and were still able to attain half CO conversion at 220 °C.74 Han et al. likewise 

synthesized a Au@TiO2 core-shell structure with a gold core of 40 nm and TiO2 

shell of 5 nm thick. The non-encapsulated gold NPs (Au/TiO2) showed better CO 

oxidation activity on the first cycle, but quickly deteriorated, whereas the core-shell 

structure did not show any alteration after several cycles.95 
It was found that Au@SiO2 core-shell structures were also functional for CO 

oxidation and it was further discovered that they were dependent on the size of the 

gold core. Zhang et al. synthesized gold nanoparticle cores of sizes 1.5, 1.8, and 

2.3 nm with corresponding SiO2 shells of 8.6, 10, and 11 nm thick, respectively. 

The smaller the gold core, the higher catalytic activity at lower temperatures 

(Figure 16). At 100 °C, the turnover frequency (TOF) for the gold core sizes of 1.5, 

1.8, and 2.3 nm were 96.2, 46.3, and 6.64 h-1, and they each had 100% CO 

conversion at temperatures of 180 °C, 260 °C, and 400 °C, respectively. They 
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concluded that the smaller the gold core size, the better the catalytic activity for 

CO oxidation, however, they did not have consistent shell thicknesses for their 

particles, which in itself could have hindered or enhanced the catalytic activity.67 

Guttel et al. synthesized a Au@ZrO2 yolk-shell structure while also studying the 

size effects of the noble metal core with the catalytic activity of CO oxidation. They 

were able to adjust the size of the gold core via leaching from which they obtained 

varying gold core sizes between 5 and 15 nm. Unlike other studies, they were not 

able to find a strong correlation between decreasing noble metal core size and CO 

conversion. They proposed that it was because they would not expect to see a 

strong correlation unless the gold cores were less than 5 nm98 However, the lack 

of correlation could simply be due to the yolk-shell structure instead of a more 

symmetric core-shell structure. A yolk-shell structure would have more hollow/void 

spaces between the core and shell, and thus it would not have the complete 

synergistic effects of the core-shell interface that a core-shell structure would be 

expected to have. 

 

  

Figure 16. CO conversion vs. temperature by Au@SiO2 heterostructures of 

varying gold core sizes. Figure modified from reference.67  
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Core-Shell Interfacial Synergies 

A study by Galeano et al. indicated that the Au@ZrO2 core-shell structures 

demonstrated at least one order of magnitude higher CO oxidation activity  when 

compared with the Au@C structure, (Figure 17).62 They also compared this 

structure with Au@ZrO2/C, where the porous sites on the zirconia shell have been 

essentially filled by carbon. Given a decrease in the shell’s porosity one would 

expect a decrease in CO conversion as consequence, but they found that the 

catalytic activity was not reduced or enhanced and that the additional carbon 

merely added weight to the heterostructure. This leads one to question where CO 

conversion actually occurs, at the core or in a synergistic relationship between the 

core and shell, at the shell’s surface.  

Core-Shell vs. Non-encapsulated Catalyst Counterparts 

A diesel oxidation catalyst (DOC) reduces emissions from diesel fueled 

vehicles and equipment by oxidizing CO and unburned hydrocarbons, as well as 

enabling a good NO/NO2 ratio for the selective catalytic reduction of NOx with NH3. 

When compared to the standard Pt/Al2O3 catalyst at temperatures below 150 °C, 

Bauer et al. found that the Au@CuO/SiO2 catalyst was much more active, but was 

inhibited by propylene and nitrogen monoxide (NO).99 Yu et al. synthesized a 

Au@SnO2 core-shell structure, using seeded growth. With a gold core of 15 nm 

size and a shell of 6-7 nm thick, the Au@SnO2 core-shell structures had a half CO 

conversion around 230 °C, while the non-encapsulated Au/SnO2 had a half CO 

conversion around 330 °C as well as suffering a substantial loss in activity 

compared to the core-shell structure (Figure 18). The core-shell structure had a 

high-temperature stability (heated to 850 °C) and was thought to also be utilizing 

the synergetic confinement effect, as well as the strong interactions between gold 

and the oxide support, for which both may enhance its catalytic performance for 

CO oxidation.61 
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Figure 17. Conversion temperature curves for CO oxidation (a-d: Au core of 14 

nm). A) Au@ZrO2, B) Au@ZrO2,C, C) Au@C silica route, D) Au@C zirconia route, 

E) Au@C zirconia route (Au core of 7 nm). Figure modified from reference.62  

 

 

Figure 18. CO conversion using A) Au@SnO2 core-shell structure and B) non-

encapsulated Au/SnO2 catalysts. Figure modified from reference.61 
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CHAPTER THREE  
MATERIALS AND METHODS 

Part of the information in this chapter is taken from Michelle Lukosi et al. paper, 

currently under editing. 

