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ABSTRACT 

 

As the global transportation and industrial sectors continue to grow, fuels, 

chemicals, and products derived from lignocellulosic biomass have become a key 

alternative to petroleum-based products. Lignocellulosic biomass is composed of 

lignin, cellulose, and hemicellulose linked together in a rigid structure. This spatial 

arrangement contributes to its resistance to degradation and requires pretreatment 

and/or separation before being processed to produce valuable chemicals and 

fuels. Biomass pretreatment has mainly been optimized to convert carbohydrates 

into monosugars. However, better sustainability is attained when the entire 

feedstock is utilized to produce fuel and value-added chemicals and products. To 

achieve this goal, an integrated biorefinery will require a highly selective and 

economically viable fractionation process. Although traditionally used for 

pretreatment, recent studies have found ionic liquids   to be ideal solvents for 

biomass dissolution, “activation”, and fractionation to produce various end 

products for biorefinery and industrial applications.  

Previous works have demonstrated that the IL 1-ethyl-3-methylimidazolium 

acetate ([EMIM]Acetate) is ideal for the above processes to produce sugars as 

well as lignin-based products. However, our study shows that three other ILs with 

3-methylimidazolium cations and carboxylate anions (1-ethyl-3-methylimidazolium 

formate ([EMIM]Formate), 1-allyl-3-methylimidazolium formate ([AMIM]Formate), 

and 1-allyl-3-methylimidazolium acetate ([AMIM]Acetate)) are effective for 

biomass dissolution, with [AMIM]Formate having a 40% increase in biomass 

solubility compared to [EMIM]Acetate. Both [AMIM]Formate and [EMIM]Acetate 

are further evaluated for their activation and fractionation capability by studying 

crystallinity changes and enzymatic conversion rates of cellulose and 

hemicellulose into soluble sugars. Our findings show that although [AMIM]Formate 

is better at biomass dissolution, [EMIM]Acetate is better for biomass activation and 
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fractionation. Following activation using [AMIM]Formate, biomass retains its most 

of its crystallinity and acetyl groups, whereas activation using [EMIM]Acetate 

significantly reduces crystallinity and acetyl groups, leading to higher enzymatic 

conversion of cellulose and hemicellulose. Future studies should investigate the 

potential for in situ saccharification in ILs using commercial cellulases and 

hemicellulases, as our preliminary data show that enzymes remain active in these 

two ILs. Ultimately, this research will provide technological breakthroughs needed 

to develop a robust means of biomass fractionation and subsequent conversion 

into high value organics and biofuels. 
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PREFACE 

 

This thesis is comprised of a multipart paper with four chapters: an 

introduction, two research manuscripts, and an overall conclusion. 

Chapter I will provide an overview of the recalcitrant nature of lignocellulosic 

biomass and several methods to overcome it using various pretreatment and 

fractionation methods. 

Chapter II focuses on lignocellulosic biomass dissolution in four ionic 

liquids, and how the cation and anion of an IL play a role in dissolving each 

biomass component at different capacities. A structure-property relationship is 

established whereby the biomass dissolution is explained through viscosity 

measurements, Kamlet-Taft solvation parameters, and molecular dynamics 

simulations (with the assistance of researchers from Oak Ridge National 

Laboratory). Chapter II has been submitted to Physical Chemistry Chemical 

Physics. 

Chapter III is a follow-up to the results obtained in Chapter II in terms of 

comparing the IL with highest biomass solubility to a commonly used reference IL, 

[EMIM]Acetate, for its ability to activate and fractionate lignocellulosic biomass. 

Data were collected to study parameters known to influence biomass recalcitrance 

including the biomass acetyl content, cellulose crystallinity, enzymatic conversion 

of cellulose and hemicellulose, as well as anatomical changes by scanning 

electron microscopy (SEM) after ionic liquid activation. This chapter is being 

prepared for submission to a peer-reviewed journal. 

Finally, Chapter IV presents some concluding remarks of this work and 

recommendations related to the outcomes of selecting an ideal ionic liquid as well 

as some future work that are already underway. 
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CHAPTER I 
 

INTRODUCTION 
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Motivation 

Chemicals and transportation fuels that derive from fossil fuels, are not 

renewable or sustainable. Concerns over long-term economics, job security, and 

rural development have motivated research in renewable fuels as an alternative to 

fossil fuels.1 In analyzing sustainable energy routes, lignocellulosic biomass has 

been identified as the most suitable feedstock; an abundant, non-food material that 

can produce fuels and chemicals.2 In 2011, the International Energy Agency stated 

that biomass-derived fuels are expected to contribute to at least 27% of the global 

share of total transportation fuels by 2050 and the projected use of biofuels could 

lead to a reduction of 2.1 gigatons of CO2 emissions per year. In accordance to 

this, research shows that biofuels from lignocellulosic crops generally have a 

higher greenhouse gas (GHG) efficiency than rotational arable crops due to lower 

input requirements and higher energy yield per hectare (Figure 1).3  

 

Lignocellulosic biomass 

Lignocellulosic biomass is mainly composed of cellulose (30-45%), 

hemicellulose (20-30%), and lignin (5-25%).4 Cellulose is the main component of 

the plant cell wall, in which it is a highly stable linear homopolymer, unlike starch 

molecules that branch and coil. Cellulose comprises glucose monomer units which 

are linked by β (1→4) glycosidic bonds. When two β-glucose are linked by β (1→4), 

a disaccharide known as cellobiose is formed.5  

Hemicellulose differs from cellulose as a diverse class of polysaccharides 

that include xylan, glucuronoxylan, arabinoxylan, glucomannan, and xyloglucan. 

While cellulose has high crystallinity, and is resistant to degradation, hemicellulose 

has a random, amorphous structure that lacks strength. Hemicellulose has a high 

susceptibility to chemical and biological hydrolysis using dilute acid, bases, and 

hemicellulases.6 
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Lignin is an amorphous polymer that binds hemicellulose and cellulose 

through ester linkages and hydrogen bonds, respectively. Lignin forms the 

important structural materials for the support tissues in plants. The principal lignol 

monomers of lignin are p-coumaryl, coniferyl, and sinapyl alcohol.7 These 

monomers form cross-linked phenylpropanoid units: p-hydroxyphenyl (H), guaiacyl 

(G), and syringyl (S). Softwood mainly consists of lignin that is made up of G-type 

subunits with a small amount of S or none at all, whereas hardwood consists of a 

mixture of both G and S. The overall spatial arrangements of cellulose, 

hemicellulose, and lignin in lignocellulosic biomass are shown in Figure 2. 

The predominant polysaccharides, namely cellulose and hemicellulose, can 

be hydrolyzed into simple sugars using enzymes or chemicals. The resultant 

sugars are then converted to valuable fuels and chemicals such as bioethanol, 

carboxylic acids, or methane by fermentation.8 However, the hydrogen bonds and 

covalent cross-linkages between polysaccharides and lignin form a rigid structure 

and build resistance against biomass degradation.6 This phenomenon is also 

known as biomass recalcitrance. Making cellulose and hemicellulose more 

accessible for enzymatic hydrolysis requires pretreatment to alter the structure of 

lignocellulosic biomass and reduce biomass recalcitrance.1 
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Figure 1. Comparison of relative reduction of GHG emissions based on different 

feedstocks.3b, 9 

 

 

 

Figure 2. Structural representation of lignocellulosic biomass components.5 
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Biomass conversion processes 

To compete with existing fossil fuel industries, various novel technologies 

and diverse biomass feedstocks need to be used for a successful integrated 

biorefinery. As stated by the Office of Energy Efficiency and Renewable Energy 

(EERE), the development of bioindustries in the US requires a vital step of 

establishing integrated biorefineries that efficiently convert various biomass 

feedstocks into commercially viable biofuels and bioproducts.10 Essentially, 

integrated biorefineries need to produce a range of products similar to conventional 

refineries for the optimization of feedstocks and production economics. 

Biomass pretreatment has been carried out for decades to mainly produce 

sugars that can be converted into platform building blocks for fuels and chemicals. 

However, biomass fractionation has been more prevalent recently due its 

valorization, to recover pure streams of lignin, hemicellulose, and cellulose with 

minimal degradation. It is essential to valorize various intermediate chemicals to 

counterbalance production logistics, therefore making the business model 

attractive for investors.11  

The separation process of lignocellulosic biomass requires either a 

biochemical, thermochemical, or physical method of pretreatment and/or 

fractionation. Biomass pretreatment involves removing or disrupting the impending 

layers of biomass, namely lignin and hemicellulose, for easy-access of cellulose 

during chemical or enzymatic hydrolysis.12 Biomass fractionation separates 

lignocellulosic biomass into its primary components, namely cellulose, 

hemicellulose, and lignin with high purity and yield and minimal degradation. 

Scientists have attempted to use many different methods, such as ball 

milling, compression milling, acid wash, alkali treatment, autohydrolysis, wet 

oxidation, steam explosion, ammonia fiber expansion (AFEX), gamma-

valerolactone, organosolv, and ionic liquids to recover cellulose, and in the case 

of fractionation, to obtain streams of cellulose, lignin, and hemicellulose. The 
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following processes describe the currently available pretreatment and fractionation 

methods. 

Ball and compression milling 

Ball milling and compression milling are physical pretreatment methods that 

subject biomass to shear force and subsequent size reduction.13 Biomass size 

reduction is similar to wood fiber production and involves two steps.14 The first step 

is a mechanical size reduction through wood chipping, and the second step is a 

further size reduction from wood chips to wood fiber bundles or particles through 

grinding and milling.15 Vibratory ball milling of cellulose decreases the particle size 

of biomass to about 10 mm and converts crystalline cellulose to amorphous 

cellulose. The fragmentation of lignin polymers occurs via cleavage of β-ether 

bonds.16 Typically, an additional method of delignification i.e., lignin removal is 

required to produce higher sugar yields during enzymatic hydrolysis. 

Often times, ball milling is a precursor to another method of pretreatment in 

order to improve glucose and xylose yields.17 Although ball and compression 

milling increase the contact surface area of reactants, these methods are energy 

and time-intensive, therefore other pretreatment steps are often considered in 

addition to these. 

Acid pretreatment 

Acid pretreatment or hydrolysis involves dilute/concentrated sulfuric, 

phosphoric, or hydrochloric acid at high temperatures to remove hemicellulose 

from biomass. The National Renewable Energy Laboratory (NREL) favors acid 

pretreatment mainly due to the high recovery of hemicellulose, at about 80-90%.18 

Following hydrolysis of hemicellulose, the lignin fraction is disrupted, increasing 

cellulose access to enzymes.19 Dilute acid (DA) pretreatment produces high sugar 

(glucan and xylan) yields when applied to hardwoods such as poplar.20 As for 

concentrated acid pretreatment, Du et al. reports that an 85% phosphoric acid 
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pretreatment is more effective for reducing cellulose crystallinity of loblolly pine 

compared to sulfuric acid or ionic liquids.21  

In addition to being used on its own, acid wash has been coupled with other 

pretreatment methods such as alkaline treatment, microwave irradiation, and 

steam explosion.22, 23, 24 However, due to its corrosive nature, high-grade alloy 

reactor is required for the pretreatment as well as a neutralization step prior to 

biological steps involving enzymes. 

Liquid hot water / Autohydrolysis 

Liquid Hot Water (LHW) treatment, also known as autohydrolysis, is a 

hydrothermal treatment of biomass to solubilize hemicellulose and allow better 

accessibility of cellulose and lignin.25 During LHW treatment, pressure is applied 

at elevated temperatures (120-240 °C) to maintain water in the liquid state.7, 26 At 

increased temperature and pressure, alteration of the lignocellulosic biomass 

structure is promoted without the employment of catalysts or solvents other than 

water. The use of high temperatures dissolves acetyl groups from the 

hemicellulose, “automatically”, releases hydronium ions (from water, acetic, 

formic, phenolic and uronic acids), and accelerates hydrolysis reactions.27 This 

phenomenon is called auto-hydrolysis with the following reaction steps: 

 

H2O  H+ + OH−       (1) 

H+ + H2O  H3O+       (2) 

R−ROAc (s) + H+  R−ROAc• H+ (s)    (3) 

R−ROAc• H+ (s) + H2O  R−ROH• H+ (s) + HOAc  (4) 

R−ROH• H+ (s) + H2O  R−OH• H+ (s) + HROAc  (5) 

HOAc  H+ + OAc−       (6) 

R−ROH• H+ (s)  R−ROH (s) + H+    (7) 
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R−OH• H+ (s)  R−OH (s) + H+     (8) 

LHW has been used extensively for biomass pretreatment due to the 

minimal degradation of sugars, low production of inhibitors, and absence of toxic 

solvents, thus making it a “green technology”.28 Hemicellulose is the main 

component removed in this method, with a small portion of the lignin also dissolved 

at temperatures of 160 °C or higher, depending on the type of feedstock.7, 29 The 

removal of hemicellulose from the lignocellulosic component allows for 

saccharification of cellulose, leaving behind lignin as a solid.  

However, studies show that LHW affects lignin by decreasing β-O-4 

linkages, increasing phenolic hydroxyl groups, decreasing aliphatic hydroxyl 

groups, and depleting acetyl groups.30 The use of mild temperatures, controlled 

pH levels, and several trial and error runs are essential to optimize LHW. This 

ensures maximum removal of hemicellulose and avoids excessive 

depolymerization of cellulose and degradation of lignin.1, 12c, 26a, 31 The amount of 

degradation and lignin removal also highly depend on the “severity factor”.32 As 

proposed by Overend and Chornet, the reaction severity or severity factor of LHW 

pretreatment, S0, can be calculated as a function of reaction time and reactor 

temperature using the Equation 9. Severe pretreatment conditions can result in 

accumulation of organic acids, resulting in an acidic environment that promotes 

degradation of monomeric sugars into inhibitory compounds (e.g., furfural, 

hydroxymethyl furfural (HMF), formic acid, and levulinic acid).33 

 

S0 = log       (9) 

A small amount of lignin is hydrolyzed at LHW temperature ranges of 120-

160 °C, as acid soluble lignin (ASL).34,35 The remaining lignin is present in the solid 

fraction and identified as acid insoluble lignin. 4b AIL and ASL account for total 

lignin quantification via the Klason lignin method, using 72% sulfuric acid for 

hydrolysis and subsequent boiling in 4% sulfuric acid to separate lignin through 
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dissolution of carbohydrates.36 With increasing pretreatment severity, the pH of 

hydrolysate (liquid fraction of LHW) decreases and this in turn increases the lignin 

content in hydrolysates, or ASL. To ensure high lignin recovery, it is essential to 

minimize ASL and maximize AIL by understanding the effect of severity factor on 

biomass. Table 1 shows the changes in lignin during LHW pretreatment of 

hardwood (adapted from the work of Ladisch and collaborators).37 

Over the years, several methods have been applied to increase the 

efficiency of LHW to study fluid velocity, particle size, residence time, as well as a 

coupled pretreatment method. Flow-through LHW systems have shown higher 

removal of xylan and lignin compared to batch systems, when flow is increased 

and particle size decreased.25, 38 However, the system requires optimization to 

avoid excessive water consumption and large energy costs for downstream 

processing.  

