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Abstract

In this thesis analog implementation of a machine learning algorithm, Linear

Discriminant Analysis, is analyzed and shown how it performs on a classification

problem. Analog machine learning has emerged as a promising field that provides

advantages over its digital counterpart in power consumption, circuit area and

scalability. Analog computation achieves its efficiency from the physics of device

or circuit operation. This allows analog computation to operate on very low signal

levels. However, low signal levels make itself vulnerable to noise. Excessive noise

levels can render the machine learning system unstable and prone to making

wrong decisions. To ensure reasonable accuracy of the system it is essential to

understand how noise behaves and propagates along the system.

A key component in analog implementation of the Linear Discriminant

Analysis is the analog multiplier. A noise analysis is done for the multiplier

to show how noise varies with multiplication factor. This also produces a

relationship between signal to noise ratio and energy consumption that gives us

a limit of accuracy obtained from the multiplier for a given energy consumption.

Numerical analysis is provided to show that Linear Discriminant Analysis is

well suited for the classification problem. The performance of a hardware

implementation of the analog classifier in commercially available 130nm silicon

process is also presented. With four feature input currents and three classes to

classify the classifier consumes around 4nW of power. The testing process shows
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that the classifier is able to perform basic classification task in the presence of

noise.
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Chapter 1

Introduction

There has been a revival of interest in the discipline of subthreshold mode of

transistor operation and analog design as the digital design technology is reaching

its physical limit both in terms of energy consumption and speed. The MOS

processing technology is progressing towards smaller dimensions. Along with

it brings the problem of subthreshold power dissipation also known as leakage

power in digital circuits when the transistor is assumed to be turned off. For

leakage current typically on the order of 1nA, the leakage power for a system

with millions of transistors can be significantly large. With the transistor getting

smaller, the supply voltages are also scaling down. But with smaller supply

voltages it is hard to maintain reliable performance in digital circuits as other

unwanted effects takes over. This is also true for analog circuits. To maintain low

power systems and unwanted power dissipation, it is more promising to decrease

operating current to the order of pA or nA range. This range of current is

easily achieved by transistors operating in the subthreshold regime. Moreover

the current voltage relationship in subthreshold regime is shown to be similar to

the operation of biological neuron which pioneered the field of the neuromorphic

computation [1]. Neuromorphic computation is electronic computation inspired
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by the analog nature of the neural systems. This takes advantage of the natural

physics of analog device operation to carry out computation. This makes it

possible to do large amount of computation using only few transistors. Thus a

huge savings in area and power can be made over digital implementation of the

same computation. For this reason a lot of machine learning techniques which

typically uses digital circuits are leaning towards using analog low power circuits.

Analog circuits also become advantageous over digital circuits when it comes

to implementing deep reinforcement learning and scaling the system according

to the computational complexity. However, implementation of such machine

learning systems brings the trade of speed and accuracy because analog circuits

inherently noisy, subject to mismatch and may need to be slower to maintain a

good signal to noise ratio. Despite these challenges there has been a tremendous

undertaking in implementing neuromorphic systems specially to make artificial

biological systems like electronic cochlea [2] and electronic vision [3]. The way

neuromorphic computation and machine learning is moving forward it might not

be wrong to think that the future of autonomous artificially intelligent systems

will be largely dependent on the progress of intelligent low power analog circuit

design.

This thesis explores implementation of linear discriminant classifier algorithm

in commercially available 130nm silicon technology using low power analog circuit

design techniques. The goal is to implement a sensor that is able to identify

presence and absence of objects like car, truck, generator using acoustic and

vibration signals. The power budget of the sensor is only 10nW. In this thesis the

applicability of linear discriminant analysis in solving the classification problem

has been explained. Then circuit design techniques to reliably perform the

classification process in the presence of noise is explored. Finally experimental

results from fabricated chip is presented.
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Chapter 2

Modeling Algorithm of the

Classification Process

The task is to identify different objects like car, generator, truck or nothing based

on the audio signal and/or accelerometer signal. When presented with any audio

signal and/or accelerometer signal, the system should be able to classify it as one

of the mentioned objects. Any classification problem involves extracting useful

features that helps the computer or any computing device to make intelligent

guess on which object those features may be associated with. The general idea

is similar objects will show similar feature signature. Consequently different

objects will show feature signature that is different to each other. This way any

classification algorithm can model the behavior of the features and and make

decision when a new feature is presented.

This chapter describes the process of feature selection, choice of classification

algorithm and how effective it is on solving this classification problem.
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2.1 The DARPA Database

The DARPA database is arranged in .mat file. Each .mat file contains the

sets of data as shown in table 2.1. The notes section describes the instruments

(microphone, accelerator, magnetometer, RF etc.). One set of data is located in

/storage/iss/data/darpa_nzero_data/new_sensor_data. There is total 104

.mat files here.

Table 2.1: Description of items in .mat file.

Item Size Type Description
notes 17x99 char notes on data acquisition method
t 1x4500000 double time sample at which it is taken
ts 4500000x17 double amplitudes at time t
17 columns in ts represent sensor data from 17 different sensor location

2.2 Choice of Features

Different objects (generator, car or truck) produce different sounds and vibration

due to their differences in weight and structure. This information should be

present in the spectrum of the sound and vibration signals. Each class of objects

is expected to produce different sound and vibration spectrum. Fig.2.1 shows the

average sound and Fig.2.2 vibration spectra of audio and accelerometer recording

samples collected from DARPA database.

The shaded regions indicate the span of the energy for all the data. It can be

clearly seen that most of the energy is concentrated on the frequencies that shows

a peak in the spectrum. These peak frequencies differ from class to class. For this

reason the energy at the peak frequencies are chosen as features for classification.

Different classes will show differences in energy at any chosen peak frequency.

This should provide enough information for the classifier to make decision. Also

4



Figure 2.1: Energy spectrum of acoustic signals of different classes plotted on
top of each other. Microphone is on the target

peak frequency presents maximum separation of energy content across class which

should allow large classification separation.

2.3 Behavior of the Feature for Classification

An analysis of how much the energy at the peak frequencies varies will be useful

in making decision on which classification algorithm could be used. A histogram

of energy at the peak frequencies of recording at different distances is performed.

Each audio and acceleration recording contains 90 seconds of data. Energy

content at peak frequencies within 100ms of data is recorded. This way each

audio or acceleration file of 90 seconds produces 900 samples of peak energy

at peak frequencies. These 900 samples of energy of each file is used to plot

histogram.

5



Figure 2.2: Energy spectrum of vibration signal of different classes plotted on
top of each other. Accelerometer is on the target.

Fig.2.3 shows a histogram for generator and quiet class at two frequencies.

These histograms shows how the energy at peak frequencies are distributed. It

can be seen that the energy follows more or less Gaussian distribution pattern.

Histogram of vibration energy shown in Fig.2.4 also shows similar Gaussian

distribution.

This kind of pattern helps linear discriminant algorithm to model the data and

make decision boundaries. The linear discriminant analysis only uses addition and

multiplication to make decisions. These two operations can be easily implemented

in subthreshold analog circuits.

6



(a)

(b)

Figure 2.3: Histogram of acoustic energy for generator and quiet class at (a)
20Hz (b) 40Hz frequencies. Microphone is on the target.

2.4 The Linear Discriminant Analysis

A brief description of the linear discriminant analysis is given here. For class

label C ∈ {1, 2, · · ·K} and feature vector X ∈ Rp the classification problem can

be described as the probability of a class being C = j given a feature set X = x.

Mathematically

F (x) = P (C = j | X = x) (2.1)

7



(a)

(b)

Figure 2.4: Histogram of vibration energy for generator and quiet class at (a)
20Hz (b) 40Hz frequencies. Accelerometer is on the target.