Materials 

 The chemical reagents used were hydrogen tetrachloroaurate trihydrate 

(HAuCl4·3H2O), 1-hexanethiol (SHC6H13, 98%), tetraoctylammonium bromide 

(TOABr, 98%), sodium borohydride (NaBH4, 99%), iron pentacarbonyl (Fe(CO)5), 

oleylamine (reagent grade), oleic acid (90%), and Cab-O-Sil (fumed silica). 

Solvents used were methanol, deionized water, toluene, acetone, ethanol, 

dichloromethane, hexanes, and diphenyl ether. All chemicals listed were used as 

obtained and without any further purification. 

Catalyst Preparations 

 In preparing the Au144 clusters, Qian’s methods were utilized.27 In ambient 

conditions, 0.70 millimole (mmol) of HAuCl4·3H2O was added with 0.70 mmol 

TOABr in methanol in a round bottom flask. The solution changes color from yellow 

to red once the TOABr is added, indicating the formation of Oct4N+ AuBr4-. After 

~20 minutes, 1.505 mmol of 1-hexanethiol are added to the solution at room 

temperature and the color of the reaction mixture turns a creamy white color over 

the course of 30-60 minutes. The thiol;Au ratio was adjusted to 4.3:1.35 After 1 

hour, a fresh solution of NaBH4 (3.5 mmol) in cold DI water is rapidly added to the 

solution under vigorous stirring. The color of solution immediately turns black with 

a slightly exothermic reaction and produces Au clusters, that precipitate out of the 

methanol solution. The reaction continues to stir for 5 hours to completely 

equilibrate the reaction. The black precipitates are collected by centrifugation (6 

minutes at 6500 rpm) and decantation. The black precipitates are washed with 

excess methanol and collected by centrifugation several times to completely 
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remove all small-molecule and electrolyte residue, including excess free thiol 

residues. Then, toluene is used to separate the Au clusters from Au(I)-SR 

polymers, which are poorly soluble in most solvents. The as-obtained solution only 

contains Au144(SR)60 (major product) and Au25(SR)18 (minor product). Acetone is 

used to separate the Au144(SR)60 and Au25(SR)18 clusters. The Au144(SR)60 is 

dispersed into hexane, toluene, or dichloromethane depending on the 

characterization method to be used. 

In coating the cluster with an iron oxide shell, methods from Yin et al.  were 

applied,40 following a seed-mediated post selective oxidation treatment technique 

(Figure 19). In a 4-neck 100 milliliter (mL) round-bottom flask, 50 mL of diphenyl 

ether, 0.15 mL of an oleylamine, and 0.15 mL oleic acid were added, stirred, and 

heated to 65 °C. Then, 20 mg of Au144 cluster dispersed in 2 mL of toluene is added 

to the mixture. The solution is set to stir under nitrogen (N2) flow and heated at 65 

°C for 15-20 minutes in order to purge the system of oxygen. The reaction is then 

put under a nitrogen blanket before adding the iron pentacarbonyl in varying 

amounts. The flask is slowly heated to 200 °C (~1 °C per minute) and left to stir for 

30 minutes. The reaction is then cooled to approximately 105 °C and then the N2 

environment is removed and air is flowed through flask for a minimum of 10 

minutes to allow the iron to be drawn out through oxidation. Subsequently, the 

reaction flask is cooled to room temperature. The solution is washed several times 

with ethanol and centrifuged. The core-shell precipitate is then dispersed in 

hexane. 

 

 
Figure 19. Seed-mediated post-selective oxidation method for Au144@Fe2O3 

particles. 
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 To analyze and test the core-shell structures, they are deposited onto fumed 

silica (SiO2) using ~1.5% gold loading. Fumed silica support was utilized because 

of its inert properties, given its weak metal support interaction (WMSI) and ability 

to adsorb cations, as opposed to other metal oxide supports that have SMSI’s. The 

silica (Cab-O-Sil) is added to the colloidal mixture of Au144@Fe2O3 particles in 

hexane, sonicated, and stirred for 2 hours before slowly evaporating off the 

solvent, using rotary evaporation. After removing the solvent, the powder is dried 

and calcined at 300 °C for 2 hours. 

Characterizations 

X-ray Diffraction 

X-ray diffraction (XRD) consists of an X-ray tube, sample holder, and 

detector. In this research, the X-rays are first generated in a cathode ray tube by 

bombarding electrons onto a copper (Cu) target. These X-rays are collimated and 

directed onto the sample where the average composition is determined based on 

the intensity of the reflected X-rays from the sample. From the peaks in the XRD 

spectra, the size of the particles can be determined using the Scherrer equation 

(Equation 1). In this equation, τ represents the mean crystallite/domain size, K 

equals 0.94 and is a dimensionless shape factor called the Scherrer constant,100 λ 

is the wavelength of the X-ray, β is the full width at half maximum (FWHM) of the 

peak intensity, and θ is the Bragg angle, which are converted to radians. 

