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ABSTRACT 

The purpose of this research was to develop a version of a genetic 

algorithm (GA ) which would provide near optimal solutions for Vehicle 

Routing Problems (VRP) with both time and weight constraints. The 

genetic algorithm used for the experimentation was adapted from a GA 

which had been developed by James Bean at the University of Michigan to 

solve machine scheduling problems. The VRP data sets used in this 

research were obtained from the literature. Various aspects of the GA 

were experimented with in order to develop a version which would 

perform consistently well for all the data sets. The results of the final 

version of the genetic algorithm were then compared to the results 

presented in the original papers. 

The results from this research indicated that the genetic algorithm 

seems to perform relatively well for smaller problems with 50 or fewer 

customers. However, the results seem to become progressively worse as 

the problem becomes larger. 
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Introduction 

The Vehicle Routing Problem (VRP) is a combinatorial optimization 

problem in which a number of customers, requiring either pick-ups or 

deliveries, must be serviced by a set of vehicles. The objective is to route 

the vehicles in such a manner that each customer is visited by exactly one 

vehicle and the total distance traveled is minimized. The vehicles may be 

constrained by a load capacity or a maximum time spent on the route. 

Vehicle routing problems are complex to solve, particularly to optimality, 

causing many "algorithm designers" to settle for an approximation of the 

optimal solution [Haimovich, et al 1988]. The focus of this thesis is to 

experiment with the genetic algorithm (GA) as a means of solving the 

VRP. 

According to Goldberg, the goal of genetic algorithms is to be 

efficient and robust over different environments in order to eliminate 

costly redesigns in the programs. Genetic algorithms are described as 

"computationally simple yet powerful" and are not limited by restrictive 

assumptions such as, "continuity, existence of derivatives, unimodality, and 

other matters" [Goldberg 1988]. However, according to Davis," ... , in 

general, the robustness of a genetic algorithm and its performance on a 

particular problem are inversely related" [Davis 1991]. Genetic algorithms 

are robust in that they can be used to solve several different problem types 

without changing the algorithm. A slight change in the problem could 

make a nonrobust algorithm inoperative [Davis 1987]. 
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Genetic algorithms first appeared in theory in the early 1970's, but 

John Holland is said to have founded the field of genetic algorithms in 

1975. In more recent years, work on genetic algorithms has been focused 

on application [Davis 1991]. Holland's original idea in developing the 

algorithm was to create a program which would adapt to its environment 

[Goldberg 1988]. The genetic algorithm was first used in industry to 

optimize the design of a communications network [Davis 1987]. There are 

several areas in which GA performance has been studied. The following is 

a partial list of areas for which genetic algorithms have been studied: 

1. Davis (1985) - Job shop scheduling 

2. Glover (1987) - Keyboard configuration systems 

3. Goldberg (1983) - Optimizing gas pipeline systems 

4. Grefenstette (1985) - Traveling salesman problem 

5. Nygard and Kadaba (1990) - Multi-vehicle routing 

problem [Nygard 1992]. 

Atidel Ben Hadj-Alouane (1992) at the University of Michigan successfully 

used a genetic algorithm to solve multiple choice integer programs with 

nonlinear relaxation. The algorithm successfully solved 100% dense 

problems and had computation times superior to IBM's Optimization 

Subroutine Library (OSL). Hadj-Alouane noted three advantages of the 

genetic algorithm when compared to OSL after running the genetic 

algorithm on three facility location problems: 

1. The optimal solution was found for all three, yet less time was taken 

than with OSL. 

2. There was a small variation in solutions for different random seeds. 
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3. The GA was more scalable (i.e. The time needed to solve the problem 

was predictable based on the size of  the problem.) [Hadj-Alouane and 

Bean 1992]. 

Genetic algorithms have been shown to work ef fectively on problems 

such as function optimization problems, but only recently has 

experimentation moved into combinatorial optimization problems, such as 

the Traveling Salesman Problem (TSP) or the Vehicle Routing Problem 

[Suh and Gucht 1987]. The purpose of  this research is to present and test a 

genetic algorithm for the vehicle routing problem. In addition, this work 

examines the obstacles encountered when applying GA's to vehicle routing 

problems, as well as possible methods for handling them. The first chapter 

gives an overview of  the vehicle routing problem and genetic algorithm 

and provides a discussion of  how the two are related. Chapter 2 describes 

key elements of  the GA which were studied in order to gain an 

understanding of  their impact on algorithm performance. Chapter 3 

presents a final version of the GA as well as other alternatives which may 

be studied in future research. The results of this version of  the GA are 

also given for selected data sets which have appeared in various VRP 

articles. These results are compared with the best known solutions 

obtained by the other methods of  solving the VRP. 
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CHAPTER 1 

THE GENETIC ALGORITHM AND THE 

VEHICLE ROUTING PROBLEM 

Chapter 1 is an introduction to the genetic algorithm and the type of 

vehicle routing problem addressed in this thesis. The first section describes 

the VRP and some of the common heuristic methods currently being used 

to solve problems of this type. There are several important aspects of the 

GA which must be considered during development. A few of these aspects 

are encoding of solutions, evaluation function, parameter values, selection 

methods, crossover methods, and mutation methods. The second section 

explains the terminology of the GA and describes various ways of 

representing some of these important aspects. The last section of this 

chapter specifically describes the aspects of the GA which were used to 

solve the VRP. 

The Vehicle Routin� Problem 

The vehicle routing problem addressed in this thesis is one consisting 

of a single depot, n customers, and m vehicles. For each customer, the 

vehicle must pick up a certain amount of weight, Wj, where j is the 

customer number. For problems with time considerations there is a 

constant stop time, s, at each customer. The objective (1) is to minimize 

the total distance traveled by all vehicles where dij is the distance from 

customer i to customer j. The binary variable Ym ij wil l  equal 1 if vehicle m 
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goes from customer i to customer j and O otherwise. A formulation for the 

VRP is given below: 

(1 ) mm LmLij dij Ymij 

(2) S.t. LmLi,i<>j Ymij + LmLk Ymjk = 2 

(3) Lj Ym0j = 1 for all m 

( 4) Li,i<>j Ymij � 1 for a11 m, j 

(5) Li Ymi0 = 1 for all m 

(6) Li Ymij - Lk Ymjk = 0 for all m, j 

for all j 

(7) LiLj Ymij � ISi -1 for all subsets S, for all m 

(8) Li,j Ymij Wj � w for all m 

(9) Li,j (dij + s) Ymij � t for all m 

[Noon, et al 1 991]. Constraint (2) ensures that exactly one vehicle visits 

and leaves each customer. Each vehicle is forced to leave the depot by 

constraint (3 ). Constraint ( 4) ensures that a vehicle does not visit a 

particular customer more than once and constraint (5) ensures that the 

vehicle returns to the depot f Noon, et al 1991]. Flow conservation for each 

vehicle tour is enforced by constraint (6). Subtours are eliminated by 

constraint (7). The capacity constraint (8) ensures that the total amount of 

weight picked up by the vehicle does not exceed a weight limit of w. 

Constraint (9) ensures that the total time on the route for each vehicle can 

not exceed a time limit oft, where the time on a route is calculated by the 

distance on the route plus the sum of all the stop times on the route. 

"The vehicle routing problem is a hard combinatorial problem and 

to this day, only relatively small VRP instances can be solved to 

optimality." [Gendreau, et al 1991] There are four groups in which 

heuristic methods for solving the VR P can be divided. They are 
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constructive, two-phase, incomplete optimization, and improvement 

algorithms. The first of these four is the constructive algorithm in which 

an unrouted city is selected to be added to the tour based on some criterion 

[Gendreau, et al 1991]. One of the most common of these methods is the 

Clarke and Wright method in which n back and forth routes between a city 

and the depot are merged according to a savings criterion. The major 

disadvantage with this method is the amount of time required to find a near 

optimal solution. However, data structures can be used to reduce the 

amount of time to run the algorithm [Gendreau, et al 1 991]. 

There are four types of two-phase algorithms. The first of these is 

the cluster first - route second method in which each vehicle is first 

assigned the customers which it must visit. The TSP is then used to 

sequence each of the routes. The TSP is a combinatorial optimization 

problem in which a single vehicle leaves a depot and must visit each 

customer exactly once and return to the depot. The objective is to sequence 

the customers in such a way that the distance traveled is minimized. The 

second method is the route first - cluster second approach in which the TSP 

is first used to sequence the customers. The route is then broken into 

feasible segments for each vehicle available. The third method is an 

integer linear programming approach using the Generalized Assignment 

Problem and the TSP. This approach was developed by Fisher and 

Jaikumar ( 198 1). Finally, the fourth method of two-phase algorithms is a 

Lagrangean Relaxation Approach used by Noon, Mittenthal, and Pillai 

( 199 1) [Gendreau, et al 1991]. The method relies on solving a Traveling 

Salesman Subset Tour Problem with one additional constraint. The TSSP 

is a variant of the TSP in which the constraints that require each customer 
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to be visited are relaxed. The idea is to have a dispatcher who assigns each 

vehicle an initial customer to visit and then assigns reward values to every 

other customer. The objective when preassigning these customers is to 

maximize the minimum distance between any two of them. Each vehicle 

driver then decides which customers to visit and the corresponding 

sequence of visits. The objective of the dispatcher is to assign the rewards 

so that each customer will be visited by exactly one vehicle. The major 

difference between this approach and that of Fisher and Jaikumar is that the 

dispatcher in the Fisher method decides which customers each driver visits, 

and the driver is only responsible for sequencing the route. In the 

Lagrangean Relaxation approach, the driver has the additional 

responsibility of deciding which customers to visit [Noon, et al 1991]. 

The third heuristic method is Incomplete Optimization. This 

approach uses an enumerative algorithm to find a good solution by means 

of an incomplete search tree [Gendreau, et al 1991]. 

Finally, the fourth heuristic method used is Improvement Methods 

which is the category in which tabu search falls. Among the tabu search 

methods that exist are one developed by Pureza and Franca (1991) in which 

cities are swapped between two routes and one developed by Semet and 

Taillard (1991) in which a city is moved from one route to an alternate 

route [Gendreau, et al 1991]. The algorithm developed by Gendreau, 

Hertz, and Laporte inserts a node into a tour from another tour using a 

generalized insertion procedure (GENI). A tour improvement procedure 

which was also developed by Gendreau, Hertz, and Laporte, is used to 

improve each route. Once a customer is taken out of a particular vehicle's 

tour, it cannot be put back into that tour for a certain number of iterations. 
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One difference between this method and the other tabu search methods is 

that it allows infeasible solutions whereas the others do not. An advantage 

to using this method, called TABROUTE, is that the risk of converging to 

a local optima is reduced in two ways. The first is by allowing infeasible 

solutions through the use of a penalty function. The second is by using 

GENI to perform the insertion of the customer into a different route 

[Gendreau, et al 1991 ]. 

Another improvement method which has successfully been used was 

developed by Ibrahim Osman at the University of Canterbury [Osman 

1993] and solves the vehicle routing problem using simulated annealing and 

tabu search. This method finds a route by first using a heuristic followed. 

by an improvement method in which a portion of one route is exchanged 

with a portion of a second route. An insertion/deletion procedure is used 

to recalculate the objective value, and the 2-opt arc exchange heuristic of 

Lin [Osman 1993] is used to correct any paths that are crossed. There are 

two selection strategies used for selecting alternative solutions: best 

improvement and first improvement. The tabu search consists of a 

forbidding strategy, a freeing strategy, a short-term strategy, and a 

stopping criterion. The forbidding strategy keeps a list of the moves which 

are forbidden. The freeing strategy removes the moves from the tabu list 

after a certain number of iterations. The short-term strategy uses an 

aspiration criterion to overrule the tabu list and includes two possible 

selection strategies: Best Admissible (BA) and First Best Admissible 

(FBA). BA selects the move resulting in the greatest improvement or the 

least nonimprovement. FBA selects the first move resulting in an 

improvement in the objective value if one exists; otherwise, the best 
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nonimproving move is selected. The tabu list sizes are calculated as a 

function of population size, number of vehicles, and capacity ratio of 

required demands to vehicle capacities. The stopping criterion is based on 

a maximum number of iterations in which the best solution does not 

improve after the best solution was found. One potential drawback of tabu 

search is that quality of the final solution depends on the initial solution. 

Hence, the method sometimes finds a local optimal which is not close to the 

global optimal. This is the same problem which Gendreau addressed in his 

method by allowing infeasible solutions. Osman's method uses simulated 

annealing (SA) to overcome this problem. SA accepts a nonimprovement 

move based on a certain probability which is determined by a control 

parameter which decreases according to a schedule [Osman 1993]. 

The Genetic Aleorithm 

The genetic algorithm was developed by John Holland in 1975 and 

uses the idea of genetics and "survival of the fittest" to produce near 

optimal solutions to problems such as the traveling salesman problem, 

machine scheduling problems, vehicle routing problems, and many others. 

The basic concept behind this algorithm is that good solutions will remain 

in the population and continue reproducing to form better solutions while 

the most undesirable solutions eventually become extinct. Initially, a 

population of solutions is randomly generated, and each solution in the 

population is called a chromosome. For example, consider a solution 

which is encoded as a sequence of customer numbers: 

(5 1 4 3 6 2). 
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This chromosome represents a solution in which the sequence of customer 

visits is 5,1,4,3,6,2. Each position of this chromosome is cal led a gene, 

and the value of each gene is called an allele. For example, 5 is the al lele 

of the first gene [Nygard 1992]. At each generation there are a number of 

methods which can be used to produce a new population of solutions. 

Although al l  genetic a lgorithms use some form of reproduction, crossover, 

and mutation, there are many different ways of carrying out these 

operations. The next section describes some of the alternate methods. 

First, there are a number of different ways to select the 

chromosomes to be added to the mating pool. The challenge is to select the 

parents in such a way that the good parents reproduce enough to survive, . 

but not so much as to cause the population to prematurely converge 

[DeJ ong 1985]. There is sti l l  disagreement among researchers on the best 

method of parent selection. Four of the most common methods are listed 

below. 

1. Random selection of the chromosomes. 

2. Roulette sampl ing in which the probabil ity of selecting a 

particular chromosome increases with its fitness. 

3. Rank based sampl ing which uses the roulette wheel to select two 

chromosomes, of which the one with the best fitness is added to 

the mating pool. 

4. Tournament sampling in which solutions are sequentially chosen 

with the one having the higher fitness being added to the mating 

pool [Nygard 1992]. 

Next, there are several different methods of crossing over the two 

parent chromosomes. There is the one-point crossover in which a point on 

1 0  



the chromosome is randomly selected, and the two chromosomes exchange 

the genes following this point. The disadvantage of using the one-point 

crossover is that if good genetic material is at both ends of the 

chromosome, these two good traits will be separated during the crossover. 

The two-point crossover solves the one-point crossover problem by 

enabling two genes on opposite ends of the chromosome to remain on the 

same chromosome after the crossover. This is accomplished since two 

points are randomly selected on the chromosome, and the genes between 

these two points are exchanged between the two chromosomes. However, 

this still may present a problem if, for example, all of the good traits are 

on one of the chromosomes [Davis 1991]. The best crossover method 

seems to be the uniform crossover in which a random number (between 1 

and 100) is generated for each gene. If this number is less than a certain 

user defined number (which is defined at the beginning of the GA as the 

gene selection parameter) , the child will receive this gene from the first 

parent. If the number is greater than the gene selection parameter, the 

child receives the gene from the second parent. Unlike the one-point and 

two-point crossovers, this crossover method has the ability to combine 

good traits irrespective of where they are located on the chromosome 

[Davis 1991]. 

Also, there are differences in the methods of producing mutations. 

One method is to simply mutate a single gene at a certain rate (i.e. 1 out of 

every 1000 genes). However, since mutation is the main means of 

producing variation in the population, mutating a single gene does not seem 

to be very efficient. Another, more efficient method is to mutate the entire 

chromosome for a low percentage of the chromosomes in the population 
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[Davis 199 1 ]. This method of mutation is referred to as immigration [Bean 

1992] . This seems to provide more diversity in the population. 

Two very important links to the genetic algorithm and the problem 

to be solved are the method of evaluating new solutions and the method 

used to encode a solution [Davis 1991]. These two aspects are crucial 

because they must be tailored to the problem being solved. The other 

aspects of the GA such as parameter values, selection methods, crossover 

methods, and mutation methods do not represent the problem being solved 

and may be exactly the same for a variety of different problems. The 

simple genetic algorithm seems to be powerful despite the lack of 

knowledge of the problem to be solved [Goldberg and Richardson 1987]. 

