na UNIVERSITY o University of Tennessee, Knoxville

Trace: Tennessee Research and Creative
Exchange

TEHHES.S_ EEL

Masters Theses Graduate School

12-1993

A Genetic Algorithm for the Vehicle Routing
Problem

Vickie Dawn Wester

University of Tennessee, Knoxville

Recommended Citation

Wester, Vickie Dawn, "A Genetic Algorithm for the Vehicle Routing Problem. " Master's Thesis, University of Tennessee, 1993.
https://trace.tennessee.edu/utk_gradthes/4850

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been

accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Vickie Dawn Wester entitled "A Genetic Algorithm for the
Vehicle Routing Problem." I have examined the final electronic copy of this thesis for form and content
and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of
Science, with a major in Management Science.

Charles E. Noon, Major Professor
We have read this thesis and recommend its acceptance:

ARRAY (0x7f6ff7b01c98)

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Vickie Dawn Wester entitled
"A Genetic Algorithm for the Vehicle Routing Problem." I have examined
the final copy of the thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Master
of Science, with a major in Management Science.

g € o

Dr. Charles E. Noon, Major Professor

We have read this thesis
and recommend its acceptance:

& ol L

e+

Accepted for the Council:

Assomate Vlce Chancellor
and Dean of The Graduate School

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for
a Master's degree at The University of Tennessee, Knoxville, I agree that
the Library shall make it available to borrowers under rules of the
Library. Brief quotations from this thesis are allowable without special
permission, provided that accurate acknowledgment of the source 1s made.

Permission for extensive quotation from or reproduction of this
thesis may be granted by my major professor, or in his absence, by the
Head of Interlibrary Services when, in the opinion of either, the proposed
use of the material is for scholarly purposes. Any copying or use of the
material in this thesis for financial gain shall not be allowed without my
written permission.

Signature \"/((e .’)CD - Wos T
Date /20 /93

A GENETIC ALGORITHM FOR
THE VEHICLE ROUTING PROBLEM

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

Vickie Dawn Wester
December 1993

ABSTRACT

The purpose of this research was to develop a version of a genetic
algorithm (GA) which would provide near optimal solutions for Vehicle
Routing Problems (VRP) with both time and weight constraints. The
genetic algorithm used for the experimentation was adapted from a GA
which had been developed by James Bean at the University of Michigan to
solve machine scheduling problems. The VRP data sets used in this
research were obtained from the literature. Various aspects of the GA
were experimented with in order to develop a version which would
perform consistently well for all the data sets. The results of the final
version of the genetic algorithm were then compared to the results
presented in the original papers.

The results from this research indicated that the genetic algorithm
seems to perform relatively well for smaller problems with 50 or fewer
customers. However, the results seem to become progressively worse as

the problem becomes larger.

ii

TABLE OF CONTENTS

PAGE
INTRODUCTION . . . e 1
CHAPTER
[. THE GENETIC ALGORITHM AND THE VEHICLE
ROUTING PROBLEM. 4
The Vehicle Routing Problem. 4
The Genetic Algorithm 9
The Genetic Algorithm Related to the Vehicle Routing
Problem 12
Data Format 13
Encoding of Solutions 14
Evaluating the Solutions 17
Reproduction 17
II. EXPERIMENTATION RESULTS 23
Penalization for Infeasibility 25
Sampling Procedures 27
Reproduction 28
Parameters 28
Infeasibility 31
Duplicate Solutions 32
Reverse Paths 32
Feasibility vs. Infeasibility 33
Gene Selection Parameter 34
Summary. 35
III. ANALYSIS 36
Parameter Settings. 36
Initial Population. L 39
Search Space. 40
Elitism. 41
Encoding of Solutions. 42
Crossover Methods. 43
CONVErgencCe. . . . o vttt e e e e e 44

The Final Program 50

Results. 52
Proposed Improvements. 56
Conclusion. 58
REFERENCES. 60
APPENDICES 66
APPENDIX 1. GENETIC ALGORITHM 67
APPENDIX 2. REPRESENTATION OF TOURS 80
VIT A, e 92

v

LIST OF TABLES

TABLE PAGE
3. 1. Problems used for experimentation 53
3. 2. Comparison of GA results with other methods of solving

problems e 54

A2. 1. 22 customers, 3 vehicles without time constraint 81

A2. 2. 29 customers, 3 vehicles without time constraint 81

A2. 3. 32 customers, 3 vehicles with time constraint 81

A2. 4. 32 customers, 3 vehicles without time constraint 81

A2. 5. 50 customers, 6 vehicles with time constraint 82

A2. 6. 50 customers, 5 vehicles without time constraint 82

A2. 7. 75 customers, 11 vehicles with time constraint 82

A?2. 8. 75 customers, 10 vehicles without time constraint 83

A2. 9. 75 customers, 14 vehicles without time constraint 83

A2.10. 100 customers, 9 vehicles with time constraint 84

A2.11. 100 customers, 8 vehicles without time constraint. 84

A2.12. 100 customers, 11 vehicles with time constraint. 85

A2.13. 100 customers, 10 vehicles without time constraint 85

A2.14. 100 customers, 14 vehicles without time constraint 86

A2.15. 120 customers, 11 vehicles with time constraint 86

A2.16. 120 customers, 7 vehicles, without time constraint 87

A2.17. 150 customers, 14 vehicles, with time constraint 87

A2.18. 150 customers, 12 vehicles, without time constraint 88

A2.19. 199 customers, 18 vehicles, with time constraint 89

A2.20. 199 customers, 16 vehicles, without time constraint 90

A2.21. 199 customers, 17 vehicles, without time constraint 91

Introduction

The Vehicle Routing Problem (VRP) is a combinatorial optimization
problem in which a number of customers, requiring either pick-ups or
deliveries, must be serviced by a set of vehicles. The objective is to route
the vehicles in such a manner that each customer is visited by exactly one
vehicle and the total distance traveled is minimized. The vehicles may be
constrained by a load capacity or a maximum time spent on the route.
Vehicle routing problems are complex to solve, particularly to optimality,
causing many "algorithm designers" to settle for an approximation of the
optimal solution [Haimovich, et al 1988]. The focus of this thesis is to
experiment with the genetic algorithm (GA) as a means of solving the
VRP.

According to Goldberg, the goal of genetic algorithms is to be
efficient and robust over different environments in order to eliminate
costly redesigns in the programs. Genetic algorithms are described as
"computationally simple yet powerful” and are not limited by restrictive
assumptions such as, "continuity, existence of derivatives, unimodality, and
other matters" [Goldberg 1988]. However, according to Davis, "..., in
general, the robustness of a genetic algorithm and its performance on a
particular problem are inversely related” [Davis 1991]. Genetic algorithms
are robust in that they can be used to solve several different problem types
without changing the algorithm. A slight change in the problem could

make a nonrobust algorithm inoperative [Davis 1987].

Genetic algorithms first appeared in theory in the early 1970's, but
John Holland 1s said to have founded the field of genetic algorithms in
1975. In more recent years, work on genetic algorithms has been focused
on application [Davis 1991]. Holland's original idea in developing the
algorithm was to create a program which would adapt to its environment
[Goldberg 1988]. The genetic algorithm was first used in industry to
optimize the design of a communications network [Davis 1987]. There are
several areas in which GA performance has been studied. The following is
a partial list of areas for which genetic algorithms have been studied:

. Davis (1985) - Job shop scheduling

[S—

Glover (1987) - Keyboard configuration systems
Goldberg (1983) - Optimizing gas pipeline systems
Grefenstette (1985) - Traveling salesman problem
Nygard and Kadaba (1990) - Multi-vehicle routing
problem [Nygard 1992].

Sl AL

Atidel Ben Hadj-Alouane (1992) at the University of Michigan successfully
used a genetic algorithm to solve multiple choice integer programs with
nonlinear relaxation. The algorithm successfully solved 100% dense
problems and had computation times superior to IBM's Optimization
Subroutine Library (OSL). Hadj-Alouane noted three advantages of the
genetic algorithm when compared to OSL after running the genetic
algorithm on three facility location problems:
1. The optimal solution was found for all three, yet less time was taken
than with OSL.

2. There was a small variation in solutions for different random seeds.

3. The GA was more scalable (i.e. The time needed to solve the problem
was predictable based on the size of the problem.) [Hadj-Alouane and
Bean 1992].

Genetic algorithms have been shown to work effectively on problems
such as function optimization problems, but only recently has
experimentation moved into combinatorial optimization problems, such as
the Traveling Salesman Problem (TSP) or the Vehicle Routing Problem
[Suh and Gucht 1987]. The purpose of this research is to present and test a
genetic algorithm for the vehicle routing problem. In addition, this work
examines the obstacles encountered when applying GA's to vehicle routing
problems, as well as possible methods for handling them. The first chapter
gives an overview of the vehicle routing problem and genetic algorithm
and provides a discussion of how the two are related. Chapter 2 describes
key elements of the GA which were studied in order to gain an
understanding of their impact on algorithm performance. Chapter 3
presents a final version of the GA as well as other alternatives which may
be studied in future research. The results of this version of the GA are
also given for selected data sets which have appeared in various VRP
articles. These results are compared with the best known solutions

obtained by the other methods of solving the VRP.

CHAPTER 1
THE GENETIC ALGORITHM AND THE
VEHICLE ROUTING PROBLEM

Chapter 1 is an introduction to the genetic algorithm and the type of
vehicle routing problem addressed in this thesis. The first section describes
the VRP and some of the common heuristic methods currently being used
to solve problems of this type. There are several important aspects of the
GA which must be considered during development. A few of these aspects
are encoding of solutions, evaluation function, parameter values, selection
methods, crossover methods, and mutation methods. The second section
explains the terminology of the GA and describes various ways of
representing some of these important aspects. The last section of this
chapter specifically describes the aspects of the GA which were used to

solve the VRP.

The Vehicle Routing Problem

The vehicle routing problem addressed in this thesis is one consisting
of a single depot, n customers, and m vehicles. For each customer, the
vehicle must pick up a certain amount of weight, w;, where j is the
customer number. For problems with time considerations there is a
constant stop time, s, at each customer. The objective (1) is to minimize
the total distance traveled by all vehicles where d;; 1s the distance from

customer 1 to customer j. The binary variable yn,;; will equal 1 if vehicle m

goes from customer 1 to customer j and O otherwise. A formulation for the
VRP is given below:
(1) min ZnXij dij Ymjj

(2) st Zmliicsj Ymij ¥ ZmZk Ymjk = 2 for all
(3) zj ymoj =1 for all m

(4) 2ii<>j Ymij <1 forall m, j

(5) 2i ymio =1 forallm

(6) 2i Ymij - 2k Ymjk =0 forall m, j

(7) 22 Ymij <ISI-1 for all subsets S, for all m
(8) 2ij Ymijwj<w forall m

9) 2ij (dij+s)ymj<t forallm

[Noon, et al 1991]. Constraint (2) ensures that exactly one vehicle visits
and leaves each customer. Each vehicle is forced to leave the depot by
constraint (3). Constraint (4) ensures that a vehicle does not visit a
particular customer more than once and constraint (5) ensures that the
vehicle returns to the depot [Noon, et al 1991]. Flow conservation for each
vehicle tour is enforced by constraint (6). Subtours are eliminated by
constraint (7). The capacity constraint (8) ensures that the total amount of
weight picked up by the vehicle does not exceed a weight limit of w.
Constraint (9) ensures that the total time on the route for each vehicle can
not exceed a time limit of t, where the time on a route is calculated by the
distance on the route plus the sum of all the stop times on the route.

"The vehicle routing problem is a hard combinatorial problem and
to this day, only relatively small VRP instances can be solved to
optimality.” [Gendreau, et al 1991] There are four groups in which

heuristic methods for solving the VRP can be divided. They are

constructive, two-phase, incomplete optimization, and improvement
algorithms. The first of these four is the constructive algorithm in which
an unrouted city is selected to be added to the tour based on some criterion
[Gendreau, et al 1991]. One of the most common of these methods is the
Clarke and Wright method in which n back and forth routes between a city
and the depot are merged according to a savings criterion. The major
disadvantage with this method is the amount of time required to find a near
optimal solution. However, data structures can be used to reduce the
amount of time to run the algorithm [Gendreau, et al 1991].

There are four types of two-phase algorithms. The first of these is
the cluster first - route second method in which each vehicle is first
assigned the customers which it must visit. The TSP is then used to
sequence each of the routes. The TSP is a combinatorial optimization
problem in which a single vehicle leaves a depot and must visit each
customer exactly once and return to the depot. The objective is to sequence
the customers in such a way that the distance traveled is minimized. The
second method is the route first - cluster second approach in which the TSP
1s first used to sequence the customers. The route is then broken into
feasible segments for each vehicle available. The third method is an
integer linear programming approach using the Generalized Assignment
Problem and the TSP. This approach was developed by Fisher and
Jaikumar (1981). Finally, the fourth method of two-phase algorithms is a
Lagrangean Relaxation Approach used by Noon, Mittenthal, and Pillai
(1991) [Gendreau, et al 1991]. The method relies on solving a Traveling
Salesman Subset Tour Problem with one additional constraint. The TSSP

is a variant of the TSP in which the constraints that require each customer

to be visited are relaxed. The idea is to have a dispatcher who assigns each
vehicle an initial customer to visit and then assigns reward values to every
other customer. The objective when preassigning these customers is to
maximize the minimum distance between any two of them. Each vehicle
driver then decides which customers to visit and the corresponding
sequence of visits. The objective of the dispatcher is to assign the rewards
so that each customer will be visited by exactly one vehicle. The major
difference between this approach and that of Fisher and Jaikumar is that the
dispatcher in the Fisher method decides which customers each driver visits,
and the driver is only responsible for sequencing the route. In the
Lagrangean Relaxation approach, the driver has the additional
responsibility of deciding which customers to visit [Noon, et al 1991].

The third heuristic method is Incomplete Optimization. This
approach uses an enumerative algorithm to find a good solution by means
of an incomplete search tree [Gendreau, et al 1991].

Finally, the fourth heuristic method used is Improvement Methods
which is the category in which tabu search falls. Among the tabu search
methods that exist are one developed by Pureza and Franca (1991) in which
cities are swapped between two routes and one developed by Semet and
Taillard (1991) in which a city is moved from one route to an alternate
route [Gendreau, et al 1991]. The algorithm developed by Gendreau,
Hertz, and Laporte inserts a node into a tour from another tour using a
generalized insertion procedure (GENI). A tour improvement procedure
which was also developed by Gendreau, Hertz, and Laporte, is used to
improve each route. Once a customer is taken out of a particular vehicle's

tour, it cannot be put back into that tour for a certain number of iterations.

One difference between this method and the other tabu search methods is
that it allows infeasible solutions whereas the others do not. An advantage
to using this method, called TABROUTE, is that the risk of converging to
a local optima is reduced in two ways. The first is by allowing infeasible
solutions through the use of a penalty function. The second is by using
GENI to perform the insertion of the customer into a different route
[(Gendreau, et al 1991].