  (1) 

For this equation we use the 2θ angle. The incident and reflected rays create the 

angle θ with a crystal plane. Reflections from planes set at θ angle with respect to 

the incident beam produces a reflected beam at angle 2θ from the incident beam.  

The Au144 clusters were studied by air drying the clusters dispersed in 

solution directly onto the silicon plate, which created thin films of the particles.  At 

room temperature, the clusters were analyzed using a PANalytical Empyrean 
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diffractometer over the range from 10-80° 2θ using Cu K-alpha (Kα) at wavelength 

1.540958  radiation at 45 kV and 40 mA. The Au144@Fe2O3 core-shell structures 

were also characterized by XRD, for which the data of the core-shell structures 

were collected by studying powder samples and analyzing them using the same 

instrumentation and parameters as those used for the Au144 thin film analyses. The 

core-shell structures were loaded onto silica via colloidal deposition, calcined, and 

finely ground to ensure a homogeneous product.  

Matrix Assisted Laser Desorption Ionization 

 One of the methods used to characterize the Au144 clusters in this work was 

a Bruker matrix assisted laser desorption ionization time-of-flight mass 

spectrometer (MALDI-TOF-MS). MALDI utilizes of the adsorption of laser light by 

a solid sample layer, for which the laser, in turn, ablates the sample/matrix creating 

a supersonic plume expansion (Figure 20). This method is typically used with large 

proteins because it enables very high mass compounds to be analyzed. It is 

exactly this reason that it is a good characterization method for gold clusters, since 

Au144 NCs are 28.363 killodaltons (kDa) without even including the thiol capping. 

Matrices used for MALDI are specifically designed to absorb energy via light, which 

is why they tend to be aromatic compounds. These matrices are typically in solid 

form and the samples are dispersed in these matrices by co-crystallization either 

directly onto the sample plate or just before being placed on the sample plate. In 

order to get a clear spectrum of the compound in question, a specific matrix-to-

sample (M-S) ratio is used. A molar M-S ratio that is too low means less laser 

energy is being transferred into the analyte sample because there are too few 

matrix molecules. However, a molar M-S ratio that is too high usually means that 

not enough of the sample is being ablated to produce detectable quantities of ions. 

Each test has proven to be a case by case basis, where there is a threshold limit, 

or sweet spot, to each sample’s molar M-S ratio.  

The mass spectrum was collected in a linear positive ion mode. A 

dichloromethane solution of the Au144(SC6H13)60 particles (5 mg/mL) were mixed  
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Figure 20. Simplistic laser desorption ion source for non-resonant light absorption 

by a solid. Figure modified from reference.101 
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with the matrix, a chloroform solution of trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene] malononitrile (DCTB) based on literature results,16, 102-103 (Figure 

21) applied to the sample plate (which acts as accelerating electrodes), and then 

air dried.  

Brunauer-Emmett-Teller Analyzer 

Adsorption-desorption measurements with N2 are used to characterize the 

porosity and surface area of the materials. The Brunauer-Emmett-Teller (BET) 

method is an extension of the Langmuir theory, which assumes a layer of N2 gas 

is adsorbed onto the surface and that the layers do not interact with one another. 

During adsorption and desorption, the relative pressure of the gas is recorded 

versus the volume of the tube and mass of sample being analyzed at a constant 

temperature, which creates the BET isotherm.104 The nitrogen physisorption 

isotherms were measured at 77 K using a Micromeritics Gemini 2375 BET area 

analyzer. The isotherms produced in this research were all type IV isotherms, 

according to literature.105 This means that there was a restricted monolayer-

multilayer adsorption and a Type IV isotherm can be represented by Equation 2 

below, as well as Figure 22, where V is the volume of adsorbed gas, Vm is the 

monolayer volume, C is the constant, P is the partial pressure of the sample, and 

P0 is the saturation vapor pressure of the sample.105 

  (2) 

Inductively Coupled Plasma Optical Emission Spectroscopy 

Atomic spectroscopy is good for identifying elements present, as well as, 

quantifying elemental composition of a compound with trace-metal precision. 

There are three basic techniques of atomic spectroscopy, absorption, surface 

fluorescence, and emission. All three techniques involve the process of excitation 

and decay back down to the ground state.106 In this research, emission 

spectroscopy is utilized exclusively. Elemental analysis was done by inductively 

coupled plasma optical emission spectroscopy (ICP-OES), using an Optima 2100 



 

37 
 

 

 
Figure 21. MALDI matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene] malononitrile (DCTB). 

 

 
Figure 22. Typical isotherm for N2 adsorption-desorption, originally from Macken, 

1996. Figure modified from reference.107 
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DV optical emission spectrometer (PerkinElmer Corporation).  

