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Abstract

Neuromorphic electronics studies the physical realization of neural networks in discrete

circuit components. Hardware implementations of neural networks take advantage of highly

parallelized computing power with low energy systems. The hardware designed for these

systems functions as a low power, low area alternative to computer simulations. With on-line

learning in the system, hardware implementations of neural networks can further improve

their solution to a given task.

In this work, the analog computational system presented is the computational core for

running a spiking neural network model. This component of a neural network, the neuron, is

one of the building blocks used to create neural networks. The neuron takes inputs from the

connected synapses, which each store a weight value. The inputs are stored in the neuron

and checked against a threshold. The neuron activates, causing a firing event, when the

neuron’s internal storage crosses its threshold. The neuron designed is an Axon-Hillock

neuron utilizing memristive synapses for low area and energy operation.
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Chapter 1

Introduction

In this thesis, the design and verification strategy for one componenet for a neuromorphic

computing system architecture is presented. In order to understand the reasoning behind

the circuit level component’s design choices, it is imparitve to understand the background

information that led to the developement of the circuit. The circuit designed is at its core an

analog neuron that is designed for a syncronous neuromorphic system. The circuit component

fits into a larger system that which drove the component’s requirements. The requirements of

the whole architecture combined together at different levels, high level simulation model and

low level circuitry, to give the circuit design for this component stringent goals. The main

goal for this work is developing a useful circuit that functions properly for our neuromorphic

computing architecture by exicuting all required steps in the opreation time. Subsequent

design implementation goals are a low-power, low-area circuit that meets the functional and

timing requirements.

1.1 Neuromorphic System

The first step in building this circuit is to look at the neuromorphic computing system

architecture that requires it as a component. A neuromorphic computing system is an

alternative computational architecture to a von Neumann architecture. Neuromorphic

systems are inspired by our own brains. To compete with the low power consumption of

our brains, which is twenty percent of our total bodies power consumption, they would
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Figure 1.1: Labeled neuron cell

require 20 W or less power [10][6]. Neuromporphic systems also take advantage of our brains

parrallel processing capabilities, which is a result of the brain’s highly interconnected cells.

The architecure the circuit in this work is designed to implement is Neuroscience-Inspired

Dynamic Architecture, NIDA, which is a spiking neural network [16]. The circuit is designed

to implement a limited physically realizable version of NIDA.

1.2 Biology

Due to the biological inspiration it is important we understand how the circuit components

biological conterpart functions. The neocortex in the human brain consists of approximately

twenty billion neurons [13]. Each neuron is connected to other neurons via synapses, with the

neuron’s in the neocortex having roughly ten thousand connections each. These cells create

the electrical impulses in the brain that functions give the ability to think.

The neuron has three main components, input, storage, and output. The neuron is shown

in a block diagram depiction in figure 1.1. The inputs into the neuron are its dendrites.

Dendrites branch out to connect to the outputs of other neurons. The dendrites take the

outputs of other neurons and bring them to the cell body of the neuron. The cell body is

the summation center of all the inputs of a neuron. In the cell body, the neurons inputs are
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stored and processed. Upon a neuron reaching a set electrical potential in the cell body, the

neuron will fire an output signal. During the firing process, neuron resets its cell body and

does not accumulate inputs. The reset time is known as a neuron’s refractory period. The

output signal is a voltage spike that is propogated out the neuron’s axon. The axon connects

to synapses that create a bridge to the next neuron’s dendrites.

Synapses are a modulation of a neuron’s ability to cause another neuron to fire. Synapses

hold a relative strength between two neurons. Synapses grow to create stronger or weaker

conncetions to neurons based on their use case. Hebb’s postulate states that correlated

neuron activety adjusts the weight of the synapse as seen in equation 1.1 [7]. The effective

weight of the synapse, w, is changed based on the events of the neurons connected to it. The

neuron whos output flows through the synapse, xi, and the neuron who takes that synapse

output as input, xj, are the pre and post neuron, respectively.

Δwi = xi × xj (1.1)

This is expanded upon in spike timing dependent plasticity. In STDP, the synapse increments

or decriments its weight based on the time difference between a pre and post neuron fire [3].

The synapses ability to change its strength, which is its ability to cause a neuron to fire, is

known as synaptic plasticity. The function of the changing effectiveness of one neuron to cause

another neuron to fire gives the ability to learn. Spike timing dependent plasticity changes

the weight of a synapse during its operation. This process is a type of unsupervised online

learning because the updated behavior happens as the system runs, or is online, and has no

feedback about whether or not the output is correct, or is unsupervised. The neuromorphic

system implemented takes advantage of different combinations of connected neurons and

synapses to solve problems and uses online learning to improve its results.

1.3 Neuron Model

The neuron can be expressed in functional electrical terms, the first of which is the integrate

and fire model by Louis Lapicque in 1907 [1]. Equation 1.2 is a the basic integrate and fire
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model for the function of a neuron. The inputs into the neuron are currents I(t) which are

integrated on the capacitor Cm and create the voltage Vm. From equation 1.3 the fourier

transform of a constant current input can be used to describe the refractory period. Upon

the voltage, Vm, crossing a set threshold voltage, Vth, the neuron fires and resets its output

voltage in time tref , from equation 1.3.