Another improvement method which has successfully been used was
developed by Ibrahim Osman at the University of Canterbury [Osman
1993] and solves the vehicle routing problem using simulated annealing and
tabu search. This method finds a route by first using a heuristic followed
by an improvement method in which a portion of one route is exchanged
with a portion of a second route. An insertion/deletion procedure is used
to recalculate the objective value, and the 2-opt arc exchange heuristic of
Lin [Osman 1993] is used to correct any paths that are crossed. There are
two selection strategies used for selecting alternative solutions: best
improvement and first improvement. The tabu search consists of a
forbidding strategy, a freeing strategy, a short-term strategy, and a
stopping criterion. The forbidding strategy keeps a list of the moves which
are forbidden. The freeing strategy removes the moves from the tabu list
after a certain number of iterations. The short-term strategy uses an
aspiration criterion to overrule the tabu list and includes two possible
selection strategies: Best Admissible (BA) and First Best Admissible
(FBA). BA selects the move resulting in the greatest improvement or the
least nonimprovement. FBA selects the first move resulting in an

improvement in the objective value if one exists; otherwise, the best

nonimproving move is selected. The tabu list sizes are calculated as a
function of population size, number of vehicles, and capacity ratio of
required demands to vehicle capacities. The stopping criterion is based on
a maximum number of iterations in which the best solution does not
improve after the best solution was found. One potential drawback of tabu
search is that quality of the final solution depends on the initial solution.
Hence, the method sometimes finds a local optimal which is not close to the
global optimal. This is the same problem which Gendreau addressed in his
method by allowing infeasible solutions. Osman'’s method uses simulated
annealing (SA) to overcome this problem. SA accepts a nonimprovement
move based on a certain probability which is determined by a control

parameter which decreases according to a schedule [Osman 1993].

Th netic Algorithm

The genetic algorithm was developed by John Holland in 1975 and
uses the idea of genetics and "survival of the fittest” to produce near
optimal solutions to problems such as the traveling salesman problem,
machine scheduling problems, vehicle routing problems, and many others.
The basic concept behind this algorithm is that good solutions will remain
in the population and continue reproducing to form better solutions while
the most undesirable solutions eventually become extinct. Initially, a
population of solutions is randomly generated, and each solution in the
population is called a chromosome. For example, consider a solution

which 1s encoded as a sequence of customer numbers:

514362

This chromosome represents a solution in which the sequence of customer
visits is 5,1,4,3,6,2. Each position of this chromosome is called a gene,
and the value of each gene is called an allele. For example, 5 is the allele
of the first gene [Nygard 1992]. At each generation there are a number of
methods which can be used to produce a new population of solutions.
Although all genetic algorithms use some form of reproduction, crossover,
and mutation, there are many different ways of carrying out these
operations. The next section describes some of the alternate methods.

First, there are a number of different ways to select the

chromosomes to be added to the mating pool. The challenge is to select the
parents in such a way that the good parents reproduce enough to survive,
but not so much as to cause the population to prematurely converge
[DeJong 1985]. There is still disagreement among researchers on the best
method of parent selection. Four of the most common methods are listed
below.

1. Random selection of the chromosomes.

2. Roulette sampling in which the probability of selecting a
particular chromosome increases with its fitness.

3. Rank based sampling which uses the roulette wheel to select two
chromosomes, of which the one with the best fitness is added to
the mating pool.

4. Tournament sampling in which solutions are sequentially chosen
with the one having the higher fitness being added to the mating
pool [Nygard 1992].

Next, there are several different methods of crossing over the two

parent chromosomes. There is the one-point crossover in which a point on

10

the chromosome is randomly selected, and the two chromosomes exchange
the genes following this point. The disadvantage of using the one-point
crossover 1s that if good genetic material is at both ends of the
chromosome, these two good traits will be separated during the crossover.
The two-point crossover solves the one-point crossover problem by
enabling two genes on opposite ends of the chromosome to remain on the
same chromosome after the crossover. This 1s accomplished since two
points are randomly selected on the chromosome, and the genes between
these two points are exchanged between the two chromosomes. However,
this still may present a problem if, for example, all of the good traits are
on one of the chromosomes [Davis 1991]. The best crossover method
seems to be the uniform crossover in which a random number (between 1
and 100) is generated for each gene. If this number is less than a certain
user defined number (which is defined at the beginning of the GA as the
gene selection parameter), the child will receive this gene from the first
parent. If the number is greater than the gene selection parameter, the
child receives the gene from the second parent. Unlike the one-point and
two-point crossovers, this crossover method has the ability to combine
good traits irrespective of where they are located on the chromosome
[Davis 1991].

Also, there are differences in the methods of producing mutations.
One method is to simply mutate a single gene at a certain rate (i.e. 1 out of
every 1000 genes). However, since mutation is the main means of
producing variation in the population, mutating a single gene does not seem
to be very efficient. Another, more efficient method is to mutate the entire

chromosome for a low percentage of the chromosomes in the population

11

[Davis 1991]. This method of mutation is referred to as immigration [Bean
1992]. This seems to provide more diversity in the population.

Two very important links to the genetic algorithm and the problem
to be solved are the method of evaluating new solutions and the method
used to encode a solution [Davis 1991]. These two aspects are crucial
because they must be tailored to the problem being solved. The other
aspects of the GA such as parameter values, selection methods, crossover
methods, and mutation methods do not represent the problem being solved
and may be exactly the same for a variety of different problems. The
simple genetic algorithm seems to be powerful despite the lack of

knowledge of the problem to be solved [Goldberg and Richardson 1987].

Th netic Algorithm Rel he Vehicle Routing Problem
James Bean at the University of Michigan [Bean 1992] used a genetic
algorithm to solve machine scheduling problems. It was his GA which was
modified in this thesis to solve vehicle routing problems. Bean was
successful using this program on scheduling and resource allocation
problems, and he had moderate success on quadratic assignment problems.
However, his tests on several traveling salesman problems were not as
successful. He reported difficulty in getting closer than 8% to the optimal
solution; however, the results did not seem to worsen as the problem size
increased. In addressing this problem, he states that, "we conjecture that
these difficulties are caused by the complexity of interrelationship between
pairs of genes (cities or agents).” [Bean 1992] The issue now addressed is
how this genetic algorithm relates to the vehicle routing problem described

earlier. The aspects of the GA which must be considered are: the input

12

format of the data set to be used by the genetic algorithm, the method of
encoding a solution, the method of evaluating a solution, and the method of

reproduction.

Data Format
The genetic algorithm code first reads VRP problem data in the

following format. The first line of any problem data set contains the
following information:

1. The number of customers + 1 (for the depot)

2. The weight limit of each vehicle

3. The number of vehicles

4. The amount of time at each stop

5. The time limit of each route
The next n lines of the data set (where n is the number of customers)
contain the following:

1. The x coordinate of the customer

2. The y coordinate of the customer

3. The amount of weight to be picked up at the customer

4. The customer number
The last line of the data set contains the x and y coordinates of the depot.
Figure 1.1 1s an example data set for the 32 customer, 3 vehicle VRP. The
first line indicates that there are 32 customers plus 1 for the depot, there 1is
a weight limit of 38000 units per vehicle, there are 3 vehicles, there is a
stop time of 20 units of time at each stop, and there is a time limit of 1000
units per vehicle. Lines 2 through 33 consist of the x and y coordinates of

each customer, the amount of weight to be picked up at each customer, and

13

the customer number. The last line indicates the x and y coordinates of the

depot.

33 380003 20 1000
10 260 3500 1
65 248 1260 2
22 255 629 3
50 249 250 4

205 254 2267 5

275 34 447 6

269 262 1847 7

203 269 1437 8

333 212 3720 9

304 202 1115 10

286 207 273 11

288 191 5494 12

295 235 1944 13

467 67 713 14

484 179 1500 15

447 189 3585 16

215 204 140 17

313 382 25705 18

267 316 479 19

391 196 17456 20

399 122 1143 21

363 187 1919 22

355 236 826 23

378 203 3264 24

458 218 1570 25

383 181 2215 26

240 326 1239 27

273 349 580 28

278 374 5000 29

352 271 100 30

324 295 201 31

249 250 6747 32

250 200 0 DEPOT

Figure 1.1. 32 customer, 3 vehicle problem data set.

Encoding of Solutions
The algorithm uses a method of encoding a solution called random

keys which was developed by Bean [Bean 1992]. Random keys is a
14

technique designed to address the problem of producing infeasible solutions
during reproduction because some customers are visited more than once
while some are not visited at all [Bean 1992]. To illustrate the problem of
infeasibility during reproduction consider a problem with only one vehicle
and six customers. When the solution is encoded using the customer
number, reproduction can lead to infeasible offspring as shown in the
example below. Consider two parents whose solutions are encoded as
sequences of customer numbers.

parent 1: (514362)

parent2: (451362)
In parent 1, the sequence of customer visits is 5, 1, 4, 3, 6, 2. In parent 2,
the vehicle visits customers in the order 4, 5, 1, 3, 6, 2. When these two
undergo reproduction, a child is produced by selecting a gene from each
parent with a certain pre-defined probability. For each gene, a random
number is generated. If the random number is greater than the probability
assigned to parent number 1, the gene is taken from parent number 2;
otherwise, the gene is taken from parent number 1. If, for example, the
probability of selecting a gene from parent 1 is .70 and .30 from parent 2,
the following situation might occur:

random number: .86 .55 .40 .12 .73 .23

parent number: 21 1 1 2 1

child: 41 4 3 6 2
The child produced is infeasible since customer number 4 is visited twice
during the tour and customer number 5 is not visited at all [Bean 1992].

Random keys is designed to prevent this type of reproduction

infeasibility. The idea behind random keys is to generate a random

15

number between 0 and 1 for each customer in a solution. The order in
which the customers are visited is represented by sorting the random
numbers in ascending order. For example, in the previous problem, parent
1 might be represented as follows:

(.31 .95 .76 .51 .15 .85)
where customer number 5 is the first visited, customer number 1 is the
second visited, etc. The two parents would then be represented as follows:

parent 1: (.31 .95 .76 .51 .15 .85)

parent 2: (.33 .83 .49 .08 .25 .71)
These two parents reproduce as follows:

random number: .86 .55 .40 .12 .73 .23

parent number: 21 1 1 2 1

child: 3395 .76 .51 .25 .85
The new child solution is now feasible, with the order in which the
customers are visited represented by the order of the random numbers
[Bean 1992].

The problem of representing multiple vehicles in a solution can also
be solved using random keys. A random integer, between 1 and the
number of vehicles, is added to each random number. The integer
represents the vehicle which visits that customer. For example, if two
vehicles are available, the solution might be represented as:

(2.31 295 1.76 1.51 1.15 2.85)
where vehicle 1 visits customer 5 followed by customer 4, then customer 3,
and vehicle 2 visits customers 1, 6, and 2.
According to Bean, "we have successfully generalized this approach

to the Job shop with precedence, release times, sequence dependent setups,

16

and nonregular measures such as a sum of weighted earliness and
tardiness.” [Bean 1992] Random keys also appears to be an efficient means
of encoding solutions for the vehicle routing problem; therefore, it is the

method used for our research.

Evaluating the Solutions

One important feature which relates the genetic algorithm to the
problem being solved is the method of evaluating the fitness of each
chromosome (solution). The method used for this particular problem is to
first calculate the total Euclidean distance traveled by all vehicles on the
tour. Then, the amount of time each vehicle spends on the tour and the
weight that each vehicle picks up throughout the tour is calculated. From
these calculations it can be determined how much each vehicle exceeds the
time limit and weight limit, as well as how many vehicles have infeasible
tours. The fitness of the solution is then calculated by a function of the
distance traveled in combination with a penalty function for infeasibility

with respect to weight and time.

Reproduction

The method of reproduction is another important aspect of the
genetic algorithm. The method which Bean uses in his algorithm keeps a
consistent number of solutions in the population throughout the algorithm.

A certain percentage of the top solutions are copied to the next generation.

This is called elitism or clonal propagation and enables the best solutions to
be preserved [Davis 1991]. Another percentage of the new generation is

produced by mutation. The method of mutation used is to randomly

17

generate completely new chromosomes by the same method in which the
population was initialized at the beginning of the algorithm. Since the
elitist strategy is being used, a fairly high mutation rate must be used in
order to maintain diversity in the population [Bean 1992]. The remaining
percentage of solutions in the new population are produced through
reproduction. The parent chromosomes are selected randomly with equal
probability of being selected and then the uniform crossover method is

used for best results.

EXAMPLE 1.1,

In order to illustrate some of the important aspects of the genetic
algorithm which were discussed in this chapter, consider an example VRP
which consists of 5 customers and 2 vehicles with a best known solution of
63. Suppose at the beginning of the algorithm the following parameters
are defined:

5 members in the population

25 generations

1 solution copied into the next generation

1 solution mutated each generation

Gene selection parameter of 50
At the beginning of the algorithm an initial population is randomly
generated. The solutions are evaluated and ordered so that the solution
with the best evaluation is first and the solution with the worst evaluation is
last. Suppose that after the solutions are ordered, the initial population is

as follows:

18

Solution Evaluation

#1: (1.53 2.14 2.07 1.10 1.76) 97
#2: (1.08 1.56 2.58 2.13 2.33) 113
#3: (2.82 291 267 2.15 1.01) 125
#4: (2.61 1.50 1.39 243 1.59) 156
#5: (1.89 2.17 1.25 2.95 1.52) 208

The following shows an example of how the next generation of five

solutions may be produced from the initial population.

Solution # 1
The best solution from the initial population is copied to form one member
of the new population. (The number to be copied was defined at the
beginning of the algorithm to be 1.)

(1.53 2.14 2.07 1.10 1.76) Evaluation = 97

Solution #2
Solutions #2 and #5 are randomly selected from the initial population to
reproduce with each other. Reproduction occurs in the following manner

using uniform crossover.

Random number: 22 56 08 34 76

Parent #1: (1.08 1.56 2.58 2.13 2.33)
Parent #2: (1.89 2.17 1.25 2.95 1.52)
Child: (1.08 2.17 2.58 2.13 1.52) Evaluation = 128

19

Solution #3

Solutions #1 and #2 are randomly selected from the initial population to

reproduce with each other. Reproduction occurs in the following manner.

Random number: 58 64 19 36 79

Parent #1: (1.53 2.14 2.07 1.10 1.76)

Parent #2: (1.08 1.56 2.58 2.13 2.33)

Child: (1.08 1.56 207 1.10 2.33) Evaluation =150
Solution #4

Solutions #3 and #1 are randomly selected to reproduce with each other.

Random number: 70 18 83 95 34

Parent #1: (2.82 291 2.67 2.15 1.01)

Parent #2: (1.53 2.14 2.07 1.10 1.76)

Child: (1.53 291 2.07 1.10 1.01) Evaluation= 90
Solution #5

This solution is formed by mutation which means a random number is
generated for each gene on the chromosome. (The number of solutions to
be mutated was defined at the beginning of the algorithm to be 1.) The

following numbers are generated:

(2.54 299 1.76 2.11 1.69) Evaluation = 200

This new population would then be ordered by evaluation as follows:

20

#1:
#2:
#3:
#4:
#5:

(1.53
(1.53
(1.08
(1.08
(2.54

Solution

291
2.14
2.17
1.56
2.99

2.07
2.07
2.58
2.07
1.76

Evaluation
1.10 1.01) 90
1.10 1.76) 97
2.13 1.52) 128
1.10 2.33) 150
2.11 1.69) 200

This same method of reproduction, in which the current population goes

through a reproduction phase to form a new population, is used for the

next 24 generations. (The number of generations was defined at the

beginning of the algorithm to be 25.)