In this technique, the sample is subject to a high energy plasma source, to 

produce excited state atoms capable of emitting light (photons) as the electron 

moves to a less energetic energy level. Every element has its own unique 

electronic structure, meaning each electron will emit light at a set of wavelengths 

that is specific to each atomic ion. The intensity of a set of selected emission lines 

is linear to the amount of that element present. It is in this fashion that the elements 

present in the sample can be quantified.106  

For sample preparation, approximately 5-10 mg of the sample would be 

weighed directly into a small volumetric flask, either 10 or 25 mL. For colloidal 

samples, the solvent would be evaporated directly from the volumetric flask before 

measurements were taken. Then, 1-2 mL of freshly prepared aqua regia (1:3 

HNO3:HCl) was inserted into the flask and heated at 75 °C for 30-60 minutes, 

depending on the nature of the sample. Finally, the flask would be diluted using 

2% HNO3 and filtered using a 0.45 μm pore filter. For each time the ICP-OES 

instrument was used, a calibration curve was attained by preparing 4 solutions for 

gold only compounds or 8 solutions for samples containing gold and another metal 

element. Calibration solutions were prepared for 0.5-5.0 ppm in 2% HCl for gold 

and 2% HNO3 for other metals tested in this research using standard ICP solutions 

(1000 μg/mL, High-Purity Standards). 

Scanning Transmission Electron Microscopy 

STEM is a combination of TEM and SEM (scanning electron microscopy). 

Similar to TEM, STEM requires thin samples and looks at electron beams that have 

been transmitted by the sample. Like SEM, STEM has a very focused beam of 

electrons that scans across the sample in a raster pattern. The scattered signals 

are detected and then plotted as a property of the probe position, which in turn 

creates the magnified image.108 Visual measurements were operated on Hitachi 

HD-2000 STEM and HAADF-STEM techniques with the aid of ImageJ. The 

samples were dispersed and diluted in ethanol or hexanes, depending on the 
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polarities of the sample, assisted by ultrasonic technique. Then, using a carbon 

film 300 mesh copper grid (3 mm), 1-2 drops of the diluted sample was placed onto 

the black carbon film side of the grid, and allowed to air dry for 15-30 minutes 

before being placed under vacuum for a minimum of 24 hours before being 

analyzed. 

X-ray Photoelectron Spectroscopy 

Oxidation states of the metals were determined via X-ray photoelectron 

spectroscopy (XPS). All XPS data was attained by ORNL staff member Harry 

Meyer using a Phi 5600LS instrument (Physical Electronics, Inc.), which utilized 

non-monochromatic Magnesium (Mg) Kα X-rays for analysis. Elemental analysis 

using XPS is able to determine elemental composition in the top several nm of a 

sample’s surface, as well as identification of the chemical state of the elements 

present. The XPS instrument consists fundamentally of an X-ray source, extraction 

optics, energy filter, and a detector.109 The Mg Kα X-rays interact with the atoms in 

the samples, which in turn emit a photoelectron; this is referred to the photoelectric 

effect. The kinetic energy (EK) of the emitted electron is recorded and, in applying 

a conservation of energy equation with the spectrometer’s work function (Φ), one 

can calculate the atomic binding energy (EB) relative to the Fermi level of the 

sample (Equation 3). 

  (3) 

Fourier-Transform Infrared Radiation 

To further investigate the core-shell structures, Fourier-transform infrared 

(FTIR) spectroscopy was utilized to analyze the CO adsorption behavior of the 

catalyst. In situ FTIR was ultimately used to obtain additional information about the 

dispersion and oxidation state of the Au in the sample. At 5 °C, 2% CO was flowed 

over the catalyst for 10 minutes before the spectrum was taken, while the spectral 

contribution from gaseous CO was subtracted. Then, the sample was purged with 
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2% Ar/He and spectra were taken after 3 and 10 minutes to determine how 

effectively the CO desorbed from the catalyst. 

Characterization of Catalytic Activity 

 The catalytic activity of the core-shell structures was tested by analyzing its 

ability to oxidize CO to CO2, as well as its ability to convert 2-propanol to acetone 

(via dehydrogenation) or propene (via dehydration). For the CO conversion tests, 

20 mg of the Au144@Fe2O3 catalyst was packed into a quartz tube (inner diameter 

= 4 mm), sealed on either side by quartz wool, a gas stream of 1% CO (balanced 

in air) flowed through the catalyst at a rate of 10 mL/min, and the exiting stream 

was analyzed by a gas chromatograph equipped with a dual molecular 

sieve/porous polymer column and a thermal conductivity detector. The reaction 

temperature was controlled using a voltage transformer attached to a furnace. In 

addition, FTIR spectroscopy was able to determine CO adsorption and desorption 

on the structure.  

 2-Propanol conversion was tested and experiments were conducted by 

Felipe Polo-Garzon at Oak Ridge National Laboratory (ORNL). Details of the 

steady-state kinetic measurements were similar to those reported on a recent 

publication,110 and are described below. 

