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ABSTRACT 

Physical anthropologists and bioarchaeologists often seek to generate biological 

profiles of individuals represented by skeletal remains. One particularly informative 

component of the biological profile is skeletal age-at-death. Age-at-death estimation is 

vital to numerous contexts in both paleodemography and forensic anthropology. 

Throughout the history of the discipline, numerous authors have published methods for 

adult age-at-death estimation. These methods have proved invaluable, but they are not 

free from error. As a result, workers have continually worked to improve the 

methodological toolkit for estimating age-at-death. 

In June of 1999, researchers gathered in Rostock, Germany for the sole purpose of 

evaluating and testing age-at-death estimation methods. The hallmark of this symposium 

was a theoretical framework known as the Rostock Manifesto published in volume edited 

by Hoppa and Vaupel (2002a) entitled Paleodemography: age distributions/rom skeletal 

samples. Included in this work was a new age-at-death estimation method called 

transition analysis published by Boldsen and colleagues. Transition analysis utilizes 

traits of the pubic symphysis, auricular surface, and cranial sutures to produce likelihood 

age-at-death estimates. In their publication, Boldsen et al. (2002) report a remarkable 

correlation between estimated age and real age in addition to asserting that this method 

adequately ages individuals in the 5O::t- years category. 

This purpose of this research was to perform a validation study of the transition 

analysis method by utilizing 225 skeletons from the William M. Bass Donated Skeletal 

Collection curated by the Forensic Anthropology Center at the University of Tennessee. 

Data were collected in the manner ofBolds en et al. (2002) and used to generate age-at­
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death estimates. These results were then statistically compared to known ages from the 

Bass Collection. Results from the study were not as favorable as those published by 

Boldsen and colleagues. Correlation coefficients were low and analyses of data using the 

forward continuation ratio, ordinal cumulative pro bit, and unrestrictive cumulative probit 

models suggest such problems arise from a combination of the method's statistical 

framework and its lack of applicability. 
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1. Introduction 

Physical anthropologists and bioarchaeologists often seek to generate biological 

profiles of individuals represented by skeletal remains. Such profiles commonly consist 

of information regarding an individual's sex, age-at-death, stature, and ancestry 

(Krogman and Iscan 1986; Bass 1987; White and Folkens 2000). According to Milner et 

al. (2000), these estimates are vital to anthropological interpretations ofmortuary 

practices, paleopathological analyses of skeletal and dental lesions, and research on the 

demographic parameters ofpast populations. The patterns that emerge from analyses of 

such biological data also permit workers to identify and "isolate biological as well as 

social life history factors" (Kemkes-Grottenthaler 2002:48). 

While identifying factors of the biological profile is critical in numerous 

anthropological contexts, workers agree that assessing each component of the 

osteobiography with equal accuracy is difficult (Kemkes-Grottenthaler 2002; Prince 

2004). Specifically, precise age-at-death estimation has proven to be an exasperating 

task. According to Prince (2004: 1), age-at-death estimates are troublesome because they 

attempt to "correlate physiological age with chronological age in a system that has 

differential development and deterioration." Despite the strong association between 

senescence and skeletal change, the aging process is highly dependent on numerous 

genetic and environmental factors (Buckberry and Chamberlain 2002; Kemkes­

Grottehthaler 2002). 

As physical anthropology has progressed from its early beginnings, numerous 

scholars have investigated adult age-at-death estimation from skeletal remains with 

varying degrees of success (Krogman and Iscan 1986; Iscan 1989). Although many of 
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these methods have proven useful, they also carry some degree of error due to placing a 

skeletal element into an ordinal phase category. Moreover, workers have found that 

superior age-at-death estimates are derived from evaluating multiple skeletal traits rather 

than isolated indicators. While singe-trait systems sometimes produce informative age­

at-death estimates, such methods do not consider the innumerable factors that influence 

senescent changes (Kemkes-Grottenthaler 2002). On the contrary, multiple-trait 

approaches have yielded a far better representation of the sequential aging process. As 

Kemkes-Grottenthaler (2002:58-59) notes, "in order to minimize errors by aberrant 

individual indicators, the combined analytical approach is desirable, whenever complete 

individuals are available for analysis." The purpose of this thesis is to test a new, 

multiple-trait method of adult age-at-death estimation on a sample ofcontemporary, 

known-age skeletons in order to discern the method's accuracy and utility. 

Using criteria suggested in the Rostock Manifesto, Boldsen and coworkers (2002) 

present a new method for age-at-death estimation. Specifically, this method utilizes a 

scoring system that incorporates characteristics of the pubic symphysis, auricular surface 

of the ilium, and cranial suture closure to generate "likelihood of death estimates 

occurring at different ages for each character" (Kemkes-Grottenthaler 2002: 61). 

Boldsen and coworkers (2002:74) call their method transition analysis since "the results 

allow us to make inferences about the timing of transitions from one stage to the next." 

While results achieved in their initial study are favorable, Boldsen et al. maintain that 

additional validation studies are needed. This thesis seeks to test the transition analysis 

aging method on The William M. Bass Donated Collection curated by the Forensic 

Anthropology Center at the University ofTennessee. 
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In their conclusion, Boldsen et al. (2002:96) assert "it is also essential to conduct 

further validation studies. Preferably this work will be done on known-age samples as 

dissimilar to the Terry Collection as possible. After all, it would be useful to know 

whether this method is applicable to skeletal samples other than the indigents who died 

during the early to mid 20th century in the USA." The William M. Bass Donated 

Collection is a contemporary skeletal collection of 20th to early 21 st century Americans 

that continues in time where the Terry and Hammann-Todd collections cease (Bassett et 

al. 2003). The Bass Collection serves as an excellent validation sample for the method 

because it is a well-documented collection of known-age individuals that differs from 

those in the Terry and Hammann-Todd collections in terms of socioeconomic class, 

temporal context, and regional variation. 

The research presented in this thesis is designed to answer the following questions 

regarding the Boldsen et al. (2002) method: 

1) Are the components of the Boldsen et al. aging method clearly defined for 
conventional use? 

2) Does the ADBOU software program produce age-at-death estimates in the manner 

described by the original researchers? 


3) Do age-at-death estimates rendered from the ADBOU software program have a high 

degree of correlation with real age? 


4) Do the results indicate that this method should be adopted by workers for adult age-at­

death estimation? 


While these questions are elementary in nature, they are entirely appropriate. In 

their discussion, Boldsen and colleagues make a compelling argument for adopting the 

transition analysis aging method. The authors argue that the technique improves upon 
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estimating age-at-death in old adults and no longer forces workers to use an open-ended 

interval such as 50+ years (Boldsen et al. 2002). In addition, the authors suggest that 

their approach of combining multiple components from several morphological structures 

helps account for variability in the aging process. Moreover, Boldsen and colleagues 

argue that they have produced a robust statistical package that utilizes an appropriate 

framework to produce age-at-death estimates. Since it is given that not all physical 

anthropologists are equally trained as statisticians, this research is designed to test the 

user-friendliness of the method as well as its accuracy. 

This introduction has summarized the role of estimating adult age-at-death from 

human skeletal remains in anthropological contexts: In addition, it has briefly addressed 

concerns associated with phase-based aging methodologies along with a method recently 

developed to correct such problems. The next chapter continues by reviewing problems 

with adult age-at-death estimation along with detailing a framework advocated to 

alleviate such problems. It concludes by describing the transition analysis aging method 

developed by Boldsen and colleagues. Chapter 3 describes the sample utilized and 

outlines input and output of the transition analysis software. It also details the methods 

used to evaluate the accuracy of Boldsen and colleagues' method for estimating age-at­

death from the pubic symphysis, auricular surface, and cranial sutures. Moreover, this 

chapter presents additional statistical methods employed to evaluate the relationship 

between individual skeletal indicators and real age. Chapters 4 presents results generated 

from both Boldsen and colleagues' software package and the forward continuation ratio 

and proportional odds models. Chapter 5 addresses the method's overall efficacy and 

Chapter 6 presents conclusions and suggestions for future research. 
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2. Literature Review 

Workers who rely on age-at-death estimates as part of their dataset must first 

recognize the uniformitarian assumption that allows for such inferences in the first place. 

According to Howell (1976:26), 

"a uniformitarian position in paleodemography implies that the human animal has 
not basically changed in its direct biological response to the environment in 
processes of ovulation, spermatogenesis, length of pregnancy, degree of 
helplessness of the young and rates of maturation and senility over time. This 
does not imply that humans have not changed in the rates ofperformance of these 
processes, but only that the processes still respond in the same way to variations 
jn environment, including the cultural and technological aspects of human society 
as part of the external environment." 

The fundamental point is that while aging is a variable process, such variation is 

constrained in a predictable pattern (Milner et al. 2000). Under this assumption, workers 

who seek to estimate age-at-death in archaeological or forensic skeletal samples should 

be able to apply osteological standards developed from documented anatomical skeletal 

collections. However, workers should also recognize that there is individual variability in 

rates and degrees of the aging process. 

For example, Kemkes-Grottehthaler (2002:48) argues that "the aging process is 

merely universal to the extent that it applies to both sexes and all populations. Beyond 

that, there is remarkable interpersonal heterogeneity due to distinctive genetic 

differences, behavior variation, diverse predispositions, and the individual's lifetime 

interaction with the environment." Spirduso (1995) further complicates the subject and 

notes that there is evidence of significant intra-subject variability. As a result of such 

variability, the expressions "biological age" and "chronological age" are not synonymous 

(Kemkes-Grottenthaler 2002). More exactly, biological age is deduced from variables 
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that are correlated with chronological aging (Arking 1998). As a result, biological age 

markers do not represent chronological age, but simply estimate the chronological state 

of the individual (Kemkes-Grottenthaler 2002:49-50). The tenuous relationship between 

chronological age and biological age, and the factors influencing both age expression and 

age estimation are shown graphically in Figure 1. 

Although the precise correlation between skeletal markers and chronological age 

remains elusive, skeletal biologists have made great strides in improving age estimation 

techniques. In the early days of skeletal biology, most "skeletal biologists ...relied almost 

solely on the cranial sutures and pubic symphysis for age estimation in the adult" (i~can 

1989:7). These estimates, and others, were derived by comparing morphological 

structures from unknown skeletons with methodological standards developed from 

known-age collections. With time, multiple-trait assessment systems were utilized more 

frequently, but even these multi-trait systems relied heavily on phase-based aging 

techniques (Kemkes-Grottenthaler 2002). 

Numerous methods for age-at-death estimation have been developed and utilized 

in physical anthropology (Todd 1920; Todd 1921a; Todd 1921b; Todd and Lyon 1924; 

Todd and Lyon 1925; Gustafson 1950; Brooks 1955; McKern and Stewart 1957; 

Gilbertand McKern 1973; Lovejoy et al. 1985; Meindl and Lovejoy 1985; Katz and 

Suchey 1986; Brooks and Suchey 1990; Stout 1989; Buckberry and Chamberlain 2002). 

Those methods that continue to be commonly used are summarized by anatomical area, 

method type, source, and commentary in Table 1. The commentary lists and describes 

characteristics of each method type as understood by this author. 
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Figure 1. Factors influencing age-at-death estimation. Note the broken arrow 
between biological age and chronological age which highlights the confounding 
influence of biological skeletal traits on chronological age-at-death estimates. 

(From Kemkes-Grottenthaler 2002:50) 
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Table 1. Skeletal aging methods commonly utilized by physical anthropologists. 

Skeletal 
Structure 

Reference Commentary 

• User friendly because of casts and 
photographs 

• Highly descriptive 
• Observer sUbjectivity sometimes leads to 

bias. 
Pubic Symphysis Todd (1921a,b) • Phase ranges are sometimes wide (i.e., 

Phase Methods Brooks (1955) Suchey-Brooks Phase VI: 34-86 years) 
Brooks and Suchey (1990) • These wide age ranges result from the large 

sample size used in Suchey's study 
• Open ended interval for final phase (i.e, 

Todd Phase X: 50+ years) does not capture 
right-most tail ofpopUlation 

Pubic Symphysis McKern and Stewart (1957) • Components are more easily evaluated than 
Component Gilbert and McKern (1973) phase methods 

Methods • Scoring various components helps to 
eliminates observer bias 

• Methods are more time consuming 

Todd and Lyon (1924,1925) • Accuracy rates are variable and often 
Cranium Meindl and Lovejoy (1985) questioned 

Suture Closure Masset (1989) • Age rages are wider as suture obliteration is 
less stable than other regions 

Ilium 
Auricular Surface Lovejoy et al. (1985) 

Buckberry and Chamberlain 
(2002) 

• No casts and rely on photographs and highly 
descriptive text 

• Observer subjectivity is problematic 
• Open ended interval for final phase (i.e, 

Lovejoy Phase 8: 60+ years) does not 
capture right-most tail ofpopulation 

Rib 
Sternal aspect 

Iscan and Loth (1986a, 1986b) • Preservation sometimes prohibits analysis 
• Wide phase ranges 

• Samples require technical preparation 
Long bone 

cortices 
Histology 

(osteon counting) 

Kerley (1965) 
Stout (1989) 

• Methods limited to certain skeletal elements 
• Accuracy is dependent on source and origin 

of thin section 

Teeth 
Dental Indicators 

(i.e., apical 
transparency) 

Gustafson (1950) 
Lamendin et a1. (1992) 

Prince and Ubelaker (2002) 

• High correlation with real ages are reported 
• Multiple methods provide choices for 

estimating age-at-death from the dentition 
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While some methods utilize the histomorphometric structure ofbones and teeth (Stout 

1989; Kemkes-Grottenthaler 2002) to derive age-at-death estimates, the most commonly 

utilized techniques rely on an investigator to evaluate macroscopic characteristics of 

various skeletal structures. The skeletal structures commonly used to estimate adult age­

at-death are depicted in Figure 2. 

Although these familiar techniques have been incorporated into standard 

osteological protocols, workers recognize that these methods are not free from bias or 

error (Jackes 2000, Milner et al. 2000; Boldsen et al. 2002). According to Mays 

(1998:50), "the lack of a wholly satisfactory technique for estimating age at death in adult 

skeletons is one of the most thorny problems facing human osteoarchaeology." lackes 

(2000) adds that physical anthropologists should no longer utilize common aging 

techniques without recognizing the numerous types of bias associated with them. Such 

biases include the degree of age-related information contained within specific skeletal 

traits, as well as sampling strategies and statistical methods used the develop age 

estimation methods (lackes 2000)~ lackes (2000:418) underscores the importance of 

accurately documenting skeletal assemblages in a systematized and standardized manner. 

She argues that anthropological interpretations require inter-site comparisons and without 

standardized protocol for documenting adult age-at-death, such comparisons are 

increasingly difficult. 

Another difficulty associated with adult age-at-death estimation deals with 

estimating age-at-death in older skeletons. Traditional methodologies have left little 

room for more than a lumped, 50+ age category (Milner et al. 2000). Consequently, such 

methodological shortcomings have impacted anthropological interpretations of life 
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Figure 2. Depiction of skeletal structures used in adult age-at-death 
estimation. (Reproduced from Kemkes-Grottenthaler 2002:49) 
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expectancy by implying that prehistoric people did not enjoy a life expectancy past 50 

years. lackes (2000:418) disagrees and argues that "there can be little doubt that people 

lived into old age-even in times of conflict, disease and famine-despite the fact that 

standard paleodemographic methods would give no indication of this." Milner (personal 

communication, 2005) agrees and argues that it is unwise to assume that individuals in 

archaeological populations do not live past 50 years. 

An additional problem regarding age-at-death estimation was outlined by Prince 

(2004) and involves missing data due to taphonomic processes. A majority of aging 

methods utilize skeletal elements that do not withstand taphonomic pressures (Buikstra 

and Cook 1980; Walker et al. 1988; lackes 2000; Milner et al. 2000; Paine and Boldsen 

2002; Wittwer-Backofen and Buba 2002). Soil characteristics, sometimes destroy 

skeletal tissues, animal activity may result in missing and/or damaged elements, and poor 

excavation techniques can damage or fail to recover skeletal elements. According to 

Walker et al. (1988), poor preservation often makes age determinations difficult and 

sometimes forces workers to use rp.ethods that yield far-less superior results. Specific 

skeletal structures like the pubic symphysis, auricular surface and sternal ends of the ribs 

are commonly subjected to taphonomic processes and are often unrecovered or too 

damaged to contribute to an osteological analysis. Additional taphonomic biases result 

from differential burial practices that can lead to missing or underrepresented sex and age 

cohorts. 

In order to reconcile the aforementioned problems (lackes 2000; Milner et al. 

