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Abstract 

Human speech is necessarily multimodal and audiovisual redundancies in speech may 

play a vital role in speech perception across the lifespan. The majority of previous studies have 

focused particularly on how language is learned from auditory input, but the way in which 

audiovisual speech information is perceived and comprehended remains less well understood. 

Here, I examine how audiovisual and visual-only speech information is represented for known 

words, and if intersensory processing efficiency ability predicts the strength of the lexical 

representation. To explore the relationship between intersensory processing ability (indexed by 

matching temporally synchronous auditory and visual stimulation) and the strength of lexical 

representations, adult subjects participated in an audiovisual word recognition task and the 

Intersensory Processing Efficiency Protocol (IPEP). Participants were able to reliably identify a 

correct referent object across manipulations of modality (audiovisual vs visual-only) and 

pronunciation (correctly vs mispronounced). Correlational analyses did not reveal any 

relationship between processing efficiency and visual speech information in lexical 

representations. However, the results presented here suggest that adults’ lexical representations 

robustly include visual speech information and that visual speech information is sublexically 

processed during speech perception.  
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Chapter 1 

Introduction 

 A fundamental concept central to theories of language processing is that language 

knowledge is represented in the lexicon. Traditionally, language processing theories posit that 

phonemes, the smallest sound units of speech perception, are used to access lexical 

representations (Studdert-Kennedy, 1976). These lexical representations have been theorized to 

encompass phonological, morpho-syntactic, and semantic information that can be flexibly used 

to process and comprehend speech (Marslen-Wilson, 1992; Marslen-Wilson, Brown, & Tyler, 

1988). This work is important because speech must be perceived and comprehended in real time, 

where the smallest differences in acoustics can change the meaning of a word, phrase, or 

sentence. Because phonological representations trigger access to lexical representations, previous 

research with adult participants has assessed the specificity of how phonological information is 

stored (for a review, see Kazanina, Bowers, & Idsardi, 2017).  

While studying lexical representations through auditory speech processing has proven to 

be fruitful, we know much less about how visual speech information is represented. Speech is 

inherently multimodal (Rosenblum, 2008; Campbell, 2008), since the visible facial movements 

used to articulate speech are redundant to the speech sounds a speaker produces. A growing body 

of research suggests that infants and adults are sensitive to the redundancies of audiovisual 

speech (e.g. Lewkowicz, 2010; McGurk & MacDonald, 1976). In fact, audiovisually redundant 

information can augment adult speech comprehension in noisy environments (Sumby & Pollack, 

1954) as well as facilitate infant cognitive development (Bahrick & Lickliter, 2000; 2002; 2004). 

However, little is known about how infants and adults represent visual speech information. Thus, 
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in this study, I explore the intersection between individual differences in the ability to process 

audiovisual speech information and the strength of visual speech representations in the lexicon. 

Lexical Representations  

Classically, lexical representations have been studied in the auditory domain with adult 

populations using a neighborhood density paradigm. Stemming from early theoretical work 

(Studdert-Kennedy, 1976) and computational models (Gaskell & Marslen-Wilson, 1997; 

Massaro, 1989; McClelland & Elman, 1986; Norris, 1994), Vitevitch & Luce (1999) studied the 

process of accessing lexical representations from phonological information. Vitevitch & Luce 

(1999) proposed that two factors are in play when accessing lexical representations—

probabilistic phonotactics and neighborhood density. Probabilistic phonotactics are described as 

the relative frequency of segments in typically occurring words. For example /-en/ is highly 

probabilistic (i.e. occurs often in English words; e.g. “pen”) while /-rm/ occurs less often (e.g. 

“worm”). Neighborhood density is described as the number of words that are phonologically 

similar to a given word. For example, the word cat is estimated to have 45 phonological 

neighbors in English (Vaden, Hickok, & Halpin, 2009). That is, 45 legitimate English words can 

be created by adding (scat), subtracting (at), or changing (pat, cot, cap) one of the three 

phonemes in the word cat. Vitevich & Luce (1999) found that larger neighborhood densities 

slowed lexical retrieved, and similarly, words with high probabilistic phonotactics also slowed 

lexical retrieval. These results suggest that similar-sounding phonotactic sequences create 

competition at the lexical level, evidenced by the slowed reaction times due to greater 

neighborhood densities and higher probabilistic phonotactics.  

In addition to the evidence in Vitevich & Luce (1999), it has further been suggested that 

adults parse phonemes, morphemes, and lexical items simultaneously in speech perception. 
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Vitevitch (2003) replicated the findings of Vitevich & Luce (1999), and again found that words 

with high phonotactic probabilities and large neighborhood densities elicited slower reaction 

times than words with low phonotactic probabilities and sparsely populated neighborhood 

densities. Vitevich (2003) then extended this paradigm to pseudowords and found the same 

effect, that adults used sublexical representations to process pseudowords. Pseudowords with 

high probabilistic sequences in English were processed more efficiently than pseudowords with 

low probabilistic phonotactics. Pitt & Samuel (2006) studied lexical and sublexical retrieval by 

systematically varying word length, and found that longer words had more robust lexical 

activation, evidenced by quicker reaction times in a response task. Pitt & Samuel (2006) offer 

that while the longer words had more phonemes, sublexical processing limited the number of 

potential neighbors and led to better recognition. However, the short words had a much greater 

neighborhood density, which in turn slowed reaction times. The neighborhood density and 

probabilistic phonotactics literature provides evidence that speech comprehension entails a 

number of online, moment-to-moment strategies to process linguistic information in the auditory 

domain.   