Premature convergence is a problem which must be addressed in the

genetic algorithm. Convergence is the reason the mutation operator is

necessary. Suppose that after the 10th generation the population for this

example problem is the following:

#1:
#2:
#3:
#4:
#5:

(1.53
(1.53
(1.53
(1.23
(2.89

Solution

291
291
291
1.14
2.75

2.07
2.07
2.07
2.19
1.28

Evaluation
1.10 1.01) 90
1.10 1.01) 90
1.10 1.76) 90
2.57 1.18) 97
2.15 1.87) 210

This 1s an example of a population which is prematurely converging. Since

the best known solution is 63 and the best solution the algorithm has found

1s 90, it is obvious that the algorithm should not yet be converging. Notice

21

that the first two solutions are identical, and the third solution is only
different on the fifth gene. The last two chromosomes are now the only
means for diversity in this population. This example will be referred to
later in the thesis to demonstrate the dynamics of the population under

certain conditions.

22

CHAPTER 2
EXPERIMENTATION RESULTS

In the previous chapter the VRP and the GA were described, and an

example was given to illustrate some of the important aspects. The purpose

of chapter 2 is to describe some of the experimentation which was

p

erformed on the GA. This chapter should provide an idea of the various

ways in which the GA can be altered and the effects these alterations may

h

ave on the results. Figure 2.1 provides a summary of the aspects which

were altered during the experimentation.

[—y

ol

© N W

. PENALIZATION FOR INFEASIBILITY

» Assigning a penalty to all infeasible solutions
SAMPLING PROCEDURES

¢ Roulette, Tournament
REPRODUCTION

 Single Crossover, Double Crossover
PARAMETERS

» Changing number of mutations as a function of generation count
INFEASIBILITY

» Replacing infeasible solutions with the best solution
DUPLICATE SOLUTIONS

» Mutating duplicate solutions
REVERSE PATHS

» Ensuring against paths which visit the same customers only in opposite order
FEASIBILITY VS. INFEASIBILITY

» Ensuring all feasible sols. evaluate better than all infeasible sols.
GENE SELECTION PARAMETER

 Producing offspring at different gene selection parameters

Figure 2.1. Summary of experimentation.

23

The purpose of the experimentation was to produce a version of the
genetic algorithm which would find a nearly optimal solution for most
vehicle routing problem data sets of the format discussed in Chapter 1.
There were two data sets most commonly used for the experimentation.
The first data set was a 50 customer, 6 vehicle, VRP with a weight limit of
160 per vehicle, a time limit of 200 per vehicle and a stop time of 10. The
best known solution from the literature has a total cost (distance) of 555.43
[Gendreau, et al 1991]. The best solution known for this same data set with
only 5 vehicles and no time constraint is 524.61 [Gendreau, et al 1991].
The second data set had 32 customers and 3 vehicles with a weight limit of
38000 per vehicle, a time limit of 1000 per vehicle, and a stop time of 20.
The best known solution for this data set has a total rounded cost of 2086.
Without the time constraint, the best known solution to this problem is
2009.31 [Noon, et al 1991]. There were several procedures in the GA
which were believed to have some effect on the performance of the
algorithm; namely, calculating the fitness of the chromosome, infeasibility
of solutions, sampling, reproduction, operator fitness, format of the
solutions (duplicates, reverse paths), and the gene selection parameter value
(probability of selecting a gene from chromosome number 1).

First, the program was run using Bean's algorithm with the
exception of a few changes necessary to run the algorithm on the vehicle
routing problem rather than the machine scheduling problem. These
changes primarily involved the input of the data set and the evaluation of
solutions. Also, Bean suggested that a few of the parameter values be

changed. The parameter values were as follows:

24

Number of generations - 2000

Number of members in the population - 100

Number of chromosomes repeated in the next generation - 20

Number of mutations each generation - 2

Gene selection parameter value - 70.
The method of sampling and reproduction remained unaltered. The
procedure for calculating chromosome fitness was to calculate the total
distance traveled on the tour, with no penalty for infeasibility of the
solution, and assign this value as the fitness value. (Note: For the initial
experimentation, rounded solutions are given. The exact solutions are
given for the final version of the program in the results section of Chapter
3.) This version produced a solution with a cost of 555 for the 50
customer, 6 vehicle problem which was a good solution; however, it was
infeasible with 3 vehicles exceeding the time limit and one exceeding the
weight limit. The solution for the 32 customer, 3 vehicle problem was
2014; however, it was also infeasible with 1 vehicle over the time limit and
2 over the weight limit. Since the algorithm seemed to be producing good
results with the exception of infeasibility, the first task undertaken was to
develop a method of penalizing for infeasibility in order to allow the

feasible solutions to move to the top of the gene pool.

Penalization for Infeasibility

The method of calculating the fitness of the solution was the first
procedure tested to observe the effect this would have on the results. The
first method of penalization attempted was to penalize each infeasible

solution by assigning its cost to be a large value. This method prevented

25

effective reproduction because the same large number was assigned to each
solution regardless of its degree of infeasibility. At the start of the
algorithm virtually all solutions are infeasible since they have all been
randomly generated. Therefore, the "survival-of-the-fittest" philosophy
with this type of penalization is not very effective since no solution's fitness
is better than any other. The next method of assigning a fitness to the
solution was to add a penalty to the total distance traveled on the tour based
on type and degree of infeasibility of the solution. The weight penalty was
calculated by summing the amount each vehicle exceeded the weight limit
and raising this value to some power. The total penalty was evaluated by
adding the weight penalty to the time penalty which was calculated by
summing the amount each vehicle exceeded the time limit and raising this
value to the same power. First, a power of two was used which produced a
solution of 617 for the 50 customer problem; however, the solution was
still slightly infeasible with one vehicle being one unit over the time limit.
The solution to the 32 customer problem was 2317 and was feasible. Using
a power of three, the solution to the 50 customer problem was 654 and was
feasible, and the solution to the 32 customer problem was 2267 and was
also feasible. Finally, the solution to the two problems using a power of
four was 639 for the 50 customer problem and 2344 for the 32 customer
problem with both solutions being feasible. The next method of
penalization was the same as the previous method using a power of 2,
except that the penalty was multiplied by the number of vehicles which
were infeasible with respect to weight plus the number vehicles which were
infeasible with respect to time. This method gave an improvement in the

solutions of both data sets. The solution to the 50 customer, 6 vehicle

26

problem was 601, and the solution to the 32 customer, 3 vehicle problem
was 2298.

Sampling Procedures

Next, the sampling procedure was changed to observe the effects this
would have on the solution. The first sampling procedure tested was the
roulette wheel sampling method [Davis 1991]. Below is a list of the steps
followed in this method:

1. Find the largest solution value of the n solutions in the
population, lval.

2. For each solution's value, sval(i), find fval(i) = lval -
sval(i). This is a measure of the fitness of solution i relative
to the other solutions in the population.

3. Assign each solution a range of numbers, the size of which
corresponds to the size of its relative fitness value.

Range(i) = [Xi-1 fval(k), Xifval(k)]

4. Generate a random number between 1 and >.» fval(i).

Ok Pick the solution whose range contains this random number.
On the data sets tested, the performance of the roulette wheel sampling
procedure was inferior to the performance of the sampling procedure in
which all solutions had equal weight. The best solution for the 50 customer
problem was 807 and was infeasible. A tournament sampling method also
was used in which eight solutions were chosen to reproduce with each other
resulting in four solutions which reproduced to form two. These two
solutions then reproduced to form one solution which was added to the

population. This procedure was only run on the 50 customer problem due

27

to time limitations. The resulting solution was relatively good with value,
602, and was feasible; however, the extensive amount of time it took to run

the algorithm with this sampling procedure made it very impractical.

Reproduction

Two alternate methods of reproduction were tested to determine
their impact on performance. These two methods, single crossover and
double crossover reproduction, were described in Chapter 1 along with
their disadvantages. Although these methods have disadvantages, the
experiments were run in order to observe the changes in the results by
using these methods. The results of the double crossover method were
significantly better than the single crossover; however, it produced a
solution of 2370 for the 32 customer problem and 849 for the 50 customer
problem, which were significantly worse than with the uniform crossover

previously used.

Parameters

Two important parameters which seem to significantly affect the
results of the algorithm are nrep and nmut. The parameter nrep controls
how many chromosomes are copied from one generation to the next. The
parameter nmut controls how many solutions will be mutated in each
generation. A key consideration for nrep is that it must be high enough to
keep the best solutions but not so high as to cause the population to
converge prematurely. For instance, consider Example 1.1. If the number
of solutions to be copied is increased from 1 to 2, the population might

have the following appearance after the 10th generation.

28

Solution Evaluation
#1: (1.53 2.91 2.07 1.10 1.01) 90
#2: (1.53 291 2.07 1.10 1.01) 90
#3: (1.53 291 2.07 1.10 1.01) 90
#4: (1.53 291 2.07 1.10 1.18) 101
#5: (2.89 2.75 1.28 2.15 1.87) 210

By setting nrep too high, the population may prematurely converge more
quickly than it would have otherwise. However, if the number to be copied
was reduced to O, the best solution might be lost.

The mutation operator, nmut, must be high enough to induce
variation but not so high as to cause the population to converge towards
poor solutions. Consider Example 1.1 again. Suppose the number of
mutations per generation is increased from 1 to 2. After 10 generations,

the population might have the following appearance.

Solution Evaluation
#1: (1.53 291 2.07 1.10 1.01) 90
#2: (1.09 1.51 2.07 1.10 2.58) 102
#3: (2.54 2.32 1.14 1.39 1.21) 125
#4: (1.67 1.28 2.19 2.57 1.18) 153
#5: (2.89 2.75 1.28 2.15 1.87) 210

In this situation, the increased mutations provides such diversity that the
better solutions are overwhelmed by the poorer solutions which were

produced by mutation.

29

According to Davis, the speed of convergence of the population and
the nearness of the individuals to local optima are related to these two
parameter values [Davis 1991]. In order to prevent premature
convergence of the population, experiments were run to determine which
mixture of parameter values gave the best results for the two data sets.

The version of the GA used for these experiments included the sampling
procedure in which all solutions had an equal probability of being selected
and employed uniform crossover as the reproduction method. The method
of penalization for infeasibility for these experiments took into
consideration the amount the time and weight limits were exceeded and the
number of vehicles not meeting the constraints. After testing the operators
over a range of values, the best results were found when nrep was set at 20,
and nmut changed as a function of the generation count. The operator,
nmut, was initially set at 2 and changed to 5 at generation count 500 and
then to 8 at generation count 1000. The best solution for the 32 customer
problem was found to be 2321, and the best solution for the 50 customer
problem was 587, but was infeasible because one vehicle was over the time
limit by one unit of time. Another method tested was to change the nmut
parameter value based on the number of generations without an
improvement in the best solution. For this version, the nmut parameter
was increased by ten each time the number of generations without
improvement exceeded 100. However, the results for this version were not

an improvement over the previous results.

30

Infeasibility

Several methods for handling infeasibility were examined. One
experiment involved replacing all infeasible solutions with the best solution
when the number of infeasible solutions fell below a certain pre-defined
number. The results of the method were satisfactory but not very
encouraging because there were no consistent improvements over previous
methods. The primary reason for using this criterion for replacement was
to avoid certain problems which would be associated with other criterion.
For example, if the infeasible solutions were replaced as a result of the
generation count, all of the solutions may still be infeasible at that
particular generation. In this situation, all solutions in the population
would have been replaced with the best solution.

A second experiment allowed the program to run through the first
2000 generations and then took the best solution and replicated it 100
times, effectively replacing the current population with these replicas. The
algorithm was then run through another 2000 generations. Again, the
results of the attempt did not significantly change from the previous
results. However, one interesting discovery was made while running the
second experiment. After observing the populations of successive
generations, it became apparent an increasing number of solutions became
identical to the best solution until the majority of the population had
converged to this solution. This would explain why replication of solutions
did not produce significantly different results. The population naturally
converges and by the 2000th generation most of the solutions are already
identical to the best solution. This discovery led to the next experiment

which removes duplicate solutions from the population. This is because

31

once the mating pool is dominated by a single solution, there is insufficient
variation in the population to allow improvement over the current best

solution.

li lution

This experiment involved removing duplicate solutions from the
population. In the first experiment, an entire chromosome was mutated if
it was found to be a replica of one which already existed in the population.
This version did not show improvement; therefore, a second version was
developed. In this version, rather than mutating the entire chromosome of
the replicates, two genes on the chromosome were randomly selected to be
mutated. This caused a significant increase in the amount of time to run
the algorithm which was a key disadvantage of removing duplicate
solutions. The program took significantly longer to run since each solution
produced must be checked to make sure it does not already exist. Because
of this time factor, the population size had to be decreased from 100 to 50.
There were no significant improvements in the solution. The only
advantage this version displayed over the other versions was for the 50
customer, 6 vehicle problem. After 4000 generations, a feasible solution
was found with a value of 580, the best feasible solution which had been

found in the experimentation up to this point.

Reverse Paths
Another version of the algorithm was developed to insure against
reverse paths. For example, problems can occur if one solution represents

a vehicle making a tour, and another solution represents the vehicle making

32

the same tour only the customers are visited in reverse order from the first
one. If these two solutions reproduce with each other, the child will
probably not represent an efficient solution even though both parents may
have represented good solutions. When the program was run which
checked for reverse paths, the results again did not show improvement, and
the time factor increased significantly. The population size had to again be

reduced to 50 in order to decrease the time to run the algorithm.

Feasibility vs, Infeasibility

Another version of the algorithm was developed as a result of a
problem encountered when running the versions discussed in the
parameters section. The problem with this earlier version was that
occasionally a feasible solution would be found but would be replaced by
an infeasible solution having a better evaluation. The new version used the
same penalty function which had been used in the earlier version where the
infeasibility was raised to a power of 2 and multiplied by the number of
vehicles infeasible with respect to time and weight. It solved the feasibility
problem by using this penalty function in combination with a procedure
which would not allow a feasible solution to have a value which was worse
than an infeasible one. The function of this procedure was to subtract the
best infeasible solution from the worst feasible solution. If this value was
greater than 0, it was an indication that there was at least one infeasible
solution with a better evaluation than some feasible solutions. In this case,
the value was added to all infeasible solutions to force them to have a worse
evaluation than all of the feasible solutions. For the two data sets being

tested, this version produced relatively desirable results while keeping both

33

solutions feasible. This version produced the solutions 597 and 2321 for

the 50 and 32 customer problems respectively.

n lecti ram

Throughout most of the experimentation, the solution quality was
affected by the value assigned to the gene selection parameter. The gene
selection parameter designates the likelihood of selecting a gene from
parent 1. For example, the best results for the 50 customer problem were
produced with a gene selection parameter of 50, while the best results for
the 32 customer problem were produced with a gene selection parameter of
40. There were several different approaches examined to observe the
effects of changes in the gene selection parameter on the results of the
algorithm.

The first approach was to allow the two parents to produce several
different offspring at different gene selection parameter values, and select
the child with the best evaluation to be added to the next generation. For
the first version, nine children were produced starting with a gene selection
parameter of 10 and at each increment of 10 up to 90. The results of this
version were not an improvement and took significantly longer to run.
The next attempts were to produce 3 children at increments of 30 in the
gene selection parameter, and then 4 children at increments of 20. Neither
of these attempts showed improvements either.