I(t) = Cm × dVm(t)
dt (1.2)

f(I) = I
Cm × Vth + tref × I (1.3)

An improvement upon the integrate and fire model, is the leaky integrate and fire model

which includes a leakage factor of the neuron shown in equation 1.4 [12]. The leakage factor

gives a threshold input currents must cross to cause a neuron to fire. The threshold current

is set by the threshold voltage, Vth, divided by the membrane resistance factor, Rm.

I(t) − Vm (t)
Rm

= Cm × dVm(t)
dt (1.4)

Another neuron model, the Hodkin-Huxley model takes into account multiple voltage-

dependent currents with there own conductance equations [8]. This model better represents

the bio-physical system, and consiquently, it is more complicated to reproduce and its intent

is to realistic modeling the ion channels during the activity of a neuron. The detail of

explaining the biological system goes beyond the basic functional application used in this

neuromorphic system. In this neuromorphic system, the flow of current in and out of the

neuron is controlled by the synapse which retains a set weight value, unless online learning

occurs, and a neuron leakage parameter. The neuron does not try to match the biological

signals in the neuron, but rather emulates the functionality to recreate the adaptive problem

solving behavior of the brain.
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Figure 1.2: Axon hillock circuit schematic

1.4 Axon Hillock Circuit

In this system, an on chip circuit used to emulate the neuron behavior is required. The

neuron circuit needs to accumulate and store inputs which can cause a firing event upon

crossing a threshold and then reset itself. The axon hillock circuit proposed by Carver Meade

in 1989 preforms these functions [11]. The circuit represents the functionality of the axon

hillock in the neuron. As mentioned in section 1.2, the axon functions as the output of

the neuron. The axon hillock is the part of the axon that is connected to the cell body.

The axon hillock is where the output spike is generated upon the cell body crossing the

threshold potential. The axon hillock circuit represents the cell body as the capacitor Cmem.

The capacitor stores inputs and upon the voltage on the capacitor crossing the amplifier’s

threshold, generates an output spike, Vout. The refractory period of the neuron is set by the

feedback transistors and the voltage Vpw. The inputs are blocked during the refractory period

by a p-type transistor that is controlled by the output voltage. The feedback capacitor, Cfb,

is positive feedback used to drive the voltage on the input capacitor to give the spike duration
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Figure 1.3: memristor

and set the reset voltage of the neuron. This circuit implements an analog process of spike

creation and reseting that fits the functional criteria for our system.

1.5 Memristor

The memristor is a two terminal electrical device first proposed by Leon Chua in 1971 [5].

The theoretical device links change in flux with change in charge. This connection gives the

device the relation between its current resistance state and its previous voltages applied. As

seen in equations 1.5 and 1.6 the conductance value of the memristor is a function of the

voltages that have been applied on the memristor.The change in state equation, equation

1.6, determines the change in resistance of the memristor based on voltage, time, and the

devices current state. Simply put, the memristor is a two terminal resistive memory device.

The physical realization of a resistive memory device happened in 2007 at HP [18]. The

device was a titanium oxide, which switches its doping based on the voltage applied which in

turn changed its resistance. The highly doped section gives the device low resistance and

the less doped section gives the device high resistance. The size of the two regions changes

with voltage applied on the device. The memristor is appropriate to serve as the synapse

connection in the system [9]. It relies on the ability to switch resistance states to allow online

learning in the system.

I(t) = G(x,V,t) × V(t) (1.5)

Δx(t) = f(x,V,t) (1.6)
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Chapter 2

System Design

The neuromorphic system will be implemented entirely on chip. The system design is for a

65 nm process which will be fabricated with our collaborators at SUNY. The process has on

chip memristors, which will be fabraicated between the first two metal layers. The model

used is for circuit simulation is from [2]. The model captures the resistive switching behavior

of the memrsitor. As seen in figure 2.1, the memristor model has a switching voltage, Vreset

and Vset which are the switching voltages from from a high resistance to a low resistance and

low to high resistance, respectively. Since the thresholds are opposite polarities, the device is

a bipolar, and its resistance states should cross the origin on a current verses voltage graph.

The device will be able to switch to intermediate states, which means it will achieve more

than the two maximum resistance values, which are denoted HRS and LRS for high and low

resistance state. The onchip memristor will be a nano scale analog memory device used as

the synapse’s weight.

2.1 MrDANNA

The architecture the neuromorphic system follows to solve problems is named memristive

dynammic adaptive neural network architecture, MrDANNA [4]. Figure 2.2 shows the block

diagram of the MrDANNA physical design. The system consists of cores which contain

multiple synapses inputing into a single neuron. The neuron provides the output to synapses

in other cores. The dimensions of the array are predetermined by the chip size. On the
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Figure 2.1: Memristor model

Figure 2.2: MrDANNA block diagram
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chip, the possible connections between synapses and neurons are programmable. Finding

how to program the chip to solve a specific problem uses a high level model simulator.