Developmentalists have also been interested in questions about lexical representations, 

particularly how they are formed through learning processes. As it turns out, studying lexical 

representations in the infant literature has been more difficult than studying adult lexical 

representations (for a review, see Newman, 2008). The earliest work on infants’ lexical 

representations focused on learning minimal pair words—words that differ by only a single 

phoneme (e.g. bin and din). Stager & Werker (1997) demonstrated that 14-month-old infants 

have a difficult time mapping minimal pair words to novel objects. Using the Switch Task 

(Werker et al., 1998), infants were habituated to two novel label-object pairs and tested on their 
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ability to differentiate Same Trials, in which the original label-object pairs are maintained, from 

Switch Trials, in which the Object A is paired with Label B or vice versa. Violations of the label-

object pairings led to dishabituation if the labels were phonologically distinctive 

(e.g., lif and neem), but went unnoticed when the two labels were similar sounding minimal pairs 

(e.g. bih and dih). However, by 17 months of age infants were able to attend to small phonetic 

differences and successfully map minimal pair words to novel objects (Fennell & Werker, 2004). 

These results suggest that lexical representations are weakly represented early in the learning 

process. However, in a word recognition study, 14-month-old infants are able to accurately map 

familiar minimal pair words (i.e. ball and doll) to referent objects, which suggests that infants 

have stronger representations of words they have real-world experience with at 14-months of age 

(Fennell & Werker, 2003).  

In addition to studying lexical representations using minimal pair associative learning 

tasks, a second line of research has aimed to understand the specificity of lexical representations 

in early development using mispronunciation paradigms. For example, Swingley & Aslin (2000) 

tested 18-23-month-old’s lexical representations by comparing looking accuracy and reaction 

time for correctly pronounced vs mispronounced commonly known words (e.g. doggy, baby, 

etc.). Swingley & Aslin (2000) reasoned that if young children have well-specified 

representations of known words, the mispronunciations should alter their ability to match the 

phonological form of the word to a referent picture. Conversely, if the children had less-well 

specified lexical representations of the known words, mispronunciations should not have an 

effect of looking accuracy or reaction time. Swingley & Aslin (2000) demonstrated that infants’ 

reaction times are affected by mispronunciations of known words, which suggests that 

mispronunciations impair, but do not inhibit recognition of familiar words for young children. In 
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follow up studies Swingley and colleagues (Swingley, 2003; Swingley & Aslin, 2002; 2007) 

found that mispronunciation effects are not influenced by phonologically similar words, 

strengthening the hypothesis that auditory lexical representations are specifically defined and 

robust.  

Taken together, the adult literature and developmental work on lexical representations 

provides a clear picture that auditory lexical representations become robust and specific early in 

language development, and subsequently persist through adulthood. While the literature has 

focused on the content and online processing of auditory information in lexical representations, 

there is also a growing body of literature to suggest that visual speech information may be 

included in lexical representations (Woollams, 2015). Support for this idea comes from the 

theoretical stance that human’s sensory environments are richly intersensory (Barrett, 2011; 

Campbell, 2008; Gibson, 1966, 2014; James, 1890; Rosenblum, 2008; Sumby & Pollack, 1954). 

Further, speech is inherently multimodal (Campbell, 2008; Rosenblum, 2008) and includes 

language specific auditory and visual speech information. Visual speech information can be 

defined as the information of the visible facial movements used to produce speech, and these 

visible movements are redundant to the auditory stream that is produced. Even though linguistic 

information is redundant across auditory and visual modalities, much less is known about how 

visual speech information is represented in the lexicon.  

Audiovisual Speech 

Sensitivity to the audiovisual nature of speech has been demonstrated incredibly early in 

infancy. As early as two months of age, human infants are able to link aurally presented vowel 

sounds to facial movements by attending to a correctly articulating face as opposed to an 

incorrectly articulating face (Patterson & Werker, 2003). Four-month-olds can detect audiovisual 
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asynchrony in speech perception tasks (Lewkowicz, 2010) and 5-month-old infants preferentially 

attend to congruent, rather than incongruent audiovisual speech (Kuhl & Meltzoff, 1984). At six-

months, visual articulatory information enhances phoneme discrimination, suggesting that 

audiovisual redundancies may augment the learning of phonetic boundaries in infancy 

(Teinonen, Aslin, Alku, & Csibra, 2008). Further, Hollich, Newman, & Jusczyk (2005) 

demonstrated that 7.5-month-old infants are able to selectively attend to a speech stream when a 

distractor stream is present, if congruent visual information is available. In addition to being 

sensitive to the audiovisual redundancies in speech, infants are able to use visual information 

alone to discriminate their native language from an unknown language (Weikum et al., 2007). 

Four-, 6-, and 8-month-old infants were habituated to visual utterances in a single language (e.g. 

English) and were then tested on their ability to distinguish an utterance in the same language as 

habituation (e.g. English) from a second utterance in a different language (e.g. French). Both 4- 

and 6-month-olds looked for a longer duration to the switch trial (foreign language) than the 

same trial (native language), suggesting the infants were able to discriminate between their 

native language and a foreign language based on visual information alone.  