Another attempt was to change the gene selection parameter when
the number of generations without improvement exceeded a certain
number. For the first version, a number between 1 and 100 was randomly

generated for the gene selection parameter when the number of generations

34

without improvement exceeded 100. The next version was to change the
gene selection parameter value by 10 each time the number of generations
without improvement exceeded 100. Neither of these versions showed

improvement.

mmar
In summary, there were some aspects of the experimentation which
provided improvements to the algorithm obtained from Bean. Following
are a few of these aspects.
1. Penalizing infeasible solutions
2. Changing the number of mutations as the number of generations
increases
3. Ensuring all infeasible solutions evaluate better than all infeasible
solutions
The gene selection parameter was also observed to be an important factor
in determining the solution for a particular problem. However, no
consistency was found for using the same gene selection parameter over a

number of different problems.

35

CHAPTER 3
ANALYSIS

The purpose of this chapter is to present the final version of the
genetic algorithm. This version was selected because it demonstrated a
better overall performance than any of the other versions on the VRP
problems used for testing. A summation of these testing methods was
presented in chapter 2. First, a discussion is presented describing alternate
methods of representing various aspects of the GA and why certain
methods seem to perform better for our purposes. A few of the issues
addressed are parameter settings, initial population, elitism, and crossover
methods. Some causes of premature convergence are also given, as well as
proposed methods of reducing the probability of its occurrence. Next, the
results are presented for the selected data sets and are compared to the
results from the literature. The last section provides a discussion of future

direction for research.

r r_Settin
The settings of the parameter values appear to have a great influence
on the genetic algorithm for the VRP. Parameters that are commonly
known to have significant effects on the outcome of the algorithm are
population size, crossover rate and mutation rate [Schaffer, et al 1989]. In
addition to these, an additional parameter of interest in this study was the
gene selection parameter. For the 32 customer, 3 vehicle problem with

both time and weight constraints, the best solution found with the gene

36

selection parameter set at 50 was 2261, much larger than the current best
solution known of 2086. However, using the same algorithm with the gene
selection parameter being dropped to 40, the solution improved to 2130,
which is within about 2% of the best known solution. Lawrence Davis
developed a procedure which evaluates the effectiveness of the parameter
settings on a particular problem and changes the parameters accordingly to
produce the best results for the problem. According to Davis, "Genetic
algorithms are stochastic, and the same parameter settings used on the same
problems by the same genetic algorithm generally yield different results.
A consequence of this fact is that it can take a tremendous amount of
computer time to find good parameter settings across a number of
problems." [Davis 1989]. If a method could be developed for determining
the best parameter values for a particular problem, the performance of the
genetic algorithm should improve significantly.

There is also concem about whether the parameter values should
change during the run of the genetic algorithm and what should initiate the
change [DeJong 1985]. According to a study by DeJong: "Increasing the
population size was shown to reduce the stochastic effects [of random
sampling on a finite population] and improve long-term performance at the
expense of slower initial response...and reducing the crossover rate
resulted in an overall improvement in performance, suggesting that
producing a generation of completely new individuals was too high a
sampling rate." [Schaffer, et al 1989].

This led to a set of experiments involving changing the parameter
values on the genetic algorithm in order to observe the effects these

changes would have on the results of the VRP data sets selected.

37

Population size was one parameter which, when altered, had a consistent
effect on the results. All previous experiments discussed in earlier chapters
used a population size of 100. Consistently, for all data sets tested,
increasing the population size to 200 gave better results and decreasing the
population size to 50 gave worse results than the population size of 100.
This seemed to be consistent for small problems, as well as, large
problems.

Another parameter tested was the mutation parameter. For the final
version of the program, an additional method of incorporating mutation
into the genetic algorithm was used along with the method discussed
earlier. In the earlier method, a certain number of completely new
solutions are randomly generated in each generation. This new method
works by performing a count every tenth generation to determine how
much the population has converged. For each gene of the best solution, the
allele i1s compared to the corresponding allele on each of the other solutions
in the population. Each time an allele is found to be identical to the allele
on the best solution, the counter is incremented by 1. If this counter
exceeds a certain number (70 was used for this program), then randomly
replace a certain number of these genes (20 was used in this case). The top
solutions, which were automatically copied into the next generation, were
excluded from this random replacement. The objective was to maintain
diversity in the population and help to prevent premature convergence. It
was observed for the 32 customer problem that after only 30 generations
there were 6 genes which were repeated on at least 70 chromosomes, and
this number continued to increase until it stabilized in the range between 28

and 32. In addition to this method of mutation, another method was used

38

which has previously been mentioned. This method involved increasing the
number of mutations as the number of generations increased. This method
of increasing the number of mutations did not seem to work well in
combination with the method of mutating converged alleles. For all of the
data sets for which this combination was tested, the results were either
worse than the results when the program was run without this change, or
were infeasible where the previous results had been feasible.

In experimenting with the number of best solutions copied into the
next generation, it appears that there is no consistent effect on the result by
increasing or decreasing this number. This is probably because the
solutions have such a tendency to converge that they maintain themselves
without being copied into the next generation. However, for these data sets
the results seemed to be more consistent with this number set at 20, so this

1s the number used for the experimentation.

Initial Population

Another aspect of the genetic algorithm which significantly affects
the final solution is the generation of the initial population. Liepins, et al
studied how the initial population affected the results in their
experimentation with the crossover method for the TSP. They discovered
that by changing the initial population, a 13% to 17% variation was
observed with a conventional crossover, and an approximately 8%
variation was observed with a greedy crossover [Liepins, et al 1987]. It
appears, however, that a randomly generated initial population produces
satisfactory results since the population is heterogeneous at the beginning of

the algorithm [Davis 1991]. As observed by Liepins, there appears to be

39

little benefit in seeding the population with locally optimal solutions. In an
experiment by Booker, he was able to find better results when all initial
solutions were randomly generated [Liepins and Potter 1991]. For the
genetic algorithm used in our experiments, the initial population was
always randomly generated in order to introduce diversity into the
population. For the smaller problems with time and capacity constraints
and the larger problems with only capacity constraints, a randomly
generated initial population did not seem to present a problem. However,
for larger problems with both time and weight constraints, a feasible
solution could not be found. A possible solution to this problem would be
to place a few feasible solutions in the initial population while still

randomly generating most solutions.

Search Space

One of the problems encountered in using genetic algorithms is the
size of the search space. The search space here refers to the number of
combinations of possible solutions for the given VRP. An example of the
problem of a large search space was presented in an article by Cleveland
and Smith involving experiments they had performed on scheduling flow
shop releases [Cleveland and Smith 1989]. The Hinton and Nowlan Model
[Belew 1989] attempts to solve problems with binary solutions and claims
an improved solution if leaming is combined with evolution. They refer to
a problem which has 2L (where L is the number of genes on the
chromosome) possible combinations as a "needle-in-a-haystack” problem
and do not feel that the genetic algorithm alone would perform very well.

However, by combining the genetic algorithm with leaming, the search

40

space could be narrowed [Belew 1989]. The difficulty of incorporating
learning is that it is not always easy to determine which criterion help
define a good solution [Belew 1989].

Vehicle routing problems have large search spaces. As an example,
for an n customer, m vehicle problem, the possible number of
combinations of only selecting which vehicles will visit which customers is
mn. This does not include the large number of sequencing possibilities
within each route. In spite of the fact that there is such a large search
space, the genetic algorithm seems to produce results which are relatively
close to the best known solutions for the smaller problems. However, for
the larger problems, the quality of the solutions and the likelihood of
finding feasible solutions decrease.

In addition to changing parameter values, there are several other
aspects of the genetic algorithm which are believed to have a significant
impact on the performance of the GA. Among these are the representation
of solutions, the issue of elitism, and methods of crossover. The following
are alternate methods of dealing with these aspects which were presented in

the literature.

liti
Elitism is the idea of preserving the best members of the population
by copying them into future generations. An alternative to elitism is to use
a "refresh” operator which works by copying the best member of the
population to a location other than the current population. This copy is
maintained and occasionally brought back into the population [Sirag and

Weisser 1987]. It was decided for our experiments to use elitism rather

41

than this method in order to keep the best members in the population at all
times. An alternative method of representing the solution in the Traveling
Salesman Problem is by assigning a customer number to each gene. The
order of the tour is then the order of the customer numbers on the
chromosome [Sirag and Weisser 1987]. During crossover, a crossover
point is randomly selected and all the alleles up to this point are copied
from parent # 1; the remaining alleles are copied from parent # 2. One
problem with this method is the increased amount of time the crossover
takes because when copying from parent # 2, each allele must be checked to
see if it has already been copied from parent # 1. Since some genes on
parent # 2 are skipped (only the ones which have not already been copied
from parent # 1 are copied), the resulting chromosome may not be
representative of either parent [Sirag and Weisser 1987]. The problems
with this method are also increased when dealing with the VRP which has
the added requirement of representing which vehicle visits which

customers.

in lution

The method of encoding solutions used for this GA was the random
keys method which was discussed in Chapter 1. This appeared to be the
most efficient means of representing VRP solutions since crossovers could
be performed without the added task of ensuring that each customer was
visited exactly once. This constraint was automatically met with the

random keys representation.

42

Crossover Methods

There is no agreement on best method of crossover. This section
will discuss the greedy crossover and the uniform crossover. According to
DeJong, the number of crossover points required to produce better
solutions seems to increase with the length of the chromosome [DeJong
1985]. Uniform crossover appears to be better than one-point or two-point
crossover; even though, in theory, the other two crossover methods should
perform better than uniform. The reason for this is the schema survival
rate is better for the one and two point crossover. One advantage with
uniform crossover is it does not need to be combined with inversion
(reversing the order of the genes on a segment of the chromosome). This
is because alleles which are far apart on the chromosome have an equal
chance of staying together on the new chromosome as alleles which are
close together [Syswerda 1989].

The greedy crossover is one type of crossover which is a possible
area of exploration for future research. This crossover was developed by
Liepins, et al [Liepins, et al 1987] and uses the idea of a greedy algorithm
which, according to L. Davis is "an optimization algorithm that proceeds
through a series of altematives by making the best decision, as computed
locally, at each point in the series." [Davis 1991]. They compared the
performance of this crossover method with the conventional crossover on
the TSP. This crossover method is a modification of one which
Grefenstette developed. It begins by starting the tour with the same city
every time. At this point, the shortest edge is selected from the two
parents, if a cycle is not introduced. If a cycle is introduced, the edge is

selected from the other parent, unless it also causes a cycle. If the choice

43

of either parents results in a cycle, the tour is extended by a random city.
This process is repeated until the tour is completed. The advantage to
using the greedy crossover is that it "allows problem specific information
to be used in the crossover operation." Greedy genetics seem to perform
better when the greedy algorithm being used is powerful, meaning it finds
a good solution with only one run of the algorithm. However,
conventional genetics performs better when the greedy algorithm is weak
[Liepins, et al 1987].

In summation, for this genetic algorithm, the only method of
encoding a solution which was used in the experimentation was the random
keys representation. The method of elitism used was to copy the top 20
solutions into the next generation. The uniform crossover was preferred
over one and two point crossovers. This is because the uniform crossover
can produce a greater number of combinations of solutions, providing
more diversity within the population. The greedy crossover was not used

for any of the experimentation.

nvergen
A common problem with genetic algorithms is premature

convergence to a solution that is not optimal. This has been a recurring
problem when running our experiments; therefore, this section discusses
some of the causes of convergence and possible ways of preventing
premature convergence. There are two types of alleles which contribute to
this convergence: lost and converged. An allele is referred to as lost if
every member of the population has the same value for a particular gene.

When this occurs, the possible genotypes are severely restricted. An allele

44

is said to have converged if at least 95% of the population has the same
value for a particular gene. Two possible causes of this convergence is that
a "super individual” starts producing too many offspring or, in contrast,
the other individuals are not producing enough offspring. One solution to
this problem is to keep the population as diverse as possible [Baker 1985].
The mutation operator serves as protection against convergence by helping
to keep the population diverse [Goldberg 1988]. An example of this
problem is shown by Ackley in a comparison between a genetic algorithm
and a hillclimbing algorithm. Over a convex solution space, the genetic
algorithm took longer to run primarily because a loss of an allele caused a
long run to be necessary. The probability of this occurring was reduced by
increasing the mutation rate [Ackley 1985].

One cause of convergence is to focus too much on rapid
improvement which can cause premature convergence on the wrong strain
by driving out alternative genetic material. A good balance must be found.
If performance is not sufficiently emphasized, the best members of the
population can be lost [Davis 1987]. The manner in which infeasibility is
handled is a very important consideration with respect to convergence.
Most work with genetic algorithms has been performed on unconstrained
problems. Convergence is a difficulty with using the GA on constrained
VRP's [Liepins and Potter 1991]. Under a high infeasibility rate, a feasible
solution tends to drive other possibilities out of the population. This is due
to the fact that the probability of infeasible members reproducing with each
other is continuously decreasing [Davis 1987]. According to Liepins and

Potter, there are three methods of dealing with infeasibility:

45

1. Force feasible solutions into the population by using "specialized

recombination operators."

2. Do not allow infeasibility by repeating reproduction until a

feasible solution is generated.

3. Use a penalty function for infeasibility.

They found that of these three methods, only the first and third were
effective [Liepins and Potter 1991]. Davis dealt with infeasibility for job
shop scheduling problems by only allowing feasible solutions by selecting
the first legal action available from a list of actions for each work station
[Davis 1985]. However, since genetic algorithms function by combining
information from all members of the population, infeasible members
should remain in the population to reproduce with the feasible members
[Richardson, et al 1989].

For our version of the genetic algorithm, infeasible members were
allowed, but were characterized with a penalty function so as to give an
advantage to feasible members of the population. Two penalty functions
were tested to observe their effects on the convergence of the population.
The first penalty function involved squaring the amount the solution
exceeds the weight limit plus the amount the solution exceeds the time limit
and multiplying this by the number of vehicles whose routes are infeasible
with respect to weight plus the number infeasible with respect to time. The
second penalty function involves multiplying the amount the solution
exceeds the weight limit by 0.25 plus the amount the solution exceeds the
time limit times 0.25. The larger penalty seemed to work better overall
when used in combination with the procedure of keeping a count of

duplicate genes and randomly replacing them when necessary in order to

46

maintain diversity in the population. The only exception to this was the 50
customer, 6 vehicle problem, which produced a better solution with the
smaller penalty function. The advantage of the larger penalty was
particularly obvious with the larger data sets. It appeared that they need a
larger penalty function in order to be driven to feasibility. Although a
feasible solution was not found for the larger problems with a time
constraint, the solution came closer to feasibility when the larger penalty
function was used.

When infeasible members are left in the population, it is common
practice to use some penalty function in order to give the feasible members
of the population an advantage over the infeasible members. One
alternative to the standard procedure of combining the cost function and
the penalty function into one is to treat the cost as one objective and treat
the penalty as a separate objective [Richardson, et al 1989]. According to
Richardson, Palmer, Liepins, and Hilliard , there are four guidelines for

designing a penalty function:

1. Penalties which are functions of the distance from
feasibility are better performers than those which are
merely functions of the number of violated constraints.

2. For a problem having few constraints, penalties which are
solely functions of the number of violated constraints are
not likely to find solutions.

