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ABSTRACT 
 
The repetitious use of diameter-limit harvesting in upland hardwoods has led to low-valued 
stands with understory canopy layers containing mostly shade-tolerant species. Desirable, shade 
intolerant reproduction is limited to regenerate these stands. This study evaluated the 
effectiveness of post-harvest herbicides (glyphosate and sulfometuron methyl) and application 
methods to accelerate the growth of natural oak advance reproduction. Treatment areas received 
clearcut treatments in the late winter/early spring of 2014.  Six treatment units were established 
using banded foliar sprays, radial release sprays, pre-emergent broadcast sprays, or combinations 
of methods, along with an untreated control. Permanent regeneration plots were measured pre-
harvest and after harvest (fall 2014) to evaluate the regeneration response.  Individual white and 
red oak species along with yellow-poplar seedlings were measured for ground line diameter and 
overall height.  Second measurements were taken in the winter of 2017 (two growing seasons 
later) to determine diameter and height growth change. Yellow-poplar and oak species 
reproduction per acre estimates, for the 2017 measurements, for block A, B, and C were 850, 
1,900, and 233 seedlings. Shade intolerant reproduction formed a greater abundance compared to 
the shade tolerant species. It is proposed that the larger shade tolerant reproduction present 
before harvest was completely removed during the timber harvest activity. Significant 
differences were found between herbicide applications for absolute ground line diameter change 
for combined seedlings (P=0.0037), absolute height change for combined seedlings (P<0.0001), 
diameter growth among species (P=0.02988), height growth among species (P=0.0399), diameter 
change for sprout reproduction (P=0.0268), height change in new germinant reproduction 
(P=0.0245), height change for sprout reproduction (P<0.0001). Change in ground line diameter 
for yellow-poplar new germinants was significant (P=0.0161). The change in height comparisons 
for the species with size class found yellow-poplar sprout reproduction (P=0.0031), white oak 
new germinant and sprout reproduction were different (P=0.0152 and P<0.0001, respectively). 
Sulfometuron methyl only treatments typically had the greatest growth responses while radial 
treatments using glyphosate performed the poorest. A dense coverage of grasses established 
following herbicide applications. The emergence of grass likely reduced growth rates due to 
altered microenvironments as well as competition for root zone growing space, soil moisture, 
and nutrients.  
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1. STATEMENT OF THE PROBLEM 

 Diameter-limit harvesting is commonly practiced in the central hardwood region by 

timber companies, and the use thereof is supported by private landowners.  In forested stands 

that have been indiscriminately cut over several times, the regeneration response of desirable 

species can be at best, compromised. An abundance of shade tolerant species typically persist in 

the midstory and understory canopy positions of these stands. Advanced oak reproduction 

stocking is minimal. The application of the silvicultural clearcut regeneration method is 

commonly the optimal prescription used to regenerate the stand with more desirable, shade 

intolerant species. Following the clearcut, seedling stocking density is high which affects 

juvenile growth rates. The application of herbaceous weed control in conjunction with directed 

foliar spray applications of glyphosate herbicide to reduce stocking density will improve growth 

of released seedlings. Targeted herbicide application may improve the slower- growing oaks’ 

competitive status compared to faster-growing shade intolerant species, including yellow-poplar.  

A reduction in competing plant species around individual seedlings may also promote improved 

growth of preferred tree species. In addition, species could also be selected to alter the future 

stand’s composition. Herbicide applications applied in the initial year following disturbance can 

be accomplished operationally to successfully improve stands by using precision targeting to 

minimize potential loss of beneficial stems. Such silvicultural activities will advance adequate 

stocking of desirable species that may reduce rotation age, increasing the financial rate of return 

relative to forest management. A high-graded stand results from the removal of the more 

valuable trees from the stand while retaining the poorer growing stock. Such stands may need a 

greater level of active management to successfully regenerate desirable shade intolerant species. 

This study examines whether adequate oak regeneration will establish and develop in a high-

graded stand, by implementation of silvicultural clearcutting, and if early herbicide applications 

applied at the incipient stages of stand re-initiation can improve early growth of naturally 

regenerated oak and yellow-poplar seedlings. Initial hypotheses include 1) regeneration will 

favor shade tolerant species following disturbance and 2) greater growth responses will be 

directly related to increased intensity of herbicide applications. In other words, applications 

involving both sulfometuron methyl and glyphosate herbicides should maximize seedling 

growth. Sulfometuron is commonly used to release seedlings from herbaceous competition. 
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Glyphosate is a broad spectrum herbicide that can kill woody plants but is also utilized for 

seedling release. 
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2. LITERATURE REVIEW 

Diameter Limit Harvesting 

 Sustainable forestry implies that desirable timber species can be commercially harvested, 

but are successfully regenerated to form future stands. Income derived from timber sales propels 

forest management. In the southeastern United States, higher financial values are associated with 

high-grade, shade intolerant trees.  Proper silvicultural prescriptions coupled with sound timber 

harvesting methodology promotes the sustainability objective. Unfortunately, too often improper 

timber extraction in the form of diameter limit harvesting is conducted to maximize immediate 

economic return while minimizing logging costs. This practice involves removing only the larger 

sized stems above a threshold diameter from a forested stand. However, diameter-limit 

harvesting practices often result in impoverished stands (Fajvan 2006). The widespread 

implementation of this harvesting technique is a leading cause to the decreased true value of 

otherwise economically attractive timberland (Fajvan and others 1998). Noss and others (1995) 

proposed that high-quality oak/hickory forests are on the decline in areas across the central and 

southern Appalachians. The authors also suggest that degrade in quality is attributed to species 

composition shifts resulting from diameter-limit harvesting. The prevalence of shade tolerant tree 

species is less advantageous for forest management compared to stands with greater 

compositions of shade intolerant species. Trimble (1973) reported that repeated single-tree 

selection and diameter-limit harvesting lead to a higher proportion of shade tolerant species in 

the overall stand species composition along with a general reduction in species diversity. Often 

times, oak stem abundance is significantly reduced following such timber harvests due to the loss 

of desirable parent growing stock. The reduction in seed sources for preferred financially 

attractive species occurs as they are targeted for removal. It is well-documented that harvesting 

of timber used in the production of hardwood products is species and quality driven (Luppold 

and Pugh 2016). Fajvan and others (1998) observed that 36% of surveyed timber harvests in 

West Virginia in 1995 reduced the basal area of northern red oak (Quercus rubra), white oak 

(Quercus alba), yellow-poplar (Liriodendron tulipifera), ash (Fraxinus sp.), and black cherry 

(Prunus serotina) by more than 80%. Fajvan (2006) assessed ninety-nine timber harvests in West 

Virginia and observed that red maple regeneration density was almost three times greater than 

yellow-poplar at 4 – 5 years post timber harvest. The author suggested that red maple height 

growth is promoted over black cherry and yellow-poplar growth due to the shading created by 
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the residual overstory in diameter limit harvest areas. Red oak species only comprised 1% of the 

codominant/dominant stems and were usually overtopped by other tree species. The original 

stands in their study contained an average stocking for northern red oak of 45 square feet of basal 

area per acre. The inability of oak reproduction to establish greater crown positions is of great 

concern amongst researchers and the implementation of diameter limit harvesting only 

compounds this problem (Schuler and others 2016). 

 

Oak Regeneration Establishment 

 Establishment of adequate oak reproduction is problematic in undisturbed and properly 

managed hardwood stands.  Oak (Quercus sp.) are some of the most difficult tree species to 

attempt to regenerate using common silvicultural practices and natural seed stock (Hannah 

1987).  Few acorns produced during a mast crop will germinate and form a seedling (Downs and 

McQuilkin 1944, Marquis and others 1976). Oak seedling establishment is typically dependent 

on masting events as most seeds are consumed during non-mast years (Lorimer 1993). Impacts 

from predation by insects and animals inhibit the establishment of oak reproduction (Marquis 

and others 1976, Galford and others 1991).  Seed desiccation due to a loss of seed moisture 

content that occurs in the winter dormant season is a major cause of seed loss (Korstain 1927).  

Downs and McQuilkin (1944) reported that only about 18% of white oak acorns studied in their 

project were sound enough to germinate and further approximately 6% of these seedlings had at 

least a fair chance to survive.  They also suggest that a minimum of eight seed trees per acre are 

needed to supply enough acorns for germination.  For those acorns that do survive, adequate 

light must be available for the seedling to grow in size and become an overstory tree. Carvell and 

Tryon (1961) reported that oak’s ability to become established was not related to environmental 

conditions, but to their ability to persist. The primary reason that oak reproduction fails to form 

dominance in the future stand is usually attributed to a lack of adequate, sizeable advanced 

reproduction present at disturbance (Sander 1971). Slow growth rates also contribute to less 

competitiveness by oak as compared to faster growing species, such as yellow-poplar, to capture 

available growing space. The abundance of shade-tolerant stems in the understory and midstory 

of oak-dominated stands has been linked to changes in disturbance regimes, changes in climate, 

changes in herbivore pressure, loss of native species, and the establishment of alien species 

(McEwan and others 2011). Introducing a process of disturbance via silviculture prescriptions 
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that mimic those that resulted in oak-dominant stands has proved to be challenging across the 

east (Loftis 1990, Schweitzer and Dey 2011, Hutchinson and others 2016, Miller and others 

2016, Schuler and others 2016). It has been hypothesized that historically, relatively open 

conditions in oak-dominated stands were maintained by frequent, low-intensity, surface fires that 

removed fire-sensitive species and favored fire-tolerant oak in the regeneration layer (Abrams 

1992, Hanberry and others 2014, Stambaugh and others 2015). This explanation for the 

widespread and long-term dominance of oak is known as the fire and oak hypothesis (Abrams 

1992, Arthur and others 2012). Many oak species are generally drought tolerant, have relatively 

thick bark, readily stump sprout, and compartmentalize wounds; all fire adapted traits (Abrams 

1992, Stambaugh and others 2015) 

 The establishment of oak reproduction initially requires an abundance of viable acorns. 

Greenberg and Parresol (2000) found that on average years, 29% of oak stems in a given stand 

will produce acorns; whereas in a good year, between 70 – 90% of oak trees will yield acorns. 

Acorn production consistency typically ranges between species and individual trees (Downs and 

McQuilking 1944, Burns and others 1954, Gysel 1956, Sharp and Sprague 1967, Christisen and 

Kearby 1984, Koenig and others 1994, Sork and others 1993). Goodrum and others (1971) 

suggest that intrinsic features such as age or size influence acorn production. Others demonstrate 

some relationship between external conditions such as stand density and acorn production 

(Healy, 1997). Results of this study confirm Beck’s (1977) findings that on average, northern red 

and white oak are superior acorn producers. However, this study among others clearly illustrate 

the importance of maintaining mixed oak stands, since interspecific differences in temporal 

masting patterns often offset complete mast failures (Beck and Olson, 1968, Beck 1977, 

Chistisen and Kearby 1984, Koenig and others 1994). Further, the distinction between numbers 

versus green weight and dry, edible biomass of acorns produced is important for land managers 

who wish to maintain a specified mast capability in forest stands. 

 Given the enormous variation in fecundity among individuals, it is not surprising that 

larger trees produce more acorns; this is primarily by virtue of their proportionately larger 

crowns. Tree diameter alone contributed little to differences in fecundity among individual trees. 

Stems in the more dominant size classes supply the bulk of seed available. Downs and 

McQuilkin (1944) observed the best crops typically occur on sizeable trees with diameters at 

breast height of twenty inches or greater and having vigorous crowns. Burns and others (1954) 
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observed that larger crowned oaks typically produced more mast in a given stand. These 

dominant stems are typically targeted for harvest during diameter limit harvests. 

 High variability in acorn production among individual trees obscures any potential 

relationship between tree size and the number of acorns/m2 BA. The weak to non-existent 

relationship between tree BA alone and acorn productivity has been noted in other studies 

(Downs and McQuilken 1944, Burns and others 1954, Gysel 1956, Sharp and Sprague 1967, 

Chistisen and Kearby 1984, Koenig and others 1991, Sork and others 1993). 

 The loss of parent oaks is particularly problematic if advanced oak reproduction is not 

already established on the forest floor. In the case of mature upland hardwood stands that have 

remained undisturbed, advanced oak reproduction is usually lacking or near non-existent in 

understory positions (Hodges and Gardiner 1992). Quercus species are desirable, and a 

considerable body of work has been published detailing Quercus ecology and silviculture 

(Johnson and others 2009). Various scientists have advocated the use of selection (Loewenstein 

and others (2000), in xeric Quercus forests), shelterwood, and clearcut regeneration methods 

(Roach and Gingrich 1968, Sander 1977, Loftis 1990, Johnson and others 2009) to sustain 

Quercus dominated forests depending on the site quality, region and competing species. But 

failures to regenerate Quercus by these various methods also are commonly reported in the 

literature (refer to review by Johnson and others 2009). 

 Various silvicultural practices are typically required to enable oak to develop into 

competitive size classes. Even when an abundance of oak germinants occurs after a good seed 

crop, sheer numbers of small seedlings are not enough to ensure oak regeneration success to 

form the future stand (Janzen and Hodges 1987, Lockhart and others 2000, Stringer 2005. Sander 

1979, Smith 1986, Hannah 1987, Loftis 1983, Loftis 1990, Beck 1991, Schweitzer and Dey 

2011). Ward and Stephens (1994) suggested that oaks which show early dominance have the best 

chance to survive and establish a place of prominence in the upper crown classes once the stand 

reaches maturity. Sander (1971) suggested that advance reproduction is imperative for asexual 

reproduction via sprout growth following clearcutting. His study indicated that oak sprout 

growth was related to ground line diameter of the stem and that larger seedlings or saplings 

resprouted and grew at faster rates. Other studies also supported that stem diameter was a 

significant predictor of sprouting potential following timber harvest (Johnson 1977, Bruggink 

1988, Weigel and Peng 2002). The most optimal stem size for sprouting were stems between 
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one-half to one inch in diameter as these stems were able to attain a position in the dominant 

canopy and produced fewer sprouts per stem compared to regeneration greater than one inch. 

Oaks, however, lose their propensity for developing stump sprouts with increasing stump 

diameter or age (Johnson 1977, Johnson 1992, McGee and Bivens 1984, Weigel and Peng 2002). 

A pre-commercial crop tree release, which thins coppice oak sprouts down to one individual 

stem, will increase height, diameter at breast height and volume compared to stump sprouts with 

multiple stems (Lowell and others 1989, Dwyer and others 1993).   

 Various studies have provided acceptable stocking levels of advanced oak regeneration 

necessary to assure oak prevalence in future mature stands. Clatterbuck and Meadows (1993) 

estimate that a bottomland hardwood stand has fully regenerated to oak if it has at least 150 free-

to-grow oak stems per acre three years after harvest. Similarly, Sander (1972) advocates having 

at least four hundred well-distributed, large (4½ feet tall) oak stems per acre. Resprouts from 

large seedlings of this size had the greatest height growth and were the only size of oak 

reproduction that obtained dominant or codominant crown class twelve years after overstory 

removal. Sprouts that originated from large advance reproduction grew almost three feet in 

height during each of the first two years following complete overstory removal (Sander 1972). 

Retention of some oak as residual stems could potentially serve as a regeneration source.     

The use of diameter-limit harvesting as multiple entries over time often removes most all 

desirable parent trees that could supply seed for regeneration. Diameter-limit harvested areas 

typically contain a greater abundance of shade tolerant regeneration and low levels of established 

oak reproduction on the forest floor (Fajvan 2006, Heilegmann and Ward 1993, Heilegmann and 

others 1985, Smith and Miller 1987, Trimble 1973). At the point where a stand exhibits these 

conditions, the land manager’s optimal solution is to provide more sunlight to create favorable 

environmental conditions for higher financially valued, shade intolerant species establishment. In 

some regions, such as the northeast, shade tolerant sugar maple may also be acceptable growing 

stock and could be targeted for management. These impoverished stands may then become 

successfully regenerated with desirable tree species at an acceptable stocking rate to form the 

future stand. The use of the clearcut regeneration method often maximizes the abundance of 

desirable natural hardwood regeneration compared to other regeneration methods (Clatterbuck 

and others 1999, Ward and Stephens 1999, Jensen and Kabrick 2008). Even-aged regeneration 

methods, including the clearcut and shelterwood harvest methods, usually have a high 
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reproduction establishment rate of 10,000 – 40,000 stems per acre (Johnson and Krinard 1988, 

Romagosa and Robison 2003).   

 Schweitzer and others (2006) observed that planted oak seedlings growing in full-sun 

within a clearcut were statistically taller and had greater leaf density and flushes after one 

growing season compared to oak seedlings grown in shaded conditions under a shelterwood 

harvest area. These researchers also discovered that after one growing season, the sun grown oak 

seedlings planted in a clearcut had greater basal area growth than oak seedlings in the 

shelterwood areas. Sander (1972) reported that complete overstory removal had significantly 

taller natural oak reproduction after two years than both partially cut and uncut plots.  In this 

study, the seedlings within completely cut plots averaged almost twice the height of seedlings in 

uncut plots after twelve years. Miller and others (2006) also stated that shade intolerant 

reproduction has 30 – 40% greater basal area production, twenty years after disturbance, in 

clearcuts compared to shaded environments in two-aged and shelterwood harvested stands. 

These findings suggest that the clearcut method favors shade intolerant regeneration and oak 

development if an adequate number and size of oak advanced reproduction are present.  

 Natural regeneration is also the more economically attractive management option due to 

the inhibitive cost of establishing hardwood regeneration via artificial means (Duryea and 

Dougherty 1991, Minore and Laacke 1992). Greater growth may also be expected from relying 

on natural regeneration compared to artificial regeneration. A study conducted in east Tennessee 

concluded that natural oak regeneration in a clearcut harvest had significantly greater growth 

(94% for white oak and 228% for northern red oak) compared to hand planted oak seedlings 

(Jackson 2006) 36 years after establishment. Though oak reproduction recruitment is often 

elevated following a clearcut harvest, these seedlings and sprouts have slow growth rates and are 

rapidly overtopped by pioneer tree species and herbaceous vegetation (Hannah 1987, Nix 1989). 

 

Clearcutting for Regeneration   

 Sunlight exposure is maximized following a clearcut harvest which stimulates a wide 

range of plant types.  A high emergence of various vegetation including less desirable tree 

species, herbaceous weeds, and grasses can inhibit oak seedling development or even cause 

mortality (Robison and others 2003, Stringer and others 2009).  Many oak stems in young stands 

succumb to competition for growing space and limited resources before, during, and after crown 
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closure.  Johnson and others (1989) documented that red oak density decreased by 69% between 

the ages of 5 – 11 years of age.  Ward and Heilegmannn (1990) similarly reported oak density 

decreased by 92% during the initial 18 – 20 years after clearcutting.  Future prevalence of 

northern red oak in dominant or codominant crown positions within a clearcut at age twenty is 

less than half of the northern red oak present in the upper canopy when the stand was at eight 

years of age (Loftis 1990).  