 

 

Table 1. Lignin content changes in hardwood during LHW. Reproduced from Ko et al., 

2015.37 

Sample Severity 
factor 

Temp
(°C) 

AILa 
(%) 

ASLb 
(%) 

AIL/ASL 
ratio 

Total 
ligninc (%) 

Lignin 
recoveryd (%) 

Untreated N/A N/A 28.1 3.8 7.4 31.8 N/A 

Changes 
during 
LHW 

treatment 

8.25 

 

12.51 

180 

 

220 

25.5 

 

37.6 

3.9 

 

2.7 

6.5 

 

13.9 

29.3 

 

40.3 

86.5 

 

90.1 

a Acid insoluble Kraft lignin 
b Acid soluble Kraft lignin 
c Total lignin (%) = {AIL (g)/ total biomass (g) *100%} + ASL (%) 
d Lignin recovery (%) = [Lignin recovered after pretreatment (g)/Initial amount of lignin (g)]*100%. 
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Uncatalyzed steam explosion 

Uncatalyzed steam explosion is mainly used as a commercial method to 

hydrolyze hemicellulose for the manufacturing of fiber boards.1, 39 The steam 

explosion is carried out in a large vessel, in which high pressured steam is applied 

for a few minutes without the use of toxic solvents.40 The explosion causes the 

structure of lignocellulosic biomass to break and defibrate. After a specified 

residence time, steam is rapidly vented from the vessel and the pretreated biomass 

is discharged into a large cooling tank. 

During the steam addition process, hemicellulose is hydrolyzed by acetic 

acid, which is produced by deacetylation. Similar to LHW treatment, changes in 

lignocellulosic biomass by steam explosion are initiated by the removal of 

hemicellulose, enhancing the enzymatic digestibility of cellulose.33 However, one 

of the main drawbacks of steam explosion is the production of inhibitory 

compounds after the explosion steps which can hinder hydrolysis and fermentation 

steps of the products. Besides that, furan derivatives such as furaldehyde and 5–

hydroxymethyl–2–furaldehyde, and phenolic compounds (from lignin 

depolymerization) also act as inhibitors.41 An extensive washing step is required 

to remove these inhibitors. However, the water removes soluble sugars and 

reduces saccharification rates in the liquid fraction of the pretreated biomass. 

Wet oxidation 

Wet oxidation involves combining air or oxygen with water at elevated 

temperature and pressure, to therefore oxidize organic matter. It is crucial to apply 

a high temperature to this process to avoid hydrolysis of biomass instead (occurs 

at low temperatures).42 The wet oxidation process breaks down hemicellulose, and 

solubilizes lignin into carbon dioxide, water, and carboxylic acids, namely succinic 

acid, glycolic acid, formic acid, and acetic acid.43 Wet oxidation has been known 

as an industrial process to treat wastes with high organic matter, by oxidizing the 

suspended wastes at high temperatures (180-200 °C).8 
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This process has been long used for treating waste and carrying out 

subsequent fermentation.44 Pretreatment of rice straw to produce ethanol was 

studied by Banerjee et al., and they found that the optimum pretreatment 

conditions were 185 °C, 0.5 MPa for 15 minutes, which yielded 67% w/w cellulose, 

and over 70% hemicellulose and lignin solubilization.45 Similarly, Szijarto et al. 

studied wet oxidation to enhance digestibility of cellulose, and found that this 

method has an increased effectiveness of three times when compared to an 

untreated biomass control.46 Recently, Banerjee et al. investigated the use of 

Alkaline Peroxide-Assisted Wet Air Oxidation (APAWAO) and found that within 24 

hours there was a 13-fold increase in glucose yields in rice husk, compared to an 

untreated rice husk.47  

Although wet oxidation is considered a suitable pretreatment process for 

biomass with high lignin content, there are several drawbacks. The use of high 

temperature, pressure and oxidizing agents lead to high energy costs and safety 

hazards. Additionally, Martin et al. found that the many byproducts were obtained 

from wet oxidation, such as succinic acid, glycolic acid, formic acid, acetic acid and 

phenolics, which would all have inhibitory effects on further downstream 

processing.48 

Alkali treatment 

Alkali treatment or lime pretreatment utilizes lower temperatures and 

pressures compared to other existing methods.1 Some of the common agents used 

for alkali treatment are sodium, potassium, calcium, and ammonium hydroxide. 

Although sodium hydroxide has been studied the most, calcium hydroxide (slake 

lime) has shown to be the most effective and cheapest alkaline agent. In addition 

to being cost-effective, lime can also be recovered via a neutralization step.49 

The process of using calcium hydroxide or lime pretreatment involves 

slurrying lime with water, spraying it onto biomass, and storing it for a specific 

period (depending on the operating temperature). As a pretreatment method, lime 
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delignifies biomass and deacetylates hemicellulose, leaving behind highly 

crystalline cellulose. Kong et al. reported that alkali agents remove acetyl groups 

in hemicellulose, therefore enhancing carbohydrate digestibility during enzymatic 

hydrolysis.50 Similarly, reports show that enzymatic activity increases when lignin 

is removed, resulting in a decrease in nonproductive adsorption sites.51 Dilute 

NaOH has also been found to pretreat biomass in a similar way as lime.52  

Recently, technological advances have been used to develop a microwave-

assisted alkaline pretreatment. Hu et al. showed that radio-frequency based 

heating resulted in higher sugar yields during enzymatic hydrolysis when 

compared to conventional heating.53  

Ammonia fiber expansion (AFEX) 

Ammonia fiber expansion (AFEX), formerly known as ammonia freeze/ fiber 

explosion, is an effective pretreatment method for herbaceous and agricultural 

residues.1, 54 In a flow-through system, aqueous ammonia is added into a high 

temperature biomass-packed column reactor, at specified residence time and fluid 

velocity. Under these conditions, aqueous ammonia reacts with lignin in the 

biomass causing depolymerization of the lignin-carbohydrate complex (LCC). The 

combined effect of ammonia under high pressure results in swelling of biomass, 

disruption of its architecture, and subsequent hydrolysis and decrystallization of 

cellulose, respectively.55 Yoon et al. and Iyer et al. have reported large 

delignification in hardwood under 160-180 °C at a residence time of 14 minutes. 

However, lignin removal in a softwood substrate was less efficient.56 Pretreatment 

with AFEX and ammonia itself, has proven to be an efficient method for biomass 

with low lignin content. Among various alkaline pretreatment methods currently 

used, AFEX claims to have the highest yield of reducing sugars (80–90 %).57 

There has been much debate on AFEX as a biomass fractionation method 

as opposed to a pretreatment method. Since removal of lignin is achieved by 

disrupting LCC, the remaining biomass components can be hydrolyzed using 
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enzymes. Kim et al. reports a 90% enzymatic digestibility of ammonia-treated corn 

stover.58 While removing lignin, the AFEX process simultaneously removes some 

hemicellulose and reduces cellulose crystallinity. Therefore, the micro- and macro-

accessibility of cellulases are affected, whereby ammonia causes cellulose to 

undergo phase change from cellulose I to cellulose III. Although lignin is not 

obtained in its native structure, lignin recovery is still achieved, along with cellulose. 

Despite its claim of being an effective pretreatment and fractionation 

process, the use of ammonia and its recovery have a substantial cost. Although 

recycling ammonia during pretreatment has shown to decrease the operating cost, 

it is a tedious process regardless.58b Another significant concern while using 

ammonia is the environmental effects that come from ammonia usage.12c Safety 

measures and emergency response systems need to be in place to prevent any 

leakage into the environment. However this adds to the cost of the process.55 

Organosolv 

The organosolv process uses a mixture of organic solvents with an acid 

catalyst at high temperatures to cleave hemicellulose and cellulose linkages. 

Solvents that are normally applied include ethanol, methanol, acetone, and methyl 

isobutyl ketone (MIBK).59 Typical operating temperatures used can be up to 200 

°C, but lower temperatures have been used with the presence of a catalyst.60 

The organosolv extraction process hydrolyzes not only the internal bonds 

in lignin, but also between lignin and hemicellulose. Hydrolysis of the glycosidic 

bonds in hemicelluloses also occurs. When catalysts are present, an acid-

catalyzed degradation occurs, where monosaccharides degrade into furfural and 

5-hydroxymethyl furfural followed by condensation reactions between lignin and 

these reactive aldehydes.61 Following the removal of lignin, the remaining cellulose 

fraction can be used for enzymatic saccharification.62 

Organosolv has been extensively used for extraction of high-quality and 

high yield lignin. It is claimed to be a biomass fractionation process as opposed to 
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pretreatment, because once the lignin is removed from the biomass, the cellulose 

fibers become accessible to cellulolytic enzymes which leads to conversion of 

cellulose into sugars. However, the hemicellulose fraction is difficult to recover 

through this process as it forms a black liquor during removal of lignin. Bozell et al. 

recommends an ion exchange chromatography to recover hemicellulose, but this 

step has not been optimized and no work has been reported on it so far.63 

The main drawback of the process is that the solvents and catalysts 

employed are expensive. Nevertheless, qualitative recovery of the solvent can 

considerably reduce the operational cost.64 Another important aspect involving 

cost is the need for implementation of safety measures due to the high flammability 

of organic solvents. As for the enzymatic hydrolysis step, washing steps need to 

follow due to organic solvents being inhibitors of enzymatic activity.1, 65 

Gamma valerolactone (GVL) extraction 

In early 2014, researchers at UW-Madison discovered a method to 

deconstruct lignocellulosic biomass and produce sugars using a solvent known as 

gamma valerolactone or GVL. GVL is a cyclic atom with 5 carbons (valero-), which 

consists of 5 atoms (four carbons and one oxygen) in the ring (γ-lactone) (Figure 

3). The solvent is colorless and stable at atmospheric conditions, with a sweet 

herbaceous odor.66 In addition to that, GVL is inexpensive, recyclable and can be 

produced from biomass.  

 

 

 

Figure 3. Structure of gamma valerolactone. 
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The proposed solvent was first studied by Horvath et al. as a promising 

renewable solvent for the production of energy and carbon-based products.66 As 

a solvent for lignocellulosic biomass processing, biomass is allowed to react with 

GVL and water under the presence of an acid catalyst and moderate temperatures. 

As a result, water-insoluble carbohydrates are converted to water-soluble 

carbohydrates. The desired products are separated into an aqueous layer and can 

be recovered, while the GVL solvent forms another layer and is recycled.67  

Typically following biomass pretreatment, cellulose is converted into 

glucose through enzymatic hydrolysis, and further converted into platform 

chemicals such as levulinic acid (LA), 5-hydroxymethylfurfural (HMF), and liquid 

fuels.68 The Department of Energy, as well as Bozell and Petersen 69 confirmed 

that LA is a promising building block for production of fuels, and can be produced 

from cellulose and hemicellulose. The conversion into chemicals can also be 

achieved through single step methods like pyrolysis. However, pyrolysis relies on 

high temperatures to deconstruct lignocellulosic biomass and require additional 

steps for downstream separations. 70 GVL was recently reported as an effective 

solvent to directly produce high value platform molecules from cellulose and 

hemicellulose. Alonso et al. successfully processed cellulose and hemicellulose 

from corn stover by eliminating the fractionation step and simultaneously producing 

organic compounds using GVL (Figure 4).70  

In addition to production of chemicals, lignin can also be extracted through 

GVL/ H2O mixtures.71 Tabasso et al. studied the fractionation of post-harvested 

tomato plants in a microwave reactor by using GVL and H2O at 170 °C for 2 

hours.72 In their study, the cellulose fraction was rapidly converted to LA in a 

biphasic system, whereas the lignin was extracted via precipitation. Following 

fractionation, the addition of NaCl favors the separation of GVL into an organic 

layer, along with LA, lignin and some lignin-like condensation products. A more 

recent advance in biomass fractionation through GVL was presented when 

researchers reported that lignin can not only be isolated, but also upgraded via a 
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Ru/C catalyst.73 Following the dilution and precipitation step of lignin after GVL 

treatment, the extracted lignin was determined to be similar to the native lignin, 

based on a heteronuclear single quantum coherence nuclear magnetic resonance 

(HSQC NMR) spectroscopy study. Relative to cellulase-digested enzymatic lignin, 

GVL lignin was reported to be cleaner; relatively free of carbohydrates with little 

degradation resulting in some molecular weight reduction.74 

One of the many appealing features of GVL compared to other available 

methods is the residence time efficiency. At a reaction time of 30 minutes, GVL 

still produces high yields of native-like lignin, i.e., objectively free of carbohydrates 

and little degradation of lignin structure. 

 

 

 
Figure 4. Products derived from lignocellulosic biomass using the GVL pathway. 

Reproduced from Alonso et al., 2013.70 
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Tetrahydrofuran (THF) extraction 

Tetrahydrofuran is another traditional, organic solvent that has been used 

more recently for biomass fractionation. Leitner’s group calls this process an 

OrganoCat process, in which hemicellulose, cellulose pulp, and lignin are 

separated in a single-step process.75 Hemicellulose is first depolymerized, 

therefore liberating the two other major components. One of the pioneer works that 

introduced this method is the use of 2-methyltetrahydrofuran (2-MTHF) and oxalic 

acid to separate lignin from cellulose pulp and soluble sugars by in situ extraction.76 

One of the most recent reports of purity using this method is ~70 wt.% for 

cellulose from corn stover, whereas the yields are 83 wt.% for cellulose, 79.6 wt.% 

hemicellulose (through production of lactic acid and xylose), and about 60-70% 

lignin.77 However, much like many other pretreatment and fractionation methods 

listed above, THF is associated with several safety and sustainability issues. 