3. Good penalty functions can be constructed from two
quantities, the maximum completion cost and the expected
completion cost.

4. Penalties should be close to the expected completion cost,
but should not frequently fall below it. The more accurate
the penalty, the better will be the solutions found. When
the penalty often underestimates the completion cost, then
the search may not find a solution [Richardson, et al 1989].

47

Another cause of convergence is genetic drift. This term refers to
one allele winning out over the others even though it has no real significant
advantage. Normally with the GA, the problem is convergence causing
unequal alleles in the population. However, with genetic drift the problem
can be even greater, resulting in the bad alleles surviving instead of the
good alleles [Goldberg and Segrest 1987]. There is a theorem which states
that the best individuals will increase exponentially in the number of times
they reproduce assuming that the population is infinitely large [Goldberg
and Richardson 1987]. This is believed to be a cause of genetic drift.

One method of reducing the probability of premature convergence is
by incorporating the idea of niche and species into the genetic algorithm.
The concept of niche and species comes from the natural definition in
which different species have separate niches which are composed of
different environmental features. By forcing subpopulations to exist, the
probability of convergence is reduced [Goldberg and Richardson 1987].
There are several methods of incorporating this idea into the genetic
algorithm. One such method, known as preselection, was developed by
Cavicchio (1971). With preselection, the offspring only replaces the parent
if it gets a better fitness value than the parent. This maintains diversity by
only replacing solutions which are similar to themselves. DeJong (1975)
developed the concept known as crowding. Each member of the population
is assigned a crowding factor based on its similarity to the other members.
When an offspring is produced, it replaces the individual which is most
similar to itself in a randomly drawn subpopulation of individuals with the
same crowding factor. Goldberg and Richardson introduced the idea of

sharing to induce niche and species on members of a population [Goldberg

48

and Richardson 1987]. The idea of sharing is that solutions receive a
reward based on their performance; however, the reward must be shared
among all of the similar solutions. Therefore, a solution's reward will be
reduced corresponding to the number of similar solutions [Deb and
Goldberg 1989]. Goldberg and Richardson demonstrated that a genetic
algorithm with sharing maintains subpopulations around different peaks,
while without sharing, the population converges to a single peak [Goldberg
and Richardson 1987].

In addition to niche and species, there are several other methods
which have been introduced for dealing with convergence. One idea
presented by Bickel and Bickel is to characterize a population as converged
if the evaluation of all the solutions is within a certain range. If it is
determined that the population has converged by this definition, then a
certain percentage are replaced with new solutions [Bickel and Bickel
1987]. Baker proposed three additional methods of solving the problem of
premature convergence. The first method is standard selection in which
there is a limit to the maximum or the minimum offspring produced by a
particular parent. The second method is ranking. With ranking, the rank
rather than the value of the solution determine an individual's expected
number of offspring [Baker 1985]. The third method, the hybrid method,
has two alternatives. The first alternative is to use ranking during periods
of rapid convergence and to use standard selection the other times. The
second alternative is to change the number in the population in order to
reach the desirable percentage involvement (the ratio of the number of the
best members in the population to the total number of members in the

population) [Baker 1985]. The disadvantage with this second alternative is

49

that a super individual can still control the population. Even though other
individuals are not completely lost, their significance can be greatly
reduced because the super individual is still dominant [Baker 1985].
Eshelman and Schaffer proposed a method of preventing premature
convergence by preventing incest, using uniform crossover, and removing
duplicate solutions from the population. In this method, an evaluation is
performed to determine the difference between each of the individuals in
the population. This difference is referred to as the "Hamming distance".
Incest prevention only allows two individuals to reproduce with each other
if their "Hamming distance" is greater than a certain amount. This amount
will decrease as the population converges. Eshelman and Schaffer
produced successful results with this method. However, they determined
that it was not necessary to remove duplicate solutions in combination with
incest prevention. This was because when the two procedures were
combined, results did not significantly improve, and the run time was

increased because of excessive comparisons [Eshelman and Schaffer 1991].

The Final Program

This section will summarize the final version of the genetic
algorithm. This version was selected because it seemed to perform better
than the other versions of the GA on the majority of the vehicle routing
problems used in the experimentation. A copy of this version is presented
in Appendix A. Following is a list of the parameters selected:

Number of member in population - 200

Number of generations - 2000

Number of best solutions repeated in next generation - 20

50

Number of solutions mutated each generation - 2

Gene selection parameter value - 50.
The method of encoding solutions used was the random keys
representation. A penalty function was used during evaluation to penalize
infeasible solutions. This penalty was calculated by the square of the
amount the time limit was exceeded plus the square of the amount the
weight limit was exceeded times the number of vehicles not meeting the
time constraint plus the number of vehicles not meeting the weight
constraint. The method of reproduction was to copy the top 20 solutions to
the next generation, mutate two complete solutions, and to produce the
remaining 178 of the solutions by uniform crossover. In order to decrease
the problem of convergence, a particular gene was mutated for 20 of the
chromosomes if more than 70 chromosomes in the population had an
identical allele to the best member of the population for that particular
gene. This version seemed to perform better overall; however, there were
a few exceptions in which a slight modification to this version improved
performance on the problem. One exception was the 32 customer, 3
vehicle problem which performed better with a gene selection parameter of
40 rather than 50. Also, the 50 customer problem with and without the
time constraint, as well as the 100 customer, 8 vehicle problem without the
time constraint performed better with the smaller penalty function. The
smaller penalty function was the one in which the amount the constraints

were exceeded was multiplied by 0.25.

51

Results

Table 3.1 presents the problems analyzed. The first column of this
table lists the problem number which was assigned to each problem. If the
number is followed by "-t", this is an indication that the problem is the
same one as the previous problem only without the time constraint. The
number in brackets beside the problem number indicates the source from
which the best known solution value is reported. The next two columns
respectively list the number of customers and the number of vehicles for
the corresponding problem. The weight capacity for each vehicle is given
in column 4, and the time limit for each vehicle route is given in column 5
(where the dotted lines indicate that the problem has no time constraint).
Column 6 lists the stop times at each customer. The capacity ratio in
column 7 is calculated by dividing the total amount of weight to be picked
up by the total vehicle capacity available.

Table 3.2 presents the results of the genetic algorithm compared with
the best known solutions of the problems obtained from the literature. The
results from the GA were obtained from running the final version of the
GA, which was written in C programming language, on a Sparc II UNIX
workstation. The first column lists the problem number from Table 3.1.
The best known solution which was obtained from the literature is given in
column 2. Column 3 gives the solution obtained using the GA. If the final
solution was infeasible, this number includes the penalty. The 4th column
lists the amount of time the algorithm took to complete the run. Column 5
gives the actual distance for the problems. If the solution was infeasible,
the number in parentheses represents the number of vehicles infeasible with

respect to time plus the number infeasible with respect to weight. The last

52

Table 3.1. Problems used for experimentation.

No. of No. of Stop Capacity
Problem Customers _Vehicles Weight Time Time Ratio
P1[30] 22 3 4500 2 meeeee- 10 .76
P2[32] 29 3 4500 2 - 10 .94
P3[30] 32 3 38000 1000 20 .86
P3-t [30] 32 3 38000 0 --eeee- 20 .86
P4[17] 50 6 160 200 10 .80
P4-t [17] 50 5 160 eeemee- 10 .97
P5 [32] 75 11 140 160 10 .88
P5-t [17] 75 10 140 - 10 .97
P6 [30] 75 14 100 10000 10 .97
P7[17] 100 9 200 230 10 .81
P7-t [17] 100 8 200 —eeemes 10 91
P8 [17] 100 11 200 1040 90 .82
P8-t [32] 100 10 200 —meeee- 90 .90
P9(30] 100 14 112 10000 10 .92
P10 [32] 120 11 200 720 50 .62
P10-t [32] 120 7 200 meeeee- 50 .98
P11[32] 150 14 200 200 10 .80
P11-t[17] 150 12 200 meeeee- 10 .93
P12[32] 199 18 200 200 10 .88
P12-t[17] 199 17 200 - 10 .92
P12-t[32] 199 16 200 eeeeem- 10 .98

53

Table 3.2. Comparison of GA results with other methods of solving

problems.
Best GA % GA above

Problem Solution Solution Time Actual best known soln
P1 568.56 569.7 512.5 569.7 0.2
P2 534 548.5 699.3 548.5 2.7
*p3 2086 2130.5 996.1 2130.5 2.1
P3 2086 2261.9 802.2 2261.9 8.4
P3-t 2009.31 2009.3 780.5 2009.3 0.0
*P4 555.43 561.3 1230.5 561.3 1.1
P4 555.43 587.9 1333.0 587.9 5.8
*P4-t 524.61 656.8 1228.1 656.8 25.
P4-t 524.61 749.2 1236.3 749.2 42.8
P5 909 62109 2081.8 1000 (6) INFEAS
P5-t 836.37 1380.8 2108.6 1380.8 65.1
P6 1042 1722.6 2150.7 1722.6 65.3
P7 865.94 6014.4 52 min 1100 (1) INFEAS
P7-t 826.14 984.0 51 min 984.0 19.1
P& 866.37 1226.9 52 min 1226.9 41.6
P&-t 819 1254.1 52 min 1254.1 53.1
P9 1113 1697.9 54 min 1697.9 52.6
P10 1545 953447 lhr. Smin 1974 (1) INFEAS
P10-t 1042 2960.0 lhr. 4min 2960.0 184.0
P11 1164 569277.9 Thr. 21 min 1578 (6) INFEAS
P11-t 1034.90 2256.4 lhr. 15min 2256.4 118.0
P12 1417 4578660.0 2hr. 34min 2280 (8) INFEAS
P12-tl 1329.29 3537.4 2hr. 30min 3537.4 166.1
P12-t2 1334 4980.0 2hr. 29min 4890 (2) INFEAS

Notes: *P3 are the results of the 32 customer, 3 vehicle problem with a gene selection
parameter of 40 instead of 50. *P4 are the results of the 50 customer problem with the
smaller penalty function rather than the larger one.

54

column presents the percentage which the GA solution was above the best
known solution. Refer to Appendix 2 for tables showing which customers
are visited by which vehicles.

The problems can be categorized as either evenly distributed or
clustered. Problems P4, P5, P6, P7, and P9 consist of customer locations
which are evenly distributed over the region. [Noon, et al 1991]. Problems
P2 and P3 share aspects of both these two categories. [Noon, et al 1991]
However, because of the way the genetic algorithm functions, the
organization of the customers should have no effect on the results.

Notice that the GA solution to the first three problems, the 29
customer, 32 customer, and 50 customer problems, are all relatively close
to the best known solution, with the exception of the 50 customer problem
without the time constraint. The poor results for this problem could be
due to the high capacity ratio. Beginning with the 75 customer problems,
the genetic algorithm performance becomes progressively worse. The
genetic algorithm did not even find feasible solutions to the time
constrained problems with 75 customers and greater. This is probably due
to the increased size of the search space. As the search space size increases,
it becomes more and more difficult for the genetic algorithm to converge
to the optimal solution. In some instances, the solutions to these problems
were continuing to decrease as the genetic algorithm approached its 2000th
generation. Therefore, in some cases, the algorithm was allowed to run
for 3000 generations in an attempt to allow the algorithm to complete its
convergence. However, this did not significantly improve the results. The

solutions continued to decrease a small amount for a few more generations

55

and then converged to a solution not significantly better than the solution at

the 2000th generation.

Proposed Improvements

In the article by Whitley, Starkweather, and Fuquay it was observed

that:
The theory behind genetic algorithms is well developed for
problems that can be encoded as a binary string with no order
in dependencies. However, many potential applications of
genetic algorithms involve complex ordering dependencies
similar to those found in the Traveling Salesman Problem
[Whitley, et al 1989].

Suh and Gucht list three problems to overcome in making this
transformation:

1. Representing the problem effectively.

2. Recombination operators are only effective if a heuristic is
applied. "Such operators can be found in gradient descent
algorithms, hill climbing algorithms, simulated annealing, etc."

3. Premature convergence which is caused by a super individual
who overtakes the population or a poor performance by a
recombination operator [Suh and Gucht 1987].

According to Grefenstette, in order to apply genetic algorithms to
combinatorial optimization problems, some kind of heuristic must be used.
He used a heuristic crossover operator which proved to be more effective
than the standard genetic algorithm [Suh and Gucht 1987].

Suh and Gucht introduced a method in which two operators were
used. The first operator is used to select two parents. A random city is
then selected for the beginning of the offspring tour. Subsequent genes are
selected one at a time from the parent which will produce the shortest path.

56

The problem is the paths may still be crossed. This problem is solved
using the second operator, the 2-opt operator. This operator randomly
selects 2 edges (i1,j1) and (iz,j2). If ED(i1,j1) + EDC(i2,j2) > ED(i1,j2) +
ED(i2,j1), replace the edges with (i1,j2) and (i2,j1) (where ED is the
Euclidean Distance) [Suh and Gucht 1987]. They were able to produce
better results with the 2-opt operator than without it [Suh and Gucht 1987].
"It turned out that the selection of a natural representation and the selection
of heuristically motivated recombination operators is critical in the design
of robust genetic algorithms for such problems." [Suh and Gucht 1987].

There are several methods which have been proposed to improve the
standard genetic algorithm. One method is hybridization of another
optimization algorithm with the genetic algorithm. This method can
combine the positive features of the other algorithm, such as the encoding
technique, with the best features of the genetic algorithm, crossover and
mutation [Davis 1991].

Another method is to combine simulated annealing with crossover,
mutation, and inversion by using a temperature parameter to control
diversity in the population [Sirag and Weisser 1987]. Simulated annealing
uses a single individual which is given some amount of energy (high for
inefficient solutions, low for efficient ones). When a new solution is
generated, it will replace the current solution based on some probability.
This probability is assigned according to the amount of energy the new
solution has compared to the current one [Sirag and Weisser 1987]. The
way this temperature parameter would work with the genetic algorithm
would be to select genes from the first parent until the temperature is

exceeded, then switch to the second parent until the temperature is

57

exceeded again. This would work similarly for inversion and mutation.
The temperature should start out high and drop fairly rapidly to a medium
temperature, then drop slowly to a low temperature [Sirag and Weisser
1987].

One additional possibility for improving the results of the genetic
algorithm is to run them in parallel. The idea of Parallel Genetic
Algorithms is that instead of having one large population, have several
smaller subpopulations reproducing in parallel. At the end of each
generation, each subpopulation sends the best individual in its population to
the other subpopulations. There are different methods of selecting which
individuals are to be replaced by these new members. Among these are
replacing randomly, replacing the worst solution, or replacing the solution
which is most like the new one. It is undetermined at this time whether
selection of the individual based on subpopulation performance rather than
population as a whole speeds up or slows down convergence. The
advantage of this method is that a large population size is enabled without
the unreasonable amount of time that it would take with a sequential genetic

algorithm [Pettey, et al 1987].

nclugi
Based on our research, the genetic algorithm seemed to perform well
on problems with 50 or fewer customers. As the number of customers
increased, the results became progressively worse and the likelihood of
finding a feasible solution also decreased. Also, there was not a version

found which would consistently give the best solution for all problems

58

tested. Following are some thoughts Goldberg and DeJong have expressed
involving the inconsistency of genetic algorithms.