“The conversion of 2-propanol was performed in an Altamira Instruments 

system (AMI-200). Each catalyst sample (30 mg, sieved to mesh 60-80) 

was diluted with quartz sand to minimize channeling and local temperature 

differences. The catalyst bed was placed inside a quartz u-tube and held in 

place by quartz wool at both ends of the bed. Each sample was pretreated 

under 50 mL/min of 5% O2 in Ar or He at approximately 550 °C for 1 h. The 

temperature was lowered to around 300 °C, and the gas was switched to 

50 mL/min of Ar. Liquid 2-propanol was fed into the system using a Chemyx 

Nexus 3000 syringe pump. All experiments were performed under 

conditions free of mass transfer limitations. Products were analyzed using 

a Buck Scientific Model 910 gas chromatograph (GC) equipped with a flame 
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ionization detector and a Restek MXT-Q-BOND column. The GC response 

factor was calibrated employing 2-propanol as an internal standard and 

assuming a closed mass balance in the system. All lines were heated to 

avoid condensation. Each experiment was performed under differential 

conditions (conversion less than 17%) to determine activation energies. 

Thus, any effects of concentration and temperature gradients throughout 

the catalyst bed were minimized.”110 
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CHAPTER FOUR  
RESULTS AND DISCUSSION 

Part of the information in this chapter is taken from Michelle Lukosi et al. paper, 

currently under editing. 

Au144(SC6H13)60 Nanocluster  

The MALDI-TOF mass spectrum of the Au144 clusters with 1-hexanethiol 

capping is expected to show a broad peak at approximately 32,500 daltons (Da), 

calculated to be 35,397 Da (Figure 23A) and correlates very well with literature 

results (Figure 23B).27 The peak position shift is due to partial loss and 

fragmentation of the thiol-gold (-RS-Au-SR-) staple motifs from the laser intensity 

under the MALDI conditions. Each Au144(SR)60 cluster has been previously 

calculated by other groups to have 30 staple motifs, which include 30 of the 144 

Au atoms in the capping structure.35 The broad peak shift from the MALDI spectra 

is easier to explain since each staple motif contributes ~430 Da to the total mass 

of the structure. For further characterization of these clusters, thin film XRD 

measurements were taken (Figure 24). The small broad peak, with FWHM being 

5.16° 2θ and centered at 38.58° 2θ, indicates the Au cluster has a domain of 

approximately 1.7 nm in diameter, via the Scherrer equation (Equation 4).100 This 

correlates well with DFT estimations of  ~1.6 nm, calculated by another group.35 

  (4) 

Au144@Fe2O3 Core-Shell Structure 

Varied Shell Thickness 

The thickness of the iron oxide shell was controlled by varying the amount 

of iron precursor added during the reaction. The different Au144@Fe2O3 core-shell 

structures are referred to by their Au:Fe ratios by mass. The structures studied in  
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Figure 23. MALDI-TOF-MS of Au144(SC6H13)60 with peak at 32,500 m/z (Da) A) 

experimental results vs B) literature results. Figure modified from reference27 
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Figure 24. XRD of Au144(SC6H13)60 thin film with broad peak at 38.58° 2θ indicative 

of small Au domain. 
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this paper were 1:2, 1:4, and 1:6. HAADF-STEM images of the 1:4 pre-loaded and, 

hence, pre-calcined, structures show a small Au144 particle surrounded by an iron 

oxide shell (Figure 25, more in the Appendix). There is a small gap at the core-

shell interface, which is taken to be indicative of the thiol capping still attached to 

the gold cluster.  

Once calcined to 300 °C, the thiol capping and other organic residuals, such 

as solvent surfactants that may still be in solution, are removed with the purpose 

of activating the gold catalysts. The structures that were fully covered reveal a yolk-

shell like structure, rather than strictly a core-shell design (Figure 26B-C, more in 

the Appendix). This is due to the removal of thiol capping agent on the gold cluster, 

which winds up leaving a gap, or void, between the core and shell. 

In my studies, a threshold limit was discovered for an optimal metal oxide 

shell of this particular morphology. When too little of the iron precursor (Fe(CO)5) 

was added, the metal oxide was unable to cover the cluster completely, which led 

to sintering under calcination, as was the case with the 1:2 structure, and revealed 

a dumbbell-like structure (Figure 26A, more in the Appendix). The threshold 

amount may be different with a different thiol capping. For the 1:4 structure, the 

Fe2O3 shell was approximately 1.5 nm thick, while the 1:6 structure was 

approximately 2.5 nm thick, estimated via STEM. Surface area, via BET, was 

estimated to be larger for the 1:6 versus the 1:4 structure but they are relatively 

close (Table 2). This is believed to be because the 1:6 structures were not as 

uniform as the 1:4 structures due to some colloidal separation issues in the 1:6 

structures. Isotherms of all the structures tested were shown to be Type IV 

isotherms (seen in the Appendix), which is indicative of limited multilayer formation.  