Although relatively non-toxic, THF can penetrate the skin through latex gloves and 

cause rapid dehydration. Additionally, it is highly flammable and forms highly 

explosive peroxides when in contact with air.78 The dangers associated with this 

solvent affect its sustainability due to the need for costly disposal and handling 

methods. 

 

Summary  

A summary of the effects of pretreatment and fractionation methods on the 

structure of biomass is shown in Table 2 below. 

Unlike the other pretreatment methods described above, organosolv, GVL, 

tetrahydrofuran (THF), and AFEX have also been used for biomass fractionation. 

Similarly, ionic liquids, which will be introduced in the next section, have been a 

remarkable pathway for both pretreatment and fractionation.  
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A major difference between ILs and two of the methods mentioned above 

(organosolv and AFEX) is that the latter use highly toxic solvents and hazardous 

process conditions to completely decrystallize cellulose and hydrolyze 

hemicellulose at high biomass loadings and short residence times.13a, 79 The 

organosolv method uses flammable organic solvents and has a high risk of 

combustion and explosion due to high operating temperatures. Besides that, 

organic solvents are expensive and therefore need to be recovered for cost-

effectiveness. Similarly, AFEX is not only a tedious fractionation process, but also 

creates safety concerns like the organosolv process. The ammonia-treated 

substrate contains traces of lignin that can only be removed through extensive 

water washing. Additionally, AFEX is not suitable for all biomass types and less 

effective when lignin content increases. 

On the other hand, the two most recently used organic solvents (GVL and 

THF) for biomass fractionation use processes that are similar to ionic liquids. 

However, GVL and THF are more traditional organic solvents while ionic liquids 

are known as “modern” solvents for biomass processing. Since then, a significant 

amount of research has been done on a more effective and safer fractionation 

process through these solvents, and this thesis will only focus on ionic liquids.  
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Table 2. Summary of the effects of pretreatment and fractionation on the structure of lignocellulosic biomass. 
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Ionic liquids 

Brief history 

Although the discovery of the “first” ionic liquid (IL) is often disputed, the 

development of an imidazolium-based IL was reported more than half a century 

ago when 1-ethyl-3-methylimidazolium ([EMIM])Chloride was mixed with AlCl3 to 

form a series of equilibria between the following ILs: [EMIM]AlCl4, [EMIM]Al2Cl7, 

and [EMIM]Al3Cl10.80 Since then, ILs have been used in various fields of science 

as catalysts, pharmaceutical drugs, and electrolyte media for batteries and nuclear 

fuel, to cite a few.81  

 While common liquids such as water and gasoline constitute neutral 

molecules, ILs consist of ions and short-lived ion pairs with high ionic conductivity 

and wide electrochemical range, and better dissolving capacity for most 

biopolymers.82 Ionic liquids are advantageous for biomass pretreatment and 

fractionation due to the low requirement of equipment and energy cost, their ability 

to be recovered, and the absence of inhibitory compounds.4a, 83 Besides that, ILs 

are also environmentally-safe, with minimal emissions and low toxin production, 

compared to other solvents.83 They are considered as “green” solvents. 

To date, three classes of ILs are used in biomass processing, namely 

aromatic ILs, molten salt hydrates (MSH), and deep eutectic solvents.84 Despite 

being grouped separately, these ILs share similar chemical properties that are 

unique and favorable for a viable biomass pretreatment or fractionation process. 

In addition to having negligible vapor pressure, high thermal stability, solvent 

miscibility, and various tunable properties82, 85, ILs are one of the few solvents that 

are capable of solubilizing biopolymers such as cellulose, lignin, and to some 

extent, whole biomass.86 For the purpose of this document, only imidazolium-

based ILs will be discussed. 
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Before rising to fame as solvents for biomass processing, ionic liquids were 

known as cellulose solvents to dissolve cellulose for extrusion of thin fibers or rods. 

Swatloski et al.(Rogers and group) were pioneers in showing that the IL 1-butyl-3-

methylimidazolium ([BMIM])Chloride is able to dissolve up to 25 wt.% of 

cellulose.87 Since then, researchers have investigated many other ILs that can 

efficiently dissolve cellulose. Several common ones are 1-allyl-3-

methylimidazolium ([AMIM])Chloride; dissolving 14.5 wt.% at 80 °C and 1-ethyl-3-

methylimidazolium ([EMIM])Acetate dissolving up to 16 wt.% at 90 °C.88 Besides 

cellulose, lignin has also been shown to dissolve in ILs. Pu et al. showed that the 

ILs 1,3-dimethylimidazolium ([MMIM])Methylsulfate, 1-hexyl-3-methylimidazolium 

([HMIM]) trifluoromethanesulfonate, and 1-butyl-3-methylimidazolium ([BMIM]) 

Methylsulfate can dissolve up to 20 wt.% of lignin from kraft pine.89 

Since ILs are able to dissolve biopolymers so efficiently, researchers found 

several ways to use them for biomass processing, namely pretreatment, activation, 

fractionation, and dissolution. These processes are described below. 

Ionic liquid pretreatment 

Ionic liquids pretreatment involves the use of high temperatures to disrupt 

and remove the lignin and hemicellulose fractions, to allow cellulose to solubilize 

in ILs. Then, upon addition of an anti-solvent, biomass is precipitated through a 

solute-displacement mechanism, and further hydrolyzed by cellulases and 

hemicellulases.  

Researchers at the Joint BioEnergy Institute (JBEI) have tested many 

different ILs for pretreatment of lignocellulosic biomass, and have mainly focused 

on [EMIM]Acetate in the recent years.79, 90. Although a high yield of sugars are 

released from cellulose, a pretreatment approach is inefficient in the sense that 

only the cellulose fraction of lignocellulosic biomass is recovered, leaving behind 

lignin and hemicellulose that have been depolymerized. Even if the lignin and 

hemicellulose are processed, the starting yields of these fractions would be much 



22 

lower than it originally used to be.79, 91 Since then, IL activation has replaced 

pretreatment in order to extract all the lignocellulosic components with minimal 

degradation. 

Ionic liquid activation and regeneration 

Ionic liquid activation involves a similar pathway to IL pretreatment, but is a 

better approach using milder process conditions such as low temperatures and 

less time.92 During activation, the fractions of biomass are gently loosened by 

cleaving the acetyl groups on the hemicellulose with minimal impact to the lignin. 

Following activation, biomass is regenerated through the addition of an anti-solvent 

similar to IL pretreatment.  

However, in the case of IL activation, it is important to note that the 

regeneration step allows for the whole biomass to be recovered, whereby the 

carbon content is preserved and the chemical composition, yield is similar to native 

biomass. After recovery, the whole biomass can be further processed to produce 

sugars and lignin (as intermediates), as opposed to having losing some of the 

hemicellulose and lignin yields during pretreatment.  

Biomass fractionation 

Biomass fractionation through an ionic liquid process allows for recovery of 

products with high yield and high purity. Following IL activation, biomass 

regeneration allows for the loosened and deacetylated structure to undergo 

enzymatic saccharification to convert the cellulose and hemicellulose fractions, 

leaving a solid fraction of lignin with high purity. Due to recent needs for biomass 

valorization, ionic liquids have become an attractive fractionation solvent mainly 

due to its non-toxicity and non-hazardous process conditions.  

To date, researchers have yet to identify an IL that can effectively 

fractionate biomass without an additional pretreatment step. Jiang et al. and 

Singh’s group (JBEI) showed that a combined dilute-acid pretreatment and IL 
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“activation” produces better cellulose conversion due to the removal of 

hemicellulose.93 A coupled autohydrolysis-IL fractionation have also been used by 

first treating the feedstock at temperatures of 160-220 °C, and subsequent IL 

activation/pretreatment.94 In our group, Wang et al. showed that an autohydrolysis-

IL fractionation only requires a 3 hour activation time for complete conversion of 

cellulose after autohydrolysis of 160 °C for 60 minutes.95  

Biomass dissolution in ionic liquid 

Biomass dissolution in ionic liquids have been explored since Rogers’ group 

first dissolved cellulose in ILs. However, many researchers report that several IL 

properties are a barrier to complete dissolution of ILs. Dissolving whole biomass 

in ILs allows for direct product development through extrusion of films and fibers, 

which can be used in the textile and packaging industries. The challenge however 

lies in identifying an IL with good dissolution properties without requiring a 

hemicellulose extraction step in order to reach a suitable viscosity for extrusion.96  

Viscosity has been one of the most commonly addressed topics when using 

ionic liquids. Ionic liquids have a considerably higher viscosity that most solvents 

used for pretreatment and fractionation of biomass.97 Therefore, the 

physicochemical properties of ILs require close analysis in order to identify ILs that 

are suitable for either dissolution, activation, or fractionation. These 

physicochemical properties and respective changes in biomass structure are 

studied closely in the following sections.  

 

Summary  

During IL pretreatment, activation, fractionation, or dissolution, one of the 

most important aspects to consider is the nature of ILs. Despite extensive trial-

and-error research in finding a suitable IL for these applications, a rational 

screening process is required of ILs to consider viscosity, density, thermal stability, 
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polarity, hygroscopicity, to name a few. Some of these will be addressed in Chapter 

II and III of this thesis.  
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CHAPTER II 
 

RELATIONSHIP BETWEEN LIGNOCELLULOSIC BIOMASS 
DISSOLUTION AND PHYSICOCHEMICAL PROPERTIES OF IONIC 

LIQUIDS COMPOSED OF 3-METHYLIMIDAZOLIUM CATIONS 
AND CARBOXYLATE ANIONS 
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Abstract  

The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIM]Acetate) has 

been widely used for biomass processing, i.e, to pretreat, activate, or fractionate 

lignocellulosic biomass to produce soluble sugars and lignin. However, this IL does 

not achieve high biomass solubility, therefore minimizing the efficiency of biomass 

processing. In this study, [EMIM]Acetate and three other ILs composed of different 

3-methylimidazolium cations and carboxylate anions ([EMIM]Formate, 1-allyl-3-

methylimidazolium ([AMIM]) formate, and [AMIM]Acetate) were analyzed to relate 

their physicochemical properties to their biomass solubility performance. While all 

four ILs are able to dissolve hybrid poplar under fairly mild process conditions (80 

°C and 100 RPM stirring), [AMIM]Formate and [AMIM]Acetate have particularly 

increased biomass solubility of 40 and 32%, respectively, relative to 

[EMIM]Acetate. Molecular dynamics simulations suggest that strong interactions 
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between IL and specific plant biopolymers may contribute to this enhanced 

solubilization, as the calculated second virial coefficients between ILs and 

hemicellullose are most favorable for [AMIM]Formate, matching the trend of the 

experimental solubility measurements. The simulations also reveal that the 

interactions between the ILs and hemicellulose are an important factor in 

determining the overall biomass solubility, whereas lignin-IL interactions were not 

found to vary significantly, consistent with literature. The combined experimental 

and simulation studies identify [AMIM]Formate as an efficient biomass solvent and 

explain its efficacy, suggesting a new approach to rationally select ionic liquid 

solvents for lignocelluosic deconstruction. 

 

Introduction 

Ionic liquids have been used for biomass pretreatment and fractionation as 

a means of obtaining products from lignin, cellulose, and hemicellulose.1, 98 Three 

classes of ILs are used in biomass processing, namely aromatic ILs, molten salt 

hydrates, and deep eutectic solvents.84, 99 Despite this separate classification, all 

ILs essentially consist of ion pairs, and the possible combinations of cations and 

anions are endless. As “designer” solvents, ILs can have many desirable 

properties, such as a wide electrochemical range, low vapor pressure, and high 

thermal stability.100 These and other unique properties of ILs that are important in 

industrial applications, such as viscosity, polarity, hygroscopicity, and solvation, 

are widely tunable by selecting specific cations and anions. For efficient biomass 

dissolution, specific cationic-anionic combinations are required of an IL. The 

anions need to have strong hydrogen bond acceptability to form hydrogen bonds 

with components of biomass, whereas IL cations need to possess strong acidic 

protons and short side chains to reduce steric hindrance between the IL and 

biomass during dissolution.101  
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Dissolution or solubilization of lignocellulosic biomass in an IL improves the 

accessibility of carbohydrates for conversion into mono sugars.102 Numerous 

studies have focused on dissolving plant biopolymers, i.e., cellulose, 

hemicellulose, and lignin in ILs to demonstrate the potential for ILs to pretreat, 

“activate” or precipitate and recover certain lignocellulosic components.92, 103 

During IL pretreatment, high severity is mostly employed to disrupt the whole 

lignocellulosic structure, facilitating easy access to cellulose, which is then 

converted into simple sugars. Subsequently, these sugars are fermented into 

chemicals and fuels. In contrast, an IL fractionation process uses an approach 

known as “activation”, with mild operating conditions to deacetylate the biomass 

structure, reduce the recalcitrance of biomass while minimizing degradation, such 

that the main linkages in biomass are preserved, therefore allowing for fabrication 

of products such as high quality films and fibers.96  

In particular, the IL 1-ethyl-3-methylimidazolium ([EMIM]) acetate has been 

popular for the above applications90, 92a, 103b, 104 as it is composed of an unsaturated 

heterocyclic cation with an ethyl chain, coupled with a basic acetate anion. This 

particular ion combination is believed to efficiently process biomass across wide 

temperature ranges, time scales, and stirring conditions for pretreatment to 

produce sugars, and also for fractionation to recover sugars and lignin.98a Unlike 

IL pretreatment however, IL activation requires screening for ionic liquids that have 

a high capacity for dissolving biomass under low severity. This screening process 

has identified several limitations of using [EMIM]Acetate, such as high viscosity92b, 

insolubility of xylan, and subsequently, low solubility of the whole biomass.98a 

These setbacks have encouraged efforts to identify other ionic liquids that perform 

better than [EMIM]Acetate.105 

A thorough understanding of the physicochemical properties of 

[EMIM]Acetate and other ILs can help explain the relative efficiencies in 

solubilizing cellulose, lignin, and whole biomass.98b, 106 One of the important 

physical properties of pretreatment solvents that influences solubility of biomass is 
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viscosity, with lower viscosity facilitating biomass dissolution.107 In general, all ILs 

are highly viscous. While solvents such as methyl isobutyl ketone (MIBK) and 

ethanol (used in Organosolv fractionation) have viscosity of 0.58 mPa-s and 1.13 

mPa-s, respectively at room temperature, ILs have viscosity about 2 or 3 orders of 

magnitude higher.97 Additionally, swelling of the lignocellulose occurs during a 

biomass dissolution process, causing increased viscosity in the IL environment, 

limiting subsequent solubilization.108 As a temperature-dependent property, lower 

viscosities are observed at higher temperatures. For instance, the viscosity of 1-

butyl-3-methylimidazolium ([BMIM]) acetate decreases from 646 to 6 mPa-s upon 

heating from 20 to 100 °C.108a, 109 However, viscosity can be altered completely 

due to its dependence on the cations and anions used. Several Quantitative 

Structure Property Relationship (QSPR) studies have analyzed the viscous 

behavior of ILs in terms of the electrostatic interactions between the cation and 

anion, interionic hydrogen bonding, and van der Waals interactions.97, 110 Overall, 

viscous behavior of ILs, which is governed by their respective chemical structures, 

is a common problem during biomass dissolution. Therefore, it is speculated that 

altering the chemical structure of ILs will affect viscosity, i.e., polarity of molecules 

change when cations and/or anions are varied, hence affecting physical properties 

of an IL as well as biomass solubility. 