If this function is evaluated across all of the class labels then the label with the

highest probability gives the class that X = x belongs to. Hence the Eq.2.1 can

written as

f(x) = arg max
j=1,2,···K

P (C = j | X = x) (2.2)

Using Bayes’ Rule we can write

P (C = j | X = x)P (X = x) = P (X = x | C = j)P (C = j)

P (C = j | X = x) =
P (X = x | C = j)P (C = j)

P (X = x)
(2.3)
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Using Eq.2.3 in EQ.2.2 can be written as

f(x) = arg max
j=1,2,···K

P (X = x | C = j)P (C = j)

P (X = x)

f(x) = arg max
j=1,2,···K

P (X = x | C = j)P (C = j)

f(x) = arg max
j=1,2,···K

P (X = x | C = j) · πj (2.4)

Because P (X = x) does not depend on j and is constant, removing that term

from equation does not influence the function. Here πj = P (C = j) is the prior

probability of class j. Rearranging Eq.2.2 into Eq.2.4 allows for us to estimate

the conditional class density P (X = x | C = j) from the sample data which is the

training data. Linear Discriminant Analysis approximates this rule by modeling

conditional class densities as multivariate normals.

hj(x) = P (X = x | C = j) = N(µj,Σ) (2.5)

i.e. each class j has its own mean µj ∈ Rp, but shares a common covariance

matrix Σ ∈ Rp×p. Hence the multivariate normal density

hj(x) =
1

(2πp/2)det(Σ)1/2
e−

1
2

(xi−µj)T Σ−1(xi−µj) (2.6)

We want to find j so that P (X = x | C = j) · πj = hj(x) · πj is largest.

Since log . is a monotonic function, we can consider maximizing log hj(x) · πj
over j = 1, 2, · · ·K. We can define the rule

fLDA(x) = arg max
j=1,2,···K

log [
1

(2πp/2)det(Σ)1/2
e−

1
2

(xi−µj)T Σ−1(xi−µj) · πj]

= arg max
j=1,2,···K

[xTΣ−1µj −
1

2
µTj Σ−1µj + log πj]

9



= arg max
j=1,2,···K

δj(x) (2.7)

We call δj(x), j = 1, 2, · · ·K the discriminant functions. When we replace

πj, µj,Σ with their sample estimates, based on the labeled observations yi ∈

1, 2, · · ·K, xi ∈ Rp, i = 1, 2, · · ·n,

π̂j =
nj
n

µ̂j =
1

nj

∑
yi=j

xi

Σ̂ =
1

n−K

k∑
j=1

∑
yi=j

(xi − µ̂j)(xi − µ̂j)T

The rule can then be written as

f̂LDA(x) = arg max
j=1,2,···K

δ̂j(x) (2.8)

where δ̂j(x) is the estimated discriminant function of class j,

δ̂j(x) = xT Σ̂−1µ̂j −
1

2
µ̂j

T Σ̂−1µ̂j + log π̂j

= aj + bTj x (2.9)

where aj = −1
2
µ̂j

T Σ̂−1µ̂j + log π̂j and bj = Σ̂−1µ̂j. For a Given X = x we use

Eq.2.8 to find the output class. Eq.2.9 is just a set of equations of lines. It can

be written in expanded form as follows.

δ̂1 = b11 ∗ i1 + b12 ∗ i2 + ...+ w1n ∗ in + a1

δ̂2 = b21 ∗ i1 + b22 ∗ i2 + ...+ b2n ∗ in + a2 (2.10)

...
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δ̂m = bm1 ∗ i1 + bm2 ∗ i2 + ...+ bmn ∗ in + am

The decision boundary between two classes can also be found from these

equations. The boundary exists where the values of the equations for two classes

become equal. The decision boundary between classes j, k is the set of all X ∈ Rp

such that ˆδj(x) = ˆδk(x), i.e.

aj + bTj x = ak + bTk x

(aj − ak) + (bTj − bTk )x = 0 (2.11)

This is the equation of the line that defines the decision boundary of class j and

k.

2.5 MATLAB simulation on DARPA data

For simplicity only generator and quiet classes are chosen first. These two

classes are used to show how effective the linear classifier is in differentiating

two classes. The energy at any given frequency is extracted by a digital filter. A

brief description of the filter used is given below.

2.6 Digital filter

An analog 2nd order resonator filter design is used to make digital filter using

MATLAB’s impinvar function. The analog resonator is given by Eq.2.12

F (s) =
1

s2 + 2πf
Q
s+ (2πf)2

(2.12)

11



Figure 2.5: Digital Filter response used in extracting energy from time domain
signal.

Here f is the resonator frequency and Q is the quality factor. For Q=50,

f=5kHz and a sampling frequency of 50kHz the digital response of the filter is

given in Fig.2.5. This filter is applied to the time domain signal to filter out

information at a given frequency. Then the output time domain signal is squared

and summed to get energy at that given frequency.

We have used frequencies from 1Hz to 200Hz at increment of 1Hz. After that

a 1% increment of frequency is used. Which means after 200Hz the frequencies

are 200(1.01), 200(1.01)2, · · · etc. This is because energies below 200Hz can be

easily captured. After 200Hz an increment of 1% is used because it corresponds

to the quality factor. Q=100 provides an increment of 1/Q percent.
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Figure 2.6: Classification error obtain by sweeping frequencies in two dimension.

2.7 Peak Frequency Selection Using Classifica-

tion Error

We use linear discriminant analysis to do classification over a range of frequencies

to see which combinations of frequencies gives us best classification error. To this

first the classification is done on features from two frequencies. The frequencies

swept over a range and in each iteration classification error is recorded. Fig.2.6

shows a surface plot of such a sweep done on generator and quiet audio file in

urban environment and microphone placed on the target.

It can be seen that classification error valleys occur at the harmonics of 20Hz.

The reason can be evident from the energy spectrum of the audio as shown in

Fig.2.7. At harmonics of 20Hz the energy separation is the greatest. Hence

it is expected to see best class separation at these frequencies. Same result is
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Figure 2.7: Energy spectrum for generator and quiet class audio file for urban
environment and microphone place on the target

obtained using Genetic Algorithm (GA) to optimize the classification error for

four frequencies. The result is classification error of 0% at harmonics of 20Hz.

The Class separation can be better seen in the scatter plot of features at those

frequencies in Fig.2.8. The clusters are well separated and a line can be easily

drawn between the clusters meaning the linear classifier is able to model this

easily.

2.8 Classification on All Class

It was easy to find out peak frequencies for classification for the simple case of

generator and quiet class with audio file recorded with microphone placed on

the target. But it is challenging to do classification for all class as there are

a lot of overlaps of energies as seen in Fig.2.1 and Fig.2.2. For this reason we
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(a) (b)

Figure 2.8: Scatter plot of audio energies at (a) 60Hz-80Hz pair (b) 20Hz-40Hz
pair.

Figure 2.9: Class boundary for acoustic frequency features found from GA.
Other class boundaries are not shown for simplicity.

15



Figure 2.10: Class boundary for acoustic and vibration frequency features found
from GA. Other class boundaries are not shown for simplicity.

include the information of vibration data as well in classification process. We

limit our analysis to only microphone on the target and accelerometer on the

target data. GA is configured to use two acoustic frequencies and two vibration

frequencies. After running GA to minimize the classification error the output

frequencies were 156.18Hz, 964.76Hz for acoustic frequencies and 357.8Hz and

827.94Hz for vibration frequencies. The minimized error was 0.53%. How well

these frequencies separates the classes can be observed approximately with two

feature classification and classification boundary.