The Genetic Ali:orithm Related to the Vehicle Routini: Problem 

James Bean at the University of Michigan [Bean 1 992] used a genetic 

algorithm to solve machine scheduling problems. It was his GA which was 

modified in this thesis to solve vehicle routing problems. Bean was 

successful using this program on scheduling and resource allocation 

problems, and he had moderate success on quadratic assignment problems. 

However, his tests on several traveling salesman problems were not as 

successful. He reported difficulty in getting closer than 8% to the optimal 

solution; however, the results did not seem to worsen as the problem size 

increased. In addressing this problem, he states that, "we conjecture that 

these difficulties are caused by the complexity of interrelationship between 

pairs of genes (cities or agents)." [Bean 1 992] The issue now addressed is 

how this genetic algorithm relates to the vehicle routing problem described 

earlier. The aspects of the GA which must be considered are: the input 
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format of the data set to be used by the genetic algorithm, the method of 

encoding a solution, the method of evaluating a solution, and the method of 

reproduction. 

Data Format 

The genetic algorithm code first reads VRP problem data in the 

following format. The first line of any problem data set contains the 

following information : 

1. The number of customers + 1 (for the depot) 

2. The weight limit of each vehi cle 

3. The number of vehicles 

4. The amount of time at each stop 

5. The time limit of each route 

The next n lines of the data set (where n is the number of customers) 

contain the following : 

1. The x coordinate of the customer 

2. The y coordinate of the customer 

3. The amount of weight to be picked up at the customer 

4. The customer number 

The last line of the data set contains the x and y coordinates of the depot. 

Figure 1 . 1  is an example data set for the 32 customer, 3 vehicle VRP. The 

first line indicates that there are 32 customers p lus 1 for the depot, there is 

a weight limit of 38000 units per vehi cle ,  there are 3 vehicles, there is a 

stop time of 20 units of time at each stop, and there is a time limit of 1000 

units per vehicle. Lines 2 through 33  consist of the x and y coordinates of 

each customer, the amount of weight to be picked up at each customer, and 
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the customer number. The last line indicates the x and y coordinates of the 

depot. 

33 38000 3 20 1 000 

1 0  260 3500 1 

65 248 1 260 2 

22 255 629 3 

50 249 250 4 

205 254 2267 5 

275 34 447 6 

269 262 1 847 7 

293 269 1 437 8 

333 2 1 2  3720 9 

304 202 1 1 1 5 1 0  

286 207 273 1 1  

288 1 9 1  5494 1 2  

295 235 1 944 1 3  

467 67 7 1 3  1 4  

484 1 79 1 500 1 5  

447 1 89 3585 1 6  

2 1 5  204 1 40 1 7  

3 1 3  3 82  25705 1 8  

267 3 1 6  479 1 9  

39 1 1 96 1 7456 20 

399 1 22 1 143 21  

363 1 87 19 19 22 

355 236 826 23 

378 203 3264 24 

458 2 1 8  1 570 25 

383 1 8 1  22 1 5  26 

240 326 1 239 27 

273 349 580 28 

278 374 5000 29 

352 27 1 1 00 30 

324 295 20 1 3 1  

249 250 6747 32 

250 200 0 DEPOT 

Figure 1 . 1 .  32 customer , 3 vehicle problem data set . 

Encoding of Solutions 

The a lgorithm uses a method of encoding a solution called random 

keys which was developed by Bean [Bean 1992]. Random keys is a 
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technique designed to address the problem of producing infeasible solutions 

during reproduction because some customers are visited more than once 

while some are not visited at all [Bean 1992]. To illustrate the problem of 

infeasibility during reproduction consider a problem with only one vehicle 

and six customers. When the solution is encoded using the customer 

number, reproduction can lead to infeasible offspring as shown in the 

example below. Consider two parents whose solutions are encoded as 

sequences of customer numbers. 

parent 1 : (5 1 4 3 6 2) 

parent 2: (4 5 1 3 6 2) 

In parent 1 ,  the sequence of customer visits is 5, 1 ,  4, 3, 6, 2. In parent 2, 

the vehicle visits customers in the order 4, 5, 1 ,  3, 6, 2. When these two 

undergo reproduction, a child is produced by selecting a gene from each 

parent with a certain pre-defined probability. For each gene, a random 

number is generated. If the random number is greater than the probability 

assigned to parent number 1 ,  the gene is taken from parent number 2; 

otherwise, the gene is taken from parent number l .  If, for example, the 

probability of selecting a gene from parent 1 is .70 and .30 from parent 2, 

the following situation might occur: 

random number: .86 .55 .40 .12 .73 .23 

parent number: 2 1 1 1 2 1 

child : 4 1 4 3 6 2 

The child produced is infeasible since customer number 4 is visited twice 

during the tour and customer number 5 is not visited at an [Bean 1 992]. 

Random keys is designed to prevent this type of reproduction 

infeasibility. The idea behind random keys is to generate a random 
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number between O and 1 for each customer in a solution . The order in 

which the customers are visited i s  represented by sorting the random 

numbers in ascending order. For example , in the previous problem, parent 

1 might be represented as follows :  

( . 3 1 .95 .76 .5 1 . 1 5  .85)  

where customer number 5 i s  the first visited , customer number 1 i s  the 

second v isited,  etc. The two parents would then be represented as follows : 

parent 1 :  ( . 3 1 .95 .76 . 5 1  . 1 5  .85) 

parent 2 :  ( . 33 .83 .49 .08 .25 .7 1 )  

These two parents reproduce as fol lows : 

random number: .86 .55 .40 . 1 2  .73 .23 

parent number: 2 1 1 1 2 1 

child : .33 .95 .76 .5 1 .25 .85 

The new chi ld solution is now feasible , with the order in which the 

customers are visited represented by the order of the random numbers 

[Bean 1 992] . 

The problem of representing multiple vehicles in a solution can also 

be solved using random keys. A random integer, between 1 and the 

number of vehicles ,  is added to each random number. The integer 

represents the vehicle which visits that customer. For example ,  if two 

vehicles are available, the solution might be represented as :  

(2. 3 1 2 .95 1 .76 1 .5 1  1 . 1 5  2 .85) 

where vehicle 1 visits customer 5 followed by customer 4 ,  then customer 3 ,  

and vehicle 2 visits customers 1 ,  6 ,  and 2. 

According to Bean, "we have successfully generalized this  approach 

to the job shop with precedence, release times , sequence dependent setups,  
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and nonregular measures such as a sum of weighted earliness and 

tardiness. "  [Bean 1992] Random keys also appears to be an efficient means 

of encoding solutions for the vehicle routing problem; therefore, i t  is the 

method used for our research. 

Evaluating the Solutions 

One important feature which relates the genetic algorithm to the 

problem being solved is the method of evaluating the fitness of each 

chromosome (solution). The method used for this particular problem is to 

first calculate the total Euclidean distance traveled by all vehicles on the 

tour. Then, the amount of time each vehicle spends on the tour and the 

weight that each vehicle picks up throughout the tour is calculated. From 

these calculations it can be determined how much each vehicle exceeds the 

time limit and weight limit, as well as how many vehicles have infeasible 

tours. The fitness of the solution is then calculated by a function of the 

distance traveled in combination with a penalty function for infeasibility 

with respect to weight and time. 

Reproduction 

The method of reproduction is another important aspect of the 

genetic algorithm. The method which Bean uses in his algorithm keeps a 

consistent number of solutions in the population throughout the algorithm. 

A certain percentage of the top solutions are copied to the next generation. 

This is called elitism or clonal propagation and enables the best solutions to 

be preserved [Davis 1991 J .  Another percentage of the new generation is 

produced by mutation. The method of mutation used is to randomly 
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generate completely ne w chromosomes by the same method in which the 

population was init ialized at the beginning of the algor ithm. S ince the 

elitist strategy is be ing used , a fa irly high mutation rate must be used in 

order to mainta in divers ity in the populat ion [Bean 1992]. The remaining 

percentage of solut ions in the new populat ion are produced through 

reproduction . The parent chromosomes are selected randomly with equal 

probability of being selected and then the un iform crossover method is 

used for best results . 

EXAMPLE 1.1. 

In order to illustrate some of the important aspects of the genet ic 

algor ithm which were d iscussed in th is chapter , consider an example VRP 

which consists of 5 customers and 2 veh icles with a best known solut ion of 

63. Suppose at the beginning of the algorithm the following parameters 

are defined : 

5 members in the populat ion 

25 generat ions 

1 solut ion copied into the next generat ion 

1 solution mutated each generat ion 

Gene selection parameter of 50 

At the beginning of the algorithm an initial populat ion is randomly 

generated . The solut ions are eval uated and ordered so that the solut ion 

with the best evaluation is f irst and the solut ion with the worst evaluation is 

last . Suppose that after the solut ions are ordered, the in it ial populat ion is 

as follows : 
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Solution E valuation 

# 1 : ( 1 . 53 2 . 1 4  2.07 1 . 1 0  1 .76) 97 

#2 : ( 1 .08 1 .56 2 .58 2. 1 3  2 .33 ) 1 1 3 

#3 : (2 .82 2 .9 1  2.67 2. 1 5  1 .0 1 ) 1 25 

#4 : (2 .6 1 1 .50 1 . 39 2.43 1 .59) 1 56 

#5 : ( 1 . 89 2. 1 7  1 .25 2.95 1 .52) 208 

Th e fol lowin g shows an exampl e of how th e n ext gen eration of fi ve 

solutions may be pro duc ed from th e initial popul ation. 

Solution # 1 

Th e best solution from th e initial popu lation is copi ed to form on e m em ber 

of th e n ew population . (Th e num ber to be copi ed was defin ed at th e 

beginnin g of th e a l gori thm to be 1 . ) 

( 1 .53 2 . 1 4  2 .07 1 . 1 0  1 .76) E valuation = 97 

Solution #2 

Solutions #2 an d #5 ar e ran domly s el ect ed from th e initial population to 

r epro duc e with each oth er. R epro duction occurs in th e fol lowin g mann er 

usin g uniform crosso ver. 

Ran dom num ber: 22 56 08 34 76 

Par ent #1 : ( 1 .08 1 .56 2 .58 2 . 1 3  2 .33) 

Par ent #2 : ( 1 . 89 2 . 1 7  1 . 25 2 .95 1 .52)  

Chi l d: ( 1 .08 2. 1 7  2 .58 2. 1 3  1 .52) E valuation = 1 28 
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Solution #3 

Solutions #1 and #2 are randomly selected from the initial population to 

reproduce with each other. Reproduction occurs in the following manner. 

Random number: 58 64 19 36 79 

Parent #1 : (1.53 2.14 2.07 1 .  10 1.76) 

Parent #2 : (1.08 1.56 2.58 2.13 2.33) 

Child :  (1.08 1.56 2.07 1.10 2.33) Evaluation = 150 

Solution #4 

Solutions #3 and #1 are randomly selected to reproduce with each other. 

Random number : 

Parent #1: 

Parent #2: 

Child: 

Solution #5 

70 18 83 95 34 

(2.82 2.91 2.67 2.15 1.01) 

(1.53 2. 1 4  2.07 1.10 1.76) 

(1.53 2 .91 2 .07 1.10 1.01) Evaluation = 90 

This solution is formed by mutation which means a random number is 

generated for each gene on the chromosome. (The number of solutions to 

be mutated was defined at the beginning of the algorithm to be 1.) The 

following numbers are generated: 

(2.54 2.99 1.76 2.11 1.69) Evaluation = 200 

This new population would then be ordered by evaluation as follows: 
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Solu t ion Eval uation 

#1 : (1.53 2.91 2.07 1.10 1 .01) 90 

#2 : ( 1.53 2. 14 2.07 1.10 1.76) 97 

#3 : ( 1.08 2.17 2 .58 2.13 1.52) 128 

#4 : (1.08 1.56 2.07 1.10 2.33) 1 50 

#5 : (2.54 2.99 1.76 2.1 1 1 .69) 200 

This same method of reproduction , in which the current population goes 

through a reproduction phase to form a new population, is used for the 

next 24 generations. (The number of generations was defined at the 

beginning of the algorithm to be 25.) 

Premature convergence i s  a prob lem which m ust be addressed in the 

genetic algorithm. Convergence is the reason the mutation operator is 

necessary. S uppose that after the 10th generation the population for this 

example problem is the following : 

Solution Evaluation 

# 1 :  (1.53 2.91 2.07 1.10 1.01)  90 

#2 : (1 .53 2.91 2.07 1.10 1.0 1 )  90 

#3 : (1.53 2.91 2.07 1.10  1.76) 90 

#4 : (1.23 1 .14  2.19 2.57 1 .  18) 97 

#5: (2.89 2.75 1 .28 2.15  1.87) 2 10 

This is an e xamp le of a popula tion which is premature ly converging. Since 

the best known so lution is 63 and the best sol ution the algorithm has found 

is 90, it is obvious that the algorithm should not yet be converging. Notice 
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that the first two solutions are identical, and the third solution is only 

different on the fifth gene. The last two chromosomes are now the only 

means for diversity in this population. This example will be referred to 

later in the thesis to demonstrate the dynamics of the population under 

certain conditions. 
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CHAPTER 2 

EXPERIMENTATION RESULTS 

In the previous chapter the VRP and the GA were described, and an 

example was given to illustrate some of the important aspects . The purpose 

of chapter 2 is to describe some of the experimentation which was 

performed on the GA. This chapter should provide an idea of the various 

ways in which the GA can be altered and the effects these alterations may 

have on the results . Figure 2. 1 provides a summary of the aspects which 

were altered during the experimentation. 

1 .  PENALIZATION FOR INFEASIBILITY 
• Assigning a penalty to all infeasible solutions 

2. SAMPLING PROCEDURES 
• Roulette, Tournament 

3. REPRODUCTION 
• S ingle Crossover, Double Crossover 

4. PARAMETERS 
• Changing number of mutations as a function of generation count 

5 .  INFEASIBILITY 
• Replacing infeasible solutions with the best solution 

6. DUPLICATE SOLUTIONS 
• Mutating duplicate solutions 

7. REVERSE PATHS 
• Ensuring against paths which visit the same customers only in opposite order 

8 .  FEASIBILITY VS .  INFEASIBILITY 
• Ensuring all feasible sols. evaluate better than all infeasible sols. 

9 .  GENE SELECTION PARAMETER 
• Producing offspring at different gene selection parameters 

Figure 2.1 .  Summary of experimentation. 
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The purpose of the experimentation was to produce a version of the 

genetic algorithm which would find a nearly optimal solution for most 

vehicle routing problem data sets of the format discussed in Chapter 1. 

There were two data sets most commonly used for the experimentation. 

The first data set was a 50 customer, 6 vehicle, VRP with a weight limit of 

160 per vehicle, a time limit of 200 per vehicle and a stop time of 10. The 

best known solution from the literature has a total cost (distance) of 555.43 

[Gendreau, et al 1991] . The best solution known for this same data set with 

only 5 vehicles and no time constraint is 524.61 [Gendreau, et al 1991]. 

The second data set had 32 customers and 3 vehicles with a weight limit of 

38000 per vehicle, a time limit of 1000 per vehicle, and a stop time of 20. 

The best known solution for this data set has a total rounded cost of 2086. 

Without the time constraint, the best known solution to this problem is 

2009.31 [Noon, et al 1991] . There were several procedures in the GA 

which were believed to have some effect on the performance of the 

algorithm; namely, calculating the fitness of the chromosome, infeasibility 

of solutions, sampling, reproduction, operator fitness, format of the 

solutions (duplicates, reverse paths), and the gene selection parameter value 

(probability of selecting a gene from chromosome number 1). 

First, the program was run using Bean's algorithm with the 

exception of a few changes necessary to run the algorithm on the vehicle 

routing problem rather than the machine scheduling problem. These 

changes primarily involved the input of the data set and the evaluation of 

solutions. Also, Bean suggested that a few of the parameter values be 

changed.  The parameter values were as follows: 
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N umber of generati ons - 2000 

N umber of members i n  the popul ati on - 100 

N umber of chromosomes repeated i n  the next generati on - 20 

N umber of mutati ons each generati on - 2 

Gene sel ecti on parameter val ue - 70. 

The method of sampli ng and reproducti on remai ned unal tered. The 

procedure f or cal cul ati ng chromosome fitn ess was to cal cul ate the total 

di stance travel ed on the tour, wi th no penal ty f or i nfe asi bili ty of the 

sol uti on, and assi gn thi s val ue as the fitn ess val ue. (N ote: F or the i ni ti al 

experi mentati on, rounded sol uti ons are gi ven. The exact sol uti ons are 

gi ven f or the fi nal versi on of the program i n  the resul ts secti on of Chapter 

3.) Thi s versi on produced a sol uti on wi th a cost of 555 f or the 50 

customer, 6 vehi cl e probl em whi ch was a good sol uti on; however, i t  was 

i nfe asi bl e wi th 3 vehi cl es exceedi ng the ti me li mi t  and one exceedi ng the 

wei ght limi t. The sol uti on f or the 32 customer, 3 vehi cl e probl em was 

20 14; however, i t  was al so i nf easi bl e  wi th 1 vehi cl e over the ti me li mi t  and 

2 over the wei ght li mi t. Si nce the al gori thm seemed to be produci ng good 

resul ts wi th the excepti on of i nfe asi bili ty, the fi rst task undertak en was to 

devel op a method of penalizi ng f or i nfeasi bili ty i n  order to all ow the 

f easi bl e  sol uti ons to move to the top of the gene pool. 