 The infant literature shows that humans are sensitive to the audiovisual nature of speech 

early in the lifespan. This sensitivity to audiovisual speech continues to strengthen across the 

lifespan. One striking example of audiovisual sensitivity in speech perception is the McGurk 

Effect. In McGurk & MacDonald’s (1976) seminal work, they inadvertently violated the 

typically redundant nature of audiovisual speech information while dubbing audio and video 

recordings, which then created illusory percepts of audiovisual speech. The canonical example of 

the McGurk effect is composed of the syllables /ba/ and /ga/. These two syllables are articulated 

differently and elicit distinctive facial movements. For example, /ba/ is bilabial, meaning the 



7  
consonant closure happens at the lips. Conversely, /ga/ is velar, meaning the consonant closure 

occurs as the back of the tongue makes contact with the velum (top of the mouth). Thus, the 

visual speech information for /b/ versus /g/ sounds is distinct. In McGurk and MacDonald’s 

seminal study, pre-school children and adult participants reported experiencing the syllable /da/ 

when viewing an audiovisual stimulus composed of an auditory /ba/ and visual /ga/. This 

emergent /da/ percept was not actually present in either the auditory or visual signal (e.g. a fused 

percept). Conversely, when the /ba/ and /ga/ phonemes are switched in dubbing (e.g. visual /ba/ 

is dubbed with an auditory /ga/), the fused /da/ was reported with lesser frequency, but 

combination percepts composed of both the auditory and visual domains were also reported (e.g., 

/gabga/, /bagba/, /baga/, or /gaba/). Since McGurk and MacDonald (1976), there are been many 

attempts to study the generalizability of the McGurk Effect across other stimulus combinations 

(e.g., Desjardins & Werker, 2004; MacDonald & McGurk, 1978; Rosenblum, Schmuckler, & 

Johnson, 1997). The McGurk effect has since been robustly replicated in numerous cross-

linguistic adult studies (e.g., Bovo et al., 2009; Munhall, Gribble, Sacco, & Ward, 1996; 

Sekiyama, 1997; Sekiyama, Soshi, & Sakamoto, 2014) and in the infant literature (e.g., Burnham 

& Dodd, 1996, 2004; Desjardins & Werker, 2004; Rosenblum, Schmuckler, & Johnson, 1997). 

Though the McGurk illusion is synthetically induced, this extensive literature may be telling of 

how humans represent audiovisual speech information (for an opposing view, see Alsius, Paré, & 

Munhall, 2017). 

Lexical Access in Audiovisual and Visual-only Speech 

While the infant literature provides evidence of sensitivity to audiovisual speech early in 

the lifespan, limitations of our methods constrain our understanding of how infants may be able 

to use visual speech information in speech perception for lexical access. However, we can 
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address questions of functional use (i.e. comprehension) in adult participants. Previous research 

suggests that visual speech information facilitates speech comprehension (i.e. lexical access) in 

noisy environments (Hollich, Newman, & Jusczyk, 2005; Sumby & Pollack, 1954) and visual 

speech information in a priming task has also been shown to facilitate accurate lexical retrieval 

(Fort et al., 2013). In addition to the empirical evidence that the McGurk Effect functions on a 

perceptual level, there is further evidence to suggest that audiovisual integration in McGurk-type 

percepts can be used to trigger lexical access. Brancazio (2004) tested lexical influences on 

McGurk Effect perceptions in adults. Participants viewed a speaker on a computer screen 

articulating a word and simultaneously heard a temporally-synced and length-matched auditory 

word stream—simulating the audiovisual percept of a word. Half of the trials were audiovisually 

congruent and the other half of the trials were audiovisually incongruent in the auditory and 

visual domains, designed to create McGurk effect-like stimuli. The participants were asked to 

type into a computer prompt their perception of the word initial sound and rate the goodness of 

their word initial perception (i.e. if their perception seemed like a good consonant in English, or 

a nonsensical combination of sounds). McGurk effect percepts were most frequent when the 

resulting percept was a real word and when the auditory signal was not a real word (e.g. auditory 

“besk” visual “gesk” to produce “desk”). However, when the auditory stimuli used to create a 

McGurk illusion was a real word (e.g. auditory “beg” visual “geg” to produce “deg”), the 

McGurk-fusion percept (“deg”) was reported less often, and the goodness rating for this type of 

trials was significantly lower than goodness rating for trials that produced real words. Barutchu 

et al. (2008) replicate these findings for word-initial audiovisual discrepancies, but also show 

that word-final discrepancies that should create McGurk effect percepts occur less frequently, as 
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top-down lexical knowledge of the lexical representation has been triggered from the preceding 

sounds of the word. 

In fact, visual speech information alone is sufficient to access lexical representations. In 

an experiment to assess the specificity of visual speech information in lexical representations, 

Tye-Murray, Sommers, & Spehar (2007) present evidence that visual lexical neighborhoods 

affect audiovisual speech perception in adults. In a recognition task, participants viewed three 

trial types: audiovisual presentation, auditory only presentation, and visual only presentation. 

The authors defined visual neighborhood density conservatively by only using words that differ 

by the first phoneme. During word recognition, participants showed better word recognition for 

words with lower auditory and visual neighborhood densities as compared to words that had 

higher neighborhood densities. Thus, these results suggest visual speech information can 

influence lexical retrieval and that visual speech information is accessed in a similar manner as 

auditory speech information, evidenced by words with higher visual neighborhood densities 

being more difficult to access.  

Extending the findings of Tye-Murray, Sommers, & Spehar (2007), a recent study by 

Havy, Foround, Fais, & Werker (2017) aimed to explore if 18-month-olds and adults were able 

to learn a new word form by solely visual speech information. Infants and adults were both 

successful in learning new acoustic forms in the auditory modality and able to generalize word 

recognition to visual-only word forms at test (i.e. the visual articulations of the words learned). 

However, only adults were able to successfully learn new word forms from the visual speech 

information alone. These results are quite interesting, especially for the infants as they were able 

to generalize their representation of words they had learned in the auditory modality to the visual 

modality, even though they had not been provided with redundant audiovisual cues. This 
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suggests that both auditory and visual information is stored in infants’ phonological 

representation. Thus, while the infants were unable to learn from the visual information alone, 

the ability to recognize new word forms in a visual only condition in test provides insight to the 

strength of audiovisual coupling in lexical representations. In addition, the adult results suggest 

that people with more experience to audiovisual redundancies (as a function of age) may 

represent visual speech information in a more robust manner, evidenced by the adults learning of 

the new word forms based on the visual speech information alone.  