Over the last few years, scientists have been extensively studying the 

properties of IL structures in an attempt to shed light on the poorly understood 

effect of ionic combination of ILs towards solvation.102-103 In biomass processing, 

it has been long recognized that the anion of an ionic liquid plays a significant role 

in dissolving cellulose and lignin.89, 107, 111 The anions e.g., chloride, acetate, and 

formate, which are conjugate bases, have high hydrogen bond basicity and favor 

non-covalent interactions with hydrogen atoms on the hydroxyl groups of cellulose 

and lignin. However, while the anionic mechanisms of ionic liquids have been 

explained experimentally and theoretically, the cationic mechanisms are still 

debated. Most ILs used in biomass processing have an organic, aromatic cation 
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due to their thermal stability. In particular, imidazolium and pyridinium cations are 

often deemed effective when coupled with highly basic anions.112 Recent studies 

showed that it is especially important for IL cations to have an unsaturated 

heterocyclic structure in order to have large interaction energies and π-electron 

delocalization with cellulose.113 Although these findings provide a rough basis for 

selection, the quantitative determination of the effects of IL physicochemical 

properties on biomass solubility is still an existing question. 

In this paper, four ionic liquids are investigated by switching the cation-anion 

combinations to study their respective interactions leading to differences in 

biomass solubility. In a series of findings, we relate biomass solubility to the 

viscosity and other physicochemical properties of each IL. Our experimental 

results are further affirmed through molecular dynamics simulations, which provide 

estimates of virial coefficients that quantify the interaction strength between IL ions 

and plant polymers. These studies provide insights that may be used to further 

fine-tune IL composition for optimal biomass processing for production of fuels and 

chemicals. 

 

Materials and methods 

Biomass and ionic liquids 

The biomass, hybrid poplar (Populus spp.), was obtained from The Center for 

Renewable Carbon, The University of Tennessee. After being air-dried, the 

material was milled with a Wiley mill (Thomas Scientific™, Model # 3383-L10, 

Swedesboro, NJ) through a 40-mesh screen (0.425 mm).  

The ionic liquids, 1-ethyl-3-methylimidazolium acetate ([EMIM]Acetate, 

purum ≥ 95%), 1-ethyl-3-methylimidazolium formate ([EMIM]Formate, purum≥ 

95%), 1-allyl-3-methylimidazolium formate ([AMIM]Formate, purum ≥ 95%), and 1-

allyl-3-methylimidazolium acetate ([AMIM]Acetate, purum ≥ 95%) used in this 
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study were purchased from Iolitec Inc. (Tuscaloosa, AL) and were used as 

received. Deionized water was used in between steps.  

Biomass characterization 

1. Extractives removal  

The 40-mesh hybrid poplar powder was extracted in an Accelerated Solvent 

Extractor (ASE 350, Dionex, Sunnyvale, CA) to remove non-structural components 

known as extractives. The employed methodology was adapted from the National 

Renewable Energy Laboratory (NREL) Analytical Procedure: “Determination of 

Extractives in Biomass”. Approximately 7 g of biomass powder were mixed with 40 

g of glass beads (3 mm) and added to a 66 mL extraction cell. The biomass 

underwent sequential extraction with water and ethanol under 1500 psi at 100 °C 

with a 7-minute static time per cycle (3 cycles). The wet, extractives-free hybrid 

poplar was then oven-dried at 40 °C until constant moisture content was achieved 

(less than 7% by weight).  

2. Chemical composition analysis 

The chemical composition of the extractives-free hybrid poplar was 

analyzed using the National Renewable Energy Laboratory (NREL) Analytical 

Procedure: “Determination of Structural Carbohydrates and Lignin in Biomass”. 

The overall chemical composition is presented in Table 3. 

 

 

Table 3. Chemical composition of hybrid poplar. 

Component Glucan Xylan Galactan Arabinan Mannan 

Amount  
(% on dry basis) 

44.27 ± 
0.24 

16.43 ± 
0.14 

1.20 ± 
0.04 

0.54 ± 
0.07 

2.41 ± 
0.02 

Standard deviations were obtained from triplicates 
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Solubility of hybrid poplar in ionic liquids 

The solubility of the extractives-free hybrid poplar in four different ILs was 

assessed by measuring the maximum weight of biomass that can be dissolved in 

each IL at 80 °C after 7 days, following recommended methods that have been 

published.114 The fraction of dissolved biomass was calculated based on the 

following Eq. (10):  

  (10) 

 

where wbiomass represents the 105 °C oven-dried biomass weight and wIL 

represents the weight of ionic liquid. 

In each solubility measurement, all four ILs were first heated to 100 °C to 

remove moisture before carrying out any measurements. After 15 minutes, the 

temperature was decreased to 80°C and biomass powder (0.05 g) was added daily 

to the ionic liquid (3.5 g) in a 20 mL vial. The vial was placed on a heating plate 

with a 100 RPM stirring. The solubility was monitored by placing an aliquot of the 

solution under a microscope at the end of Day 5. Additional biomass was added if 

no particles were observed. In the presence of undissolved particles, more ionic 

liquid was added to the solution until an equilibrium was achieved on Day 7. 

Triplicates were conducted for each experiment. 

Thermal analysis of ionic liquids 

A thermogravimetric analyzer (Pyris 1 TGA, Perkin Elmer, Shelton, CT) was 

used to conduct thermogravimetric analysis (TGA) of the neat ILs. About 8-10 mg 

of ionic liquid were heated in a platinum pan from 30 to 600 °C at a rate of 10 °C 

/min under 10 mL/min of nitrogen to collect the thermal decomposition curve. 

Thermograms obtained from the TGA were differentiated into weight loss rates 

known as differential TG (DTG) peaks to obtain the decomposition temperature of 

each IL. 
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Rheological property measurements of ionic liquids 

The viscosity of [EMIM]Acetate, [AMIM]Formate, and [AMIM]Acetate was 

monitored over a temperature range of 25-100 °C and the viscosity of 

[EMIM]Formate from 45-100 °C (due to its solid state below 45 °C). The ILs were 

loaded onto a Peltier temperature-controlled plate of a controlled stress rheometer 

(TA Instruments AR-G2). Silicon oil and metal plate covers were used to prevent 

the IL from absorbing moisture during the measurement. The viscosity of each 

sample was measured at a shear rate of 100 s-1, determined by finding the linear 

region in a variable rate experiment, using 40 mm diameter cylindrical plates with 

a gap of 56 μm. Duplicate experiments were performed for each IL. A graphical 

software (OriginPro) was used to fit an exponential regression to the viscosity-

temperature data  

Kamlet-Taft measurements 

The Kamlet-Taft parameters are often used to describe polarity and 

compare solvation properties in ILs that have slight differences in substituents.115 

In general, β indicates the hydrogen bond basicity which is governed by the nature 

of the anion, α shows the hydrogen bond acidity, governed by the cation, and π* 

describes the polarizability of an IL.116 These parameters (α, β, and π*) are 

determined from the UV-Vis absorbance peaks of the following three dye solutions: 

Reichardt’s dye (RD), N, N-diethyl-4-nitroaniline (DENA), and 4-nitroaniline (NA). 

Additionally, a transition energy parameter, ET(30) measures the polarity 

determined by the charge-transfer absorption band of Reichardt’s dyes.  

To measure KT parameters, stock solutions of the dyes were first prepared 

in methanol (0.0005 mol/L of RD and 0.001 mol/L of DENA and NA). A mixture of 

1.8 mL ionic liquid and each of the dye solutions was transferred into a vial, 

homogeneously mixed, and dried in vacuo at 40 °C for 24 h. After drying, 600 μL 

of each IL-dye mixture was pipetted into a Quartz cell (1.0 cm pathlength). The 

visible spectrum of the solutions was measured and recorded using a Thermo 
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Scientific™ GENESYS™ 10S UV-Vis Spectrophotometer. By obtaining the 

wavelength of dyes at maximum absorption (λ max), the KT parameters were 

calculated using the published equations117: 

ν = 1/ (λ max (dye) x 10-4)      (11) 

α = 0.0649 ET(30) – 2.03 – 0.72π*    (12) 

ET(30) = 28592 / λ max (Reichardt’s dye)     (13) 

π* = 0.314(27.52 – ν N,N-diethyl-4-nitroaniline)    (14) 

β = (1.035ν N,N-diethyl-4-nitroaniline + 2.64 – ν 4-nitroaniline) / 2.80 (15) 

 

Measurements were carried out at 25 °C, following observations by Zhang et al. 

that the parameters do not differ when measured between 25-80 °C.118 

Simulation details 

All-atom molecular dynamics simulations of the four ionic liquids in the 

presence of representative poplar hemicellulose and lignin polymers were 

performed to obtain detailed descriptions of the effective interaction strengths of 

the anions and cations with the biopolymers, and structural properties (radial 

distribution functions) of the ILs. Parameters for the ionic liquids were obtained 

from the CHARMM-GUI interface with the CHARMM general force-field,119 and the 

CHARMM parameters for hemicellulose120 and lignin121 were employed.  

Simulation boxes of the ionic liquids were prepared using VMD and 

converted to GROMACS format for relaxation and production simulations with the 

GROMACS simulation suite.122 For each IL, five independent sets of simulations 

were performed in two steps: an ~5.6 ns NPT relaxation followed by an ~60 ns 

NVT production simulation. During the relaxation simulations, the pressure was 

fixed to 1 bar using the Berendsen barostat, while the temperature was fixed to 

353 K using the V-Rescale thermostat.123 For both, the relaxation and production 

stages, the integration timestep was set to 2 fs and bonds were constrained using 

the LINCS algorithm.124 
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Radial distribution functions (RDFs) were obtained from the last 1.95 μs of 

the production simulations. The RDFs were used to calculate the second virial 

coefficients (interaction virials) using the well-known liquid theory relation125 : 

     (16) 

 

where g(r) is the radial distribution function and r is the distance between pairs of 

interest. 

 

Results and discussion 

In addition to 1-ethyl-3-methylimidazolium ([EMIM])Acetate, three different ILs 

were studied by varying the cation-anion combinations. The general structure of 

these ILs is shown in Figure 5 and their images are shown on Figure 6. 

[EMIM]Acetate:  R1= CH2CH3   R2= CH3 

[EMIM]Formate:  R1= CH2CH3   R2= H 

[AMIM]Formate:  R1= CH2CHCH2  R2= H 

[AMIM]Acetate:  R1= CH2CHCH2  R2= CH3 

Figure 5. Chemical structure of the ionic liquid cation (left) and anion (right). 
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Table 4. Hybrid poplar solubility in ionic liquids measured at 80 °C. 

Ionic liquid Solubility of Hybrid poplar @ 80°C  
(wt. %) 

[EMIM]Acetate 5.27 a 

[EMIM]Formate 5.28 a 

[AMIM]Formate 7.39 b 

[AMIM]Acetate 6.96 c 

Biomass solubility was measured based on Eq.1. Means followed by the 
same letter are not significantly different at an alpha level of 0.05. 

 

 

 

 

Figure 6. Ionic liquids used in this experiment. Top: [EMIM]Acetate (left), 

[EMIM]Formate (right). Bottom: [AMIM]Acetate (left), [AMIM]Formate (right). 
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The role of the ion pairs, i.e., cation and anion of ILs in dissolving 

biopolymers was studied using two cations and two anions in four different 

combinations, with [EMIM]Acetate as the reference. The data in Table 4 show that 

ILs with [AMIM] cations have significantly higher biomass solubility than their 

[EMIM] counterparts. In particular, [AMIM]Formate and [AMIM]Acetate show 

increased dissolution by 40 and 32%, respectively compared to the commonly 

used IL [EMIM]Acetate. In the following paragraphs explaining MD simulations, we 

attribute the large difference in solubility to the ability of each IL to dissolve all of 

the major components of biomass, i.e., cellulose, hemicellulose, and lignin. To our 

knowledge, the role of hemicellulose in whole biomass dissolution in ILs still 

remains unclear. 