2000), numerous researchers participated in a three-day workshop conducted by the 

Laboratory of Survival and Longevity at the Max Planck Institute for Demographic 
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Research in Rostock, Germany in June of 1999. The purpose of the workshop was to 

provide workers with an identical, known-age dataset to test and assess their statistical 

techniques (Hoppa and Vaupel 2002). Although workers were able to test and refine 

methods, a more fundamental discourse emerged during the workshop. A theoretical 

framework coined the "Rostock Manifesto" was adopted by all scholars in attendance 

(Hoppa and Vaupel 2002:2-3). The Manifesto has four major elements that offer 

suggestions for accurate paleodemographic analyses. Those elements are paraphrased 

below: 

1. Osteologists must develop more reliable and robustly validated age indicators that 
correlate well with chronological age. Such indicators should be developed from suitable 
reference collections. 

2. A mUlti-disciplinary approach should be initiated to estimate Pr(cla), the probability of 
observing a suite of skeletal characteristics c, given known age a. 

3. Osteologists must recognize that most pressing to age-at-death estimation is Pr(cla), 
the probability that the skeletal remains are from a person who died at age a, given the 
evidence concerning c, the characteristics of the skeletal remains. This probability, 
Pr(alc), is NOT equal to Pr(cla), the latter being known from reference samples. Rather 
Pr(alc) must be calculated from Pr(cla) using Bayes' theorem, along with data concerning 
j{a), the probability distribution of ages-at-death (i.e., lifespan) in the target population of 
interest. 

4. As a result,j{a) must be estimated before Pr(alc) can be estimated. In order to 
estimatej{a), a model is needed of how the likelihood of death varies with age. 
Furthermore a method is needed to relate empirical observations of skeletal 
characteristics in the target population to the probability of observing the skeletal 
characteristics in this population. The empirical observations generally will be counts of 
how many skeletons are classified into each of the stages or categories c. 

As mentioned, the Rostock Manifesto outlines a protocol for grappling with 

problems associated with adult age-at-death estimation. When followed, workers agree 

that it provides a suitable framework for producing accurate adult age-at-death estimates 
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(Jackes 2002; Igarashi et al. 2005). While a key component of the Rostock protocol 

calls for estimating the entire age-at-death distribution j{a) before estimating the age-at­

death of any individual skeleton, Boldsen and coworkers (2002) assert that target 

populations must be large enough to generate acceptable estimates of j{a). They argue 

that many samples in both archaeological and forensic contexts are too small to apply 

such an approach and present a new method to reconcile this problem. 

Boldsen and colleagues present a transition analysis method for age-at-death 

estimation that they believe addresses the four "analytical difficulties" regarding adult 

age-at-death estimation (Boldsen et al. 2002:75). These difficulties include: 1) avoiding 

the large uncertainty associated with age estimation; 2) age mimicry that results from the 

age-at-death distribution of the reference sample; 3) the most effective way to correlate 

mUltiple skeletal indicators of age; and 4) developing methods that code morphological 

changes as they relate to age. 

In order to combat the problem ofuncertainty associated with assessing age-at­

death, skeletal biologists often employ fixed age intervals to correct some of the intrinsic 

imprecision associated with estimating age-at-death (Boldsen et al. 2002). While 

utilized quite often, these age intervals are not infallible. As Boldsen and coworkers 

(2002:75) point out, "just as no osteologists believes that an exact age can be assigned to 

any particular skeleton, no one would claim that all skeletons that appear to be roughly 

the same age can be assigned with equal confidence to a single age interval." As 

mentioned previously, every skeleton is subject to a myriad of agents that influence its 

morphological state and degree ofpreservation. When these factors are coupled with the 

variability of the aging process and taphonomic influences, it becomes clear why workers 
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hesitate to conclude that every skeleton exhibiting similar macroscopic features is from 

the same age cohort. 

According to Boldsen and colleagues (2002), point estimates of age or discrete 

age intervals are not what are needed for age-at-death estimation. On the contrary, they 

argue that the entire probability density function Pr(alcj) should be computed individually 

for each skeleton and for every value of a. The function Pr(alcj) is the probability that an 

individual skeleton died at age a given that it expresses characteristics 9, where Cj is the 

group of skeletal traits observed in the /h skeleton in the sample. Furthermore, if workers 

estimate a confidence interval around a point estimate of the jth skeleton, that estimate 

should be based directly on the probability density function Pr(alcj) (Boldsen et al. 

2002:76). When utilized, such an approach elinlinates the need for an arbitrary age 

interval since some of the uncertainty with aging is reconciled statistically. 

The second problem of age mimicry, first identified by Bocquet-Appel and 

Masset (1982), results from the type of regression analysis used to elucidate the 

relationship between age and skeletal indicator in a reference sample. When actual age a 

is regressed on skeletal characteristics cj, the estimates of age a obtained for each 

indicator state 9 are dependent on the age distribution of the reference sample. In this 

case, the target age distribution will heavily mimic the reference popUlation (Bocquet 

Appel and Masset 1982; Van Gerven and Armelagos 1983; Buikstra and Konigsberg 

1985; Konigsberg and Frankenberg 1992; Aykroyd et al. 1997; Milner et al. 2000; 

Boldsen et al. 2002; Holman et al. 2002; Hoppa and Vaupel 2002b; Kemkes­

Grottenthaler 2002; Love and Muller 2002; Wittwer-Backofen and Buba 2002). Masset 

(1989:81) refers to the issue of age mimicry as "the attraction to the middle." Such 
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regression methods usually overestimate age in younger adults while underestimating age 

in older adults (Aykroyd et al. 1997; Aykroyd et al. 1999). As a result, age mimicry may 

be partially responsible for previously-mentioned biases regarding prehistoric longevity. 

In order solve the problem ofmimicry, Boldsen and coworkers argue that 

estimates of Pr(Cjla) should be obtained from an adequate reference sample, even though 

the probability ofpresenting a particular age indicator state Cj given age a is not the 

ultimate aim of age-at-death estimation. After Pr(cAa) is projected, estimates ofPr(alcj) 

can be derived from regression analysis and the use of Bayes' theorem which states that: 

Pr(aICj) = rnCjkUtl1U 
Pr(Cj!x)/{x)dx, 

wherej{a) is the age-at-death distribution of the population in question, x is age, and d is 

a unit of age. In Bayesian terms,j{a) is referred to as the prior distribution of ages-at­

death since it must be calculated prior to the likelihood Pr(cAa) (Boldsen et al. 2002:77). 

According to the Rostock protocol, Bayesian treatment ofPr(alc) should occur 

onlyafterj{a) is estimated for the entire sample. While Boldsen and colleagues agree 

that this is the correct way to estimate an individual skeleton's age-at-death, they argue 

that "target samples in archaeological and forensic research will often be too small to 

support estimation ofj{a) ... So a method is needed that is applicable to the kinds of small 

samples (including single skeletons) that are typical of much osteological research" 

(Boldsen et al. 2002: 77). Boldsen and coworkers assert that their method can be based 

on a uniform prior distribution or on documentary j{a) data that is independent from the 

skeletal sample in question. They advocate the use of two different informative priors, 

one for archaeological contexts (i.e., 17th century parish burial records) and another for 
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forensic contexts (i.e., ages of homicide victims from the general public), and argue that 

the resultant age estimates will be entirely free of undesirable mimicry (Boldsen et al. 

2002). 

The third analytical difficulty discussed by Boldsen et al. (2002) is the 

intercorrelation among age indicators, which means that the data they contain is not 

independent. Boldsen and colleagues (2002:78) assume "that any correlation among 

traits is purely attributable to age, so that the traits would be independent if they could be 

conditioned on age." They call this assumption conditional independence and cite an 

evolutionary theory of senescence - the mutation accumulation mechanism (Rose 

1991 :72-78) - as justification for this claim. The mutation accumulation mechanism 

hypothesizes that aging might "arise from a process of accumulation of exclusively late­

acting deleterious mutations, where such mutations are allelic variants that preserve all 

early functions of the locus" (Rose 1991 :72). Boldsen et al. (2002) caution that this 

assumption is not applicable in all cases, particularly in juveniles, but is reasonable for 

the transition analysis method. 

The fourth and final difficulty described by Boldsen and colleagues relates to the 

classification of morphologically useful skeletal indicators of age-at-death. The approach 

that the authors present is derived from previous work of McKern and Stewart (1957) 

who evaluated the pubic symphysis in terms of three distinct components. Boldsen et al. 

(2002:79) argue that component classificatory systems are superior to systems that 

evaluate a morphological structure in its entirety "because senescent changes in 

morphology do not occur in lockstep ... it is typically difficult to classify adult skeletons 

unambiguously. That said, it is often difficult to shoehorn a complex anatomical 
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structure, such as the sacroiliac joint, into one particular developmental stage." As a 

result, Boldsen and colleagues advocate a method that evaluates morphological structures 

of the bony pelvis and cranial sutures in terms of mUltiple components or segments. 

Boldsen et al. (2002) developed their transition analysis method on a sample of 

186 skeletons from the Smithsonian Institution's Terry Collection. The authors 

oversampled individuals who were less than 40 years old to thoroughly account for 

morphological changes that occur rapidly in early adulthood (Bolds en et al. 2002:80), 

and scored a total ofnineteen morphological features of the bony pelvis and cranium 

based work of McKern and Stewart (1957), Lovejoy et al. (1985), and Meindl and 

Lovejoy (1985). The statistical methodology underlying Boldsen and colleagues' 

transition analysis is based on the assumption that a particular trait moves from stage i to 

i + 1, never in a negative direction, and never from i to i + 2 or higher (Boldsen et al. 

2002:82). 

For a two-state skeletal feature, Yj is the trait value of 0 or 1 in the j-th individual. 

They fit a general linear model Pr(yj =llaj) =A(a +paj), where aj is the age-at-death in the 

j-th skeleton, a and pare parameters estimated from the reference sample, and A 

represents an inverse link function (Boldsen et al. 2002). This model is referred to as 

transition analysis because the intercept and slope of the equation Pr(yj =llaj) =A(a +paj) 

indicate the timing of the transition from one stage to the next. More specifically, the 

intercept is the age at which an individual passes from one indicator state to the next, and 

the slope is the rate of transition. 

For skeletal traits with more than two states Boldsen and colleagues first use a 

cumulative logit or proportional odds model that is written as Pr(Yj 2: ilaj) = A(aj +paj). 
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Within this model, standard deviations for each transition remain the same, a result that 

counters conventional wisdom about the senescent process, "as everything we know 

about developmental biology indicates that the standard deviations of age-to-transition 

increase with increasing stages" (Boldsen et al. 2002:83). To solve this problem, Boldsen 

and coworkers then employ a continuation ratio model. To extend transition analysis to 

multiple skeletal indicators Boldsen and colleagues treat each skeletal trait as 

conditionally independent of all other traits and utilize a combined likelihood function to 

calculate age-at-death by multiplying the stage likelihoods for each trait (Boldsen et al. 

2002:85). 

Boldsen and colleagues advocate using multiple aging indicators, a multivariate 

transition analysis, because it is more infonnative and more robust. They bolster this 

argument by reporting correlation coefficients between estimated age and reported age 

for the pubic symphysis (0.86), auricular surface (0.82), cranial sutures (0.86), and a 

combination of all three morphological complexes (0.88). They point out that while the 

pubic symphysis worked almost as well as all three indicators combined, it should not be 

used exclusively because of taphonomic factors that often damage and destroy the surface 

(Boldsen et al. 2002). They further argue that the morphological features of the three 

anatomical complexes are conditionally independent because of "an invariant biological 

relationship between age and Cj which means that the partial correlations remain constant 

among all samples" (Boldsen et al. 2002:91). 

To test their multivariate transition analysis, Boldsen and coworkers estimate age­

at-death for 84 skeletons randomly selected from the Terry Collection. Using a unifonn 

prior, this test yields similar age-at-death distributions for the reference and target 
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samples, but the authors argue that the target sample does not display any noticeable 

relationship with the reference sample, and that age mimicry is not a problem for the 

transition analysis technique. Boldsen and colleagues further assert that their 

methodology opens the door for analyses of a previously underrepresented cohort of 

individuals: those above 50 years. They argue that the morphological indicators that they 

have identified coupled with the statistical framework they present accounts for that "part 

of the mortality distribution that was once beyond the reach of paleodemographers" 

(Boldsen et ai. 2002:95). Finally, in concluding that using mUltiple indicators of age 

greatly enhances age-at-death estimates, Boldsen and colleagues argue that their 

methodological approach "should serve as incentive for osteologists to continue the 

search for the considerable amount of age-related morphological variation that surely 

exists in skeletons" (Boldsen et ai. 2002). The authors believe that estimating age-at­

death will continue to improve as additional age-related morphological features are 

identified and incorporated into their methodological protocol. 
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3. Materials and Methods 

In order to test the transition analysis aging technique developed by Boldsen et al. 

(2002), blind analyses of a documented skeletal series were necessary. The skeletons 

utilized in this study were drawn from the William M. Bass Donated Collection curated 

by the Forensic Anthropology Center (FAC) at the University ofTennessee. As 

mentioned in the introduction, the Bass Collection overlaps with and continues in time 

from the point that the other nlajor American reference collections end. In addition, the 

majority of the adult popUlation of the Bass Collection is older than 50 years of age. Such 

sample demographics were necessary to test the utility of Boldsen et al. 's (2002) method 

for estimating the age-at-death of older people in the 50+ years category. 

The Bass Collection currently contains the remains of over 425 individuals 

donated for research purposes to the Anthropological Research Facility (ARF) (Bassett et 

al. 2002). While the primary research goals of the ARF are to document human 

decomposition and refine methods of time-since-death estimation, the Bass Donated 

Collection, which began in 1981, also is available for osteological research. Demographic 

data and medical information for each donation are gathered by F AC personnel through 

direct contact with individuals before death or the individual's family after death (Bassett 

et al. 2002). 

Two-hundred twenty-five individuals drawn from the Bass Collection were used 

in this study. Skeletons in this sample were selected on the basis of availability of 

recordedlknown sex, age, and ancestry data, and order of skeletal accession into the Bass 

Collection. The earliest donated skeletons were evaluated first and skeletons were 

evaluated in that manner until time constraints prohibited additional data collection. The 
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breakdown of this sample by sex and ancestry is listed in Table 2. As can be seen from 

this table, the uneven distribution of the sample across the sexes and ancestry reflects the 

overall composition of collection. Since the Bass Collection is primarily derived from 

donated individuals from East Tennessee, its composition partially reflects the region's 

demography. Moreover, the uneven sex ratio is an additional artifact of the collection, as 

more male donations are received annually than females. The age-at-death distribution of 

the test sample is shown in Figure 3 for the whole sample and in Figure 4 separated by 

sex. The test sample was comprised of 45 females and 180 males, and was heavily biased 

towards individuals of white ancestry. The mean age-at-death for the sample was 59.89 

years and age-at-death ranged from 25 years to 101 years (Figure 3). Mean age-at-death 

differed by sex with 58.32 years for males and 66.18 years for females (Figure 4). 

From the test sample, data were collected in the manner of Boldsen et at. (2002: 

96-104). Skeletal traits of the pubic symphysis, auricular surface, and cranial sutures 

were coded following the author's protocol. Specific skeletal traits and the associated 

coding system are abridged and presented in Table 3. As can be seen from Table 3, 

Table 2. Distribution of the study sample by sex and ancestry. 

Ancestry 
American 

Black Hispanic Indian White Total 

Sex F 1 0 0 44 45 
M 19 1 1 159 180 

Total 20 1 1 2031 225 
... 
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SD = 15.721 
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Real Age 
Figure 3. Actual age-at-death distribution of the test sample. 
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Table 3. Abridged skeletal traits and coding system following 

Boldsen et ale (2002: 96-104). 