Bulk gold has a face-centered-cubic (fcc) crystal structure, and when 

analyzed with XRD, there will be a predominant peak at 38.2° 2θ and less 

predominant peaks at 44.4°, 64.5°, and 77.5° 2θ representing the (111), (200), 

(220), and (311) surface planes, respectively, (Joint Committee on Powder 

Diffraction Standards-International Center for Diffraction Data (JCPDS-ICDD) file 

#04-0784). However, very small particles (<2 nm) can be quite difficult to detect  
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Table 2. BET surface area and ICP-OES weight percent of core-shell structure 

loaded onto silica. 

Sample SABET (m2/g) AuICP (wt %) FeICP (wt %) 
SiO2 355.9 - - 
Fe2O3/SiO2 181.5 - 2.3 
Au144/SiO2 182.1 1.4 - 
1:2 Au144@Fe2O3/SiO2 136.1 1.2 5.8 
1:4 Au144@Fe2O3/SiO2 164.6 1.2 4.8 
1:6 Au144@Fe2O3/SiO2 171.6 1.5 9.2 
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Figure 25. A) HAADF-STEM of 1:4 Au144@Fe2O3 structure as synthesized, as well 

as the B) Fe (blue) and C) O (red) areal density of the structure. 
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Figure 26. STEM of Au144@Fe2O3/SiO2 with varying Fe2O3 content for the A) 1:2, 

B) 1:4, and C) 1:6 structures. 
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and XRD is no exception.111 Some other factors to consider in these 

measurements is that the iron oxide shell is amorphous in nature, as well as the 

weight fraction of gold being very small. With the Au144 clusters, there is barely a 

hump at the prominent angle at 38° 2θ, with the exception of the 1:2 structure 

(Figure 27). After calcination, it is clear that the 1:2 structures sintered as that peak 

becomes sharper and more defined, representative of larger gold particles. This 

corroborates the STEM images above, that the iron oxide shell was unable to cover 

the particle completely and, without the protective shell, the Au144 clusters 

coalesced. For the 1:4 and 1:6 structures, no sintering was visible from the XRD 

spectra, which is indicative of full coverage by the amorphous iron oxide shell, as 

the STEM images indicate. 
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Figure 27. XRD of Au144@Fe2O3/SiO2 with varying Fe2O3 content for A) 1:2, B) 

1:4, and C) 1:6 structures, with a line at 38.2° 2θ where bulk gold peaks are 

prominent.  

 
XPS of the 1:4 structure, which was loaded onto fumed silica and calcined 

at 300 °C, provided a survey spectrum, or wide-scan showing all elements present, 

(Figure 28A) with subsequent high resolution (core level) spectra of each element 

identified (Figure 28B-F), as well as the overall percentage surface composition 

that each element contributes (Table 3). The peak width, for gold, is very broad, 

which is characteristic of a very small particle. There is a slight shift of -0.2 eV in 

the binding energy for the Au 4f7/2 peak from 84.0 eV that is typically seen for bulk  

A B C 
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Figure 28. XPS of surface composition of Au144@Fe2O3/SiO2 1:4 structure 

showing A) the survey spectrum and the high-resolution spectra of B) gold, C) iron, 

D) oxygen, E) silicon, and F) carbon.  
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gold. This shift may be due to the iron oxide layer that covers the gold cluster, 

providing a slight addition to the gold atom’s valence electron charge. The Fe 2p3/2 

peak shows a primary 3+ valence, which means the iron oxide shell is in the Fe2O3 

structure. The O 1s orbital is primarily associated with the Si 2p orbital from the 

SiO2 support. The C 1s signal was relatively low and is predominantly adsorbed 

carbonaceous material during analysis. 

 

Table 3. XPS – Surface Composition (at.%): Au144@Fe2O3/SiO2. 

Au Fe Si O C Na 
0.06 1.12 31.49 63.17 3.85 0.31 

 

Synergistic effects of core-shell system 

 
CO Oxidation 

Using control experiments of Au144 NCs and Fe2O3 NPs loaded onto silica, 

(Au144/SiO2 and Fe2O3/SiO2, respectively) I was able to compare with the 

Au144@Fe2O3/SiO2 core-shell particles. Using CO oxidation tests, the synergistic 

effects of the core-shell structures are apparent by comparison of each structures 

catalytic abilities (Figure 29). For the core-shell structures, full oxidation of CO for 

the 1:2, 1:4, and 1:6 structures occurred at 211, 75, and 111 °C, respectively. Au144 

NCs by themselves showed some oxidation at room temperature, but did not 

exhibit full oxidation of CO until ~500 °C. Whereas, Fe2O3 NPs by themselves 

never reached full CO oxidation, up to 500 °C. The Au144 NCs were determined to 

have sintered into larger particles, and more evidence that sintering occurred was 

that the catalyzed Au144 particles visibly appeared a red/purple color after testing 

was completed. 