The current study 

The literature discussed here provides evidence that visual speech information is lexically 

represented, and further, can influence audiovisual speech perception. Evidence from Tye-

Murray Sommers, & Spehar (2007) suggests that the visual speech representations are stable, 

specific, and able to be used for lexical access. Havy et al. (2017) further provide evidence that 

adults are able to learn new word forms solely from visual speech information, albeit in a tightly 

controlled experimental task. The first aim of this study is to further uncover the specificity of 

visual-speech representations of known words and potential individual differences in audiovisual 

processing using a mispronunciation paradigm. This replication-and-extension of Swingley & 

Aslin (2000) will examine how visual speech information is represented in the lexicon and used 

for speech comprehension in audiovisual and visual-only domains.  

After assessing the specificity of audiovisual and visual-only lexical representations, the 

second aim of this study is to address the relationship between multimodal processing and the 

nature of the lexical representations. Visual speech perception is prone to large individual 

differences (Havy et al., 2017; Stevenson, Zemtsov, & Wallace, 2012). It is possible that 

individual differences in intersensory processing (here, the efficiency of mapping of auditory and 
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visual information) may be related to the strength of visual information stored in one’s lexical 

representations. To disambiguate individual differences in multimodal processing, I used a new 

protocol, the Intersensory Processing Efficiency Protocol (IPEP; Bahrick, 2017). In the IPEP, 

participants must bind a stream of auditory information to one specific visual event out of an 

array. The correct, temporally matching and synchronous visual event is presented alongside five 

potential distractor videos, thus assessing the participant’s efficiency in matching the redundant 

auditory and visual information. Efficiency in intersensory processing is measured by the 

proportion of looking time to the correct visual stimulus in comparison to the distractors as well 

as the participant’s reaction time to find the correct target. To my knowledge, this work presents 

the first exploration of possible commonalities that underlie general audiovisual matching and 

potential links to individual differences in how lexical representations are structured.  

In the audiovisual word recognition task, I predict that the quickest reaction time and 

most accurate looking behavior will be evidenced in audiovisual, correctly pronounced trials. If 

participants are able to sublexically process audiovisual speech information on mispronounced 

audiovisual trials, I expect to observe slight deficits in accuracy and reaction time performance, 

though well above chance. This pattern of results would conceptually replicate and extend a host 

of studies on mispronunciations and sublexical processing in audiovisual speech stimuli, as 

opposed to auditory-only stimuli (Swingley, 2000; Vitevich & Luce, 1999; Vitevich et al., 1997). 

Further, if visual speech information is included in lexical representations, adults should quickly 

and accurately identify the correct target for visual-only, correctly pronounced trials (consistent 

with Havy et al., 2017; Tye-Murray et al., 2007). Further, if participants can sublexically process 

visual speech information, they should be able to find the correct target for visual-only, 

mispronounced trials. Vitevich & Luce (1999) and Vitevich et al. (1997) provide evidence that 
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sublexical processing occurs in the auditory domain, but this is the first study to my knowledge 

to test if sublexical processing occurs for visual-only speech information.  

Additionally, this is the first study to my knowledge that tests for individual differences 

in the relationship between multimodal (i.e. audiovisual) processing and the content of lexical 

representations. There is evidence that robust individual differences are present for both 

multimodal matching (Stevenson, Zemtsov, & Wallace, 2012) and visual-only speech perception 

(Havy et al., 2017). The extant literature on aging and speech perception suggests that the link 

between auditory and visual speech information strengthens across the lifespan, both in illusory 

audiovisual effects like the McGurk effect (Sekiyama, Soshi, & Sakamoto, 2014) and in natural 

speech perception (Winneke & Phillips, 2011). This audiovisual strengthening effect seen across 

the lifespan may influence an individual’s attention to the visual information of the mouth in 

speech perception. It is possible that participants who are better at audiovisual mapping in the 

real world have more robust representations of the links between auditory-only and visual-only 

information. Thus, I predict that greater intersensory processing ability, as measured by faster 

reaction times and greater accuracy in the IPEP, will be correlated to faster and more accurate 

lexical retrieval. 
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Chapter 2 

Materials and Methods 

Participants 

Thirty-eight undergraduate students (22 females, 16 males; 18-25 years-old) participated 

in the current study. Participants were recruited through the University of Tennessee, Knoxville’s 

SONA participant database and by word of mouth. A demographic survey, administered after 

informed consent and completion of the study, insured that all participants were native 

monolingual speakers of American English with normal hearing and normal/corrected-to-normal 

vision. All participants reported they were able to clearly see and hear all stimuli during the 

entirety of both experimental tasks. 

Apparatus 

The participants sat in a chair approximately 60 centimeters from the computer monitor 

that displayed the stimuli. Auditory stimuli were played from fixed speakers, located directly 

behind the computer monitor. A Tobii x60 eye-tracker was mounted below the display monitor 

to track each participant’s eye-gaze data. Each testing session began with a 5-point calibration 

phase to ensure the participant’s corneal reflection was accurately picked up by the machine 

throughout the bounds of the screen (Dautriche, Swingley, & Christophe, 2015). The audiovisual 

word recognition task was run exclusively through Tobii Studio and while the IPEP also used 

Tobii Studio to record eye-gaze data, stimulus presentation was run using a custom-designed 

Matlab protocol (Bahrick, 2017).  

Audiovisual word recognition task: Description 

 The audiovisual word recognition task was designed to measure each participant’s lexical 

retrieval of known words, across various stimulus manipulations. There were two independent 
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variables: modality (audiovisual and visual-only) and pronunciation (correctly pronounced and 

mispronounced). The dependent variables were accuracy and reaction time to locate the correct 

referent object, in the presence of one potential distractor object.  