Pubic Symphysis Traits Auricular Surface Traits Cranial Sutures 

Symphyseal Relief(PI) 
1) Sharp billows 

2) Soft, deep billows 
3) Soft, shallow billows 

4) Residual billows 
5) Flat 

Superior (AI) and Inferior (A2) 
Demiface Topography 

1) Undulating 
2) Median Elevation 
3) Flat to irregular 

Coronal pterica (CI) 
1) Open 

2) Juxtaposed 
3) Partially obliterated 

4) Punctuated 
5) Obliterated 

Superior (A3), Apical (A4), and 
Inferior (A5) surface morphology Sagittalobelica (C2) 

Symphyseal Texture (P2) 1) Billows over> 2/3 of the surface 1) Open 
1) Smooth 2) Billows over 1/3 to 2/3 of the 2) Juxtaposed 
2) Coarse surface 3) Partially obliterated 

3) Microporosity 3) Billows over < 1/3 of the surface 4) Punctuated 
4) Macroporosity 4) Flat 

5) Bumps 
5) Obliterated 

Lambdoidal asterica (C3) 
Superior Apex (P3) Inferior Surface Texture (A6) 1) Open 
1) No protuberance 1) Smooth 2) Juxtaposed 

2) Early protuberance 2) Microporosity 3) Partially obliterated 
3) Late protuberance 

4) Integrated 
3) Macroporosity 4) Punctuated 

5) Obliterated 

Ventral Symphyseal 
Margin (P4) 
1) Serrated 
2) Beveled 

3) Rampart formation 
4) Rampart completion I 
5) Rampart completion II 

6) Rim 
7) Breakdown 

Superior (A 7) and Inferior (A8) 
posterior iliac exostoses 

1) Smooth 
2) Rounded exostoses 
3) Pointed exostoses 
4) Jagged exostoses 

5) Touching exostoses 
6) Fused 

ZygomaticomaxiUary (C4) 
1) Open 

2) Juxtaposed 
3) Partially obliterated 

4) Punctuated 
5) Obliterated 

Dorsal Symphyseal Interpalatine (medial 
Margin (P5) Posterior iliac exostoses (A9) palatine, posterior portion) 
1) Serrated 1) Smooth (C5/ 

2) Flattening incomplete 2) Rounded exostoses 1) Open 
3) Flattening complete 

4) Rim 
5) Breakdown 

3) Pointed spicules 3) Partially obliterated 
4) Punctuated 
5) Obliterated 

1 - The 'juxtaposed' 
category is not scored here 

following Boldsen et al. 
2002:103. 
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a total of five traits of the pubic symphysis, nine traits of the auricular surface, and five 

cranial suture segments are scored. Each of these traits has its own scoring system which 

is also presented in Table 3. 

Upon close examination of the traits utilized in this study, it became clear that 

additional description of several landmarks would facilitate and clarify data collection. 

In particular, descriptions of landmarks on the auricular surface were particularly 

ambiguous for this author. To reconcile this problem, photographs were taken of the 

auricular surface and landmarks were superimposed in their correct location. After these 

photographs were generated, they were sent to Dr. George Milner for clarification and 

comments. Upon receiving feedback from Dr. Milner, these photographs were utilized 

during the data collection process. Figures 5-8 present photographs of the auricular 

surface that were developed during this research. It is important to note that photographs 

of the pubic symphysis and cranial sutures were not generated since those morphological 

structures are referred to with terminology commonly used in osteological analyses and 

were more familiar to this author. 

Raw scores (Appendix 1) were used to calculate age-at-death estimates in Beta 

Version 1.10 of the ADBOU age-at-death estimation program furnished to the author by 

Dr. Jesper Boldsen, director of the Anthropological Database at Odense University 

(ADBOU) in Denmark. An updated, Windows XP-compatible version was provided to 

the author by Dr. George Milner. Raw scores were input into appropriate fields and 

demographic parameters were set for each case. While sex and ancestry diagnoses were 

initiated at the time of data collection by this author, these data were verified from the 
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demographic records maintained by the F AC. Only after these parameters were 

confirmed were raw scores input into the ADBOU program. 

In this study, all skeletal data collection was conducted blind to real age. All 

skeletal elements were pulled from their respective boxes by another individual (EAD) in 

batches of twenty-five. Following the Boldsen et al. (2002) protocol, data were co.llected 

on landmarks of the pubic symphysis, auricular surface, and five cranial sutural 

segments. Pubic symphyseal data were coded first, auricular surface second, and cranial 

sutures last. Right and left sides were coded independently from each other to reduce 

intra-observer bias.Moreover, raw scores for pubic symphyses and auricular surfaces 

were coded blind to each other to further reduce intra-observer bias. 

In order to calculate age-at-death estimates, the ADBOU program requires that an 

appropriate hazard, or informed prior of the population age-at-death distribution j{a), be 

chosen. While Boldsen et al. suggest the use of a uniform prior in the absence of 

information about the age structure of population (2002:92), they also argue thatj{a) data 

can be gleaned from the target sample's historical or archaeological context and 

incorporated into the analytical framework. Specifically, 

"information on the distribution of age-at-death from many parts of the modem 
world and for some places in the past that can serve as general models for our 
archaeological populations. For example, here we use an age-at-death distribution 
from 17th century Danish rural parish records to provide estimates ofj{a) . ...F or 
forensic purposes, one would use national homicide data, such as the 1996 figures 
for the USA that are incorporated in the transition analysis computer program" 
(Bolden et al. 2002:88). 

In this research, the forensic hazard was selected since the sample derived from 

the Bass Collection is more contemporaneous with the 1996 data. The forensic hazard is 

probably not the best choice for analyzing data from the Bass Collection since the age 
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structure of the 1996 homicide data differs from this particular target population. 

However, the other alternative, with is the archaeological hazard derived from 17th 

century Danish parish records, is even less appropriate. Unfortunately, ADBOU will not 

run without choosing one or the other prior. 

Once raw data was entered into in the ADBOU program, output was generated for 

each individual both numerically and graphically. Figure 9 illustrates an example of the 

graphical output generated for each individual from the ADBOU program. This output 

includes five posterior distribution curves that depict age-at-death estimates for 

aggregated morphological complexes (with both flat and informed priors) and individual 

age indicators. Boldsen and colleagues emphasize that workers should seek to generate 

"the probability that death occurred at each possible age, not just the single age when it 

was most likely to have occurred" (Boldsen et al. 2002:93). The age distributions 

depicted in Figure 9, therefore, should be considered to represent an individual's skeletal 

age better than a single point estimate. 

The real recorded ages andages-at-death estimated from ADBOU for each 

individual in the test sample are presented in Appendix 2. The estimated ages-at-death 

are notated differently in Appendix 2 than in Figure 9. In the appendix, the output is 

reported as MLA-All, MLA-Hazard, MLA-Pubis, MLA-Auricular, and MLA-Sutures, 

each of which are maximum likelihood age-at-death estimates taken from peaks of the 

likelihood curves illustrated in Figure 9. MLA-All and MLA-Hazard present age-at­

death estimates that combine age indicator data from the pubic symphysis, auricular 

surface, and cranial sutures. MLA-All utilizes a flat prior while MLA-Hazard uses 1996 

homicide data as an informed prior. MLA-Pubis, MLA-Auricular, and MLA-Sutures also 
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utilize 1996 homicide data as an infonned prior and present age-at-death estimates for 

each morphological complex individually. 

In order to evaluate the ability of the Boldsen et al. (2002) method to return 

accurate ages, maximum-likelihood age-at-death estimates were statistically compared to 

real age values using linear regression in the SPSS Version 13.0 statistics package (SPSS 

Inc., Chicago IL). Scatterplots of real age by estimated age were generated, and the 

relationship between real and estimated age was measured by calculating regression and 

correlation coefficients. The dependent variables were the maximum-likelihood age-at­

death estimates and the independent variables were the real ages. 95% confidence 

intervals around the line ofbest fit were calculated. Five correlation coefficients 

between real age and estimated age were generated using peaks of likelihood curves for 

each estimated age from the MLA-All, MLA-Hazard, MLA-Pubis, MLA-Auricular, and 

MLA-Sutures ADBOU runs. These correlation coefficients allow us to evaluate the 

relationship between real age and estimated age-at-death for both aggregated and 

individual anatomical complexes. , 

Two additional fonns of analysis were perfonned on the raw scores in order to 

further evaluate the relationship between individual traits and real age. The goal of these 

analyses was to assess if the traits from Boldsen et al. 's scoring protocol were in fact age­

dependent in the Bass Collection test sample. The first fonn of analysis involved trait­

by-trait analyses using a forward continuation ratio model written by Dr. Lyle 

Konigsberg (Konigsberg, 2005). This model is synonymous with the single-trait 

transition analysis utilized by Boldsen and colleagues (2002). While the results of the 

forward continuation ratio model, which consist of a mean estimated age-at-transition an 

33 




, 


standard deviation, can be used to evaluate age-dependence, these results are difficult to 

interpret for individual transitions because of the way in which one transition is compared 

to all others that occur after it. As a consequence ofhow the model is constructed, and as 

correctly noted by Boldsen et al. (2002), the forward and backward continuation ratio 

models usually give different probabilities ofbeing in a particular stage at a given age. 

The second form of analysis consists of unrestrictive cumulative probit, or 

standard deviation model, that also is applied to single traits. Unlike the forward 

continuation ration model, the cumulative probit treats each transition as a distinct event. 

As a consequence, the cumulative probit will be used to evaluate whether each 

component of the scoring system is age informative.· The cumulative probit model, 

described by Long (1997) and available as NPHASES2, a FORTAN program written by 

Konigsberg (2005), is run first as a proportional odds probit that generates transition 

estimates that have a common standard deviation and then as an unrestricted cumulative 

probit that produces estin1ates with varying standard deviations. While the proportional 

odds probit is generally not a good model of age transitions, it was considered a good 

check on the results of the unrestricted cumulative probit (Konigsberg and Herrmann 

2002). The purpose of the cumulative probit was to evaluate stage-to-stage transitions for 

each indicator of the pubic symphysis, auricular surface, and cranial sutures. Results from 

these analyses were scrutinized on the individual trait level for insight into the 

methodological protocol advanced by Boldsen and colleagues. 
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4. Results 

The ADBOU computer program was used to generate age-at-death estimates for 

each individual from the test sample. As mentioned previously, five estimates were 

generated: one based on all scored features using a flat prior (MLA-All), one on all 

features with the forensic prior (MLA-Hazard), and one for each anatomical trait using 

the forensic prior (MLA-Pubis, MLA-Auricular, and MLA-Sutures). These estimates, 

which represent mean age-at-death estimates taken from the peaks of the likelihood 

curves, form the basis of the analyses reported here. 

Figures 10 - 14 present scatterplots of real age by estimated age-at-deaths. 

Different shapes are used to distinguish males from females. Superimposed on each 

scatterplot is the regression line for estimated age on real age together with the 95% 

prediction interval for the line. The equation that defines the regression line is shown to 

the right of each plot as is the R-Square, or correlation coefficient, for each regression. 

The clustering of individuals along the upper boundary, especially in Figures 10, II, 12, 

13, and 14, is due to age truncation built into the ADBOD program. 

As can be seen in Figures 10 - 14, the relationship between estimated age and real 

age is weak based on the lack of individuals falling within the 95% confidence interval. 

With the exception ofMLA-Sutures regressed on real age (Figure 14), where more 

females fall below and more males fall above the 95% confidence interval, patterning 

between the sexes does not indicate a significant difference. In all other cases (Figures 

10-13), males and females and females appear to be randomly scattered around the 

prediction line and 95% confidence intervals, reiterating the weak relationship between 

estimated and real age-at-death in this study. Moreover, while all regression analyses 
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Figure 14. MLA-Sutures regressed on real age. 
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demonstrate the ADBOU program's propensity to over-age some individuals as 110 

years old, Figure 14 demonstrates that age-at-death estimates based on cranial 

sutures are the most variable. Such results support the work of Masset (1989) who 

demonstrates a low correlation between estimated age from cranial sutures and real age. 

Table 4 lists the correlation coefficients for the five regressions. As can be seen 

from this table, correlation coefficients from this study are not as promising as the results 

reported in Boldsen et al. (2002). In all cases, estimated ages-at-death were poorly 

correlated with real age, with the correlation between MLA-All and real age returning the 

highest correlation coefficient of 0.509. While estimated ages-at-death are reasonably 

close to real ages in some instances (see Appendix 2), overall results indicate that 

Boldsen and colleagues' method does not return accurate estimated ages in this study. 

The question then becomes whether or not the morphological features used in the method 

are indicators of age-related change in the Bass Collection sample, and/or whether or not 

the Boldsen et al. protocol is difficult to apply consistently. 

Table 4. Correlation coefficients of estimated age-at-death with real age. 

Correlation 

MLA-All/Real age 

MLA-HazardlReal age 

MLA-PubislReal age 

MLA -Auricular/Real age 

MLA-SutureslReal age 
-, 

Coefficient 

0.509 

0.498 

0.412 

0.412 

0.173 
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The two fonns of analysis used to evaluate the relationship between individual traits 

and real age were the forward continuation ratio model and the cumulative probit model. 

Table 5 presents results for select skeletal traits from the forward continuation ratio 

model. The age-at-transition and associated standard deviations are included for skeletal 

traits that generated a positive age-at-transition. Obviously, since age-at-transition cannot 

be negative, those skeletal traits producing negative age-at-transition were not included in 

Table 5. As can be seen from Table 5, mean-at-transition was highly erratic. Utilizing 

the ventral symphyseal margin (P4) as an example, age-at-transitions for four transitions 

were 11.40 ± 21.90 years, 7.04 ± 35.09 years, -88.60 ± 99.73 years, and 77.06 ± 3Q.20 

years, respectively. Such inconsistent transitions indicate a weak relationship between 

real age and skeletal traits in this study. Thus, while traits from Boldsen et al. protocol 

perfonned well in the original author's study (2002), the associations in the current study 

are weak. Such findings suggest that Boldsen et al. 's transition analysis method is 

difficult if not impossible to replicate in tenns of scoring, and/or that the traits are only 

age-dependent in some populations (and not in the current study sample). At the very 

least, these results demonstrate a need for additional validation studies, possibly on other 

documented reference collections. 

The results from the cumulative pro bit model similarly are not promising. The 

cumulative probit model was run first as an ordinal or proportional odds probit with a 

single standard deviation calculated across all transition states of a trait and then as an 

unrestricted cumulative probit with variable standard deviations calculated for each 

transition state. The results from the ordinal probit are listed in Table 6 for two traits, the 

dorsal symphyseal margin (P5) and the posterior iliac exostoses (A9). The results from 
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Table 5. Mean age-at-transition ± one standard deviation estimated from the 
forward continuation ratio model for particular Boldsen et ale (2002)traits. 

Anatomical Trait Transition 
Pubic symphyseal texture (P2) 112 213 314 

11.76 ± 20.61 53.72 ± 37.95 422.26 ± 352.93 
Pubic symphyseal apex (P3) 1,213 314,5 

13.50 ± 30.16 46.94 ± 57.72 
Ventral symphyseal margin (P4) 1,2,314 415 516 617 

1l.40±21.90 7.04±35.09 ·88.60±99.73 77.06±30.20 
Dorsal symphyseal mar2in (P5) 1,2,314 415,6,7 

20.66 ± 36.34 103.24 ± 41.45 
Superior demiface topography (AI) 112 213 

30.35 ± 5.53 36.20 ± 93.03 
Inferior demiface topography (A2l 112 213 

30.27 ± 5.74 24.23 ± 78.64 
Inferior surface texture (A6) 112 213,4 

47.85 ± 22.91 121.86 ± 72.35 
Posterior iliac exostoses (A91 112 213 

39.34 ± 74.60 97.09 ± 49.29 
Coronal pterica (C1) 1,213 314 415 

10.92 ± 26.19 24.54 ± 54.91 44.19 ± 36.92 

Table 6. Results generated from the ordinal cumulative probit model for 
the dorsal symphyseal margin (P5) and posterior iliac exostoses (A9). 

Skeletal Trait Transition Age-at-transition 
estimates 

Standard 
Error 

Dorsal symphyseal margin (P5) 1,213 -19.656220 14.956006 
314 23.444168 6.972490 
415 98.842615 7.571898 
SD 33.643832 

Posterior iliac exostoses (A9) 112 42.48911 7.480940 
213 126.112300 19.887451 
SD 61.550616 
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the unrestricted cumulative probit model of the same two traits are given in Table 7. The 

results for these traits are presented here because the dorsal margin of the pubic 

symphysis (P5) and posterior exostoses of the ilium were identified as "old-age" markers 

by Boldsen and coworkers (2002:94-95) and the present sample contains large numbers 

of old individuals. Unfortunately, even these "old-age" traits fail to show a strong age-

dependence. As can be seen fronl Tables 6 and 7 age-at-transitions are widely variable. 

In the case of the dorsal symphyseal margin (P5) (Table 6), a negative age-at-transition 

was generated, further indicating a weak relationship between skeletal indicators and age-

related change in this sample. Similarly, age-at-transitions of 39.340574 ± 74.630487 

years and 109.283372 ± 45.109205 years generated for posterior iliac exostoses (A9) in 

Table 7 encompass too much of the adult lifespan to suggest consideration of the trait as 

an accurate old-age marker in paleodemographic or forensic contexts. 