Penalization for Infeasibility 

The method of cal cul ati ng the fi tness of the sol uti on was the fi rst 

procedure tested to observe the eff ect thi s woul d have on the resul ts. The 

fi rst method of penaliz ati on attempted was to penaliz e each i nf easi bl e  

sol uti on by assi gni ng i ts cost to be a l arge val ue. Thi s method prevented 
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eff ective reproduction because the same l arge number was assigned to each 

sol ution regardl ess of its degree of infe asibil ity. A t  the star t of the 

al gorithm virtuall y all sol utions are inf easibl e since they have all been 

randoml y  generated. Therefore, the " survival- of- the- fittest" phil osophy 

with this ty pe of penal iz ation is not very eff ective since no sol ution' s fitness 

is better than any other. The next method of assigning a f itn ess to the 

sol ution was to add a penal ty to the total distance travel ed on the tour based 

on ty pe and degree of infeasibil ity of the sol ution. The weight penal ty was 

cal cul ated by summing the amount each vehicl e exceeded the weight l imit 

and raising this val ue to some power. The total penal ty was eval uated by 

adding the weight penal ty to the time penal ty which was cal cul ated by 

summing the amount each vehicl e exceeded the time l imit and raising this 

val ue to the same power. F irst, a power of two was used which produced a 

sol ution of 6 17 for the 50 customer probl em; however, the sol ution was 

still sl ightl y  infe asibl e  with one vehicl e being one unit over the time l imit. 

The sol ution to the 32 customer probl em was 23 17 and was fe asibl e. Using 

a power of three, the sol ution to the 50 customer probl em was 654 and was 

feasibl e, and the sol ution to the 32 customer probl em was 2267 and was 

al so feasibl e. F inall y, the sol ution to the two probl ems using a power of 

four was 639 for the 50 customer probl em and 2344 for the 32 customer 

probl em with both sol utions be ing feasibl e. The next method of 

penal iz ation was the same as the previous method using a power of 2, 

except that the penal ty was mul tipl ied by the number of vehicl es which 

were infeasibl e  with respect to weight pl us the number vehicl es which wer e  

infe asibl e  with respect to time. This method gave an improvement in the 

sol utions of both data sets. The sol ution to the 50 customer, 6 vehicl e 
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problem was 60 1 ,  and the solution to the 32 custom er, 3 vehicle problem 

was 2298. 

Samplin2 Procedures 

N ext, the sam pling procedure was changed to observe the eff ects this 

would have on the solution. The fi rst sam pling procedure tested was the 

roulette wheel sam pling m ethod [D avis 199 1] . Below is a list of the steps 

followed in this m ethod: 

1 .  F ind the largest solution value of the n solutions in the 

population, lval . 

2. F or each solution' s value, sval(i) , find fval(i) = lval -

sval(i) . This is a m easure of the fi tness of solution i relative 

to the other solutions in the population. 

3 .  A ssign each solution a range of num bers, the siz e of which 

corresponds to the siz e of its relative f itness value. 

Range(i) = [I,i-1 fval(k), I,i fval(k)] 

4. Generate a random num ber between 1 and I,0 fval(i) . 

5 .  Pick the solution whose range contains this random num ber. 

O n  the data sets tested, the perform ance of the roulette wheel sam pling 

procedure was infe rior to the perform ance of the sam pling procedure in 

which all solutions had eq ual weight. The best solution for the 50 custom er 

problem was 807 and was inf easible. A tourn am ent sam pling m ethod also 

was used in which eight solutions were chosen to reproduce with each other 

resulting in four solutions which reproduced to form two. These two 

solutions then reproduced to form one solution which was added to th e 

population. Th is procedure was only ru n on th e  50 custom er problem due 
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to time limitations. The resulting solution was relatively good with value, 

602, and was feasible; however, the extensive amount of time it took to run 

the algorithm with this sampling procedure made it very impractical. 

Reproduction 

Two alternate methods of reproduction were tested to determine 

their impact on performance. These two methods, single crossover and 

double crossover reproduction, were described in Chapter 1 along with 

their disadvantages. Although these methods have disadvantages, the 

experiments were run in order to observe the changes in the results by 

using these methods. The results of the double crossover method were 

significantly better than the single crossover; however, it produced a 

solution of 2370 for the 32 customer problem and 849 for the 50 customer 

problem, which were significantly worse than with the uniform crossover 

previously used. 

Parameters 

Two important parameters which seem to significantly affect the 

results of the algorithm are nrep and nmut . The parameter nrep controls 

how many chromosomes are copied from one generation to the next. The 

parameter nmut controls how many solutions will be mutated in each 

generation. A key consideration for nrep is that it must be high enough to 

keep the best solutions but not so high as to cause the population to 

converge prematurely. For instance, consider Example 1 . 1 .  If the number 

of solutions to be copied is increased from 1 to 2, the population might 

have the following appearance after the 10th generation. 
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Solution Evaluation 

#1 :  ( 1 .53 2.91 2.07 1 . 10 1 .0 1 )  90 

#2: ( 1 .53 2.91 2.07 1 . 10 1 .0 1 )  90 

#3 : ( 1 .53 2.9 1  2.07 1 . 10 1 .0 1 )  90 

#4 : ( 1 .53 2.91 2.07 1 . 10 1 . 18 )  10 1  

#5 : (2.89 2.75 1 .28 2. 15  1 .87) 210 

By setting nrep too high, the population may prematurely converge more 

quickly than it would have otherwise. However, if the number to be copied 

was reduced to 0, the best solution might be lost. 

The mutation operator, nmut, must be high enough to induce 

variation but not so high as to cause the population to converge towards 

poor solutions. Consider Example 1 . 1  again. Suppose the number of 

mutations per generation is increased from 1 to 2. After 10  generations, 

the population might have the following appearance. 

Solution Evaluation 

#1 :  ( 1 .53 2.91 2.07 1 . 10 1 .0 1 )  90 

#2: ( 1 .09 1 .5 1  2.07 1 . 10 2.58) 102 

#3 : (2.54 2.32 1 . 14  1 .39 1 .2 1 )  1 25 

#4: ( 1 .67 1 .28 2. 1 9  2.57 1 . 1 8) 1 53 

#5 : (2.89 2.75 1 .28 2. 15  1 .87) 210 

In this situation, the increased mutations provides such diversity that the 

better solutions are overwhelmed by the poorer solutions which were 

produced by mutation. 
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According to Davis, the speed of convergence of the population and 

the nearness of the individuals to local optima are related to these two 

parameter values [Davis 1991] . In order to prevent premature 

convergence of the population, experiments were run to determine which 

mixture of parameter values gave the best results for the two data sets. 

The version of the GA used for these experiments included the sampling 

procedure in which all solutions had an equal probability of being selected 

and employed uniform crossover as the reproduction method. The method 

of penalization for infeasibility for these experiments took into 

consideration the amount the time and weight limits were exceeded and the 

number of vehicles not meeting the constraints. After testing the operators 

over a range of values, the best results were found when nrep was set at 20, 

and nmut changed as a function of the generation count. The operator, 

nmut, was initially set at 2 and changed to 5 at generation count 500 and 

then to 8 at generation count 1000. The best solution for the 32 customer 

problem was found to be 2321, and the best solution for the 50 customer 

problem was 587, but was infeasible because one vehicle was over the time 

limit by one unit of time. Another method tested was to change the nmut 

parameter value based on the number of generations without an 

improvement in the best solution. For this version, the nmut parameter 

was increased by ten each time the number of generations without 

improvement exceeded 100. However, the results for this version were not 

an improvement over the previous results. 
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Infeasibility 

S everal methods for handli ng inf eas ibility were examined. O ne 

experiment involved replacin g all inf eas ible s olutions with the bes t s olution 

when the number of infeas ible s olutions fe ll below a certain pre- defi ned 

number. The res ults of the method were s atisfa ctory but not very 

encouraging becaus e there were no cons is tent improvements over previ ous 

methods .  The primary reas on for us ing this criterion for replacement was 

to avoid certain problems which would be ass ociated with other criterion. 

F or example, if the infeas ible s olutions were replaced as a res ult of the 

generation count, all of the s olutions may s till be inf eas ible at that 

particular generation. I n  this s itu ation, al l s olutions in the population 

would have been replaced with the bes t s olution. 

A s econd experim ent allowed the program to ru n through the fi rs t  

2000 generations and then took the bes t s olution and replicated it 100 

times , eff ectively replacing the current population with thes e replicas .  The 

algorithm was then ru n  through another 2000 generations. A gain, the 

res ults of the attempt did not s ignifi cantly change fr om the previous 

res ults .  However, one interes tin g dis covery was made while runni ng the 

s econd experiment. A fter obs erv ing the populations of s uccess ive 

generations , it became apparent an increas ing number of s olutions became 

identical to the bes t s olution until the maj ority of the population had 

converged to this s olution. This would explai n why replication of s olutions 

did not produce s ignificantly diff erent res ults .  The population naturally 

converges and by the 2000 th generation mos t of the s olutions are already 

identical to the bes t s olution. This dis covery led to the next experiment 

which removes duplicate s olutions from the population. This is becaus e 
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once the mating pool is dominated by a single solution , there is insufficient 

variation in the population to allow improvement over the current best 

solution. 

Duplicate Solutions 

This experiment involved removing duplicate solutions from the 

population. In the first experiment, an entire chromosome was mutated if 

it was found to be a replica of one which already existed in the population . 

This version did not show improvement; therefore ,  a second vers ion was 

developed. In this version , rather than mutating the entire chromosome of 

the replicates , two genes on the chromosome were randomly selected to be 

mutated. This caused a significant increase in the amount of time to run 

the algorithm which was a key disadvantage of remov ing duplicate 

solutions . The program took significantly longer to run s ince each solution 

produced must be checked to make sure it does not already exist. Because 

of  this time factor, the population size had to be decreased from 100 to 50. 

There were no s ignificant improvements in the solution. The only 

advantage this version displayed over the other versions was for the 50 

customer, 6 vehicle problem. After 4000 generations , a feasible solution 

was found with a value of 580, the best feasible solution which had been 

found in the experimentation up to this point. 

Reverse Paths 

Another version of the algorithm was developed to insure against 

reverse paths . For example , problems can occur if one solution represents 

a vehicle making a tour, and another solution represents the vehicle making 
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the same tour only the customers are vis ited in reverse order from the first 

one . If these two solutions reproduce with each other, the child will 

probably not represent an efficient solution even though both parents may 

have represented good solutions .  When the program was run which 

checked for reverse paths , the results again did not show improvement, and 

the time factor increased s ignificantly . The population s ize had to again be 

reduced to 50 in order to decrease the time to run the algorithm. 

Feasibility vs, Infeasibility 

Another version of the algorithm was developed as a result of a 

problem encountered when running the versions discussed in the 

parameters section. The problem with this earlier version was that 

occasionally a feasible solution would be found but would be replaced by 

an infeasible solution having a better evaluation. The new version used the 

same penalty function which had been used in the earlier version where the 

infeasibility was raised to a power of 2 and multiplied by the number of 

vehicles infeasible with respect to time and weight. I t  solved the feasibility 

problem by using this penalty function in combination with a procedure 

which would not allow a feasible solution to have a value which was worse 

than an infeasible one . The function of this procedure was to subtract the 

best infeasible solution from the worst feasible solution. If this value was 

greater than 0, it was an indication that there was at least one infeasible 

solution with a better evaluation than some feasible solutions . In this case , 

the v alue was added to all infeasible solutions to force them to have a worse 

evaluation than all of the feasible solutions . For the two data sets being 

tested, this version produced relatively desirable results while keeping both 
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solutions fe asible. This ve rsion produce d the solutions 597 and 232 1 for 

the 50 and 32 custome r  proble ms re spe ctive ly. 

Gene Selection Parameter 

Throughout most of the e xpe ri me ntation, the solution q uality was 

affe cte d  by the value assigne d  to the ge ne se le ction parame te r. The ge ne 

se le ction parame te r de signate s the like li hood of se le cting a ge ne from 

pare nt 1 .  F or e xample , the be st re sults for the 50 custome r proble m we re 

produce d with a ge ne se le ction parame te r of 50, while the be st re sults fo r  

the 32 custome r proble m we re produce d with a ge ne se le ction parame te r of 

40. The re we re se ve ral diffe re nt approache s e xami ne d to obse rve the 

effe cts of change s in the ge ne se le ction parame te r  on the re sults of the 

algorithm. 

The first approach was to allow the two pare nts to produce se ve ral 

diffe re nt off spring at diffe re nt ge ne se le ction parame te r value s, and se le ct 

the child with the be st e valuation to be adde d to the ne xt ge ne ration. F or 

the first ve rsion, nine childre n we re produce d starting with a ge ne se le ction 

parame te r of 10 and at e ach incre me nt of 10 up to 90. The re sults of this 

ve rsion we re not an improve me nt and took signifi cantly longe r to run. 

The ne xt atte mpts we re to produce 3 childre n at incre me nts of 30 in the 

ge ne se le ction parame te r, and the n 4 childre n at incre me nts of 20. Ne ithe r 

of the se atte mpts showe d  improve me nts e ithe r. 

A nothe r  atte mpt was to change the ge ne se le ction parame te r  whe n 

the numbe r of ge ne rations without improve me nt e xcee de d  a ce rtain 

numbe r. F or the fi rst ve rsion, a numbe r be twee n 1 and 100 was randomly 

ge ne rate d for the ge ne se le ction parame te r whe n the numbe r of ge ne rations 
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with out improvement exceeded 1 00. Th e next version was to ch ange th e 

gene selection parameter value by 10  each time th e number of generations 

with out improvement exceeded 100. N eith er of th ese versions sh owed 

improvement. 

Summary 

I n  summary, th ere were some aspects of th e experimentation wh ich 

provided improvements to th e algorith m obtained fr om Bean. F ollowing 

are a fe w  of th ese aspects. 

1 .  Penaliz ing infe asible solutions 

2. Ch anging th e number of mutations as th e number of generations 

m creases 

3. E nsuring all infeasible solutions evaluate better th an all infeasible 

solutions 

Th e gene selection parameter was also observed to be an important factor 

in determining th e solution fo r  a particular problem. H owever, no 

consistency was found for using th e same gene selection parameter over a 

nu mber of diff erent problems. 
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CHAPTER 3 

ANALYSIS 

The purpose of this chapter is to present the final version of the 

genetic algorithm. This version was selected because it demonstrated a 

better overall performance than any of the other versions on the VRP 

problems used for testing. A summation of these testing methods was 

presented in chapter 2. First, a discussion is presented describing alternate 

methods of representing various aspects of the GA and why certain 

methods seem to perform better for our purposes. A few of the issues 

addressed are parameter settings, initial population, elitism, and crossover 

methods. Some causes of premature convergence are also given, as well as 

proposed methods of reducing the probability of its occurrence. Next, the 

results are presented for the selected data sets and are compared to the 

results from the literature. The last section provides a discussion of future 

direction for research. 

Parameter Settin2s 

The settings of the parameter values appear to have a great influence 

on the genetic algorithm for the VRP. Parameters that are commonly 

known to have significant effects on the outcome of the algorithm are 

population size, crossover rate and mutation rate [Schaffer, et al 1 989] . In 

addition to these, an additional parameter of interest in this study was the 

gene selection parameter. For the 32 customer, 3 vehicle problem with 

both time and weight constraints, the best solution found with the gene 
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selection parameter set at 50 was 226 1 ,  much larger than the current best 

solution k nown of 2086. However, using the same algorithm with t he gene 

selection parameter being dropped to 40 , the solution improved to 2 130 , 

which is within about 2% of the best k nown solution. Lawrence D avis 

developed a procedure which evaluates the eff ectiveness of the parameter 

settings on a particular problem and changes the parameters accordingly t o  

produce the best results f or the problem. A ccording to D avis, "Genetic 

al gorithms are stochastic, and the same parameter settings used on the same 

problems by the same genetic algorithm generally y ield diff erent results. 

A conseq uence of this fa ct is that it can tak e  a tremendous amount of 

computer time to fi nd good parameter settings across a number of 

problems." [D avis 1989] . If a method could be developed f or determining 

the best parameter values f or a particular problem, the perf ormance of the 

genetic algorithm should improve significantly. 