The idea of genetics is to be robust over a large domain, not to
achieve peak performance. Goldberg says, "When we change a genetic
algorithm to work better on a particular problem, we may have some
success in jazzing things up on that problem, but when we turn around and
try to use those operators elsewhere, we are likely to be disappointed.”
[Goldberg 1989]. DeJong also believes that evolutionary systems are not

meant to be function optimizers and says,

"... one shouldn't be surprised that: 1) the best individual
encountered so far may not even survive into the next
generation, 2) that the population itself seldom converges to a
global (or even local) optima, or 3) that the ability of GA's to
produce a steady stream of offspring that are better than any
seen so far can vary from quite impressive to dismal." [DeJong
1985].

Perhaps future research will enable a wider range of vehicle routing
problems to be solved closer to optimality with the genetic algorithm.
Using the genetic algorithm in combination with some of the ideas
presented in the previous section such as a heuristic, simulated annealing,
or parallel genetic algorithms could help to improve the results of the GA.
One of the major obstacles to overcome seems to be premature
convergence of the population. If this problem could be solved, maybe the

genetic algorithm would consistently give near optimal results.

59

References

60

10.

Ackley, David H., "A Connectionist Algorithm for Genetic Search,"
Proceedings of the First International Conference on Genetic
Algorithms and Their Applications, Carnegie-Mellon University,
Pittsburgh, 1985.

Baker, James Edward, "Adaptive Selection Methods for Genetic
Algorithms," Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, Carnegie-Mellon
University, Pittsburgh, 1985.

Bean, James C., "Genetics and Random Keys for Sequencing and
Optimization,” Department of Industrial and Operations Engineering,
Technical Report No. 92-43, University of Michigan, June 1992.

Belew, Richard K., "When Both Individuals and Populations Search:
Adding Simple Leaming to the Genetic Algorithm," Proceedings of
the Third International Conference on Genetic Algorithms, George

Mason University, San Mateo, 1989.

Bickel, Arthur S. and Riva Wenig Bickel, "Tree Structured Rules in
Genetic Algorithms," Genetic Algorithms and Their Applications:

Proceedings of the Second International Conference on Genetic
Algorithms, Massachusetts Institute of Technology, Cambridge, 1987.

Bramlette, Mark F. and Eugene E. Bouchard, "Genetic Algorithms in
Parametric Design of Aircraft, " in Handbook of Genetic Algorithms,
Lawrence Davis, ed., Van Nostrand Reinhold, 1991.

Cleveland, Gary A. and Stephen F. Smith, "Using Genetic Algorithms
to Schedule Flow Shop Releases," Proceedings of the Third
International Conference on Genetic Algorithms, George Mason
University, San Mateo, 1989.

Davis, Lawrence, "Adapting Operator Probabilities in Genetic

Algorithms," Proceedings of the Third International Conference on
Genetic Algorithms, George Mason University, San Mateo, 1989.

Davis, Lawrence, Genetic Algorithms and Simulated Annealing,
Morgan Kaufmann Publishers, 1987.

Davis, Lawrence, Handbook of Genetic Algorithms, Van Nostrand
Reinhold, 1991.

61

11.

12.

13.

14.

15.

16.

17.

18.

19.

Davis, Lawrence, "Job Shop Scheduling with Genetic Algorithms,"
Proceedings of the First International Conference on Genetic
Algorithms and Their Applications, Carnegie-Mellon University,
Pittsburgh, 1985.

Deb, Kalyanmoy and David E. Goldberg, "An Investigation of Niche
and Species Formation," Proceedings of the Third International
Conference on Genetic Algorithms, George Mason University, San
Mateo, 1989.

DelJong, Kenneth, "Genetic Algorithms: A 10 Year Perspective,”
Proceedings of the First International Conference on Genetic
Algorithms and Their Applications, Carnegie-Mellon University,
Pittsburgh, 1985.

Eshelman, Larry J., Richard A. Caruana and J. David Schaffer,
"Biases in the Crossover Landscape,” Proceedings of the Third
International Conference on Genetic Algorithms, George Mason
University, San Mateo, 1989.

Eshelman, Larry J. and J. David Schaffer, "Preventing Premature
Convergence in Genetic Algorithms by Preventing Incest,"

Proceedings of the Fourth International Conference on Genetic
Algorithms, University of California, San Diego, 1991.

Fourman, Michael P., "Compaction of Symbolic Layout Using Genetic
Algorithms," Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, Camegie-Mellon
University, Pittsburgh, 1985.

Gendreau, Michel, Alain Hertz and Gilbert Laporte, "A Tabu Search
Heuristic for the Vehicle Routing Problem," Publication CRT-777,
Centre de recherche sur les transports Universite de Montreal, June
1991.

Goldberg, David E., Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1988.

Goldberg, David E., "Zen and the Art of Genetic Algorithms,"
Proceedings of the Third International Conference on Genetic
Algorithms, George Mason University, San Mateo, 1989.

62

20.

2,1.

22.

23,

24.

25.

26.

27.

28.

Goldberg, David E. and Jon Richardson, "Genetic Algorithms with
Sharing for Multimodal Function Optimization," Genetic Algorithms
and Their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, Massachusetts Institute of
Technology, Cambridge, 1987.

Goldberg, David E. and Philip Segrest, "Finite Markov Chain Analysis

of Genetic Algorithms," Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic

Algorithms, Massachusetts Institute of Technology, Cambridge, 1987.

Golden, B. L. and A. A. Asaad, Vehicle Routing: Methods and
Studies, North-Holland, 1988.

Grefenstette, John J., "Strategy Acquisition with Genetic Algorithms,"
in Handbook of Genetic Algorithms, Lawrence Davis, ed., Van
Nostrand Reinhold, 1991.

Hadj-Alouane, Atidel Ben and James C. Bean, "A Genetic Algorithm
for the Multiple-Choice Integer Program,” Department of Industrial
and Operations Engineering Technical Report No. 92-50, University
of Michigan, September 1992.

Haimovick, M., A. H. G. Rinnooy Kan, L. Stougie, "Analysis of
Heuristics for Vehicle Routing Problems," in Vehicle Routing:
Methods and Studies, B. L. Golden and A. A. Asaad, eds., North-
Holland, 1988.

Holland, John H., Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and

Artificial Intelligence, University of Michigan Press, 1975.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan and D. B.
Shmoys, The Traveling Salesman Problem, John Wiley and Sons,
1985.

Liepins, G. E., M. R. Hilliard, Mark Palmer, and Michael Morrow,
"Greedy Genetics," Genetic Algorithms and Their Applications:

Proceedings of the Second International Conference on Genetic
Algorithms, Massachusetts Institute of Technology, Cambridge, 1987.

63

29.

30.

31.

32.

33.

34.

35.

36.

Liepins, Gunar E. and W. D. Potter, "A Genetic Algorithm to
Multiple-Fault Diagnosis," in Handbook of Genetic Algorithms,
Lawrence Davis, ed., Van Nostrand Reinhold, 1991.

Noon, Charles E., John Mittenthal and Rekha Pillai, "A TSSP+1
Decomposition Approach for the Capacity - Constrained Vehicle
Routing Problem,"” Management Science Program Technical Report
No. 37-91-272, University of Tennessee, June 1991.

Nygard, Kendall E., Rhonda K. Ficek and Ramesh Sharda, "Genetic
Algorithms: Biologically Inspired Search Method Borrows
Mechanisms of Inheritance to Find Solutions,” OR/MS Today, 28-34,
August 1992.

Osman, Ibrahim Hassan, "Metastrategy Simulated Annealing and Tabu
Search Algorithms for the Vehicle Routing Problem," in Annals of

Operations Research, 1993.

Pettey, Chrisila B., Michael R. Leuze and John J. Grefenstette, "A
Parallel Genetic Algorithm,” Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on
Genetic Algorithms, Massachusetts Institute of Technology,
Cambridge, 1987.

Richardson, Jon T., Mark R. Palmer, Gunar Leipins and Mike
Hilliard, "Some Guidelines for Genetic Algorithms with Penalty
Functions," Proceedings of the Third International Conference on
Genetic Algorithms, George Mason University, San Mateo, 1989.

Schaefer, Craig G., "The ARGOT Strategy: Adaptive Representation
Genetic Optimizer Technique," Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on
Genetic Algorithms, Massachusetts Institute of Technology,
Cambridge, 1987.

Schaffer, David J., Richard A. Caruana, Larry J. Eshelman and
Rajarshi Das, "A Study of Control Parameters Affecting Online
Performance of Genetic Algorithms for Function Optimization,"
Proceedings of the Third International Conference on Genetic
Algorithms, George Mason University, San Mateo, 1989.

64

37.

38.

39.

40.

41.

Sirag and Weisser, "Toward a Unified Thermodynamic Genetic
Operator,” Genetic Algorithms and Their Applications: Proceedings
of the Second International Conference on Genetic Algorithms,
Massachusetts Institute of Technology, Cambridge, 1987.

Suh, Jung Y. and Dirk Van Gucht, "Incorporating Heuristic
Information into Genetic Search,” Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on
Genetic Algorithms, Massachusetts Institute of Technology,
Cambridge, 1987.

Syswerda, Gilbert, "Uniform Crossover in Genetic Algorithms,"
Proceedings of the Third International Conference on Genetic
Algorithms, George Mason University, San Mateo, 1989.

Wayner, Peter, "Genetic Algorithms: Programming Takes a Valuable
Tip from Nature," Byte, 361-368, January, 1991.

Whitley, Darrell, Timothy Starkweather and D'Ann Fuquay,
"Scheduling Problems and Traveling Salesman: The Genetic Edge
Recombination Operator,” Proceedings of the Third International
Conference on Genetic Algorithms, George Mason University, San
Mateo, 1989.

65

APPENDICES

66

APPENDIX 1

67

Appendix 1 consists of the final genetic algorithm which was used
for comparison of the genetic algorithm results to the best known solution
presented in the literature. The genetic algorithm is written in C
programming language.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define maxload 201 /* max number of loads */

#define maxveh 20 /* max number of vehicles */

#define maxpop 200 /* poplulation size */

#define maxcount 2000 /* number of generations to run */

int nrep = 20, nmut = 2, do_out = 0, pf = 10;
int seed,clevel = 50;
float target = -12090.0;
int nload,stop,nveh,maxweight,stoptime,timelimit,vick;
int 11[1000];
void hsort();
float ff[1000];
struct ind { /* chromosome array */
float gene[maxload];
float val;
float realval;
int infeas;
int weight[maxveh];
float time[maxveh];
b5
struct dist
{ /* distance array */
float node[maxload];
)
struct ind *pptr,*opptr;
struct dist *dptr;
int xcoor[maxload+1],ycoor[maxload+1],custweightfmaxload+1];
int custno[maxload+1];
int count,feascnt;

FILE *outfile;

FILE *test;

FILE *infile;

FILE *testout;

FILE *gengraph;

FILE *geninfs;

int time_passed,;

long timestore, time_now;
float bestinfs,worstfs;

int worstchr;

68

main()

void eval(),repro();

int pick();

float urand();

void readinb(), setpop();

int 1,j,stop,k,l,feasfnd,numinfeas;

float avg,z;

pptr = (struct ind *) calloc (sizeof(struct ind),302);
opptr = (struct ind *) calloc (sizeof(struct ind),302);
dptr = (struct dist *) calloc (sizeof(struct dist),302);

readinb();

outfile = fopen("output”,"w");
testout = fopen("coortest”,"w");
gengraph = fopen("graph”,"w"):
geninfs = fopen("feasfile","w");
for(seed=2;seed<=2;seed++) {
time_now= clock(×tore);

srand(seed);

feascnt = 200;

setpop();
if (do_out)
{

avg = 0.0;
for (i=1;i<=maxpop;i++)

for (j=1;j<=nload;j++)

printf("%.3d ",(*(pptr+i)).gene(jl);
printf("%f\n",(*(pptr+1)).val);
avg += (*(pptr+i)).val;

printf("%f\n",avg/maxpop);
}

stop =0;

count = ();

while (1-stop)
{

count++;

/* change the number of chromosomes mutated each generation */

/*1f (count == 500)
nmut = 5;

if (count == 1000)

69

{
nmut = §;
¥/
/*if (count == 1500)
{
nrep = 14;
nmut = §;
}*/
feasfnd = 0;
numinfeas = 0;
bestinfs = 1000000;
worstfs = 0;
worstchr = 0;
if(count >= maxcount)
stop = 1;
for (i=1;i<=maxpop;i++)
if ((*(pptr+i)).infeas >= 1)
numinfeas++;
feascnt = numinfeas;
fprintf(gengraph,"%d %.4f %d\n",count,(*(pptr+1)).val,numinfeas);
fprintf(geninfs,"%d %d\n",count,numinfeas);
if(count == pf*(count/pf))
{
/*printf("time = %d\n",clock(×tore)-time_now);*/
printf("%d generations, best value found is %.0f",count,
(*(pptr+1)).val);
printf(" Number infeasible is %d",numinfeas);
printf("\n");
}

repro();
if (*(pptr+1)).val <= target) stop = 1;
if (do_out)

avg = 0.0;
for (i=1;i<=maxpop;i++)
{
for (j=1;j<=nload;j++)
printf("%d ",(* (pptr+i)).genelj]);
printf("%f\n",(*(pptr+i)).val);
avg += (*(pptr+i)).val;

printf("%f\n",avg/maxpop):

}
)

time_passed = clock(×tore)-time_now;

printf("time = %f seconds\n",time_passed/1e6);

eval(1);

1=1;

printf("Best solution found is %.0f\n ",(*(pptr+1)).val);
printf("Best solution distance is %.0f\n ",(*(pptr+1)).realval);
printf("Vehicle weights and times:\n");

70

for (k=1;k<=nveh;k++)

printf(" Weight[%d] = %d Time[%d] = %f\n",
k,(*(pptr+1)).weight[k],k,(*(pptr+1)).time(k]);
printf("Infeasibility = %d\n",(*(pptr+1)).infeas);
numinfeas = 0;
for (k=1;k<=maxpop;k++)

{
if ((*(pptr+k)).infeas >= 1)
numinfeas++;

printf("Number infeasible = %d\n",numinfeas);
printf("Generations = %d\n",count);

printf('"\n");
for (j=1;j<=nload;j++)

printf("%.3f ",(*(pptr+i)).gene[jl);
if == 10*(j/10))
printf("\n");

)
printf("\n");
printf("%f\n",(*(pptr+i)).val);
1=1;
fprintf(testout,"Best solution found is %.0f\n ",(*(pptr+1)).val);
fprintf(testout,"Best solution distance is %.0f\n ",(*(pptr+1)).realval);
fprintf(testout,"Vehicle weights and times:\n");
for (k=1;k<=nveh;k++)

fprintf(testout,” Weight[%d] = %d Time|%d] = %f\n",
k,(*(pptr+1)).weight[k].k,(*(pptr+1)).time[k]);
fprintf(testout,"Infeasibility = %d\n",(*(pptr+1)).infeas);
numinfeas = 0;
for (k=1;k<=maxpop;k++)

{
if ((*(pptr+k)).infeas >= 1)
numinfeas++;

fprintf(testout,"Number infeasible = %d\n",numinfeas);
fprintf(testout,"Generations = %d\n",count),

for (j=1;j<=nload;j++)

fprintf(testout,"%.3f ",(*(pptr+i)).gene(j]);
if (j==10*(j/10)) fprintf(testout,\n");

fprintf(testout,\ntime = %f seconds\n",time_passed/1e6);
fprintf(testout,"\n");

fprintf(testout," % f\n",(* (pptr+i)).val);

fprintf(testout,”"%d %d\n" ,xcoor{nload+1],ycoor[nload+1]);
for (j=1;j<=nload;j++)