Table 7. Results generated from the unrestrictive cumulative probit model 
for dorsal symphyseal margin (P5) and posterior iliac exostoses (A9). 

Skeletal Trait Transition Age-at-transition 
estimates 

SD 

Dorsal symphyseal margin (P5) 1,213 24.652447 4.716673 
314 19.760310 37.196460 
415 102.283298 36.981798 

Posterior iliac exostoses (A91 1\2 39.340574 74.630487 
213 109.283372 45.109205 
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5. Discussion 

The age-at-death estimates generated from the ADBOU program do not accurately 

estimate age-at-death for individuals in this test sample. Linear regression analysis 

demonstrated this trend for each estimate produced from the ADBOU program. Poor 

correlation coefficients were generated between five estimated ages and real age that 

ranged from 0.173 - 0.509. Such results clearly demonstrate a weak relationship between 

estimated and real age. Additionally, the results of the ordinal cumulative probit and 

unrestrictive cumulative probit models presented in this thesis show only weak 

relationships between real age and age-at-death estimated by Boldsen et al. IS (2002) 

method. In all cases, age-at-transition was erratic and associated standard deviations did 

not generate results applicable to osteological contexts. 

Numerous factors might account for the poor results achieved in this research. 

Failure to apply the Boldsen et al. (2002) protocol correctly to the test sample is one 

possibility. If skeletal traits were scored incorrectly, inaccurate results are the likely 

product of such misapplication. Secular differences in aging between the reference 

population and the test sample may also account for the error achieved in this study. 

Since the Terry and Bass Collections are not contemporaneous, standards developed from 

the former might not apply to the latter. 

Another reason for the results generated from this study may involve the ADBOU 

program used to estimate age-at-death. As mentioned previously, the program requires 

the selection of an informed prior, or information regardingj(a )-the probability 

distribution of ages-at-death in the sample. In this case, a forensic prior modeled from 

1996 homicide data (Peters et al. 1998) was selected in ADBOU. While this dataset did 
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not reflect the age-at-death distribution of the test sample, it was used regardless in order 

to produce age-at-death estimates. Moreover, the selection ofthej(a) parameter in this 

manner is not entirely compliant with Rostock protocol as discussed in Chapter 2. Such 

values should be estimated before addressing Pr(alc), and not treated as an aftereffect as it 

is in the ADBOU program. When evaluated together, these factors answer some of the 

important questions posed in Chapter 1. 

1) Are the components ofthe Boldsen et al. aging method clearly defined for 
conventional use? 

From the outset, Boldsen and colleagues assert that their methodological protocol 

should only be attempted after some degree of experience. According to Boldsen and 

colleagues (2002:97), "it will be immediately apparent that there is no substitute for 

experience when classifying anatomical features. Like anything else that relies on good 

judgment, researchers should know what they are doing before using this age estimation 

method." This researcher agrees and argues that workers looking to gain experience with 

or test this method should thoroughly understand the coding system prior to beginning 

data collection. After careful examination of the definitions describing the anatomical 

landmarks and coding system presented in their study, applying Boldsen and colleagues' 

method became much easier. Initially, several structures were difficult to locate (i.e., 

posterior iliac exostoses), however, after photographs were generated (see Figures 5-8) 

landmark identification was much easier. If additional workers seek to test Boldsen and 

colleagues' method, obtaining photographs of the morphological traits and different 

skeletal stages would be highly advantageous. 
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While definitions of specific codes were helpful, further clarification of several 

stages might be helpful. For example, the code for "rampart fonnation" under the 

category ventral symphyseal margin is ambiguous. In this stage, loss ofbillowing 

associated with a developing ventral rampart is described as "a roll of gum laid across a 

shallowly furrowed surface" (Boldsen et al. 2002:99). While this description is meant to 

help researchers clarify morphological development, it succeeds at confounding the 

analytical process since researchers may interpret this particular description in mUltiple 

ways. Moreover, further illumination or visual representation will greatly enhance the 

applicability of Boldsen et al. 's protocol. As it stands currently, definitions of landmarks 

and the coding system are rather cumbersome even though they are highly descriptive. 

Coupling high-resolution photographs of skeletal traits and examples ofparticular stages 

with a written description from BoIsen et al. (2002) would greatly reduce inter-observer 

interpretations of each. If such were achieved, more researchers would be adequately 

equipped to score other known-age individuals for validation purposes. 

2) Does the ADBOU software program produce age-at-death estimates in the 
manner described by the original researchers? 

In their chapter, Boldsen and colleagues provide a world-wi de-web address that 

provides the computer program for all analyses outlined in their work. Unfortunately, 

that address is defunct and does not provide the software. As a result, interested workers 

must contact the first or second author directly. The ADBOU software package provided 

by Dr. Jesper Boldsen provided a somewhat user-friendly way to generate age-at-death 

estimates from raw scores based on the Boldsen et al. (2002) protocol. For the first part 

of analyses conducted by this author, the ADBOU program was problematic in that the 
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version used was only compatible with the Windows 98 Operating System. As a result, 

very few machines were available for transforming raw scores into age-at-death 

estimates. After corresponding with Dr. George Milner, an updated version of the 

software was provided and analyses were rapidly accelerated. If additional researchers 

wish to perform validation studies of this method, I suggest that they contact Drs. 

Boldsen and Milner before collecting raw data. This would ensure that future workers 

have proper computer system capabilities. 

With regard to the program itself, age-at-death estimates were produced relatively 

easily once the software program was correctly installed. I caution that researchers 

should take care to familiarize themselves with the program before initiating any large­

scale analyses since the program itself presents a few idiosyncrasies. For instance, 

workers must ensure that the sex, race, and hazard parameters they select are really 

utilized in each analysis. Experience with the software demonstrated that sex, race, 

and/or hazard parameters would sometimes change between cases without keyboard 

input, requiring the author to double-check and sometimes correct the parameters for 

each individual in question. While this problem is easily fixed, it requires that workers 

take notice of each ADBOU run. Moreover, workers should recognize the inherent limits 

of the program with regard to the selection of the informative prior. In the case of the 

ADBOU program, only two informative priors are possible, neither of which might be 

appropriate in certain anthropological contexts. For example, while the archaeological 

hazard derived from 17th century parish records is more appropriate for bioarchaeological 

contexts, workers have demonstrated that "population-specific nlodels are absolutely 

necessary" (Schmitt et al. 2002: 1208). Although the use of population-specific models is 
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widely advocated (Hoppa and Vaupel2002a; Schmitt et al. 2002), workers realize that 

such data are not always available or just do not exist. As is the case sometimes, 

researchers are not always able to work under ideal analytical conditions. 

3) Do age-at-death estimates rendered from the ADBOUsoftware program have a high 
degree ofcorrelation with real age? 

As was shown by calculating correlation coefficients between estimated ages-at­

death and real age, there is a very weak relationship between real ages and the ages 

estimated by the ADBOU program. While some individual age-at-death estimates were 

extremely close to real age, overall results indicate that Boldsen et al. IS (2002) method 

does not accurately estimate age-at-death for most individuals in this study. 

As can be seen from Table 8, even when generous age ranges are considered 

(ages within the 95% confidence intervals generated from ADBOU), a large number of 

cases still fall outside of that range. Another way to understand the poor performance of 

ADBOU for the Bass Collection test sample is to consider the percentages of individuals 

whose estimated ages fall outside of the 95% confidence interval for their recorded ages. 

This information is given in Table 8. This point illustrates the fact that even though 

anthropologists are accustomed to working with somewhat broad age ranges, a low 

percent of correct classification at even 95% confidence intervals is a problem. 

The attractions of Boldsen et al. IS (2002) transition analysis were that it should 

produce accurate age-at-death estimates, but also that it should accurately age older 

adults. Contrary to Boldsen and colleagues findings, this method did not produce 
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Table 8. Percent of estimated ages from ADBOU within 95% confidence interval. 

Age-at-death 
estimation 

model 
N 

# of cases within the 95% 
confidence interval 

% of cases within the 95% 
confidence interval 

MLA-All 225 146 64.8 
MLA-Hazard 225 163 72.4 
MLA-Pubis 215 160 74.4 

MLA-Auricular 223 159 71.3 
MLA -Sutures 215 177 82.3 
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overwhelmingly accurate age-at-death estimates for individuals in the 50+ years 

category. Table 9 lists the percentages of individuals 50 years or older whose estimated 

ages fell within ± 5, ±10, or ±15 years of their real age. As can be seen from this table, 

individuals above 50 years were not aged well within the ± 5 or ± 10 

years cutoff points. Interestingly, over-half of the sample above 50 years was aged 

correctly when the cutoff points were expanded to ± 15 years of real age. Such findings 

from Table 9 indicate that individuals above 50 were somewhat successfully aged. While 

close estimates of± 5 years were not possible from individuals in this study, results 

indicate that the ADBOU program generated some informative age-at-death estimates for 

individuals above 50. 

Table 9. Age-at-death estimates for individuals::: 50 years old. 

Age-at-death 
estimation model 

N 
% aged 50 or 

over estimated 
within ± 5 years 

of actual age 

0/0 aged 50 or over 
estimated within ± 
10 years of actual 

age 

0/0 aged 50 or over 
estimated within ± 
15 years of actual 

age 
MLA-All 168 18.4 40.4 56.5 

MLA-Hazard 168 26.7 46.4 67.2 

MLA-Pubis 158 16.4 33.5 43.0 

MLA -Auricular 167 13.7 25.7 41.9 

MLA-Sutures 162 
, . , 

7.4 17.9 25.3 
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4) Do results indicate that this method should be adopted by workers for adult age-at­
death estimation? 

This study does not produce results similar to those published by Boldsen and 

coworkers (2002). To the contrary, the results presented here indicate that their method 

does not produce accurate age-at-death estimates. In all models, correlations between 

estimated age and real age are too low for the method to be useful in paleodemographic 

or forensic contexts. One possible reason for such low performance is the assumption of 

conditional independence utilized by Boldsen and colleagues to build the transition 

analysis model. While the authors argue that such an assumption should not hinder 

analyses, they admit that they have not examined the correlation between morphological 

components after conditioning on age (Boldsen et al. 2002:91). 

In addition, the assumption that components of one morphological structure (i.e., 

the pubic symphysis) are independent from one another does not take functional or 

biomechanical relationships among indicators into account. Age estimation techniques 

that utilize joint surfaces of the bony pelvis have, until the publication of this method, 

used a combination of morphological indicators to arrive at an age-at-death estimate. 

Such methods are based on the assumption that skeletal traits are heavily influenced by 

each other as the result biological and environmental factors (Schmitt et al. 2002). While 

describing the method of Boldsen and colleagues, Holman et al. (2002: 195) write "we are 

required to make the possibly erroneous assumption that the indicators are independent of 

each other conditional on age." Results from this research lead this author to agree with 

numerous other workers who assume that there is indeed a dependent relationship among 

age indicators utilized in this method. 
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Another reason that results from this research are remarkably less promising than 

originally expected might relate to the sample that was utilized. Since it is widely known 

that the senescent process becomes much more variable with age, a known sample with 

an older age-at-death distribution lends itself more age-related variability. The mean age­

at-death of the sample from the William M. Bass Collection was 59.89 years. Such 

demographic information clearly indicates a sample biased towards older individuals. 

The age dependence seen in this study may be the result of what skeletal biologists have 

known for many years-skeletons older than 50 years produce highly variable age-at­

death estimates. Accurately capturing such variability may remain elusive regardless of 

reported methodological advances by Boldsen and colleagues. 

A final reason for the poor performance ofADBOU in this study may be 

methodological. While the method is described in some detail in their publication, 

illustrations of anatomical landmarks and the subsequent coding system are absent. In a 

few instances, specific descriptions of the coding system are confounding and prohibited 

this author from applying the method with the same degree of efficacy as described in 

Boldsen et al. (2002). Moreover, the chapter was published without photographs which 

made locating landmarks like the superior and inferior posterior iliac exostoses difficult. 

When coupled together, any combination of these methodological factors may have 

heavily influenced the outcome of this study. On a cautionary note, while landmarks 

presented by Boldsen et al. (2002) are distinguishable after careful review of the 

descriptions, workers who wish to use this coding system are encouraged to confirm the 

location of all landmarks before initiating analyses. An additional publication by 

Boldsen and colleagues that presents photographs of skeletal traits and a clearer 
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description of the coding system would facilitate a broader use of this method by 

interested researchers. 
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6. CONCLUSIONS 

While results from this study are not promising, some hope for continued 

appraisal of the transition analysis method described by Boldsen and colleagues (2002) 

remains. At the very least, Boldsen and colleagues have advanced a robust statistical 

framework for anthropologists and other workers to consider. The continuation ratio 

model that is the basis for Boldsen and colleagues' transition analysis method offers 

potential for teasing age-related change from skeletal features. Moreover, no longer is it 

acceptable for workers to estimate age-at-death in either archaeological or forensic 

contexts without discussing problems associated with their aging methods (Hoppa and 

Vaupel 2002). Additionally, the authors' method demonstrates that individuals in the 50+ 

years cohort can be identified in that category with some certainty, even though more 

precise estimates remain elusive. With such methodological advances, it is now time for 

workers to discuss to what level such age-at-death estimates can be taken. While refining 

age-at-death estimates in the 50+ years category is obviously desirable, researchers 

should come to a consensus about recognizing the limits of age-at-death estimation. It is 

suggested here that anthropologists will need additional methodological tools to further 

tease out age-at-death estimates for individuals over the age of 50. It has proven 

unrealistic to argue that methodological advances presented in this study can accurately 

estimate age-at-death above 50 years ± 5, ± 10, or ± 15 years. Such findings indicate that 

anthropologists must still continue to discuss this topic and continue evaluating skeletal 

traits for the age-related information contained in them. 

While results achieved from this test sample did not produce results similar to 

those of Boldsen and colleagues, additional analyses of the transition analysis method can 
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be conducted on the Bass Collection. Since all raw scores have been retained, tests for 

intra-and inter-observer can easily be run to quantify the degree to which the coding 

system itself influences age-at-death estimates from the ADBOU program. Logistically 

speaking, it would be rather easy for other workers to code a subset of the skeletons used 

in this study for just that purpose. Once additional raw data are collected by other 

workers, the forward continuation ratio and cumulative probit models can be fit to new 

data to see if trends regarding the Boldsen et ala protocol remain as they did in this study. 

Models that produce weight functions could also be run, to further test individual skeletal 

trait data. Findings generated from those weight function models might reiterate results 

encountered in this research and/or indicate that application of the scoring system was the 

largest type ofbias in this research. 

While the work of Boldsen and colleagues has taken a step in the right direction, 

more work remains to be done. As has been widely reported, senescence is a variable 

process on the individual level. Therefore, workers should continually seek to refine 

methodological tools that produce the most statistically-robust methods possible. 

Moreover, tests for intra and inter-observer should be applied in order to determine the 

broad-range applicability of the method. While results from this research do not produce 

results similar to the authors' original study, workers should seek to understand the 

overarching framework of the transition analysis method. To further test the reliability of 

the Boldsen and colleagues' method, additional validation studies on other reference 

collections should be conducted. If such is achieved by the physical anthropological 

community, this critical component of paleodemographic and forensic analysis will 

surely improve. 
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The following designations correspond to morphological structures from Boldsen et al. 

Appendix 1- Raw scores following Boldsen et ale (2002) protocol. 

(2002) protocol: 

Pubic Symphysis 

RPIILPI: Symphyseal relief 


RP21LP2: Symphyseal texture 

RP3/LP3: Superior apex 


RP41LP4: Ventral symphyseal margin 

RP4/LPS: Dorsal symphyseal margin 


Auricular Surface 

RA liLA1 : Superior demiface topography 

RA2/LA2: Inferior demiface topography 

RA3/LA3: Superior surface morphology 

RA4/LA4: Apical surface morphology 

RAS/LAS: Inferior surface morphology 


RA6/LA6: Inferior surface texture 

RA 7 /LA 7: Superior posterior iliac exostoses 

RA8/LA8: Inferior posterior iliax exostoses 


RA9/LA9: Posterior iliax exostoses 


Cranial Sutures 

C1: Coronoal pterica 

C2: Sagittal obelica 


C3: Lambdoidal asterica 

C4: Zygomaticomaxillary. 