There is also concern about whether the parameter values should 

change during the ru n of the genetic algorithm and what should initiate the 

change [D eJong 1985] . A ccording to a study by D eJong: "I ncreasing the 

population siz e was shown to reduce the stochastic eff ects [ of random 

sampling on a f inite population] and improve long- term perf ormance at t he 

expense of slower initial response . . .  , and reducing the crossover rate 

resulted in an overall im provement in perf ormance, suggesting that 

producing a generation of completely new individuals was too high a 

sampling rate." [S chaff er, et al 1989] . 

This led to a set of experiments involving changing the parameter 

values on the genetic algorithm in order to observe the eff ects these 

changes would have on the results of the VRP data sets selected. 
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Popul ation siz e was one parameter which, when al tered, had a consistent 

eff ect on the resul ts. All previou s experiments discu ssed in earl ier chapters 

u sed a popul ation siz e of 100. Consistentl y ,  for all data sets tested, 

increasing the popul ation siz e to 200 gave better resul ts and decreasing the 

popul ation siz e to 50 gave worse resul ts than the popul ation siz e of 100. 

This seemed to be consistent for small probl ems, as well as, l arge 

probl ems. 

A nother parameter tested was the mu tation parameter. F or the final 

version of the program, an additional met hod of incorporating mu tation 

into the genetic al gorithm was u sed al ong with the method discu ssed 

earl ier. I n  the earl ier method, a certain nu mber of compl etel y  new 

solu tions are randoml y generated in each generation. This new method 

work s by perf orming a cou nt every tenth generation to determine how 

mu ch the popul ation has converged. F or each gene of the best solu tion, the 

all el e is compared to the corresponding all el e  on each of the other solu tions 

in the popul ation. E ach time an all el e  is fou nd to be identical to the all el e  

on the best solu tion, the cou nter is incremented by 1 .  I f  this cou nter 

exceeds a certain nu mber (70 was u sed for this program) , then randoml y  

repl ace a cert ain nu mber of these genes (20 was u sed in this case). Th e  top 

solu tions, which were au tomaticall y copied into the next generation, were 

exclu ded fr om this random repl acement. Th e  obj ective was to maintain 

diversity in the popul ation and hel p to prevent prematu re convergence. I t  

was observ ed for the 32 cu stomer probl em that after onl y  30 generations 

there were 6 genes which were repeated on at l east 70 chromosomes, and 

this nu mber continu ed to increase u ntil it stabil iz ed in the range between 28 

and 32. I n  addition to this method of mu tation, another method was u sed 
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whi ch has previ ously been menti oned. Thi s met hod i nvolved i ncreasi ng the 

number of mut ati ons as t he number of generati ons i ncreased. Thi s met hod 

of i ncreasi ng t he number of mut ati ons di d not seem t o  work well i n  

combi nati on wit h  t he met hod of mut ati ng converged alleles. F or all of t he 

dat a set s for whi ch t hi s  combi nati on was t est ed, t he result s were eit her 

worse t han t he result s when t he program was run wit hout t hi s  change, or 

were i nf easi ble where t he previ ous result s had been fe asi ble. 

I n  experi menti ng wit h  t he number of best soluti ons copi ed int o t he 

next generati on, it appears t hat there i s  no consi st ent eff ect on t he result by 

i ncreasi ng or decreasi ng t hi s  number. Thi s i s  probably because t he 

soluti ons have such a t endency t o  converge t hat t hey mai nt ai n t hemselves 

wit hout being copi ed int o t he next generati on. However, for these dat a set s 

the result s seemed t o  be more consi st ent wit h  thi s number set at 20, so t hi s  

i s  t he number used for the experiment ati on. 

Initial Population 

A not her aspect of t he geneti c algorit hm whi ch si gnifi cant ly aff ect s 

t he final soluti on i s  t he generati on of t he initi al populati on. Li epins, et al 

st udi ed how t he i niti al populati on aff ect ed t he result s i n  t hei r  

experi ment ati on wit h  t he crossover method for t he TS P. They di scovered 

t hat by changing t he initi al populati on, a 13% t o  17% vari ati on was 

observed wit h  a conventi onal crossover, and an approxi mat ely 8% 

vari ati on was observ ed wit h  a greedy crossover [ Li epins, et al 1987] .  It 

appears, however, t hat a randomly generat ed i niti al populati on produces 

sati sfact ory result s si nce t he populati on i s  het erogeneous at t he beginni ng of 

t he algorit hm [D avi s  199 1]. A s  observ ed by Li epi ns, t here appears t o  be 
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little benefit in seeding the population with locally optimal solutions. In an 

experiment by Booker, he was able to find better results when all initial 

solutions were randomly generated [Liepins and Potter 1 99 1 ] .  For the 

genetic algorithm used in our experiments, the initial population was 

always randomly generated in order to introduce diversity into the 

population. For the smaller problems with time and capacity constraints 

and the larger problems with only capacity constraints, a randomly 

generated initial population did not seem to present a problem. However, 

for larger problems with both time and weight constraints, a feasible 

solution could not be found. A possible solution to this problem would be 

to place a few feasible solutions in the initial population while still 

randomly generating most solutions. 

Search Space 

One of the problems encountered in using genetic algorithms is the 

size of the search space. The search space here refers to the number of 

combinations of possible solutions for the given VRP. An example of the 

problem of a large search space was presented in an article by Cleveland 

and Smith involving experiments they had performed on scheduling flow 

shop releases [Cleveland and Smith 1 989] .  The Hinton and Nowlan Model 

[Belew 1 989] attempts to solve problems with binary solutions and claims 

an improved solution if learning is combined with evolution. They refer to 

a problem which has 2L ( where L is the number of genes on the 

chromosome) possible combinations as a "needle-in-a-haystack" problem 

and do not feel that the genetic algorithm alone would perform very well. 

However, by combining the genetic algorithm with learning, the search 
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space could be narrowed [Belew 1 989] .  The difficulty of incorporating 

learning is that it is not always easy to determine which criterion help 

define a good solution [Belew 1989]. 

Vehicle routing problems have large search spaces . As an example, 

for an n customer, m vehicle problem, the possible number of 

combinations of only selecting which vehicles will visit which customers is 

mn. This does not include the large number of sequencing possibilities 

w ithin each route . In spite of the fact that there is such a large search 

space , the genetic algorithm seems to produce results which are relatively 

close to the best known solutions for the smaller problems . However, for 

the larger problems , the quality of the solutions and the likelihood of 

finding feasible solutions decrease . 

In addition to changing parameter values , there are several other 

aspects of the genetic a lgorithm which are believed to have a s ignificant 

impact on the performance of the GA. Among these are the representation 

of solutions , the issue of elitism, and methods of crossover. The following 

are alternate methods of dealing with these aspects which were presented in 

the lite rature . 

Elitism 
Elitism is the idea of preserving the best members of the p opulation 

by copying them into future generations . An a lternative to elitism is to use 

a "refresh" operator which works by copying the best member of the 

population to a location other than the current population. This copy is 

mainta ined and occasionally brought back into the population [Sirag and 

Weisser 1 987] . It was decided for our experiments to use elitism rather 
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than this method in or der to k eep th_ e  b est memb er s in the population at all 

times. A n  altern ative method of r epr esenting the solution in the Tr aveling 

S alesman Pr ob lem is b y  assigning a customer numb er to each gene. The 

or der of the tour is then the or der of the customer number s on the 

chr omosome [S ir ag and W eisser 1987] . D ur ing cr ossover, a cr ossover 

point is r andomly selected and all the alleles up to this point ar e copied 

fr om par ent # 1 ;  the r emaining alleles ar e copied fr om par ent # 2.  O ne 

pr oblem with this method is the incr eased amount of time the cr ossover 

tak es b ecause when copy ing fr om par ent # 2 ,  each allele must b e  check ed to 

see if it has alr eady b een copied fr om par ent # 1 .  S ince some genes on 

par ent # 2 ar e sk ipped ( only the ones which have not alr eady been copied 

fr om par ent# 1 ar e copied) , the r esulting chr omosome may not be 

r epr esentative of either par ent [S ir ag and W eisser 1987] .  The pr oblems 

with this method ar e also incr eased when dealing with the VRP which has 

the added r eq uir ement of r epr esenting which vehicle visits which 

customer s. 

Encodin2 of solutions 

The method of encoding solutions used for this GA was the r andom 

k ey s  method which was discussed in Chapter 1 .  This appear ed to be the 

most effi cient means of r epr esenting VRP solutions since cr ossover s could 

b e  per form ed without the added task of ensur ing that each customer was 

visited exactly once. This constr aint was automatically met with the 

r andom k ey s  r epr esentation. 

42 



Crossover Methods 

There is no agreement on bes t method of cross over. This s ection 

will dis cuss the greedy cross over and the uniform cross over. A ccording to 

D eJ ong, the number of cross over points req uired to produce better 

s olutions s eems to increas e with the length of the chromos ome [D eJ ong 

1985] . Uniform cross over appears to be better than one- point or two- point 

cross over; even t hough, in theory, the other two cross over methods s hould 

perform better than uniform. The reas on for this is the s chema s urv ival 

rate is better for the one and two point cross over. O ne advantage with 

uniform cross over is it does not need to be combined with invers ion 

( revers ing the order of the genes on a s egment of the chromos ome). This 

is becaus e alleles which are f ar apart on the chromos ome have an eq ual 

chance of s tay ing together on the new chromos ome as alleles which are 

clos e together [S ys werda 1989] . 

The greedy cross over is one ty pe of cross over which is a poss ible 

area of exploration for future res earch. This cross over was developed by 

Liepins,  et al [ Liepins,  et al 1987] and us es t he idea of a greedy algorithm 

which, according to L. D avis is " an optimiz ation algorithm that proceeds 

through a s eries of altern atives by mak ing the bes t decis ion, as computed 

locall y, at each point in the s eries." [D avis 199 1] .  They compared the 

performance of this cross over method with the conventional cross over on 

the TS P. This cross over method is a modifi cation of one which 

Grefe ns tette developed. I t  begins by s tarting the tour with the s am e  city 

every time. A t  this point, the s hortes t edge is s elected fr om the two 

parents, if a cy cle is not introduced. I f  a cy cle is introduced, the edge is 

s elected fr om the other parent, unless it als o caus es a cy cle. I f  the choice 

43 



of either parents results in a cy cle, th e  tour is extended by a random city. 

This process is repeated until the tour is completed. The advantage to 

using the greedy crossover is that it " all ows problem specific information 

to be used in the crossover operation." Greedy genetics seem to perform 

better when the greedy algorithm being used is powerfu l, meaning it finds 

a good solution with only one ru n of the algorith m. However, 

conventional genetics perf orm s  better when the greedy algorithm is weak 

[ Liepins, et al 1987] . 

I n  summation, for th is genetic algorithm, the only method of 

encoding a solution which was used in the experimentation was the random 

k ey s  representation. The method of elitism used was to copy the top 20 

solutions into the next generation. Th e  uniform crossover was preferred 

over one and two point crossovers. This is because the uniform crossover 

can produce a greater number of combinations of solutions, providing 

more diversity within the population. The greedy crossover was not used 

for any of the experim entation. 

Converi:ence 

A common problem with genetic algorithms is premature 

convergence to a solution that is not optimal. This has been a recurring 

problem when ru nning our experiments; therefore, this section discusses 

some of the causes of convergence and possible way s of preventing 

premature convergence. There are two ty pes of alleles which contribute to 

this convergence: lost and converged. A n  all ele is refe rred to as lost if 

every member of the population has the same value for a particular gene. 

W hen this occurs, the possible genoty pes are severely restricted. A n  allele 
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is said to have converged if at least 95 % of the population has the same 

value for a particular gene. Two possible causes of this convergence is that 

a "super individual" starts producing too many offspring or, in contrast, 

the other individuals are not producing enough offspring. One solution to 

this problem is to keep the population as diverse as possible [Baker 1985]. 

The mutation operator serves as protection against convergence by helping 

to keep the population diverse [Goldberg 1988]. An example of this 

problem is shown by Ackley in a comparison between a genetic algorithm 

and a hillclimbing algorithm. Over a convex solution space, the genetic 

algorithm took longer to run primarily because a loss of an allele caused a 

long run to be necessary. The probability of this occurring was reduced by 

increasing the mutation rate [Ackley 1985] . 

One cause of convergence is to focus too much on rapid 

improvement which can cause premature convergence on the wrong strain 

by driving out alternative genetic material. A good balance must be found. 

If performance is not sufficiently emphasized, the best members of the 

population can be lost [Davis 1987]. The manner in which infeasibility is 

handled is a very important consideration with respect to convergence. 

Most work with genetic algorithms has been performed on unconstrained 

problems. Convergence is a difficulty with using the GA on constrained 

VRP's [Liepins and Potter 1991] .  Under a high infeasibility rate, a feasible 

solution tends to drive other possibilities out of the population. This is due 

to the fact that the probability of infeasible members reproducing with each 

other is continuously decreasing [Davis 1987] . According to Liepins and 

Potter, there are three methods of dealing with infeasibility: 
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1 .  Fo rce fe asible so lutio ns into the po pulatio n by using " spe cialize d 

re co mbinatio n o pe rato rs." 

2. Do no t allo w infe asibility by re pe ating re pro ductio n until a 

fe asible so lutio n is ge ne rate d. 

3. Use a pe nalty fu nctio n fo r infe asibility. 

The y fo und that o f  the se three me tho ds, o nly the f irst and third we re 

effe ctive [ Lie pins and Po tte r 199 1]. D avis de alt with infe asibility fo r jo b 

sho p sche duling pro ble ms by o nly allo wing feasible so lutio ns by se le cting 

the f irst le gal actio n available fro m a list o f  actio ns fo r e ach wo rk statio n 

[D avis 1985]. Ho we ve r, since ge ne tic algo rithms fu nctio n  by co mbining 

info rmatio n f ro m  all me mbe rs o f  the po pulatio n, infe asible me mbe rs 

sho uld re main in the po pulatio n to re pro duce with the fe asible me mbe rs 

[ Richardso n, e t  al 1989] . 

Fo r o ur ve rsio n o f  the ge ne tic algo rithm, infe asible me mbe rs we re 

allo we d, but we re characte rize d with a pe nalty fu nctio n  so as to give an 

advantage to fe asible me mbe rs o f  the po pulatio n. Two pe nalty functio ns 

we re te ste d to o bse rve the ir effe cts o n  the co nve rge nce o f  the po pulatio n. 

The fi rst pe nalty fu nctio n invo lve d sq uaring the amo unt the so lutio n 

e xcee ds the we ight limit plus the amo unt the so lutio n e xcee ds the time limit 

and multiply ing this by the numbe r o f  ve hicle s who se ro ute s are infe asible 

with re spe ct to we ight plus the numbe r infe asible with re spe ct to time. The 

se co nd pe nalty f unctio n  invo lve s multiply ing the amo unt the so lutio n 

e xcee ds the we ight limit by 0.25 plus the amo unt the so lutio n e xcee ds t he 

time limit time s 0.25. The large r pe nalty see me d  to wo rk be tte r  o ve rall 

whe n use d  in co mbinatio n  with the pro ce dure o f  kee ping a co unt o f  

duplicate ge ne s  and rando mly re placing the m whe n ne ce ssary in o rde r to 
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maintain diversity in the popu lation. The only exception to this was the 50 

cu stomer, 6 vehicle problem, which produ ced a better solu tion with the 

small er penalty fu nction. The advantage of the larger penalty was 

particu larly obviou s with the larger data sets. I t  appeared that they need a 

larger penalty fu nction in order to be driven to feasibility . A lthou gh a 

feasible solu tion was not fou nd for the larger problems with a time 

constraint, the solu tion came closer to fe asibility when the larger penalty 

fu nction was u sed. 

W hen infeasible members are left in the popu lation, it is common 

practice to u se some penalty fu nction in order to give the fe asible members 

of the popu lation an advantage over the infeasible members. O ne 

altern ative to the standard procedu re of combining the cost fu nction and 

the penalty fu nction into one is to treat the cost as one obj ective and treat 

the penalty as a separate obj ective [ Richardson, et al 1989] . A ccording to 

Richardson, Palmer, L iepins, and Hilliard , there are fou r gu idelines for 

designing a penalty fu nction: 

1 .  Penalties which are fu nctions of the distance from 
fe asibility are better performers than those which are 
merely fu nctions of the nu mber of violated constraints. 

2. F or a problem having few constraints, penalties which are 
solely fu nctions of the nu mber of violated constraints are 
not lik ely to fi nd solu tions. 

3. Good penalty fu nctions can be constru cted from two 
qu antities, the maximu m completion cost and the expected 
completion cost. 