{
k = ff[j];
I = ff[j+1];

71

if (k==1)
fprintf(testout,"%d %d\n",xcoorfii[]j]],ycoor(ii[j]]);
else
{
fprintf(testout,"%d %d\n",xcoorlii[j]],ycoorlii[j]]);
fprintf(testout,"%d %d\n\n",xcoor[nload+1],ycoor[nload+1]);
if (I<=nveh)
{

fprintf(testout,"%d %d\n",xcoor[nload+1],ycoor[nload+1]);

J

fprintf(outfile,"time = %f seconds\n",(time_passed/1 e6));
fprintf(outfile,"clevel, seed, count, value %d %d %d %f\n",clevel, seed,
count,(*(pptr+1)).val);

}/*end seed loop*/

fclose(outfile);

fclose(gengraph);

fclose(geninfs);

}

/**

* This procedure randomly generates the initial population *
**/

void setpop()
{

int 1,j;

void eval();
float urand();
int pick();

for (i=1;i<=maxpop;i++)
{
for (j=1;j<=nload;j++)
(*(pptr+1)).gene(j] = pick(nveh) + urand();
eval(i);

)
J

/**

* This procedure assigns a value to each solution based on the *

* distance traveled and the penalty =
**/

void eval(m)
intm;

{

72

int 1,j,k,I,w[maxveh+1];
float tfmaxveh+1],tottime;
float f,overweight,overtime;

tottime = 0

for (1=1;1<= nload;i++)
{
ii[i] =1;

ff[i] = (*(pptr+m)).gene(i];
}

hsort(nload);

overweight = 0.0;

overtime = 0.0;

f=0.0;

for (k=1;k<=nveh;k++)
w(k] =0;

for (k=1;k<=nveh;k++)
t(k] = 0.0;

for(i=1;i<=nload;i++)

{
k = ff[i];
if (i<nload)
1 = ff[i+1];
else
l=nveh + 1;
if(i==1) /* if leaving depot */

{
f = (*(dptr+nload+1)).node[ii[i]];
t(k] += (*(dptr+nload+1)).node[ii[i]] + stoptime;

if (k ==1) /* if using same vehicle for next stop */

{

f += (*(dptr+ii[i])).node[ii[i+1]];

t[k] += (*(dptr+ii[i])).node[ii[i+1]] + stoptime;
}

else /* using different vehicle for next stop */

{

f += (*(dptr+ii[i])).node[nload+1];
t(k] += (*(dptr+ii[i])).node[nload+1];
if (1 <= nveh) /* end of tour */

{
f += (*(dptr+nload+1)).node[ii[i+1]];
t[1] += (*(dptr+nload+1)).node[ii[i+1 || + stoptime;

}

w[k]+=custweight[ii[i]];
)
(*(pptr+m)).infeas = 0;
for (k=1;k<=nveh;k++)
{

73

if (w[k] > maxweight)

(*(pptr+m)).infeas ++;
overweight = overweight + (w[k] - maxweight);

if (t[k] > timelimit)

(*(pptr+m)).infeas++;
overtime = overtime + (t[k] - timelimit);
} }
(*(pptr+m)).val = f + (pow(overweight,2.) + pow(overtime,2.)) *
(*(pptr+m)).infeas;
/*(*(pptr+m)).val = f + (overweight*.25) + (overtime*.25);*/
(*(pptr+m)).realval = f;
if ((*(pptr+m)).infeas > ()
if ((*(pptr+m)).val < bestinfs)
bestinfs = (*(pptr+m)).val;
if ((*(pptr+m)).infeas == ()
if ((*(pptr+m)).val > worstfs)

worstfs = (*(pptr+m)).val;
worstchr = m;

for (i=1;i<=nveh;i++)

{

(*(pptr+m)).weight[i] = wl[i];
(*(pptr+m)).time[i] = t[i];

)

/***/

/* heapsorts arrays ff[n] and ii[n] in increasing order of ff */
/***/
void hsort(n)
ntn;
{
int 1,1,j,ir,rri,stop;
float rrf;
1=n/2 +1;
ir=n;
stop = 0;
while (1-stop) { /*printf("%d %d %d %d\n",l,ir,i,j);
for (i=1;i<= nrep;i++) printf("%.0f " ff[1]);
printf("\n");*/
if I>1)
{
55
rrf = ff(1); rri = 1i[1];
}

else

74

rrf = ff[ir]; rri = ii[ir];

fflir] = ff[1]; ii[ir] = ii[1];

ir--;
if (ir==1)
{
ff[1] = rrf; 1i[1] = 1
stop = 1;
)
)i
if (1-stop)
{
1=1
j= 1+
while (j<=ir)
if (j<ir)
if (ff[j) < ff[j+1]) Jj++;
if (rrf < ff[j])
{
ffli] = ffl]; iili] = ii{j);
=
1=1+5

)
elsej=ir+ 1;
ff[i] = rrf; ii[i] = rri;
} /* while */
}
)
}

/**/

int pick(n)
intn;

{
float p;

intpl;

p = rand();
p =p*n/2147483647.0;
pl=p+1;
if (pl<1)
pl=1;
if (pl>n)
pl =n;
return pl;

}

/**/

75

float urand()

{
float p;

p =rand();
p = p/2147483647.0;
return p;

}

/**

* Reproduction procedure *
**/

void repro()

int 1,j,k,l,split,m,stop,n,ncr;
int v,genecnt,bcnt,acnt;

int numrep;

float z;

float addconst,bestgene,bestval;

/* initialize */
for (i=1;i<=maxpop;i++)

for(j=1;j<=nload;j++)

(*(opptr+i)).gene[j] = (*(pptr+i)).gene(j];
(*(opptr+i)).val = (*(pptr+i)).val;
(*(opptr+i)).realval = (*(pptr+i)).realval,
(*(opptr+i)).infeas = (*(pptr+i)).infeas;
for (I=1;l<=nveh;l++)

{

(*(opptr+i)).weight[1] = (*(pptr+i)).weight[l];
(*(opptr+1i)).time[l] = (*(pptr+i)).time[1];

}

ii[i] =1;
ff[i] = (*(opptr+i)).val;
}

hsort(maxpop);

/* replicate top nrep solutions */
for(i=1;i<=nrep;i++)

for (j=1;j<=nload;j++)

(*(pptr+i)).genel[j] = (*(opptr+ii[i])).gene[j];
(*(pptr+i)).val = (*(opptr+ii[i])).val,
(*(pptr+i)).realval = (*(opptr+ii[i])).realval;
(*(pptr+i)).infeas = (*(opptr+ii[i])).infeas;
for (I=1;l<=nveh;1++)

76

{
(*(pptr+i)).weight[l] = (*(opptr+ii[i])).weight(1];
(*(pptr+i)).time[l] = (*(opptr+ii[i])).time[l];

)
if ((*(pptr+i)).infeas > 0)
if ((*(pptr+i)).val < bestinfs)
bestinfs = (*(pptr+i)).val;
if ((*(pptr+i)).infeas == 0)
if ((*(pptr+i)).val > worstfs)

worstfs = (*(pptr+i)).val;
worstchr = 1;

}

if (count == pf*(count/pf)) { /* check for duplicate genes */
for (i=1;i<=nload;i++)
{
genecnt = 1;
bestgene = (*(opptr+ii[1])).geneli];
for (1=2;l<=maxpop;l++)

{
if ((*(opptr+ii[l])).gene[i] == bestgene)
{

genecnt ++;

}
)
if (genecnt > 70)

{
for (j=1;j<=20;j++)
{

1 = pick(maxpop-nrep);
(*(opptr+ii[l+nrep])).gene(i] = pick(nveh) + urand();

)
)

}

vick = 0;

/* mate maxpop-nrep random pairs */
1 = nrep;

Stop = maxpop - nmut;

while (i < stop)

1++;
J = pick(maxpop);

k = pick(maxpop);
for(m=1;m<=nload;m++)

{
n = pick (100);/*printf("clevel = %d %d\n" clevel,n);*/
if (n<=clevel)

{
(*(pptr+i)).gene[m]=(*(opptr+j)).gene[m];
(*(pptr+i+1)).gene[m]=(*(opptr+k)).gene[m];

77

)

else

{

(*(pptr+1)).gene[m]=(*(opptr+k)).gene[m];
(*(pptr+i+1)).gene[m]=(*(opptr+j)).gene[m];
}

}
eval(i);
eval(i+1);
if ((*(pptr+i+1)).val < (*(pptr+i)).val)
{

for (m=1;m<=nload;m++)

(*(pptr+i)).gene[m] = (*(pptr+i+1)).gene[m];
(*(pptr+i)).val = (*(pptr+i+1)).val;
(*(pptr+i)).realval = (*(pptr+i+1)).realval;
(*(pptr+i)).infeas = (*(pptr+i+1)).infeas;
for (I=1;l<=nveh;1++)

{

(*(pptr+i)).weight[l] = (*(pptr+i+1)).weight[l];
(*(pptr+i)).time[l] = (*(pptr+i+1)).time[l];

}

/* create mutations */
for (i=1;i<=nmut;i++)
{
for (j=1;j<=nload;j++)
(*(pptr+i+maxpop-nmut)).gene(j] = pick(nveh) + urand();

/* evaluate new values and move forward 1 generation */
for(i=maxpop-nmut+1;i<=maxpop;i++)
eval(i);

if (bestinfs < worstfs)

{

vick = 1;

addconst = worstfs - bestinfs + 1;
for (i=1;1<=maxpop;i++)

{
if{((*(pptr+i)).infeas >0)

(*(pptr+i)).val += addconst;
(*(opptr+i)).val = (*(pptr+i)).val;
}

)

)
)

78

/**

* Read in the Data Set *
**/

void readinb()

{

int 1,j,k,1;

float diffx;

float diffy;

infile = fopen("vrp.dat","r");
test = fopen("test.tst","w");

fscanf(infile,"%d %d %d %d %d\n",&nload,&maxweight,&nveh,&stoptime,&timelimit);

nload--;
for (1=1;1<=nload;i++)

fscanf(infile,"%d %d %d %d\n",&xcoor[i],&ycoor(i],&custweight[i],&custnol[i]);
fscanf(infile,"%d %d",&xcoor[nload+1],&ycoor[nload+1]);

fclose(infile);

/* Sk 3k 3k Sk 3k 3k 3k 5k 5K K K kK Sk 5k 3k Ok %k ok 5k 3k k 3k 3k K 3k Sk 3k Sk 3k Sk %k k 5k 3k 3k k 3k 3k k 3k 3k 3k k kK 5K 5k %k 3k Sk %k K Sk 3k K Ok %k Kk k

ok 2% 3 Calculate distance matrix *kK
5k 3k 3k >k 3K 3k 3k K %k 5K 3k 3k 3k 5k 3 5k >k 5k %k 5k 3k 3 5k 3K >k 5k %k 5k 3k >k 5k 3k >k 5k 3k 3k >k 3K >k 3K >k 3k >k %k >k 3k >k 3k >k K > 3k > K % K >k K >k k */
for (i=1;1<=nload+1;1++)
for (j=1;j<=nload+1;j++)

diffx = xcoor[i]-xcoor(j];
diffy = ycoor[i]-ycoor(j];
(*(dptr+i)).node[]j] = sqrt(pow(diffx,2.)+pow(diffy,2.));

fprintf(test,"Loads = %d, Wt Limit = %d, Veh = %d, St Time = %d, Time Limit = %d\n",

nload,maxweight,nveh,stoptime,timelimit);
for (i=1;i<=nload;i++)

fprintf(test,"%d %d %d %d\n",xcoor[i],ycoor[i],custweight[i],custno[i]);
fprintf(test,"%d %d\n",xcoor[nload+1],ycoor[nload+1]);
fprintf(test,"\n\n");
for (1 = 1;i<=nload+1;i++)

{

for (j=1;j<=nload+1;j++)

fprintf(test,"%.1f",(*(dptr+i)).nodelj|);
fprintf(test,"\n");

fclose(test);

}

79

APPENDIX 2

80

Appendix 2 displays the vehicle routes of the best solutions produced
by the genetic algorithm. These results are displayed for the data sets
which were presented in Table 3.1.

Table A2.1. 22 customers, 3 vehicles, without time constraint

Vehicle # Route of Vehicle Wit Time
1 01819202217 141516 3 2 1 6 O 2730 404.0
2 01211 9 8 5 421 7 O 3100 297.8
3 010 13 O 4300 87.9

Table A2.2. 29 customers, 3 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time
1 0 19 26 29 24 25 27 28 15 18 0O 3950 326.7
2 023 1011 1216 13 717 9 81421 0 4425 275.3
3 022 2 5 41 6 320 0 4375 236.6

Table A2.3. 32 customers, 3 vehicles, with time constraint

Vehicle # Route of Vehicle Wt Time
1 0 6233031 18292827 19 0 34577 972.5
2 0222621 141525162024 911 O 37358 895.4
3 017 2 4 3 1 532 7 8131012 O 26630 902.6

Table A2.4. 32 customers, 3 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time
1 0 621 14 1525162024 2622 911 O 37805 1076.2
2 0O 7 81927 28 29 18 31 30 23 O 37414 7447
3 017 2 4 3 1 532131012 0 23346 828.5

81

Table A2.5. 50 customers, 6 vehicles, with time constraint

Vehicle # Route of Vehicle Wt Time
1 0O 549 10 39 334515443712 O 155 199.1
2 0 229203536 332 0 115 168.2
3 027 48 826312822 1 O 102 160.4
4 011 16 50 21 34 30 9 38 46 O 128 172.9
5 0 18 13 41 40 19 42 17 4 47 0O 157 199.1
6 0O 623 743242514 0O 120 161.6

Table A2.6. 50 customers, 5 vehicles, without time constraint

Vehicle # Route of Vehicle Wit Time
1 011 22036352921 30 101537 0O 157 251.9
2 0O S 934 50 16 32 8 48 27 O 150 195.7
3 01247 182514 6 0 159 1214
4 0O 7 43 24 4 17 44 45 33 39 49 38 46 O 153 287.3
5 042 19 40 41 13 23 26 31 28 322 1 O 158 300.4

Table A2.7. 75 customers, 11 vehicles, with time constraint

Vehicle # Route of Vehicle Wt Time
1 0 67 45 48 28 22 62 68 0 140 151.6
2 0 12 31 10 38 65 66 0 137 166.4
3 0O 547 36 69 21 74 30 O 120 155.6
4 03373 163 3444017 O 143 158.6
5 039 95018552532 0 129 171.4
6 01520 70 60 71 37 O 71 155.6
7 053 8463452272975 0 153 158.3
8 0511649245623 6 0 114 161.8
9 026 72 58 11 59 14 O 132 155.6
10 0 261 64 42 41 43 0O 113 165.2
11 0O 7351954 1357 4 0 112 150.0