To further investigate the behavior of CO adsorption onto the Au144@Fe2O3 

particle and obtain more information about the Fe2O3 surface, FTIR spectroscopy 

of the 1:4 core-shell structure, loaded onto fumed silica and calcined at 300 °C,  
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Figure 29. CO conversion on Au144@Fe2O3/SiO2 catalysts with varying Fe2O3 

shell thickness, as well as Au144/SiO2 and Fe2O3/SiO2. 
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was obtained at 5 °C (Figure 30). The top spectrum was taken after 10 minutes of 

2% CO flow, with any spectral contribution from gaseous CO subtracted. The 

middle and bottom spectra were taken after purging the sample with 2% He for 3 

and 10 minutes, respectively. There was only one distinct peak at 2139 cm-1, from 

the top spectrum, which can be attributed to CO being adsorbed onto a positively 

charged Au species (Auδ+, 0 < δ < 1).112-113 The middle and bottom spectra showed 

no distinct peaks, which signifies that the CO was readily desorbed from the 

catalyst surface. The positively charged Au species is attributed to the iron oxide 

layer that is surrounding the Au core.  

 

2-Propanol Conversion 

Control studies of Au144/SiO2 and Fe2O3/SiO2, with 1.4% Au and 2.3% Fe 

(Table 4), respectively, loaded onto a fumed silica substrate were used for 

comparison to the core-shell counterpart. From the previous study with CO 

oxidation, the 1:4 Au:Fe by mass ratio structure of Au144@Fe2O3/SiO2 was shown 

to have the best catalytic activity. Therefore, the conversion of 2-propanol was 

tested exclusively on those structures. With 1.2% Au loading, the data suggests 

that the core-shell structure has a synergistic effect on the acetone and propene 

production (Figure 31).Further, the core-shell structure provides intermediate 

selectivity for the reaction products, when compared with the supported catalysts. 

This suggests that the core-shell structure has the potential for tailoring reaction 

selectivity (Figure 32A-B). However, the synergy of this core-shell structure is not 

yet conclusive until reaction rates per active site are obtained, which requires 

further characterization under reaction conditions. In Figure 31C, selectivity 

towards an unknown compound is observed at low conversions. Diisopropyl ether 

has already been ruled out as a possibility for the unknown product and it is more 

than likely a coupling product and is not considered to study the acid-base 

properties of the material.  
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Thermal Treatments of 1:4 Au144@Fe2O3 Structure 

The 1:4 structure, with the best CO oxidation results, was put through 

varying thermal treatments to test the structure’s optimal activity. The structure 

was tested at pretreatments of 300, 500, and 700 °C. Results for the 300 °C  

 

Table 4. 2-Propanol conversion activation energies (Eact). 

Catalyst Loaded 
onto Silica 

Loading (%) Eact global 
(kJ/mol) 

Eact propene 
(kJ/mol) 

Eact acetone 
(kJ/mol) Au Fe 

Fe2O3 - 2.3 92 71 136 
Au144 1.4 - 74 - 79 
1:4 Au144@Fe2O3 1.2 4.8 90 105 99 

 

180019002000210022002300

A
bs

or
ba

nc
e 

(a
.u

.)

Wavenumber (cm-1)

2139

 

Figure 30. FTIR of CO adsorption onto 1:4 structure Au144@Fe2O3/SiO2 at 5 °C 

(gaseous CO contribution subtracted). 
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pretreatments showed the best activity with full conversion at 75 °C (Figure 33A). 

It should be noted, however, that the 1:4 structure showed full conversion at 95 °C 

for both pretreatments at 500 and 700 °C. Although the higher temperature 

pretreatments do not display the best catalytic activity, it is still active below 100 

°C, which is more efficient than the 1:6 structure pretreated at 300 °C. This 

indicates thermal stability at these higher calcination temperatures. Even with a 

thin shell, as long as full coverage of the core is apparent, the small Au cluster can 

remain relatively stabilized. However, the XRD for these 1:4 samples (Figure 33B) 

shows some sintering as the pretreatment temperature is increased, where the 

peaks become more defined, particularly at 38.2° 2θ, where bulk gold is typically 

represented. 
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Figure 31. 2-Propanol conversion reactions showing A) 2-propanol consumption 

rates, B) acetone production rates, and C) propene production rates. 
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Figure 32. 2-Propanol conversion reactions showing selectivity to A) propene, B) 

acetone, and C) of an unknown compound. 
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Figure 33. The 1:4 Au144@Fe2O3/SiO2 structure calcined at temperatures 300, 500 

& 700 °C showing A) CO conversion and B) XRD spectra. 