The neuron circuit was modeled in this architecture to verify its profiecency at solving

problems. MrDANNA, use evolutionary optimization to build networks of synapse and

neuron connections that solve a set problem [15]. This is a form of offline learning, since it is

preprocessing before the implementation is set. The evolutionary optimization takes a set

number of inputs and outputs and builds conections of neurons and synapses with definable

weights, delays and connections. Sets of networks are tested and networks that have the

highest accuracy for solving the problem are kept and mutated. This happens every epoch,

and each new epoch has some new random networks, the best networks from the previous

epoch and some mutations of the best networks from the previous epoch. The desired result

at the end of the evolutionary optimization is a network with the best chance at solving the

problem. This preprocessing needs to accurately depict the hardware implementation such

that results from the offline learning will reflect the results of the circuit. The axon hillock

neuron used in this work was added as a model to the simulation and verifed that it can be

used to solve problems.

2.2 High Level Model

The initial high level model used in the simulator models the dynamics of the synapse and

neurons in an abstract ideal form. The neuron takes inputs from the synapses that are

connected that fired at a given time. The neuron adds each weight value of a synapse that

fires together with the current accumulated value to update the neurons stored value. If

the stored value reaches the neuron’s threshold value, the neuron fires. When neuron’s fire

they enter a refractory period which resets the stored value and blocks inputs. A neuron fire

updates the weight of the synapses it is conncected too. A preliminary representation of the

neuron in this work was added to the simulator which more closely represents the physically

implemented system. These preliminary results of the neuron were found to be a possible

candidate for solutions in the simulator. These results led to some design choices, which will

9



Figure 2.3: Bi-memristor synapse block diagram

be expanded upon later. The design improvements revolved around increasing a synapse’s

ability to cause a neurons to fire.

2.3 Synapse

The synapse used in this system is the bi-memristor synapse from [14]. The synapse stores

an effective weight range of positive and negative values. The weight value is determined by

the difference in resistance values of the two memristors. When Mp is a higher resistance

than Mn, the weight is negative since more current is flowing out of the synapse than into

the synapse. If the resistance values are reversed, the synapse has a positive weight, which

adds voltage to the neuron’s stored voltage. When the resistance values are equal a zero

weight is applied which would not cause a neuron to fire. However, this functionality requires

the summing node, Vsum, to be held at a constant voltage. In the neuron implemented, the

summing node is floating, which changes the weight relationship. The difference in the weight

relationship for this neuron’s input implementation will be explained in section 3.1.

Besides holding a weight value, the synapse also changes its weight value based on the

inputs. The synapse in this system implements a single cycle of learning. The condition

for positive and negative weight change, from [19], are a pre and post neuron firing within

once clock cycle of each other. The synapse is potentiated, which means the weight value is

increased, when the neuron who receives the synapses weight value, the post neuron, fires

directly after the neuron that feeds into the synapse, the pre neuron. If the pre neuron fires

10



directly after the post neuron, the synapse weight depressed, or decreases. These learning

rules are termed long term potentiation and depression respectively, because the weight

change is stored indefinetly. Only synapses that fired the clock cycle before and after the

post neuron fired will have their weights updated. All other synapses are left at their current

weight value. To perform the weight update the memristors must be driven above their

threshold voltages, Vreset and Vset. To accomplish this the memristors are driven to the supply

rails on either side. The synapse control block drives one node of the memristor, while the

other node is driven by the neuron.

11



Chapter 3

Neuron

The neuron implemented in this system is the synchronous axon hillock from [19]. This

circuit is chosen because of its relatively small area and energy consumption. In designing

this neuron for this system, the proper functionality for the neuromorphic system is the

main priority. The neuron accumulates inputs from its connected synapses, fires an output

voltage spike upon crossing a voltage threshold and then resets itself. In figure 3.1, we see

the schematic for the neuron sent to fabrication, which has an additional p-type transistor

added to the circuit from [19]. This p-type transistor is a keeper transistor which helps in

the proper operation of the domino logic circuit. As described in [17], this transistor helps

mitigate leakage and keeps the output of the domino logic set during an evaluate phase of

a logical low input. This is imperative for this circuit, because the domino logic amplifier

serves as a single bit digital to analog converter, and the output, Fpost, should remain logical

Figure 3.1: Synchronous axon hillock schematic
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Table 3.1: Device sizes used for neuron

Parameter Value
Cmem 150 pF

M0, M1
1.5 μm
180 nm

M2, M3, M4
1.2 μm
120 nm

M5, M7, M8
150 nm
60 nm

M6
300 nm
60 nm

M9
1.8 μm
60 nm

M10
300 nm
60 nm

M11, M12
150 nm
60 nm

M13, M14
300 nm
60 nm

M15
300 nm
60 nm

low until the input into the domino logic is a high voltage. Since the input into the domino

logic gate is analog, there is significantly more leakage than if it was digital. The sizing and

requirements of the domino logic gate are further explained in section 3.2.