Audiovisual word recognition task: Stimuli 

Each trial included digital photographs of familiar referent objects and videos of a 

monolingual American English speaker articulating a carrier phrase and a target word (e.g., 

Where’s the [baby]? Can you find it?). Referent objects and target words were as follows: baby, 

doggy, kitty, ducky, shoe, car, ball, and fish (see Table 1). Diminutive word forms were used in 

the hopes of comparing adults’ performance in this task to infants’ performance in later studies. 

The diminutive word forms were chosen to facilitate infants’ interest in the task in later tests. 

While the diminutive word forms may seem puerile for the adult participants, the initial 

articulation of each diminutive is constant with the canonical, adult word form (i.e. cat and kitty 

both are initially articulated with the voiceless, velar, stop consonant). The words horse and 

monkey were used during warmup trails. 

A brief pause between the carrier phrase and the target word ensured that there was no 

co-articulation leading into the target word. Auditory stimuli were played at approximately 

65dB. The digital photographs used as referents were normalized for size and saliency. The 

videos of the speaker articulating the carrier phrase and target word were recorded using a Nikon 

D3300 DX camera (DSLR Kit) with an 18-55mm f/3.5-5.6G VR II Auto Focus-S DX NIKKOR 

Zoom Lens. Audio of the speaker’s utterances were recorded in Praat (Boersma & Weenink, 

1996) using a Blue Snowball USB Microphone and were RMS matched in Adobe Audition®. 

The audio and video recordings were synced and cropped in iMovie 7.1. The digital photographs 

of the referent objects and speaker videos were imported into Motion 5 where they were fit into a 
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proprietary template to ensure the same display settings for each trial.  

In the audiovisual word recognition task, there were four different trial types that 

correspond to the modality and pronunciation of the target word that was presented in each trial 

(see Table 2). Thus, there were audiovisual correctly pronounced, audiovisually mispronounced, 

visual-only correctly pronounced, and visual-only mispronounced trial types. Visual-only trials 

are named as such because the only linguistic information available was through the visual 

domain (i.e. the lip movements of articulating the target word). In the visual-only trials, the 

target words were transformed into pink noise using Adobe Audition® (see Table 2). The newly-

created audio file with pink noise replacing the target word was then dubbed back onto the 

original video in iMovie. This ensured that on visual-only trials, participants would be presented 

with a continuous stream of auditory stimulation in the same acoustic register of human speech, 

but that they would receive no auditory linguistic information. There were two counterbalanced 

orders and specific target words were presented in only one modality across the task. This was 

done to eliminate any possible transfer effects from experience with audiovisual stimuli 

informing subsequent visual-only perception. Thus, in order 1, baby, ducky, ball, and fish were 

always presented audiovisually, while doggy, kitty, car, and shoe were always presented 

visually—and vice versa for order 2. Participants were randomly assigned to order 1(n=18) or 

order 2 (n=20). 

 For each trial, the speaker was located at the top-center of the display and the two 

referent objects were located at the bottom-left and bottom-right corners of the screen (see Figure 

1). At trial onset, the speaker’s face and both referent objects were present on the screen. The 

participants viewed this static image for approximately two seconds before the speaker 

articulated the carrier phrase and target word. Each trial was designed so that the onset of the 
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target word began exactly 4 seconds after the onset of the trial. Once the talker finished 

producing the target word, her face disappeared for the remainder of the trail, leaving only the 

two referent objects on the monitor. Gaze data for looking accuracy and reaction time were 

analyzed in a 2 second window following the onset of the target word (see Figure 2).  

Audiovisual word recognition task: Procedure 

The task began with two correctly pronounced warmup trials that were presented 

audiovisually. These trials were excluded from final analysis. Following the warmup trials, there 

were four blocks of 10 trials. Each block presented the target words in the same modality for all 

10 trials. In order to eliminate any task-demand effects since participants transitioned between 

audiovisual speech perception in the audiovisual blocks to lip reading for the visual-only blocks, 

I included 2 correctly pronounced warmup trials at the beginning of each block. Thus, out of the 

42 total trials, 32 trials were included in the analyses (see Figure 3). Of the eight trials in each 

block that were included in the final analyses, there were four correctly pronounced trials and 

four mispronounced trials in a pseudorandomized order. The correct target object was 

counterbalanced to appear at the left or right target location 50% of the time. 

Audiovisual word recognition task: Measures 

Reaction time 

 In this study, we used a modified looking-while-listening paradigm (Swingley, Fernald, 

& Pinto, 1999). In the traditional looking-while-listening paradigm, two referent objects are on 

the screen at all times, and thus reaction times can only be measured when a participant is fixated 

on the distractor object when they hear the object label, and subsequently shift their gaze to the 

correct referent object. The procedure used here is slightly different—reaction time was 

measured from fixations on the speaker’s face to the correct target object. For any given trial to 
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be included in the data analyses, the participant must have been looking at the articulating face at 

the onset of the target word. This is vital for visual-only trials, where the only linguistic 

information available was conveyed through the visual modality. To be included in analyses, 

each participant needed usable reaction time data for at least 3 trials per condition. Only eye-

movements to the correct target object initiated between 300 and 2000 milliseconds (ms) after 

target word onset were included in the reaction time analyses. Any eye movements that occurred 

before 300 ms could have been initiated prior to word onset, thus not indicative of the 

participant’s lexical processing (Swingley, Fernald, & Pinto, 1999). 