 Research findings suggest that supplying adequate sunlight by controlling competing 

vegetation is critical for keeping oaks dominant and free to grow (Abrams 1992, Hannah 1987, 

Loftis 1990, Dey and Parker 1996, Ward 2009). The majority of oak species are listed as either 

intolerant or intermediate in shade tolerance (Burns and Honkala 1990, Clatterbuck 2005). When 

overtopped by dense plant competition, oak stem height growth is suppressed and mortality can 

occur.  Lorimer (1981) revealed that oaks must be in dominant or codominant crown positions to 

have acceptable survival for the initial forty years after a disturbance. Thus, some form of 

silvicultural activity, such as cleaning and weeding, may be necessary to keep oaks competitive. 

Early release treatments have also been suggested following a clearcut to maintain oak 

competitiveness; this may enable oak stems to eventually obtain a dominant canopy position 

(Beck 1970, Hannah 1987). Such releases should be applied when the regenerating stand is four 

to five years of age (Beck 1970), although Thompson and Nix (1992) advise an even earlier 

application prior to the extreme overtopping by competing vegetation.  Without some form of 

silvicultural management, non-oak species grow into larger size classes and become more likely 

to outcompete the preferred oak regeneration (Beck and Hooper 1986, Johnson and others 1989, 

Ward and Heilegmannn 1990).   

 

Thinning and Prescribed Fire to Favor Oak Reproduction 

 Prescribed fire and herbicide have been studied as methods to keep oaks competitive 

while suppressing unwanted competition from other tree species. The implementation of fire 

alone has not successfully suggested that this management tool will successfully establish 

advanced oak reproduction. The results of prescribed fire vary in part due to differing fire 

intensity related to the season of burn (Van Lear and others 2000). Hardwood resprouting ability 

is greatest when carbohydrates reserves within the roots are high. This is most evident in the 

dormant season (Van Lear and others 2000). Implementing growing season burns is suggested to 
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reduce less desirable hardwoods (Brose and Van Lear 1998). In addition, fires of higher intensity 

have shown greater control levels of competing hardwood species. Brose and others (1999) state 

that an area that receives a high-intensity spring burn will develop into an oak dominated forest 

(75 – 80% of species composition) after just one prescribed burn. These researchers observed 

that oak seedlings were about three times more abundant in burned areas versus that found in 

unburned controls.  

 Generally, multiple fires conducted over a decade or more will be required to adequately 

regenerate oak (Hutchinson and others 2012). Numerous fires are needed to suppress the more 

rapidly growing shade intolerant tree species as well as other competitors such as red maple. 

Though fire may topkill multiple competing species, a significant proportion of these plants will 

resprout from root suckers or from the stump (Dey and Fan 2008, Albrecht and McCarthy 2006, 

Iverson and others 2017). Huntley and McGee (1981) found that red maple resprouted 

vigorously and increased in abundance following burning activity.  The authors also revealed 

that the more desirable northern red oak did not resprout to the same degree as black, scarlet, 

white, or chestnut oak, and that the preferred species’ regeneration abundance actually declined 

on site. Alternatively, Brose and Van Lear (1998) indicated that fire intensity was critical in 

controlling yellow-poplar reproduction and to improve the growth rate of sprouting oaks. They 

stated that yellow-poplar and other competing species did still occupy the site and that additional 

fires would likely be necessary to enable oaks to dominate the site. Brose and others (1999) 

proposed that areas receiving low intensity fires, regardless of season, will likely develop into 

stands containing primarily yellow-poplar stems.  

 The use of single fires will unlikely alter species composition in favor of oak (Huntley 

and McGee 1981); thus multiple prescribed burns will be necessary to attempt to achieve an 

acceptable species composition to form the future stand.  Other studies (McGee 1979, Dey and 

Fan 2008, Albrecht and McCarthy 2006) suggest that single burns are less likely to result in 

long-term changes in the species composition in an upland hardwood stand. Each burn also has 

detrimental effects in the form of loss of growth and the potential to lower stand quality through 

burn damage to the bole. Alexander and others (2008) discovered that prescribed fire did not 

affect stocking of sassafras but did result in approximately twice the height and basal diameter 

growth for that species. Iverson and others (2017) witnessed sassafras had enhanced recruitment 

of large seedlings on xeric sites following fire. This response is problematic however as a dense 
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understory of sassafras may suppress developing oak regeneration. Measurements in Iverson and 

others (2017) study indicate that annual height and basal diameter growth for sassafras was 1.5 – 

2.5 times faster than oak. The researchers also observed that a single prescribed burn did not 

impact red oak survival but increased mortality to white oak seedlings almost twice as much as 

unburned controls. The authors suggest that the white oak seedlings were of smaller stature as 

compared to the red oaks, and that this led to the greater mortality rate.  

 Repeated burns have been observed to negatively affect survival rates for both red and 

white oak seedlings compared to the control treatments. Dey and Hartman (2005) observed that 

multiple fires resulted in topkill for multiple species, and the majority of advance regeneration 

was restricted to the smallest height class (one foot). Johnson (1974), along with Dey and Parker 

(1996), reported that a low intensity dormant-season burn can result in high mortality (>70%) of 

young oak seedlings less than three years of age. High intensity fire can kill most stems 

occupying midstory canopy positions; this is favorable for increasing sunlight penetration but 

can damage or even cause mortality in overstory trees (Brose and others 1999). The use of 

prescribed fire most often must be accompanied by some form of overstory disturbance to allow 

small oak seedlings to remain competitive with shade tolerant tree species on high quality sites 

(Dey and Fan 2008). A positive response may only result after multiple prescribed burns as well.  

This implies that multiple management applications will be necessary to establish the desirable 

reproduction. Given these various findings, it can be suggested that prescribed fire yields 

uncertain oak regeneration responses. The inability of fire or the need for multiple fires to assist 

in oak regeneration establishment potentially suggests that fire is an inadequate management 

option for promoting oak reproduction and development. 

 

Chemical Competition Control 

 Other research has looked at chemical applications to improve the growth and survival of 

oaks in hardwood stands. Often, early survival of planted hardwoods can be low due to various 

biological factors including plant competition. Herbicide applications have been scientifically 

conducted at various stages of early development to alleviate high mortality and enhance early 

regeneration growth. Approximately ten or more years after regeneration is in place, pre-

commercial thinnings or timber stand improvement may be used to enhance tree growth.  

Various studies (Hopper and others 1992, Ezell and Catchot 1997, Ezell and Hodges 2002, Ezell 
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and others 2007, Self and others 2008) suggest that chemical release of planted hardwood 

seedlings improves early survival rates. The use of sulfometuron to control herbaceous weeds 

improved overall oak seedling survival in study plots receiving competition control by 20% or 

greater compared to untreated controls at the end of the growing season of the initial year (Ezell 

2000, Ezell and others 2007). A survival rate of 80 – 90% is common for oak seedlings that 

receive chemical release during normal precipitation years (Grebner and others 2004). Likewise, 

post-emergent applications utilizing glyphosate improves height growth in hardwood species 

(Hopper and others 1992) in addition to oak seedling survival. Hilt and Dale (1987) concluded 

that increased intensity of pre-commercial thinning resulted in greater diameter growth in stands 

13, 17 and 21 years of age.  

 A study by Thompson and Nix (1992) observed that early crop tree release within a four 

year old clearcut using various herbicides significantly decreased herbaceous and woody plant 

competition. This reduction in competition resulted in increased seedling ground line diameter 

growth but did not improve height growth compared to control treatments. Nix (2004) 

remeasured the released natural oak in the clearcut ten years after the initial chemical release 

treatments and reported that four herbicide treatments significantly increased diameter growth of 

released oak seedlings. The researcher suggests that applying herbicide release treatments assists 

in enabling desirable oak to form dominance in the overstory canopy.  

 Research has demonstrated that release treatments can improve seedling survival, 

diameter growth, and potentially ensure selected stems will obtain superior crown class 

(dominant or co-dominant) positions. Demchik and Sharpe (1999) observed that herbaceous 

vegetation control increased height growth of natural northern red oak regeneration. One study 

by Carlisle and others (2002) surmised that increased levels of competition control significantly 

resulted in greater height growth of various hardwood species.  Conversely, a study by Schuler 

and Miller (1999) indicated that a wider five foot radial release of sheltered northern red oak 

reduced vertical height growth compared to lower levels of control and greater competition. 

Sweetgum seedlings that received a chemical release using a glyphosate herbicide had significant 

increases in both 5-year height and diameter growth (Zutter and others 1987). Self and others 

(2008) reported that a pre-emergent application of sulfometuron resulted in significantly greater 

total height growth for planted Nuttall and white oak seedlings compared to release applications 

using glyphosate. Robison and others (2003) surmised that both height and diameter growth 
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significantly improved following competition control treatments in stands ranging from 1 – 13 

years of age. The number of chemical applications can impact seedling development however. 

Self and others (2008) reported that repeated herbicide applications conducted routinely over a 

three-year period resulted in less growth compared to pre-emergent  only and pre-emergent plus 

one time foliar release treatments. A growth response may also not be evident in the early years 

following oak seedling release from competition. Beck (1970) documented that oak seedling 

growth was not statistically significant until the fifth year following overstory removal and a low 

vegetation control treatment. A chemical release may shorten the normal length of rotation for 

oaks by 10 – 15 years (Clatterbuck and Hodges 1988). These studies indicate that an early 

chemical release may dictate the species composition of the future stand. 

 In some instances, chemical control may adequately suppress the initially targeted 

competing vegetation but may favor the establishment of another plant species that responds 

favorably to the removal of the initial plants. Ezell and Catchot (1997) observed that broomsedge 

and other grass species were problematic plants when using sulfometuron methyl to release 

planted hardwood seedlings. This same herbicide has also been shown to have negative results 

on some species of hardwoods. Horsley and others (1992) reported that both black cherry and 

white ash were sensitive to treatments applied during the active growing season following leaf 

expansion. The control of these species may be necessary when attempting to regenerate oak.  

Alternatively, the researchers found that northern red oak and black oak were not sensitive to 

applications of sulfometuron methyl (Oust XP®) alone.  

   

Stocking Density Reduction 

 Reducing stocking density can also lead to enhanced diameter and volume growth.  

Previous research by Gingrich (1967) indicates that quadratic mean stand diameter increases 

with reduced stocking levels. Numerous research studies on planting and spacing depict greater 

average stand diameter with wider spacing or lower stand density (Kennedy and others 1987, 

DeBell and Harrington 2002, Kennedy 1993). Based on these findings, reducing natural 

regeneration stocking density will accelerate diameter growth and ultimately reduce the harvest 

rotation age. The incorporation of chemical release applied to desirable natural regeneration 

should also encourage dominance in the future stand by the released oak reproduction. 
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3. METHODS  
 
Site Description  

 The study site is located on a private landholding in west-central Tennessee. The 

Houston/Humphreys County line dissects the area. Block A is physically located within 

Humphreys County; Blocks B and C are located within Houston County. The physiographic 

ecoregion is the Western Highland Rim – highly dissected plateau (Smalley 1986). The land is 

within the mixed-mesophytic forest region as described by Braun (1950) with white oak 

(Quercus alba), southern red oak (Quercus falcata), chestnut oak (Quercus montana), black oak 

(Quercus velutina), scarlet oak (Quercus coccinea), hickory (Carya spp.), blackgum (Nyssa 

sylvatica), red maple (Acer rubrum), sugar maple (Acer saccharum), black cherry (Prunus 

serotina) and yellow-poplar (Liriodendron tulipifera) forming the majority of the overstory 

species composition. Midstory and understory canopy layers also contained flowering dogwood 

(Cornus florida), sourwood (Oxydendrum aboreum), sassafras (Sassafras albidum), eastern 

hophornbeam (Ostrya virginiana), elm (Ulmus spp.), and American beech (Fagus grandifolia). 

The sites had at least one diameter limit harvest in the past as indicated by residual stumps. One 

or more additional diameter limit harvest(s) probably occurred within the area. The most recent 

harvest likely occurred between 1990 – 1995. Most undisturbed forestland in that region is 

dominated (80% or greater) by oak species. The soils on the study site were Bodine gravelly silt 

loams (5-40% slopes). Site index values for white oak are moderate (value of 75; base age 50). 
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Figure 1. Research site location in the State of Tennessee 
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Figure 2. Research general and block locations for the degraded stand regeneration study located 
in west-central Tennessee. 
 
Block Delineation  

 Four individual experimental blocks were chosen for the study to ensure an adequate 

amount of volume was available to improve feasibility of a timber harvest. Three of the four 

blocks were then selected to contain the replications for the actual research project. Each block 

was located on a similar aspect and soil type. Slope aspects for each block were north/northeast. 

Block borders extended from the ridge position downslope. Bodine cherty silt loam is the 

dominant soil type on each site. The potential block locations were selected using 7.5 

topographical quad maps on GIS (Geographic Information Systems, Erin, TN) software. Corner 

position GPS (Global Positioning System) coordinates were derived using GIS software for each 

individual block. Blocks were approximately ten (10) acres. Waypoints (latitude/longitude 

coordinates) were established for each corner in any given block. Care was taken to clearly 

delineate the treatment areas; corner waypoints were downloaded into a handheld Garmin® 

(Olathe, KS) GPS unit, block perimeters were then traversed and marked with blue tree marking 
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paint. To ensure confinement to the timber removal area, boundary stems were marked 

approximately six to seven feet above the ground surface and multiple spots on the stump. Forest 

woods roads already existed that enabled access to all the individual blocks. Figure 1 depicts the 

locations of the three blocks used for the research. 

 Two logging companies viewed each of the potential four blocks to determine feasibility 

and interest for harvest implementation (clearcut method). Each company had the ability to 

provide a chipping machine to process tree tops. The removal of logging slash was a requirement 

for the study as it enhanced accessibility across the sites for herbicide applications. Field visits 

were conducted with the logging company. After consideration of operativeness, one block was 

removed from the study due to excessive slope and poor road access.   

 

Stand Inventory Plots 

 A pre-harvest stand inventory of all merchantable stems with a diameter at breast height 

(dbh) greater than four and one-half (4.5) inches was conducted. The three blocks were 

calculated at approximately ten acres each, prior to harvest. The inventory data were based on a 

15% sample of the block areas using fixed plots distributed across the interior of each of the 

blocks. Thus, 15 fixed-radius plots were established in each block. A pre-harvest inventory on 

merchantable stems and advance reproduction were collected on tenth-acre plots to quantify 

merchantable timber and stand conditions (Figure 3). Data collected for all trees within the plots 

included diameter at breast height (DBH), ocular estimation of merchantable tree height, and a 

tally of all trees, by species, on each plot. Diameter measurements were taken to the nearest tenth 

of an inch using a d-tape. Merchantable height was ocular estimates to a four inch top for 

pulpwood and a ten inch top for sawtimber sized stems. Estimates for basal area by species, trees 

per acre, diameter distribution, volume estimates, and appraised financial value were derived 

using these plot measurements. Natural reproduction was estimated using 0.01-acre (tenth) plots 

nested in the larger plot. Polygons for each block were created in a GIS shapefile. Plots were 

created using a plot generator function tool. Any plots which landed within a dissecting road in 

the block were relocated within the forested area. Plot placement within the block resembled a 

“shotgun pattern” distribution. The following illustration shows the potential plot layout for any 

given 10+ acre block. 
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Figure 3. Diagram of measurement plots within a harvest unit for the hardwood response study in 
west-central Tennessee  
 

 Additional regeneration subplots were established at locations approximately 50 feet to 

the northeast (45° degrees) of all odd numbered plots to increase sample size. This equated to an 

additional eight regeneration subplots (23 total regeneration plots) on each block. Sample 

reproduction stems were tallied by species and height classes. Size classes included categories of 

0-3 feet in height, 3-6 feet in height, greater than 1 inch ground diameter, greater than 3 inches 

ground diameter, greater than 6 inches ground diameter.  

 Plots were downloaded into handheld Garmin® 60 GPS unit from the GIS software. The 

handheld unit was then employed to install the plots on the site. Plot centers were marked using a 

seven-inch piece of polyvinyl chloride (PVC) pipe with paint applied to above ground portion. 

These PVC pieces were then driven into the ground to designate plot centers. Latitude/longitude 

coordinates were also collected at each plot location using a Garmin® handheld GPS unit. Three 

to four surrounding trees’ trunk bases were also marked with tree paint, with the mark facing plot 

center. This marking enabled the triangulation of plot center when GPS coordinates proved 

unreliable during re-visitation.  

  

Block Establishment and Harvesting 

 Once the pre-harvest inventory was completed, the two logging companies were 

contacted for availability to initiate the timber harvesting operation. Representatives from the 

two logging firms were taken to the sites for discussion of conducting logging operations. 

Jarman Logging Company, located in Vanleer, TN (Dickson County), was selected to conduct 
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the logging operation based on both landowner preference and ability to implement timber 

cutting sooner in the initial year. Timber harvesting began in early March of 2014 on block A. 

One loading deck was established at the southern end of the opening adjacent to a permanent 

road. Trees were cut using a Caterpillar® (Caterpillar Incorporated, Deerfield, IL) 563 feller-

buncher, moved upslope to this road, then a Caterpillar® 535 skidder transported materials to the 

loading deck. Tree tops were also processed at the loading deck in a wood chipper. Timber was 

extracted along the central ridge road that extended across the linear clearcuts. A total of 

eighteen (18) acres was actually harvested. Portions of the stand situated on the lower side slope 

where not harvested because of slope steepness. Harvesting of block B began near the beginning 

of April of 2014. A steep hollow within the central portion of block B was not harvested. The 

harvest created two large openings separated by the uncut steep hollow. Two loading decks were 

established at the upper slope positions on the west side of the two patch clearcuts. The trees 

were cut then skidded directly upslope using a centralized skid trail in each opening. The edge of 

the timber harvesting overlapped the boundaries marked with tree paint. This action was 

necessary for an adequate opening size to accommodate the study. Approximately ten (10) acres 

was harvested upon completion of block B. The timber harvesting on block C was completed in 

June of 2014. A portion of this block within a steep drain was also left unharvested. The harvest 

zone extended beyond the southernmost boundary of the block however resulting in 

approximately ten (10) acres of timber being removed. One loading deck was established at the 

top of the slope on the south side of the clearcut. All felled material was skidded directly upslope 

on a centralized skid trail along the western portion of the opening. The eastern portion of the 

clearcut had logs skidded directly to the loading deck without a centralized trail.         