The sizing of all the components that are to be fabricated are listed in table 3.1. The

p-type transistors, M13 and M14, n-type transistor, M15, and the capacitor, Cmem define the

input accumulation functionality. Transistor M11 is a leakage transistor that sets a coninuous

loss of the accumulated voltage based on the voltage Vleak. The neuron’s accumulation is

explained in greater detail in section 3.1. The voltages, Vrst and Vthr, are analog bias voltages

that are chosen based on results from high level simulations. Vthr is the threshold voltage

that the neuron must accumulate to fire, and Vrst is the voltage the neuron resets to after

it fires. From the preliminary results high level model, mentioned in section 2.2, the reset

voltage, Vrst, is made a controlled parameter and not set to the lower rail voltage as seen in

[19]. A higher reset voltage reduces the number of synapse fires into the neuron it takes to

cause it to fire. The transistors, M0 through M4, form a differential amplifier that is used to

apply the adjustable threshold voltage, Vthr. Without the differential amplifier, the threshold

would be set by the switching voltage of the domino logic inverter. Transistors M5 through

M10 are a domino logic amplifier that creates the output voltage spike. Transistors M12

13



Figure 3.2: Synchronous axon hillock input schematic

through M14 are for reseting the neuron and implementing the refractory period. M12 drives

the accumulated voltage, Vmem, to the reset voltage, Vrst, when the neuron has fired. M13

and M14 block inputs into the neuron defining its refractory period’s length. The operation

and sizing of the differential amplifier and domino logic inverter, and reset transistors are

futher explain in section 3.2.

3.1 Neuron Input

As mentioned in the section 2.3, due to the floating input of the synchoronous axon hillock

neuron, the input does not add in the weight value of the connected synapse directly. Assuming

the weight is proportional to the difference in the resistance of the two memristors, the change

in accumulated voltage is a function of the weight of all synapses that fired at the same time

and the current accumulated voltage of the neuron that received the synapse fires. When a

synapse fires into a neuron, the charge on the neuron, Vmem, is driven to the voltage on the

summing node Vsum, from figure 3.1. The voltage on the summing node is the voltage created

by resistive voltage division by the two memristors shown in equation 3.1. This happens

14



because the resistance of the transistors in series at the input, M13 through M15 have higher

resistance than the memristors in the synapse. To accomplish this the transistors are placed

in series and are intentionally given a low width to length ratio. The ability of the synapse

to charge or discharge the capacitor in the neuron is proportional to the input resistance

times the capacitance from equation 3.2. This relationship means the high input resistance

allows the size of the capacitor, Cmem, to be reduced for the same charging time constant. If

more than one synapse fires at a time, the voltage on the summing node is the average of the

voltage that would be created by each synapse individually. Leakage through synapses that

are not firing is present but is negligible because those synapses are set to a high resistance.

Two factors effect the possible voltages that the summing node can achieve. For this

setup the maximum voltage the summing node can achieve happens when the memristor

driven by Vop, Mp, is at the minimum possible resistance state and the memristor driven

by Von, Mn, is at the maximum possible resistance state. The minimum negative weight

happens when Mp is at the maximum resistance state and Mn is at its minimum. These two

resistance states set the maximum and minimum possible voltage on the summing node. The

voltage these minimum and maximum synaptic weights create is also a factor of the voltages

used to drive the memristors. The driving voltages are set based on the switching voltage of

the memristors. The difference between the voltages Vop and Von used for this system must

be below the switching voltage of the memristors. This limit is set so the memristors will not

change states while trying to read the synapses weight value.

The effect of this voltage on the change in voltage is approximated in equation 3.2. The

voltage change is proportional to the difference between the accumulated voltage and the

summing node voltage. If the summing node voltage is a higher voltage than Vmem, ΔVmem is

positive. If the summing node is a lower voltage then Vmem the accumulated voltage decreases.

The alteration of the neuron’s accumulated voltage, Vmem, is effected in both direction and

magnitutdeby the synapse weight and the current accumulated voltage. Equation 3.2 does

not consider the changing resistance of the input resistance into the neuron, Rin, which is

also dependent on Vsum and Vmem. The T in equation 3.2 is the clock period of the system,

which is 50 ns, since the synapse is activated for one clock cycle. Simpler approximations

were used in the high level model discussed in section 2.2, and the future high level model

15



of the system will use these or more detailed equations to describe the synapse weight to

neuron accumulated voltage relationship.

The voltage that the capacitor can be driven to is limited by the input transistors. Since

the input transistors are p-type and n-type in series, the maximum and minimum voltage

that Vmem can be driven to is based on the threshold voltages for the two types of transistors.

This means if Vmem is at the threshold of the p-type transistors, approximately 450 mV, and

a synapse fires that creates a voltage below that on the summing node, the resulting voltage

of Vmem will remain approximately the same, ignoring sub-threshold operation. Ultimately,

the neuron has a lower limit on its accumulation of negative weight synapses, which is the

threshold of p-type transistors. The lower limit will be a factor in the high level simulator.