4. Penalties shou ld be close to the expected completion cost, 
bu t shou ld not frequ ently fa ll below it. The more accu rate 
the penalty , the better will be the solu tions fou nd. W hen 
the penalty often u nderestimates the completion cost, then 
the search may not find a solu tion [ Richardson, et al 1989] . 
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Another cause of convergence is genetic drift. This term refers to 

one allele winning out over the others even though it has no real significant 

advantage. Normally with the GA, the problem is convergence causing 

unequal alleles in the population. However, with genetic drift the problem 

can be even greater, resulting in the bad alleles surviving instead of the 

good alleles [Goldberg and Segrest 1 987] . There is a theorem which states 

that the best individuals will increase exponentially in the number of times 

they reproduce assuming that the population is infinitely large [Goldberg 

and Richardson 1 987] . This is believed to be a cause of genetic drift. 

One method of reducing the probability of premature convergence is 

by incorporating the idea of niche and species into the genetic algorithm. 

The concept of niche and species comes from the natural definition in 

which different species have separate niches which are composed of 

different environmental features .  By forcing subpopulations to exist, the 

probability of convergence is reduced [Goldberg and Richardson 1987] . 

There are several methods of incorporating this idea into the genetic 

algorithm. One such method, known as preselection, was developed by 

Cavicchio ( 197 1 ) .  With preselection, the offspring only replaces the parent 

if it gets a better fitness value than the parent. This maintains diversity by 

only replacing solutions which are similar to themselves. DeJong ( 1975) 

developed the concept known as crowding. Each member of the population 

is assigned a crowding factor based on its similarity to the other members . 

When an offspring is produced, it replaces the individual which is most 

similar to itself in a randomly drawn subpopulation of individuals with the 

same crowding factor. Goldberg and Richardson introduced the idea of 

sharing to induce niche and species on members of a population [Goldberg 
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and Richardson 1987]. T he idea of sharing is that solutions receive a 

reward based on their perform ance; however, the reward must be shared 

among all of the similar solutions. T herefore, a solution' s reward will be 

reduced corresponding to the number of similar solutions [D eb and 

Goldberg 1989]. Goldberg and Richardson demonstrated that a genetic 

algorithm with sharing maintains subpopulations around diff erent peak s, 

while without sharing, the population converges to a single peak [Goldberg 

and Richardson 1987] .  

I n  addition to niche and species, there are several other methods 

w hich have been introduced for dealing with convergence. O ne idea 

presented by Bick el and Bick el is to characteriz e  a population as converged 

if the evaluation of all the solutions is within a certain range. I f  it is 

determ ined that the population has converged by this defi nition, then a 

certain percentage are replaced with new solutions [Bick el and Bick el 

1987]. Bak er proposed t hree additional methods of solving the problem of 

premat ure convergence. The fi rst method is standard selection in which 

there is a limit to the maximum or t he minimum off spring produced by a 

particular parent. T he second met hod is rank ing. W ith rank ing, the rank 

rat her t han the value of the solution determine an individual' s expected 

number of off spring [Bak er 1985]. T he third method, the hy brid method, 

has two altern atives. T he first altern ative is to use rank ing during periods 

of rapid convergence and to use standard selection the other times. The 

second altern ative is to change t he number in the population in order to 

reach t he desirable percentage involvement ( the ratio of the number of the 

best members in t he population to the total number of members in the 

population) [Bak er 1985]. T he disadvantage with this second altern ative is 
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that a super individual can still control the population. Even though other 

individuals are not completely lost, their significance can be greatly 

reduced because the super individual is still dominant [Baker 1985] . 

Eshelman and Schaffer proposed a method of preventing premature 

convergence by preventing incest, using uniform crossover, and removing 

duplicate solutions from the population. In this method, an evaluation is 

performed to determine the difference between each of the individuals in 

the population. This difference is referred to as the "Hamming distance" .  

Incest prevention only allows two individuals to reproduce with each other 

if their "Hamming distance" is greater than a certain amount. This amount 

will decrease as the population converges. Eshelman and Schaffer 

produced successful results with this method. However, they determined 

that it was not necessary to remove duplicate solutions in combination with 

incest prevention. This was because when the two procedures were 

combined, results did not significantly improve, and the run time was 

increased because of excessive comparisons [Eshelman and Schaffer 1991] .  

The Final Pro1:ram 

This section will summarize the final version of the genetic 

algorithm. This version was selected because it seemed to perform better 

than the other versions of the GA on the majority of the vehicle routing 

problems used in the experimentation. A copy of this version is presented 

in Appendix A. Following is a list of the parameters selected: 

Number of member in population - 200 

Number of generations - 2000 

Number of best solutions repeated in next generation - 20 
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Number of solutions mutated each generation - 2 

Gene selection parameter value - 50. 

The method of encoding solutions used was the random keys 

representation. A penalty function was used during evaluation to penalize 

infeasible solutions . This penalty was calculated by the square of the 

amount the time limit was exceeded plus the square of the amount the 

weight limit was exceeded times the number of vehicles not meeting the 

time constraint plus the number of vehicles not meeting the weight 

constraint. The method of reproduction was to copy the top 20 solutions to 

the next generation, mutate two complete solutions, and to produce the 

remaining 178 of the solutions by uniform crossover. In order to decrease 

the problem of convergence, a particular gene was mutated for 20 of the 

chromosomes if more than 70 chromosomes in the population had an 

identical allele to the best member of the population for that particular 

gene. This version seemed to perform better overall; however, there were 

a few exceptions in which a slight modification to this version improved 

performance on the problem. One exception was the 32 customer, 3 

vehicle problem which performed better with a gene selection parameter of 

40 rather than 50. Also, the 50 customer problem with and without the 

time constraint, as well as the 100 customer, 8 vehicle problem without the 

time constraint performed better with the smaller penalty function. The 

smaller penalty function was the one in which the amount the constraints 

were exceeded was multiplied by 0.25. 
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Results 

Table 3 .1 presents the problems analyzed. The first column of this 

table lists the problem number which was assigned to each problem. If the 

number is followed by " -t" ,  this is an indication that the problem is the 

same one as the previous problem only without the time constraint. The 

number in brackets beside the problem number indicates the source from 

which the best known solution value is reported. The next two columns 

respectively list the number of customers and the number of vehicles for 

the corresponding problem. The weight capacity for each vehicle is given 

in column 4, and the time limit for each vehicle route is given in column 5 

(where the dotted lines indicate that the problem has no time constraint). 

Column 6 lists the stop times at each customer. The capacity ratio in 

column 7 is calculated by dividing the total amount of weight to be picked 

up by the total vehicle capacity available. 

Table 3 . 2  presents the results of the genetic algorithm compared with 

the best known solutions of the problems obtained from the literature. The 

results from the GA were obtained from running the final version of the 

GA, which was written in C programming language, on a Spare II UNIX 

workstation. The first column lists the problem number from Table 3. 1 .  

The best known solution which was obtained from the literature i s  given in 

column 2. Column 3 gives the solution obtained using the GA. If the final 

solution was infeasible, this number includes the penalty . The 4th column 

lists the amount of time the algorithm took to complete the run. Column 5 

gives the actual distance for the problems. If the solution was infeasible, 

the number in parentheses represents the number of vehicles infeasible with 

respect to time plus the number infeasible with respect to weight. The last 
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Table 3.1 .  Probl ems used for experimentati on. 

No. of No. of 
Problem Customers Vehicles Wei&ht Time 

P 1 [30] 22 3 4500 
P2[32] 29 3 4500 
P3[30] 32 3 38000 1000 
P3-t [30] 32 3 38000 
P4[ 1 7] 50 6 160 200 
P4-t [ 17]  50 5 160 
P5 [32] 75 1 1  140 1 60 
P5-t [ 17] 75 10  140 
P6 [30] 75 14  100 10000 
P7 [ 17]  100 9 200 230 
P7-t [ 17] 100 8 200 
P8 [ 17] 100 1 1  200 1040 
P8-t [32] 100 10  200 
P9[30] 100 14 1 12 10000 
PlO [32] 120 1 1  200 720 
PlO-t [32] 120 7 200 
P 1 1 [32] 1 50 14  200 200 
Pl l -t [ 17] 1 50 12  200 
Pl2[32] 1 99 1 8  200 200 
P12-t[ l 7] 199 17  200 
P 12-t[32] 1 99 1 6  200 
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Stop Capacity 
Time Ratio 

10  . 76  
10  .94 
20 . 8 6  
20 . 8 6  
10  . 80 
10  .97 
10 .88 
10  .97 
10  .97 
10 . 8 1  
10  . 9 1  
90 . 82 
90 .90 
10 .92 
50 . 62 
50 . 98  
10  . 80 
10 .93  
10  . 8 8  
10  .92 
10 .98  



Table 3.2. Comparison of GA results with other methods of solving 
problems. 

Best GA % GA above 
Problem Sol ution Solution Time Actual best known soln 

P l  568 .56 569.7 5 1 2.5 569 .7  0 .2  
P2 534 548 .5 699. 3  548 .5  2 .7 
*P3 2086 2 1 30.5 996. 1 2 1 30 .5 2. 1 
P3 2086 226 1 .9 802.2 226 1 .9 8 .4 
P3-t 2009.3 1  2009. 3  780.5 2009. 3  0.0 
*P4 555.43 561 . 3 1 230.5 56 1 . 3 1 . 1  
P4 555 .43 587.9 1 333.0 587 .9 5 . 8  
*P4-t 524.6 1 656.8 1 228 . 1 656 .8  25.2 
P4-t 524 .61  749.2 1236.3 749.2  42. 8 
P5 909 62 1 0.9 208 1 . 8 1000 (6) INFEAS 
P5-t 836.37 1 380. 8 2 1 08 .6 1 3 80. 8 65. 1 
P6 1042 1 722.6 2 1 50.7 1 722 .6  65. 3  
P7 865 .94 60 14.4 52 min 1 1 00 ( I )  INFEAS 
P7-t 826. 1 4  984.0 5 1  min 984.0 1 9. 1 
P8 866.37 1 226.9 52 min 1 226.9 4 1 .6 
P8-t 8 1 9  1 254. 1 52 min 1 254. 1 53 . 1 
P9 1 1 1 3 1 697.9 54 min 1 697 .9 52.6 
P IO  1 545 95344.7 1 hr. 5min 1 974 ( 1 )  INFEAS 
P l 0-t 1 042 2960.0 1 hr. 4min 2960.0 1 84 .0 
Pl  1 1 1 64 569277 .9 1 hr. 21 min 1 578  (6) INFEAS 
P l  1 -t 1 034.90 2256.4 1 hr. 1 5min 2256.4 1 1 8 .0  
P l 2  1 4 1 7  4578660.0 2hr. 34min 2280 (8) INFEAS 
P 1 2- t l  1 329 .29 3537.4 2hr. 30min 3537 .4  1 66. 1 
P l  2-t2 1 334 4980.0 2hr. 29min 4890 (2) INFEAS 

Notes :  *P3 are the results of the 32 customer, 3 vehicle problem with a gene selection 
parameter of 40 instead of 50. *P4 are the results of the 50 customer problem with the 
smaller penalty function rather than the larger one. 
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column presents the percentage which the GA solution was above the best 

known solution. Refer to Appendix 2 for tables showing which customers 

are visited by which vehicles. 

The problems can be categorized as either evenly distributed or 

clustered. Problems P4, PS, P6, P7, and P9 consist of customer locations 

which are evenly distributed over the region. [Noon, et al 1 991] .  Problems 

P2 and P3 share aspects of both these two categories. [Noon, et al 1991] 

However, because of the way the genetic algorithm functions, the 

organization of the customers should have no effect on the results. 

Notice that the GA solution to the first three problems, the 29 

customer, 32 customer, and 50 customer problems, are all relatively close 

to the best known solution, with the exception of the 50 customer problem 

without the time constraint. The poor results for this problem could be 

due to the high capacity ratio. Beginning with the 75 customer problems, 

the genetic algorithm performance becomes progressively worse. The 

genetic algorithm did not even find feasible solutions to the time 

constrained problems with 75 customers and greater. This is probably due 

to the increased size of the search space. As the search space size increases, 

it becomes more and more difficult for the genetic algorithm to converge 

to the optimal solution. In some instances, the solutions to these problems 

were continuing to decrease as the genetic algorithm approached its 2000th 

generation. Therefore, in some cases, the algorithm was allowed to run 

for 3000 generations in an attempt to allow the algorithm to complete its 

convergence. However, this did not significantly improve the results. The 

solutions continued to decrease a small amount for a few more generations 
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an d then con verged to a soluti on n ot si gnifi can tly better than the soluti on at 

the 2000 th gen erati on. 

Proposed Improvements 

that: 

In the arti cle by W hi tley, S tark weather, an d F uq uay i t  was observ ed 

The theory behin d gen eti c algori thms i s  well developed for 
problems that can be en coded as a bin ary strin g wi th n o  order 

in depen den ci es. However, man y poten ti al appli cati on s  of 
gen eti c algori thms i nvolve complex orderin g depen den ci es 
si mi lar to those foun d  in the Travelin g S alesman Problem 
[W hi tley , et al 1989]. 

S uh an d Gucht li st three problems to overcome in makin g thi s 

tran sformati on: 

1. Represen tin g the problem eff ecti vely. 

2. Recombi nati on operators are on ly eff ecti ve i f  a heuri sti c i s  

appli ed. "S uch operators can be foun d in gradi en t descen t  

algori thms, hi ll cli mbin g algori thms, si mulated ann eali ng, etc." 

3. Premature con vergen ce whi ch i s  caused by a super i ndi vi dual 

who overtak es the populati on or a poor performan ce by a 

recombi nati on operator [S uh an d Gucht 1987]. 

A ccordin g to Grefen stette, in order to apply gen eti c  algori thms to 

combin atori al opti miz ati on problems, some kin d of heuri sti c must be used. 

He used a heuri sti c crossover operator whi ch proved to be more eff ecti ve 

than the stan dard gen eti c algori thm [S uh an d Gucht 1987]. 

S uh an d Gucht introduced a method in whi ch two operators were 

used. The fi rst operator i s  used to select two paren ts. A ran dom ci ty i s  

then selected for the beginnin g of the off sprin g tour. S ubseq uen t gen es are 

selected on e at a ti me from the paren t whi ch wi ll produce the shortest path. 
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The proble m is the paths m ay still be crosse d. This proble m is sol ve d 

using the se cond ope rator, the 2- opt ope rator. This ope rator randoml y 

sele cts 2 e dge s  ( i1 ,j 1 ) and ( i2 ,h ) . I f  ED( i1 ,j 1 ) + ED(h ,h ) > ED( i1 ,h )  + 

ED( ii ,j 1 ) ,  re pl ace the e dge s with ( i1 ,j2 ) and ( ii ,j 1 ) ( whe re ED is the 

E ucl ide an D istance )  [S uh and Gucht 1987] .  The y we re able to produce 

be tte r re sul ts with the 2- opt ope rator than without it [S uh and Gucht 1987] . 

"I t turne d out that the sele ction of a natural re pre se ntation and the sele ction 

of he uristicall y m otivate d  re com bination ope rators is critical in the de sign 

of robust ge ne tic al gorithm s fo r  such proble m s. "  [S uh and Gucht 1987] . 

The re are se ve ral me thods which have bee n  propose d to im prove the 

standard ge ne tic al gorithm. O ne meth od is hy bridiz ation of anothe r 

optim iz ation al gorithm with the ge ne tic al gorithm. This meth od can 

com bine the positive fe ature s of the othe r al gorithm , such as the e ncodi ng 

te chniq ue , with the be st fe ature s of the ge ne tic al gorithm , crossove r and 

m utation [D avis 199 1] .  

A nothe r me thod is to com bine sim ul ate d  anne al ing with crossove r, 

m utation, and inve rsion by using a te m pe rature parame te r  to control 

dive rsity in the popul ation [S irag and We isse r  1987] . S im ul ate d anne ali ng 

use s a single individual which is give n some am ount of e ne rgy ( high for 

ineff icie nt sol utions, l ow for effi cie nt one s) .  W he n  a ne w sol ution is 

ge ne rate d, it will re pl ace the curre nt sol ution base d on some probabil ity . 

This probabil ity is assigne d  according to the am ount of e ne rgy the ne w 

sol ution has com pare d  to the curre nt one [S irag and We isse r  1987] .  The 

way th is te m pe ratu re parame te r  woul d work with the ge ne tic al gorithm 

woul d be to sele ct ge ne s from the f irst pare nt until the te m pe rature is 

e xcee de d, the n  switch to the se cond pare nt until the te m pe ratu re is 
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exceeded again. This would work similarly for inversion and mutation. 

The temperature should start out high and drop fa irly rapidly to a medi um 

temperature, then drop slowly to a low temperature [S irag and W eisser 

1987] . 