   

A B



 

58 
 

CHAPTER FIVE  
RESEARCH CONCLUSIONS 

Au144@Fe2O3 Core-Shell Structure 

Au144@Fe2O3 core-shell structures were synthesized with varying shell 

thickness by varying the metal oxide precursor used. These structures were loaded 

onto a fumed silica support via colloidal deposition, calcined at 300 °C, and the 

structure’s catalytic activities were compared based on the efficiency of CO 

oxidation. Between the Au144@Fe2O3/SiO2 1:2, 1:4, and 1:6 core-shell structures, 

the 1:4 structure exhibited 100% oxidation of CO at the lowest temperature, 75 °C, 

and the 1:6 structure, with a thicker iron oxide shell, reached full oxidation of CO 

at a slightly higher temperature, 111 °C. The 1:2 structure did not result in full core 

coverage, which is why it exhibited poor CO oxidation properties compared to the 

1:4 and 1:6 structures and represents a minimum threshold of Fe2O3 shell 

thickness. Based on these results, the 1:4 structure was studied under thermal 

treatments of 300, 500, and 700 °C, followed by CO oxidation. The results showed 

that the best results for the 1:4 structure was at 300 °C pretreatment, however, 

higher temperature pretreatments still showed promising results with full CO 

conversion below 100 °C. 2-Propanol conversion results adumbrate that there is a 

synergistic effect of the 1:4 core-shell structure over the non-encapsulated 

counterparts. However, this claim cannot be made until the rates are calculated 

per active site (TOF) instead of per surface area. A normalized comparison could 

be made if the size of the particles for each catalyst is obtained and the wetting of 

the particles on the support is similar for all cases. 

Future Directions 

 The first step is to complete the 2-propanol conversion analyses for the 

other two Au144@Fe2O3 core-shell structures mentioned in this research, 1:2 and 

1:6. Some of the next steps that are intended to be followed are the continued 

study of these gold cluster-metal oxide core-shell structures with different metal 
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oxide shells, while attempting to control shell thickness and stability to improve 

catalytic activity. One such method is to use similar transition metal carbonyl 

complexes, such as dicobalt octacarbonyl and dimanganese decacarbonyl. 

Another avenue is to use a combination of iron, manganese, and/or cobalt 

precursors in order to synthesize a gold cluster core with an alloy oxide shell. 

Another study is to synthesize the same structures using a different gold cluster. 

The Au25 nanocluster is currently being investigated by another colleague at this 

time.   
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Figure 34. A, B, & C) HAADF-STEM of Au144@Fe2O3 1:4 structure, pre-calcined. 
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Figure 35. A & B) STEM of Au144@Fe2O3/SiO2 1:2 structure, calcined at 300 °C.  

 

  

  
Figure 36. A-D) STEM of Au144@Fe2O3/SiO2 1:4 structure, calcined at 300 °C. 
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Figure 37. A-D) STEM of Au144@Fe2O3/SiO2 1:6 structure, calcined at 300 °C. 
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Figure 38. Isotherm for adsorption-desorption of N2 at 77 K on fumed silica (SiO2). 

 

 
Figure 39. Isotherm for adsorption-desorption of N2 at 77 K on Fe2O3/SiO2 with 

2.3% Fe loading. 



 

74 
 

 
Figure 40. Isotherm for adsorption-desorption of N2 at 77 K on Au144/SiO2 with 

1.4% Au loading. 

 

 
Figure 41. Isotherm for adsorption-desorption of N2 at 77 K on 1:2 Au:Fe by mass 

Au144@Fe2O3/SiO2 with 1.2% Au loading. 
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Figure 42. Isotherm for adsorption-desorption of N2 at 77 K on 1:4 Au:Fe by mass 

Au144@Fe2O3/SiO2 with 1.7% Au loading. 

 

 
Figure 43. Isotherm for adsorption-desorption of N2 at 77 K on 1:6 Au:Fe by mass 

Au144@Fe2O3/SiO2 with 1.5% Au loading. 



 

76 
 

VITA 

 

 Michelle E. Lukosi was born and raised in Kansas City, MO as the second 

child of ten. After high school, she obtained a B.A. in International Business from 

Benedictine College, and got engaged and married the love of her life, Eric Lukosi. 

After attaining her B.A. degree she proceeded to work a few different jobs, with 

tasks including data entry and non-certified accounting for Missouri Jiffy Lube 

stores before she decided that she needed something different. She subsequently 

joined the United States Air Force Reserves as a Bioenvironmental Engineer. 

During her time in the Air Force, she earned a B.S. in Chemistry from the University 

of Missouri. Subsequently, she was accepted into the Chemistry graduate program 

at the University of Tennessee. During her graduate career, she brought into the 

world her two beautiful children, Aria and Ian, while also studying and synthesizing 

novel gold cluster-metal oxide core-shell catalytic systems. 


	Sinter-Resistant Gold-144 Iron(III) Oxide Core-Shell Structures: Synthesis, Characterization, and Application via Heterogeneous Catalysis
	Recommended Citation

	tmp.1541715829.pdf.XuKmD