The lower limit can be a lower voltage if low threshold voltage transistors are used and can be

the lower rail voltage if transmission gates are used instead of single transistors. The upper

limit of accumulating voltage should not be effected by the threshold voltage of the n-type

transistor. The threshold voltage needs to be the upper limit that the neuron can accumulate

and for this circuit it has to be below the upper rail voltage minus the threshold voltage of

the n-type transistor. The lower limit only effects decreasing the accumulated voltage. If the

accumulated voltage is below the lower limit, it will not be effected by summing node voltages

that are below it, but any summing node voltage above it will increase the accumulated

voltage as intended.

The neuron’s new accumulated voltage is based on the events of its synapstic inputs

but is not determined solely by looking at the resistance of the memristors and adding in a

value based on the difference of those resistance values. The output of the synapse creates

a voltage via voltage division, and the change in the accumulated voltage is dependent in

magnitude and direction on the current accumulated voltage. As the accumulated voltage

aproaches the voltage on the summing node it decreases its change in voltage. The ability for

the synapse to drive the neuron is also limited by the input transistors. Transistor M13 and

M14 are used by the neuron to create the refractory period, but play a vital role in the charge

accumulation. Transistor M15 is used to only pass in voltages when a synapse has activated.

These transistors work together with the capacitor, Cmem, and the synapse to accumulate

inputs.
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Vsum = Von + (Vop − Von) Mp

Mp + Mn

(3.1)

ΔVmem = 1
Cmem

Vsum − Vmem

Rin

× T (3.2)

3.2 Neuron Fire and Reset

Aside from accumulating inputs, the neuron must output a voltage spike and reset itself. The

neuron should output a voltage spike and reset itself when a synapse fires into the neuron and

causes the neurons accumulated voltage to cross a threshold. The threshold of this neuron is

set by a differential amplifier that acts as a comparator. The differential amplifier, M0 through

M4, outputs a low or high voltage, Vcmpr, based on the difference between its input voltages.

When the voltage Vmem is less than the Vthr, the differential amplifier’s output voltage, Vcmpr,

is low. When Vmem goes above Vthr, Vcmpr goes to a high voltage. The differential amplifier

gives the neuron an adjustable threshold based on the voltage applied to Vthr. Due to the

nature of the input inito the neuron as described in section 3.1, the adjustable threshold

acts as a weight shifting system. As the threshold is moved to lower voltages more synaptic

weights have the ability cause the neuron to fire, and as the threshold is moved to higher

voltages less synaptic weights can cause the neuron to fire. The highest appropriate threshold

voltate is below the rail voltage minus the threshold voltage of the n-type transistor or below

the maximum Vsum that can be produced. The differential amplifier’s goals in the design are

to output a high or low voltage depending on the accumulated voltage and threshold and to

operate at the clock speed of the system. The system is designed to operate at a frequency

of 20 MHz. Delay from the voltage Vcmpr delays the possibility of the output voltage spike.

The differentail amplifier design transitions from a low to high output quickly to create the

output voltage as fast as possible and allow the width of the output voltage spike to be close

to the full clock cycle. In order to make the comparason, the differential amplifer needs to

have enough gain to accurately portray the different outputs to the next stage. Because of

these requirements, the widths of the p-type transistors M0 and M1, are increased to give

higher small signal resistance and thus higher gain. The current provided by Vbias on M4 is
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high by having a a large voltage and aspect ratio, respectively. The transistors M2 and M3

are set to match and operate within the confines of the requirements. When a synapse causes

a neuron’s accumulated voltage to cross the threshold, the neuron creates a final internal

analog voltage that signifies the digital output should high.

The neuron output is a spike voltage which is a digital logic high that lasts one clock cycle.

This is acheived through the domino logic gate driving the output flip flop. The domino logic

inverter works as a timing driven analog to digital one bit converter that only checks to see

if the digital voltage should go high. As mentioned in 3, the domino logic amplifier, which

is the domino logic inverter followed by a regular inverter, uses a keeper p-typer transistor,

M8. The leakage through M6 and M7 increases as the accumulated voltage approaches the

threshold voltage, since the output voltage of the differential ampliefier increases. For the

situation where the accumulated voltage is close to the threshold voltage the neuron should

not fire. In order to hold the output low when there is a synapse fire that did not cause the

neuron to cross the threshold, the keeper transistor M8 must offset the leakage through M6

and M7. When the neuron does cross the threshold, the domino logic gate should switch.

Because of the keeper transistor, the current drive of the transistors M6 and M7 need to

produce a higher on current to drive the node Fpost_b to a low voltage. This is accomplished

by sizing M6 to a larger aspect ratio.

While the keeper transistor helps mitigate a fire when the neuron has not crossed the

threshold, it negatively impacts the required energy for the neuron to fire at a set delay.