O ne additional possibility fo r improving the results of the geneti c 

algorithm is to run them in parallel. The idea of Parallel Genetic 

A lgorithms is t hat instead of having one large population, have several 

smaller subpopulations reproducing in parallel. A t  the end of each 

generation, each subpopulation sends the b est individual in its population to 

the other subpopulations. There are diff erent methods of selecting which 

i ndividuals are to b e  replaced b y  these new memb ers. A mong these are 

replacing randomly , replacing the worst solution, or replacing the solution 

which is most lik e the new one. I t  is undetermined at this time whether 

selection of the individual based on subpopulation performance rather than 

population as a whole speeds up or slows down convergence. The 

advantage of this method is that a large population siz e is enabled without 

the unreasonable amount of time that it would tak e with a seq uential genetic 

algorithm [ Pettey , et al 1987] . 

Conclusion 

Based on our research, the genetic algorithm seemed to perform well 

on problems with 50 or fe wer customers. A s  the number of customers 

increased, the results became progressively worse and the lik eli hood of 

finding a fe asible solution also decreased. A lso, there was not a version 

found which would consistently give the best solution for all problems 
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tested. Following are some thoughts Goldberg and DeJ ong have expressed 

involving the inconsistency of genetic algorithms. 

The idea of genetics is to be robust over a large domain, not to 

achieve peak performance. Goldberg says, "When we change a genetic 

algorithm to work better on a particular problem, we may have some 

success in jazzing things up on that problem, but when we tum around and 

try to use those operators elsewhere, we are likely to be disappointed." 

[Goldberg 1 989] . Delong also believes that evolutionary systems are not 

meant to be function optimizers and says, 

" . . .  one shouldn't be surprised that: 1 )  the best individual 
encountered so far may not even survive into the next 
generation, 2) that the population itself seldom converges to a 
global (or even local) optima, or 3) that the ability of GA's to 
produce a steady stream of offspring that are better than any 
seen so far can vary from quite impressive to dismal." [DeJ ong 
1 985]. 

Perhaps future research will enable a wider range of vehicle routing 

problems to be solved closer to optimality with the genetic algorithm. 

Using the genetic algorithm in combination with some of the ideas 

presented in the previous section such as a heuristic, simulated annealing, 

or parallel genetic algorithms could help to improve the results of the GA. 

One of the major obstacles to overcome seems to be premature 

convergence of the population. If this problem could be solved, maybe the 

genetic algorithm would consistently give near optimal results. 
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Appendix 1 consists of the final genetic algorithm which was used 
for comparison of the genetic algorithm results to the best known solution 
presented in the literature. The genetic algorithm is written in C 
programming language. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 

#define maxload 201 
#define maxveh 20 
#define maxpop 200 
#define maxcount 2000 

/* max number of loads */ 
/* max number of vehicles * / 
/* poplulation size */ 

/* number of generations to run */ 

int nrep = 20, nmut = 2, do_out = 0, pf = 1 0; 
int seed,clevel = 50; 
float target = - 1 2090.0; 
int nload,stop,nveh,maxweight,stoptime,timelimit,vick; 
int ii[ lOOOJ ; 
void hsort(); 
float ff[ lOOO] ; 
struct ind { /* chromosome array */ 

float gene[maxload] ; 
float val; 

float real val; 
int infeas; 
int weight[maxveh]; 
float time[maxveh] ; 

} ;  
struct dist 

{ /* distance array */ 
float node[maxload]; 
} ;  

struct ind *pptr, *opptr; 
struct dist *dptr; 
int xcoor[maxload+ 1 ] ,ycoor[maxload+ 1 ] ,custweight[maxload+ 1 ] ;  
int custno[ max load+ 1 ] ;  
int count,feascnt; 

FILE *outfile; 
FILE *test; 
FILE *infile; 
FILE *testout; 
FILE *gengraph;  
FILE *geninfs; 
int time_passed; 
long timestore, time_now; 
float bestinfs, worstfs; 
int worstchr; 
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main() 
( 
void eval() ,repro(); 
int pick(); 
float urand(); 
void readinb(), setpop() ; 
int i ,j , stop,k,1 ,feasfnd,n uminfeas; 
float avg,z; 
pptr = (struct ind *) calloc (sizeof(struct ind),302); 
opptr = (struct ind *) calloc (sizeof(struct ind),302); 
dptr = (struct dist *) calloc (sizeof(struct dist),302); 

readinb(); 

outfile = fopen( "output" ,  "w"); 
testout = fopen( "coortest" ,"w"); 
gengraph = fopen("graph","w") ; 
geninfs = fopen("feasfile" ,"w") ;  
for(seed=2;seed<=2;seed++) ( 
time_now= clock(&timestore); 
srand(seed) ; 

feascnt = 200; 
setpop(); 
if (do_out) 

( 
avg = 0.0; 
for (i= l ; i<=maxpop; i++) 

( 
for (i= l ;j<=nload;j++) 

printf("%.3d " , (*(pptr+i)) .genefj]) ; 
printf( "%f\n " , (*(pptr+i)) . val); 
avg += (*(pptr+i)) .val; 
} 

printf("%f\n" ,avg/maxpop); 
} 

stop = 0; 
count = 0; 
while ( I -stop) 

( 
count++; 
/* change the number of chromosomes mutated each generation */ 
/*if (count == 500) 

{ 
nmut = 5;  
} 

if (count == 1 000) 
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{ 
nmut = 8 ;  
} */ 

/*if (count == 1500) 
{ 
nrep = 14; 
nmut = 8; 
} */ 

feasfnd = 0; 
numinfeas = 0; 
bestinfs = 1000000; 
worstfs = 0; 
worstchr = 0; 
if(count >= maxcount) 

stop = 1 ;  
for (i= l ; i<=maxpop;i++) 

if ((*(pptr+i)) . infeas >= 1 )  
numinfeas++; 

feascnt = numinfeas; 
fprintf(gengraph, 1 1%d % .4f %d\n 1 1 ,count,(*(pptr+ 1 ) ) .val,numinfeas) ; 
fprintf(geninfs, 1 1%d o/od\n 1 1  ,count,numinfeas); 

if(count == pf*(count/pf)) 
( 
/*printf("time = %d\n 1 1 ,clock(&timestore)-time_now);*/ 
printf( 1 1%d generations, best value found is %.0f1 1 ,count, 

(*(pptr+ 1 )) .val) ;  
printf( 1 1  Number infeasible is %d 1 1 ,numinfeas); 
printf( ''\n ") ; 
} 

repro(); 
if((* (pptr+ 1 ) ) .val <= target) stop = 1 ;  
i f  (do_out) 

( 
avg = 0.0; 
for (i= l ;i<=maxpop;i++) 

{ 
for (j=l ;j<=nload;j++) 

printf("o/od " ,(* (pptr+i)) .gene[j] ) ;  
printf("o/of\n " , (*(pptr+i)) .  val) ;  
avg += (* (pptr+i) ) .val ; 
} 

printf("o/of\n" ,avg/maxpop ) ;  
} 

} 

time_passed = clock(&timestore)-time_now; 
printf("time = o/of seconds\n",time_passed/1 e6); 
eval ( l ); 
i = l ;  
printf( "Best solution found i s  %.0f\n 1 1  , (*(pptr+ 1) ) .  val ) ;  
printf( 1 1Best solution distance is %.0f\n 1 1 ,(*(pptr+ 1 ) ).realval) ;  
printf("Yehicle weights and times:\n 1 1) ; 
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for (k=l ;k<=nveh;k++) 
printf(" Weight[%d] = %d Time[%d] = %f\n", 

k,(* (pptr+ 1 ) ) .  weight[k] ,k,(* (pptr+ 1 ) ) .time[k] ) ;  
printf("Infeasibility = %d\n",(*(pptr+ 1 ) ) .infeas) ; 
numinfeas = O; 
for (k= l ;k<=maxpop;k++) 

{ 
if ( (*(pptr+k)) . infeas >= 1 )  

numinfeas++; 
} 

printf("Number infeasible = %d\n",numinfeas) ; 
printf("Generations = %d\n ",count) ; 

printf( '\n"); 
for (j= 1 ;j<=nload;j++) 

{ 
printf( "%.3f " , (*(pptr+i) ) .gene[j]) ;  
if (j == l O* (j/10)) 

prin tf( '\n "); 
} 

printf('\n ") ;  
printf( "%f\n ",(*(pptr+i)) . val) ;  
i = 1 ;  
fprintf(testout,"Best solution found i s  %.Of\n ",(* (pptr+ l )) .val ) ;  
fprintf(testout,"Best solution distance is %.Of\n ",(*(pptr+ 1 ) ) .realval) ;  
fprintf(testout,"Vehicle weights and tirnes:\n"); 
for (k=l ;k<=nveh;k++) 

fprintf(testout," Weight[%d] = %d Tirne[ %d] = %f\n", 
k , (*(pptr+ 1 ) ) .  weight[k] ,k,(*(pptr+ 1 ) ) .tirne[k] ) ;  
fprintf(testout,"Infeasibility = %d\n ",(* (pptr+ 1 ) ) .infeas); 
numinfeas = O; 
for (k= 1 ;k<=maxpop;k++) 

{ 
if ( (* (pptr+k)) . infeas >= 1 )  

numinfeas++; 
} 

fprintf(testout, "Number infeasible = %d\n",nurninfeas); 
fprintf(testout,"Generations = %d\n",count); 

for (j= 1 ;j<=nload;j++) 
{ 
fprintf( testout, "% .3f " , (*(pptr+i) ) .gene[j] ) ; 
if (j==lO*(j/ 10) )  fprintf(testout, "\n") ;  
} 

fprintf(testout, '\ntime = %f seconds\n",time_passed/l e6); 
fprintf(testout, '\n") ;  
fprintf(testout, 1 1 %f\n 1 1  ,(* (pptr+i)) .  val) ; 
fprintf( testout, 1 1  %d %d\n" ,xcoor[ nload+ 1 ] ,ycoor[ n load+ 1 ]) ;  
for (j= l ;j<=nload;j++) 

{ 
k = ff[j] ;  
1 = ff[j+ 1] ;  
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if (k==l) 
fprintf(testout, "%d %d\n" ,xcoor[iiU] ]  ,ycoor[i iU]]) ;  

else 
{ 
fprintf(testout, "%d %d\n" ,xcoor[iiU ] ]  ,ycoor[iiU]] ) ; 
fprintf(testout, "%d %d\n\n" ,xcoor[nload+ 1 ]  ,ycoor[nload+ 1 ] ); 
if (l<=nveh) 

{ 
fprintf(testout, "%d %d\n",xcoor[nload+ 1 ] ,ycoor[nload+ 1 ] ); 
} 

} 
fprintf(outfile,"time = %f seconds\n",(time_passed/l e6)); 
fprintf(outfile,"clevel, seed, count, value %d %d %d %f\n",clevel, seed, 
count,(*(pptr+ 1 ) ) .val); 
} /*end seed loop* I 
fclose( outfile ); 
fclose(gengraph); 
fclose(geninfs); 

/****************************************************************** 
* This procedure randomly generates the initial population * 
******************************************************************/ 

void setpop() 

int i ,j ;  
void eval(); 
float urand(); 
int pick(); 

for (i= l ;i<=maxpop; i++) 
{ 
for (j= 1 ;j<=nload;j++) 

(*(pptr+i)) .gene[j] = pick(nveh) + urand(); 
eval(i); 
} 

/****************************************************************** 
* This  procedure assigns a value to each solution based on the * 
* distance traveled and the penalty * 
******************************************************************/ 

void eval(m) 
int m; 
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int i ,j ,k,l ,w[maxveh+ I ] ; 
float t[maxveh+ l ] ,tottime; 
float f,overweight,overtime; 
tottime = 0; 
for (i= l ;i<= nload;i++) 

{ 
ii[i] = i; 
ff[i] = (*(pptr+m)).gene[i] ;  
} 

h sort(nload); 

overweight = 0.0; 
overtime = 0.0; 
f = 0.0; 
for (k= I ;k<=nveh;k++) 

w[k] = O; 
for (k= l ;k<=nveh;k++) 

t[k] = 0.0; 

for(i= l ; i<=nload;i++) 
{ 
k = ff[i] ; 
if (i<nload) 

I =  ff[i+ l ] ;  
else 

I =  nveh + I ;  
if(i==l )  /* if leaving depot */ 

{ 
f = (*(dptr+nload+ l )) .node[ii [i] ] ;  
t [k] += (* (dptr+nload+ I )) .node[ii[i]] + stoptime; 
} 

if (k == 1) /* if using same vehicle for next stop */ 
{ 
f += (*(dptr+ii[i])) .node[ii[i+ l ] ] ;  
t[k] += (*(dptr+ii [i] )) .node[ii[i+ I ] ] + stoptime; 
} 

else /* using different vehicle for next stop */ 
{ 
f += (*(dptr+ii[i] )) .node[nload+ l ] ; 
t[k] += (*(dptr+ii[i] )) .node[nload+ l ] ;  
i f  (1 <= nveh) /* end of tour */ 

{ 
f += (* (dptr+nload+ l )) .node[ii[i+ l ] ] ;  
t[l] += (* (dptr+nload+ I )) .node[ii[i+ l ]] + stoptime; 
} 

} 
w[k]+=eustweight[ii [i] ] ;  

} 
(* (pptr+m)).infeas = 0; 
for (k=l ;k<=nveh ;k++) 

{ 

73 



if (w[k] > maxweight) 
{ 
(*(pptr+m)) . infeas ++; 
overweight = overweight + (w[k] - maxweight); 
} 

if (t[k] > timelimit) 
{ 
(* (pptr+m)). infeas++; 
overtime = overtime + (t[k] - timelimit); 
} 

} 
(* (pptr+m)) .val = f + (pow(overweight,2. ) + pow(overtime,2.)) * 
(*(pptr+m) ).infeas; 
/*(*(pptr+m)) .val = f + (overweight* .25) + (overtime* .25);*/ 
(*(pptr+m)).realval = f; 
if ((* (pptr+m)).infeas > 0) 
if ((*(pptr+m)) .val < bestinfs) 

bestinfs = (*(pptr+m)).val; 
if ((* (pptr+m)) . infeas == 0) 
if ((*(pptr+m)) .val > worstfs) 

{ 
worstfs = (*(pptr+m)) .val; 
worstchr = m; 
} 

for (i= l ;i<=nveh;i++) 
{ 
(* (pptr+m)) .weight[i] = w[i] ; 
(*(pptr+m)).time[i] = t[i] ; 
} 

!***************************************************************! 
/* heapsorts arrays ff[n] and ii [n] in increasing order of ff */ 
/***************************************************************/ 
void hsort(n) 
int n; 
( 
int l , i ,j , ir,rri,stop; 
float rrf; 
I =  n/2 + 1 ;  
Jr = n;  
stop = O; 
while ( I -stop) { /*printf(" %d %d %d %d\n ", l ,ir,i,j ) ;  

for (i= 1 ; i<= nrep;i++) printf("%.Of " ,ff[ i ] ) ;  
printf("\n") ; */ 

if (I> 1 )  
( 
1--; 
rrf = ff[l ] ;  rri = ii[!] ; 
} 

else 
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} 
} 

{ 
rrf = ff[ir] ; rri = ii [ir] ; 
ff[ir] = ff[ l ] ;  ii [ir] = ii [ l ] ; 
If--; 
if (ir== l )  

{ 
ff[ l ] = rrf; ii[ l ] = rri; 
stop = 1 ;  
} 

} ; 

if ( I -stop) 
{ 
i = l; 

j = l+l; 
while U<=ir) 

{ 
if U<ir) 
if (ff[j] < ff[j+ 1 ] )  j++; 
if (rrf < fffj] )  

{ 
�f[i� = ff[j] ; ii [i] = iifj] ; 
I = J ; 
j = j + j ;  
} 

else j = ir + 1 ;  
ff[i] = rrf; ii[i] = rri; 

} /* while */ 

/************************************************************! 

int pick(n) 
int n;  

{ 
float p; 
int p l ;  

p = rand(); 
p = p*n/2 147483647.0; 
p l = p + l ; 
if (p l  < 1 ) 

p l  = 1 ;  
if (p l >n)  

p l = n; 
return p l ;  
} 

!************************************************************! 
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float urand() 

{ 
float p; 

p = rand() ; 
p = p/2 147483647 .0; 
return p; 
} 

/**************************************************************** 
* Reproduction procedure * 
****************************************************************/ 

void repro() 

{ 
int i,j ,k, l , split,m,stop,n,ncr; 
int v,genecnt,bcnt,acnt; 
int numrep; 
float z; 
float addconst,bestgene,bestval; 

/* initialize */ 
for (i=l ;i<=maxpop;i++) 