Fig.2.9 shows the class boundary between different for the acoustic frequency

pair. The boundaries are found from linear discriminant classification. The

boundaries are reasonably well placed to minimize the misclassification. The
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Figure 2.11: Class boundary for acoustic and vibration frequency features found
from GA. Other class boundaries are not shown for simplicity.

generator class energy is very well concentrated. But for other classes the

energies are spread over a range. This makes it challenging to minimize the

classification error to zero. Similar things can be observed from other frequency

pairs. Fig.2.10 show decision boundary for one acoustic and vibration frequency

pair. Fig.2.11 shows another acoustic and vibration frequency pair. Fig.2.12

shows vibration frequency pair. It might be misunderstood from these figures

that a lot of instances are misclassified. But it should be noted that these figures

shows decision boundaries for analysis done on two features. With four features

the error is only 0.5%. From this analysis it can be said that linear discriminant

analysis is well suited to solve this classification problem.
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Figure 2.12: Class boundary for vibration frequency features found from GA.
Other class boundaries are not shown for simplicity.

2.9 Effect of Noise on Classification

The actual classifier will take feature input from MEMS based frequency

resonators. The sensors will have some noise as output. The center frequency

might shifted. Moreover there will be unwanted signals captured by the sensors.

These noises will affect the classification process. If there is too much noise the

classifier might produce incorrect classification results. We need to see how robust

the linear classifier is to noise.

First the base classifier model is chosen. The weights of the linear discriminant

is calculated from training data of 70% randomly selected data of total database

using the frequencies found from GA. The rest 30% is used for testing. For testing

we vary the frequencies found from GA randomly within certain amount. Then

we use the energies at those frequencies for testing against the trained model. For

a certain amount frequency variation, the frequency is varied randomly 104 times.
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For each of those 104 times the classification error against the base trained model

is calculated. Then a histogram of the error is plotted. Fig.2.13 shows such

a histogram plot. For ±5Hz variation the error remains within 1%. As the

frequency variation becomes larger the probability of getting higher classification

error also increases. Within ±30Hz frequency variation the %Error can be

over 20% as seen from Fig.2.13(d). This analysis shows that little variation

of resonator frequencies does not significantly harms the output of the classifier.

This also shows that the frequency choice returned by the GA can be taken as

relatively accurate measure of peak energy frequencies.

(a) (b)

(c) (d)

Figure 2.13: Classification error for center frequency variation. Each variation
is done within the given range 104 times.
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Chapter 3

Effect of Noise on The Analog

Classifier

Analog circuits are affected by noise much more than digital circuits. Typically

analog circuits are cascaded so that noise form all the stages accumulates at the

output. This makes it challenging to achieve a good signal to noise ratio (SNR) at

the output while maintaining reasonable power and area constraints. The signal

levels are often small in lower power circuits hence it is important to consider

noise in low power systems. In this chapter the effect of noise in the analog

classifier will be discussed and how it affects the output will be analyzed.

3.1 Different types of noise in analog circuits

There are many types of noise that affect the analog circuits. But the most

common ones that we can readily observe will be discussed and taken into account.

There is an important theorem that relates input and output noise power which

will be useful in noise analysis. The theorem states that for any Linear Time

Invariant (LTI) system characterized by transfer function H(f) will have output
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noise power SY (f) for input noise power SX(f) following way

SY (f) = SX(f)|H(f)|2 (3.1)

where f is frequency. Using this we can find the input referred noise if we

know the noise at the output. Another important theorem is that if the noise

sources are uncorrelated then we can find the total noise power by superposition.

If there are noise sources with power v̄2
n1, v̄

2
n2, · · · v̄2

nm then the total power is the

sum of the powers.

v̄2
nT = v̄2

n1 + v̄2
n2 + · · ·+ v̄2

nm (3.2)

Most noise sources found in analog circuits are uncorrelated. Hence we can use

the superposition to find the total noise power.

3.1.1 White noise

White noise is composed of two components, thermal and shot noise. Thermal is

a noise that is universal to all electronic equipment. It is believed to be caused

by random thermal motions of charge carriers. And shot noise is believed to be

caused by discrete random arrivals of the charge carriers traversing an energy

barrier. It is accepted that shot noise require DC current flow whereas thermal

noise requires no current flow. But It was shown that the inherent process of the

two noise is same [4, chapter 11] and we do not need to include both noise in

analysis. Shot noise is just thermal noise but is due to one directional current flow

where as thermal noise is due to both directional current flow. In weak inversion,

current is one direction diffusion current and noise current in weak inversion is

well modeled as shot noise. The shot noise power spectral density (PSD) in a
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MOSFET in subthreshold region operating in saturation is given by

Ī2
w = 2qĪ∆f (3.3)

where q is the charge on the charge carrier, Ī is the mean current flowing through

the device and ∆f is the system bandwidth. The small signal transconductance

of a MOSFET in saturation operating in subthreshold region is given by

gm =
κID
UT

(3.4)

where κ is gate channeling coupling coefficient also know as subthreshold

exponential factor and UT = kT/q is the thermal voltage. Here k is Boltzmann

constant and T is absolute temperature. Using Eq.3.3 and Eq.3.4 together with

Eq.3.1 the input referred noise voltage at the gate can be found as

v̄2
w =

Ī2
s

g2
m

v̄2
w =

2kTUT
κ2

1

ID
∆f

v̄2
w =

Kw

ID
∆f (V 2)

v̄2
w =

Kw

ID
(V 2/Hz) (3.5)

where Kw = 2kTUT/κ
2. From the above equation it can be seen that the noise

is inversely proportional to the current flowing through the device. Hence by

increasing the device current white noise can be reduced.

3.1.2 Flicker Noise

Another dominant noise in the MOSFET is flicker noise. It is also called 1/f

noise because the PSD follows a 1/f characteristic. This noise has significant
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power at low frequencies. So we need to account for that in our analysis. The

input referred flicker noise is given by [5]

v̄2f =
Kf

A

1

f
(V 2/Hz)

v̄2f =
Kf

A

∫ fh

fl

df

f
=

Kf

A
ln

fh
fl

(V 2) (3.6)

where Kf is process dependent fit constant, A is the area under the gate and fh

and fl is, respectively, highest and lowest frequencies of operation. The constant

Kf can also be defined as flicker noise density at 1Hz for a unit size transistor.

From the equation it can be seen that flicker noise depends both on the area and

the current flowing through the device.

The total noise power at the input of the transistor is the sum of the noise

powers. Using Eq.3.2 the total noise at the input and output is

v̄2n =
Kw

ID
+

Kf

A

1

f
(3.7)

Ī2o = (
Kw

ID
+

Kf

A

1

f
)(
κID
UT

)2 (3.8)

Fig.3.1 shows how the two noise sources are replaced by input referred noise.

Figure 3.1: MOSFET input noise model at low frequency
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3.2 Noise in Commercially available 130nm CMOS

process

The classifier is implemented in 130nm IBM process. Hence it makes sense to

do noise analysis specific to this process. In particular it is essential to find

theoretical value of the minimum input signal that can be measured using the

minimum size transistor in this process. Also how the noise affects the output

and what SNR levels provides acceptable results should be explored. Before that

we need to find Kw and Kf from Eq.3.7.

3.2.1 Measurement of Kw

To measure Kw = 2ktUT/κ
2 we need the value of κ which is the subthreshold

exponential factor. The drain current in a subthreshold MOSFET is given by [4,

chapter 3]

ID = I0e
(κVg−Vs)/UT (1− e−Vds/UT ) (3.9)

Vds is the drain to source voltage. For small values of Vds drain current is a

linear function of Vds. At Vds > 4UT current goes in saturation. κ is given

as κ = Cox/(Cox + Cd). Here Cox is oxide capacitance and Cd is incremental

capacitance in depletion layer. From the simulation of a MOSFET with fixed Vds

and varying Vg in cadence we can find out the effective value of κ. Eq.3.9 can be

modified as

ID = I0e
(κVg−Vs)/UT (1− e−Vds/UT )

ID = I0e
(κVg−Vs)/UT × Const.