Accuracy 

 I assessed two looking accuracy metrics, the proportion of correct looking during the 

target window and the accuracy of the first look after word-onset. The analysis window for 

looking accuracy was from 300 ms to 2300 ms after the onset of the target word (Figure 2). The 

looking accuracy measure were calculated as a proportion of looking duration to the correct 

target, divided by looking duration to the incorrect target. This method of calculating looking 

accuracy is typically used in developmental work, and will be used here since the current task is 

based on a developmental task using similar analyses. However, since the adult participants 

tested here have a great deal of experience with all of the words they were tested on and may be 

less motivated to maintain their gaze on a labeled object, I also calculated a potentially more 

sensitive measure of looking accuracy—the accuracy of the first eye movement to either the 

correct or incorrect referent object after hearing the target word. The accuracy of the first look 

after word onset was simply coded as correct or incorrect for each trial, and then averaged for 

each stimulus condition.  
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Intersensory Processing Efficiency Protocol: Description 

The Intersensory Processing Efficiency Protocol (IPEP) is a novel protocol designed by 

Lorraine Bahrick and colleagues to assess individual differences in processing speed and 

accuracy for multimodal events (Bahrick, 2017). The IPEP is an audiovisual search task that 

displays a 2x3 matrix of dynamic events (see Figure 4). The IPEP required participants to 

visually locate which visual event out of the 2x3 matrix matched a simultaneously played audio 

track. Thus, there was one sound-synchronized target and 5 asynchronous distractors. 

Intersensory Processing Efficiency Protocol: Stimuli 

Within the IPEP protocol, there were two different conditions – social and nonsocial. The 

dynamic visual events in the social trials were women reciting a children’s story. The visual 

events in the nonsocial trials were solid objects making contact with a hard surface in an erratic, 

arrhythmic manner, produces knocking sounds. In each condition, the audio track for each trial 

matched one of the visual events—either in speech (social) or rhythmic pattern (nonsocial). 

Intersensory Processing Efficiency Protocol: Procedure 

Following the audiovisual word recognition task, all participants then did the IPEP task. 

The participants were already seated in the testing area and had given informed consent to 

participate in the study. Each participant was recalibrated using a 5-point calibration, standard to 

Tobii Studio. They were instructed to direct their gaze to the visual event that matched the 

auditory stream they heard. The IPEP had a total of 48 trials, each of which last for 8 seconds. 

The 48 trials were broken into four blocks (two social, two nonsocial), which were 

counterbalanced for order and target location across participants. Stimulus presentation was run 

using custom-designed Matlab software that interfaced with the eye-tracking software (Tobii 

Studio) to track each participant’s eye gaze data. 
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Intersensory Processing Efficiency Protocol: Measures 

Gaze data during the IPEP was recorded by a Tobii x60 eye-tracker. From the eye-

tracking data, I was interested in measures of looking accuracy, measured by duration of fixation 

to the synchronous, correct target. This was calculated as a proportion—the duration of looking 

to the correct target divided by duration of looking to the distractors. Additionally, I extracted 

reaction time to fixate to the correct target, measured in milliseconds. 
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Chapter 3 

Results 

Audiovisual Word Recognition Task Analyses 

 A four-way mixed-model ANOVA did not reveal any main effects or interactions of sex 

or order. Additionally, item analyses revealed no significant differences between test items, so all 

analyses were collapsed across these variables. To examine the effects of modality (audiovisual 

vs visual-only) and pronunciation (correct vs mispronounced) on looking accuracy across the 

analysis window in the audiovisual word recognition task, I performed a 2x2 repeated measures 

ANOVA. The ANOVA revealed significant main effects of modality F(1,37)=18.85, p<.001, 

partial η2=.497, power=1.000, and pronunciation F(1,37)=89.71, p<.001, partial η2=.520, 

power=1.000, as well as a modality by pronunciation interaction F(1,37)=15.80, p<.001, partial 

η2=.261, power=.941 (Figure 5). These effects demonstrate that participants were more accurate 

within the analysis window on audiovisual trials compared to visual-only trials and also more 

accurate on correctly pronounced trials compared to mispronounced trials. While group means 

for both pronunciations in the audiovisual modality and for visual-only correctly pronounced 

were at ceiling, the group mean accuracy for visual-only, mispronounced trials was much lower 

(M=62.76%). However, a single-sample t-test revealed that performance for visual-only 

mispronounce is reliably above chance t(37)=3.88, p<.001, d=.629, which demonstrates that 

while at a performance deficit, mispronounced visual-only speech information can successfully 

be used for lexical retrieval.    

 A second 2x2 repeated measures ANOVA was performed to compare the accuracy of 

first look after target word onset across modality and pronunciation manipulations. The ANOVA 

revealed significant main effects of modality F(1,37)=8.547, p<.05, partial η2=.188, power=.812, 
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and pronunciation F(1,37)=22.785, p<.001, partial η2=.381, power=.996. However, there was no 

significant modality by pronunciation interaction. Interestingly, group means for each trial type 

increased when only considering first look accuracy. This was especially the case for visual-

only, mispronounced trials (M=81.94%), which exhibited an almost 20% increase in accuracy 

compared to the proportion of correct looking measures (Table 3).  

 A third 2x2 repeated measures ANOVA was performed to compare reaction times across 

modality and pronunciation. The ANOVA revealed significant main effects of modality 

F(1,37)=36.50, p<.001, partial η2=.497, power=1.000, pronunciation F(1,37)=40.12, p<.001, 

partial η2=.520, power=1.000 and a modality by pronunciation interaction F(1,37)=13.10, 

p<.001, partial η2=.261, power=.941 (see Figure 6). These main effects demonstrate that 

participants had faster reaction times for audiovisual compared to visual-only trials, as well as 

faster reaction times for correctly pronounced vs mispronounced trials. Additionally, the 

interaction term suggests that the additive effects of the visual-only modality and word 

mispronunciation contributed to the slowest reaction times for the visual-only, mispronounced 

trials (see Table 4).   