Numerous studies have determined that [EMIM]Acetate is a highly efficient 

solvent when dissolving cellulose, achieving up to 15 wt.% at 25 °C.126 Similarly, 

lignin solubility in [EMIM]Acetate was reported to be high enough to provide good 

extractability without solubilizing the whole wood feedstock.127 However, 

[EMIM]Acetate has been reported to dissolve only ~5 wt.% of xylan at a 

temperature of 25 °C, which is one-third the amount of cellulose.128 These results 

suggest that xylan, a component of hemicellulose, is the limiting factor for biomass 

solubilization with [EMIM]Acetate. Similar to the dissolution mechanism of glucan 

or cellulose in ILs, xylan requires the disruption of hydroxyl groups through 

hydrogen bond formation.88a Xylan has two hydroxyl groups per sugar monomer 

whereas glucan has three hydroxyl groups per D-glucose unit.129 The low density 

of hydroxyl groups in xylan may explain its relatively low solubility in ILs and 

inability to compete with cellulose. In spite of that, Fukaya et al. showed that 

[AMIM]Formate can dissolve a significant quantity of xylan at temperatures above 

60 °C, reaching up to 20 wt.% at 90 °C,117 while [EMIM]Acetate can only dissolve 

half of that (~10 wt. %) at the same temperature.117, 128, 130 The ILs [AMIM]Formate 

and [AMIM]Acetate also recorded high cellulose solubility, measuring up to 18.5 

wt.% and 22.0 wt.% respectively, within an hour of mixing at 80 °C.118 Although 
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these findings are consistent with our results for solubility, the authors were unable 

to infer whether the anion or cation of an IL dominates this behavior and contributes 

to the properties of an IL when dissolving components of biomass. Additionally, to 

our knowledge, there are no available temperature-dependent xylan or biomass 

solubility data for [EMIM]Formate and [AMIM]Acetate. 

Several physical properties (thermal stability and viscosity) were of 

particular interest to our study to achieve an understanding of the interionic 

properties of ILs during biomass solubilization. The thermal stability of the ILs was 

determined by thermogravimetric analysis (TGA) at room temperature (day 0), and 

after heating at 80 °C for 7 days (Figures 7, 8 and 9) to mimic our solubility test. 

The ILs appeared to be stable throughout the course of the experiment and had 

decomposition temperatures, Td, in the range of 205-242 °C, with [AMIM]Formate 

and [AMIM]Acetate being on the lower end (Table 5). 

Decomposition studies of ILs have shown that the decomposition pathway 

is initiated by an SN2 nucleophilic attack of the anion on the cation.131 The IL pool 

in this study suggests that the nucleophilic substitution mechanism highly depends 

on the alkyl substituent on the cation, as evidenced by the observed difference in 

Td between ILs of the same anion, i.e., [AMIM]Formate and [EMIM]Formate or 

[AMIM]Acetate and [EMIM]Acetate (Table 5). Both ILs with an [EMIM] cation have 

higher Td than their [AMIM] counterparts. These findings are consistent with the 

literature, showing that changes in electronic structure and size of ions, such as 

methylation on C2 site of cation, and alkyl substituent groups on the cation and the 

anion, can all significantly affect the IL decomposition profile.132 Our dissolution 

data show that, similar to Td, a slight change of substituent on the cation (ethyl or 

allyl) as well as anion can affect biomass solubility. 
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Figure 7. TGA thermographs for ionic liquids measured at a heating rate of 10 °C/min. 

 

 

 
Figure 8. DTG curves for all four ionic liquids. The global maxima of each curve shows Td. 
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Figure 9. Thermal stability of ionic liquids over a 7-day period. Standard deviations were 

measured but not shown in the graph. 

 

 

The viscosity of the ILs, measured at 80 °C (Table 5), showed a similar 

trend to that of Td. The ILs with an [EMIM] cation are observed to have a higher 

viscosity than those with [AMIM] cations. Interestingly, there is virtually no 

difference between [EMIM]Formate and [AMIM]Acetate (which have a viscosity of 

12.3 and 11.2 mPa-s respectively), despite being composed of different cations 

and anions. Imidazolium cations in general have low viscosities compared to other 

five-member ring cations. However, the side chain on the imidazolium ions can 

affect the conformational degrees of freedom of the cation, and when coupled with 

a highly basic anion, the cationic-anionic combination forms a dipole moment that 

results in a polarity-induced viscosity.133 Therefore, the observed Td and viscosity 

differences and similarities for the ILs in Table 5 are inferred to be a result of 

different interaction energies in the IL structure combination. 
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Table 5. Decomposition temperatures (Td) and viscosity of ILs (at 80 °C). 

Ionic liquid Td on Day 0 (°C) Viscosity @ 80°C (mPa-s) 

[EMIM]Acetate 241.1 ± 0.9 25.1 

[EMIM]Formate 238.2 ± 0.7 12.3 

[AMIM]Formate 205.6 ± 0.9 9.7 

[AMIM]Acetate 217.7 ± 1.5 11.2 

Standard deviations were obtained from triplicates 

 

 

Further analyses of the IL structure-property relationships were determined 

through measurements of the Kamlet-Taft parameters (α, β, and π*) (Table 6). 

These parameters are widely used to explain the solvation behavior of ionic liquids. 

Previous studies have shown that hydrogen bond basicity of ILs is required for the 

weakening of cellulose inter and intramolecular hydrogen bonds.87 The anionic 

function in solubilizing cellulose was further confirmed using COSMO-RS 

prediction, which screens in silico the dissolving power of ILs by calculating 

approximate chemical potentials.134 The mechanism for lignin dissolution is still 

under debate. It has been suggested that IL anions form hydrogen bonds with the 

terminal hydroxyl groups of lignin similar to that of cellulose.135 However, other 

data showing weaker correlation between β and lignin solubility suggest that the 

basicity is not as crucial as it is for cellulose. dissolution.89, 136  

Both anions (conjugate bases) used in our study, namely formate (HCOO-) 

and acetate (CH3COO-), are good electron donating groups (EDGs) as denoted by 

their pKas or acidity values of their acids (3.75 and 4.75, respectively). As strong 

EDGs, these anions act as H-bond acceptors when interacting with hydroxyl 

groups in biomass, forming an electron donor-electron acceptor complex (EDA 

complex).137 The ability of an IL to form EDA complexes depends on both ions, but 

the role of anions as the hydrogen bond acceptors is often credited for biomass 
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disruption. Anion basicity, denoted by the β values, are often estimated through 

Kamlet-Taft measurements to explain differences in dissolution ability of anions in 

ILs. However, when holding the anion constant, Table 6 shows no statistical 

difference between ILs containing formate or acetate with different cations. 

Additionally, there are no differences between the β values of [EMIM]Acetate and 

the other three ILs even though there are clear differences in biomass solubility in 

Table 4. Therefore, as stated by Kilpelainen et al., it is clear that the anionic 

mechanism is not the only factor that comes into play during IL dissolution of 

biomass.151 

 

 

Table 6. Kamlet-Taft parameters for each ionic liquid. 

Ionic liquid Kamlet-Taft parameters 

α β π* 

[EMIM]Acetate 0.50 ± 0.03 1.07 ± 0.04[a,b] 1.03 ± 0.02 

[EMIM]Formate 0.49 ±0.02 1.00 ±0.02[a] 1.03 ± 0.08 

[AMIM]Formate 0.46 ± 0.01 1.01 ± 0.04[a] 1.09 ± 0.02 

[AMIM]Acetate 0.43 ± 0.03 1.11 ± 0.01[b] 1.13 ± 0.08 

For β parameters, means followed by the same letter are not significantly 
different at α=0.05. No significant differences were observed between all α and 
π* values for each IL 

 

 

In contrast, to analyze the behavior of cations in ILs, the cation was held 

constant as it has been suggested that the cationic property contributing to the 

hydrogen bond acidity of solvents, α, is largely driven by the presence of an acidic 

C-H bond on the imidazolium ring.138 However, despite the varying length of the 

side chain (ethyl or allyl) on both cations used in this study, the Kamlet-Taft 
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parameters once again showed no differences that are strong enough to explain 

the solubility data presented in Table 4. These individual parameters, although 

commonly used in explaining IL solvation properties, are deemed inconclusive for 

the purpose of explaining dissolution of the whole biomass in our study. 

As an alternative, interactions between the cation and anion are considered, 

as opposed to examining them on their own. While cations and anions are usually 

analyzed separately for solvation properties using Kamlet-Taft, literature suggests 

that the product of α and β of two ions indicates the strength of acid–base 

interactions between them.139 The direct interaction between the cation and anion 

of an IL results in a strong association between the hydrogen bond accepting 

(hydrogen bond basicity) and hydrogen bond donating (hydrogen bond acidity) 

properties.140 Lungwitz et al. have showed that the product of α and β has a strong 

correlation with π*, indicating that a strong interaction between anion and cation 

has an increasing effect on dipolarity.140b However, since our data show no 

significant differences between dipolarity (π*), a more rational screening process 

is required to find the missing link between overall interaction of ILs with each 

lignocellulosic components of biomass. 

To gain a deeper understanding of how the local structure of ions and 

interactions between them affect biomass solubility, MD simulations were 

conducted for all four ILs in the presence of either hemicellulose or lignin. 

Hemicellulose and lignin were chosen for analysis as these components are not 

studied as well as cellulose in literature.141 Therefore, unlike cellulose, 

temperature-dependent solubility data of lignin and hemicellulose in the four ILs 

presented in this paper are not readily available. Radial distribution functions and 

second virial coefficients were simulated for these ILs. Radial distribution functions 

(RDF), defined as the probability of finding an ion at a distance r from a plant 

polymer (lignin or hemicellulose), quantify local order in the ILs. The results are 

shown in Figure 10. The first peak indicates the average position of the ions in the 

solvation shell and the first minimum is commonly used to define the size of the 
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shell. The hemicellulose-IL RDFs are structured, with sharp maxima at ~4.5 Å and 

6 Å for the anions and cations, respectively. The larger height of the peaks for the 

anions indicate more anions reside in the solvation shell than cations do. 

Interestingly, for the hemicellulose-anion interactions, when keeping the 

anion fixed, the height of the peak follows the same trend as the biomass solubility 

in Table 4, e.g. [AMIM]Formate has both higher solubility and higher RDF peak 

than [EMIM]Formate does. This suggests that cations influence the local ordering 

of anions on plant polymer surfaces. In contrast to hemicellulose, the lignin-IL 

RDFs are significantly less structured, indicating reduced local solvation layering, 

and show little variation between anions and cations. 

Second virial coefficients (B2) quantify the IL-biomass polymer (lignin or 

hemicellulose) inter-molecular interaction strength and can be calculated by 

integrating the respective RDFs using Eq. 16 (Table 7). The smaller the B2, the 

stronger the pairwise interaction. The interaction strength between lignin and all 

four ILs is found to be statistically similar. However, [AMIM]Formate, the IL that 

has the highest biomass solubility (Table 4), shows the most favourable interaction 

with hemicellulose. These results suggest that the interaction of the ILs with the 

hemicellulose influences the most biomass solubility. 
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Figure 10. Radial distribution functions between the center of mass of ions and plant 

polymers. (a) solute-anion RDF for lignin and (b) hemicellulose. And the figures on the right-

side show solute-cation RDF for (c) lignin and (d) hemicellulose. 

 

 

Table 7. Calculated lignin-IL and hemicellulose-IL virial coefficients. 

Ionic liquid B2 (Lignin-IL) B2 (Hemicellulose-IL) 

[EMIM]Acetate 2.02 ± 0.02 0.50 ± 0.02 

[EMIM]Formate 1.95 ± 0.06 0.47 ± 0.03 

[AMIM]Formate 1.99 ± 0.03 0.40 ± 0.04 

[AMIM]Acetate 2.00 ± 0.02 0.48 ± 0.02 

 

 

a) 

b) 

c) 

d) 
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Conclusions 

The relationship between the physicochemical properties of ILs and their 

ability to solubilize lignocellulosic biomass is of considerable importance in the 

production of biofuels and bioproducts. When comparing different ILs, the variation 

in viscosity or stability can in principle arise from their varying chemical structure 

leading to differences in dispersive interactions, hydrogen bonding strength, and 

molecular dipole moment. Present work shows that the overall structure of ILs is 

more important than individual ion contributions; solubility data coupled with 

measurements of Kamlet-Taft parameters and molecular dynamics simulations 

suggest that both cationic and anionic properties of ILs are cooperatively important 

in explaining solvent-solute interactions.  

Of the four ionic liquids investigated for their potential in dissolving 

lignocellulosic biomass, the IL 1-allyl-3-methylimidazolium ([AMIM])Formate 

proves to be the most effective. Due to its ionic combination, [AMIM]Formate 

dissolves a significantly higher amount of biomass (+40%) compared to the 

commonly used [EMIM]Acetate. This is attributed to more favorable interactions 

(calculated from MD simulations) with the hemicellulose, whereas the interaction 

with lignin is found to be similar between all ILs studied here. The simulations 

identify hemicellulose as the cell wall component whose interactions with the ILs 

and local solvent structure vary more significantly as the ions are changed. 

Additional molecular-level experimental and simulation studies on these 

select ILs are in order to further explain biomass-solvent reactions. 
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Appendix 

 
Figure 11. (a) Temperature-dependent viscosity of [EMIM]Acetate. (b) Temperature-

dependent viscosity of [EMIM]Formate, [AMIM]Formate, and [AMIM]Acetate (Bottom). 
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CHAPTER III 
 

LIGNOCELLULOSIC BIOMASS ACTIVATION WITH IONIC 
LIQUIDS COMPRISING 3-METHYLIMIDAZOLIUM CATIONS AND 

CARBOXYLATE ANIONS 
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Abstract 

The production of chemicals and fuels from lignocellulosic biomass is an 

alternative to traditional, petroleum-based products. However, lignocellulosic 

biomass requires a form of pretreatment or fractionation to recover its individual 

components for further use as intermediate building blocks. Numerous ionic liquids 

have been used in biomass processing due to their ability to “activate” 

lignocellulosic biomass, by reducing its recalcitrance with minimal impact on the 

structural components. In this study, we compare 1-allyl-3-methylimidazolium 

([AMIM])Formate to the commonly used 1-ethyl-3-methylimidazolium 

([EMIM])Acetate for its potential to activate hybrid poplar and enable high cellulose 

and hemicellulose conversion. Although [EMIM]Acetate has been widely used for 

activation, [AMIM]Formate was recently identified to have a higher biomass 

solubility, with an increase of 40% over [EMIM]Acetate. Since IL activation 

captures the early stages of dissolution, the recalcitrance of [EMIM]Acetate and 

[AMIM]Formate-activated biomass was assessed through a suite of analytical 

tools. Data from FT-IR spectroscopy and X-Ray diffraction patterns show that 

activation using [AMIM]Formate does not deacetylate hybrid poplar as much as 



51 

[EMIM]Acetate, and preserves the crystallinity of the cellulose fraction. Enzymatic 

saccarification on activated biomass results in a higher cellulose and hemicellulose 

conversion for [EMIM]Acetate-activated biomass, about double the conversion for 

[AMIM]Formate. Scanning electron microscopy (SEM) further shows that the 

porosity that is seen in [EMIM]Acetate-activated biomass due to the 

aforementioned physical and chemical changes during activation. Therefore, 

[AMIM]Formate is much more suited for dissolution and direct product formation 

as opposed to the pathway for [EMIM]Acetate, which is activation and 

fractionation. 