ID = C × e(κVg−Vs)/UT

dID
dVg

= C × e(κVg−Vs)/UT
κ

UT
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dID
dVg

= ID
κ

UT

κ =
UT

dID
dVg

ID
(3.10)

In CADENCE a minimum size (W = 160nm, L = 120nm) lpnfet is set up as shown

in Fig.3.2 The gate voltage is varied Vg and drain current is measured. The data

is then exported to MATLAB to carryout calculation of Eq.3.10. Using UT =

25mV , VDD = 1V , Vds = 1V the results are shown in Fig.3.3. For Vg > 500mV

the MOSFET goes into inversion. The average value of κ can be approximated

from the subthreshold part of Fig.3.2(c) as κ = 0.68. Then Kw is evaluated as

Kw =
2kTUT

κ2

Kw =
2× 1.38× 10−23 × 300× 25× 10−3

0.682

Kw = 4.48× 10−22 (V 2A/Hz) (3.11)

Figure 3.2: Circuit used to find κ

3.2.2 Measurement of Kf

Kf is a process dependent fit constant [6]. Using the noise analysis output from

CADENCE we can find the fit constant. The circuit configuration in Fig.3.4 is
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(a) (b)

(c)

Figure 3.3: Calculation of κ. For lpnfet Vth0 = 553.3mV .

used and Vg is set such that the device is in subthreshold region. The process

simulation model uses a flicker noise exponent factor n = 0.95. Using this

exponent factor the fit constant for flicker noise is calculated. From the noise

simulation output noise current and the calculated Kf is found as shown in

Fig.3.5. Although the output noise consists of both flicker and white noise, the

lower frequency noise is mostly dominated by flicker noise. So treating the output

noise as only consisting of flicker noise is sufficient to calculate Kf .

Ī2
f =

Kf

A

1

fn
(κ
Id
UT

)2

Kf = Ī2
fAf

n/(κ
Id
UT

)2 (3.12)
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Figure 3.4: Circuit used to calculate flicker noise

From Fig.3.5(b) the value of Kf is constant in flicker noise dominant part. The

(a) (b)

Figure 3.5: Output noise current from simulation of a lpnfet W = 160n, L =
120n, Id = 250pA.

fit constant is calculated as Kf = 6.9 × 10−23. To see how well the simulation

noise current fits the prediction by our model the total noise current calculated.

The total noise current is the sum of white noise and flicker noise as given by

Eq.3.13. The total noise calculated from model equations seems to agree well

with simulation output which is shown in Fig.3.6

Ī2
o =

Kf

A

1

fn
(κ
Id
UT

)2 + 2qId (3.13)
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Figure 3.6: Total input referred noise for lpnfet (W = 160n, L = 120n, Id =
250pA) simulation vs model prediction.

3.3 Minimum detectable signal

Low power circuits operate on very low signal levels. This makes the input signals

to the circuit susceptible to be corrupted by noise. This sets a minimum limit

to the input signal that can be reliably processed by the circuit. The noise is

superimposed on the input signal. Hence if the signal level in comparable to

the noise level then the signal will be completely buried inside the noise. It is

necessary for the signal to have reasonable amplitude to be distinguishable from

the noise. For a single MOSFET operating in subthreshold regime from Eq.3.7

setting ID = 1nA, fl = 0.01Hz, fh = 1GHzA = WL = 160nm × 120nm, the

input referred noise is

v̄2
n =

4.48× 10−22 × (fh − fl)
ID

+
6.3928× 10−24

A
ln(

fh
fl

)

v̄2
n = 448 µ(V 2)

v̄n = 21.2 mV

If we take the square root of the input noise power we get the noise amplitude

level. This means we cannot measure anything below 21.2mV at the input at low
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frequencies. By same argument we can say at the output the current level is

ī2n = v̄2
ng

2
m

ī2n = v̄2
n(
κID
UT

)2

ī2n = 3.31× 10−19 (A2)

īn = 0.5 nA

So for a minimum size lpnfet, at bias current level of 1nA, we need more than

0.5nA of current to treat it as signal. Eq.3.7 can also be written as

v̄2
n =

Kw

ID
∆f +

Kf

A
ln(

fh
fl

)

v̄2
n =

KwVDD
VDDID

∆f +
Kf

A
ln(

fh
fl

)

v̄2
n =

KwVDD
PT

∆f +
Kf

A
ln(

fh
fl

) (3.14)

VDD is the supply voltage. Eq.3.14 relates the input referred noise with the total

power and area of of MOSFET. Increasing power will reduce the white noise

but the flicker noise will be unaffected. Increasing the area will reduce the flicker

noise but the white noise will be unaffected. From this equation limit of minimum

detectable signal at input can be found as function of power and area. Such a

limit is shown in Fig.3.7. First power is varied from 1pW to 1nW with VDD = 1V

keeping the area constant at WL = 160nm × 120nm. As the area is fixed the

flicker noise is constant. Hence even if the white noise part decreases, total noise

cannot go below the fixed flicker noise. This is shown in Fig.3.7(a). Also lower

portion under the curve is labeled as unreachable. This is because any signal

level on those region will be buried under the noise. So the minimum measurable

signal level should be above the curve. A similar analysis is shown in Fig.3.7(b)
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when power is kept constant at 1nW with VDD = 1V and area is varied from

1nm2 tot 1µm2. This time the minimum noise is set by the fixed power. To

minimize the noise from a MOSFET both power and area needs to be optimized

to obtain minimum noise.

(a)

(b)

Figure 3.7: Minimum detectable signal level at input at low frequencies as power
and area is varied (a) Area is constant at minimum size (W=160nm, L=120nm)
(b) Power is set at 1nW.
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3.4 Noise in analog multiplier circuit

The multiplier is the basic building block of the analog classifier. It takes current

IB as input and produces a current Io as follows.

Io = m× IB (3.15)

where m is the coefficient. The multiplier is implemented by a differential

transconductance amplifier.

Figure 3.8: Differential transconductance amplifier used as multiplier circuit

3.4.1 Multiplier circuit

The circuit is shown in Fig.3.8. The tail current or the bias current is produced

by pMOS current source using voltage Vb. EN acts as an enabler that connects
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or disconnects the bias current sources from the rest of the circuit. There are

two current sources in parallel pushing tail current for the differential pair. If one

source produces IT current then two parallel sources produce bias current IB =

2IT . The current mirror is made of nMOS cascode current mirror. The current

mirror performs subtraction of two current from the two legs of the differential

pair. The current mirror draws equal current in both legs. So any imbalances in

currents in M1 and M2 goes to output. This is how the current mirror performs

subtraction. The output current is given by

Io = IB tanh [
κ

2UT
(Vin − Vref )] (3.16)

If we compare Eq.3.16 with Eq.3.15 using IT as multiplicand then the coefficient

m from the circuit is

m = tanh [
κ

2UT
(Vin − Vref )] (3.17)

The voltage difference (Vin − Vref ) is used to set the magnitude of the multiplier

m. This voltage difference has a tanh(.) relationship with the multiplier. Fig.3.9

shows how the function varies with the argument. Its value is limited to [-1, +1].

Hence the multiplier value m is also limited to [-1, +1] for bias current IB. If

we assume I current goes through M5 then M6 and M1 also carries I. M2 then

carries (I +mIB). But the sum of currents through M1 and M2 has to be IB. So

I + I +mIB = IB which means I = (1−m)IB/2. Hence M1 carries (1−m)IB/2

and M2 carries (1 +m)IB/2.

3.4.2 Noise in the multiplier

To find the total output noise current we have to use the small signal circuit

including the noise generator for each transistor. All the voltage/current inputs

are ac short/open respectively. The resulting circuit is shown in Fig.3.10. The
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Figure 3.9: Shape of tanh(x) function

transcondunctance gs = gm + gmb includes the body effect. The next step is to

Figure 3.10: Small-signal noise circuit of the multiplier
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find the gain of each noise generator, ik, to the output of the multiplier, αk(f),

while setting all other noise sources to zero. Since they are uncorrelated we can

use superposition to add up all the individual noise. The total output noise will

be given by

i2out(f) =
∑
∀k

|αk(f)|2i2k(f) (3.18)

We can simplify the small signal circuit further as shown in Fig.3.11. The gs

generators of M1 and M2 are replaced with 1/gs resistors and dependent current

sources. For simplicity the subscript n in noise currents is dropped in calculation.