Intersensory Processing Efficiency Protocol and Correlational Analyses 

 Paired-samples t-tests revealed that participants had faster reaction times t(37)=4.47, 

p<.001, d=.731, and were more accurate t(37)=5.86, p<.001, d=1.048 for social trials, as 

compared to non-social trials. While descriptive, these group differences were not the main focus 

of the IPEP analyses because the social and nonsocial trials are fundamentally different from one 

another. Rather, a correlational analysis between looking accuracy and reaction time across both 

the audiovisual word recognition task and the IPEP were of great interest, in an attempt to 

discern any relationships between individual differences in audiovisual processing ability and 
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content of one’s lexical representations (Table 5). The correlational analysis revealed that 

reaction time for audiovisual mispronounced trials were weakly correlated with non-social 

accuracy measures on the IPEP (r=.344, p=.035). While significant, these results are difficult to 

interpret because there are no systematic associations between processing ability, measured by 

the IPEP, and accuracy or reaction time metrics from the audiovisual word recognition task. In 

fact, the positive correlation reported suggests that longer reaction times for audiovisually 

mispronounced trials are related to better accuracy in non-social trials on the IPEP—which is 

contrary to my prediction that better audiovisual processing would facilitate faster lexical 

retrieval. In addition, there were no significant correlations between looking accuracy across the 

analysis window or first look accuracy and any of the IPEP measures. 
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Chapter 4 

General Discussion and Conclusions 

Discussion 

 The first prediction tested in this study was that visual speech information for known 

words is robustly represented in the lexicon and is able to be sublexically processed. To test this 

prediction, adult participants’ looking accuracy and reaction time was compared across four trial 

types. These analyses present evidence that adults robustly access the correct lexical target for 

both correctly pronounced and mispronounced audiovisual words. In addition to these findings, 

that conceptually replicate and extend previous literature (Swingley, 2000; Vitevich & Luce, 

1999; Vitevich et al., 1997), I also present evidence that adults readily access lexical 

representations when presented with visual-only speech information for both correctly 

pronounced and mispronounced target words. While looking accuracy is not as strong for visual-

only mispronunciation trials and reaction times are significantly slower, adult participants are 

still able to identify the correct target word above the level of chance.  

 These results suggest that visual speech information is robustly represented in the 

lexicon. Further, the results also suggest that visual speech information is able to be sublexically 

processed. This is evidenced by the adults’ ability to correctly identify the appropriate referent 

object when only visual speech information was present and when this visual-only speech 

information was mispronounced. The work from Vitevich and colleagues (1997, 1999) provides 

evidence that adults can readily sublexically process auditory speech information, and the results 

presented here extend our knowledge of sublexical processing into the domain of visual speech 

perception. The results here not only provide evidence that visual information is represented for 
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the facial movements across the entirety of a lexical representation, but also that the 

representations of visual speech information can be used in speech perception.   

 A second prediction was that individual differences in audiovisual processing are related 

to the manner in which visual speech information is represented in the lexicon. Audiovisual 

processing efficiency was measured using the IPEP (Bahrick, 2017) and the outcome metrics of 

looking accuracy and reaction time were not significantly correlated to looking accuracy or 

reaction time measures on the audiovisual word recognition task. There were a few spurious 

correlations (Table 5) but these correlations do not occur in a systematic pattern of associations 

between lexical representations and audiovisual processing efficiency measures. These results 

suggest that there is not an obvious relationship between the audiovisual composition of the 

lexicon and intersensory processing ability in the two laboratory tasks presented here.  

Study Limitations 

 One potential limitation of this study is that this is the first use of the IPEP in conjunction 

with measures of lexical retrieval. I used the IPEP to ascertain the relationship of individual 

differences in audiovisual processing and content of lexical representations. The rational for 

doing so was based on evidence that while adults can use visual-only speech information for 

lexical retrieval, there are also large individual differences in accuracy and efficiency 

(Stevenson, Zemtsov, & Wallace, 2012; Havy et al., 2017). It may, in fact, be the case that the 

IPEP is not a sensitive enough measure to partial out individual differences of intersensory 

processing that relate to the composition of lexical representations. While the IPEP is able to 

measure individual differences in general intersensory processing, these individual differences 

may not extend into the processing of visual only speech information. It may also be the case that 

accuracy measures and reaction time measures are not monotonically related. Participants may 
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be using different visual scanning strategies to correctly identify the targets across the tasks. 

Some individuals may wait for a longer duration prior to making an eye movement to be sure 

they are directing a fixation to the correct object. If this is the case, reaction time would not 

accurately reflect processing efficiency for individuals who use a delayed scanning pattern in the 

audiovisual word recognition task, and not the IPEP. Thus, the correlational analyses presented 

here may not accurately assess the relationship between intersensory processing and lexical 

retrieval. 

Future Directions 

 In future studies, ascertaining each participant’s looking preference patterns or looking 

phenotypes may be helpful to identify potential relationships between looking strategies in 

addition to intersensory processing and lexical retrieval. Processing efficiency in a single 

modality (audition or vision) may be a better predictor of the relationship between processing 

efficiency and the content of lexical representations. A second option for future work is to scale 

up the difficulty of the audiovisual word recognition task. One way to do so would be to add 

more referent picture options (for example, four referent pictures) that systematically overlap in 

auditory or visual neighborhood densities, or sublexical phonotactic probabilities. In doing so, 

the multiple influences of auditory neighborhood density, visual neighborhood density, and 

probabilistic phonotactics on lexical retrieval could be assessed using a within subjects design, 

while also scaling-up task difficulty. Lastly, task difficulty could further be increased by making 

the experimental task a true visual search task by only presenting the referent object pictures 

after the target word is articulated. In its current manifestation, the task allows participants to 

view the referent objects before hearing the word, which lessens the difficulty of scanning 

behavior to find the correct target object. If the referent objects stay occluded until after the 
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target word is articulated, each participant would have to keep the perceived word form active in 

their working memory while visually scanning for the correct referent target.  