 

Introduction 

Current petroleum-based fuel production of 80 million barrels per day emits 

an alarming rate of carbon dioxide into a closed atmospheric system, contributing 

to a rise in average daily temperatures. In September 2017, NASA’s Goddard 

Institute for Space Studies (GISS) stated that the surface temperatures in 2017 

are consistent with the global average trends observing a gradually warmer climate 

since 1980. Anticipation of this phenomenon has motivated researchers to find 

alternatives for producing chemicals and fuels from lignocellulosic biomass, the 

only renewable sustainable carbon source.  

Lignocellulosic biomass is mainly comprised of cellulose (30-45%), 

hemicellulose (20-40%), and lignin (5-35%).4 The main component of the plant cell 

wall is cellulose, which is made of D-glucose monomer units linked by β (1→4) 

glycosidic bonds. Cellulose is a highly stable linear homopolymer, unlike 

hemicellulose and lignin, which have random and amorphous structures. 

Hemicellulose is made of a diverse class of polysaccharides, including xylan, 

glucuronoxylan, arabinoxylan, glucomannan, and xyloglucan. Lignin reinforces the 

cell wall of plants and forms a physical barrier against any form of chemical, 

biological, or physical attacks. Altogether, the heterogeneous structure and 
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complexity of cell wall constituents are the main contributors to biomass 

recalcitrance.142 The recalcitrant structure of biomass hinders its potential for 

conversion into various intermediate chemicals and fuels. For biorefinery 

applications to be cost effective, an efficient biomass pretreatment or fractionation 

method is imperative for maximizing conversion yields. 

Recently, the need for biomass valorization has compelled biorefineries to 

exhibit the ability to selectively recover each primary component of lignocellulosic 

biomass through maximum conversion of cellulose and hemicellulose into soluble 

sugars, yielding a lignin fraction of high purity.84, 143,144 Numerous studies have 

demonstrated the ability to use various pretreatment methods such as dilute acid 

treatment, autohydrolysis, steam explosion, wet oxidation, and ammonia fiber 

expansion (AFEX), to recover only certain fractions of biomass but not all three 

(cellulose, hemicellulose, and lignin).63, 145 Over the years, several fractionation 

processes using organic solvents i.e., ethanol, acetone, gamma valerolactone 

(GVL), tetrahydrofuran (THF), and ionic liquids have become prevalent in 

recovering all the components of lignocellulosic biomass.98a, 146 While the 

organosolv process is known to produce fractions with high purity, the recovered 

lignin is depolymerized and does not re-form C-C bonds. Additionally, the use of 

toxic solvents and high temperatures makes this process hazardous, requiring 

reactors made with special alloys. The processes involving GVL and THF are fairly 

new and still being studied for their use as a pathway for biomass fractionation.70, 

147 

Ionic liquids have been around for decades and are salts with low melting 

points and high vapor pressure. They are non-toxic and suitable for biomass 

pretreatment (at temperatures over 100 °C and/or long residence times) or 

fractionation. During IL pretreatment, only a cellulose-rich fraction is generated 

through the degradation and removal of lignin and hemicellulose.148 Conversely, 

biomass fractionation employs an IL activation step, which uses low severity, i.e., 

low temperatures to gently loosen the lignocellulosic components. One has to note 
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that the term “activation” and pretreatment are used interchangeably although 

activation is more accurate for processes that use temperatures of 50-80 °C, and 

targets the recovery of all the biomass constituents.92b After activation, biomass 

can either be regenerated through a solute displacement mechanism (using an 

anti-solvent) or subjected to in situ saccharification in an enzyme environment 

(discussed in Future Work).149 The IL activation step allows the saccharide fraction 

(hemicellulose and cellulose) to become less intertwined with lignin and undergo 

maximum hydrolysis to glucose during an enzymatic saccharification.90, 92a Lignin 

can then be recovered in the solid fraction. 

One of the main advantages of IL activation is that significant changes in 

biomass and cellulose crystallinity have been observed, in addition to the cleavage 

of acetyl groups in hemicellulose and lignin. Since cellulose has a crystalline 

structure unlike hemicellulose and lignin, reducing cellulose crystallinity is of 

considerable importance to provide access for hydrolytic enzymes.150 Due to the 

mild process conditions used in IL activation, these structural changes occur within 

the biomass without compromising the overall chemical composition, like it would 

during a pretreatment step. In other words, the carbon content and the main three 

biomass constituents content are preserved. An IL that has been particularly well-

known for pretreatment and activation is 1-ethyl-3-methylimidazolium acetate or 

[EMIM]Acetate.98a, 151 While other ILs such as 1-allyl-3-methylimidazolium 

([AMIM])Chloride and 1-butyl-3-methylimidazolium ([BMIM]Chloride have been 

used for biomass pretreatment or activation, [EMIM]Acetate is known to be an 

effective cellulose solvent, inducing changes in crystallinity even during IL 

activation. 

As a pretreatment solvent, Singh and collaborators stated that 

[EMIM]Acetate is highly effective at 140 °C and 3 hr for production of sugars from 

switchgrass. Likewise, they have also tested several other temperatures (ranging 

from 110-140 °C) and residence times to pretreat biomass.90 As an example of the 

different ways that IL pretreatment is carried out, a work by Shill et al. show that 
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[EMIM]Acetate can produce higher cellulose conversion using a biphasic and 

triphasic system after pretreating biomass for up to 44 hours at high 

temperatures.13a For a process employing IL activation alone, not much work has 

been shown significant results for cellulose conversion and recovery of lignin due 

to the difficulty of identifying the correct ratio of time and temperature that is 

effective for a select IL. Previously, Labbe et al. showed that biomass activation 

and regeneration with [EMIM]Acetate at a 4 wt.% biomass loading (BL) generated 

a low recalcitrant biomass. With a 72-hour activation time at 60 °C, the cellulose 

fraction of yellow poplar was converted into 100% glucose.92a Singh’s research 

group recently made an attempt to activate switchgrass with an IL 

tetrabutylammonium hydroxide at 50 °C for 3 hours, at a 20 wt.% biomass 

loading.92b In addition to using ideal conditions for “activation”, a higher loading is 

used to enhance energy efficiency and cost-effectiveness of a biorefinery process.  

In order to optimize IL activation, shorter reaction times and lower 

temperatures have been examined as mentioned in the examples above. 

However, hemicellulose has low solubility in the commonly used [EMIM]Acetate at 

low temperatures, dissolving only 5 wt.% at 25 °C. Therefore, the hemicellulose 

coating on cellulosic fibrils will not be disrupted under mild conditions if it is first not 

dissolved. Recent work showed that partial removal of hemicellulose allows for 

shorter activation time using a coupled autohydrolysis-activation step.94 Similarly, 

Wang et al. carried out autohydrolysis at 160 °C for 60 minutes, resulting in a 55% 

removal of hemicellulose. Following autohydrolysis, activation was carried out for 

only 3 hours at 10 wt.% BL , while still achieving a 100% conversion of cellulose 

into glucose.95 These results provide some insight on the barrier imposed by 

hemicellulose onto the potential complete cellulose conversion. The partial 

removal of hemicellulose cleaves lignin carbohydrate complexes (LCC) and 

disrupts the linkages between lignin and hemicellulose.113, 152 

In a very recent paper (reproduced in Chapter II), we show that 1-allyl-3-

methylimidazolium formate or [AMIM]Formate efficiently dissolves 40% more 
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hybrid poplar compared to the commonly used [EMIM]Acetate. Through a series 

of experiments and molecular dynamics simulations, the large difference in 

dissolution was attributed to stronger interactions between hemicellulose and 

[AMIM]Formate. This results in increased dissolution of hybrid poplar in 

[AMIM]Formate, augmenting the contact between IL and each lignocellulosic 

component.  

Since the dissolution of biomass in [AMIM]Formate is 40% higher than that 

in [EMIM]Acetate, these two ILs were compared in terms of activation. As the 

activation step is essentially an initial step of the dissolution process, the changes 

that take place would be similar. The effectiveness of each activation was 

evaluated by investigating several physical and chemical features of the biomass, 

i.e., deacetylation, cellulose crystallinity, chemical composition, and anatomical 

characteristics. Statistical analysis was performed to analyze the Fourier transform 

infrared (FT-IR) chemical signature of the activated/regenerated biomass and 

study the changes that occur in the biomass structure based on the IL activation 

parameters. 

 

Materials and methods 

Biomass and ionic liquids 

The biomass used in this study, hybrid poplar (Populus spp.) was obtained from 

The Center for Renewable Carbon, The University of Tennessee. Upon air-drying, 

the material was milled with a Wiley mill (Thomas Scientific™, Model # 3383-L10, 

Swedesboro, NJ) through a 40-mesh screen (0.425 mm).  

The ionic liquids, 1-ethyl-3-methylimidazolium acetate ([EMIM]Acetate, purum ≥ 

95%) and 1-allyl-3-methylimidazolium formate ([AMIM]Formate, purum ≥ 95) were 

purchased from Iolitec Inc. (Tuscaloosa, AL) and used as received. Deionized 

water was used in between steps.  
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Activation and regeneration of hybrid poplar in ionic liquids 

The extractives-free hybrid poplar was “activated” in [EMIM]Acetate and 

[AMIM]Formate at a 10 wt.% loading. First, the ILs were weighed in a flask and 

heated at 100 °C to remove moisture. After 15 minutes, the temperature was set 

to 60 °C and the hybrid poplar (HP) was slowly added to the solvent. The biomass-

IL mixture was agitated by a mechanical stirrer at 100 RPM for various time scales 

(3, 24, 48 and 72 hours). After the respective periods, the biomass was 

regenerated by adding the same weight of deionized water as an anti-solvent, and 

mixed for five additional minutes. The regenerated sample was further precipitated 

through washing and vacuum filtration steps, and then dried in a 40 °C oven for 5 

days.  

At least two replications were performed for each experiment and the recovered 

weight of biomass was recorded. The complete removal of ILs from the biomass 

was confirmed through Fourier Transform Infrared (FT-IR) spectroscopy and 

Pyrolysis-Gas Chromatography (Py-GC/MS).  

Chemical composition analysis 

The chemical composition of the raw and activated/regenerated hybrid poplar was 

determined using the National Renewable Energy Laboratory (NREL) Analytical 

Procedure: “Determination of Structural Carbohydrates and Lignin in Biomass”. 

The acid soluble lignin (ASL) content was measured at a wavelength of 240 nm, 

using a Thermo Scientific™ GENESYS™ 10S UV-Vis Spectrophotometer. 

Fourier Transform Infrared (FT-IR) spectroscopy 

The chemical signature of the HP samples was measured using a Perkin–Elmer 

Spectrum One FT-IR spectrometer (Waltham, MA). A small amount of biomass 

(~0.005 g) was placed on an attenuated total reflectance (ATR) accessory of the 

spectrometer. FT-IR spectra were collected over a range of 4000-600 cm-1 in the 

absorbance mode, with a 4 cm-1 resolution and 8 scans per sample. Five spectra 

were collected for each sample. The spectra were pre-treated with an ATR 
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correction, normalized and corrected by Multiplicative Scatter Correction (MSC) in 

The Unscrambler® X software version 9 (CAMO software).  

Statistical analysis: Principal component analysis of FT-IR spectra 

Principal Component Analysis (PCA), a multivariate analysis, was used to analyze 

the FT-IR spectral data. PCA allows for visualization of composite data by 

identifying the main sources of variation, and removing noise variability from the 

data. The spectral data are compressed and transformed into a data set that shows 

its most relevant factors, known as principal components or PC. The first principal 

component has the largest possible variance and accounts for most of the 

variability in the spectral data. Scatter plots of principal component scores show 

the pattern of the data and is called a scores plot. The relationship between 

wavenumber of the FT-IR spectrum and the PCs is shown on another plot called 

a loadings plot. The pattern on the loadings plot then shows how much each 

variable contributed to each PC.153 

X-Ray diffraction (XRD) of activated biomass 

Following the rapid screening through FT-IR, the raw and activated/regenerated 

HP samples were analyzed using powder X-ray diffraction for accurately 

determining the crystallinity of cellulose. The samples were individually mounted 

on a low-background quartz holder and measured using a PANalytical Empyrean 

X-Ray diffractometer (PANalytical Inc., Westborough, MA), with a Cu-kα tube 

operated at 45 kV and 40 mA; λ= 1.5418 Å. The scatter angle, 2θ was measured 

at a range of 9-41°, with a step size of 0.01°, using a 1/8° fixed divergence, a 1/4° 

anti-scatter slit, as well as a 0.04 rad soller slit. The index of crystallinity (CrI) was 

determined using Segal’s peak height method, shown in Eq.17 below:  

CrI = I002- IAM / I002        (17) 

 

where I002 is the total intensity of the peak at 2θ = 22.5° and IAM is the intensity of 

the background scatter at 2θ = 18.7°.154 
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The CrI for cellulose was normalized against untreated, commercial Avicel, which 

has a CrI of 100%. The XRD data were plotted and analyzed using Origin 2017 

SR 1 software (OriginLab Corporation). 

Anatomical characterization 

Untreated and IL-activated/regenerated biomass samples were characterized 

using Scanning Electron Microscopy (SEM). A PhenomPro X desktop Scanning 

Electron Microscope was used to take micrograph images of the samples at 50kV 

using 400x and 1500x magnification. 