Because of this tradeoff the keeper transistor, M8, is intentionally sized to a drive a small

current. The small size allows the transistor to help offset the leakage, while not driving

the current that M9 must produce to create the output voltage signal up significantly. The

p-type transistor, M9, that pulls up the output voltage to rail and creates the spike needs

to be much larger to overcome the keeper transistor and drive the output load. The input

transistor into the domino logic, M6, also must be able to drive more current than the keeper

transistor, M8, to generate the spike. The sizing of these two transistors directly effect the

delay and energy of the output voltage spike of the neuron. The delay of the neuron is the

time from the possibility of a fire, which starts at the clock cycle after a synapse fire, and

when the output voltage Fpost goes high. As with the differential amplifier, the domino logic
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Figure 3.3: Input gain stage schematic for the neuron

amplifier is designed to be much faster than the frequency requirement so the pulse width of

the output voltage spike is close to the entire clock period.

The output spike, Fpost, drives the gates of the reset and refractory period transistors,

M12 through M14. When the output voltage goes high, the input transistors, M13 and M14

are turned off and block inputs into the neuron. At the same time, M12 discharges the

capacitor, Cmem, to the reset voltage, Vrst. The current M12 can sink must be large enough

to discharge the capacitor to the reset voltage within the refractory period. M12 is sized

with a small aspect ratio to reduce its loading capacitance on the output of the domino logic

because a larger transistor is unnecessary. As discussed in section 3.1, the aspect ratio of the

input transistors is small to increase their resistance, but this also serves to reduce the load

capacitance on the output.

3.3 Neuron Input Stage

As discussed in section 3.1, the input into the neuron is limited in part by the voltages Vop and

Von and the memristance states of the memristors, Mp and Mn. The voltages the summing

node, Vsum, can reach, and the neuron’s accumulated voltage, Vmem, are dependent on the
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Table 3.2: Device sizes used for input stage

Parameter Value
Cfb 44 fF

Ccomp 18 fF
Rfb 40 kΩ
Rin 5 kΩ

M0, M1
1.5 μm
180 nm

M2, M3
1.2 μm
120 nm

M4
1.5 μm
120 nm

M5
3 μm

120 nm

M6
1.4 μm
120 nm

possible resistance values of the memristors and their switching threshold. The difference

between voltages Vop and Von when the synapse is firing must be below the switching threshold

of the memristors to not change their resistance value at an unintended time. Because of

these relationships between switching threshold and memristance states, the neuron has

a condensed range of applicable inputs. Another adjustment made due to the high level

simulations is an input gain stage that increases the range of the summing node voltage. This

is accomplished by a voltage gain amplifier as seen in figure 3.3. The amplifier circuit consists

of a differential pair and a push-pull gain stage. M2 is reference to be the mid-rail of the

system, which due to the negative feedback drives the summing node close to mid-rail. The

input stage is placed at the summing node and generates a new voltage, V ′
sum to be applied

on the capacitor in the neuron.

The summing node is now held close to the mid-rail becuase the positive voltage input into

the differential amplifier, Vmr, is mid-rail. The voltages applied on the memristor, Vop and Von,

can now be as high as the switching threshold of the memristors. The output of the synapse

into the gain stage is the sum of all the current differences between the two memristors. The

accumulation of input fires now takes the sum of the synapse fires and creates a voltage at

the output of the gain stage. The relationship of the resistance values of the memristors to

their impact on the neuron is negated and amplified. This switches memristors relationship
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to whether the synapse holds a positive and negative weight. The system is designed such

that the output voltage of the gain stage can reach close to rail voltage when the maximum

number of inputs fire at the maximum weight. The effect of the voltage created by the gain

stage is still equation 3.2, but now Vsum is V ′
sum which can reach closer to supply rail voltages

because it does not depend on the maximum ratio memristor resistances but the gain of the

input stage. The functionality of multiple fires changes from the average of the weight of

the synapses to the addition of all synapse weights fired. The input resistor, Rin holds the

place of an n-type transistor that would diconnect the neuron input stage during the learning

event. Since the weight relationship to the memristor states are inversed, the voltages driving

the memristors would have to be inverted in the synapse. This is accomplished by switching

Vop and Von. Ultimately, this circuit will be tested as another method along with the higher

reset voltage to cause neurons to fire with fewer synaptic inputs.
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Chapter 4

Results

This chapter covers the results from the circuit simulations of the neuron. Figures 4.1 shows

the layout of the neuron, and table 4.1 shows the layout area for the neuron and some of the

major components. The simulation results discussed in this chapter show the functionality

of the neuron. The intended results of the functionality of the neuron as a whole system

and the performance results of the neuron operation are described in section 4.1. The wave

forms in the figures in this chapter are from simulations of the parasitic extracted layouts

of the circuit. Aside from the proper functionality of the circuit shown in this chapter, the

resulting energy, power and delay are tabulated. Section 4.2 describes the methodology for

determining the energy and power usage for the neuron. Section 4.3 explains how the delay

of the neuron is calculated. These results show the neuron fits the requirements of the system.

Lastly, the effect and cost of the neuron input stage are examined.