Additionally, follow up studies could use a randomized trial order so that visual-only and 

audiovisual trials are mixed throughout the procedure. It is possible that the blocked design 

facilitated performance on visual-only trials. In recent work with infants, task performance was 

actually facilitated when stimuli were reliably presented in a single modality (Bahrick, Lickliter, 

& Castellanos, 2013). It stands to reason that a similar effect could manifest for the adults in our 

blocked design. In future studies using a similar procedure, this empirical question can be 

answered by examining if randomized trial sequences attenuates performance on visual-only 

trials. 

Conclusions 

 Although I did not observe any meaningful relationships between audiovisual processing 

efficiency and the content of adults’ lexical representations, I did find an interesting pattern of 

results in regard to performance on visual-only, mispronounced trials. While visual-only, 

mispronounced trials were characterized by observed performance deficits compared to the other 

conditions, the participants were able to reliably identify the correct target above chance levels. 

This novel pattern of results suggests that adults can sublexically process visual speech 

information and accurately retrieve corresponding lexical items. Future research aimed to 

increase task difficulty by altering trial order or availability of referent objects can further 

interrogate the findings presented here. 
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Table 1. Target objects, correct pronunciations, and mispronunciations.  
 
Target Object Correct Pronunciation Mispronunciation 

Baby 

Dog 

Duck 

Cat 

Car 

Fish 

Shoe 

Ball 

Baby 

Doggy 
 
Ducky 
 
Kitty 
 
Car 
 
Fish 
 
Shoe 
 
Ball 

 

Gaby 

Boggy 

Bucky 

Pitty 

Par 

Shish 

Foo 

Gall 
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Table 2. Stimuli Combinations.  
Modality Pronunciation Example 

Audiovisual Correctly Pronounced Audio: Doggy 

Visual: Doggy 

Audiovisual Mispronounced Audio: Boggy 

Visual: Boggy 

Visual-Only Correctly Pronounced Audio: Pink Noise 

Visual: Doggy 

Visual-Only Mispronounced Audio: Pink Noise 

Visual: Boggy 
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Table 3. Table of means for looking accuracy 

 
 

 Proportion Correct Looking First Look 
 

  
Mean 

 
SD 

 

 
Mean 

 
SD 

Audiovisual CP .9493 
 

.121 1.00 0 

Audiovisual MP .8207 
 

.173 .9414 .145 

Visual-only CP .9262 
 

.124 .9717 .122 

Visual-only MP .6267 .203 .8193 .219 
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Table 4. Table of mean reaction times per trial type (in milliseconds). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 Reaction Time 
  

Mean 
 

Std. Error 
 

Audiovisual CP 600.67 
 

35.11 

Audiovisual MP 728.25 
 

37.65 

Visual-only CP 680.16 
 

36.55 

Visual-only MP 1020.42 51.25 
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Table 5. Regression analysis within and between conditions on the audiovisual word recognition 
task and the IPEP. 

  

AV 
CP 
RT 

AV 
MP 
RT 

VO 
CP 
RT 

VO 
MP 
RT 

AV 
CP 

ACC 

AV 
MP 

ACC 

VO 
CP 

ACC 

VO 
MP 

ACC 
IPEP 
RT 

IPEP 
Soc 
RT 

IPEP 
NonSoc 

RT 
IPEP 
ACC 

IPEP 
Soc 

ACC 
AV CP 

RT 
                          

AV MP 
RT 

.45**                         

VO CP 
RT 

.42** .31                       

VO MP 
RT 

.32 .49** .26                     

AV CP 
ACC 

-.01 .31 .27 .38*                   

AV MP 
ACC 

.03 .29 .11 .20 .40*                 

VO CP 
ACC 

.15 .20 -.06 .09 .23 .24               

VO MP 
ACC 

-.32 .06 -.22 -.02 .11 .18 .28             

IPEP 
RT 

-.12 -.04 .06 -.22 -.23 .17 -.12 -.04           

IPEP 
Soc RT 

-.15 -.07 .16 -.09 -.21 .15 -.08 .10 .69**         

IPEP 
NonSoc 

RT 
-.07 -.01 -.04 -.23 -.14 .12 -.11 -.12 .84** .19       

IPEP 
ACC 

.05 .34* .30 .30 .44** .09 .31 .10 -.27 -.12 -.25     

IPEP 
Soc 

ACC 
.06 .32 .29 .28 .35* .07 .22 .03 -.13 -.13 -.05 .92**   

IPEP 
NonSoc 

ACC 
.01 .33* .26 .27 .46** .10 .34* .17 -.32* -.07 -.37* .96** .77**  

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Figure 1. A screen shot of stimulus presentation during the audiovisual word recognition task 
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Figure 2. A timeline of the trial presentation in milliseconds, denoting baseline and target phases 
for eye gaze analyses. 
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Figure 3. Trial layout for the audiovisual word recognition task for order 1 and order 2. 
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Figure 4. A screen shot of a social trial on the IPEP. 
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Figure 5. Mean proportion of looking to the correct target across conditions. The three stars 
(***) denote significant pairwise comparisons at p < .001. 
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Figure 6. Reaction time to fixate on the correct target across conditions. All pairwise 
comparisons are significant (p < .001). 
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