                                                                                       

Treatment Unit Delineation and Establishment 

 Installation of individual treatment units followed the completion of harvest activity in 

each block. Six (6) treatment units were established within each experimental block. Units were 

established at least 50 feet from the boundary of the harvest to eliminate shading bias from the 

clearcut perimeter. An approximate 10-foot buffer strip was placed between individual 

treatments (measured seedling groups) to minimize spray drift impacting adjacent treatment units 

during herbicide applications. An individual treatment unit encompassed approximately three-

quarters (¾) of an acre. Corner rebar markers were colored in blue tree paint and florescent 
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orange spray paint in a horizontal stripe pattern. Distance between corners and rebar rows was 

measured using a 100’ tape and 75’ logger’s tape. A compass was also used to assist in 

maintaining line straightness. Shape of each treatment unit varied between blocks due to the 

uniquely shaped openings created from the timber harvesting operation. Physical randomization, 

by means of pulling numbers out of a hat, was used to determine treatment designation for each 

unit.  Treatments included: 

• control 

• herbaceous/grass control herbicide only 

• radial seedling release 

• radial seedling release + herbaceous/grass control 

• banded strip sprays 

• banded strip sprays + herbaceous/grass control.  

 Unit layout design varied amongst each block because of the incomplete harvesting 

associated within the block (Figures 1 – 3). Steel rebar was placed at even intervals around the 

eastern/western perimeters of each treatment unit in order to serve as guidelines for spray 

applications. Twine was tied to each end of successive rebar. Banded sprays were conducted 

along the twine (approximate four foot width) to maintain uniform spray lanes. One exception to 

this rebar placement delineation was the banded spray treatment unit in Block C. Rebar within 

this particular unit was placed on the northern and southern perimeter. This unit had to be 

“fitted” in order to accommodate the opening size. Control and radial release units had rebar 

spacing of approximately twelve feet apart. Banded units were spaced approximately eight feet 

apart. Florescent flagging was also tied around the top of rebar sticks to enable visual 

determination of treatment types. Blue colored flagging denoted control units, orange flagging 

identified radial treatments, and pink flagging indicated banded treatments. Nylon twine was 

utilized within units that received banded spray treatments. The twine lines were attached to the 

rebar and served as guidelines to facilitate accurate spray applications.  Placement of rebar and 

twine accomplished two objectives:  

1. uniformly delineate spray paths for banded sprays  

2. represent a row with a select number of seedlings to be measured following the clearcut 

harvests.   
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Figure 4. Treatment unit row delineation using flagged rebar (previous page); twine guide lines 
essential for conducting uniform banded spray applications (above) for the hardwood response 
study in west-central Tennessee. 
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Post-Harvest Plot Re-establishment 

 Previously established regeneration plots were reestablished and assessed following 

harvest. Measurements were made at the end of the first growing season post-harvest (October 

2014). Plot centers were relocated using a handheld GPS unit. This methodology unfortunately 

was unreliable. Some plots were triangulated using the method of tree paint applied to individual 

tree trunk bases, but most were likely off from the exact point by some degree. Other plots 

remained undisturbed as they were located in the unharvested portions of the block. Plots that 

were situated within the unharvested areas of blocks B and C were omitted from the analysis 

because of the wide variation in tree size of the unharvested portions of block A versus the other 

two blocks.  The unharvested trees that remained in block A were primarily large saplings (DBH 

greater than one inch, but less than 4.5 inches) and small poletimber (DBH greater than 4.5 

inches, but less than 12 inches).   

 Blocks B and C received silvicultural clearcuts that removed all stems within the 

openings. Block A retained a greater percentage of sapling and poletimber sized trees in areas 

that were harvested because only sawtimber sized stems were removed. The density of residual 

stems in these areas was approximately 60 – 70 trees per acre. The area containing these residual 

stems was isolated along the lower slope positions and closer resembled a commercial clearcut 

(only merchantable stems removed) as opposed to a silvicultural clearcut (all stems removed). 

Residual stems on plots were mechanically treated within areas that had numerous residual 

saplings and midstory poletimber sized stems to increase sunlight penetration to levels that 

would approximate a silvicultural clearcut. Mechanical treatment radius around the regeneration 

plots were approximately thirteen feet extending from the plot centers. Thus, plots were 

“mechanically treated” to approximately twenty-six (26) feet in diameter. A Stihl® (Stihl 

Incorporated, Virginia Beach, VA) chainsaw was used to fell sapling sized stems and to girdle 

larger sized poletimber (primarily stems greater than 6 inches dbh) within this radius. Girdled 

trees received two girdles approximately 8 or more inches apart.  Depth of girdles was 1 inch or 

greater.  
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Figure 5. Double girdling of small sawtimber stem (left); photograph of regeneration plot after 
mechanical treatment (right) for the hardwood response study in west-central Tennessee. 
 

 Regeneration was evaluated both pre and post-harvest to determine if the clearcut method 

adequately regenerated desirable tree species in a hardwood stand that likely had received 

multiple diameter-limit harvests. Regeneration plot remeasurement involved stem tallies that 

delineated individual samples by species and regeneration type, either a new germinant or a 

sprout. Numerous sapling sized stems appeared to have been uprooted during the harvest activity 

rendering the previous reproduction size class system unusable. Thus, seedlings were simply 

classified only as germinants or sprouts. Regeneration plots within treatments units that were 

sprayed with glyphosate solution were measured prior to or within a week of the application 

conductance. The control and sulfometuron methyl only treatment units were measured earlier in 

the spring of 2014 (Table 1). 

  

Table 1. Research site timeline for all field activities  
  

Activity Month(s) Year 
Block perimeter marking December 2013 
Pre-harvest inventory January – February 2014 
Logging company visits March 2014 
Timber harvesting of three blocks March – May 2014 
Regeneration plot re-establishment June – July 2014 
Treatment unit establishment April – June 2014 
Herbicide spray applications May – August 2014 
Initial seedling measurements October – November 2014 
2-year seedling measurements January – February 2017 
Competing plant coverage estimation January – February 2017 
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Experimental Treatments 

 Herbicide applications were conducted within the harvest blocks within a few months 

following harvest completion. The chemical treatments were applied to natural hardwood 

regeneration which had already broken dormancy by the middle of April. Oak and yellow-poplar 

seedlings were chosen as the preferred species to analyze for herbicide treatments due to their 

commercial value and management preference. No observable effect or mortality were observed 

for oak or yellow-poplar seedlings receiving this chemical application. Six treatments were 

analyzed during this study (Figure 6). Each individual block contains all six treatments (Figure 

7). A total of eighteen (18) experimental units were located on the site with each treatment 

replicated three times.  Treatment number one was a banded spray utilizing glyphosate herbicide. 

All glyphosate applications were conducted using Cornerstone® herbicide. The designated width 

of the bands was approximately four feet treated next to four feet untreated width. The 

treated/untreated bands alternated with one another across the experiment unit.  Treatment 

number two was the banded spray plus a pre-emergent broadcast spray that used sulfometuron 

methyl herbicide. The trade name for this particular herbicide used was SFM 75®. The product 

was manufactured by the Alligare Company. Treatment number three incorporated individual 

radial stem release (five feet radius around oak and yellow-poplar seedlings only) that used 

glyphosate herbicide. Treatment number four was the radial stem release plus a pre-emergent 

broadcast spray that used sulfometuron methyl herbicide. Treatment number five was an 

untreated control. Treatment number six was a pre-emergent broadcast spray that used 

sulfometuron methyl herbicide only.   

 

                                                           
Figure 6. Schematic design of treatment units within a given block for the hardwood response 
study in west-central Tennessee. 

1. Radial + pre-emergent 
2. Control 
3. Banded 
4. Radial 
5. Control + pre-emergent 
6. Banded + pre-emergent 
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Figure 7. Treatment unit design layout on all three blocks for the hardwood response study in west-
central Tennessee  
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Figure 7. Continued 
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Figure 7. Continued 
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Figure 7. Continued  
 

 
 
 
 
 
 
 
 
 
 



 

29 

 

Competing Vegetation for Seedlings 
 
 The recently disturbed site had an influx on new plants emerge due to the maximized 

sunlight availability and bare ground exposure. The most frequent forb and grass competitors 

observed on the study site were garlic mustard (Alliaria petiolata), fireweed (Erechtites 

hieraciifolia), common ragweed (Ambrosia artemisiifolia), Dallisgrass (Paspalum dilatatum), 

crabgrass (Digitaria sanguinalis), and greenbriar (Smilax sp.) (Figure 7). Ground coverage by 

these species was estimated ocularly to be greater than ninety percent. Bare ground area were 

primarily deep ruts created by logging equipment and skid trails and existing forest roads within 

the blocks.  
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Garlic mustard                                   Fireweed                                  Common ragweed 

                             

Vervain                                                   White snakeroot 

                                      

  Crabgrass                                               Greenbriar 

Figure 8. Photographs taken onsite of common weed species within treatment units occurring prior 
to chemical applications on the study site in west-central Tennessee.  
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Herbicide Application Rates and Procedures 
 
Application rates and procedures for each herbicide are as follows: 
 
 ● Glyphosate treatments: 5% herbicide solution, ¼% surfactant with water applied as  
    foliar spray covering at least 70% of foliage. Broadcast foliar applications were     
    conducted in May – August. 
 
 ● Sulfometuron methyl applications: 1.8 – 1.9 oz. per acre following bud swell (post- 
        emergent broadcast application) 
 

 These application rates are commonly used for chemical seedling release prescriptions 

(Ezell and others 2007; Ezell and Self 2016). The herbaceous/grass control applications using 

SFM 75® herbicide (sulfometuron methyl – active ingredient) were implemented within 30 – 45 

days following the completion of the timber harvest on the three designated treatments units 

within each given block. All herbaceous/grass control treatments were conducted following bud 

swell in either May or June. The ground cover was sparse at the time of herbicide application 

because of the short duration after the timber harvest and treatments were applied early in the 

growing season. Consultation with Dr. Andrew Ezell (personal communication, Department 

Head and George L. Switzer Professor of Forestry – College of Forest Resources, Mississippi 

State University, MS 39762) led to the decision to employ “over the top” applications, using no 

greater than an equivalent of two (2) ounces per acre of herbicide (sulfometuron methyl), on 

emerged hardwood regeneration. Approximately 1.8 – 1.9 ounces of granular herbicide was 

applied at 16 gallons of solution on half (total of 9 units) of all available three-quarter (¾) acre 

treatment units. A solo® (Solo Incorportated, Newport News, Virginia) 4-gallon backpack 

sprayer was used to conduct the application. To ensure adequate coverage and even distribution 

rate, individual units receiving the herbaceous/grass control were divided into four quadrants 

using pin flags. Each quadrant was treated one at a time until the entire unit was thoroughly 

treated. Prior to all applications, fire weather reports were reviewed from the National Oceanic 

and Atmospheric Administration (NOAA) website (https://www.weather.gov/fire) to ensure 

favorable conditions for application effectiveness and to avoid substantial environmental 

impacts. Preferred weather consisted of winds between 2 – 10 miles per hour, higher humidity 

(for this region low humidity is likely below 35%), and air temperatures between 65 – 85 degrees 

Fahrenheit, and a temperature inversion was not present (Accord® SP label – Dow Agrosciences 
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LLC, Indianapolis, IN). These weather variables can affect both drift and volitization of the 

pesticides. All herbaceous/grass control treatments were applied initially prior to subsequent 

radial and banded applications. The time span between sulfometuron methyl and glyphosate 

treatments was approximately 75 – 90 days.  

 

 

Figure 9. Photograph depicting border of control treatment unit (right) and SFM 75 treated unit 
area (left) within two months after treatment in the hardwood response study in west-central 
Tennessee. 
 
 The application rate for glyphosate solution was 15 – 24 gallons per treatment block.  

Application rates differed due to size and abundance of vegetation on the particular site. Lesser 

spray volume was used on radial release treatments as compared to banded spray applications.  

Spot foliar spray method techniques involved covering greater than 70% of plant foliage in 

targeted spray areas. Applications on Block C were implemented later in the growing season 

(July/August 2014). Plants were able to develop for a longer period and were larger. A more 

commensurate application rate (24 gallons of solution) was thus required for the increased foliar 

volume.     

 Within the radial treatment units, approximately 132 – 150 oak (both red and white oak) 

or yellow-poplar seedlings were flagged with fluorescent tape prior to chemical spray 

application. Flagging the seedlings allowed applicators to reduce herbicide application time by 

pre-selecting crop stems to be released. The pesticide solution was administered at a minimum of 

five (5) foot spray radius around all marked seedlings.  During application, marked stems were 
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covered with stove-pipe (enclosed three (3) foot tall column with handle) and the immediate area 

of approximately a five (5) foot radius was treated. Care was taken to avoid herbicide solution 

contact with plants from the outer bottom of the stove pipe protection device. After treated 

vegetation had deadened, seedlings were permanently marked with an aluminum tag fastened at 

the base.   

 

   

Figure 10. Photographs illustrate marked seedlings (note fluorescent flagging) which received 
radial release (post dessication) for the hardwood response study in west-central Tennessee. 
 
 Banded spray treatments were applied as treated (strips receiving spray solution) and 

non-treated (strips that did not receive spray solution) in an alternating pattern across the selected 

units. Both treated and non-treated strips were approximately four feet in width. Non-treated 

strips were centered on the previously placed rebar, spaced at eight foot intervals. Nylon twine 

was stretched between rebar on every other row to serve as visual guides during the spray 

application. Approximately two feet to each side of the twine was left untreated. The desired 

target width of treated strips was four feet. After treated vegetation had desiccated, up to 150 oak 

or yellow-poplar seedlings were marked with flagging and numbered with aluminum tags on 

each individual treatment unit. 
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Figure 11. Photographs depicting conditions post banded applications following dessication on the 
hardwood response study in west-central Tennessee 
 
 
Control (untreated) and herbaceous/grass release only treatment units also had up to one hundred 

and fifty oak and yellow-poplar seedlings marked with fluorescent flagging and numbered using 

aluminum tags. Herbicide application timing varied over the 2014 growing season (Table 2). 

  

Table 2. Timing of herbicide applications for the hardwood response study in west-
central Tennessee 

 
Block Herbicide Applied Month Year 

A SFM 75 (sulfometuron methyl) May 2014 
B SFM 75  May 2014 
C SFM 75 June 2014 
A Cornerstone (Glyphosate) July 2014 
B Cornerstone July 2014 
C Cornerstone August 2014 

*each individual herbicide, regardless of application procedure, was applied to all designated 
treatment units in a given block within the time period of one week. 
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4. MEASUREMENTS 
 
Sample Seedling Measurements 

 Post-harvest reproduction was measured on established plots/subplots (69 plots total). 

Natural reproduction was evaluated by species and regeneration form. Individual seedling 

records included whether the sample was a germinant seedling or of sprout origin. The original 

size classification system was not used for post-harvest measurements due to removal of and 

damage to saplings during harvest and the indistinguishable diameter size of stump sprouts. The 

indistinguishable nature is derived from sprouting that occurs from below ground root stock 

which could not be measured.  

 Ground line diameter and height measurements were recorded for marked natural 

regeneration after completion of herbicide applications. Approximately 150 stems per acre were 

measured on each individual treatment unit. A few units on Block C contained slightly less than 

the desired 150 oak or yellow-poplar seedlings. Numbered seedlings on all treatment units were 

measured for ground line diameter using a digital caliper and for total height in inches using a 

standard English ruler. Individual stem ground line diameters were measured to the hundredth of 

an inch. Height measurements were taken to the nearest ½ – inch. First year (at the completion of 

one full growing season) measurements were recorded in the fall (October – December 2014) 

following the timber harvest which occurred at the beginning of the growing season in the same 

year. The second year seedling measurement for ground line diameter and total height were 

collected in January – February of 2017, two years after treatment and three growing seasons 

after harvest. Two complete growing seasons (2015 and 2016) along with a portion of the 

growing season (2014) had elapsed between seedling measurements. The same methodology was 

implemented during the second measurement period in 2017 as was for the initial measurements 

recorded in 2014. A robust response of broomsedge grass and Nepalese browntop made locating 

seedlings extremely difficult during the second seedling measurement period. A Teknetics® 

(Teknetics, El Paso, TX) Delta 4000 metal detector was used in an attempt to locate “hidden” 

marked seedlings located beneath heavy grass vegetation. Only a portion of marked seedlings 

were found again in the winter of 2017. All re-measured seedlings were re-flagged with 

fluorescent (blue) flagging tape and the aluminum tags were moved higher on the stems. Some 

additional growing space (between the wire and stem) was given to limit future girdling by the 

tag wire. 
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Competing Vegetation Estimation 

 Competing vegetation density was also quantified through ocular estimation.  Four points 

within each treatment unit were used to estimate percent ground cover, total plant height, and 

lower above ground “mat” coverage height. Sample points were located systematically at 

approximately 55 feet at diagonal directions from treatment unit corner markers. These metrics 

were used to describe the competitive environment around the marked seedlings. 

 

Natural Regeneration Survey 

 Density measurements for each individual treatment unit were also conducted following 

the two-year seedling re-measurements. One-hundredth acre circular plots (11’ 8” radius) were 

established within each unit using a random grid projection using GIS software.  The GPS 

coordinates were generated for each point while downloaded into a handheld GPS unit. All 

woody tree species within the plot were tallied by species and regeneration origin. These origins 

included stump sprouts and natural seedlings. Size class categories were established as small 

seedlings (under three feet in height), large seedlings (three to six feet in height), and saplings 

(all stems over six feet in height). Plot centers were permanently established with rebar painted 

with white coloring and flagged with florescent flagging to facilitate future re-measurement as 

needed. 

Weather Data 

 Weather data for precipitation and Palmer drought severity index (PDSI) were acquired 

from the National Oceanic and Atmospheric Administration (NOAA) website. The web 

addresses for precipitation data (https://w2.weather.gov/climate/index.php?wfo=ohx) and PDSI 

(https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp) allowed access to archived 

previous monthly weather history by the weather station in Nashville,TN (for precipitation) or 

regional (for PDSI). 

 
Analysis 

 The experimental design is a randomized complete block (RCBD) with sampling (single 

treatment factor) and split-plots. Fixed variables include the six treatments and the three blocks. 

Random variables include the seedlings samples. The statistical model used to compare 

individual treatments using all seedlings is: yij= μ + Bi +  T j + B∗T ij  
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The statistical model used to compare individual species combinations by treatments is: 

yijk=μ+ Bi+ T j+ B∗T ij+ Fk + F∗T jk+ B∗F∗T ijk 

Statistical analyses were performed for analysis of variance (ANOVA) using mixed models 

(PROC MIX) (SAS Institute Inc., Cary, NC version 9.4). Data tests indicated satisfactory 

normality and equal variances. No transformations were utilized in the analyses. Tukeys’ 

significant difference test was incorporated to separate the least squares means. The significance 

level was set at alpha = 0.05.  

 A complete randomized block design with sampling was performed to evaluate the 

effectiveness in accelerating combined (all species groups) seedling diameter growth between 

the herbicide treatments, to analyze the effectiveness in accelerating combined seedling height 

growth between the herbicide treatments, and to analyze the comparison of individual species 

groups (white oak, red oak, and yellow-poplar) to enhance seedling ground line diameter growth 

between the herbicide treatments. The third analysis included a sampling with split plot design.  