Figure 3.11: Simplified small-signal noise circuit of the multiplier

Gain for i7 and i8: The noise current for i7 goes through 2/(1 −m)gs and

2/(1 +m)gs resistors and divides into (1−m)i7/2 and (1 +m)i7/2 respectively.

ix1 = (1 − m)i7/2 which generates im = ic = (1 − m)i7/2. ix2 = (1 + m)i7/2.
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Total output current is iout = ix2 − im = (1 + m)i7/2− (1−m)i7/2 = mi7. The

gain for i7 is α7 = m. Similarly the gain for i8 is α8 = m.

Gain for i9 to i14: The noise currents for i9 to i14 cannot flow to the output

because i7 and i8 will be open circuited. Hence the gain for these currents is zero.

Gain for i1: i1 draws current through 2/(1 − m)gs and 2/(1 + m)gs and

divides into ix1 = −(1−m)i1/2 and ix2 = −(1 + m)i1/2 respectively. im = ic =

i1 + ix1 = (1 +m)i1/2. Total output current is iout = ix2− im = −(1 +m)i1. The

gain for i1 is α1 = −(1 +m).

Gain for i2: For i2, ix1 = −(1−m)i2/2 and ix2 = −(1 + m)i2/2. im = ic =

ix1 = −(1−m)i2/2. Total output noise current iout = ix2 + i2 − im = (1 +m)i2.

The gain for i2 is α2 = (1−m).

Gain for i3 and i4: i3 only circulates in M3. So ix1, ix2, im are all zero. The

gain for i3 is zero. Similarly for i4 the currents ix1, ix2, im are all zero. The gain

for i4 is also zero.

Gain for i5: i5 circulates through M5. im = ic = −i5. Total output noise

current iout = −im = i5. The gain for i5 is α5 = 1.

Gain for i6: i6 flows through M4 to the output. im = i6. Total output noise

current iout = −im = −i6. Gain for i6 is α6 = −1.

Total noise output noise current: If we assume that the output noise

is dominated by thermal noise in the subthreshold region then the total noise

current is calculated using Eq.3.18.

i2out(f) = α2
7i

2
7(f) + α2

8i
2
8(f) + α2

1i
2
1(f) + α2

2i
2
2(f) + α2

5i
2
5(f) + α2

6i
2
6(f)

i2out(f) = α2
7 × 2q

IB
2

+ α2
8 × 2q

IB
2

+ α2
1 × 2q

(1−m)

2
IB + α2

2 × 2q
(1 +m)

2
IB

+ α2
5 × 2q

(1−m)

2
IB + α2

6 × 2q
(1−m)

2
IB
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i2out(f) = [m2 1

2
+m2 1

2

+ (1 +m)2(1−m)
1

2
+ (1−m)2(1 +m)

1

2

+ (1−m)
1

2
+ (1−m)

1

2
]2qIB

i2out(f) = [m2 + 2(1−m2)
1

2
+ (1−m)]2qIB

i2out(f) = (2−m)2qIB (3.19)

This equation shows when m = −1 noise is maximum and minimum when m =

+1. This conclusion can also be reached by intuition. When m = −1, all of the

current is steered through M1 to M3, M5 which is also copied to M4, M6. Hence

noise current is maximum. But when m = +1, all of the current is steered to

output and there is no current in M3 to M6. so the noise current is minimum. If

the noise bandwidth is ∆f then output noise current is

i2out =

∫ ∞
0

(2−m)2qIBdf

i2out = (2−m)2qIB∆f (3.20)

Figure 3.12: Output noise current from multiplier made of ideal BJT and from
hand analysis
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The cadence simulation of the multiplier shows presence of 1/f noise. To

verify how well this analysis is able to predict output noise current, we simulate

for output noise current of a multiplier made of ideal BJTs. This only exhibits

thermal noise and behaves like MOSFET in subthreshold with κ = 1. The result

is shown in Fig.3.12. The hand analysis result and the simulation output matches

quite accurately.

3.4.3 Signal to noise ratio

The output current power is I2
o = m2I2

B. Hence the signal to noise ratio (SNR) is

SNR =
I2
o

i2out

SNR =
m2I2

B

(2−m)2qIB∆f

SNR =
m2IB

(2−m)2q∆f
(3.21)

SNR =
m2PT

(2−m)VDD2q∆f
(3.22)

Here PT = VDDIB is the power consumption in the multiplier. Few observation

can be made from the SNR equation. The SNR depends on the multiplier

operating point m. Improved SNR requires higher power consumption PT . Also

higher SNR means slower operation.

3.4.4 Fundamental Limit of Multiplication

From the equation of SNR a fundamental limit of the multiplier operation can

be obtained that displays how much one quantity is limited when other quantity
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is chosen. Eq.3.21 can be rearranged as follows.

SNR×∆f

IB
=

m2

(2−m)2q
(3.23)

m assumes values in the range −1 ≤ m ≤ +1. Hence the left side of Eq.3.23

is expressed in terms of physical constant. This lets us calculate a limit of how

much can be achieved from a multiplier. If we translate noise bandwidth into

time period of operation ∆f = 1/τ then PT/∆f = PT τ = Jm represents energy

consumed in joules for one operation of multiplication. Eq.3.22 can be written

as.

Jm =
(2−m)2q

m2
SNR× VDD (3.24)

This equation has one interesting outcome at m = 0. The energy required to

achieve any value of SNR is unbounded. However, this makes sense because at

m = 0 there is no output from the multiplier. Hence, there is no value of energy

that can produce any output signal. For a fixed value of m Eq.3.24 shows a linear

relationship with SNR and energy per multiplication.

3.4.5 Effective number of bits and Energy per multiplica-

tion

If we were to convert the analog current into digital domain then the number of

bits required for a given SNR is

b =
SNR− 1.76

6.02
(3.25)
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where all the values are given in dB. Replacing the SNR with Eq.3.22 we obtain

energy required for a given number of bits.

Jm =
(2−m)2qVDD

m2
10(6.02b+1.76)/10 (3.26)

We can see that the relationship of number of bits with the energy per

multiplication is exponential. If b = 0 there will still be some energy that will be

spent. Fig.3.13 shows the energy variation with number of bits for m = −1.

Figure 3.13: Energy consumption with number of bits.

3.4.6 Equivalent relationship in Digital system

For most digital systems the power and area are proportional to the number of

bits. But for some digital systems the power and area scales as a polynomial

function of the number bits. Multiplication have power and area cost that scales

as square of the number of bits. For a given SNR the equivalent number of bits

b required for a digital computation, a conversion from SNR to equivalent bit is
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necessary. One is given by Shanon-Hartley equation [7] for data communication.

b =
1

2
log2(1 + SNR) (bits/sample) (3.27)

Another is given from Analog to Digital Conversion (ADC) theory given by

Eq.3.25. This is more appropriate for use. A single transistor with width W ,

length L, operating with supply voltage VDD, clock frequency f , load capacitance

C consumes dynamic power fCV 2
DD [8]. Then the resource precision equation for

digital multiplication is given by

PD = Lp[
SNR− 1.76

6.02
]2 (3.28)

AD = La[
SNR− 1.76

6.02
]2 (3.29)

where Lp = fCV 2
DD and La = WL. A comparison of power consumption and

area consumption with respect to SNR for digital and analog scenario can be

drawn. If we include 1/f noise in the total output noise current then

i2out(f) = (2−m)2qIB + (2−m)
Kf

A

1

f
(
κIB
UT

)2 (A2/Hz) (3.30)

Using this to find analog SNR and Eq.3.28 ,3.29 for digital SNR, power vs.