Enzymatic saccharification 

Following activation and regeneration, the HP samples were hydrolyzed with 

commercial enzymes based on the NREL Laboratory Analytical Procedure 

(Enzymatic saccharification of lignocellulosic biomass NREL/TP-510-42629). A 

biomass loading (BL) of 5 w/w% was used for saccharification with CTec 3 

cellulases and HTec 3 hemicellulases (Novozymes). The saccharification was 

performed at 50 °C in a 50 mM citrate buffer (pH 5.0), using capped Erlenmeyer 

flasks. The shaker was set to 100 RPM. Aliquots of the saccharified samples were 

taken at predetermined times of 0, 1, 3, 6, 12, 24, 48 and 72 hr, boiled for 5-10 

minutes to denature the enzymes, and centrifuged at 10,000 rpm for 5 minutes. 

The aliquots were then filtered through 0.45 μm nylon membrane filters from Milli-

pore (Billerica, MA) and analyzed through High Performance Liquid 

Chromatography (HPLC). A Bio-Rad Aminex HPX-87P carbohydrate analysis 

column (Richmond, CA) and a de-ashing guard column (Biorad, Hercules, CA) 

were used at 85 °C, with a mobile phase (H2O) flow rate of 0.25 mL/min. To 

measure acetyl content, a Bio-Rad Aminex HPX-87H column was used with a 

mobile phase (H2SO4) flow rate of 0.6 mL/min. 
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Results and discussion 

An activation step is equivalent to the first few hours of a dissolution 

process, in which biomass is continuously mixed with an IL under controlled mixing 

and temperature conditions. However, unlike dissolution, biomass is only partially 

dissolved in the IL during activation, and changes that take place during this phase 

can be studied by regenerating or precipitating the biomass after a short period 

through rapid addition of an anti-solvent. To assess these changes, several 

physical characteristics are studied including chemical composition, cellulose 

crystallinity, anatomical features, and ability to enzymatically release sugars. The 

mass of regenerated biomass after IL activation is often a first indicator if any loss 

of lignocellulosic components took place during activation. The data in Table 8 

show the mass recovery for all the regenerated HP samples that were activated 

with [EMIM]Acetate and [AMIM]Formate at 10 wt.% biomass loading for different 

periods.  

 

Table 8. Mass recovery of hybrid poplar (%) by ionic liquid type. 

 Hybrid poplar mass recovery (%) 

Activation time (h) [EMIM]Acetate [AMIM]Formate 

3 96.1 ± 0.2 98.2 ± 0.0 

24 96.1 ± 0.2 96.8 ± 0.4 

48 96.1 ± 0.5 93.2 ± 1.0 

72 94.1 ± 1.0 92.1 ± 0.8 

 

 

The mass of recovered IL-activated HP decreased with increasing 

activation time, with a maximum loss of 6-8% during the 72-hour activation for both 

ILs. The loss is not attributed to the removal of water, extractives, or inorganics 
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from biomass, as these were accounted for during the experiment and previously 

extracted before activation, respectively. For [EMIM]Activated-biomass, this mass 

loss has been attributed to the deacetylation of hemicellulose and lignin during the 

activation step.92 Additionally, the biomass undergoes crystallinity changes when 

the IL solvent penetrates into the hydrogen bonded sheets of cellulose I, resulting 

in an expansion of the lattice structure.155 Hence, it is essential to know if a similar 

deacetylation or change in cellulose takes place during [AMIM]Formate activation. 

An initial screening of the chemical signature of the IL-activated HP was 

performed by FT-IR spectroscopy coupled with a multivariate analysis, i.e principal 

component analysis (PCA). PCA’s scores and loadings plots highlight the 

significant differences caused by the different activation times for [EMIM]Acetate 

(Figure 12a and b, corresponding to scores and loadings plot respectively) and 

[AMIM]Formate (Figure 13a and b) when compared to the control (untreated HP) 

in the FT-IR fingerprint region. For [EMIM]Acetate The scores plot shows that 

samples activated for 3, 24, and 48-hour clustered along PC1 with the 72-hour 

activated samples being farthest away from the untreated biomass. The loadings 

plot identify the significant spectral changes occurred at 1737 and 1233 cm-1; both 

bands assigned to acetyl group vibrations, C=O and C-O stretch, respectively.156 

Since the acetyl group bands are positive (Fig 12b), and the 72-hour 

[EMIM]Acetate-activated samples are located in the negative quadrant of PC 1 

(Fig. 12a), this confirms that there are fewer acetyl groups in these samples 

compared to the control and lower activation times.92a  

Similarly, the scores plot for [AMIM]Formate-activated HP at different times 

is shown in Figure 13a with the 72-hour activated samples being furthest from the 

control. However, unlike with [EMIM]Acetate, the loadings plot for [AMIM]Formate-

activated samples (Figure 13b) does not show a significant difference in the acetyl 

region when projected onto PC 1. Nevertheless, there is an intense negative band 

at 1033 cm-1, indicating that biomass activated with [AMIM]Formate for 72 hours 

contains a higher amount of the C-O functional group stretching compared to the 
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other samples. This observation is speculated to explain the recovery data in Table 

8 being attributed to C-O stretching in cellulose, and hemicellulose, and 

subsequent loss.157 Overall, the sample clustering with both ILs shows that longer 

activation time has a greater impact on the chemical feature of the hybrid poplar. 

However, unlike [EMIM]Acetate, very little changes are observed when hybrid 

poplar is activated with [AMIM]Formate. 
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Figure 12. Principal component analysis (PCA) on [EMIM]Acetate-activated samples for 

3, 24, 48, and 72-hour activation times. The scores plot is shown on the left (a), and the 

loadings plot for PC 1 on the right (b). 

1737         1231 

a) 

b) 
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Figure 13. Principal component analysis (PCA) on [AMIM]Formate-activated samples 

for 3, 24, 48, and 72-hour activation times. The scores plot is shown on the left (a), and 

the loadings plot for PC 1 on the right (b). 

1033  

a) 

b) 
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To narrow down on activation times and focus on the extremes, only the 3 

and 72-hour activation times were studied further for each IL. Additionally, these 

activation times were selected for comparison with previous work.24, 90, 158 A 72-

hour activation time is known to produce the same amount of glucose conversion 

as a 3-hour activation coupled with autohydrolysis.95 A PCA of the FTIR spectra 

collected on the 3 and 72-hour activated samples for both ILs was performed to 

investigate the chemical features of these samples by IL type and activation time 

(Figure 14a and b). According to the loadings plot (Fig 14b), the most significant 

spectral changes occurred at 1735, 1371, 1220, 1039, and 1011 cm-1. The two 

intense bands at 1735 and 1233 cm-1  (identified on the plot) are assigned to acetyl 

group vibrations, whereas the remaining bands are assigned to the stretching and 

bending of the carbohydrates backbone, i.e., C-H stretching and deformation.156 

Similar to the observation for Figure 12, these acetyl group bands are positive, and 

both 72-hour IL-activated samples are located on the negative quadrant of PC 1, 

suggesting that there are fewer acetyl groups in these samples compared to the 

control. Overall, the variations in the FT-IR spectra confirm that [EMIM]Acetate 

changes the chemical features of biomass significantly, while [AMIM]Formate does 

not as much. 

To confirm the FTIR findings and ensure that there was no significant loss 

in any biomass component, the chemical composition of activated/regenerated HP 

was determined. Table 9 shows that all the regenerated HP samples for 

[EMIM]Acetate and [AMIM]Formate maintain a similar chemical composition for 

cellulose, hemicellulose, and lignin as the control (untreated HP). 

 



65 

 

Figure 14. (a) Principal component analysis (PCA) scores plot of IL-activated hybrid 

poplar compared to untreated HP (control). (b) PCA loadings plot for PC 1. 

1735

1233

a) 

b) 
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Table 9. Chemical composition of regenerated HP after IL activation at 10 wt.% loading. 

 Control [EMIM]Acetate [AMIM]Formate 

  3 hr 72 hr 3 hr 72 hr 

Cellulose (%) 
44.3 

± 0.2 

43.4 

± 0.1 

43.5 

± 0.3 

42.8 

± 0.2 

42.6 

± 0.1 

Hemicellulose 
(%) 

20.6 

± 0.1 

20.2 

± 0.0 

19.9 

± 0.0 

18.8 

± 0.0 

18.5 

± 0.1 

Lignin (%) 
27.8 

± 0.5 

28.8 

± 0.2 

27.8 

± 0.3 

27.9 

± 0.1 

27.2 

± 0.2 

Acetyl 
content (%) 

5.9 

± 0.1 

5.3 

± 0.1 

3.3 

± 0.0 

4.93 

± 0.1 

4.7 

± 0.1 

Standard deviations are based on triplicate measurements 

 

 

As for the acetyl group, the composition analysis shows that after a 3-hour 

activation acetyl content decreases to 5.3% and 4.9% in EMIM]Acetate and 

[AMIM]Formate, respectively. After 72-hour activation with [EMIM]Acetate acetyl 

content drops to 3.3%; a reduction of 44% compared to the control. The acetyl 

content for [AMIM]Formate with the same activation time did not decrease as much 

(from 5.9 to 4.7%). Contrary to [EMIM]Acetate, these results indicate that only a 

small fraction of the acetyl group in hybrid poplar is cleaved during activation with 

[AMIM]Formate 

In addition to chemical changes, the crystallinity of the 

activated/regenerated biomass was investigated by X-Ray diffraction (Figure 15). 



67 

 

  

Figure 15. X-Ray diffraction (XRD) patterns for IL-activated sample at 10 wt.% biomass 

loading. Index of crystallinity for cellulose was calculated using Eq.17. 
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Table 10. Comparison of index of crystallinity (CrI) measured through XRD for [EMIM]Acetate 

and [AMIM]Formate-activated samples. 

 Control [EMIM]Acetate [AMIM]Formate 

  3 hr 72 hr 3 hr 72 hr 

XRD (%) 61.4 50.6 43.5 54.2 49.6 

 

 

Activation of HP with IL slightly modifies the crystalline structure of the 

biomass, in which a slight broadening of the main peak at 2θ = 22.5° compared to 

the control is observed. Although no peak shifts are observed, usually an indicator 

that cellulose I transitions into cellulose II, there seems to be a slight decrease in 

peak intensity at 35° for the 72-hour activated samples, due to a possible disruption 

of the microfibril alignment of the cellulose chains.159 The CrI calculated from the 

XRD patterns is provided in Table 10. Similar to acetyl content in Table 9, a small 

decrease in the CrI for the 3-hour activated samples is observed, 10.8% and 7.2% 

decrease for [EMIM]Acetate and [AMIM]Formate respectively, compared to the 

control. However, for the 72-hour activated samples, [EMIM]Acetate reduces 

cellulose crystallinity of hybrid poplar from 61.4 to 43.5%. On the other hand, the 

cellulose crystallinity for [AMIM]Formate only decreased to 49.6 % and not as 

much as [EMIM]Acetate. Overall, when comparing the two ILs and activation times, 

the data confirm a higher structural disruption of the primary components of HP 

with [EMIM]Acetate at 72 hours.  

 To visualize the physical changes that took place during the 72-hour IL 

activation, scanning electron microscopy (SEM) images were taken and analyzed 

(Figure 16). In the control (untreated HP), the structure of hardwood is clearly seen 

with visible vessels, pits, and broad ray cells along the tangential plan.160 The 

morphology and structural ordering of [EMIM]Acetate and [AMIM]Formate 

activated biomass appear to have many differences compared to each other and 
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to the control. One similarity for both ILs is the lack of lignin droplet accumulation 

on the cellulose fibers indicating that the linkages between lignin and cellulose 

were not completely disrupted. This observation is important because previous 

studies using dilute acid pretreatment have reported the coalescence of lignin 

droplets on the surface of wood, presenting a barrier for enzymatic hydrolysis.161  

The [EMIM]Acetate-activated biomass (Figure 16b) appears to have many 

ring-like porous structures around the microfibrils of cellulose. Although the broad 

rays are still seen, the activation seemed to change the structure of the wood 

making it more porous, increasing vessel size, and making it accessible for further 

degradation using enzymes. On the other hand, the SEM image for 

[AMIM]Formate-activated biomass (Figure 16c) shows re-folding of the fibers with 

little to none porosity. It appears as if the activation only disrupted the broad ray 

cells of the sample, without affecting its porosity. These images are consistent with 

the FT-IR spectroscopy and X-Ray diffraction data demonstrating that among the 

two tested ILs, [AMIM]Formate has the least impact on the chemical and physical 

properties of biomass.  

To explain the chemical (deacetylation) and physical (cellulose crystallinity) 

changes (or lack thereof) that takes place during IL activation, the mechanism for 

deacetylation in both ILs as well as enzymatic saccharification are investigated 

(Figure 17 and 18).92a The mechanism shown in Figure 17 begins with the anion 

of the IL deprotonating the 3-methylimidazolium cation, forming an N-heterocyclic 

carbene (NHC).131 This leads to an attack of the carbonyl (2) of the acetyl groups 

present in the biomass. Then, the imidazolium cation is deprotonated through a 

nucleophilic substitution. Comparing the mechanism of [EMIM]Acetate and 

[AMIM]Formate requires looking at their respective pKa values of their acids, which 

is 4.76 for the former and 3.75 for the latter. Since the pKa of formic acid (formate 

being the conjugate base) is relatively higher than that of acetic acid, we can 

conclude that the anion on [AMIM]Formate has a  relatively lower ability to 

deprotonate the cation compared to [EMIM]Acetate, making step 1 a rate-limiting 
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step. 162 This phenomenon can explain why deacetylation is much more 

pronounced in [EMIM]Acetate-activated biomass. 

The chemical changes of the biomass have a strong linear relationship with 

the rate of enzymatic conversion, therefore the observation is validated through 

enzymatic saccharification using commercial enzymes. The conversion rates of 

cellulose and hemicellulose for the 72-hours [EMIM]Acetate and [AMIM]Formate-

activated samples were monitored and presented in Figure 18a and b. The 

observed conversion trends for the sample showed similarities to the CrI trend in 

Table 10. The highest cellulose conversion of 44% was obtained for the 

[EMIM]Acetate-activated sample after a 72-hour activation, while only 20% of the 

cellulose in the [AMIM]Formate-activated sample are converted. Similarly, the 

highest hemicellulose conversion is obtained for [EMIM]Acetate-activation of the 

hybrid poplar.  