Table 4.1: Layout area

Component Area
Cmem 84 μm2

Differential Amplifier 24 μm2

Domino logic Amplifier 17 μm2

Total 229 μm2
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Figure 4.1: Layout of the neuron that is being fabricated
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Figure 4.2: Waveform showing functionality of the neuron in the system with only positive
weight synapse fires

4.1 Functionality

The results of the simulations of the extracted layout show proper functionality of the circuit.

Figures 4.2 and 4.3 show waveforms depicting the operation of the neuron. The top line is

the summing node voltage Vsum, which is driven to a voltage based on the resistance values

of the memristors in the synapse. These simulations use resistors that are hardcoded to

possible resistance values of the memristors. The resistors are set to 10 kΩ or 15 kΩ. Figure

4.2 only uses a positive weight synapse. The applied voltages on the resistors, Vop and Von,

are 800 mV and 400 mV. Solving equation 3.1, the resulting summing node should be 640 mV

and the voltage at the summing node from the simulation is 641 mV. From figure 4.3, two

other hardcoded synapses are used. One is set to a zero weight, which means the resistances

are equal, and the other is set to a negative weight. The zero weight synapse should create a

voltage of 600 mV, and the simulation shows Vsum is 597 mV. For the negative weight, the

resistance values are reversed from the previous positive weight, and after solving the equation

3.1 the Vsum should be 560 mV. The voltage produced at Vsum by the negative weight synapse

in the simulation is 553 mV. The second line is the delayed synaptic fire signal. This singal is

a digital high for a clock period, 50 ns, the clock cycle after there is a synapse fire. This signal

allows the neuron to output its fire. The third line is the output fire signal, Fpost. This signal
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Figure 4.3: Waveform showing functionality of the neuron in the system with positive, zero,
and negative weight synapse fires

goes to a digital high when a synapse fire has caused the neuron to accumulate a voltage

above its threshold. From the figures 4.2 and 4.3, the output goes high only when the delayed

synaptic input is high. The accumulated voltage, Vmem, is the fourth line. The voltage

changes during a synapse input based on equation 3.2. To solve the equation, an estimated

input resistance of 500 kΩ is used. At the reset voltage, 400 mV in these simulations, the

accumulated voltage after a synapse for of positive weight should be 467 mV. From figure 4.2,

the first synapse causes an accumulation of 61 mV resulting in a Vmem of 461 mV after the

neuron has reset. The second change in voltage for figure 4.2 should be 50 mV, given Vmem is

now 461 mV and Vsum is still 641 mV. The accumulated voltage after the second synapse fire

in figure 4.2 is 517 mV, which is a change of 56 mV. Negative accumulations happen when

Vsum is a lower voltage than Vmem. This situation occurs in figure 4.3, since zero and negative

weight synapses are used. Solving equation 3.2 gives a decrease in accumultaed voltage when

the accumulated voltage is greater than 560 mV. The negative weight synapses fire at 1.25 μs

in figure 4.3 should decrease the accumulated voltage by 13 mV from solving the equation

3.2 given Vmem begins at 602 mV. The decrease in voltage in the simulation is 21 mV. The

magnitude and direction of the change in accumulated voltage based on the synapse inputs

from simulation show that the equation used to estimate the change in accumulated voltages

properly approximates the input behavior. The main source of error in this approximation
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Figure 4.4: Waveform showing output fire event current

is the static estimated resistance value used. The last line in the figures 4.2 and 4.3 is the

output voltage of the differential amplifier, Vcmpr. The threshold voltage used is 600 mV

which sets a necessary accumulated voltage the neuron must acquire at Vmem in order to

cause the output fire. The accumulated voltage the neuron must be above 620 mV which

gives a Vcmpr of greater than 900 mV. When Vcmpr is above 900 mV, the current through M6,

M7, and M8 is large enough such that the voltage drop across M8 causes the output to switch

to a high voltage.

Another look at the firing mechanisim is shown in figure 4.4. This schematic simulation

shows the the switching mechanism as the voltage Vmem is swept from a low voltage to a

high voltage. A switching threshold voltage, Vthr of 600 mV is still used. The top line is the

voltage Vmem which is swept up from ground to 1.2 V. The second line is the output of the

differential amplifier, Vcmpr, which switches from 0 V to 1.2 V when Vmem goes above the Vthr.

The third line is Fpost_b, which switches from a high to low voltage. When Vcmpr has risen

close to Vthr, the voltage at Fpost_b decreases due to the current through M6 and M7 is pulled

through M8. When the voltage drop across M8 reaches the switching threshold of the output

inverter, M9 and M10, the output voltage, Fpost goes low. The last line is the output voltage,

Fpost, which goes high. This occurs due to Fpost_b going below the inverter threshold. Once

the accumulated voltage is high enough above the threshold voltage to cause the switching,

M8 is turned off and Fpost_b and Fpost are supply rail voltages.
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Table 4.2: Delay and energy for schematic and layout simulations

Parameter Schematic Layout
Energy per spike 130 fJ 138 fJ
Leakage Current 24 μA 26 μA
Average power 7.6 μW 7.9 μW