CS: Interpalatine (median palatine, posterior portion) 
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ID I RPl RP2 I RP3 LP4 I LPS 
1.00 1 5 3 I 3 6 4 5 3 3 614 
1.01 1 5 314 7 5 5 2 4 7 1 4/5 
1.81 1 4 314 6 4 4 2 3 614 
1.82 1 5 413 6 4 5 2 4 614 
1.83 I 5/6 314 6 5 5 3 4 6 1 3/4 

4 6 
6 I 4 
614 

5 
5 4 

1.94 5 2 4 4 3 1 2 1 6 
1.96 6 4 4 7 5 4 1 4 1 7 I 5 
1.97 5 2 4 6 4 513141614 
1.98 5 3 2 6 3 513141614 
2.00 5 3 6 4 5 13 141715 

4 5 12 131714 
4 512 141614 
4 4 I 2 1 2/3 1 6 1 4 
4 612141714 

2.87 4 3 4 6 4 512141714 
2.88 5 3 4 6 4 5 I 3/4 I 3 I 7 I 4 
2.89 612131614 
2.91 5 3 4 7141513 141714 
2.92 5 2 3 413 1512 121413 
2.94 5 2/3 4 6 I 4 I 5 I 2 I 3 I 617 I 4 
2.95 3 5/6 I 3 4 I 3 I 3 I 6 I 4 

4 5 2 4 7 41 
4 3 

2.96 25 4 
2.97 6 51614 131715 
2.98 5 2 I 3 I 6 I 3 
2.99 5 3 1 6 1 4 
3.00 5 417 I 4 
3.01 5 6 417 
3.81 5 2 5/6 4 1 5/6 
3.83 I 4 3 6 4 
3.87 I 5 2 4 4 6 2 3 6 
3.88 I 4 6 4 
3.89 I 5 4 6 4 5 2/3 4 6 5 
3.90 1 5/6 4 6 4 6 2 2/3 6 4 

2 
7 4 5 2 

36 3 

3 4 

4 
6 4 

5 
3.91 I 5 
3.93 5 3 
3.96 
3.98 
3.99 I 5/6 3 617 5 3 4 6 
4.00 I 5 2/3 4 6 4 5 2 3 6 
4.83 1 5/6 2 4 5/6 4 5 2 4 5 
4.87 I 5 3 4 4 3 6 2 4 6 
4.88 I 5 3 4 6 4 5 2 3 6 
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ID RPI RPl RP3 RP4 RP5~[1:Pl LPl LP3 LP4 LP5 
4.93 5 2 3 6 4 4/5 2 2 4/5 3 
4.94 
4.95 5 2 3 6 4 5 2 3 6 4 

I 4.96 5 2 3 6 4 5 2 2 5 4 
4.97 5 2 3 6 4 5 2 3 6 4 
4.98 5 3 3 6 4 5 3 3 6 4 
4.99 5 3 4 6 4 5 3 4 7 4 

! 

5.00 5 3 4 =6 4 5 3 4 6 4 
5.83 5 2 3 5 4 4/5 3 3 6 4 
5.87 5 2 3 6 4 5 3 4 6 4 

I 5.88 5 3 3/4 6 4 6 2 4 6 4 
5.93 I 5 2 3 6 3 5 3 3 6 4 
5.94 5 3 4 

i 6 4 5 3 4 6 4 
5.97 5 3 3 7 5 6 3 3 7 5 
5.98 5 2 3 6 4 5/6 2 3 6 3 
5.99 5 2 4 6 4 5 3 3 6 4 
6.00 
6.02 
6.87 
6.88 3 2 2 3 2 4 1 4 3 2 
6.91 5 2 3 ·7 4 5 2 4 6 3 
6.92 4 1 2 3 2 4 2 2 4 3 
6.93 5 3 4 5 3 I 5 3· 3 4 3 
6.95 6 4 4 7 5 6 4 4 7 5 
6.98 5 3 4 6 4 5 3 3 6 4 
6.99 5 2 3 6 4 5 3 4 6 4 
7.86 6 4 i---T7.87 4 3 4 6 4 4 3 4 4 I 
7.89 4 3 3 6 4 5 2 3 6 4 
7.91 6 2 3 6 4 5 2 3 6 4 
7.92 6 3 6 6/7 6 2 4 7 
7.93 3 1 2 3 3 3 2 3 5 3 
7.94 5 2 4 5 3 5 2 4 6 3 
7.95 6 4 4 7 5 6 4 4 7 5 
7.96 6 4 4 7 i 5 6 3/4 4 7 5 
7.97 6 2 4 7 4 4 3 4 7 5 
7.98 5 4 4 6/7 5 6 4 4 7 4 
8.87 2 1 1 2 2 2 1 1 1 112 
8.89 5 4 3 6 4 5/6 3 4 7 4 
8.91 6 3 3 6 4 6 4 4 7 4 
8.93 4 3 3 5/6 4 4 2 3 5 3 
8.94 5 4 4 6 4 6 4 3/4 7 5 
8.95 4 2 3 5/6 3/4 5 2 3 6 4 
8.96 4 4 4 6 4 5 3/4 4 

I 7 4 
8.98 4 3 3 6 3 4 3 3 6 3 
8.99 5 1 2/3 5 3 4 1 2 5 3 
9.00 6 2 4 4 4 5 2/3 4 4 4 
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ID RPI RP2 RP3 RP4 RP5 LPI LP2 LP3 LP4 LP5 
9.88 5 2/3 3 6 4 6 2 4 6 7 
9.89 5 2 3 4 4 5 2 4 6 4 
9.93 5 3 3 6 4 5 2 2 6 3 
9.94 5 3 4 6 4 
9.95 6 4 4 7 5 6 4 4 7 5 
9.96 5 3 3 7 4 5 4 4 7 4 
9.97 5 2 3 6 4 5 2 3 6 4 
9.98 5 3 4 6 4 5 3 4 6 4 
9.99 4 2 4 617 4 6 3 4 7 4 

10.00 5 2 4 6 4 5 4 6 4 
10.87 4 2 3 6 4 5 3 3 617 4 
10.88 4 3 4 6 5 5 2 3 6 3 
10.89 5 2/ 3 6 4 5 2 4 6 4 

90 4 3 3 6 4 5 3 4 6 4 
10.91 5 2 3 6 4 
10.92 5 3 4 6 4 5 2 3 5/6 4 
10.94 5 4 3 7 5 6 4 3 7 5 
10.95 4 2 3/4 6 4 4 2 2 6 4 
10.96 5 3 3 6 4 5 3 4 6 4 
10.97 5 3 4 7 5 5 3 3 7 5 
10.98 5 3 4 7 5 6 4 4 7 5 
11.89 5 3 3 6 4 5 2 3 6 4 
11.90 5 2 3 7 4 4 2 4 7 4 
11.94 5 3 3 5/6 3/4 5 2 3 5 3 
11.97 5 3 4 6 4 4 2 4 6 4 
11.98 5 3 4 6 4 5 3 3 6 4 
12.00 3 2/3 2 
12.87 5 3 4 6 4 6 3 4 7 4 
12.88 5 2 3 6 4 5 2 2/3 6 4 
12.89 5 2 4 6 4 5 2 4 6 4 
12.90 5 3/4 4 6 4 6 3 4 6 4 
12.91 5 3 3 4 3 
12.97 5 3 4 6 4 5 2 4 6 4 
12.99 6 3 4 7 5 5 3 4 7 5 
13.00 5 3 4 6 4 5 3 3 6 4 
13.01 
13.88 6 3 3 7 4/5 
13.91 5 2 3 6 4 4 2 2 4 3 
13.97 4 3 3 7 4 4 3 4 7 4 
14.87 4 1 2 4 4 5 1 3 6 4 
14.88 5 2 4 4 3/4 5 2 4 6 4 
14.90 5 2 3 6 4 4/5 2 3 6 4 
14.92 5 3 3 6 4 5 3 4 6 4 
14.93 3 1 2 3 2 3 1 2/3 3 2 

5 3 4 6 4 5 3 3 6 4 
5 2 3 6 4 5 2 3/4 6 4 

• 
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i 

ID 

~13
RP4 RP5 LPI LP2 LP3 LP4 LP5 

. 15.93 6 4 5 2 4 7 3 

tili[ 7 4 5 3 4 7 4 
.99 6 4 3 3 7 4 

16.00 6 4 6 4 2 4 
16.89 5 2 4 7 3 2 3 
16.91 6 2 3/4 6 4 5 2 3 
16.92 5 2 3 6 4 6 2 3 
16.98 5 3 4 6 4 5 3 4 4 
16.99 6 4 4 7 5 5 3 4 6 4 
17.00 4 1 2 3 3 4 1 2 3 3 
17.91 4 112 2/3 4 2 
17.97 6 4 3 7 5 I 6 3 4 7 5 
18.88 5 3 3 7 

~B 
2 3/4 I 7 4 

18.90 516 3 4 7 2 3 m3 
18.91 5 2 3 6 4 5 2 4 4 
18.92 
18.97 5 3 4 6 4 5 3 4 6 4 
18.98 5 3 3 617 4 5 2 4 6 4 
18.99 5 3 4 7 5 6 3 3 7 4 
19.00 6 3 4 7 4 5 3 3 6 4 
19.01 4 3 4 6 4 5 3 3 6 4 
19.88 5 3 3 6 4 5 3 3 6 4 
19.90 5 4 4 7 I 4 6 4 7 
19.91 5 2 3 6 I 4 5 2 I 2 4 3 
19.92 5 2 4 

~rr 
5 2 4 

19.93 5 2 3 4 3 5 4 
19.94 5 3 3 7 5 6 4 4 5 
19.98 5 3 4 6 4 5 3 4 7 5 
19.99 5 3 3 7 5 5 3 3 7 4 
20.03 5 2 3 5 3 5 2 3 6 4 
20.88 4 2 

~3*
516 3 7 4 

20.90 4/5 2 4 Y2 3 4 3 
20.91 5 3 5 2 4 
20.92 5 3 4 6 4 5 3 4 6 4 
20.95 6 4 3 7 5 6 4 4 7 5 
20.98 6 3 4 7 3 5/6 2/3 3 5 3/4 
20.99 5 2 3 6 4 5 2 3 6 4 
21.00 5 2 4 6 4 5 2 3 6 4 
21.02 7 3 4 7 5 6 4 4 7 5 
21.90 5 3 4 6 4 5 3 3 7 4 
21.91 Ti 5 3 3 6 4 
21.92 3 112 2 3 3 2 2 2 2 
21.93 4 2 4 3 3 2 FH+21.94 5 2 3 7 4 5 3 4 
21.95 4 2 3 6 4 4 2 3 6 3 
21.98 5 2 3 6 4 5 3 4 6 4 
21.99 5 3 4 6 4 5 2/3 3 6 4 
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ID RPI RP2 RP3 RP4' RP5 LPI LP2 LP3 LP4 LP5 
22.00 6 3 4 7 5 
22.90 5 2 4 6 4 5 4 4 7 6 
22.91 5 2 3 5 3 5 2 3 5 3 
22.93 
22.94 5 3 2 6 4 5 2 4 6 4 
22.95 5 2 3 6 4 5 2 2/3 6 4 
22.99 4 3 3 6 4 5 3 3 6 4 
23.00 5 3 4 7 3 5 2 4 7 4 
23.88 6 3 4 7 5 5 2/3 3 7 4 
23.93 4 2 4 5 3 5 3 4 5 4 
23.94 5 3 4 6 4 5 3 4 6 4 
23.99 4 3 4 6 4 4 3 3 6 4 
24.00 6 4 4 7 5 6 3 4 7 5 
24.04 
24.88 5 3 3 6 4 5 3 4 6 4 
23.00 5 2 3/4 6 4 5 4 6 4 
25.02 5 4 4 7 5 5 2 4 6 4 
25.91 5 2 3 6 4 5 2 4 6 4 
25.99 5 3 4 7 5 5 4 4 7 5 
26.00 5/6 3 3 7 4 5 3 4 7 4 
26.91 4/5 2 2 4 3 5 3 4 6 4 
26.93 5 3 2 6 4 5 3 3 6 4 
26.99 4 2 5 4 5 3 7 4 
27.90 6 2 3 4 6 6 3 4 7 4 
27.91 3 2 2 3 3 ! 

27.93 5 3 3/4 6 4 5 3 3 6 3 
27.99 5 3 4 6/7 4 5 3 4 6 4 
28.90 6 3 6 4 
29.00 5 3 4 ' 6 4 5 2 3 6 4 
29.04 3 2 3 3 3 3 2 4 4 3 
29.93 5 2 4 6 4 5 2 3 6 4 
29.99 5 3 4 5 3 4 7 4 
30.93 5 2 3 6 4 5 2 3 6 4 
30.99 6 3 4 7 5 6 3 4 7 4 
31.00 5 3 4 6 4 5 2 4 6 4 
31.93 5 3 3 6 3 5 3 3 6 4 
31.99 5 3 4 6 4 5 3 3 7 4 
32.93 6 3 4 7 5 6 4 3 7 5 
32.99 5 3 4 7 4/5 5 3 3 7 5 
33.99 5 or 6 3 4 7 5 6 4 4 7 5 
34.01 6 3 3 7 5 4 3 4 5 3 
34.93 4 2 2 56 4 5 2 4 6 4 
36.93 5 2 4 6 3 ! 

37.93 5 4 3 6 3 5 3 3 7 3 
38.01 5 3 4 7 4 5 3 4 6 4 
38.93 5 4 4 6 4 5 3 4 6 4 
39.01 5 2 2 6 4 ·t .... 2 3 6 4 
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ID RPI 2 RP3 I RP4 RPS LPI LP2 LP3 LP4 LPS 
42.05 4 2 2 4 3 4 2 2 6 4 
45.93 5 3 4 6 4 5 2 3 6 4 
48.04 
49.04 6 3 4 7 5 5 2 4 7 4 
60.03 5 3 4 6 4 5 3 4 6 4 
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ID RAt RA2 RA3 RA4 RA5 RA6 RA7 RA8 RA9 
1.00 2 2 4 4 4 2 4 4 2 

1.01 3 3 5 5 5 2 4 

1.81 3 3 4 5 5 3 4 2 3 

1.82 2 2 4 3 4/5 1 4 2 2 

1.83 2 2 4 4 2 

1.84 3 3 4 4 4 1 4 

1.88 2 2 4 5 5 2 4 1 1 

1.91 3 3 4 4 4 1 4 2 2 
1.92 3 3 5 5 4 1 3 3 1 
1.93 2 2 4 4 3 2 4 1 
1.94 2 2 4 4 4 1/2 4 4 1 

1.96 3 3 4 4 4 3 2 2 2 

1.97 3 3 5 5 5 2 4 4 2 
1.98 2 3 4 4 5 2 4 1 3 
2.00 3 3 4 5 5 2 4 3 2 
2.02 6 
2.83 2 2 4 4 5 2 2 2 2 
2.84 3 3 4 5 4/5 3 2 . 2 2 

2.85 3 3 4 4 4 3 3 2 2 
2.87 6 6 
2.88 2 2 4 5 4 2 4 2 1 

2.89 2 2 4 4 4/5 1 4 2 2 
2.91 4 4 5 5 5 3 4 2/3 112 

2.92 2 2 4 5 3 1 4 4 1 
2.94 2 2 4 4 4 2 4 4 2 

2.95 3 3 5 4 4 2 2 4 1 
2.96 6 

2.97 3 3 4 4 4 5 4 

2.98 3 3 5 4 4 1 4 

2.99 3 3 4 5 4 1 4 2 2 

3.00 2 2 4 4 4 2 4 3 1 

3.01 3 3 4 4 5 2 5 5 3 

3.81 3 3 5 5 4 1 1 1 1 

3.83 
3.87 2 4 4 1 2 1 

3.88 2 3 4 5 4 2 2 2 2 
3.89 3 3 4 5 4 1 3 2 1 

i 

3.90 2 2 4 4/5 4 1 4 2 2 
. 