The observations from FT-IR spectroscopy, X-ray diffraction, SEM, and 

enzymatic saccharification confirm that [EMIM]Acetate and [AMIM]Formate do not 

activate hybrid poplar in a similar manner. While [EMIM]Acetate is able to open the 

structure of the biomass, deacetylate hemicellulose and lignin, and significantly 

decrease cellulose crystallinity, deacetylation does not occur during activation with 

[AMIM]Formate despite a larger amount of biomass being able to dissolve in this 

IL. Instead, the [AMIM]Formate-activated HP shows folding of fibers on its surface, 

and potential hornification of the biomass. Hornification, a term used in the pulp 

and paper industry, refers to an increase in the degree of cross-linking between 

microfibrils due to additional hydrogen bonds formed (during activation) and not 

broken during the regeneration step in which water is added.163  
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Figure 16. (a) SEM micrographs of control (untreated HP), (b) [EMIM]Acetate-activated 

HP, and (c) [AMIM]Formate-activated HP. Images were taken at 400x magnification. 

b) c) 

a) 
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Figure 17. Mechanism for deacetylation of biomass using ionic liquids. R represents the H or CH3 attached to the formate or 

acetate anion. R1 and R2 represent the carbon chain on the biomass structure. 
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Figure 18. Kinetics of enzymatic saccharification on cellulose (a) and hemicellulose (b) 
of 72-hour activated biomass at a 10 wt.% biomass loading. The conversion was 

calculated based on the chemical composition of raw hybrid poplar. 

a) 

b) 
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Nevertheless, the behavior of [AMIM]Formate during activation is a highly 

valued characteristic of ILs for the production of films and fibers from whole 

biomass-IL system.164 Since [AMIM]Formate is known to have better dissolution 

properties compared to [EMIM]Acetate, such as low viscosity,  there is potential 

for [AMIM]Formate to become a solvent for textile and membrane sensor 

production. Also, [AMIM]Formate preserves the crystalline nature of the biomass 

which could translate in the production of fibers with higher mechanical properties. 

While [EMIM]Acetate has been used for fiber spinning in recent studies, our work 

shows that [EMIM]Acetate performs better at activating and thereby producing 

sugars and lignin though a fractionation approach while [AMIM]Formate performs 

better at dissolving whole biomass for the direct processing of products such as 

fibers and films. 

 

Conclusion 

 Our overall observations show that hybrid poplar activated using 

[EMIM]Acetate for 72 hours underwent deacetylation, has reduced cellulose 

crystallinity (43.5%), and resulted in 44% cellulose conversion during enzymatic 

saccharification. The uncommon IL [AMIM]Formate did not produce similar results, 

indicating that the acetyl groups in biomass and crystallinity of cellulose were 

retained even after 72-hour mixing under 60 °C. These findings open doors to new 

research for using [AMIM]Formate to dissolve biomass and extrude fibers with high 

crystallinity and mechanical strength.  
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CONCLUSIONS AND FUTURE WORK 

  



77 

Overall conclusions 

Due to the complex architecture of plant cell wall, lignocellulosic biomass 

requires some form of chemical, biological, or thermal treatment to disrupt its 

structure and allow for further conversion. As presented in the introduction, there 

exists many biomass pretreatment methods that use high severity to cause 

physical or chemical deconstruction and degradation of cell wall constituents. 

However, biomass valorization has encouraged biomass researchers to use mild 

process conditions to utilize all the fractions of lignocellulosic biomass. 

This study explored the advantages of ionic liquids to (1) completely 

dissolve lignocellulosic biomass, (2) allow for an “activation” step that loosens the 

components of biomass, i.e., cellulose, hemicellulose, and lignin, and (3) 

fractionate them into high yield and high purity compounds. Ionic liquids are proven 

to be good solvents for biomass fractionation, in which they isolate lignocellulosic 

fractions with low severity. Since the possibility of ion combinations are endless, 

four ionic liquids were selected in this study by identifying cations and anions that 

are known to be efficient for biomass processing. Through a series of experiments 

in this project, an IL with high dissolution capacity was identified and used to 

activate biomass, as a comparison to [EMIM]Acetate. The activated biomass was 

then subjected to enzymatic saccharification to obtain a liquid fraction of sugars 

and a solid fraction of lignin. The overall scheme is shown in Figure 19.  

In Chapter I, four ionic liquids with varying cations and anions were 

investigated, to identify the role of individual ions as well as its combination. The 

series of tests used to screen for an IL with “ideal” dissolution properties were 

thermal stability, viscosity, Kamlet-Taft parameter measurements, and molecular 

dynamics simulations.  Among four tested ILs ([EMIM]Acetate, [EMIM]Formate, 

[AMIM]Formate, and [AMIM]Acetate), [AMIM]Formate was identified as a much 

better solvent to dissolve biomass when compared to [EMIM]Acetate, with a 40% 

increase in solubility. Due to several of its physicochemical properties, 
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[AMIM]Formate has strong interactions with hemicellulose, and therefore, high 

biomass solubility.  

Chapter II then goes on to analyze the potential for [AMIM]Formate to 

“activate” biomass as well as the commonly used [EMIM]Acetate. The two ILs were 

subjected to IL “activation” for a series of times, and subsequent enzymatic 

saccharification to measure the conversion of cellulose and hemicellulose into 

soluble sugars. Measurements of cellulose crystallinity, conversion rates, and 

SEM images show that [EMIM]Acetate is a better IL for reducing the recalcitrance 

of biomass compared to [AMIM]Formate. The IL [AMIM]Formate retains most of 

the acetyl group after activation and shows little reduction in cellulose crystallinity. 

Therefore, since [AMIM]Formate dissolves more biomass due to reasons found in 

Chapter I and goes on to retain the chemical signature of biomass during activation 

(Chapter II), this IL can be widely used for fiber production in textile industries.  

The table below (Table 11) compares some of the physical and chemical 

properties of the IL with best solubility ([AMIM]Formate) and the reference IL 

([EMIM]Acetate). Through our findings in Chapter I and II, it can be concluded that 

ionic liquids have varying properties despite similar ionic combinations. Based on 

Table 11, we see that some of the IL properties are very similar, while there a few 

very different properties, especially viscosity. Therefore, ILs have to be screened 

for specific uses in biomass processing, i.e., pretreatment, dissolution, activation, 

and fractionation.  
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Figure 19. Overall process scheme for lignocellulosic biomass processing. 
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Table 11. Comparison of physical and chemical properties for [EMIM]Acetate and 

[AMIM]Formate. 

 [EMIM]Acetate [AMIM]Formate 

Density (g/cm3) 1.03 1.11 

Viscosity at 80 °C (mPa-s) 25.1 9.7 

Decomposition temperature 

(°C) 
241.1 205.6 

Hydrogen bond basicity 1.07 1.01 

Hydrogen bond acidity 0.50 0.46 

Polarizability 1.03 1.09 

Biomass solubility at 80 °C 

(wt.%) 
5.27 7.39 

Virial coefficients with 

hemicellulose 
0.50 0.40 

Virial coefficients with lignin 2.02 1.99 
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Future work 

The research topics in this thesis present opportunities for future work using 

ionic liquids as a solvent to fractionate biomass. Some of which include: 

In situ saccharification of activated biomass 

Due to the high viscosity of ionic liquids, it is difficult to remove them after 

IL-activation and biomass regeneration. Additionally, complete removal of ILs 

using water-rinse is a tedious process and requires large volume of water, as the 

ratio of ILs to water is 1: 200. Therefore, developing an in situ saccharification 

process following IL-activation will allow for a cost-effective process.  

Kamiya et al.165 reported the feasibility of an in situ system, in which 

enzymatic saccharification of Avicel occurred in the presence of an ionic liquid.166 

However, cellulases are known to show inactivity even in low concentrations of 

some ionic liquids. Turner et al. studied enzymatic saccharification of cellulose 

using Trichoderma reesei cellulases in solutions of 1-butyl-3-methylimidazolium-

based ILs, [BMIM]Chloride and [BMIM]Tetrafluoroborate, and found that the 

cellulases were deactivated in the presence of an IL concentration as low as 

22mM.167 In 2011, Wang et al. found that commercial cellulases are able to retain 

at least 60% of their activity even in a 30% IL ([EMIM]Acetate) environment.168 

However, hemicellulases were not studied. Therefore, it is essential to find a 

compatible IL-enzymes system to effectively activate biomass and simultaneously 

carry out enzymatic hydrolysis to ensure high conversions of both cellulose and 

hemicellulose. 

Recently, Hu et al. studied enzymatic saccharification in a system 

containing ILs 1-ethyl-3-methylimidazolium dimethylphosphate, 1-ethyl-3-

methylimidazolium diethyl phosphate, and 1-ethyl-3-methylimidazolium acetate.169 

However, low concentrations of ILs were used and only cellulose conversion into 

glucose was taken into account. Our preliminary study for activation and in situ 

saccharification with [EMIM]Acetate using both cellulases and hemicellulases 
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(CTec 3 and HTec 3, Novozymes) have shown promising results for further study. 

Figure 20 shows the cellulose (a) and hemicellulose (b) conversions for an IL-

enzyme system pre-incubated at 4 °C for 24 hours, and saccharification was 

carried out using a pH 4.5 sodium citrate buffer at 52 °C. 

Both the cellulases and hemicellulases retained 60 and 35% of their activity 

respectively, even in the presence of 20% IL. These findings show that an in situ 

saccharification is feasible, given that the IL is effective enough to activate the 

biomass prior to enzymatic hydrolysis.  

Designing an apparatus setup to enable higher biomass loading 

To achieve high biomass solubility and effective activation, adequate mixing 

is required with an optimum experimental design to ensure maximum contact 

between the ILs and biomass. With a better apparatus setup, the surface contact 

area of biomass with ionic liquids will increase and allow for an effective dissolution 

and activation (as investigated in Chapter I and II, respectively). 

Currently, round bottom flasks and vials are used in the laboratory for small 

scale activation and dissolution. The mixture is agitated using either an overhead 

stirrer or magnetic stir bars set at 100-200 RPM. However, several limitations arise 

from these methods as they lack in uniformity of stirring and are inconsistent in 

heat transfer. Therefore, some preliminary work has been done on designing a 

better apparatus setup for more effective mixing of biomass in ILs. Some of the 

components that have been implemented in the preliminary design are: a custom-

built glass vessel that fits an overhead stainless-steel propeller, a side inlet for ionic 

liquid and thermocouples, a coarse frit filter and valves to remove ionic liquid after 

the process.  

This new setup has proven thus far that it is better than the traditional round 

bottom flask setup, but still needs further improvements and testing. 
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Figure 20. Activity of CTec 3 cellulases (a) and HTec 3 hemicellulases (b) in the 

presence of 0, 5, 10, and 20% IL. 

a) 

b) 
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Understanding the role of acetate anion as during activation 

Based on Objective 2, the biomass deacetylation mechanism using ILs 

show that the presence of an acetate anion promotes deacetylation compared to 

a formate anion. Therefore, there exists a possibility for the acetate anion to act as 

a catalyst in a given IL.  

Current experiments are underway to investigate several ratio combinations 

of [EMIM]Formate and [EMIM]Acetate as well as [AMIM]Formate and 

[AMIM]Acetate to understand the effects of combining the anions: acetate and 

formate, with a constant cation.  

Analyzing the structure and interactions of ILs using small-angle neutron 
scattering (SANS) 

As more and more ILs are being discovered for their specific uses, much of 

their properties are still not fully investigated. In the topic of biomass pretreatment 

and fractionation, many ILs with different ionic combinations have claimed their 

fame to deacetylating biomass and reducing cellulose crystallinity. However, much 

like the topic presented in Chapter I, it is essential to understand the interactions 

and reactions that take place between the biomass an IL at a smaller scale, i.e. 

nanoscopic. Research is already underway to use Small Angle Neutron Scattering 

(SANS) to test the hypothesis that [EMIM]Acetate increases porosity radius of 

activated biomass compared to [AMIM]Formate and the other ILs in this study.170 

Understanding the potential for [AMIM]Formate to spin fibers 

Over the past years, biobased fibers and films have been produced through 

direct processing of biomass-IL solutions using several imidazolium-based ILs 

such as [BMIM]Chloride and [EMIM]Acetate.98b Recent work by Wang et al. shows 

that biomass dissolution in [EMIM]Acetate retains the polymeric features of 

lignocellulosic components, therefore allowing for defect-free and wrinkle-free 

films.164 However, based on our conclusions in Chapter I and II, it is highly likely 
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that the IL 1-allyl-3-methylimidazolium ([AMIM])Formate is better suited for 

extrusion of films and fibers than [EMIM]Acetate. Since [AMIM]Formate has high 

solubility for biomass and is less effective during activation, it can not only dissolve 

more biomass but also retain the biomass constituents without activating or 

loosening the structure. Therefore, further understanding is required of 

[AMIM]Formate’s properties after completely dissolving biomass to study its 

potential for direct transformation. The IL-biomass mixture requires further 

chemical characterization. 

Analyzing [EMIM]Formate and [AMIM]Acetate for biomass activation 

In objective 1, four ILs were investigated for their respective biomass 

solubilities. The study showed that [AMIM]Formate dissolved the highest amount 

of biomass (7.39 wt.%) while [EMIM]Acetate dissolved the lowest (5.27 wt.%). 

Therefore, in Objective 2, only these two ILs were further investigated. The 

remaining two ILs ([EMIM]Formate and [AMIM]Acetate) have yet to be 

investigated. 

Literature shows that [EMIM]Formate, when coupled with a glycerol co-

solvent, performs better than [EMIM]Acetate during pretreatment of rice hulls. The 

hemicellulose conversion of [EMIM]Formate-treated biomass was slightly higher 

(~75% hemicellulose converted into xylose) than that of [EMIM]Acetate-treated 

biomass.171 However, the IL [AMIM]Acetate has not been investigated for biomass 

processing by anyone, according to our knowledge. Therefore, more work needs 

be done to identify the potential for [EMIM]Formate and [AMIM[Acetate to either 

pretreat or activate biomass for the production of soluble sugars and/or pure lignin. 
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