82

Table A2.8. 75 customers, 10 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time
1 03155 1824 247 48 0O 137 234.5
2 074 61 41 56 23 332 9 0 140 215.4
3 0 30 71 60 46 59 38 26 0 131 235.1
4 0 68 21 29 27 13 66 65 O 126 205.3
5 067 19 54 1537 451217 O 140 198.1
6 010 11 7 57 7069 28 O 140 233.5
7 0O 4 8351458 723 25 0 139 195.2
8 075 53620344051 0 139 193.4
9 044 50 49 63 73 22 133 6 137 206.2
10 0 5352626442 43 16 0O 135 214.1

Table A2.9. 75 customers, 14 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time
1 0305259 834 0 100 152.4
2 02261 52767 0 95 148.4
3 011 14 46 O 95 99.6
4 0 63253 4 0 99 135.7
5 02612 3242343 0 96 160.9
6 075 25466 0 99 1579
7 0334264 74 29 15 0 97 185.4
8 025184928 36 1319 0 100 2472
9 0 37 70 71 69 41 51 40 O 96 221.1
10 062 955106535 0 99 220.7
11 0723116 63 73 2057 O 98 245.1
12 0O 7 5839 50 56 0 100 173.3
13 048 47 6021 1 O 98 165.9
14 0 17 44 38 45 68 O 92 158.1

83

Table A2.10. 100 customers, 9 vehicles, with time constraint

Vehicle # Route of Vehicle Wit Time
1 0O 54 4 15 43 14 38 44 42 13 O 134 2297
2 0O 58 2 57 87 92 98 85 61 83 46 172 228.1
48 0

3 0O 52 84 17 45 8 8 18 60 S 93 150 215.6
59 0

4 0O 31 10 1 50 68 80 55 25 39 56 153 226.3

5 0O 88 19 49 64 63 90 32 30 70 69 149 227.5
27 0

6 0O 7 47 36 11 62 20 66 71 65 35 175 300.1
33 12 0

7 0O 8 6 9 99 16 86 91 100 37 97 193 221.2
95 94 28 O

8 0O 76 77 3 79 78 34 9 51 81 29 144 223.7
24 0

9 0O 53 40 21 73 72 74 22 41 75 23 188 228.2
67 26 O
Table A2.11. 100 customers, 8 vehicles, without time constraint
Vehicle # Route of Vehicle Wt Time
1 0O 28 76 77 68 80 54 12 26 O 139 1424
2 0O 13 87 37 93 85 16 61 5 60 89 196 174.4
3 0 69 70 30 32 20 51 3 29 24 55 196 320.3
39 67 25 4 53 0

4 0O 21 56 23 75 74 22 41 57 15 43 197 297.5
38 14 42 97 94 O

5 0O S8 40 72 73 2 95 S9 99 96 6 139 172.8

6 0O S0 79 78 34 35 65 66 171 9 81 200 258.2
33 1 27 O

7 0 31 10 90 63 64 11 7 82 46 45 200 341.6
17 8 44 91 100 98 92 O

8 0O 52 88 62 19 49 36 47 48 8 84 191 241.3
83 18 0

84

Table A2.12. 100 customers, 11 vehicles, with time constraint

Vehicle # Route of Vehicle Wit Time
1 0O 57 55 53 56 58 60 59 40 43 0 180 913.9
2 0 4 2 6 9 12 14 16 11 10 0 160 905.6
3 0 20 22 25 26 8 7 3 S 75 0 160 871.9
4 0O 46 51 31 35 32 33 36 34 29 24 O 190 997.7
5 0O 41 42 44 45 48 50 49 27 28 21 0 130 971.9
6 0O 90 88 98 96 97 100 17 18 30 O 170 952.2
7 0O 91 87 &8 77 71 70 79 74 65 67 0 180 1033.5
8 0 1 99 95 94 92 93 23 0 130 741.1
9 0 63 81 78 76 73 80 61 64 62 0 170 939.3
10 0 66 69 68 54 72 82 83 84 85 89 0 170 1039.1
11 0O 13 15 19 38 39 37 52 47 0 170 860.9

Table A2.13. 100 customers, 10 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time
1 0 20 25 26 28 18 17 19 16 10 0 180 908.8
2 0 46 45 44 42 43 23 13 11 9 8 0 160 1008.9
3 0O 90 8 &85 82 77 78 81 63 0 180 835.7
4 0O 67 65 66 59 60 58 56 53 54 55 200 1096.1

69 0
S 0O 62 74 72 61 41 47 27 24 22 21 0 170 987.0
6 0 49 48 51 50 52 29 30 15 14 12 200 1304.5
6 2 1 0

] 0O 40 57 68 64 8 79 73 70 71 76 O 160 1068.2
8 0o 7 4 96 94 92 93 97 99 75 S 0 180 999.7
9 0O 37 38 35 31 91 84 88 83 86 87 0 180 1065.9
10 0 39 34 36 33 32 3100 95 98 0 200 979.2

85

Table A2.14. 100 customers, 14 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time
1 0O 2 41 22 74 77 33 81 51 90 63 0O 112 247.0
2 0O 95 59 38 43 42 8 O 102 156.5
3 0O 18 82 7 24 29 80 12 26 O 87 198.8
4 0 53 54 39 56 1 62 0 98 192.5
5 0O 52 36 49 27 68 28 0 112 193.3
6 0 40 21 72 4 50 20 30 O 107 180.5
7 0 31 11 64 32 71 9 0 102 191.3
8 0O 6 96 99 93 5 94 O 98 110.6
9 0 97 44 8 70 66 69 0 107 203.9

10 0 92 37 14 16 17 46 47 19 88 0 105 213.9
11 0O 58 67 15 57 100 91 61 45 O 105 239.4
12 0O 76 3 79 78 34 35 65 10 O 110 200.6
13 0O 13 98 8 84 83 8 0 101 140.8
14 O 55 25 23 75 73 60 8 48 0 112 229.0

Table A2.15. 120 customers, 11 vehicles, with time constraint

Vehicle # Route of Vehicle Wt Time

1 0O 6 3 9 8 12 29 34 33 27 24 0 91 711.4

2 0O 55 56 60 61 65 45 43 40 59 57 191 1025.6
62 64 54 68 72 0

3 0 99 100 98 97 108 S5 4 10 15 13 132 684.9
117 0

4 0 111 2 1 7 11 14 19 35 26 20 O 117 698.3

5 0O 82 84 113 8 90 73 79 71 74 69 117 713.9
120 0

6 0115 21 23 36 31 30 25 22 16 109 O 110 684.7

7 0O 70 76 78 77 66 63 58 53 52 0 125 671.7

8 0O 17 28 32 44 46 49 47 48 42 95 O 95 714.1

9 0O 67 75 80 51 50 41 37 38 39 0O 151 674.8

10 0O 88 87 96 110 116 104 107 106 102 92 125 718.8
85 112 86 0

11 0 105 103 101 93 91 18 118 114 94 &9 121 675.8
81 119 0

86

Table A2.16. 120 customers, 7 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time
1 0 8 46 50 51 63 80 70 111 81 1 196 1222.0
5 6 17 90117 8 0
2 0 95 68 72 98 100 96 93 120 86 18 198 1425.5
11 53 58 62 47 28 22 31 2 O
3 0O 8 92 43 45 19 8 94 102 106 107 196 1368.0
104 103 99 114 20 33 36 29 108 O
4 0119 23 26 35 32 34 27 3 10112 199 1462.2
105 74 69 101 113 118 S9 65 110 O
) 0O 8 83 4 9 25 37 38 115 52 56 193 1188.2
61 60 77 71 116 82 O
6 0 91 109 30 24 16 21 44 40 64 66 194 1239.7
76 73 67 97 13 14 7 0
7 0O 48 49 41 42 39 79 75 78 55 54 199 1054.4
57 12 15 8 O
Table A2.17. 150 customers, 14 vehicles, with time constraint
Vehicle # Route of Vehicle Wt Time
1 0110 25 95 14 55134 67 13 41 40 191 260.4
64 87 56 0
2 0 133 132 98 23 69 114 99 43 86 61 197 2604
7 27 0
3 0 32 59 2100126 50 130 30 9 38 0O 145 198.7
4 0O 11 127 129 29 28 22 120 48 138 0 115 191.6
N 0 60 8 26 113 140 112 57 97 24 96 144 253.2
58 102 46 O
6 0 148 88 66 135143 4149 68 6 O 153 199.8
7 0 81 1 83 131 128 84 21 79 74 34 185 261.7
104 39 54 0
8 0O 17 93 19 94 136 111 141 150 109 0 131 192.8
9 0O 77 18 142 147 15 52 63 144 103 76 0O 169 197.9
10 0 9 105 75 89 117 73 10 49 S O 146 198.6
11 0 71 122 91 65 42 45 124 106 125 33 172 254.4
72 123 108 O
12 0 78 139 47 146 145 137 44 107 92 37 179 194.5
12 0
13 0 62118 16101 3 8& 31 8 S1 O 161 196.1
14 0 53 20 35 85 36 115121 116 70 119 0 147 217.4

87

Table A2.18. 150 customers, 12 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time

1 0O S 90 15107 92 41 88 64 38 104 194 319.6
30 S0 130 83 O

2 0O 49 45 106 10 124 65 93 44 8 39 199 347.1
71 142 135 143 O

3 0O S1 80 101 128 84 115 2 48 60 81 188 285.2
27 46 0

4 0 144 19 13 67 138 20 35 59 146 87 163 324.6
148 56 O

5 0 126 100 119 14 25 133 4 149 109 145 161 215.4
17 0

6 0O 7 43 24 112 131 53 127 129 16 98 192 354.5
86 96 0

7 0O 1120 113 140 22 9 117 125 123 103 186 333.9
108 137 37 63 O

8 0O 68 134 136 139 57 69 8 31 29 21 194 341.7
79 74 34 76 O

9 0 42 150 147 102 82 114 99 23 78 091 191 357.8
72 33 0

10 0O 47 54 3121 70 28 116 36 &85 118 192 294.6
62 0

11 0 141 40 94 66 111 18 110 SS 52 122 197 3194
105 75 73 0

12 0O 11 26 61 132 97 58 95 6 32 77 178 262.5
12 0

88

Table A2.19. 199 customers, 18 vehicles, with time constraint

Vehicle # Route of Vehicle Wt Time
1 0O 188 16 73 147 181 116 23 194 61 0 153 190.7
2 0 157 156 94 121 138 37 88 140 22 190 318 415.5
185 143 89 137 62 160 183 1198 O

3 0 139 176 102 78 177 19 11 180 7 O 138 196.6

4 0 187 32 57 109 39 40 S50 129 71 126 177 191.1

5 0 173 83 123 178 84 14 167 179 99 S8 189 257.3
26 0

6 0 159 192 186 141 142 42 158 66 193 0O 132 193.5

7 0 168 100 130 151 117 44 106 144 74 0O 130 192.4

8 0O 8 93 2120 155 36 21 64 28 101 154 196.5

9 0 184 199 113 43 191 195 104 3 81 0 158 199.0

10 0 60 175 46 34 45 S9 98 79 13 152 167 196.0

11 0 171 166 124 154 8 51 10 75 31 25 264 353.6
18 146 56 9 O

12 0O 55 145 148 92 135 163 162 164 133 70 194 348.3
128 27 4 87 O

13 0 127 125 153 5 48 174 47 82 172 30 183 191.7

14 0O 33 105 182 49 107 24 63 95 54 112 152 195.6

15 0 114 91 68 115 197 136 196 53 67 O 129 195.2

16 0O 17 97 131 80 119 52 38 170 165 77 199 257.7
150 65 O

17 0O 96 6 111 15 20 122 103 29 O 154 197.9

18 0 76 12 169 161 72 118 110 189 &85 134 195 301.7
108 69 132 35149 O

89

Table A2.20. 199 customers, 16 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time

1 0 29 21 114 122 47 79 132 98 196 105 200 416.7
32 163 0

2 0 156 91 68 101 27 170 48 73 125 153 200 509.3
19 72 147 O

3 0O 40 49 184 90 16 74 25 38 168 O 197 279.4

4 0O 88 102 8 10 100 182 183 199 62 65 200 432.1
46 169 78 35 O

5 0 157 154 167 180 187 24 80 189 126 95 200 378.6
69 60 0

6 0 185 141 59 121 179 83 81 193 66 139 199 416.2
87 134 S1 O

7 0 188 127 7 111 110 75 181 118 194 166 199 392.1
120 2 O

8 0 144 159 106 198 20 108 SO0 26 6 162 199 551.3
18192 99 9 0

9 0 130 11 131 186 104 67 173 36 O 200 293.1

10 0O 76 71 119 41 64 137 146 135 39 109 201 522.4
178 58 150 164 O

11 0 37 124 155 174 94 175 23 136 77 57 197 476.6
61 128 123 70 4 O

12 0 34 1 115 143 86 161 165 14 44 63 196 353.3

13 0 133 117 55 195 158 5 171 17 56 31 203 423.0
160 O

14 0 152 172 82 151 97 33 112 142 22 149 196 422.6
176 15 191 43 0O

15 0O 45 13 197 148 107 96 103 42 53 93 200 483.9
54 84 0

16 0O 12 85 52 138 28 89 140 30 129 116 199 587.4
113 190 92 145 3 O

90

Table A2.21.

199 customers, 17 vehicles, without time constraint

Vehicle # Route of Vehicle Wt Time
1 0O 17 6 114 198 185 147 72 118 134 19 196 338.9
175 0
2 0 125 27 171 68 109 97 S5 144 74 152 174 295.5
3 0 111 197 90 183 104 137 199 116 182 130 168 304.1
168 O
4 0O 24 73192 127 87 35 69 8 124 172 200 345.9
67 O
5 0 187 106 32 25 92 146 50 180 133 14 187 267.9
7 0
6 0 162 132 170 177 98 155 36 138 20 5 197 333.3
54 33 0
7 0 66 62 41 42 141 1 158 156 22 136 193 3454
57 100 193 105 O
8 0 93 173 154 167 176 21 43 23 195 142 192 391.5
91 191 188 12
9 0 166 48 112 126 150 164 85 84 179 60 162 313.4
10 0O 38 80 131 65 99 123 13 153 79 37 198 340.7
190 115 53 194 0O
11 0O 51 46 83 157 102 169 16 186 4 O 194 283.4
12 0 110 39 75 165 52 86 101 140 121 94 199 364.5
30 29 64 28 0
13 0O 81 149 71 119 129 77 178 174 139 &9 186 359.3
184 120 O
14 0O 47 122 8 148 135 145 107 63 15 88 183 364.0
103 59 O
15 0117 159 44 9 3 95 61 113 143 160 195 281.0
196 2 0
16 0 76 40 151 96 161 108 128 78 70 26 179 327.7
181 49 O
17 0O 58 45 34 11 10 31 189 163 56 18 183 270.8

91

VITA

Vickie Dawn Wester was born in Maryville, TN on April 7, 1969.
She attended elementary school in Maryville and graduated from Heritage
High School in June 1987. She entered Maryville College in August of
1987 and received her Bachelor of Arts degree in Mathematics/ Computer
Science with a minor in Biology in May 1991. The following August she
entered the University of Tennessee and received her Master of Science
degree in Management Science with a minor in Statistics in December
1993.

Vickie is currently employed at Maryville College as a computer
programmer. She is also currently maintaining a computer system which

she developed at Montgomery Associates in Alcoa, TN.

92

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-1993

	A Genetic Algorithm for the Vehicle Routing Problem
	Vickie Dawn Wester
	Recommended Citation

	tmp.1512596695.pdf.DGlnF