SNR and area vs SNR can be compared similar to what was presented in [9]. Such

a comparison is shown in Fig.3.14. For a fixed area the 1/f noise is fixed. With

increase of power consumption white noise decreases but the total noise cannot

decrease below the fixed 1/f noise. This is why for fixed area consumption analog

SNR cannot improve beyond what is set by the 1/f noise limit. For low values of

SNR analog multiplier has better power consumption than digital counterpart.

Similar situation is observed when the power is fixed. This time the fixed power
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consumption makes white noise constant. As the area is increased for analog

case 1/f noise decreases but the total noise cannot decrease below the fixed white

noise. Hence there is an upper limit on the SNR. In the case of area consumption

here also the analog circuit performs better. The digital circuit take more area

than the analog counterpart for the same SNR.

(a) (b)

Figure 3.14: comparison of precision for digital and analog multiplication. m
is varied, fh = 1GHz, IB = 1nA, VDD = 1V , C = 1pF , W = 1µm, L = 1µm,
m = 0.5 (a) area is fixed at W = 1µm, L = 1µm in analog (b) power consumption
is fixed at 1µW . in analog

3.4.7 Multiplication in Classifier

In the classifier the actual output current is the sum of several multiplier output

current as follows.

Iout = m1I1 +m2I2 + · · ·+mnIn

Iout =
n∑
i=1

miIi (3.31)

To implement this, it may be intuitive to connect the output of n multiplier

circuit cells to get the sum of the outputs. However it is sufficient to use only
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Figure 3.15: Multiplier current summing in classifier.

one current mirror to get the sum of multiplier currents as shown in Fig.3.15 The

output noise current in this case is calculated the same way as single multiplier

cell. The output noise current for this case is as follows.

i2out =
n∑

i=1

i2mi

i2out =
n∑

i=1

(2−mi)2qIi∆f (3.32)

The SNR for the classifier is

SNR =
(
∑n

i=1 miIi)
2

∑n
i=1(2−mi)2qIi∆f

SNR =
(
∑n

i=1 miPi)
2

∑n
i=1(2−mi)2qVDDPi∆f

(3.33)

Here Pi is power consumption for each multiplier cell. To make this equation

manageable it is useful to define average multiplier m as follows.

m =

∑n
i=1 miIi∑n
i=1 Ii
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m =

∑n
i=1 miVDDIi∑n
i=1 VDDIi

m =

∑n
i=1 miPi∑n
i=1 Pi

m =

∑n
i=1 miPi
PT

(3.34)

Here PT is the total power consumed in the classifier. Using this we can simplify

the SNR for the classifier from Eq.3.33

SNR =
(
∑n

i=1 miPi)
2∑n

i=1(2Pi −miPi)2qVDD∆f

SNR =
(mPT )2

(2PT −mPT )2qVDD∆f

SNR =
m2PT

(2−m)2qVDD∆f
(3.35)

This equation is much more tractable and has similar form as Eq.3.22.

3.4.8 Energy per multiply accumulate

The multiply-accumulate (MAC) is the operation defined by multiplication of

two quantities and adding the product to an accumulator.

a← a+ b× c

a← a× 1 + b× c (3.36)

The addition process does not take any extra energy because it can be done

by combining two wires carrying current a and b × c and Kirchoff’s law takes

care of the addition. In this case the MAC operation can be thought of as two

multiplication operation. One with multiplier 1, bias current a and other with

multiplier c, bias current b. As PT/∆f = PT τ = Jm is total energy, using Eq.3.35
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we can compute energy per MAC as

JMAC =
(2−m)2q

m2 SNR× VDD (3.37)

3.4.9 Effect of noise in classifier decision making

The classifier operates on comparing two currents. If current from one class is

greater than or equal to the other then the first class wins. However when two

currents are equal, noise in the current randomly makes the currents deviate

from the actual values. This makes some wrong decisions at the decision

boundary. The effect can be simulated in MATLAB for two variable simple binary

classification. When there is no noise the class boundary is distinct and clean as

shown in Fig.3.16(a). When some Gaussian noise is introduced at the multiplier

output there are some wrong decisions and class boundary is not clearly identified

as shown in Fig.3.16. By increasing the SNR the number of wrong decisions can

be reduced.

(a) (b)

Figure 3.16: Classification result (a) without noise (b) with noise. There are
some misclassification at the boundary between two class.
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Chapter 4

Testing Process of Linear

Classifier

The classifier works by taking current as inputs and based on the weights stored in

the memory the classifier classifies the input into separable classes. Let the input

currents be i1, i2, ... , in. And the weights for m classes be [w11, w12, ..., w1n],

[w21, w22, ..., w2n], ... , [wm1, wm2, ..., wmn]. The output currents for each of the

classes from the classifier is given by.

I1 = w11 ∗ i1 + w12 ∗ i2 + ...+ w1n ∗ in

I2 = w21 ∗ i1 + w22 ∗ i2 + ...+ w2n ∗ in (4.1)

...

Im = wm1 ∗ i1 + wm2 ∗ i2 + ...+ wmn ∗ in

The output class is identified by looking at the highest output current from the

array of output currents [I1, I2, ..., Im]. The winner take all logic takes care of

finding out which output class has highest current. Fig.4.1 shows the topology

of the classifier. It has four rows for input current and three columns for three
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Figure 4.1: Classifier topology in the chip

classes.

Now for a simple case of three output classes and two input currents the

classifier can be described by two dimensional equation of lines. For example for

the linear classifier equation below, the classes are separated by three lines in

cartesian coordinate system as shown in Fig.4.2.

I1 = 0.25 ∗ i1 + 0.6 ∗ i2 + 0.3

I2 = −0.1 ∗ i1 + 0.3 ∗ i2 + 0.6 (4.2)

I3 = 0.3 ∗ i1 + 0.3 ∗ i2 + 0.4

Hence if we take two input of the classifier to vary and set appropriate weights

then we should see an output response similar to Fig.4.2 which have its classes

separated by lines. This chapter will describe how the classifier chip is set up

with external circuits to apply input signals, measure outputs using LabView and

how the results extracted.
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Figure 4.2: The color represents the regions of classes. Red represents [1,0,0],
blue is [0,1,0], and green is [0,0,1].

4.1 Current measuring circuit

The currents out of the multipliers Iin are on the order of pA range. So to

reliably measure the current the circuit in Fig.4.3 is used. A negative feedback

configuration is used to ensure Vref voltage at the input current node. The current

provides a voltage drop across 10GΩ resistor. The second stage provides a gain

of 10 on that voltage.

Vo1 = 10GΩ ∗ Iin + Vref (4.3)

Vout − Vref ∗
2

20
= Vo1 − Vref (4.4)

Vout = Vref + 10 ∗ 10GΩ ∗ Iin (4.5)

Hence for Vref = 1V , Vout = 1.1V for 1pA current, Vout = 1.2V for 2pA current

and so on. LMC6482IN CMOS dual rail to rail input and output operational

47



Figure 4.3: Circuit for pA current measurement

amplifiers has been used in this circuit. This circuit will be referred to as

transimpedance amplifier (TIA).

4.2 TIA Offset

Here it is shown how the offsets of the amplifier used for pA current measurement

affects the output results. It is easy to calculate the effects of offsets using

superposition. From Fig.4.4 for the first stage output voltage without offset

is Vo1 = R10GΩIin +Vref . Output with only offset is Vo1 = VOS + IBR10GΩ. Hence

the output with the effect of offset is

Vo1 = R10GΩIin + Vref + VOS + IBR10GΩ (4.6)

For the second stage the output without offset is Vout = (1 + R18kΩ

R2kΩ
)Vo1 −

R18kΩ

R2kΩ
Vref . Output with only offset is Vout = (1 + R18kΩ

R2kΩ
)VOS + IBR18kΩ. Output

with the effect of offset is

Vout = (1 +
R18kΩ

R2kΩ

)Vo1 −
R18kΩ

R2kΩ

Vref + (1 +
R18kΩ

R2kΩ

)VOS + IBR18kΩ (4.7)
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Figure 4.4: Offset Calculation for pA current measuring circuit.