{ 
for(i= 1 ;j<=nload;j++) 

(*(opptr+i)) .geneU] = (*(pptr+i)) .genefj ] ;  
(* (opptr+i)) .val = (* (pptr+i)) .val; 
(* (opptr+i)) .realval = (*(pptr+i)).realval; 
(* (opptr+i)) .infeas = (* (pptr+i)).infeas; 
for (l= l ; l<=nveh; l++) 

{ 
(*(opptr+i)) .weight[l] = (*(pptr+i)) .weight[l] ; 
(*(opptr+i)) .time[l] = (*(pptr+i)) .time[l] ;  
} 

ii[i] = i ;  
ff[i] = (*(opptr+i)) .val; 
} 

hsort(maxpop ); 

/* replicate top nrep solutions */ 
for(i= 1 ;i<=nrep;i++) 

{ 
for (j= l ;j<=nload;j++) 

(*(pptr+i)) .geneUJ = (*(opptr+ii [i] )) .geneU] ; 
(* (pptr+i)) .val = (*(opptr+ii[i])) .val; 
(* (pptr+i)) .realval = (*(opptr+ii[i] ) ) .realval; 
(* (pptr+i)) .infeas = (*(opptr+ii[i] ) ) .infeas; 
for (l= l ; l<=nveh; l++) 
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{ 
(* (pptr+i) ).weight[l] = (*(opptr+ii [i] ) ) .  weight[l] ; 
(*(pptr+i)) . time[ l] = (*(opptr+ii [i] ) ) . time[l] ; 
} 

if ((*(pptr+i)) .infeas > 0) 
if ((* (pptr+i) ) .val < bestinfs) 

bestinfs = (* (pptr+i)) .val; 
if ((*(pptr+i)) .infeas == 0) 

if ((*(pptr+i)) .val > worstfs) 
{ 
worstfs = (* (pptr+i)) .val ; 
worstchr = i ;  
} 

} 
if(count == pf*(count/pf)) { /* check for duplicate genes */ 

for (i= l ; i<=nload;i++) 
{ 
genecnt = 1 ;  
bestgene = (* (opptr+ii [ l ] ) ) .gene[i) ; 
for (1=2;l<=maxpop; l++) 

{ 
if ((*(opptr+ii [ l ] ) ) .gene [i] == bestgene) 

{ 
genecnt ++; 
} 

} 
if (genecnt > 70) 

{ 
for U= l ;j<=20;j++) 

{ 
1 = pick(maxpop-nrep ) ;  
(*(opptr+ii [l+nrep])) .gene[i] = pick(nveh) + urand(); 
} 

} 
} 

} 

vick = O; 
(* mate maxpop-nrep random pairs */ 
1 = nrep; 
stop = maxpop - nmut; 
while (i < stop) 

{ 
i++; 
j = pick(maxpop ); 
k = pick(maxpop); 
for(m= 1 ;m<=nload;m++) 

{ 
n = pick ( 100);/*printf("clevel = %d %d\n" ,clevel ,n); */ 
if (n<=clevel) 

{ 
(*(pptr+i) ) .gene[m]=(*( opptr+j)) .genef m] ; 
(*(pptr+i+ 1 )) .gene[m]=(*(opptr+k)).gene[m] ; 
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} 
else 

( 
(*(pptr+i)) .gene[ m] =(* ( opptr+k)  ) .  gene[ m] ; 
(*(pptr+i+ 1 ) ) .gene[ m]=(*( opptr+j) ) .gene[ m] ; 
} 

} 
eval(i); 
eval(i+ 1 ) ;  
if ((*(pptr+i+ 1 )) .val < (*(pptr+i)) .val) 

( 
for (m= l ;m<=nload;m++) 

(* (pptr+i)) .gene[m] = (* (pptr+i+ 1 )) .gene[m] ;  
(* (pptr+i) ).val = (* (pptr+i+ 1 )) .val; 
(* (pptr+i)) .realval = (* (pptr+i+ 1 )) .realval; 
(* (pptr+i) ) . infeas = (*(pptr+i+ 1 )  ) .infeas; 
for (l= l ; l<=nveh; l++) 

( 
(* (pptr+i) ) .  weight[!] = (*(pptr+i+ 1 )) .  weight[!] ; 
(*(pptr+i)) . time[l] = (* (pptr+i+ 1 )) .time[! ] ; 
} 

/* create mutations */ 
for (i=l ;i<=nmut;i++) 

{ 
for (j= 1 ;j<=nload;j++) 

(* (pptr+i+maxpop-nmut) ) .geneU] = pick(nveh) + urand(); 

/* evaluate new values and move forward 1 generation */ 
for(i=maxpop-nmut+ l ; i<=maxpop;i++) 

eval(i); 

if (bestinfs < worstfs) 

} 

{ 
vick = 1 ;  
addconst = worstfs - bestinfs + 1 ;  
for (i= l ;i<=maxpop;i++) 

{ 
if ((* (pptr+i)). infeas > 0) 

{ 

} 
} 

(*(pptr+i) ) .val += addconst; 
(* (opptr+i)) .val = (* (pptr+i)) .val ; 
} 
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!************************************************************** 
* Read in the Data Set * 
**************************************************************/ 

void readinb() 

{ 
int i ,j ,k,l ;  
float diff x; 
float diffy; 
infile = fopen("vrp.dat", "r") ;  
test = fopen("test.tst" ,"w");  

fscanf(infile, "%d %d o/od o/od %d\n",&nload,&maxweight,&nveh,&stoptime,&timelimit); 

nload--; 
for (i= l ;i<=nload;i++) 

fscanf(infile ,"%d %d o/od %d\n",&xcoor[i ] ,&ycoor[i] ,&custweight[i ] ,&custno[i] ) ; 
fscanf(infile, "o/od o/od",&xcoor[nload+ 1 ] ,&ycoor[nload+ 1 ] ) ; 

fclose(infile ); 

/* ************************************************************ 
*** Calculate distance matrix *** 
************************************************************ */ 

for (i= l ;i<=nload+ l ; i++) 
for (j=l ;j<=nload+ l ;j++) 

( 
diffx = xcoor[i] -xcoor[j] ;  
diffy = ycoor[i]-ycoor[j ] ;  
(*(dptr+i) ) .node[j] = sqrt(pow(diffx,2.)+pow(diffy,2. )) ; 

} 
fprintf(test,"Loads = %d, Wt Limit = %d, Yeh = %d, St  Time = o/od, Time Limit = o/od\n",  

nload,maxweight,nveh,stoptime,timelimit); 
for (i= l ;i<=nload;i++) 

fprintf(test, "o/od o/od o/od o/od\n" ,xcoorf i ] ,ycoor[i] ,custweight[i] ,custno[i]) ;  
fprintf(test,"o/od o/od\n",xcoor[nload+ 1 ] ,ycoor[nload+ 1 ] ) ;  
fprintf(test, ' '\n\n ") ;  
for (i = l ;i<=nload+l ; i++) 

{ 
for (j=l  ;j<=nload+ 1 ;j++) 

fprintf(test, "% . 1 f' , (* (dptr+i)) .node[
j
] ) ; 

fprintf(test, ''\n ") ;  
} 

fclose(test); 
} 

79 



APPENDIX 2 
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Appendix 2 displays the vehicle routes of the best solutions produced 
by the genetic algorithm. These results are displayed for the data sets 
which were presented in Table 3 . 1. 

Table A2.1. 22 customers, 3 vehicles, without time constraint 

Vehicle # 

1 
2 

3 

Route of Vehicle 

0 1 8  1 9  20 22 1 7  14  1 5  1 6  3 2 1 6 0 

0 1 2  1 1  9 8 5 4 2 1  7 0 

0 1 0  1 3  0 

Wt Time 

2730 404.0 

3 1 00 297 . 8  

4300 87.9 

Table A2.2. 29 customers, 3 vehicles, without time constraint 

Vehicle # 

1 
2 

3 

Route of Vehicle 

0 1 9  26 29 24 25 27 28 15 1 8  0 

0 23 10  1 1  1 2  1 6  1 3  7 1 7  9 8 1 4  2 1  0 

0 22 2 5 4 1 6 3 20 0 

Table A2.3. 32 customers, 3 vehicles, with time constraint 

Vehicle # 

1 

2 

3 

Route of Vehicle 

0 6 23 30 3 1  1 8  29 28 27 19 0 

0 22 26 2 1  1 4  1 5  25 1 6  20 24 9 1 1  0 

0 1 7  2 4 3 1 5 32 7 8 1 3  10  1 2  0 

Table A2.4. 32 customers, 3 vehicles, without time constraint 

Vehicle # 

1 
2 
3 

Route of Vehicle 

0 6 2 1  1 4  1 5  25 16  20 24 26 22 9 1 1  0 

0 7 8 19  27 28 29 1 8  3 1  30 23 0 

0 1 7  2 4 3 1 5 32 1 3  10 12  0 

8 1  

Wt Time 

3950 326.7 

4425 275 . 3  

4375 236 .6 

Wt Time 

34577 972.5 

37358 895.4 

26630 902.6 

Wt Time 

37805 1 076.2 

374 14  744.7 

23346 828.5 



Table A2.S. 50 customers , 6 vehicles, with time constraint 

Vehicle # Route of Vehicle Wt Time 

1 0 5 49 1 0  39 33 45 1 5  44 37 1 2  0 1 55 1 99 . 1 

2 0 2 29 20 35 36 3 32 0 1 1 5 1 68 .2  

3 0 27 48 8 26 3 1  28 22 1 0 1 02 1 60.4 

4 0 1 1  1 6  50 2 1  34 30 9 38 46 0 1 28 1 72.9 

5 0 1 8  1 3  4 1  40 1 9  42 1 7  4 47 0 1 57 1 99 . 1 

6 0 6 23 7 43 24 25 14 0 1 20 1 6 1 .6 

Table A2.6. 50 customers , 5 vehicles , without time constraint 

Vehicle # Route of Vehicle Wt Time 

1 0 1 1  2 20 36 35 29 21  30 1 0  1 5  37 () 1 57 25 1 .9 

2 () 5 9 34 50 1 6  32 8 48 27 0 1 50 1 95 .7  

3 0 1 2  47 1 8  25 1 4  6 () 1 59 1 2 1 .4 

4 0 7 43 24 4 1 7  44 45 33 39 49 38 46 0 1 53 287 . 3  

5 0 42 1 9  40 41  1 3  23 26 3 1  28 3 22 1 () 1 5 8  300.4 

Table A2.7. 75 customers, 1 1  vehicles , with time constraint 

Vehicle # Route of Vehicle Wt Time 

1 0 67 45 48 28 22 62 68 () 1 40 1 5 1 .6 

2 0 1 2  3 1  1 0  38 65 66 () 1 37 1 66.4 

3 0 5 47 36 69 2 1  74 30 0 1 20 1 55 .6  

4 0 33 73 1 63 3 44 40 1 7  0 1 43 1 58 .6 

5 0 39 9 50 1 8  55 25 32 0 1 29 1 7 1 .4 

6 0 1 5  20 70 60 7 1  37 0 7 1  1 55 .6  

7 0 53 8 46 34 52 27 29 75 () 1 5 3  1 58 . 3  

8 0 5 1  1 6  49 24 56 23 6 0 1 14 1 6 1 . 8  

9 0 26 72 58 1 1  59 1 4  0 1 32 1 55 .6  

1 0  0 2 6 1  64 42 41  43 () 1 1 3 1 65 .2  

1 1  0 7 35 1 9  54 1 3  57 4 () 1 1 2 1 50.0 
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Table A2.8. 75 customers , 10 vehicles, without time constraint 

Vehicle # Route of Vehicle Wt Time 

1 0 3 1  55 1 8  24 2 47 48 0 1 37 234.5 

2 0 74 6 1  4 1  56 23 3 32 9 0 1 40 2 1 5 .4  

3 0 30 7 1  60 46 59 38 26 0 1 3 1  235 . 1  

4 0 68 2 1  29 27 1 3  66 65 0 1 26 205 . 3  

5 0 67 19  54 1 5  37 45 1 2  17 0 1 40 1 98 . 1 

6 0 1 0  1 1  7 57 70 69 28 0 1 40 233 .5 

7 0 4 8 35 1 4  58 72 39 25 0 1 39 1 95 .2  

8 0 75 5 36 20 34 40 5 1  0 1 39 1 93 .4  

9 0 44 50 49 63 73 22 1 33 6 0 1 37 206.2 

10 0 53 52 62 64 42 43 1 6  0 1 35 2 1 4. 1  

Table A2.9. 75 customers , 14 vehicles , without time constraint 

Vehicle # Route of Vehicle Wt Time 

1 0 30 52 59 8 34 0 1 00 1 52.4 

2 0 22 6 1  5 27 67 0 95 1 48 .4  

3 0 1 1  1 4  46 0 95 99.6 

4 0 6 32 53 4 0 99 1 35 .7 

5 0 26 1 2  3 24 23 43 0 96 1 60.9 

6 0 75 2 54 66 0 99 1 57 .9  

7 0 33  42 64 74 29 1 5  0 97 1 85 .4 

8 0 25 1 8  49 28 36 1 3  1 9  0 1 00 247 .2 

9 0 37 70 7 1  69 4 1  5 1  40 () 96 221 . 1  

10  0 62 9 55 10  65 35 () 99 220.7 

1 1  0 72 3 1  1 6  63 73 20 57 0 98 245 . 1 

1 2  0 7 58  39 50 56 () 1 00 1 73 . 3  

1 3  0 4 8  47 60 2 1  1 0 98 1 65 .9  

1 4  0 1 7  44 3 8  45 68 0 92 1 5 8 . 1  
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Table A2.10. 100 customers, 9 vehicles, with time constraint 