Delay 250 ps 500 ps

4.2 Energy and Power

The neuron design is intended to use low energy and power. The energy and power results

from 4.2 show the resulting energy per spike and average power for the circuit. The energy

per spike is the energy used to create the output voltage spike, Fpost. From the simulation

that produced 4.2, producing the output voltage on node Fpost requires the highest energy

consumption from the neuron. The maximum current pulled by the neuron is 100 μA, and

occurs during the spike creation. The spike creation uses the most energy in the system

because the domino logic amplifier must evaluate the voltage Vcmpr and drive the output load

capacitance. The leakage current from 4.2 is the maximum leakage current caused by the

neuron. The maximum leakage current occurs when the neuron has accumulated the highest

voltage that does not produce a spike. In this situation, when the neuron would preduce a

spike the leakage current is a combination of the leakage through the domino logic amplifier

and the current through the differential amplifier.

The average power for the system has many factors. Since this is a mixed-signal circuit,

static power and dynamic power are factors. The static power is primarily from the current

through the differential amplifier, while dynamic power is from the domino logic inverter.

Each synaptic event that does not cause a fire adds to the power, eventhough the output is

not switching. This is due to the increased leakage through M6 and M7 as Vcmpr increases.

The average power taken from the falling edge of a firing event to the falling edge of the

next firing event from the simulation that produced figure 4.2. Improvements to power

consumption can be made and are discussed in chapter 5.
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Figure 4.5: Layout of the neuron with the input stage that is being fabricated

4.3 Delay

The delay of the neuron is calculated as the latency of the output fire signal, Fpost. The delay

is shown in table 4.2. The delay is variable due to the analog voltage input into the domino

logic amplifier, but is close to the values in 4.2. The lag from the rising edge of the clock

and the output voltage spike effects the online learning operation of the system. Ideally the

learning circuitry would evaluate the output voltage spike immediately, but this is unrealistic.

The goal is to have a delay that is much smaller than the clock period, which allows the online

learning circuitry to perfom the weight update. This goal is achieved because the neuron’s

simulated delay is 500 ps, which is two orders of magnitude less than the clock period.

4.4 Input Stage

The layout of the neuron with the input stage stage discussed in section 3.3 is shown in figure

4.5. The area used for the input stage and its major components are listed in table 4.3. The

input stage adds a total area of 155 μm2 to the 229 μm2 for the neuron . Besides an increase

in area cost, the neuron also adds additional power consumption. The input stage uses 36 μW
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Table 4.3: Layout area of input stage

Component Area
Cfb and Ccomp 26 μm2

Rfb 10.8 μm2

Total 155 μm2

Figure 4.6: Waveform showing functionality of the neuron with the input stage in the
system
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of power nominally. This additional power cost is a tradeoff for the change in functionality

which is the increases in the relative strength of the synaptic weights and the addition of the

weights of all inputs firing at the same time. The same positive, zero, and negative weights

for the simulations without the input stage are used with the input stage. The input stage

neuron’s waveforms can be seen in figure 4.6. Vsum is now a virtual ground node that is set

close to mid-rail, and the new voltage applied onto the neuron is V ′
sum. For the same weights

larger voltages are produced because of the input stage and larger changes to the voltage

Vmem can occur.
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Chapter 5

Future Work and Conclusion

The continuation of this work consists of testing the fabricated chip and finalizing the high

level model. The same circuit tests done in simulation need to be performed on the physical

device. Testing the chip will be conducted in a probe station. The input voltages used in the

simulations will be applied as stimulus and the responding output fires will be characterized.

The tests will be repeated numerous times with different voltages for all the voltage inputs

that are intended to be high level choices. Of these, the effects of the reset voltage, leakage

voltage, and reference voltage need to be carefully characterized so that the high level model

can accurately capture the different use cases. After characterizing the neuron for different

stimuli, the final high level model can be implemented. The model should be parameterizable

to match the possible configurations of the neuron’s analog voltage stimuli. With the high

level, model tests can be run to find the necessary size of the array to solve different problems.

In characterizing the neuron, parameters like energy and power will be found and used to

give estimates from high level simulations. A goal of the future high level model is to take

the modularized neuron and generate networks that can prioritize energy consumption or

minimizing area. Improvements for power will be considered from the physical results. One

possible improvement to reduce power would be to turn of the differential amplifier when it

is not in use. This would require the current mirror setting the differential amplifier’s tail

current to turn on and off at the appropriate times.

This axon hillock analog neuron circuit is developed for this neuromophic architecture on

a process that can fabricate on-chip memristor for the synapses. The neuron shows proper
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functionality with considerations made to reduce area and energy. While developing the

circuit, possible improvements to the usage of this circuit are added to add flexibility to the

possible network configurations. The neuron design takes into consideration the impactfulness

of the memristors, while serving as a key component in a neuromorphic system.
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A Abbreviations and Symbols

NIDA Neuroscience-Inspired Dynamic Architecture

STDP Spike Timing Dependent Plasticity

HRS High Resistance State

LRS Low Resistance State

MrDANNA Memristive Dynamic Adaptive Neural Network Architecture
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