A mixed model analysis of variance utilizing the Glimmex procedure (SAS Institute Inc., Cary, 

NC version 9.4) in the Statistical Analysis Software (SAS) package was used for all three 

analyses.   
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5. RESULTS 

Pre-harvest Inventory Data 

 Pre-harvest densities for merchantable stems (greater than five inches in diameter at 

breast height) was diverse for all three blocks.  Block A had an oak component totaling 

approximately 41% of the estimated density (Figure 12).  Hickory, sweetgum (Liquidambar 

styraciflua), and yellow-poplar were the next largest contributors to the species composition 

forming approximately 23%, 13%, and 8% of the population, respectively.  Ash (Fraxinus sp.), 

sugar maple, sourwood, sassafras, black cherry, elm, red maple, boxelder (Acer negundo), 

dogwood, eastern redbud (Cercis canadensis), hackberry (Celtis occidentalis), and tree of heaven 

(Ailanthus altissima) formed the remainder of the population each at less than four percent of the 

overall composition.   

 

 

Figure 12.  Merchantable stem (>4.5 inches dbh) species composition within block A on the 
hardwood response study in west-central Tennessee. 
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 The majority of the inventoried stems were pulpwood sized materials (less than 12 inches 

dbh).  A diameter distribution table (Figure 13) illustrates the sample data values for each 

diameter class by tree count.  The diameter distribution represents a J-shaped curve which is 

commonly associated with an uneven-aged stand.  The average diameter for the sample was 

approximately 9.4 inches.  The estimated trees per acre (TPA) was calculated to be 106 trees.  

Stand stocking was determined to 55 ft.² of basal area per acre.  Sawtimber volume was 

computed to be approximately 1,730 board feet per acre. 

 

 

Figure 13. Diameter distribution table for block A on the hardwood response study in west-
central Tennessee. 
 
 Understory reproduction (for all size classes combined) sample data revealed diversity in 

species composition (Table 3).  Yellow-poplar was the largest contributor of the estimated 

population at 35.5% (estimated 874 stems per acre).  Combined oak species only accounted for 

4.3% (109 stems per acre) of the entire sample.  Ash species were the second largest portion of 

the composistion at 13.8% (339 stems per acre). All other nineteen recorded species accounted 

for less than 4.2% (Table 3). 
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Table 3.  Reproduction composition (block A), by species and percentages of the sampled 
population, on the hardwood response study in west-central Tennessee. 
 

Species Stem Count (Per Acre) Percentage 
Hophornbeam 104 4.2 
Yellow-poplar 874 35.5 

White oak 48 1.9 
Red oak 48 1.9 

Sugar maple 48 1.9 
Ash 339 13.8 

Beech 22 0.9 
Sourwood 4 0.2 
Sassafras 26 1.1 

Elm 22 0.9 
Cedar 17 0.7 

Ailanthus 61 2.5 
Dogwood 65 2.7 

Devil’s walking stick 13 0.5 
Redbud 65 2.7 

Ironwood 22 0.9 
Persimmon 26 1.1 

Hickory 65 2.7 
Black cherry 117 4.8 
Blackgum 191 7.8 

Sumac 39 1.6 
Miscellaneous 226 9.2 

Hackberry 4 0.2 
Chestnut Oak 13 0.5 

Totals 2461 100 
 

 Size classes of reproduction was skewed towards large seedlings and saplings (Table 4).  

Seedlings that were either greater than 3 foot in height or less than one inch diameter accounted 

for 36.2% of the inventoried stems.  These seedlings had a count of approximately 891 stems per 

acre.  Larger saplings (1” – 3” in diameter) followed as the next largest component of the 

reproduction with 34.4% (843 stems per acre) of the sampled stems.  Interestingly, there were no 

small seedlings less than one foot in height that were observed on the 23 plots.   
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Table 4.  Pre-harvest reproduction within block A by species and size 
class    
   Regeneration Size Class   

Species 
>1' 
ht. 

1' - 3' 
ht. >3' ht. OR  1.0" - 2.99"  

3.0" - 
5.99"  

6.0' and 
above Total 

      
<01.0" 

diameter diameter diameter   Count 
Hophornbeam 0 22 65 17 0 0 104 
Yellow-poplar 0 39 374 404 43 13 874 
White oak 0 13 13 4 4 13 48 
Red oak 0 30 13 0 0 4 48 
Sugar maple 0 9 13 22 0 4 48 
Ash 0 126 104 83 22 4 339 
Beech 0 0 9 13 0 0 22 
Sourwood 0 0 0 0 0 4 4 
Sassafras 0 4 13 9 0 0 26 
Elm 0 0 0 13 4 4 22 
Cedar 0 13 4 0 0 0 17 
Ailanthus 0 9 52 0 0 0 61 
Dogwood 0 17 17 17 13 0 65 
Devil 0 0 4 9 0 0 13 
Redbud 0 0 13 22 22 9 65 
Ironwood 0 4 9 9 0 0 22 
Persimmon 0 17 9 0 0 0 26 
Hickory 0 26 9 9 9 13 65 
Black cherry 0 17 39 39 22 0 117 
Blackgum 0 26 65 48 22 30 191 
Sumac 0 0 4 35 0 0 39 
Miscellaneous 0 74 61 91 0 0 226 
Hackberry 0 0 0 0 0 4 4 
Chestnut Oak 0 9 0 0 0 4 13 
Totals 0 457 891 843 161 109 2461 
Percent (%)  0 18.6 36.2 34.3 6.5 4.4  
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 Block B had almost half of the species composition consisting of shade tolerant hickory 

species and sugar maple (Figure 14).   The oak component was marginal forming only slightly 

greater than 15% percent of the overall composition.  The remainder of the stand consisted of 

elm, sourwood, sassafras, yellow-poplar, gum, ironwood (Carpinus caroliniana), eastern 

hophornbeam, ash, American beech, dogwood, black walnut (Juglans nigra), eastern red cedar 

(Juniperus virginiana), and common persimmon (Diospyros virginiana).   

 

 

Figure 14. Merchantable stem (>4.5 inches dbh) species composition within block B on the 
hardwood response study in west-central Tennessee. 
  

 Block B had a similar diameter distribution as block A (Figures 13 and 15). Pulpwood 

sized materials (less than 12 inches DBH) formed the majority of sampled stems (Figure 15). 

The diameter distribution was J-shaped representing an uneven-aged stand. The average diameter 

for the sample was approximately 9.0 inches. The estimated trees per acre was calculated to be 

153 trees. Stand stocking was determined to 73 ft.² of basal area per acre. Sawtimber volume was 

computed to be approximately 2,164 board feet per acre 
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Figure 15. Diameter distribution table for block B on the hardwood response study in west-
central Tennessee. 
 
 Similar to the reproduction status of block A, understory reproduction sample data in 

block B also displayed a vast array of species diversity (Tables 3 and 5).  Eastern hophornbeam 

was the largest contributor and comprised greater than one-third of the estimated population at 

34.1% (estimated 613 stems per acre) (Table 5).  Other sizeable contributors included ash at 

12.8% (230 stems per acre), sugar maple at 8.5% (152 stems per acre), sassafras at 7.3% (130 

stems per acre), flowering dogwood with 5.3% (96 stems per acre) and hickory comprising 4.8% 

(87 trees per acre).  Combined oak species only accounted for 6.2% (114 stems per acre) of the 

entire sample.  Devil’s walking stick, American beech, and blackgum all had respective 

percentage values of 3.9%.  Ironwood was slightly less than this at 3.6%.  All remaining species 

were under 1.5% for contribution to the overall species composition.   
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Table 5. Reproduction composition by species and percentages for Block B on 
the hardwood response study in west-central Tennessee. 
 

Species Stem Count (Per Acre) Percentage 
Hophornbeam 613 34.1 
Yellow-poplar 9 0.5 
White oak 57 3.1 
Red oak 57 3.1 
Sugar maple 152 8.5 
Ash 230 12.8 
Beech 70 3.9 
Sourwood 13 0.7 
Sassafras 130 7.3 
Elm 26 1.5 
Walnut 4 0.2 
Boxelder 9 0.5 
Dogwood 96 5.3 
Devil’s walking stick 70 3.9 
Redbud 30 1.7 
Red Maple 0 0.0 
Persimmon 4 0.2 
Hickory 87 4.8 
Black cherry 4 0.2 
Blackgum 70 3.9 
Ironwood 65 3.6 
Miscellaneous 0 0 
Totals 1796 100 

 

 Size classes of reproduction was primarily moderate sized seedlings to saplings for block 

B (Table 6).  Seedlings that were either greater than three foot in height or less than one inch 

diameter accounted for slightly greater than thirty-four percent (34.4%) of the inventoried stems.  

These seedlings had a count of approximately 617 stems per acre.  Moderate advanced seedlings 

one foot to three feet in height were the next largest component of the reproduction with 28.3% 

(509 stems per acre) of the sampled stems.   Saplings between one inch to three inches in 

diameter were estimated to form slightly greater than one-quarter (25.4% or 457 stems per acre) 

of the regeneration. All other regeneration size classes were less than 5.6% of observed data.   
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Table 6.  Pre-harvest reproduction within block B by species and size class on  
the hardwood response study in west-central Tennessee  
   Regeneration Size Class  

Species >1' ht. 1' - 3' ht. >3' ht. OR  
1.0" - 
2.99"  3.0" - 5.99"  6.0'  

      <1.0" diameter diameter diameter  and above 
Hophornbeam 0 91 309 187 22 4 
Yellow-
poplar 0 0 4 4 0 0 
White oak 0 52 4 0 0 0 
Red oak 0 30 13 4 0 9 
Sugar maple 0 30 26 61 22 13 
Ash 0 152 57 17 4 0 
Beech 0 4 26 26 9 4 
Sourwood 0 0 0 4 4 4 
Sassafras 0 13 48 65 0 4 
Elm 0 4 0 0 17 4 
Walnut 0 0 0 0 0 4 
Boxelder 0 4 4 0 0 0 
Dogwood 0 65 22 4 4 0 
Devil's 
walking stick 0 22 30 17 0 0 
Redbud 0 0 13 17 0 0 
Red Maple 0 0 0 0 0 0 
Persimmon 0 4 0 0 0 0 
Hickory 0 30 4 9 4 39 
Black cherry 0 0 0 4 0 0 
Blackgum 0 4 13 30 9 13 
Ironwood 17 0 43 4 0 0 
Totals 17 509 617 457 96 100 
Percent (%) 1.0 28.3 34.4 25.4 5.3 5.6 

*height denotes seedling height from ground to terminal bud 

 

 Slightly greater than half of the pre-harvest inventory for block C was comprised of shade 

tolerant species (Figure 16).  Hickory species was the largest contributor at 29%. The oak 

component totaled approximately 21% of the sample data.  Blackgum/sweetgum, sugar maple, 

ash, and elm were the next largest contributors to the species composition forming 9%, 10%, 7%, 

and 6% of the population, respectively.  Black cherry, yellow-poplar, sourwood, sassafras, red 

maple, eastern hophornbeam, American hornbeam, and American beech formed the remainder of 

the population each at less than 4% of the overall composition.   
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Figure 16. Merchantable stem (>4.5 inches dbh) species composition within block C on the  
hardwood response study in west-central Tennessee. 
 
 The majority (74%) of the inventoried stems were pulpwood sized materials (less than 12 

inches dbh) (Figure 17). Similar to the previous blocks, the diameter distribution represents a J-

shaped curve. The average diameter for the sample was approximately 9.25 inches. The 

estimated trees per acre was calculated to be 118 trees. Stand stocking was determined to 56 ft.² 

of basal area per acre.  Sawtimber volume was computed to be approximately 1,523 board feet 

per acre. 
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Figure 17. Diameter distribution table for block C on the hardwood response study in west-
central Tennessee. 
 
 The understory reproduction in Block C has a greater number of stems (3,857 stems per 

acre) with a variety of tree species (Table 7).  Eastern hophornbeam was the largest contributor 

and comprised almost exactly one-third of the estimated population at 33.4% (estimated 1,287 

stems per acre).  Other sizeable contributors included ash at 13% (500 stems per acre), yellow-

poplar at 11.5% (443 stems per acre), miscellaneous species at 12.5% (483 stems per acre), 

sassafras with 6.9% (265 stems per acre) and white oak comprising 4.3% (165 trees per acre).  

Combined oak species only accounted for 5.7% (217 stems per acre) of the entire sample.  All 

other tree species accounted for 2.8% as individual species contributors.   
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Table 7. Reproduction composition (pre-harvest) by species and percentages for 
Block C on the hardwood response study in west-central Tennessee. 
 

Species Stem Count (Per Acre) Percentage 
Hophornbeam 1287 33.4 
Yellow-poplar 443 11.5 
White oak 165 4.3 
Red oak 52 1.4 
Sugar maple 43 1.1 
Ash 500 13.0 
Beech 30 0.8 
Sourwood 0 0.0 
Sassafras 265 6.9 
Elm 96 2.5 
Cedar 4 0.1 
Sumac 4 0.1 
Dogwood 100 2.6 
Ironwood 61 1.6 
Redbud 109 2.8 
Red Maple 0 0.0 
Persimmon 0 0.0 
Hickory 74 1.9 
Black cherry 13 0.3 
Blackgum 48 1.2 
Devil’s walking stick 78 2.0 
Miscellaneous 483 12.5 

Total 3857 100.0 
 

 Similar to previous blocks, size classes of reproduction were primarily moderate 

seedlings to saplings (Table 8). Seedlings that were either greater than three foot in height or less 

than one inch diameter accounted for slightly less than half  (49%) of the inventoried stems. The 

estimated total for seedlings in this size class was approximately 1,891 stems per acre. Moderate 

sized sapling greater than one inch but less than three inches were the next largest component of 

the reproduction with 26.9% (1,039 stems per acre) of the sampled stems. Seedlings between  

one foot to three feet in height were estimated to form a significant component (16.1% or 626 

stems per acre) of the regeneration. Saplings greater than three inches but less than six inches in 

ground line diameter formed 5.4% (209 stems per acre) of inventoried stems. Pulpwood sized 

stems greater than six inches in diameter on comprised 2.4% of observed data.  
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*height denotes seedling height from ground to terminal bud 

 

Seedling Summary Data for Herbicide Treatments  

 Initial seedling diameters were measured in the fall of 2014 with a sample size of 2,625 

observations.  Seedling diameter measurements collected in the winter of 2017 had a smaller 

sample size of 1,560 observations.  Each individual treatment unit had some variation in the 

species composition of measured seedlings (Table 9 and 10). 

 

Table 8.  Pre-harvest reproduction within block C by species and size class on the 
hardwood response study in west-central Tennessee 
    

 Regeneration Size Class 
Species >1'  1' - 3'  >3' height OR  1.0" - 2.99"  3.0" - 5.99"  6.0' and 

   height  height <1.0" diameter diameter diameter above  

Hophornbeam 0 87 726 387 78 9 
Yellow-
poplar 0 9 178 222 22 13 
White oak 0 126 13 0 0 26 
Red oak 0 17 30 0 0 4 
Sugar maple 0 4 13 9 13 4 
Ash 0 165 317 17 0 0 
Beech 0 0 13 13 4 0 
Sourwood 0 0 0 0 0 0 
Sassafras 0 30 109 126 0 0 
Elm 0 0 9 39 39 9 
Cedar 0 4 0 0 0 0 
Sumac 0 0 0 4 0 0 
Dogwood 0 4 61 22 13 0 
Ironwood 0 4 35 22 0 0 
Redbud 0 0 30 61 17 0 
Red Maple 0 0 0 0 0 0 
Persimmon 0 0 0 0 0 0 
Hickory 0 17 26 13 0 17 
Black cherry 0 0 4 9 0 0 
Blackgum 0 0 0 22 17 9 
Devil's 
walking stick 0 35 30 13 0 0 
Miscellaneous 0 122 296 61 4 0 
Totals 0 626 1891 1039 209 91 
Percent (%) 0 16 49 27 5 2 
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Table 9. Individual seedling counts, by species class, for each individual treatment 
unit across all blocks on the hardwood response study in west-central Tennessee 
 

Block # Treatment YP ROAK WHO Total 
A Banded 45 38 25 108 
B Banded 29 40 34 103 
C Banded 32 8 14 54 
A Radial 12 39 31 82 
B Radial 24 40 21 85 
C Radial 12 28 40 80 
A SFM 75  41 32 13 86 
B SFM 75  68 32 27 127 
C SFM 75  7 16 35 58 
A Control 28 35 33 96 
B Control 32 39 36 107 
C Control 10 22 49 81 
A Banded/SFM 75 12 63 20 95 
B Banded/SFM 75 67 21 5 93 
C Banded/SFM 75 8 24 43 75 
A Radial/SFM 75 13 33 14 60 
B Radial/SFM 75 52 32 12 96 
C Radial/SFM 75 9 13 42 64 

   Total Count = 1550 
 

 The three combined banded treatment units contained a total of 265 measured seedlings.  

One-hundred and six of these seedlings were yellow-poplars, 75 were red oak species, and 84 

were white oak species.  The banded plus sulfometuron methyl treatments contained 263 sample 

seedlings.  The seedling composition included counts of 87 for yellow-poplar, 104 for red oak, 

and 72 for white oak.  Untreated control units were represented by 294 tree seedlings.  The 

species breakdown included 70 yellow-poplars, 92 red oaks, and 132 white oaks.  The 

sulfometuron methyl only treatment units contained 271 measured seedlings.  One hundred and 

sixteen of these seedlings were yellow-poplar.  Red oak and white oak counts were 80 and 75, 

respectively.  Two hundred and forty-seven quantified seedlings were accounted for in the radial 

units.  Species arrangement included 48 yellow-poplar seedlings, 94 red oak seedlings, and 105 

white oak seedlings.  Two hundred and twenty measured seedlings exist on the radial plus 

sulfometuron methyl treatment units.  Seventy-four yellow-poplar, 72 red oak, and 74 white oak 

are combined for the Radial/SFM75 treatment (Table 10).  
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Table 10.  Total counts for species grouping by treatment (summary for 2017) 
on the hardwood response study in west-central Tennessee 
 

Treatment Species grouping Treatment 
  yellow-poplar red oak white oak Totals 

Banded 106 86 73 265 
Banded/SFM 75 87 108 68 263 

Control 70 96 118 284 
Control/SFM 75 116 80 75 271 

Radial 48 107 92 247 
Radial/SFM 75 74 78 68 220 

Totals 501 555 494 1,550  
*counts for individual treatments are totals for all three blocks combined 

 

Statistical Results of Ground Line Diameter Change Among Treatments 

 Data for the change in ground line diameter was normal according to the Shapiro-Wilk 

test (W-value = 0.9313; P-value <0.0001).  The analysis did not suggest any severe outliers or 

influential points existed in the data and that equal variance existed in the data set.  The least 

squares means were separated using Tukey’s significant difference test. Results indicate there 

were not significant differences between the three blocks (P=0.1998).  A significant difference 

did exist however between treatments by block (P=0.0389) (Table 11). 