3.91 3 3 4 4/5 4 3 4 1 2 

3.93 3 3 4 4 4 2 3 2 2 i 

3.96 2 2 3 3 3 2 3 3 2 

3.98 6 

3.99 3 3 4 4 4 2 5 4 1 

4.00 3 3 5 5 5 2 5 4 2 
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ID RAt RA2 RA3 RA4 RA5 RA6 RA7 RA8 RA9 
4.93 3 3 4 4 4 2 2 2 2 

4.94 6 6 
4.95 2 2 3 3 3 1 2 4 1 

4.96 3 2 5 5 4 1 4 4 2 

4.97 3 3 4 4 4 3 4 2 1 

4.98 3 3 4 4 2 4 4 2 2 

4.99 3 3 5 5 5 2 4 2 3 

5.00 3 3 4 4 4 2 4 4 1 

5.83 2 2 3 3 4 1 2 2 1 

5.87 3 3 4 4 4 1 3 4 2 

5.88 2 3 4 5 4 1 4/5 3 2 

5.93 2 3 4 4 I 4 1 4 2 2 

5.94 3 2 4 4 4 2 4 4 1 

5.97 3 3 4 4 4 3 4 4 3 

5.98 3 3 4 4 5 2 4 2 2 

5.99 2 3 4 4 4 2 4 4 2 

6.00 6 

6.02 6 

6.87 6 

6.88 3 3 4 3 ·4 2 3 3 112 

6.91 2 2 5 4/5 4 2 4 4/5 2 

6.92 

6.93 2 3 4 3 4 2 2/3 2/3 3 

I 6.95 3 3 4 5 I 5 2 4 4 1 

6.98 3 3 4 4 5 2 4 3 2 

6.99 3 3 4 4 4 2 4 2 2/3 
7.86 2 2 4 5 5 2 2 2 2 

7.87 3 2 4 4 5 1 2 2 1 

7.89 3 3 4 4 5 2 4 4 2 

7.91 2 2 5 5 5 1 4 2 2 

7.92 3 3 4 5 4 2 4 4 2 

7.93 3 3 4 4 4 2 2 2 2 

7.94 2 2 4 4 4 1 4 4 2 

7.95 3 2 4 3 5 2 4 3 2 

7.96 3 3 
I 5 5 5 3 5 5 1 

7.97 2 2 4 3 5 1 3 3 1 

7.98 

8.87 1 1 4 3 2 1 2 2 112 

8.89 2 2 4 4 4 2 4 2 1 

8.91 2 4/5 2 1 

8.93 3 3 4 4 4 1 2 2 1 

8.94 3 3 4 5 4 2 4 2/3 2 

8.95 3 2 4 4 4 2 4 3 2 

8.96 2 2/3 3 3 3 1 4 2 2 

8.98 1 1 4 3 3 2 4 2 2 
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ID 
8.99 

9.00 
9.88 

9.89 
9.93 

9.94 

9.95 

9.96 
9.97 
9.98 

9.99 
10.00 
10.87 

10.88 
10.89 
10.90 
10.91 
10.92 
10.94 

10.95 
10.96 
10.97 
10.98 
11.89 
11.90 

11.94 

11.97 
11.98 
12.00 

12.87 
12.88 
12.89 
12.90 

12.91 

12.97 

12.99 
13.00 
13.01 
13.88 

13.91 

13.97 
14.87 

14.88 

14.90 
14.92 

RAt 
3 

3 

2 

3 

2 

3 
3 
3 
2 

3 
2 
2 

3 
3 

3 
3 
3 
3 

3 
3 
2 

2 

2 

3 
3 

3 
2 
3 

3 
3 

3 

3 

3 

3 
2 

3 
3 
3 
2 

3 

RA2 
3 

3 
2 

3 
2 

3 
2 

3 
3 

3 
2 

3 
3 
3 
3 
3 
3 
3 
2 
2 
2 

2 

2 
3 
3 
3 

2 

3 

3 
3 

3 

3 
3 

3 
2 
3 

3 
3 
2 
3 

-'-

RA3 
4 

4 

4 

5 
4 

4 
4 

4 
4 

4 

5 
2 

4 
4 

4 
4 

4 
4 
4 
5 
5 
4 

4 
4 
4 
4 

4 
4 

4 

4 

4 
4 
4 

4 
4 
4 
4 
4 

3 
5 

-­

RA4 
4 

4 
5 

4 

4 

4 

3 
5 
4 

4 
5 
4 

4 
4 

4 
4 
4 
4 

4 
4 

5 
4 

4 
4 
4 

4 

4 
4 

4 
4 

5 
5 
4 

4 
4 
4 
4 

4 

3 
5 

RA5 
4 

4 
5 

5 

5 

4 

5 
5 
4 

5 
5 
4 
4 
5 
4 

4 
4 
4 
4 
4 
4 

4 
4 
5 

4 
4 

4/5 
4 

5 
4 
4 

4 
5 
4 

5 
4 

3 
5 

RA6 
1 

1 
1 

1 

2 

2 
1 

2 
2 

1 

1 
1 

2 
1 
2 

2 
1 
2 
2 
1 

2 
2 
2 
2 

2 
1 

2 
2 

2 

2 
2/3 

1 

1 
2 
1 
1 
1 
1 

RA7 
3 

2 

4 

4 
4 

2 

2 
4 
4 

6 

5 

2 
2 
4 
3 
4 
4 
4 
4 

4 
4 
4 

4 

4 
4 
4 

4 

5 
4 

4 
4 

4 
4 
4 

6 
2 

3 
4 
4 

3 
4 

4 

RA8 
4 

2 

1 

3 
2 

6 
2 

2 

4 
5 

112 

2 
2 
2 
2 
3 

2/3 
4 
4 

4 

3 
2 
1 

4 
2 
2 

4 
3 

2 
3 

4 
4 

2 

1 

3 
3 
2 
2 

2 
2 

RA9 
2 

1 

1 

1 
2 

2 
2 

3 
4 

3 
1 
1 
2 
2 

3 
2 

2 
2 
3 
1 
2 
2 

2 
1 

1 

2 
1 

2 
1 

3 
2 

2 

1 
1 
2 
1 
1 
2 
1 
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III 



ID RAt RA2 RA3 RA4 RA5 RA6 RA7 RA8 RA9 
14.93 1 1 4 4 4 1 4 4 2 
14.98 3 3 5 5 5 3 4 4 1 

15.89 3 3 4 4 4 1 3/4 2 1 

15.91 3 3 4 4 4 1 4 3 2 

15.93 3 3 4 4 4 2 4 4 3 
15.98i 2 3 4 5 4 2 5 4 3 

15.99 2 3 4 4 4 3 4 3 3 

16.00 3 3 4 4 5 2 4 4 3 

16.89 2 2 4 4 4 1 5 2 1 

16.91 1 1 4 4 4 1 2 2 1 

16.92 3 3 4 4 4 

16.98 6 

16.99 3 3 5 4 4 2 4 4 3 

17.00 1 1 3 3 4 1 4 2 1 

17.91 1 1 4 3 4 1 4 4 2 

17.97 3 3 5 4 4 2 4 4 2 

18.88 2 3 4 4 5 1 4 2 2 

18.90 1 112 4 4 4 1 4 1 2 

18.91 2 2 4 5 5 1 4 3 2 

18.92 1 1 4 4 2 1 1 1 1 
18.97 3 3 5 4 4 2 4 4 3 
18.98 3 3 4 4 4 2 4 4 3 
18.99 2 3 4 4 5 1 4 3 2 

19.00 3 3 4 4 4 2 4 2 1 

19.01 6 

19.88 3 2 4 5 4 2 4 2 1 

19.90 2 2 4 4 4 2 4 3 3 

19.91 2 2 4 3 3 1 4' 2 1 

19.92 2 2 4 3 3/4 2/3 4 3 1 

19.93 3 3 4 4 5 2 4 4 2 

19.94 3 3 4 4 4 1 2 4 1 

19.98 2 3 4 4 4 3 5 3 1 
19.99 3 3 5 5 5 2 4 2 2 

20.03 3 3 4 5 4 2 4 4 2 
20.88 
20.90 3 3 4 5 4 1 2 3 2 

20.91 2 2 4/5 4 2/3 

20.92 2 2 4 4 4 1 2 2/3 1 

20.95 2 2 4 4 4 3 5 5 2 

20.98 2 2 3 3 3 2 2 2 1 

20.99 2 2 4 4 4 2 4 2 1 

21.00 3 3 4 5 5 3 4 3 2 

21.02 3 3 4 4 5 2 5 4 3 
21.90 2 3 4 5 4 1 3 3 2 

21.91 2 2 4 4 5 2 4 2 2 
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ID RAt RA2 RA3 RA4 RAS RA6 RA7 RA8 RA9 
21.92 1 1 3 3 2 1 1 1 1 

21.93 2 2 5 5 5 2 2 1 
21.94 2 2 4 4 4 3 5 2 1 

21.95 3 3 4 4 3 1 4 2 1 

21.98 3 3 4 4 4 2 4 4 2 
21.99 
22.00 3 3 4 5 4 2 4 3 2 

22.90 2 2 4 4/5 4 2 5 3 2 

22.91 2 3 4 3 4 1 2 2 1 

22.93 6 
22.94 3 2 4 4 3 112 4 3 2/3 
22.95 3 3 4 4 4 1 2 2 3 

22.99 1 1 4 5 4 2 2 2 1 

23.00 3 3 4 3 4 2 4 2 2 

23.88 3 3 5 5 4 1 4 2/3 1 
23.93 2 3 4 3 4 2 4 4 2 
23.94 2 2 4 4 4/5 1 4 4 2 
23.99 3 3 4 5 5 2 4 3 112 
24.00 2 3 4 4 4 3 3 3 3 
24.04 6 
24.88 6 6 
23.00 3 3 4 4 4 2 4 2 1 

25.02 3 3 4 4 4 1 4 4 2 
25.91 3 3 4 4 4 3 3 
25.99 3 3 4 4 5 3 4 3 1 
26.00 3 3 4 5 4 2 4 4 2 
26.91 3 3 4 4 4 1 2 2 1 
26.93 2 2 4 5 4 1 4 4 2 
26.99 6 

27.90 3 3 5 5 5 2 4 4 2 
27.91 1 1 3 3 4 2 2 2 1 

27.93 2 2 4 3 4 1 2 2 112 
27.99 6 

28.90 2 2 5 5 4 1 3 3 2 
29.00 3 3 4 5 4 2 4 3 1 
29.04 2 2 4 4 4 2 4 2 2 
29.93 2 2 5 5 5 1 4 2 1 
29.99 3 3 4 4 4 4 4 2 
30.93 2 2 4 3 4 1 4 2 1 
30.99 3 3 4 5 4 2 5 2/3 
31.00 3 3 4 4 4 1 4 2 1 

31.93 2 2 4 5 4/5 2 5 2 2 
31.99 2 3 4 4 5 2 4 3 4 

32.93 2 2 4 4 4 3 2 2 2 
32.99 3 3 4 5 4 3 5 3 2 or 3 
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ID RAt RA2 RA3 RA4 RA5 RA6 RA7 RA8 RA9 
33.99 3 3 4 4 4 2/3 4 4 3 

34.01 3 3 5 5 5 2 4­ 4 2 

34.93 3 3 4 4 4 2 4 2 112 
36.93 2 3 4 4 4 2 4 4 2 

37.93 2 2 4 4 4 2 4 2 2 

38.01 5 6 
38.93 2 2 4 4 4 2 4 4 2 

39.01 2 2 4 4 4 1 3 3 1 
45.93 3 3 5 5 5 2 4 4 1 
48.04 6 
49.04 

60.03 3 3 5 5 5 3 4 3 2 
42.05 
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ID LA! LA2 LA3 LA4 LAS LA6 LA7 LA8 LA9 

1.00 3 3 4 4 4 1 4 4 2 

1.01 2 2 4 4 4 3 4 

1.81 2 2 4 5 4 112 2 2 1 

1.82 2 2 4 3 5 1 4 2 1 

1.83 3 3 4 4 4 2 2 1 1 

1.84 

1.88 2 2 4 5 5 3 4 3 1 

1.91 3 2 4 4 5 2 4 2 2 

1.92 3 3 5 5 5 1 4 2 1 
1.93 2 4 2 4 2 1 

1.94 2 2 4 4 5 2 4 4 1 

1.96 3 3 4 4 4 2 4 2 

1.97 3 3 4 4 4 2 4 3 2 

1.98 2 2 5 5 5 2 4 1 1 
2.00 3 3 4 4 5 2 5 5 3 
2.02 3 3 4 4 4 2 4 3 3 
2.83 2 2 4 4 3 1 2 2 1 

2.84 3 3 4 4 4 2 3 2 1 
2.85 3 3 4 4 3 2 2 

2.87 2 2 3 3 3 3 4 4 2 
2.88 2 2 4 4 4 2 4 2 1 
2.89 2 2 4 4 4 1 4/5 2 1 

2.91 3 3 4 4 4 3 4 3 1 

2.92 2 3 4 5 4 3 4 4 2 

2.94 2 2 4 4 4 2 4 4 2 

2.95 3 3 3 3 2 3 4 1 
2.96 3 3 4 5 4 2 4 5 3 

2.97 3 3 4 4 4 3 

2.98 3 3 5 5 4 1 3 2 1 

2.99 3 3 4 4 4 2 5 4 2 
3.00 3 2 4 4 4 2 4 4 112 

3.01 2 2 4 4 5 2 4 4 2/3 
3.81 2 3 5 5 5 1 

3.83 2 2 4 5 4 1 4 112 1 
3.87 3 3 4 4 4 1 2 2 2 

3.88 
3.89 3 3 4 4 4 1 4 2 1 
3.90 3 3 4 4 4 2 4 3 
3.91 3 3 4 4 4 2/3 4 2 2 
3.93 3 3 4 4 4 2 3 3 2 
3.96 2 2 3 3 4 2 4 3 2 
3.98 
3.99 3 3 4 4 3 2 4 3 1 
4.00 3 3 4 4 5 2 4 4 3 
4.83 2 2 % 3/4 4/5 1 2 2 1 
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4.87 3 3 5 4 5 2/3 2 2 2 

4.88 3 3 5 5 5 1 5 1 1 

4.93 3 3 4 4 4 1 2 3 1 

4.94 

4.95 2 2 4 4 3 1 4 4 1 

4.96 3 2 4 4 4 1 4 4 2 

4.97 3 3 4 4 4 2 4 2 1 

4.98 2 2 4 4 4 2 4 3 3 

4.99 3 3 5 5 5 3 4 3 3 

5.00 2 3 4 4 4 3 4 4 1 

5.83 

5.87 3 2/3 4 4 4/5 2 4/5 2 2 

5.88 3 3 4 4 4 1 5 3 1 

5.93 3 3 4 4 4 1 4 3 2 

5.94 2 2 4 4 4 2 4 3 1 

5.97 3 3 4 4 4 3 2 4 2/3 

5.98 3 3 4 4 5 2 4 2 2 

5.99 2 3 4 4 4 2 4 5 2 

6.00 6 

6.02 6 

6.87 6 

6.88 3 2 4 4 1 3 2 1 

6.91 2 2 4 4/5 4 1 4 3 112 

6.92 2 3 4 4 4 1 4 4 2 

6.93 2 2 4 3 3 2 2 4 2 

6.95 2 2 4 5 5 3 4 4 1 

6.98 3 3 5 4 5 2 4 2/3 2 

6.99 3 3 4 4 4 2 4 3 3 

7.86 

7.87 3 2/3 4/5 5 4/5 1 112 1 112 

7.89 3 3 4 4/5 4 1 2 3 2 

7.91 2 2 4 5 5 3 4 4 2 

7.92 3 3 4 4 4 2 4 3 2 

7.93 3 3 4 4 4 2 3 3 2 

7.94 2 3 4 4 4 3 4 3 3 

7.95 3 3 4 4 4 3 4 2 1 

7.96 3 3 4 4 4 3 2 4 1 

7.97 2 1 4 4 3 2 2 3 1 

7.98 3 3 4 4 4 2 4 4 2 

8.87 1 1 3 3 2 1 2 1 

8.89 2 3 5 4 3 2 

8.91 2 3 5 5 4 1 4 2 1 

8.93 3 3 4 4 5 1 2 2 2 

8.94 2 3 4 % 4 2 4 2/3 2 

8.95 3 3 4 4 4 2 4 3 3 

8.96 3 2 4 4 4 1 2 2 2 
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ID LA! LA2 LA3 LA4 LAS LA6 LA7 LAS LA9 
8.98 1 1 4 4 4 2 4 1/2 1 
8.99 3 3 5 4 4 2 4 4 3 
9.00 2 3 4 4 3 1 4 4 1 

9.88 2 2 4 5 4 1 5 2 1 
9.89 2 2 4 5 5 1 4 1 1 

9.93 2 3 4 4 3 1 3 2 1 

9.94 

9.95 3 3 5 5 5 2 5 

9.96 2 3 4 4 4 2 2 2 

9.97 3 2 4 i 4 4 1 2 2 2 
9.98 3 3 5 5 5 2 4 4 3 
9.99 3 3 4 5 5 2 5 5 3 
10.00 3 3 4 4 5 3 4 2 2 