Combining Eq.4.6 and Eq.4.7 we have the final output from the circuit as

Vout = (1 +
R18kΩ

R2kΩ

)IBR10GΩ + Vref

+ (1 +
R18kΩ

R2kΩ

)VOS + (1 +
R18kΩ

R2kΩ

)VOS

+ (1 +
R18kΩ

R2kΩ

)IBR10GΩ + IBR18kΩ (4.8)

From the data sheet of LMC6482 the typical offsets are VOS = 0.11mV and

IB = 0.02pA at 25oC. This amounts to a offset output of around 4.2mV . So if

Iin = 0 and Vref = 1V the output voltage will be Vout = Vref +4.2mV = 1.0042V .

This amounts to equivalent input current of around 0.42fA which is three orders

of magnitude lower than the current we want to measure. (Using equation Vout =

Vref + 10 ∗ 10GΩ ∗ Iin)

4.3 Transconductance Board

A transconductance board is used to convert analog signal into currents which

is used to supply the input currents to the classifier chip. Fig. shows the board

used in the measurement. (I don’t have the circuit diagram for this one.)
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Figure 4.5: Transimpedance board

4.4 Testbench PCB

The classifier chip sits on a PCB which sets up power supply and other necessary

signals ready for delivery to the chip. The PCB is powered by +8.5V and -3.0V

power supply. They are used to make chip main power supply of 1V and other

necessary supply voltages.

4.5 LabView Setup

The LabView setup consists of applying appropriate input signals to the chip

with proper timing and reading back the output signals from the chip and log

them in a file. The capability of LabView to send and read signals reduces the

need for many power supply, signal generators and oscilloscopes. Also LabView

is a good choice of tool for measuring chip performance because it allows control

of timing of the signal delivery, signal acquisition and log data. Several digital

signals are delivered to the chip using an infinite for loop as shown in Fig.4.6.

The controls at data2 in the front panel can be used to supply digital signals to

the chip using mouse or program. Table4.1 below gives a description of each of

the digital signals. Similarly the analog signals are applied using an infinite loop

as shown in Fig.4.7. This code uses the control box Current in the front panel

to supply analog voltage to the transconductance board which supplies input
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Figure 4.6: LabView code for digital signal delivery

Table 4.1: Description of digital output signals from LabView

signal Description
VTUN Applies 7V at the memory transistor for tunneling

CG Control gate signal that controls injection
WEN Enable signal for the injection transistor

ROW〈0〉 row select bit for decoder logic
ROW〈1〉 row select bit for decoder logic
VINJ〈0〉 injection select bit for 1st column select
VINJ〈1〉 injection select bit for 2nd column select
VINJ〈2〉 injection select bit for 3rd column select
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Figure 4.7: LabView code for analog signal delivery

Table 4.2: Description of analog data read out

Signal Description
Iop1 Output voltage of TIA for the 1st column of the classifier
Iop2 Output voltage of TIA for the 2nd column of the classifier
Iop3 Output voltage of TIA for the 3rd column of the classifier

WTA1 1st column output from winner take all
WTA2 2nd column output from winner take all
WTA3 3rd column output from winner take all

currents to the classifier chip. By varying the values in control box Current in

the front panel the input currents can be varied.

There are several analog signals to be measured. They are sampled at a rate

of 1KHz and displayed to the oscilloscope in the front panel continuously 100

samples at a time. The LabView code is shown in Fig.4.8. This code also includes

additional codes for averaging out the value of 100 samples of data that is being

displayed on the oscilloscope. This helps see the value of the signals when the

data has become steady and it is easy to read out this value rather than looking

at the oscilloscope. The table4.2 below describes the type of data being read out.
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Figure 4.8: LabView code for analog signal measurement

4.6 Floating gate weight estimation

When the chip is fabricated there are some static charges trapped on the gates

because of the fabrication process. Hence there are some weight already present

in the floating gates even before the process of setting the weights begins. The

weights in the floating gates can be estimated using the multiplier output current.

Fig.4.9 shows the multiplier used in the chip. The input current is sourced

from node V B. ENz acts as enabler for the circuit. V REF is used to set

multiplication operating point. The floating gate weight is applied to node V IN .

The multiplication of the input current and the weight is proportional to the

current difference of the two legs. If V REF becomes equal to V IN then equal

current flows on both legs and difference current becomes zero. Hence by varying

V REF and checking the multiplier output current value of V IN or the weight
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Figure 4.9: Analog multiplier circuit

can be estimated. The output multiplier current is measured using the TIA

voltage. From Eq.4.5 if current is zero then output voltage is Vref which is 1V.

Fig.4.10 shows the output voltage of TIA for three columns of the classifier as

V REF is varied. Input current is supplied to one row and other input current

is kept zero. From the figure it can be estimated that on that row, column 1 has

weight of 0.8 and the other two has weight of 0.9.

4.7 Multiplier current variation with input cur-

rent

Since this is a linear classifier the output current from a multiplier for a class

should vary linearly with input current. Hence if we increase the input current

from zero the output current should also increase or decrease. To measure this

the first two input currents are kept variable and the other two are kept constant

at zero. Here the value of the weights stored in the memory transistors are not
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Figure 4.10: Floating gate weight estimation

important. As long as the weights are not zero any value will do. The currents

in the first two row the classifier is varied in a for loop and the output voltage is

logged in a .csv file. Then the .csv file is imported in MATLAB and the output

current is plotted. The code for current variation and data logging is shown in

Fig.4.11. The output current is measured in units of voltage from TIA. In the

MATLAB script the actual current is calculated using back calculation. The

result is shown in Fig.4.12. It can be seen that Iop1 and Iop3 decreased from a

value and Iop2 increased steadily as the input currents were changed.

4.8 Class separability

With the same code used in the previous section the output from the winner take

all can also be logged. By varying the input currents the winner take all data

is logged and a MATLAB script is used to plot the results. The output class is

identified by the WTA value having the highest value. The result is shown in

Fig4.13. It can be seen that the classes are separated by lines which indicates

that the classifier is able to differentiate the input space.
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Figure 4.11: LabView code for input current sweep

Figure 4.12: Multiplier output current variation with input current
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Figure 4.13: Separation of classes

4.9 Speed of classification

The speed of classification is defined as how fast the winner take all signal changes

its value. The idea is that the classifier will run on a clocked system. A pattern

is presented to the input and the result is read out in each clock cycle. Hence if

it takes 10us to change the decision from the input to the output path, then it is

possible to classify 100k vectors/second. To measure the time the winner take all

signal changes its decision, the change of the WTA signal is logged in .csv. The

result is shown in Fig.4.14. From the figure the rise time is estimated to be less

than 10ms.

4.10 Input referred noise

When the classifier works near the decision boundary it will produce some wrong

results. These wrong result are because of the noise present in the system
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Figure 4.14: Rise time of a WTA signal

which is assumed to be gaussian. This noise will cause uncertainty in the

outcome the classification result. To measure the noise a statistical approach

is used. If the classification result is sampled near the decision boundary many

times, probability of the class being classified correctly is found. This represents

the cumulative probability density function (CDF). Differentiating this CDF, a

probability density function (PDF) is found. LabView code is used to sweep one

input variable near the decision boundary 100 times and the other variable is

kept constant a value. The winner take all data is logged. The probability is

calculated as 1 if the classification result is correct and 0 if the result is wrong.

Fig.4.15 shows the winner take all decisions near the decision boundary. It can

be seen that from steady decisions the winner take all is affected by noise at

and near the decision boundary and then gets steady again. From this data the

CDF and PDF is calculated as shown in Fig.4.16. Curve fitting is used to fit to

the experimental CDF. Then CDF is differentiated with respect to input current

to get the PDF. From the figure the standard deviation σN is estimated to be
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Figure 4.15: Wrong decisions near decision boundary

around 0.3pA. This can be interpreted as the input-referred noise of the classifier.