 

Table 11. Covariance parameter estimates for combined oak/yellow-poplar seedling diameter 
change 
 

Covariate Parameter Estimate Std. Error 
Z 

value 
P-

value 95% Confidence Intervals 

Block 0.002825 0.003354 0.84 0.1998 .000659       0.4136 

Treatment*Block 0.002560 0.001452 1.76 0.0389 .001076      0.01195 

Residual 0.05169 0.00186 27.79 <.0001 .04823       0.05554 
 

 The test of fixed effects indicates that a significant difference (Pr > F = 0.0037) existed 

among the treatments when all seedlings were combined for the analysis (Table 12). 
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Table 12. Type III tests of fixed effects for diameter change among treatments 
for all seedlings combined 

 
Effect Num DF Den DF F-Value Pr > F 

Treatment 5 1556 3.51 0.0037 
  

 Post ANOVA analysis using the Tukey mean separation found a difference among the 

treatments for the change in diameter growth. The sulfometuron methyl only differed from the 

control and radial treatments. All other treatments were similar. The greatest mean value (0.3749 

inches) was for the sulfometuron treatment (Table 13).  

  

Table 13. Tukey mean separation results among combined oak/yellow-poplar   
seedling diameter growth 

  
Treatment Observations  Mean Std. Error Letter Group 

    (inches)     
Banded 265 0.3480 0.01446 AB 
Banded + SFM 75 263 0.3231 0.01454 AB 
Control 294 0.3114 0.01373 B 
Control + SFM 75 271 0.3749 0.01430 A 
Radial 248 0.3037 0.01494 B 
Radial + SFM 75 222 0.3504 0.01580 AB 

 

Statistical Results of Height Change Among Treatments 

 A randomized complete block design with sampling was incorporated for this analysis.    

Data for the change in height was normal according to the Shapiro-Wilk test (W-value = 0.9405; 

P-value <0.0001) and equal variance was satisfactory.  The statistical software did not suggest 

that any severe outliers or influential points existed in the data set.  The least squares means were 

separated using Tukey’s significant difference test.  Analysis results indicate there were not 

significant differences between the three blocks (P=0.1701) (Table 14). A significant difference 

did not exist between treatments by block (P=0.0550). 
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Table 14. Covariance parameter estimates for combined oak/yellow-poplar seedling height 
change 
 

Covariate Parameter Estimate Std. Error 
Z 

value P-value 95% Confidence Intervals 

Block 36.1153 37.8608 0.95 0.1701 9.3986       1951.78 

Treatment*Block 7.8136 4.8880 1.60  0.0550 3.0683     45.7162 

Residual 231.78 8.3408 27.79 <.0001 216.28      249.03 
  

 A type III test of fixed effects was conducted for the change in height for all seedlings 

combined. The test indicated a difference (Pr > F <0.0001) existed among the treatments when 

all seedlings were combined for the analysis (Table 15). 

 

Table 15. Type III tests of fixed effects for height change among treatments 
for all seedlings combined 

 
Effect Num DF Den DF F-Value Pr > F 

Treatment 5 1556 14.19 <0.0001 
 

 Post ANOVA analysis using the Tukey mean separation found a significant difference 

between the sulfumeturon methyl only treatment and the radial treatment compared to all other 

treatments in regards to the change in diameter growth. These treatments also differed from one 

another.  The sulfometuron methyl only had the greatest mean with 28.9446 inches. The radial 

release treatments has the least mean value of 17.2641 inches (Table 16). 

 

Table 16. Tukey mean separation results among combined oak/yellow-poplar  
seedling height growth 
          

Treatment Observations  Mean Std. Error Letter Group 
    (inches)     

Banded 265 24.3953 0.99410 B 
Banded + SFM 75 263 21.9399 0.9998 B 
Control 294 23.744 0.9438 B 
Control + SFM 75 271 28.9446 0.9831 A 
Radial 248 17.2641 1.0276 C 
Radial + SFM 75 222 22.8266 1.0862 B 
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Statistical Results of Ground Diameter Change: White Oak Species as Related to Red Oak 

Species and Yellow-Poplar 

 Data for the change in ground line diameter was normal according to the Shapiro-Wilk 

test (W-value = 0.9327; P-value <0.0001).  Equal variance was less than a five-fold difference 

indicating acceptability. The statistical software did not suggest any severe outliers or influential 

points existed in the data set.  The least squares means were separated using Tukey’s significant 

difference test.  Analysis results indicate there were not significant differences between the three 

blocks (P=0.2055) (Table 17). A significant difference did not exist between treatments by block 

(P=0.0659).  There was also no difference between treatments (p=0.9297). A difference does 

exist between species groups (p<0.001).  

 

Table 17. Covariance parameter estimates for species groups seedling ground line diameter 
change 
 

Covariate Parameter Estimate Std. Error Z value 
P-

value 95% Confidence Intervals 

Block .0014 .0017 0.82 0.2055 .0003      .2579 

Treatment*Block .0012 .0008 1.51 
 
0.0659 .0005     .0084 

Residual .0472 .0017 27.66 <.0001 .0441      .0508 
 

 An analysis of variance indicated that there was a significant difference (p = 0.02988) 

between diameter growth of individual seedlings but not between species by treatments (p = 

0.10249) or individual treatments (p = 0.07823).  Post ANOVA analysis using the Tukey mean 

separation had no significant difference between any of the treatments in regards to the change in 

diameter growth with species grouping.  The individual ground line diameter growth did vary 

between the three groups however.  Yellow-poplar seedlings had appreciably larger means 

compared to both red and white oak groups on all treatments.  Yellow-poplar mean ground line 

diameter for all treatments combined was the largest (0.4389 inches) and differed from both oak 

groups.  All three species groups differed from one another with the red oak and white oak mean 

diameters being 0.3100 and 0.2576 inches, respectively (Table 18). Tests for normality were 

acceptable and equal variance did not exceed a five-fold difference in standard deviation values. 
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Table 18. Tukey mean separation results between species groups for seedling ground line 
diameter 
 

Species Group Observations Mean (inches) Std. Error Letter Group 
White Oak 542 0.2576 0.02519 C 
Red Oak 517 0.3100 0.02519 B 

Yellow-poplar 501 0.4389 0.02555 A 
 

 The Tukey mean separation test indicated that some difference existed for yellow-poplar 

in all of the individual treatments though the findings were not significant at the α= 0.05 level 

(Table 19).  For each case, the mean diameter change was equal to or greater than 0.4070 inches.  

The highest white oak group diameter growth was only 0.2909 inches.  The red oak group was 

marginally better with a maximum diameter change of 0.3211 inches.   

 

 

Table 19.  Tukey mean separation results among combined treatments for seedling diameter 
growth 
 

Treatment Species Observations  Mean Std. Error Letter Group 

      (inches)     

Banded Red Oak 75 0.3075 0.0396 CDE 
Banded White Oak 84 0.2645 0.0383 CDE 

Banded Yellow-poplar 106 0.4618 0.0364 A 

Banded + SFM 75 Red Oak 104 0.2906 0.0370 CDE 
Banded + SFM 75 White Oak 72 0.2322 0.0403 CDE 
Banded + SFM 75 Yellow-poplar 87 0.4312 0.0401 A 

Control Red Oak 92 0.3211 0.0374 CD 

Control White Oak 132 0.2527 0.0352 EF 
Control Yellow-poplar 70 0.4070 0.0397 AB 

Control + SFM 75 Red Oak 80 0.3144 0.0385 BCDE 
Control + SFM 75 White Oak 75 0.2718 0.0391 CDE 
Control + SFM 75 Yellow-poplar 116 0.4574 0.0369 A 

Radial Red Oak 94 0.3077 0.0372 CE 
Radial White Oak 105 0.2334 0.0366 DF 
Radial Yellow-poplar 48 0.4486 0.0434 A 

Radial + SFM 75 Red Oak 72 0.3189 0.0397 BCDE 
Radial + SFM 75 White Oak 74 0.2909 0.0400 CDE 
Radial + SFM 75 Yellow-poplar 74 0.4275 0.0404 A 
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Statistical Results of Height Change for Oak Species Against Yellow-Poplar 

 Data for the change in height change over the two full growing seasons were normal 

according to the Shapiro-Wilk test (W-value = 0.9469; P-value <0.0001).  Equal variance was 

potentially an issue with a two-fold difference in standard deviation.  This is within tolerance 

limits however as concerns should only be addressed if a five-fold difference is evident. The 

statistical software did not suggest any severe outliers or influential points existed in the data set.  

The least squares means were separated using Tukey’s significant difference test.  Analysis 

results indicate there were not significant differences between the three blocks (P=0.1691) (Table 

20). A significant difference did not exist between treatments by block (P=0.1186).  A difference 

was found between both the treatments (p=0.0399) and species groups (p<0.0001). 

 

Table 20. Covariance parameter estimates for species groups seedling height change 
 

Covariate Parameter Estimate Std. Error 
Z 

value 
P-

value 
95% Confidence 

Intervals 

Block 20.1648 21.0512 0.96 0.1691 5.2668        1058.57 

Treatment*Block 2.7006 2.2848 1.18 0.1186 0.8421       43.7539 

Residual 200.14 7.2335 27.67 <.0001 186.69         215.11 
 

 Statistical analysis suggested that there was a significant difference between the 

treatments based on the change in height growth when using the individual species groups (p 

=0.0399).  There was also a disparity between the height growth for the species groups (p < 

0.0001).  Post ANOVA analysis using the Tukey mean separation found a statistical difference 

between the treatments when using species group data for the change in height.  The test also 

indicated that individual height growth did vary between the three groups.  Yellow-poplar mean 

ground line diameter was the largest (31.59 inches) (Table 21) and differed from both oak 

groups.  The red oak and white oak groups did not differ from one another.  The groups’ mean 

diameters were 18.12 and 19.07 inches, respectively. Tests for normality were acceptable and 

equal variance did not exceed a five-fold difference in standard deviation values. 
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Table 21. Tukey mean separation results amongst species groups for seedling height change 
 
Species Group Observations Mean (inches) Std. Error Letter Group 

White Oak 542 19.070 2.6997 B 
Red Oak 517 18.182 2.6996 B 

Yellow-poplar 501 31.585 2.7134 A 
 

 The Tukey mean separation test indicated that some difference existed for yellow-poplar 

in all of the individual treatments.  For each case, the mean diameter change was equal to or 

greater than 27.7 inches.  The highest oak group height growth was only 21.58 inches for the 

sulfometuron methyl only treatment (Table 22). 

 

Table 22.  Tukey mean separation results amongst combined treatments for seedling height  
growth      
      

Treatment Species Observations  Mean Std. Error Letter Group 
      (inches)     

Banded Red Oak 75 20.0562 3.2421 D 
Banded White Oak 84 17.6618 3.1798 DE 

Banded 
Yellow-
poplar 

106 32.1280 3.0873 ABC 

Banded + SFM 75 Red Oak 104 16.9839 3.1156 DE 
Banded + SFM 75 White Oak 72 16.9539 3.2763 DE 

Banded + SFM 75 
Yellow-
poplar 

87 31.2443 3.2565 ABC 

Control Red Oak 92 21.0624 3.1344 D 
Control White Oak 132 19.9161 3.0287 D 

Control 
Yellow-
poplar 

70 33.7130 3.2528 AB 

Control + SFM 75 Red Oak 80 21.3403 3.1915 D 
Control + SFM 75 White Oak 75 21.5894 3.2226 D 

Control + SFM 75 
Yellow-
poplar 

116 36.1491 3.1046 A 

Radial Red Oak 94 16.4435 3.1258 DE 
Radial White Oak 105 12.7909 3.0939 E 

Radial 
Yellow-
poplar 

48 28.4910 3.4455 BC 

Radial + SFM 75 Red Oak 72 18.5342 3.2506 D 
Radial + SFM 75 White Oak 74 20.1784 3.2613 D 

Radial + SFM 75 
Yellow-
poplar 

74 27.7837 3.2819 C 
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New Germinant Versus Sprout Reproduction Absolute Growth for Combined Species 

 Statistical analyses found that all but one comparisons between reproduction class (new 

germinant or sprout) versus absolute diameter or absolute height growth were significant at the 

alpha = 0.05 level. The test for the new germinant reproduction paired with the absolute diameter 

growth was not significant (P = 0.2244). The pairwise test for sprout reproduction with absolute 

diameter change was significant (P = 0.0268) (Table 23). 

 

Table 23. Type III tests of fixed effects for absolute diameter change among  
treatments for all sprout reproduction combined 

 
Effect Num DF Den DF Chi-Square F-Value Pr > F 

Treatment 5 1045 12.72 2.54 0.0268 
 

 The sulfometuron methyl only treatment produced the highest mean estimate (0.3693 

inches) for absolute diameter growth for the combined sprout reproduction. The radial release 

application resulted in the lowest estimate of 0.2896 inches which is below the control estimate 

(Table 24).  

 

Table 24. Least square means estimates for absolute change in diameter for  
sprout reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 0.3339 0.03136 10.65 0.0002 

Banded + SFM 75 0.3003 0.03091 9.71 0.0004 
Control 0.316 0.02943 10.74 0.0007 
SFM 75 0.3693 0.03012 12.26 0.0003 
Radial 0.2896 0.02988 9.69 0.0008 

Radial + SFM 75 0.3375 0.0306 11.03 0.0003 
 

 The sulfometuron treatment was significantly different from both the control and radial 

applications for sprout reproduction and absolute diameter growth. The sulfometuron treatment 

also had the greatest level of separation from the control treatment (Table 25) depicts these 

findings. 
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Table 25. Tukey-Kramer least squares means comparison estimates for absolute change in 
diameter for sprout reproduction among individual treatment comparisons 
       

Treatments Compared Estimate 
Std. 
Error T - value Pr > |t| 

Adjusted P-
value 

Banded + SFM75 / SFM75 -0.06901 0.02633 -2.62 0.0089 0.0931 
Control / SFM75 -0.05325 0.02445 -2.18 0.0297 0.2491 
SFM75 / Radial 0.07969 0.02497 3.19 0.0015 0.0183 

 

 The type III test indicated a difference (P = 0.0245) also existed between treatments for 

new germinant reproduction in regards to absolute height change (Table 26).  

 

Table 26. Type III tests of fixed effects for absolute height change among  
treatments for all new germinant reproduction combined 

 
Effect Num DF Den DF Chi-Square F-Value Pr > F 

Treatment 5 502 13.02 2.6 0.0245 
 

 The sulfometuron methyl only treatments had the largest response in absolute height 

growth for new germinant reproduction. The mean estimate for sprout height growth over the 

three growing seasons was 29.035 inches. This was approximately seven inches greater than the 

control germinant reproduction. In a similar fashion as absolute diameter growth, the radial 

treatment had the least growth increase with an estimate of only 21.4344 inches. This value was 

also lower than the control estimate (Table 27). 

 

Table 27. Least square means estimates for absolute change in height for   
sprout reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 24.6094 5.0621 4.86 0.0312 

Banded + SFM 75 23.7461 5.0919 4.66 0.0325 
Control 22.4371 5.1245 4.38 0.0354 
SFM 75 29.035 5.1241 5.67 0.0201 
Radial 21.4344 5.2351 4.09 0.035 

Radial + SFM 75 24.0605 5.2608 4.57 0.026 
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 Five pairwise comparisons out of 15 were significant. The sulfometuron treatment 

differed from both the control and radial treatments. These treatments also had the largest 

separation between estimate values (Table 28).  

 

Table 28. Tukey-Kramer least squares means comparison estimates for absolute change in     
height for sprout reproduction between individual treatment comparisons 

      
Treatments Compared Estimate Std. Error T - value Pr > |t| Adjusted P-value 

Banded  / SFM75 -4.4256 2.0714 -2.14 0.0331 0.2702 
Banded + SFM75 / SFM75 -5.289 2.1207 -2.49 0.0130 0.1278 

Control / SFM75 -6.5979 2.2133 -2.98 0.0030 0.0355 
SFM75 / Radial 7.6006 2.4726 3.07 0.0022 0.0269 

SFM75 / Radial + SFM75 4.9745 2.5187 1.98 0.0488 0.3582 
 

 The type III test that compared sprout reproduction to absolute height change also found 

differences between treatments (P = <0.0001) (Table 29).  

 

Table 29. Type III tests of fixed effects for absolute height change among  
treatments for all sprout reproduction combined 

 
Effect Num DF Den DF Chi-Square F-Value Pr > F 

Treatment 5 1044 56.97 11.39 <0.0001 
 

 The same pattern as found for other reproduction to growth comparisons was also 

observed in the test comparing absolute height change with sprout reproduction. The 

sulfometuron methyl treatment has the largest increase in height growth with an estimate of 

26.91 inches. The sprouts in the radial treatments had the poorest height change response with an 

estimate of 15.59 inches (Table 30). 
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Table 30. Least square means estimates for absolute change in height for  
sprout reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 22.5347 3.1151 7.23 0.0075 

Banded + SFM 75 19.6778 3.0966 6.35 0.0112 
Control 23.6151 3.0363 7.78 0.0086 
SFM 75 26.9101 3.0642 8.78 0.0057 
Radial 15.5904 3.0543 5.1 0.022 

Radial + SFM 75 20.7444 3.0834 6.73 0.0102 
 

 Ten out of 15 treatment comparison were significant according to the Tukey-Kramer 

post-ANOVA test of least squares means. An average difference of 11.32 inches existed between 

the radial and sulfometuron treatments. Treatment comparisons are presented in Table 31. 

 

Table 31. Tukey-Kramer least squares means comparison estimates for absolute change in 
height for sprout reproduction among individual treatment comparisons  
 
      

Treatments Compared Estimate 
Std. 
Error T - value Pr > |t| 

Adjusted P-
value 

Banded  / SFM75 -4.3754 1.7092 -2.56 0.0106 0.1083 
Banded / Radial 6.9443 1.6979 4.09 <.0001 0.0007 

Banded + SFM75 / Control -3.9372 1.6318 -2.41 0.016 0.1527 
Banded + SFM75 / SFM75 -7.2322 1.6929 -4.27 <.0001 0.0003 
Banded + SFM75 / Radial  4.0875 1.6652 2.45 0.0143 0.1389 

Control / SFM75 -3.295 1.5718 -2.10 0.0363 0.2899 
Control / Radial 8.0247 1.5511 5.17 <.0001 <.0001 
SFM75 / Radial 11.3197 1.6052 7.05 <.0001 <.0001 

SFM75 / Radial + SFM75 6.1657 1.6538 3.73 0.0002 0.0028 
Radial / Radial + SFM75 -5.154 1.6415 -0.14 0.0017 0.0214 

 

New Germinant Versus Sprout Reproduction (by Species) Absolute Diameter Growth Response 

to Treatments 

 Only yellow-poplar new germinant reproduction absolute change in diameter was 

significant (P = 0.0161) among all the species by reproduction size comparisons (Table 32). Red 

oak new germinant and sprout reproduction, white oak new germinant and sprout reproduction, 

and yellow-poplar sprout reproduction were all insignificant with P-levels of 0.1984, 0.9517, 

0.3792, 0.1252, and 0.2434 respectively.  
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 Yellow-poplar germinants had the greatest mean estimate for absolute diameter growth 

within the banded treatments (0.4542 inches) followed by sulfometuron only application (0.4203 

inches). All herbicide applications were higher than the control estimate (0.3268 inches) however 

(Table 33).  