10.87 3 3 4 4 4 1 1 1 
10.88 3 3 5 5 5 2 5 2 1 
10.89 2 3 4 4 4 2 2 2 1 
10.90 6 

10.91 3 2 4 4 5 1 2 2 2 
10.92 2 3 3 4 4 2 4 4 2 
10.94 
10.95 2 2 4 4 4 2 5 2 2 
10.96 3 3 4 4 4 1 4 2 2 
10.97 3 3 4 4 4 2 4 4 3 
10.98 3 3 5 5 4 2 5 2 2 
11.89 2 3 4 5 4 1 5 2 1 
11.90 2 2 4 4/5 5 2 4 1 1 

11.94 2 3 4 4 4 2 4 4 2 
11.97 2 2 4 3 3 1 4 2 1 
11.98 3 3 4 5 4 2 4 2 1 
12.00 4 4 5 2 4 2 
12.87 2 2 4 4 4 1 5 2 2 
12.88 3 3 4 4 4 1 4 3 1 
12.89 2 2 4 5 4 2 4 3 1 

12.90 3 3 4 4 4 2 5 2 112 
12.91 3 2 4 4 4 2 4 2/3 1 

12.97 3 3 4 4 4 2 4 2 2 
12.99 3 3 5 4 4 2 2/3 4 2 
13.00 3 3 4 5 4 3 4 4 2 
13.01 6 
13.88 3 3 4 5 4 1 4 2 1 
13.91 2 2 4 5 5 1 4 2/3 1 
13.97 3 3 4 5 4 2 4 4 2 
14.87 3 3 4 4 5 1 4 3 112 I 

14.88 3 3 4 4 4 1 4 4/4 2 I 
14.90 1 1 4 3 4 1 2 2 112 I, 
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ID LAl LA2 LA3 LA4 LAS LA6 LA7 LAS LA9 
14.92 3 3 ti 5 5 3 2 2 1 
14.93 1 1 3 2 4 2 2 
14.98 2 4 5 2~3 4 4 1 
15.89 3 2 4 4 5 2 2 2 2 
15.91 3 2 4 4 5 1 4 3 2 
15.93 3 3 4 5 5 3 4 4 3 
15.98 3 3 4 5 4 2 4 4 3 
15.99 2 . 2 4 4 4 2 4 2 2 
16.00 2 3 0 4 4 2 4 3 3 
16.89 2 2 4 4 5 1 5 2 1 
16.91 2 2 4 4 4 1 2 2 2 
16.92 

16.98 2 2 3 3 3 2 5 4 2 

16.99 3 3 4 5 4 2 4 4 1 
17.00 1 1 3 3 3 1 4 2 1 
17.91 2 4 4 4 3 2 
17.97 3 3 4 I 5 4 2 5 4 2 
18.88 2 3 4 4 5 1 4/5 2 3 
18.90 112 112 4 4 5 1 4 1 2 
18.91 2 2 5 4 5 1 4 3 2 
18.92 1 1 4 3 4 1 1 1 1 I 

18.97 3 3 4 4 4 3 4 4 3 
18.98 3 3 4 4 5 2 4 3 3 
18.99 2 3 4 5 5 2 4 4 1/2 
19.00 3 3 4 4 4 3 2 4 2 
19.01 3 3 4 5 4 3 4 4 3 
19.88 2 3 4 4 4 2 4 2 1 
19.90 2 2 4 4 4 2 4 3 2 
19.91 2 2 5 5 5 1 3 3 1 
19.92 2 3 4 3 4 3 4 2 2 
19.93 3 3 4 4 5 1 4 4 2 
19.94 3 3 4 I 4 4 1 4 2 1 
19.98 3 3 4 5 5 2 5 3 1 
19.99 3 3 5 5 5 2 4 2 2 
20.03 3 3 4 4 5 2 4 5 
20.88 3 2 4 4 4 1 2 1 1 
20.90 2 2 5 5 4 1 4 3 2/3 
20.91 3 2 4 4 2/3 3 1 
20.92 3 2 4 4 4 2 4 3 2 
20.95 2 2 4 4 4 1 I 5 4 2 

2 3 4 5 4 2 4 1 1 
2 2 4 4 4 2 4 3 1 

21.00 3 3 4 5 5 3 4 4 2 

21.02 6 
21.90 2 3 4 I J 4 1 4 2 1 
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ID LAI LA2 LA3 LA4 LAS LA6 LA7 LAS LA9 
21.91 2 2 4 5 4 2 3 2 2 

21.92 1 1 4 4 3 1 2 1 1 

21.93 2 2 4 4 5 2 4 2 

21.94 2/3 2/3 4 5 4 2 4 

21.95 3 3 4 4 4 1 4 2 112 

21.98 3 3 4 4 5 2 4 2 2 

21.99 

22.00 3 3 4 4 4 2 4 3 1 

22.90 2 2 5 5 5 1 4/5 2 2 

22.91 3 3 4 4 4 1 2 4 1 

22.93 6 

22.94 3 3 4 4 5 1 3 3 3 

22.95 3 3 4 4 4 2 4 3 2 

22.99 1 1 4 5 4 1 1 2 1 

23.00 

23.88 3 3 4 5 4 1 4 4 1 
23.93 2 2 4 4 4 2 4 2 2 

23.94 2 2 4 5 5 1 4 4 2 

23.99 3 3 4 4 4 2 4 4 2 

24.00 3 3 4 4 4 3 4 4 3 

24.04 6 

24.88 2 2 4 4 3 4 3 1 

23.00 3 3 5 4 4 2 4 4 112 

25.02 3 3 4 4 4 2 4 4 2 

25.91 3 3 4 4 4 2 5 3 

25.99 3 3 4 5 4 2/3 3 4 1 

26.00 2 3 4 4 5 3 4 3 3 

26.91 3 3 4 4 4 1 3 2 1 
26.93 3 3 4 4 4 2 3 3 1 
26.99 3 3 4 4 4 2 1 

27.90 3 3 5 4 5 2 4 4 2 

27.91 3 3 4 4 3 2 3 3 1 

27.93 3 3 4 5 5 1 4 3 1 

27.99 3 3 4 4 4 3 5 4 3 
28.90 2 2 4 5 4 1 4 4 2 

29.00 2 3 4 4 4 2 4 2 1 

29.04 2 2 4 4 4 2 4 4 1 
29.93 3 3 5 5 5 1 4 3 1 
29.99 3 3 4 4 5 2 4 4 3 

30.93 2 2 4 4 4 1 4 1 1 
30.99 3 3 5 5 5 2 4 4 2/3 
31.00 3 3 4 4 4 1 4 2 1 

31.93 3 3 4 5 5 2 2 1 

31.99 2 2 4 4 4 3 4 2 2 

32.93 3 3 4 4 4 3 4 2 2 
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ID LAl LA2 LAJ LA4 LAS LA6 LA7 LA8 LA9 
32.99 2 3 4 4 2/3 4 3 

i 33.99 3 3 4 4 4 3 4 4 3 
34.01 2 2 5 5 5 2 3 2 3 

34.93 3 3 4 4 4 1 4 2 2 

36.93 2 2 4 4 4 2 4 2 2 

37.93 2 2 4 4 4 2 4 2 1 

38.01 2 3 4 4 4 2 4 4 1 

38.93 3 3 4 4 4 2 4 2 
I 

2 

39.01 2 2 4 3 4 1 3 4 1 
45.93 3 3 5 5 5 2 4 4 1 
48.04 6 
49.04 3 3 4 5 4 1 4 2 1 
60.03 6 
42.05 
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ID Cl C2 C3 C4 C5 
1.00 3 4 3 2 3 

1.01 3 5 1 5 4 

1.81 5 5 3 3 3 
1.82 5 5 4 4 4 

1.83 4 3 3 3 4 
1.84 5 5 4 4 5 
1.88 5 4 3 3 3 

1.91 2 3 1 3 3 
1.92 5 3 3 3 5 
1.93 5 3 3 3 4 
1.94 5 5 3 3 3 

1.96 3 3 1 5 4 

1.97 3 4 3 3 3 
1.98 5 4 3 3 3 
2.00 3 4 3 2 4 
2.02 4 4 3 2 3 
2.83 3 3 3 
2.84 5 5 3 3 3 
2.85 5 5 3 4 

2.87 5 3 3 4 5 
2.88 5 4 3 4 3 
2.89 3 3 2 3 4 
2.91 5 5 3 4 4 
2.92 5 3 3 3 3 
2.94 5 5 3 4 4 
2.95 5 3 3 3 4 
2.96 5 3 3 3 3 
2.97 3 3 3 3 4 

2.98 4 4 3 3 4 
2.99 5 5 3 4 3 
3.00 3 3 2 2 3 
3.01 4 4 3 3 3 
3.81 5 5 3 4 5 
3.83 3 3 3 2 5 
3.87 2 4 3 3 4 
3.88 
3.89 5 5 5 5 3 
3.90 3 5 4 3 3 
3.91 5 5 3 5 3 

3.93 4 4 3 4 4 
3.96 5 4 3 3 4 
3.98 5 5 3 4 4 
3.99 4 3 3 3 3 
4.00 3 3 3 3 4 
4.83 5 5 3 4 4 
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ID Cl C2 C3 C4 C5 
4.87 5 4 3 2 4 
4.88 5 3 2 4­ 4 
4.93 5 3 3 5 
4.94 5 5 3 5 
4.95 5 5 3 
4.96 3 3 1 

4.97 5 3 3 4 

4.98 5 5 3 2 3 
4.99 4 5 3 4 3 

5.00 5 5 3 4 5 
5.83 4 5 3 2 4 

5.87 5 5 3 3 3 

I 5.88 5 5 3 5 5 
5.93 4 5 3 4 4 
5.94 3 3 3 3 3 
5.97 4 4 3 2 3 
5.98 5 4 4 3 4 
5.99 4 5 2 3 3 

6.00 5 4 3 5 5 

6.02 5 5 .l EE 4 
6.87 5 5 1 3 
6.88 2 3 3 3 3 
6.91 3 5 3 3 3 
6.92 5 5 3 5 5 
6.93 5 3 3 3 3 

6.95 5 3 1 3 4 

6.98 5 4 3 3 5 

6.99 3 4 3 4 5 
7.86 3 3 2 3 4 

7.87 4 3 2 3 3 
7.89 4 3 3 3 4 
7.91 5 5 5 5 5 
7.92 3 5 3 1 1 

7.93 4 4 3 5 3 
7.94 5 4 4 4 4 

7.95 5 5 3 3 1 

7.96 5 5 5 3 1 

7.97 

7.98 3 3 EEE8.87 4 1 3 
8.89 4 5 3 5 4 
8.91 4 4 3 5 5 

8.93 5 4 3 3 5 

8.94 3 4 3 4 4 

8.95 5 4 3 3 5 
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ID Cl C2 C3 C4 CS 
8.96 3 3 3 3 4 

8.98 4 4 3 4 4 

8.99 5 5 3 5 3 
9.00 2 or 3 4 3 3 3 
9.88 3 5 3 3 4 

9.89 2 4 1 2 5 
9.93 4 4 3 2 4 

9.94 3 4 3 4 4 

9.95 4 3 3 3 4 

9.96 3 5 43 3 
9.97 

9.98 5 3 2 4 4 

9.99 5 4 3 3 3 
10.00 5 5 4 4 5 
10.87 5 5 3 3 5 
10.88 5 5 3 3 5 
10.89 5 3 3 3 4 
10.90 5 2 3 4 3 
10.91 5 3 3 3 3 
10.92 4 5 3 4 4 
10.94 4 5 3 3 4 
10.95 5 4 3 3 4 
10.96 5 4 3 4 3 
10.97 
10.98 3 1 1 2 1 
11.89 5 3 1 3 3 
11.90 3 3 3 3 3 
11.94 

11.97 

11.98 3 2 2 3 4 
12.00 4 2 1 3 5 
12.87 5 5 3 4 4 
12.88 3 5 3 3 3 
12.89 5 5 3 3 5 
12.90 3 4 3 3 3 
12.91 4 4 3 3 4 
12.97 
12.99 5 5 3 3 3 
13.00 3 4 3 3 4 
13.01 5 5 3 3 4 
13.88 1 3 1 3 4 
13.91 2 33 3 3 5 
13.97 
14.87 5 5 3 5 
14.88 3 5 3 3 5 
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ID Cl C2 C3 C4 CS 
14.90 2 3 1 
14.92 5 4 30r4 5 4 
14.93 2 3 1 2 3 

H*: 5 5 3 3 3 
5 5 3 4 3 

I 15.91 5 4 4 3 5 
15.93 5 5 3 4 5 

~98 3 3 2 2 3 
.99 4 5 2 3 4 

16.00 4 5 3 3 4 
16.89 5 4 4 3 5 
16.91 5 5 3 3 3 
16.92 5 5 5 5 5 
16.98 4 2 3 4 4 
16.99 5 5 3 3 3 
17.00 4 4 3 4 4 
17.91 3 3 3 3 3 
17.97 5 3 J 3 4 
18.88 5 5 3 4 3 
18.90 3 5 3 3 3 
18.91 3 3 3 3 3 
18.92 3 1 1 3 3 
18.97 4 4 3 2 3 
18.98 4 3 3 3 3 
18.99 4 5 3 4 4 
19.00 2 2 3 
19.01 5 3 2 2 4 
19.88 5 4 3 3 4 
19.90 5 5 2 4 5 
19.91 3 3 3 3 3 
19.92 4 4 3 3 3 
19.93 5 5 3 3 3 
19.94 4 5 3 4 5 
19.98 5 4 3 4 3 
19.99 5 4 2 2 3 
20.03 5 2 4 2 1 
20.88 3 4 1 
20.90 3 1 1 2 3 
20.91 5 3 3 3 1 
20.92 5 5 4 4 3 
20.95 3 3 1 4 4 
20.98 5 4 3 2 3 
20.99 4 43 5 4 
21.00 4 3 2 3 4 
21.02 3 3 3 3 4 
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ID Cl C2 C3 C4 C5 
21.90 5 5 4 5 5 
21.91 5 4 3 3 5 

21.92 2 1 1 2 1 
21.93 5 3 2 3 3 
21.94 5 4 3 3 4 

21.95 5 4 3 3 3 
21.98 4 5 3 3 3 
21.99 5 3 3 3 3 
22.00 2 4 2 2 5 
22.90 3 3 3 4 3 
22.91 3 4 3 2 3 
22.93 2 2 3 3 
22.94 5 4 3 3 4 
22.95 
22.99 4 2 2 3 
23.00 5 5 3 3 1 
23.88 3 2 2 1 3 
23.93 5 30r4 3 3 4 
23.94 5 3 3 4 3 
23.99 4 4 3 4 4 
24.00 1 3 1 2 1 

.24.04 5 4 3 3 4 
24.88 3 3 1 3 4 
23.00 5 5 3 4 5 
25.02 4 5 3 4 5 

25.91 4 3 2 3 4 
25.99 4 3 2 3 3 
26.00 4 '5 2 3 4 

26.91 ,3 2 3 
26.93 3 4 3 3 3 
26.99 3 5 3 2 1 

27.90 3 3 3 3 4 
27.91 3 3 3 3 3 
27.93 4 5 4 3 3 
27.99 5 4 3 3 4 
28.90 3 5 2 2 5 
29.00 5 4 3 4 4 
29.04 4 4 4 3 4 
29.93 3 4 3 3 4 
29.99 4 4 3 3 3 
30.93 3 3 3 3 3 
30.99 4 3 3 4 3 
31.00 4 4 3 4 4 
31.93 4 4 3 4 3 
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ID Cl C2 C3 C4 C5 
31.99 3 3 5 3 5 
32.93 5 4 3 3 4 
32.99 5 5 3 3 4 
33.99 
34.01 5 4 3 3 3 
34.93 5 2 3 3 5 
36.93 5 4 3 3 4 
37.93 
38.01 3 3 3 3 3 
38.93 4 4 4 4 5 
39.01 2 2 3 2 3 
45.93 4 4 3 3 4 
48.04 ~ 5 

3 
3 5 5 

49.04 3 3 4 
60.03 5 3 4 3 4 
42.05 4 4 2 3/4 3/4 

... 
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Appendix 2 - Real age and ages-at-death estimated from ADBOU. 