Vehicle # Route of Vehicle 

1 0 54 4 1 5  43 1 4  3 8  44 42 1 3  0 

2 0 58  2 57 87 92 98 85 6 1  83  46 

48 0 

3 0 52 84 1 7  45 8 82 1 8  60 5 93 

59 0 

4 0 3 1  1 0  1 50 68 80 55 25 39 56 0 

5 0 8 8  1 9  49 64 63 90 32 30 70 69 

27 0 

6 0 7 47 36 1 1  62 20 66 7 1  65 35 

33 1 2  0 

7 0 89 6 96 99 1 6  86 9 1  1 00 37 97 

95 94 28 0 

8 0 76 77 3 79 78 34 9 5 1  8 1  29 

24 0 

9 0 53 40 2 1  73 72 74 22 4 1  75 23 

67 26 0 

Wt 

1 34 

1 72 

1 50 

1 53 

1 49 

1 75 

1 93 

1 44 

1 88 

Table A2. 11. 100 customers, 8 vehicles, without time constraint 

Vehicle # Route of Vehicle Wt 

1 0 28 76 77 68 80 54 1 2  26 0 1 39 

2 0 1 3  87 37 93 85 1 6  6 1  5 60 89 0 1 96 

3 0 69 70 30 32 20 5 1  3 29 24 55 1 96 

39 67 25 4 53 0 

4 0 2 1  56 23 75 74 22 41  57 1 5  43 1 97 

38  1 4  42 97 94 0 

5 0 58 40 72 73 2 95 59 99 96 6 0 1 39 

6 0 50 79 78 34 35 65 66 7 1  9 8 1  200 

33 1 27 0 

7 0 3 1  1 0  90 63 64 1 1  7 82 46 45 200 

1 7  86 44 9 1  1 00 98 92 0 

8 0 52 8 8  62 1 9  49 36 47 48 8 84 1 9 1  

83  1 8  0 

84 

Time 

229.7 

228 . 1 

2 1 5 .6  

226. 3 

227 .5  

300. 1 

22 1 .2 

223 .7  

228.2 

Time 

1 42.4 

1 74.4 

320 . 3  

297 .5  

1 72 . 8  

258 . 2  

34 1 .6 

24 1 . 3 



Table A2.12. 100 customers, 1 1  vehicles , with time constraint 

Vehicle # Route of Vehicle Wt 

1 0 57 55 53 56 58 60 59 40 43 0 1 80 

2 0 4 2 6 9 12  14  16  1 1  1 0  0 1 60 

3 0 20 22 25 26 8 7 3 5 75 0 160 

4 0 46 5 1  3 1  35 32 33 36 34 29 24 0 1 90 

5 0 4 1  42 44 45 48 50 49 27 28 2 1  0 1 30 

6 0 90 88 98 96 97 1 00 17  1 8  30 0 1 70 

7 0 9 1  87 86 77 7 1  70 79 74 65 67 0 1 80 

8 0 1 99 95 94 92 93 23 0 1 30 

9 0 63 8 1  78  76 73 80 61 64 62 0 1 70 

10  0 66 69 68 54 72 82 83 84 85 89 0 1 70 

1 1  0 1 3  1 5  1 9  38 39 37 52 47 0 1 70 

Table A2.13. 100 customers , 10 vehicles , without time constraint 

Vehicle # Route of Vehicle Wt 

1 0 20 25 26 28 1 8  1 7  1 9  1 6  1 0  0 1 80 

2 0 46 45 44 42 43 23 1 3  1 1  9 8 0 1 60 

3 0 90 89 85 82 77 78 8 1  63 0 1 80 

4 0 67 65 66 59 60 58 56 53 54 55 200 

69 0 

5 0 62 74 72 61 41 47 27 24 22 2 1  0 1 70 

6 0 49 48 5 1  50 52 29 30 1 5  1 4  1 2  200 

6 2 1 0 

7 0 40 57 68 64 80 79 73 70 7 1  76 0 1 60 

8 0 7 4 96 94 92 93 97 99 75 5 0 1 80 

9 0 37 38 35 3 1  9 1  84 88  83 86 87 0 1 80 

10  0 39 34 36 33 32 3 100 95 98 0 200 

85 

Time 

9 1 3.9 

905.6 

87 1 .9 

997.7 

97 1 .9 

952.2 

1 033 .5 

741 . 1  

939.3 

1 039. 1 

860.9 

Time 

908.8 

1 008.9 

835.7 

1 096. 1 

987.0 

1 304.5 

1 068.2 

999.7 

1 065.9 

979.2 



Table A2.14. 1 00 cust om ers , 1 4  vehicl es ,  with out tim e c onstraint 

Vehicle # Route of Vehicle Wt 

1 0 2 4 1  22 74 77 33 8 1  5 1  90 63 0 1 1 2 

2 0 95 59 38 43 42 87 0 1 02 

3 0 1 8  82 7 24 29 80 1 2  26 0 87 

4 0 53 54 39 56 1 62 0 98 

5 0 52 36 49 27 68 28 0 1 1 2 

6 0 40 2 1  72 4 50 20 30 0 1 07 

7 0 3 1  1 1  64 32 7 1  9 0 1 02 

8 0 6 96 99 93 5 94 0 98 

9 0 97 44 85 70 66 69 0 1 07 

1 0  0 92 37 1 4  1 6  1 7  46 47 1 9  8 8  0 1 05 

1 1  0 58 67 15  57  100 9 1  6 1  45 0 1 05 

1 2  0 76 3 79 78 34 35 65 1 0  0 1 10 

1 3  0 1 3  98 86 84 83 89 0 1 0 1  

1 4  0 55 25 23 75 73 60 8 48 0 1 1 2 

Table A2.15. 1 20 cust om ers , 1 1  vehicl es, with tim e c onstraint 

Vehicle # Route of Vehicle Wt 

1 0 6 3 9 8 1 2  29 34 33 27 24 0 9 1  

2 0 55 56 60 6 1  65 45 43 40 59 57 1 9 1  

62 64 54 68 72 0 

3 0 99 1 00 98 97 108 5 4 1 0  1 5  1 3  1 32 

1 1 7 0 

4 0 1 1 1  2 1 7 1 1  1 4  1 9  35  26 20 () 1 1 7 

5 () 82 84 1 1 3 83 90 73 79 7 1  74 69 1 1 7 

1 20 0 

6 0 1 1 5 2 1  23 36 3 1  30 25 22 1 6  1 09 0 1 1 0 

7 0 70 76 78 77 66 63 58 53 52 0 1 25 

8 0 1 7  28 32 44 46 49 47 48 42 95 0 95 

9 0 67 75 80 5 1  50 4 1  37 38 39 0 1 5 1  

1 0  () 88 87 96 1 1 0 1 1 6 1 04 107 1 06 102 92 1 25 

85 1 1 2 86 () 

1 1 0 105 1 03 1 0 1 93 9 1  1 8  1 1 8 1 1 4 94 89 1 2 1  

8 1  1 1 9 0 

86 

Time 

247 .0 

1 56.5 

1 98 . 8  

1 92 .5 

1 93 . 3  

1 80.5 

1 9 1 . 3 

1 1 0 .6 

203 .9 

2 1 3 .9  

239.4 

200.6 

1 40.8 

229.0 

Time 

7 1 1 .4 

1 025.6 

684.9 

698 .3 

7 1 3 .9 

684.7 

67 1 .7 

7 14. 1 

674.8 

7 1 8 .8  

675 .8 



Table A2.16. 1 20 customers, 7 vehicles, without time constraint 

Vehicle # Route of Vehicle Wt 

1 0 89 46 50 5 1  63 80 70 1 1 1  8 1  1 1 96 

5 6 17  90  1 1 7 88  0 

2 0 95 68 72 98 1 00 96 93 1 20 86 1 8  198  

1 1  53 58 62 47 28 22 3 1  2 0 

3 0 85 92 43 45 19  8 94 1 02 1 06 1 07 1 96 

1 04 1 03 99 1 1 4 20 33 36 29 1 08 0 

4 0 1 1 9 23 26 35 32 34 27 3 1 0  1 1 2 1 99 

1 05 74 69 101 1 1 3 1 1 8  59 65 1 1 0 0 

5 0 84 83 4 9 25 37 38 1 1 5 52 56 1 93 

61  60 77 71 1 1 6 82 0 

6 0 9 1  1 09 30 24 16  2 1  44 40 64 66 1 94 

76 73 67 97 1 3  1 4  7 0 

7 0 48 49 4 1  42 39 79 75 78 55 54 1 99 

57 12  15  87 0 

Table A2.l 7 .  150 customers, 14 vehicles, with time constraint 

Vehicle # Route of Vehicle Wt 

1 0 1 1 0 25 95 14  55 1 34 67 1 3  4 1  40 1 9 1  

64 87 56 0 

2 0 1 33 1 32 98 23 69 1 1 4 99 43 86 61 1 97 

7 27 0 

3 0 32 59 2 1 00 1 26 50 1 30 30 9 38 0 1 45 

4 0 1 1  1 27 129 29 28 22 1 20 48 1 38 0 1 1 5 

5 0 60 8 26 1 1 3 140 1 1 2 57 97 24 96 1 44 

58 1 02 46 0 

6 0 1 48 8 8  66 1 35 1 43 4 1 49 68 6 0 1 53 

7 0 8 1  1 83 1 3 1  128 84 2 1  79 74 34 1 85 

1 04 39 54 0 

8 0 1 7  93 19 94 1 36 1 1  1 141  1 50 1 09 0 1 3 1  

9 0 77 1 8  1 42 147 1 5  52 63 144 1 03 76 0 1 69 

1 0  0 90 1 05 75 89 1 1 7 73 10  49 5 0 1 46 

1 1  0 7 1  1 22 9 1  65 42 45 124 106 1 25 33 1 72 

72 123 108 0 

1 2  0 78  1 39 47 1 46 145 1 37 44 107 92 37 1 79 

1 2  0 

1 3  0 62 1 1 8  16  101  3 82 3 1  80 5 1  0 1 6 1  

1 4  0 53 20 35 85 36 1 1 5 1 2 1 1 1 6 70 1 1 9 0 1 47 

87 

Time 

1 222.0 

1 425.5 

1 368.0 

1 462.2 

1 1 88 .2 

1 239.7 

1 054.4 

Time 

260.4 

260.4 

1 98 .7  

1 9 1 .6 

253 .2 

1 99 .8  

26 1 .7 

1 92. 8 

1 97 .9  

1 98 .6  

254.4 

1 94.5 

1 96. 1 

2 1 7 .4  



Table A2.18. 1 50 customers , 1 2  vehicles , without time constraint 

Vehicle # Route of Vehicle Wt 

1 0 5 90 1 5  107 92 41  88  64 38  1 04 1 94 

30 50 1 30 83 0 

2 0 49 45 1 06 1 0  1 24 65 93 44 89 39 1 99 

7 1  1 42 1 35 1 43 0 

3 0 5 1  80 10 1  1 28 84 1 1 5 2 48 60 8 1  1 88 

27 46 0 

4 0 1 44 1 9  1 3  67 1 38  20 35 59 1 46 87 1 63 

1 48 56 0 

5 0 1 26 1 00 1 1 9 1 4  25 1 33 4 1 49 1 09 1 45 1 6 1  

1 7  0 

6 0 7 43 24 1 1 2 1 3 1  53 1 27 1 29 1 6  98 1 92 

86 96 0 

7 0 1 1 20 1 1 3 1 40 22 9 1 1 7 1 25 123 1 03 1 86 

1 08 1 37 37 63 0 

8 0 68 1 34 1 36 1 39 57 69 8 3 1  29 2 1  1 94 

79 74 34 76 0 

9 0 42 1 50 1 47 102 82 1 1 4 99 23 78 9 1  1 9 1  

72 33 0 

10  0 47 54 3 1 2 1 70 28 1 1 6 36 85 1 1 8  1 92 

62 0 

1 1  0 14 1  40 94 66 1 1 1  1 8  1 1 0 55 52 1 22 1 97 

105 75 73 0 

1 2  0 1 1  26 61 1 32 97 58 95 6 32 77 1 78  

1 2  0 

88  

Time 

3 1 9 .6 

347 . 1  

285 .2 

324.6 

2 1 5 .4 

354.5 

333 .9 

34 1 .7 

357 . 8  

294.6 

3 1 9.4  

262.5 



Table A2.19. 1 99 custom ers , 18 v ehi cl es ,  with tim e constraint 

Vehicle # Route of Vehicle Wt 

1 0 1 88 1 6  73 1 47 1 8 1  1 1 6 23 1 94 6 1  0 1 53 

2 0 1 57 1 56 94 1 2 1  1 3 8  37 88  140 22 1 90 3 1 8  

1 85 1 43 89 1 37 62 1 60 1 83 1 1 98 0 

3 0 1 39 176 1 02 78 177 19  1 1  1 80 7 0 1 38 

4 0 1 87 32 57 1 09 39 40 50 1 29 7 1  1 26 0 1 77 

5 0 173  83 123 178  84 14 1 67 179 99 58 1 89 

26 0 

6 0 1 59 1 92 1 86 14 1  142 42 1 58 66 1 93 0 1 32 

7 0 1 68 1 00 1 30 1 5 1  1 17 44 106 1 44 74 0 1 30 

8 0 86 93 2 1 20 1 55 36 21 64 28 1 0 1  0 1 54 

9 0 1 84 1 99 1 1 3 43 1 9 1  195 104 3 8 1  0 1 5 8  

1 0  0 60 1 75 46 34 45 59 98 79 1 3  1 52 0 1 67 

1 1  0 1 7 1  1 66 1 24 1 54 8 5 1  10  75  3 1  25 264 

1 8  1 46 56 9 0 

1 2  0 55 1 45 1 48 92 1 35 1 63 1 62 1 64 1 33 70 194 

1 28 27 4 87 0 

1 3  0 1 27 1 25 1 53 5 48 174 47 82 1 72 30 0 1 83 

14  0 33 105 1 82 49 1 07 24 63 95 54 1 1 2 0 1 52 

1 5  0 1 1 4 9 1  6 8  1 1 5 197 1 36 196 53 67 0 1 29 

1 6  0 1 7  97 1 3 1  8 0  1 1 9 52 38 170 1 65 77 1 99 

1 50 65 0 

1 7  0 96 6 1 1 1  1 5  20 1 22 103 29 0 1 54 

1 8  0 76 1 2  1 69 1 6 1  72  1 1 8 1 10 1 89 85 1 34 1 95 

108 69 1 32 35 149 0 

89 

Time 

1 90.7 

4 1 5 .5  

1 96.6 

1 9 1 . 1  

257 . 3  

1 93 . 5  

1 92 .4 

1 96.5 

1 99.0 

1 96.0 

353 .6 

348 . 3  

1 9 1 .7 

1 95 .6  

1 95 .2  

257. 7  

1 97 .9  

30 1 .7 



Table A2.20. 199 customers, 16 vehicles, without time constraint 

Vehicle # Route of Vehicle Wt 

1 0 29 2 1  1 1 4 1 22 47 79 1 32 98 1 96 1 05 200 

32 1 63 0 

2 0 1 56 9 1  68 10 1  27 1 70 48 73 1 25 1 53 200 

1 9  7 2  1 47 0 

3 0 40 49 1 84 90 1 6  74 25 38  1 68 0 1 97 

4 0 88  1 02 8 1 0  1 00 1 82 1 83 1 99 62 65 200 

46 1 69 78 35 0 

5 0 1 57 1 54 1 67 1 80 1 87 24 80 1 89 1 26 95 200 

69 60 0 

6 0 1 85 1 4 1  59 1 2 1  1 79 83 8 1  1 93 66 1 39 1 99 

87 1 34 5 1  0 

7 0 1 8 8  1 27 7 1 1 1  1 1 0 75 1 8 1  1 1 8 1 94 1 66 1 99 

1 20 2 0 

8 0 1 44 1 59 1 06 198 20 108 50 26 6 162 1 99 

1 8  1 92 99 9 0 

9 0 1 30 1 1  1 3 1  1 86 1 04 67 1 73 36 0 200 

1 0  0 76 7 1  1 1 9 4 1  64 1 37 1 46 1 35 39 1 09 201 

1 78 58 1 50 1 64 0 

1 1  0 37 1 24 155 1 74 94 1 75 23 1 36 77 57 1 97 

6 1  1 28 1 23 70 4 0 

1 2  0 34 1 1 1 5 143 86 16 1  1 65 1 4  44 63 0 1 96 

1 3  0 1 33 1 17 55 1 95 158  5 17 1  1 7  56 3 1  203 

1 60 0 

1 4  0 1 52 1 72 82 1 5 1  97 33 1 1 2 1 42 22 149 1 96 

176 1 5  1 9 1  43 0 

1 5  0 45 1 3  1 97 1 48 107 96 103 42 53 93 200 

54 84 0 

1 6  0 1 2  85 52 1 38 28 89 1 40 30 1 29 1 1 6 1 99 

1 1 3  1 90 92 145 3 0 

90 

Time 

4 1 6.7 

509 . 3  

279.4 

432. 1 

378 .6  

4 1 6.2 

392. 1 

55 1 . 3 

293. 1 

522.4 

476.6 

353 .3  

423.0 

422.6 

483 .9 

5 87.4 



Table A2.21. 1 99 customers , 1 7  vehicles, without time constraint 

Vehicle # Route of Vehicle Wt 

1 0 1 7  6 1 1 4 1 98 1 85 147 72 1 1 8 1 34 1 9  1 96 

175  0 

2 0 1 25 27 1 7 1  68 1 09 97 55 1 44 74 1 52 0 174 

3 0 1 1 1  1 97 90 1 83 1 04 1 37 1 99 1 1 6 1 82 1 30 1 68 

1 68 0 

4 0 24 73 1 92 1 27 87 35 69 8 1 24 1 72 200 

67 0 

5 0 1 87 1 06 32 25 92 146 50 1 80 1 33 1 4  1 87 

7 0 

6 0 1 62 1 32 1 70 1 77 98 1 55 36 1 38 20 5 1 97 

54 33 0 

7 0 66 62 4 1  42 1 4 1  1 1 5 8  1 56 22 1 36 1 93 

57 1 00 1 93 1 05 0 

8 0 93 1 73 1 54 1 67 1 76 21 43 23 1 95 1 42 1 92 

9 1  1 9 1  1 88 1 2  

9 0 1 66 48 1 1 2 1 26 1 50 1 64 85 84 1 79 60 0 1 62 

1 0  0 38  80  1 3 1  65 99 1 23 1 3  1 53 79 37 1 98 

1 90 1 1 5 53 1 94 0 

1 1  0 5 1  46 83 1 57 1 02 1 69 1 6  1 86 4 0 1 94 

1 2  0 1 1 0 39 75 1 65 52 86 101  1 40 1 2 1  94 1 99 

30 29 64 28 0 

1 3  0 8 1  1 49 7 1  1 1 9 1 29 77 1 78 174 1 39 89 1 86 

1 84 1 20 0 

1 4  0 47 1 22 82 1 48 1 35 145 1 07 63 1 5  88  1 83 

1 03 59 0 

1 5  0 1 17 1 59 44 9 3 95 61 1 1 3 1 43 1 60 1 95 

1 96 2 0 

1 6  0 76 40 1 5 1  96 1 6 1  1 08 1 28 78 70 26 1 79 

1 8 1  49 0 

1 7  0 58 45 34 1 1 1 0  3 1  1 89 1 63 56 1 8  0 1 83 

9 1  

Time 

338 .9  

295 . 5  

304. 1 

345. 9  

267 .9 

333 . 3  

345.4 

39 1 .5 

3 1 3 .4  

340.7 

283 .4 

364.5 

359.3 

364.0 

28 1 .0 

327 .7  

270. 8 
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