 

Table 33. Least square means estimates for absolute change in diameter for  
yellow-poplar new germinant reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 

Banded 0.4542 0.0694 6.54 0.0155 
Banded + SFM 75 0.385 0.0706 5.45 0.0198 
Control 0.3268 0.0714 4.58 0.0269 
SFM 75 0.4203 0.0703 5.98 0.0167 
Radial 0.4148 0.0746 5.56 0.0108 
Radial + SFM 75 0.3936 0.0749 5.26 0.0122 

 

 Four of the 15 treatment pairwise comparisons were significant at the 95% level (Table 

34). The greatest difference in estimate values (0.1274 inches) occurred between the banded and 

control treatment. The sulfometuron treatment paired with the control was the second greatest 

difference.   

 

Table 34. Tukey-Kramer least squares means comparison estimates for absolute change in   
diameter for yellow-poplar new germinant reproduction among individual treatment comparisons 

      
Treatments Compared Estimate Std. Error T - value Pr > |t| Adjusted P-value 

Banded  / Banded + SFM75 0.06917 0.03345 2.07 0.0395 0.307 
Banded / Control 0.1274 0.03539 3.6 0.0004 0.005 
Control / SFM75 -0.09347 0.03599 -2.6 0.0098 0.101 
Control / Radial -0.08798 0.04428 -1.99 0.0478 0.3521 

 

Table 32. Type III tests of fixed effects for absolute diameter change among  
treatments for yellow-poplar new germinant reproduction   
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 310 14.16 2.83 0.0161 
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New Germinant Versus Sprout Reproduction (by Species) Absolute Height Growth Response to 

Treatments 

 Red oak new germinant and yellow-poplar new germinant reproduction were not 

significant (P-values of 0.9685 and 0.2425, respectively) in regards to absolute change in height 

among treatments. Red oak sprout reproduction was almost or moderately significant (P = 

0.0551). White oak new germinant reproduction was found to be different for absolute height 

change among treatments with a P-value of 0.0152 (Table 35).  

 

Table 35. Type III tests of fixed effects for absolute height change   
among treatments for white oak new germinant reproduction  

      
Effect Num DF Den DF Chi-Square F-Value Pr > F 

Treatment 5 80.6 15.07 3.01 0.0152 
 

 The most intensive herbicide treatments yielded the greatest mean absolute height 

estimates for white oak germinants. The radial with the sulfometuron application had an estimate 

of 22.76 inches. The next highest means were the banded with the sulfometuron treatment (18.52 

inches) followed by the sulfometuron treatment (18.47 inches). Both glyphosate only 

applications were lower than the control estimate (Table 36). 

 

Table 36. Least square means estimates for absolute change in height for  
white oak new germinant reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 

Banded 12.2889 3.5911 3.42 0.0395 
Banded + SFM 75 18.5166 4.0705 4.55 0.0061 
Control 13.2852 3.5828 3.71 0.0325 
SFM 75 18.4657 4.1376 4.46 0.0056 
Radial 12.3481 3.759 3.28 0.0337 
Radial + SFM 75 22.7603 3.9997 5.69 0.0029 

 

 Three of the 15 treatment comparisons showed a difference in the least square means 

post-ANOVA test. The most intensive treatments had the greatest separation from the control 

and glyphosate only applications. The estimates ranged from approximately 9.5 – 10.5 inches for 

the three comparisons (Table 37). 
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 The absolute change in height for white oak sprout reproduction was also strongly 

different among treatments. A low P-value of <0.0001 was estimated from the type III two-way 

pairwise test (Table 38). 

 

Table 38. Type III tests of fixed effects for absolute height change among  
treatments for white oak sprout reproduction    
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 346 27.43 5.49 <.0001 

 

 Similar to data presented for the absolute diameter change for sprout reproduction, the 

sulfometuron methyl treatment had the optimal performance with an estimate of 21.05 inches of 

height growth. Likewise, the radial application was dramatically lower with only 12.84 inches of 

absolute height change. Contrary to results for white oak germinants, the more intensive 

treatments were lower, for white oak sprouts, than the control estimate (Table 39). 

 

Table 39. Least square means estimates for absolute change in height for  
white oak sprout reproduction among treatments  
     

Treatment Estimate Std. Error T - value P - value 
Banded 20.5589 2.9019 7.08 0.0019 
Banded + SFM 75 16.0717 2.794 5.75 0.0065 
Control 19.9888 2.5972 7.7 0.0069 
SFM 75 21.0504 2.7628 7.62 0.003 
Radial 12.841 2.657 4.83 0.0181 
Radial + SFM 75 19.5755 2.8922 6.77 0.0023 

 

Table 37. Tukey-Kramer least squares means comparison estimates for absolute change in   
height for white oak new germinant reproduction between individual treatment 
comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| Adjusted P-value 

Banded / Radial + SFM 75 -10.472 3.3149 -3.16 0.0022 0.0262 
Control / Radial + SFM 75 -9.4751 3.2535 -2.91 0.0046 0.0509 
Radial / Radial + SFM75 -10.412 3.4564 -3.01 0.0035 0.0391 
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 Six out of the 15 treatment comparisons were significantly dissimilar from one another. 

The most pronounced range between mean height change estimates was found between the 

sulfometuron and radial treatments. Table 40 contains all significant comparisons between 

individual treatments. 

 

Table 40. Tukey-Kramer least squares means comparison estimates for absolute change in   
height for white oak sprout reproduction between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted P-
value 

Banded / Radial 7.7179 2.19 3.52 0.0005 0.0064 
Banded + SFM75 / Control -3.9171 1.9031 -2.06 0.0403 0.3119 
Banded + SFM75 / SFM 75  -4.9787 2.1239 -2.34 0.0196 0.1794 
Control / Radial 7.1478 1.7205 4.15 <.0001 0.0006 
SFM75 / Radial 8.2094 1.9804 4.15 <.0001 0.0006 
Radial / Radial + SFM75 -6.7245 2.1251 -3.17 0.0017 0.0205 

 

 The absolute height change for yellow-poplar sprouts was also different among 

treatments. The pairwise test indicated that a P-value of 0.0031 existed (Table 41). 

 

Table 41. Type III tests of fixed effects for absolute height change among  
treatments for yellow-poplar sprout reproduction   
      
Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 178 18.64 3.73 0.0031 

 

 All herbicide treatment mean estimates were lower than the control mean estimate of 

44.04 inches. The radial with the sulfometuron treatment and the radial only treatment had the 

lowest estimates with 24.75 inches and 24.84 inches, respectively. This is a substantial difference 

of almost 20 inches (Table 42). 
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Table 42. Least square means estimates for absolute change in height for  

yellow-poplar sprout reproduction among treatments  

     
Treatment Estimate Std. Error T - value P - value 

Banded 32.4182 5.6518 5.74 0.0015 

Banded + SFM 75 34.8579 6.4344 5.42 0.0004 

Control 44.0357 6.2495 7.05 <.0001 

SFM 75 39.1072 5.1483 7.6 0.0021 

Radial 24.8441 6.4684 3.84 0.0035 

Radial + SFM 75 24.7472 5.3228 4.65 0.0084 
 

 The post-ANOVA least squares means test indicated that 4 of the 15 treatments were 

statistically dissimilar. The greatest contrast appears to be between the control and both radial 

treatments. Table 43 depicts the post-ANOVA summary. 

 

Table 43. Tukey-Kramer least squares means comparison estimates for absolute change in   
height for yellow-poplar sprout reproduction between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| Adjusted P-value 

Control / Radial 19.1916 6.9248 2.77 0.0062 0.0669 
Control / Radial + SFM75 19.2884 5.8933 3.27 0.0013 0.0159 
SFM75 / Radial 14.2631 5.8844 2.42 0.0164 0.1537 
SFM75 / Radial + SFM75 14.36 4.4318 3.24 0.0014 0.0176 

 

Relative Growth Change for All Analysis 

 Relative changes in growth for diameter and height were also analyzed using similar 

statistical methodology. Comparisons for both diameter change and height change were made 

between treatments, reproduction size classes, individual species groupings, and size class by 

species groupings. The relative change in growth had similar findings to each respective absolute 

growth comparison. The findings are presented in the Appendix section. 

  

Competitive Vegetation Analysis for Ground Covers 

 Ocular estimation was used to discern the percentage of ground cover by various plant 

competitors (Table 44).  These plants primarily included broomsedge bluestem, Nepalese 



 

67 

 

browntop, Rubus species, leaf litter beneath conglomerations of sapling sized stems, and 

herbaceous vegetation with limited bare ground exposure.  There was a tremendous response by 

grass species over the two growing seasons following treatment implementation.  Fifteen out of 

the 18 treatments units were estimated to be covered by 50% or more by warm-season grass 

species.  Ten of these units had a ground coverage percentage, by grass, of 70% or more. 

Blackberry (Rubus species) were also fairly common on site but typically covered less ground 

area compared to the grasses.  Isolated pockets of larger saplings (½ inch – 4 inches ground 

diameter) were present infrequently across each block.  Limited grass or herbaceous vegetation 

existed beneath denser accumulations of woody stems due to heavier shading.  All treatments 

that received the post-emergent application of sulfometuron methyl herbicide had a minimum 

assessment of 50% grass cover.  The data do not suggest any convincing difference between the 

three blocks and the responded plant community.   
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Table 44. Ocular estimates of vegetative ground cover percentages by individual treatment 
units on the hardwood response study in west-central Tennessee 
 
    Vegetative Cover Type 

          
Leaf 
litter/ Herbaceous/ 

Block Treatment Broomsedge Microstegium 
Rubus 

sp. Saplings sparse grass 
A Control *** 40% 60% *** *** 
B Control 95% *** 5% *** *** 
C Control 80% *** 5% *** 15% 
A Control + SFM 75 40% 10% 50% *** *** 
B Control + SFM 75 60% *** 25% *** 15% 
C Control + SFM 75 95% *** *** *** 5% 
A Radial 10% 40% 30% 20% *** 
B Radial 15% *** 85% *** *** 
C Radial 90% *** 10% *** *** 
A Radial + SFM 75 60% *** *** 20% 20% 
B Radial + SFM 75 50% *** 5% 45% *** 
C Radial + SFM 75 85% *** 15% *** *** 
A Banded 10% 75% 15% *** *** 
B Banded 15% *** 70% 15% *** 
C Banded 85% *** 15% *** *** 
A Banded + SFM 75 95% *** 5% *** *** 
B Banded + SFM 75 95% *** 5% *** *** 
C Banded + SFM 75 70% *** *** *** 30% 

 

 

Competitive Vegetation Analysis for Tree Reproduction Density Measurements 

 Data accumulated for the six individual (1/100- acre) plots were summarized to per acre 

values for each of the three replicated blocks on the study area (Table 45).  Block A has two 

prominent species that comprise over half of the estimated tree population.  Blackgum and 

yellow-poplar are estimated to for approximately 29% apiece of the estimated species 

composition.  Ash (9%) and hickory (8%) were also significant competitors with oak (4%) 

species for available growing space.  These numbers followed a similar pattern as presented for 

pre-harvest regeneration (Figure 12) with the exception to blackgum, which had a significant 

increase in abundance.   
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Table 45. Reproduction composition by species and percentages within block A (two 
growing season after treatments) on the hardwood response study in west-
central Tennessee 
  

Species Stem Count (Per Acre) Percentage 
Hophornbeam 33 1.3 
Yellow-poplar 750 28.7 

White oak 50 1.9 
Red oak 50 1.9 

Sugar maple 17 0.6 
Ash 233 8.9 
Elm 83 3.2 

Blackgum 767 29.3 
Ailanthus 167 6.4 
Buckthorn 33 1.3 
Persimmon 33 1.3 

Hickory 217 8.3 
Black cherry 33 1.3 
Red maple 33 1.3 

Sumac 67 2.5 
Paulownia 17 0.6 

Loblolly pine 17 0.6 
Hackberry 17 0.6 

Totals 2617 100 
  

 The majority (68% or 1,783 stems per acre) of the reproduction on block A occupied the 

larger seedling and small sapling size classes (Table 46).  Yellow-poplar formed the greater 

abundance (217 stems per acre) of large saplings within the block.  Ash, sugar maple, tree of 

heaven, and Carolina buckthorn also had larger sized reproduction on site but at a lesser quantity.  

Small seedlings less than one foot in height were limited within the area consisting of only 

approximately 4% of the sampled population.  
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  Block B findings have yellow-poplar dominating the species composition at 40% or 

1,683 stems per acre (Table 47).  Shade tolerant species including hickory and eastern 

hophornbeam also form a sizeable percentage of the sampled population at 17% apiece.  Red and 

white oak species form approximately 5% of the sample.  Species diversity was lower than block 

A and the same as block C however overall stem count estimation was the highest at 4,167 stems 

per acre. 

 

 

 

Table 46. Reproduction after two complete growing seasons within block A, 
by species and size class, on the hardwood response study in west-central 
Tennessee 
  
   Regeneration Size Class  

Species 
>1’ 
ht. 

1’ – 3’ 
ht. >3’ ht. OR  

1.0” – 
2.99”  

3.0” – 
5.99”  

6.0’ and 
above 

      <01.0” diameter diameter diameter   
Hophornbeam 0 17 0 17 0 0 
Yellow-poplar 0 150 117 267 217 0 
White oak 0 50 0 0 0 0 
Red oak 0 33 17 0 0 0 
Sugar maple 0 0 0 0 17 0 
Ash 0 50 150 0 33 0 
Elm 33 33 17 0 0 0 
Blackgum 33 333 400 0 0 0 
Ailanthus 0 0 33 117 17 0 
Buckthorn 0 0 0 0 33 0 
Persimmon 0 0 33 0 0 0 
Hickory 33 133 50 0 0 0 
Black cherry 0 0 33 0 0 0 
Red maple 0 17 17 0 0 0 
Sumac 0 17 50 0 0 0 
Paulownia 0 0 17 0 0 0 
Loblolly pine 0 17 0 0 0 0 
Hackberry 0 0 0 17 0 0 
Totals 100 850 933 417 317 0 
Percent (%)  3.8 32.5 35.7 15.9 12.1 0.0 
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Table 47. Reproduction composition by species and percentages within block B (two 
growing seasons after treatments) on the hardwood study in west-central Tennessee 

  
Species Stem Count (Per Acre) Percentage 

Hophornbeam 700 16.8 
Yellow-poplar 1683 40.4 

White oak 50 1.2 
Red oak 167 4.0 

Ash 267 6.4 
Persimmon 100 2.4 

Hickory 700 16.8 
Red maple 50 1.2 

Sumac 450 10.8 
Totals 4,167 100 

 

 Size class distribution within block B is also dominated by larger seedlings and small 

saplings (Table 48).  Approximately 91% of the projected reproduction falls within these 

categories.  Minimal small seedlings were present on the block after two complete growing 

seasons have elapsed.  A small proportion of the sample (7%) were larger hickory and yellow-

poplar saplings.   

 

Table 48. Reproduction after two complete growing seasons within block B,  by 
species and size class, on the hardwood response study in west-central Tennessee 
  
   Regeneration Size Class  

Species 
>1’ 
ht. 1’ – 3’ ht. >3’ ht. OR  1.0” – 2.99”  

3.0” – 
5.99”  

6.0’ and 
above 

      <01.0” diameter diameter Diameter   
Hophornbeam 33 267 400 0 0 0 

Yellow-poplar 0 983 567 133 0 0 
White oak 33 17 0 0 0 0 
Red oak 0 83 83 0 0 0 
Ash 0 217 50 0 0 0 
Persimmon 0 33 67 0 0 0 
Hickory 0 300 250 150 0 0 
Red maple 0 50 0 0 0 0 
Sumac 0 367 83 0 0 0 
Totals 67 2,317 1,500 283 0 0 
Percent (%)  1.6 55.6 36.0 6.8 0.0 0.0 
*ht denotes seedling height from ground to terminal bud    
*Diam. Denotes stem diameter at ground line    
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 Block C deviated from the other two blocks in overall reproduction abundance.  A 

meaningfully lower quantity (567 stems per acre) (Table 49) of reproduction was observed 

within the area.  Fewer stems is likely attributed to the location of the loading deck utilized for 

timber extraction and also the use of heavy equipment to clear logging slash from some of the 

area.  Species composition was more diversified within this block.  Yellow-poplar again had the 

highest tally (133 stems per acre or 23.5%) in the sample data but with lower margin of 

difference compared to all other species.  Other significant contributors included black cherry 

(17.6%), red oak (14.7%), common persimmon (11.8%), ash (8.8%), and eastern hophornbeam 

(8.8%) (Table 49) depicts the summation of plot data. 

 

Table 49. Reproduction composition by species and percentages within block C (two 
growing seasons after treatments) on the hardwood response study in 
west-central Tennessee 
  

Species Stem Count (Per Acre) Percentage 
Hophornbeam 50 8.8 
Yellow-poplar 133 23.5 

White oak 17 2.9 
Red oak 83 14.7 

Ash 50 8.8 
Persimmon 67 11.8 

Elm 33 5.9 
Redbud 33 5.9 

Black cherry 100 17.6 
Totals 567 100.0 

 

 In accordance with the previous two blocks, block C had the preponderance (72%) of 

reproduction occupying the larger seedling and small sapling size classes (Table 50).  A greater 

amount of small seedlings were noted within block C as compared to the aforementioned blocks 

however.  The removal of debris, along with advanced regeneration present during the harvest 

activity, may have removed stems that likely would have yielded some occurrence of larger sized 

reproduction.  New germinates following the disturbance is a plausible reasoning for the higher 

count of small seedlings.   
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Table 50. Reproduction after two complete growing seasons within block C, by 
species and size class, for the hardwood response study in west-central Tennessee 
  
   Regeneration Size Class  

Species >1’ ht. 
1’ – 3’ 

ht. >3’ ht. OR  
1.0” – 
2.99”  

3.0” – 
5.99”  

6.0’ and 
above 

      <01.0” diameter diameter diameter   
Hophornbeam 0 17 33 0 0 0 
Yellow-poplar 0 133 0 0 0 0 
White oak 17 0 0 0 0 0 
Red oak 0 83 0 0 0 0 
Ash 0 50 0 0 0 0 
Persimmon 0 17 50 0 0 0 
Elm 0 33 0 0 0 0 
Redbud 0 33 0 0 0 0 
Black cherry 83 17 0 0 0 0 
Totals 100 383 83 0 0 0 
Percent (%)  17.6 67.6 14.7 0.0 0.0 0.0 
*ht denotes seedling height from ground to terminal bud    
*Diam. Denotes stem diameter at ground line    

 

Precipitation Records  

 Monthly precipitation data was collected from the National Oceanic and Atmospheric 

Administration webpage (http://w2.weather.gov/climate) for the middle Tennessee region. 