ID Real 
A2e 

MLA-All MLA-
Hazard 

MLA-
Pubis 

MLA-
Auricular 

MLA-
Sutures 

1.00 41 60.696725 54.510755 46.800614 76.949768 51.262114 
1.01 84 81.569358 73.119713 64.548998 100.959211 65.534057 

1.81 73 78.417107 69.037446 46.56865 93.133096 102.801349 

1.82 55 70.844507 62.346375 57.383353 69.667967 110 

1.83 79 60.481977 53.8945 75.220485 44.176828 81.378274 

1.84 62 69.360957 72.206615 54.293298 76.87052 102.616315 
1.88 71 43.245273 41.386641 32.652345 70.711979 110 
1.92 55 89.676543 77.436877 49.820775 110 110 
1.93 53 53.742172 47.102503 45.096102 51.634813 81.378273 
1.94 45 44.70639 42.745368 35.53173 75.278065 102.801349 
1.96 66 83.85783 73.947507 110 65.480917 91.607709 
1.97 79 84.583399 74.631408 57.783661 100.264855 86.984263 
1.98 58 42.395318 40.94035 32.200638 81.987036 110 
2.00 58 73.765152 74.515927 79.89108 90.538898 29.555741 
2.02 46 61.604374 64.921251 66.390973 94.000017 29.12785 
2.83 55 46.400346 46.870468 46.797812 48.073419 38.524057 
2.84 65 57.837711 60.58804 45.517426 67.206568 56.860948 
3.00 43 50.453323 51.666376 71.466362 67.421385 27.356333 
2.99 62 76.733853 68.081993 57.383353 86.77417 83.624252 
2.98 53 74.020591 66.967231 53.935703 88.055294 110 
2.97 77 86.767756 74.791776 110 79.311162 64.2866 
2.96 87 99.849763 81.625426 79.162294 110 90.228998 
2.95 80 54.254162 49.595736 41.078651 67.380069 81.378274 
2.94 72 68.16424 60.313253 51.104142 69.597485 110 

2.92 62 42.607085 40.184798 31.241336 73.830938 55.419756 
2.91 81 97.690362 79.111426 84.858507 98.707942 110 
2.89 36 68.152436 60.363626 58.892732 70.745688 76.008056 
2.88 61 72.772243 65.131026 64.952826 74.667778 97.797493 
2.87 75 73.221512 64.152804 67.399662 67.607672 110 
2.85 87 71.996443 73.601961 84.388265 62.478914 66.698439 
3.01 62 72.540525 66.174407 53.835654 88.912834 68.215584 
3.81 72 38.88343 37.616092 30.134985 82.313868 110 
3.83 63 56.434618 50.025089 43.665492 80.597555 54.34363 
3.87 36 38.978212 38.047672 33.228346 57.802635 71.261371 
3.89 49 81.495169 68.973838 75.553626 78.335919 110 
3.90 43 74.717838 66.701413 65.26034 80.499164 72.88968 
3.91 68 72.587928 64.938169 64.863835 72.241556 110 
3.93 56 55.238368 50.620292 37.653754 74.707737 110 
3.96 55 47.336981 41.953608 39.318465 100.937554 
3.98 89 110 62.444004 110 110 
3.99 66 72.096121 64.418633 70.650632 77.14288 55.419756 
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ID Real MLA-AU MLA­ MLA­ A~ MLA-
Age Hazard Pubis Sutures 

4.00 56 83.487244 74.143259 50.339095 109.558099 71.118123 

4.87 55 48.86163 46.025983 36.461159 86.124265 66.518366 

4.93 54 37.166691 36.518097 31.847978 71.182647 110 

4.94 101 110 72.270507 110 110 
4.95 43 44.762815 42.075238 44.733432 36.797207 110 
4.96 55 39.344142 38.351032 32.202645 89.719481 43.714826 

4.97 33 74.142252 64.639082 46.800614 83.748154 110 

4.98 56 62.559219 56.316385 46.800614 77.260387 50.245795 

4.99 57 96.900459 83.400979 71.623032 110 83.624252 

5.00 89 79.279998 68.890963 57.902386 84.77633 110 

5.83 48 39.834783 38.64907 38.866834 29.742692 59.03594 

Rfl53 
65.150297 58.736633 54.415547 73.486559 56.860948 

53 53.022006 48.801394 37.488548 75.510079 110 
46 67.552455 57.998088 60.968736 70.909862 101 

5.97 ij 66.602867 60.011143 88.973445 78.239791 29.12785 

5.98 58.936744 53.157485 37.652864 82.648461 110 

5.99 67.21624 59.450808 50.339095 78.742987 68.716823 

6.00 71 110 73.638974 v I 110 

6.02 77 110 67.903489 110 110 

6.87 69 110 55.892361 110 110 

6.91 65 56.891549 51.837117 40.869338 ~8968 
6.92 62 31.609249 31.108215 26.876517 110 

6.93 80 46.115723 43.34121 36.518697 63.899981 55.419756 
6.95 69 94.513448 81.298382 110 84.35679 74.569225 

6.98 56 80.246609 70.556517 49.820775 87.948851 110 

6.99 77 78.316417 69.035122 50.339095 91.213017 110 

7.86 67 71.024959 60.704999 49.854129 76.951683 76.008056 

7.87 58 63.761088 56.493684 50.902838 68.006661 67.883137 

7.89 50 73.53598 65.315654 45.787005 82.966487 110 

7.91 63 85.946189 75.302099 59.23714 96.403001 110 

7.92 64 30.534053 30.115623 90.367092 82.611171 19.171532 
7.93 64 31.401638 31.037159 26.8972 73.384193 110 

7.94 41 .400686 47.958874 34.697796 80.49007 110 
71 8.958298 70.453954 110 ~ 38.616558 

7.98 67 63.02 55.79 27.48 82.81 

7.96 57 35.112366 34.145997 110 91.616491 20.122726 

7.97 52 55.259529 50.255123 91.834345 36.246453 

8.87 25 20.386965 20.288411 19.472936 25.904843 34.933044 

8.89 66 79.908357 71.640878 71.709064 76.545719 110 

8.93 52 45.887783 43.74047 34.461375 Iv. 110 

8.94 63 86.712626 78.047922 87.442046 81.814502 110 

8.95 56 71.915774 65.056532 44.957997 81.569006 110 

8.96 57 62.003952 56.117184 73.120545 44.874672 110 

8.98 36 43.163711 41.334585 34.743636 110 
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ID Real 
Age 

MLA-All MLA-
Hazard 

MLA-
Pubis 

MLA-
Auricular 

MLA-
Sutures 

8.99 43 33.662011 33.002478 27.768579 100.591075 110 

9.00 43 60.752596 53.391928 56.880307 68.350924 51.684929 

9.88 58 78.550707 70.15422 71.769382 79.745925 110 

9.89 43 43.084518 41.189903 39.322749 52.880512 60.908553 

9.93 42 40.327258 39.241162 32.131057 91.77473 66.518366 

9.94 68 72.587044 63.3668 57.902386 72.739564 110 

9.96 59 79.523297 69.717251 76.313067 72.99759 110 

9.97 56 59.942085 51.905421 46.800614 68.146046 

9.98 65 88.595371 76.66384 57.902386 110 85.433203 

9.99 54 86.005929 76.84973 84.009677 90.203343 68.215584 

10.00 54 84.381802 71.593312 57.902386 100.796208 110 

10.87 76 65.320986 57.969265 46.961493 67.061175 110 

10.88 49 71.190457 62.592327 39.471024 107.634333 110 

10.89 50 62.802033 55.553683 50.339095 54.267345 110 

10.90 59 64.135352 56.96415 47.397363 81.274789 61.246568 

10.91 35 67.342345 59.545054 46.800614 74.47963 90.228998 

10.92 62 70.716397 63.411057 46.597222 79.372612 110 

10.94 67 93.252673 79.126049 96.633686 79.875808 110 

10.95 56 48.641522 45.489865 32.470723 81.024665 110 

10.96 67 71.369173 63.027296 49.820775 79.658584 97.797493 

10.97 97 86.428064 74.303836 84.250509 87.844925 

10.98 69 81.414979 73.306095 108.759315 85.883987 22.696456 

11.89 53 70.131697 61.933904 47.540136 91.511366 55.041085 

11.90 68 64.296912 57.859806 64.591697 61.543199 71.118123 

11.94 63 38.576536 37.339426 33.435259 74.612045 

11.97 56 64.29794 55.301452 53.185544 71.476925 

11.98 49 67.670121 58.352118 48.14371 90.433713 

12.00 74 32.969174 32.139738 26.585335 77.826452 54.159961 

12.87 82 76.94597 68.963848 76.962756 68.430151 110 

12.88 47 62.785803 55.331358 43.875017 78.467352 72.88968 

12.89 63 78.251752 65.946819 57.902386 82.591518 110 

12.90 52 69.487356 62.658448 70.375585 72.260614 53.839798 

12.91 70 80.753532 70.962128 69.519658 77.829767 110 

12.97 60 81.022191 71.31183 57.783661 92.529239 

12.99 72 87.351478 77.587425 100.669565 85.783579 56.860948 

13.00 44 75.006065 66.431308 49.820775 89.200662 76.758448 

13.01 86 110 63.986383 110 110 

13.88 31 46.96566 43.646168 85.271884 71.073292 26.865002 

13.91 34 36.943489 36.339625 31.785887 75.806806 62.259365 

13.97 71 78.551116 67.634971 65.837944 84.947456 

14.87 50 37.466094 36.631766 31.376078 80.976785 110 

14.88 56 59.064583 53.14914 39.652023 77.936794 110 

14.90 37 37.648616 36.630321 46.276467 30.780267 34.723896 

14.92 57 91.318582 78.418063 49.820775 - 110 110 
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ID Real MLA-AII MLA­ MLA­ MLA­ MLA-
Age Hazard Pubis Auricular Sutures 

14.93 32 ~ 25.56633 23.358773 44.989611 34.718988 

14.98 61 72.193808 49.820775 103.617439 102.801349 

15.89 81 67.631756 60.115377 46.875 75.169032 83.624252 

15.91 51 59.427504 53.646143 37.647728 79.317745 110 

15.93 84 74.019104 65.456283 42.335816 110 110 

15.98 84 60.182928 54.191013 70.672637 92.378501 27.356333 

15.99 62 79.264287 71.319859 74.688386 79.788037 110 
16.00 61 86.657667 76.134687 69.468831 91.973224 ; 110 
16.91 46 52.198713 48.054449 59.247016 38.78614 02.801349 
16.92 86 46.18929 43.703252 36.48422 81.818191 110 
16.98 L'n 63.228433 55.31309 57.902386 58.308109 78.042384 
16.99 82 88.717~2 86.970556 ~32406 56.860948 

17.00 35 26.644 26.383066 26.149225 22.713822 110 
17.91 26 35.098 34.134873 26.949653 43.391062 71.118123 
17.97 84 98.21679 84.718932 110 94.428567 93.058396 
18.90 27 37.354655 36.420029 35.850331 40.008397 73.18014 

18.91 58 69.394989 61.74762 49.820775 80.327541 71.118123 
18.97 78 80.413585 70.243723 57.902386 110 55.529984 
18.98 67 77.593113 68.475822 .51.104142 93.794831 90.228999 
18.99 55 86.952045 77.764726 84.967957 81.339661 110 

19.00 72 67.185501 61.342409 78.47423 66.8714 31.853069 
19.01 67 74.466653 £A £""362 47.397363 110 53.106214 
19.88 46 77.053874 67.841307 46.800614 82.201442 110 
19.90 67 81.962407 72.624579 92.161955 73.482943 92.534908 
19.91 41 37.57005 36.900027 31.579788 79.917407 71.118123 
19.92 27 45.190165 43.155248 34.538371 73.139047 110 

19.94 54 69.834702 60.136751 51.800394 78.26191 110 

1~ 85.494924 76.817486 79.444823 89.343584 97.797493 
19.99 86.18432 75.3448*.544866 110 50.230459 
20.03 44 29.0457 28.7688 .138583 86.707722 20.06874 
20.90 29 36.731261 36.081812 35.398844 89.16198 23.445451 

20.91 76 50.931595 46.7171 49.505872 60.542365 42.804168 
20.92 71 66.283035 57.868224 57.902386 67.017513 88.485251 
20.95 62 81.168519 70.482272 110 73.641092 47.44162 
20.98 63 39.322984 38.347103 37.778906 43.14244 42.50468 

20.99 55 60.170066 51. 789979 J 46.800614 66.867669 89.92337 J 
21.00 71 74.188187 64.642275 49.820775 96.143277 56.007422 

21.02 46 101.159059 84.806416 110 95.755548 67.639813 
21.90 69 75.184382 66.753247 64.863835 78.161451 110 

21.92 25 23.273212 23.150~ 23.959276 19.861514 15 

21.93 82 3~4.7323 28.771793 62.892576 53.946255 

21.94 89 78.352457 68.617696 69.130461 80.485739 110 

21.95 50 45.215189 42.646354 36.450498 75.604159 75.016611 

21.98 52 69.882387 61.317689 50.339095 85.371761 58.625167 
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ID Real 
Age 

MLA-All MLA-
Hazard 

MLA-
Pubis 

MLA-
Auricular 

MLA-
Sutures 

21.99 63 55.726642 46.700047 50.339095 70.788214 

22.00 57 58.92038 52.173981 110 81.497319 25.701298 

22.90 78 80.257742 71.481526 76.385457 87.381958 60.325845 

22.91 43 36.840239 35.942746 32.072056 71.805023 34.504516 

22.93 73 110 39.502188 110 71.599091 

22.94 55 48.210387 44.752053 33.832088 87.160768 110 

22.95 41 65.60037 57.039471 43.875017 81.022901 

22.99 27 39.307675 37.917948 45.060875 35.803797 30.596061 

23.00 81 60.053618 53.432337 58.328581 69.930973 43.070499 

23.88 59 74.312135 66.293796 84.436219 97.3227 29.277988 

23.93 76 42.894201 41.203815 35.142115 71.664559 110 

23.94 67 73.704261 64.777187 57.902386 79.832315 86.459735 

23.99 79 75.617562 66.610096 45.841857 86.723625 110 

24.00 73 76.816496 68.881264 110 89.769613 19.756495 

24.04 61 110 53.86 110 110 

24.88 68 55.782612 48.695451 49.820775 74.281878 42.756561 

23.01 80 80.167592 69.115404 57.919072 88.034918 110 
25.02 42 79.592543 70.468431 76.385457 79.799696 106.509911 

25.91 48 65.44'2504 56.41204 49.820775 81.555752 56.007422 
25.99 67 89.940021 78.381066 104.967141 94.004441 45.189425 
26.00 77 82.448819 73.610465 72.138271 92.441404 55.955558 
26.91 31 34.401842 33.966049 32.490953 73.390701 31.505613 

26.99 74 56.890557 50.821614 56.273005 76.022086 33.566082 

27.90 54 88.590748 78.34415 72.704407 110 70.412208 

27.91 38 27.599807 27.503192 25.818092 27.687019 54.300555 
27.93 39 49.327024 45.645931 37.139193 81.553388 58.625167 

27.99 88 76.382489 67.168995 58.182252 81.636382 110 

28.90 45 73.475137 65.196595 71.086488 84.441997 42.526567 

29.00 39 74.899638 65.540852 50.339095 83.657346 110 

29.04 34 33.775186 33.246787 29.376125 68.543214 86.459735 

29.93 56 82.556708 71.539243 49.820775 109.50341 75.0282 

29.99 61 83.268085 73.122133 79.162294 89.627403 61.216857 

30.93 46 48.873265 44.944556 46.800614 49.246579 52.395245 
30.99 65 104.825082 87.954345 99.518438 110 68.248198 
31.00 48 73.36578 62.859947 57.783661 79.056782 110 
31.93 68 48.832786 45.48601 36.859175 66.743011 110 
31.99 45 72.342831 64.594206 64.863835 78.83336 70.412208 
32.93 73 87.79492 76.943459 99.518438 77.084598 110 
32.99 97 92.328458 79.882331 84.25054 95.483287 110 
33.99 94 101.539178 84.776376 110 89.978628 -1 
34.01 66 96.361966 83.621237 97.15755 98.664306 75.016611 
34.93 51 40.219633 38.859375 34.02995 75.959796 45.110368 
36.93 55 52.301397 47.25 36.541788 74.655351 110 
37.93 62 47.703233 44.16723 40.762612 65.877064 69.564617 
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ID Real MLA-AII MLA­ MLA­
A e Hazard Pubis 

38.01 70 76.152797 65.6285 71.623032 

38.93 54 76.279129 66.696245 66.822634 78.203073 

39.01 36 38.132992 36.728696 35.877128 59.36859 

45.93 73 87.691325 75.3635 50.339095 110 

48.04 46 110 63.066159 110 110 

49.04 64 93.999017 79.636634 91.331165 102.547095 80.722324 

79 92.330251 78.431476 57.902386 110 110 

42 34.661534 34.206455 31.324321 58.370849 51.398102 
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