4.11 Input current to the classifier

A Source Meter Unit (SMU) is used to measure the input current into the chip.

The SMU is set up to measure current at a voltage of 1V. The SMU is connected

to the main VDD rail of the chip and the chip is turned on. A current of around

4nA is found to be sourcing from the SMU. A summary of the input current as

the supply rail voltage to the chip is varied, is given in table4.3.
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Figure 4.16: CDF and PDF calculation

Table 4.3: Input current to chip and stability as VDD is varied

VDD Isupply WTA stability
1.0V 4nA stable
0.9V 4nA stable
0.8V 4nA stable
0.7V 3-5nA unstable
0.6V 3-5nA stops working
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4.12 Setting specific decision boundary

The classifier needs to have specific decision boundary to classify real input

patterns. One way to set specific decision boundary is to set the weights in

the memory transistors the same as the weights of the decision boundary. But

this has a problem. The transistors fabricated in the chip will have mismatch.

Hence even if the weights are accurately set up the same for every single memory,

the currents output from them will be different. This is why instead of setting up

the weights that way, an iterative approach is adopted. The tunneling is global for

every memory transistor. So when tunneling happens every transistor’s weights

go to high value. The injection process brings the value of the weights down. One

by one for every floating gate the injection process continues until the weight is

increased a little. The output classification pattern is examined. This process

continues until the output classification pattern is obtained as required. This way

the weights will be set up properly the way it needs to be to produce the required

output classification. In Eq.4.2 there is a constant term on the right hand side

which is the bias term. This is set in the chip by setting a constant current in

the third row. This current multiplied by the weight in the floating gate memory

produces a constant bias term. The weight of the floating gate memory for the

bias term is also subject to iterative weight setting process.

Fig.4.17 shows the circuit diagram of the floating gate (FG) memory

transistor. Tunneling happens when CG node is pulled down to 0V and V TUN

node is pulled up to 7V. For injection to happen transistor T2 needs to turn on.

This is done by sending digital high to W EN and SEL which pulls vdd int node

up to 3V. V INJ is pulled down. Using CG a voltage of around 3V is coupled

to node FG. This turns on T2. When current flows in T2 some of the electrons

are injected into the FG node. The table4.4 summarizes the process. A pulse

61



Figure 4.17: Floating gate memory circuit

Table 4.4: Injection and Tunneling signal

process VTUN CG WEN SEL VINJ
Tunneling 7V 0V 0 0 1.5V
Injection 0 3V 3V 3V 0

train of CG with period 100ms is applied for 50 cycles before the output currents

are checked. A LabView code automates the process of injection in an iterative

manner until the desired output classification pattern is obtained. An attempt

to obtain an output pattern like in Fig.4.2 provides the result shown in Fig.4.18

after many iterations. It is not exactly the same as Fig.4.2 but is on its way

towards that direction.

It was very difficult to implement specific decision boundary in the chip

because every time one floating gate is adjusted other set values on other floating

gates changes from the previous value a little. A look at the circuit diagram

reveals that there are some injection going on in T2 transistor when it is not

supposed to happen. When injection is not happening vdd int and V INJ is 0V.

So there should not be any current in T2. But the V INJ node does not go all
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Figure 4.18: Specific decision boundary set in classifier chip

the way to 0V for the PCB circuit that supplies the V INJ to the chip. There

is a small voltage around 0.3V on that node when it should be 0V. Since CG

is global which supplies 3V on the floating that needs injection, it also connects

to other floating gates. Hence there is a current in T2 from V INJ to vdd int.

This injection causes the floating gates to change its value when there should not

be any injection. Although this current should not have enough energy to cross

over the oxide barrier but it is a possible explanation. Further on the programing

routine of the floating gate is given in the appendix.
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Chapter 5

Conclusion

This thesis explored the applicability linear discriminant classification algorithm

in solving the problem at hand. Linear discriminant analysis uses multiplication

and addition to make decision. These two operations have been implemented

by using analog multiplier and summing the output current together. The

analog nature of the computation helped it use only few transistors to implement

multiplication, far less than its digital counterpart. The physics of Kirchhoffs law

let us directly compute the sum by simply connecting the output currents from

the multiplier together.

It is shown that by using proper frequencies the classifier can achieve good

accuracy. Genetic Algorithm has been used to find the optimum set of frequency

combinations. However, any numerical method could be used to do the same

job. A mix of acoustic and vibration frequencies show better performance in

classification.

The thesis also explored the impact of noise in the decision making process.

Since the classifier operates on very low current level, the output decisions are

affected by the noise. While noise limits the ability of the circuits to operat at

arbitrarily low power values and some wrong decisions are unavoidable at decision
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boundary, reasonable SNR can still provide reliable classification results. The

noise of multiplier and the classifier showed there is a minimum level of energy

that needs to be spent to achieve a given level of accuracy. This fundamental

limit is useful in designing the classifier in a larger scale because it predicts how

much accurate the classifier will be for a given power supply.

Experimental results show operation of the classifier in a commercially

available 130nm silicon process. The results clearly show that the analog

implementation of the linear discriminant classifier reliably identifies three

different classes while the input current is varied. Although the analog devices

suffer from offset, proper biasing techniques corrects for that error. For example,

the offsets associated with floating gate outputs are generally not problematic

since the floating gate values are set just enough such that the circuit produces

a desired output current, irrespective of the actual floating gate value.

In conclusion, the analog design of machine learning shows itself as a powerful

and resource saving alternative to digital computation techniques. There is

a growing interest in the subject of approximate computation because not

all computation techniques need 32-bit/64-bit accuracy. So any computation

techniques like analog computation that is resource saving, can take us closer to

achieving low cost, mobile artificial intelligence.
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A Floating Gate Programing

Floating gate used in the classifier store a voltage by storing electrons on the gate

of a pMOS transistor. The transistor size is 360nm × 360nm. The source and

drain is tied together so that the transistor acts like a capacitor. The gate acts as

the floating gate FG. The voltages at the floating gate is changed by tunneling

and hot electron injection.

A.1 Tunneling

When V TUN is pulled up to 7V and CG is pulled down to 0V, electron from the

FG node tunnels into the substrate through the gate oxide. Lack of electron at

FG causes the voltage at FG to increase. This increase in voltage would cause the

multiplier output current to increase. Hence by watching the multiplier output

current we would know that the voltage at FG has increased. We would induce

tunneling for one second by pulling V TUN to 7V and CG to 0V. Then pull

V TUN to 0V and wait about a second to let the system settle down. Then

measure the multiplier output current. If we need to increase the current even

more the procedure is repeated. The following shows the algorithm.

Algorithm 1 Tunnleing Routine

Io ← desired multiplier output current
io ← measure multiplier output current
CG← 0V
while io < Io do

V TUN ← 7V
wait 1000ms
V TUN ← 0V
wait 1000ms
io ← measure multiplier output current

end while
V TUN ← 0V
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A.2 Injection

The injection current is applied by pulling the output of the AND gate to high

3V and pulling Vinj to 0V. Then a pulse of 3V is applied the gate of injection

transistor using CG node. The current flow through the injection transistor

creates some electron hole pair. Some of the electrons will have enough energy

to cross over through the oxide into the FG node. Accumulation of electrons

decreases the voltage at FG. This is repeated until we get the desired output

multiplier current. The following shows the algorithm.

Algorithm 2 Injection Routine

Io ← desired multiplier output current
io ← measure multiplier output current
WEN ← 3V
SEL← 3V
Vinj ← 0V
while io > Io do

100 pulse train of CG=3V with 100ms period
wait 1000ms
io ← measure multiplier output current

end while
WEN ← 0V
SEL← 0V
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