Herbicide treatments were conducted during the growing season of 2014. For that year through 

the year of 2017, there were 13 months out of 24 (April – September for each year) in which 

actual measured rainfall fell below average. The droughty months are highlighted in Table 51 

below. Yellow months are negative values up to 1.7 inches below the ten year average. Red 

months are deviations of greater than 1.7 inches below the average. 
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Table 51. Monthly Total Precipitation for Nashville Area, TN 
  

            Jan   Feb   Mar  Apr   May  June  July   Aug  Sept   Oct   Nov Dec 

2007 3.32 1.84 2.26 2.75 3.30 2.37 1.47 1.38 1.99 4.95 6.20 3.83 35.66 

2008 4.76 2.53 5.56 7.20 5.54 2.21 4.32 1.67 0.88 5.03 1.75 6.72 48.17 

2009 4.59 2.85 2.92 4.13 8.45 4.53 6.03 2.14 11.08 6.49 0.67 3.99 57.87 

2010 4.13 2.77 3.52 3.48 16.43 4.96 5.86 6.99 1.17 2.49 5.41 1.87 59.08 

2011 2.31 5.54 4.59 7.51 4.38 5.04 3.46 1.78 6.20 0.93 6.15 4.25 52.14 

2012 5.13 2.81 3.11 2.86 4.01 0.26 8.38 3.70 5.64 3.83 1.38 4.71 45.82 
2013 7.14 2.58 4.32 7.63 2.77 4.48 6.60 1.99 4.52 2.34 2.53 7.98 54.88 

2014 2.61 5.09 4.36 7.29 2.47 5.73 2.38 5.47 0.21 8.43 3.34 3.21 50.59 

2015 2.22 4.60 4.29 6.33 3.56 3.38 7.07 2.99 2.28 4.32 4.84 4.92 50.80 

2016 2.17 4.46 4.33 1.12 2.37 4.45 6.28 6.44 1.87 0.43 1.87 6.94 42.73 

2017 3.34 1.56 4.02 7.40 3.94 4.03 4.23 8.32 3.58 3.48 4.46 4.56 52.92 

2018 1.63 M M M M M M M M M M M M 

Mean 3.61 3.33 3.93 5.25 5.20 3.77 5.10 3.90 3.58 3.88 3.51 4.82 50.06 

Max 
7.14 
2013 

5.54 
2011 

5.56 
2008 

7.63 
2013 

16.43 
2010 

5.73 
2014 

8.38 
2012 

8.32 
2017 

11.08 
2009 

8.43 
2014 

6.20 
2007 

7.98 
2013 

59.08 
2010 

Min 
1.63 
2018 

1.56 
2017 

2.26 
2007 

1.12 
2016 

2.37 
2016 

0.26 
2012 

1.47 
2007 

1.38 
2007 

0.21 
2014 

0.43 
2016 

0.67 
2009 

1.87 
2010 

35.66 
2007 

*Records span a 10-year period; mean average is derived from this period 

 

Palmer Drought Severity Index (PDSI) Comparison 

 The PDSI remained in the near normal over most of the growing seasons of 2014, 2015, 

and 2016. One slight drought period is presented for late winter and spring of 2016. The PDSI 

ranking values do not match the actual precipitation values. There were multiple months for each 

of the three years that had rainfall well below the mean rainfall average. The PDSI values are 

positive for all of the 2014 and 2015 time periods however. Figure 18 depicts the PDSI values 

for the middle Tennessee region.   
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Figure 18. Palmer Drought Severity Index (PDSI) values for the middle Tennessee region for the 
period of March 2014 – October 2016 
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6. DISCUSSION 

Potential Impact of Season of Harvest 

 Pre-harvest reproduction data indicated a high proportion of shade tolerant species were 

prevalent in all three replicated blocks prior to timber harvesting. Block A was slightly dissimilar 

from blocks B and C in that half of the pre-harvest advance reproduction consisted of yellow-

poplar. Overall for all blocks combined, it was expected that the shade-tolerant, advance 

reproduction would dominate the site following harvesting disturbance. A significant component 

of the future reproduction was expected from coppice sprouting as block B had the lowest 

amount (1,270 stems) of reproduction greater than three feet in height. Post-harvest regeneration 

data indicated however that the majority of the regeneration was comprised of stems greater than 

three feet in height. Most of this reproduction are also shade intolerant species (Block A – 1,083 

seedlings, Block B – 2,167 seedlings, and Block C – 283 seedlings). These shade intolerant 

species included oaks, yellow-poplar, and ash species. Oak species were in the minority of these 

population estimates with 100, 217, and 100 per respective block. Following treatment 

applications, a reduction in the abundance of the shade tolerant species was observed after two 

growing seasons. 

   Of the measured sample seedlings, approximately 52% were classified as root sprout 

reproduction. Most of these sprouts derived from smaller diameter stems which may have been 

severed during the harvest activity but the root stock remained intact. The smaller sized 

reproduction probably had a greater probability of remaining in place due to avoidance of 

hanging or being moved by harvesting equipment, unlike the larger sized shade tolerant 

reproduction. As indicated within the pre-harvest data, over 72% of reproduction were in size 

classes over three feet in height for each individual block. The larger stems conceivably were 

unable to maintain their respective root stock in place due to being gripped and ripped from the 

ground by the equipment or felled stems during skidding. This may be the cause for the 

reduction of most of the larger pre-harvest reproduction including shade tolerant species. 

 Reproduction favored shade intolerant species after two complete growing seasons. The 

majority of this reproduction was greater than three feet in height which may be attributed to the 

more rapid growth rates. Adequate time has probably elapsed and given the enhanced light 

environment created by disturbance, shade tolerant reproduction could have grown faster while 

oak reproduction may have become suppressed. In similar forested conditions, Heilegmann and 
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Ward (1993), Heilegmann and others (1985), and Nyland and others (1993) found that shade 

tolerant reproduction became abundant and reached larger diameters of up to 3 – 3.5 inches, 

fifteen to twenty years after a diameter-limit harvest. The stand in the study was estimated to 

have been cut between 20 – 25 years prior. Thus, sapling growth had adequate time to establish. 

This size class of reproduction would conceivably be most likely to be removed from the ground 

by logging equipment. 

 During the early (first herbicide treatments implemented) applications of sulfometuron 

methyl, a substantial amount of bare ground was observed over portions of each research block.  

These open areas principally included areas around loading decks and skidding trails. Higher 

traffic activity by heavy equipment was apparent along the upper slope and ridge positions but 

decreased with descent down the slope.  The use of heavy equipment, including a feller-buncher 

and ground skidder, during the late winter and early spring may have facilitated enhanced 

removal of potential stump sprouts as compared to what might have transpired from harvesting 

in the seasonal dry periods of summer or fall.  Soil moisture is typically highest during the winter 

and spring in the southeast.  Some studies (Aust and others 1995, Greacen and Sands 1980) 

suggest that site degradation resulting from soil disturbance can be greater in moist soil 

conditions. The increased soil moisture could potentially have lead to loosening of the silt loam 

soil around root stock.  This Bodine soil type is classified as a cohesionless soil which more 

readily breaks apart and has increased porosity compared to other soil types. These soil 

conditions may have facilitated easier extraction of the root system for sapling and large seedling 

sized stems during felling and dragging of downed trees across the area.  Schweitzer and Dey 

(2011) found that the majority of oak seedlings remained undisturbed by unrestricted harvesting 

equipment. However, results from the study also indicate that there was a reduction in larger 

saplings (greater than 1.5 inches) and small poletimber sized stems when incorporating other 

species into the analysis. These findings support the theory that larger sized reproduction has an 

increased probability of being removed during timber harvest. The study site had abundant 

sapling sized stems in the understory and midstory canopy. Thus, a greater component of 

individual stems may have been “ripped” from the ground during skidding or by the blade of the 

operating feller-buncher.  Removal of the root stock would directly reduce the prevalence of 

stump/root sprouting. 
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 There was a noticeable discrepancy between the blocks in the abundance of reproduction 

within each block. Most obvious was the nominal abundance of total seedlings present in block 

C (567 stems per acre) as compared to blocks A (2,617 stems per acre) and B (4,167 stems per 

acre). Block C was harvested in late spring whereas the other blocks were harvested in March 

and April. A relationship may exist between having abundant reproduction to harvesting when 

trees are still in the dormant period versus harvesting in an active growth period. Roth and 

Hepting (1947), and Keyser and Zarnoch (2013) observed that season of harvest did not impact 

hardwood stump sprouting potential. Severance of smaller stems after leaf flush, in the middle of 

the growing season, may lead to individual stem mortality due to lacking resources from the 

already depleted carbohydrate reserves in the root system (Buell 1940, Kays and Canham 1991, 

Babeux and Mauffette 1994, Belz 2003). Block C was harvested in May (early growing season 

prior to cessation of above ground growth) which may not have killed the reproduction stems but 

could diminish growth involving both stem elongation and foliar flush. Some smaller advance 

reproduction with lesser root stock may have been unable to respond from this disturbance and 

could have contributed to increased mortality or at a minimum, experienced an overall reduction 

in seedling abundance. Babeux and Mauffette (1994) observed a 53% mortaility rate in red 

maple stump sprouts following stem severance in May. 

 

Natural Reproduction After Disturbance 

 Despite the lack in abundant oak reproduction indicated by pre-harvest regeneration 

inventory data (Tables 3-8), all ¾ - acre treatment units contained at least 75 oak seedlings to 

serve as samples for later data collection and analysis.  On a per acre basis, this equaled 

approximately 100 oak seedlings per acre. The presence of these oak seedlings suggested that 

even high-graded stands may contain a limited amount, but less that of shade tolerant species, of 

oak or other shade intolerant reproduction due to canopy gap creation (Canham 1989). This 

disturbance increases sunlight penetration to the understory. Within gap openings, shade 

intolerant and intermediate species can establish and respond favorably in growth (Delucca and 

others 2009, Cowden and others 2014, Keasberry and others 2016). Such forested stands may 

contain a less than desirable abundance of oak reproduction before disturbance. Following a 

clearcut potentially more oak seedlings have the ability to emerge. With increased active forest 

management such as weeding or crop tree release over time, these seedlings may possibly 
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maintain competitiveness and recruit into more dominant canopy positions in the future stand.  

Early forms of active forest management will be necessary for these oak seedlings to establish 

competitive crown positions.  This is especially essential with the presence of yellow-poplar 

reproduction.  High intensity disturbances that dramatically increase sunlight penetration to the 

forest floor may result in a conversion of stands to yellow-poplar (McGee and Hooper 1975, 

Beck and Hooper 1986, Groninger and Long 2008, Loftis 1990). In addition, the presence of 

other less desirable species including eastern hophornbeam, blackgum, and hickory species will 

also reduce the probability of successful oak establishment in the future stand as indicated by 

Johnson et al (1989) and Ward and Heilegmann (1990). Some control applications after the 

clearcut disturbance are needed to reduce these competitor species will increase the probability 

of oak seedlings establishing dominance at crown closure. Oak may likely lose dominance in 

heavily disturbed stands without post-clearcutting competition control. 

 A significant difference existed between individual treatment units that received the same 

herbicide or combination of herbicides. Thus, dissimilar groupings included sulfometuron methyl 

only treatments, glyphosate only treatments, both combined sulfometuron methyl and glyphosate 

(banded or radial combinations), and control treatments. The difference is attributed to the 

variation in species composition amongst each replicated treatment unit on the three blocks 

(Tables 9 and 10). The difficulty in finding seedlings with the excessive grass competition 

created disparities in available samples. For some replications, yellow-poplar may have 

dominated the samples within a particular unit whereas the same treatment on different units had 

a greater percentage of oak. The growth rate differences were evident between the yellow-poplar 

and oak groups. This growth rate variation amongst species lead to a more significant growth 

increase in units with more yellow-poplar.  

 

Impact from Grass Competition 

 The minimal difference in growth response between herbicide treatments can likely be 

explained in part by non-woody plant competition. Notable competition on the site was primarily 

accredited to the dense establishment of warm-season grasses following the treatments. These 

grasses can impact tree seedling growth in a variety of ways. Seedling survival can be decreased 

by reduced moisture taken up by grass. The reduced moisture may enhance drought stress. The 

shallow root systems of grass may diminish available resources for uptake by tree roots which 
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include both water and nutrients. The grass roots can also restrict root expansion of the desired 

crop seedlings. A reduction in bare ground cover by grass and straw could alter microclimate 

around seedlings by creating thermal inhibition during both heat and cold temperature extremes. 

All these detrimental factors caused by grass can contribute to reduced seedling growth. The loss 

of previously dominant forb vegetation due to herbicide use contributed to the grass 

establishment on the research site. 

 One deleterious result of the herbicide applications is that it created areas devoid of 

woody competitors, and herbaceous competitors quickly invaded.  Growing space conditions 

were altered that enabled broomsedge bluestem (Andropogon virginicus) and Nepalese browntop 

(Microstegium vimenium) to dominate most of the site. Each treatment unit that received any 

herbicide application resulted in a higher percentage of ground coverage by grasses compared to 

the control units.  Rice and others (1997) had similar results where a grass dominated cover 

established following herbicide applications to control invasive forbs. Ezell and Nelson (2001) 

and Groninger and others (2004) also observed that broomsedge coverage increased on a planted 

oak study site that received treatments using sulfometuron methyl. Minogue and others (2012) 

stated that sulfometuron methyl is weak on controlling perennial grasses including broomsedge.  

 Glyphosate treatments also appeared to assist in grass establishment. The locations that 

received the directed foliar spray applications had grass encompass higher percentages of ground 

coverage in the respective units. Ristau and others (2011) also observed an increase in graminoid 

cover for areas that received herbicide applications using both glyphosate and sulfometuron 

methyl in a shelterwood harvested area. Horsley (1994) also noted an increase in grass from the 

seed bank within a shelterwood harvest treated with glyphosate. On this study, the grass 

emergence was especially noticeable within banded spray units.  On block C, the glyphosate only 

treatment had a robust grass response isolated along sprayed strips. The untreated strips within 

this block were primarily occupied by blackberry (Rubus sp.). The glyphosate sprays enabled the 

grass to establish due to the control of herbaceous forbs. The forbs likely suppressed the grass 

but once removed, the grass became free to grow. Broomsedge has been shown to respond even 

after herbicide (glyphosate) treatments that attempted to control the species (Butler and others 

2002). The researchers also reported that spring herbicide applications did not affect broomsedge 

density in areas with old-standing top growth. Thus, treatments conducted on this study site 

would not likely have reduced any pre-existing grass population. 
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 The dense establishment of grass in young forestland can be problematic. Kozlowski 

(2002) suggests that dense fields of tall grass my strongly impact crop tree survival. Various  

perennial grasses can have unfavorable influences on tree seedling establishment and they may 

be considered as the most widely recognized competitors of tree seedlings (Davies 1987, Otsamo 

and others 1997, Mitchell and others 1999. Grass roots have been documented to have high 

levels of moisture uptake (Gordon and others 1989, Coll and others 2004), resulting in 

substantially lower available soil moisture for seedling utilization.  Reductions in soil moisture 

are directly correlated with reduced seedling growth. Gordon and others (1989) reported that 

fibrous grass roots had a greater competitive effect compared to annuals with tap roots. The 

Gordon study indicated higher soil water extraction, decreased blue oak (Quercus douglasii) 

seedling emergence, reduced root/shoot relative growth rates, and shorter length of growing 

season perpetuates denser abundance of grass (Bromus sp.). 

 Pockets of area occupied by higher densities of grass root create sections of nutrient and 

water depletion. The diminution of resources directly leads to condensed seedling root growth 

(Collet and others 2006).  Tree seedling growth may also have been impacted due to decreased 

root stock as similar to Harmer and Robertson (2003) and Collet and others (2006). Ball and 

others (2002) also observed that root growth for Eucalyptus seedlings was primarily confined to 

lateral exploration in early spring with minimal penetration to greater depths beginning in late 

spring. In this study, the oak and yellow-poplar seedlings may have had reduced lateral 

expansion of root systems due to the established presence of grass roots similar to the 

observances of Ball and others (2002), Harmer and Robertson (2003), and Collet and others 

(2006). Thus, seedling growth may have been directly influenced by the dense establishment of 

grasses on the study site.    

 Nitrogen fertilization has been observed to improve tree growth (Harris 1966), however, 

Coll and others (2004) reported that approximately 97% of the available nitrogen added to 

seedlings and grass planted in containers was utilized by the grass and not tree seedlings. Thus 

the potential addition of fertilizer as a management option, in presence of existing grasses, would 

likely only be utilized by the grass competition. 

 Oak is known to be drought tolerant, has long taproots, has the ability to photosynthesize 

and conduct water through the xylem under high water stress, flexible in maintaining high 

root:shoot ratios through recurrent shoot dieback, and has physiological plasticity that facilitates 
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adjustment to water stress (Kriebel and others1988, Matsuda and others 1989, Abrams 1990, 

Kubiske and Abrams 1992, Bragg and others 1993, Pallardy and Rhoads 1993, Parker and Dey 

2008). New germinants and smaller reproduction have shallow root systems, however, and are 

likely more prone to environmental stressors including drought and root zone competition. Thus, 

both grass and small tree reproduction have root systems existing in the same soil horizons. The 

grass root system serves as a physical barrier that reduces both tree seedling growth and 

available resource uptake. Thus, grasses are highly competitive for the first initial years after 

disturbance (Miller and others 2003) but, if the seedling survives, the root stock increasingly 

reaches deeper soil horizons and escapes grass root competition. Thus, tree reproduction size is 

an important determinant of establishment success due to differences in competitive capability, 

predation risk, and disturbance tolerance between small and large seedlings (Armstrong and 

Westoby 1993; Harms and Dalling 1997; Lahoreau and others 2006; Seiwa 2000). 

 The detrimental competition caused from grasses and ferns (Horsley 1981 1993, Hanson 

and Dixon 1987, McCormick and Bowersox 1997) to tree seedlings has been documented for 

both above ground and below ground.  Shallow, lateral roots of trees compete with grass roots 

for substances which likely affect tree growth. Harmer and Robertson (2003) noted a reduced 

development of the lateral root system by decreased numbers of root tips on for multiple 

hardwood species due to grass competition. Collet and others (2006) also observed oak seedling 

root system size was reduced by competition from grass. Coll and others (2004) witnessed 

significant reductions in both diameter and height growth of beech (Fagus sylvatica) when 

grown in the presence of grass. Grass root expansion can also impact root zone placement by 

trees as grass roots typically create zones of nutrient and water depletion (Gordon and others 

1989, Coll and others 2004). Tree roots respond to this by favoring resource rich areas that have 

not been colonized by grass root systems (Maina and others 2002). Fine roots (less than 2 

millimeters in diameter) serve as the water and nutrient absorbing components of trees and the 

prevalence of fine roots typically decline as soil nutrient availability increases (Barnes and others 

1998). Thus, reduced root space that is occupied by grass root systems could impede absorption 

of available resources needed for growth by seedlings. 

 For many of the research units in this study, coverage of over 80% grass left minimal 

space for tree roots to successfully expand and thrive. The reduced available area likely resulted 

in reduced size of root stock, thus reducing the capacity for maximizing growth. Richardson 
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(1953) used a root observation chamber to observe the impact of root zone competition between 

Acer pseudoplatanus (sycamore maple) with Lolium perenne (English ryegrass).  Richardson’s 

(1953) key results were: 1. The presence of L. perenne depressed root growth rate, shortened the 

length of active growth, reduced root hair density, and restricted rooting depth/lateral spread of 

tree roots.; 2. Nitrogen deficiency reduced the size and growth of tree roots, but promoted 

elongation of the grass roots.; 3. Grass root active growth began approximately three weeks 

earlier in spring and had a more rapid spread compared to the tree roots.; and 4. The absorptive 

surface of the grass roots was greater than the tree roots in the same volume of soil. Because 

there was extensive grass coverage in this study, the conclusion is, as Richardson had reported 

(1953), that the grass roots exhibited more absorption surface in the same volume of soil as the 

tree roots, and the trees were under greater stress.  

 Grasses have been shown to seriously interfere with tree growth. Whitcomb and Roberts 

(1973) observed that Acer saccharinum (silver maple) roots were eliminated from the upper 

centimeter of undisturbed soil following seeding of Poa pratensis L (Kentucky bluegrass). Grass 

has been reported to reduce diameter and height growth (Harris 1966), who also documented a 

decrease in girth and height growth for Southern magnolia (Magnolia grandiflora) and (Zelkova 

serrata) cultivars when tall fescue (Festuca arundinacea) turf was established. 

 The heavy abundance of grasses, such as was present on this research site, may also 

reduce tree seedling growth by means of thermal inhibition during both high and low 

temperature extremes. Rosenberg and others (1983) and Oke (1987) surmised that grassy ground 

cover alters soil and air temperatures compared to bare soil conditions. This alteration may lead 

to plant stress, particularly in the summer season, due to changes in transpiration rates directly 

attributed to temperature stresses which affect seedling function (Barnes and others 1998, Zahner 

1956). Balisky and Burton (1995) suggest that heat conduction through grass is poor which 

directly reduces diurnal fluctuation for soil temperatures in temperate climates. During winter, 

this may have prolonged the duration of extreme cold temperatures beneath the grass layer 

subjecting seedlings to frost damage. This longer period under grass cover slows diurnal 

fluctuation with the passing of seasons (winter to spring and summer to fall) compared to bare 

soil. In a study by Oke and Hannell (1966) where straw mulch was placed atop of a soil surface, 

the change in diurnal fluctuation was found to slow with time (season) compared to that of bare 

soil. They reported that the straw impeded the loss of stored summer heat during autumn and 
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also retarded heat penetration into the soil in the spring (Oke and Hannell 1966, Lambers and 

others 1998). The occurrence of grass may have shortened the overall length of the growing 

season on this research site due to the abundance of grasses which could have reduced seedling 

growth. Temperature differences between bare versus covered ground surfaces have been 

observed to affect the timing and growth rate of plants in agricultural areas (Rosenberg and 

others 1983; Oke 1987).  

 Such effects may also be possible for tree seedlings following clearcutting. Within weeks, 

vegetation began re-establishing on the research site but over half of the area would be 

considered as bare ground. The use of herbicide added extra duration of bare soil conditions for 

approximately three weeks (glyphosate) up to two months (sulfometuron). Tree seedlings within 

grass cover are exposed to greater temperature extremes (minimum and maximum) than 

seedlings with bare soil conditions (Oke 1987), as grass cover can expose seedlings to scalding 

temperatures during periods of high insolation and low wind speed during the summer. 

Waggoner and others (1960) compared surface temperatures of bare soil with soil covered with 

hay (60 millimeters thick) and found they were 38°C and 50°C, respectively. This difference in 

temperature was attributed to poor heat conduction through the hay with minimal transmission of 

heat into the soil, and the hay restricted the water vapor movement from the soil to the air which 

limited latent heat loss by approximately 50%. Air temperature above the hay cover was up to 

10° C hotter than measurements taken above the bare soil surface up to a height of 20 

centimeters. Thus, seedlings are exposed to greater heat and drought stress when grass cover is 

present. Initially, the study site had bare soil conditions, both following disturbance and 

herbicide applications but grass responded rapidly. The ground coverage by grass, particularly in 

areas treated with both sulfometuron and glyphosate, could have caused temperature stresses to 

the measured seedlings as it did for all of the aforementioned studies. 

 Lower temperatures during the colder seasons can also be problematic for seedlings 

within grass or hay groundcover. Long-wave thermal radiation from an exposed soil surface is 

the most important mechanism for nocturnal cooling. The presence of mulch or straw atop soil 

would then serve as the active cooling surface (from the surface to the top of the ground cover) 

or the site where maximum frost occurs (Oke 1987). The ground cover then forms a thermal 

insulation zone and restricts the flow of heat from the soil to the air. Thus, temperatures directly 

above the grass and the grass surface are lower than the bare soil surface (Leuning 1988). Ball 
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and others (1997) observed that relative to bare soil, grassy ground cover reduced minimum air 

temperature by an average of 2° C and leaf temperatures above grass being another 1° - 3° C 

lower than air temperature. These lower minimum temperatures can result in more frequent and 

more severe frosts than seedlings within bare soil (Ball and others 1997, Lambers and others 

1998). A grass or straw covering provides negative impacts by insulating the soil from heating 

and cooling. Grass ground cover can potentially subject tree seedlings to slower recovery of 

photosynthetic activity, delayed bud break, greater damage to elongating stems and developing 

leaves from frost damage, and reduced stem elongation growth. Given the continuous vertical 

presence of broomsedge over the winter period versus herbaceous forbs which die and 

decompose on the ground surface, grass can directly influence cold weather problems related to 

tree seedling growth. Areas containing forbs, such as the control units, had conditions which are 

similar to bare ground thus such negative consequences were not as severe or even a factor for 

seedling growth. 

 Findings suggest that grass cover can alter soil and water temperatures during both high 

and low temperature extremes. Significant changes in the thermal environment can yield 

negative responses in plant growth and photosynthesis. The reduction in these two physiological 

processes may lead to a reduction in seedling competitive ability and probability of survival (Ball 

and others 1997). Ball and others (2002) observed greater seedling biomass and root biomass for 

Eucalyptus seedlings grown in bare soil compared to seedlings grown in both grass and hay 

ground cover. The bare ground seedlings also begin root growth earlier in late winter and had a 

greater rate of root growth in the spring. Shoot biomass for the seedlings also begin to expand in 

early spring for those growing in bare soil versus late summer for seedlings within both live 

grass and straw treatments. Seedlings having grass and straw ground cover began growth (bud 

break) approximately three weeks later than bare soil seedlings. Bare soil eucalyptus seedling 

shoot biomass was four to five times greater than seedlings within grass and straw. Collet and 

others (2006) also observed increased root stock for sessile oak (Quercus petraea) in bare soil 

containers compared to containers which also contained grass competition. Coll and others 

(2004) reported that following two growing seasons, beech seedlings in the presence of grass 

showed significant reductions in diameter and height growth, annual shoot elongation, and stem, 

root and leaf biomass, but an increase in root to shoot biomass ratio. The grass emergence in this 

study likely reduced my sampled seedling biomass due to reduced competitive ability and 
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duration of active growth similar to the reported works of Ball and others (1997), Collet and 

others (2006), and Coll and others (2004).  

 Ball and others (2002) also observed that soil moisture was significantly lower under the 

growing grass compared to that of the straw treatment when precipitation was relatively 

abundant and grass was actively growing. Soil moisture beneath the straw approached field 

capacity (24%) during the early spring. Soil moisture reduction was attributed to transpiration by 

the living grass. Interestingly, tree seedling growth was poor for both treatments compared to the 

bare ground seedlings. Based on these various research findings, grass cover appears to 

negatively affects the microclimate surrounding tree seedlings due to thermal inhibition 

(Lambers and others 1998, Ball and others 1997, Oke 1987).  

 Typically, grass is able to begin establishment earlier in late winter whereas tree 

seedlings begin growth in early spring. The presence of grass ground cover may further inhibit 

tree seedling development by enhancing the potential for frost damage and extending the 

initiation of root growth/expansion (Ball and others 1997, Ball and others 2002). Thus, tree 

seedlings may fail to capture all potentially available resources present during the spring season 

due to microclimatic conditions being altered by grasses. In summer, soil temperatures rise to 

favor tree growth, however the well-established grass likely has depleted moisture and nutrients 

from the upper soil horizons leaving minimal resources for tree seedlings (Ball and others 2002). 

The enhanced frost damage, resulting from decreased temperature created by the grass layer, in 

autumn may also reduce the length of the growing season. 

 The high establishment rate of grasses suggest that the reduction of forbs through 

herbicide applications essentially released grasses from suppression. The vigorous emergence of 

warm season grasses, primarily broomsedge and Nepalese browntop likely hindered growth of 

the existing seedlings due to root zone competition. This is of primary importance with oak as 

root stock development is a primary growth strategy with oak. The dense, fibrous root systems of 

the grasses likely caused excessively high competition for space in the same soil horizon as new 

tree seedlings.  Available soil moisture was likely intercepted by the fibrous grass roots that 

limited the growth potential for tree seedlings. The ability for a given tree to expand its root 

system is also impacted by the abundance of grass roots. The result of this competition by grass 

was a reduction in above ground height growth with growth instead allocated more towards root 

biomass (Harmer and Robertson (2003), Collet and others (2006). These authors also suggested 
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that total root length and the number of root tips decrease with increasing competition. The 

sample seedlings in this study likely experienced reductions in growth due to the same findings 

of Harmer and Robertson (2003) and Collet and others (2006).  

 Treatments that received higher intensity herbicide applications using both sulfometuron 

methyl and glyphosate had a higher percentage of coverage by grasses based on ocular estimates. 

A secondary treatment during the growing season of 2015 to attempt to control the emerging 

grass may have proved beneficial to enhance seedling growth.  Self (2011) reported that planted 

oak seedlings that received two years of vegetation control using Sulfometuron yielded greater 

seedling stem and root biomass compared to a single application and an untreated control. The 

continuance of bare ground condition in this study from a subsequent application would likely 

produce similar results to Self (2011). Additional treatments using bromacil, diuron, tebuthuron, 

buthidazole (Griffen and others 1988) and glyphosate (Butler and others 2002) may provide 

sufficient control of broomsedge. Use of these pesticides may injure the crop tree seedlings 

however. The timing of the herbicide application could have altered the early successional 

vegetation response. Applying the herbicides after a full growing season may yield a 

contradictory plant type response similar to prescribed fire or disking among different seasons 

(Harper 2007). The probability is greater, however, that grass would re-emerge from seed stock 

even with a change in application timing as sulfometuron applied at the low application rate of 2 

ounces per acre will not control most grasses. Later applications may have been more difficult to 

perform as seedlings would likely be hidden by herbaceous vegetation.  Given these uncertainties 

and management challenges, the pre-emergent or early spring seedling release application is 

likely the most acceptable option. Eventually, the released oak and yellow-poplar will develop 

and create shaded environments that diminish the presence of the grasses. The addition of lime 

may prove to further benefits by altering the Ph level which would likely reduce broomsedge 

presence and enhance nutrient uptake the crop trees. Long and others (2011) found that a one-

time application of dolomitic lime increased the growth rate of sugar maple but decreased black 

cherry growth. Oak species may also be improved but further investigation is warranted. 

 Negative impacts to seedling growth should be mitigated through some form of chemical 

release to control grass competition. McCormick and Bowersox (1997) demonstrated that height 

growth was significantly less for planted northern red oak and yellow-poplar in areas dominated 

by poverty grass compared to seedlings in areas that received grass control.  Yellow-poplar was 
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1.6 times greater in height in the grass free areas whereas northern red oak was 1.2 times taller 

four years after treatment (McCormick and Bowersox 1997). Sims and Mueller-Dombois (1968) 

studied competition from grasses including Andropogon gerardi on coniferous tree species and 

found the grasses inhibited tree growth via shading and root competition.  

 

Precipitation Effects on the Study Site 

 Results indicate that initially there was a measureable response among the herbicide 

treatments and the untreated control after two growing seasons.  This result may be attributed to 

below average precipitation during the growing season following herbicide application. Seven of 

the twelve months (April – September) had below average rainfall for the 2015 and 2016 

growing seasons according to NOAA (https://www.weather.gov/) data. Of particular interest is 

the period during April and May of the 2016 growing season. Monthly rainfall for these months 

was 4.05 inches and 3.16 inches below the average (dating back to the year 2000). During this 

time, trees in the Highland Rim region are usually optimizing growth.  The reduction in moisture 

available for uptake by trees probably affected tree seedling growth. If these spring months had a 

normal or above average rainfall, seedling growth response may likely have been different 

amongst treatments. 

 

Spring Droughty Conditions 

Early findings suggest that there is no statistically significant difference in either diameter 

or height growth between herbicide treatments.  The lack of differentiation was probably caused 

by a deficit from the mean average precipitation during the early spring (in particular May) 

season for years 2014, 2015, and 2016.  April, 2016 also experienced strong droughty conditions 

well below the mean (Table 94). Tree growth is most prolific during the spring season but a lack 

of moisture will diminish growth potential (Robbins 1921).  During the initial growing season of 

2014, rainfall for September dropped to 0.2 inches for the entire month. Extreme dry soil 

conditions may have impacted the photosynthetic capacity and physiology of the seedlings 

creating growth loss. Should rainfall amounts been normal for one or both of these times during 

the active growing season, seedling diameter or height response may have been greater. 
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Palmer Drought Severity Index (PDSI) Comparison with Actual Precipitation 

 The PDSI values for the middle Tennessee region did not match very well with the actual 

precipitation values. Fekedulegn and others (2003) found that yellow-poplar growth strongly 

followed both precipitation and PDSI values, and that the species ring growth was dependent on 

precipitation rates particularly on xeric sites. The use of PDSI may not be representative of actual 

conditions when given on a regional scale as there existed an obvious discrepancy between the 

ranking value and the actual precipitation amounts. PDSI does take into account multiple 

variables other than just precipitation. A deficit was given for only the 2016 growing season 

using PDSI. The 2014 and 2015 seasons were average or moist seasons. Thus, PDSI would 

suggest no extreme weather irregularities exist overall. This is in contract to precipitation 

amounts recorded in Nashville over the three seasons. Perhaps there existed a large variation 

over the entire middle Tennessee region that did not represent recorded precipitation at the 

measurement station in Nashville. The use of PDSI may not be as reliable as actual recorded 

rainfall measurements taken on site. Attempts should be made to use a rain gauge at the research 

site for future research requiring precipitation data. 

 

Transference of Glyphosate to Non-Target Plants 

 The radial spray treatments using glyphosate experienced minimal increases in both 

seedling diameter and height growth in multiple statistical analyses. Statistical analyses indicated 

that radial applications yielded the lowest mean absolute diameter growth among all treatments 

for combined seedlings (Table 13). The radial treatment also yielded the lowest absolute rate of 

height growth (Table 16) for all treatments as well. The same trend was observed for each 

species group (red oak, white oak, and yellow-poplar), as depicted in Table 22 in that the radial 

spray application had the lowest absolute change in height growth for all treatments. The radial 

treatment also showed the lowest or next to lowest means estimates for relative change in height 

for white oak sprout, yellow-poplar sprout, and yellow-poplar germinant reproduction. The radial 

treatment effect did not appear to be as detrimental for relative diameter growth when individual 

species group reproduction was analyzed by germinant or sprout classes however.  

 These treatments had glyphosate applied within inches of the crop tree seedlings. The 

seedling foliage was protected during application, but it may be possible that the active 

ingredient or a by-product could have been absorbed to some extent below ground. Glyphosate 
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eventually reaches the soil through either direct contact or by release from dead plant matter 

(Neumann and others 2006). After reaching the soil, the chemical may be absorbed onto soil 

particles, experience degradation by soil microorganisms, or leach through pores or root canals 

into deeper soil horizons. Tesfamariam and others (2009) proposed that there may be some 

possibility of toxicity to non-target plants due to rhizosphere transfer of glyphosate. Neumann 

and others (2006) observed the exudation of glyphosate from treated plant roots into the adjacent 

soil. Kremer and others (2005) reported that exudation of glyphosate can restrict growth of 

adjacent plants and seedlings.  Negative effects to non-target plants may include heightened 

sensitivity to plant diseases connected with low magnesium and iron availability in soil, 

increased nematode infections, inhibition of root growth, and reduced nitrogen fixation (King 

and others 2001). Glyphosate has been witnessed to alter nitrogen metabolism by directly 

affecting mycorrihizae or indirectly by causing an effect on plant physiology (Zobiole and others 

2010). Glyphosate applications can reduce nodulation due to reductions of symbiotic bacteria in 

glyphosate resistant soybeans (Zobiole and others 2012, Zobiole and others 2010)   . This factor 

leads to a loss of energy and fixed nitrogen that could inhibit plant growth and production. 

 Glyphosate is stored within plant metabolic sites including root and shoot meristems after 

translocation within the plant. Enhanced growth rate areas including nodules, root tips, and shoot 

apices are important sinks for glyphosate storage. A small transference of herbicide may occur at 

these below ground locations. A metabolite of glyphosate named amino-methylphosphonic acid 

(AMPA) forms from glyphosate after degradation by microorganisms. AMPA is a recognized 

phototoxin that has been suggested to cause glyphosate-induced injuries in glyphosate resistant 

plants (Reddy and other 2004). The authors also observed that AMPA affected chlorophyll 

biosynthesis and caused plant growth reduction. AMPA has also been observed to reduce the 

amino acids glycine, serine, and glutamate in treated mouseear cress (Arabidopsis thaliana) 

plants (Serra and others (2013). Thus a possibility exists on the study site in treatment units 

receiving glyphosate applications that measured seedlings may have had AMPA transferred 

through the rhizosphere. The uptake of some limited amount of AMPA could have stunted 

growth without causing mortality to the affected seedlings.  

 Though most of these research findings are associated with genetically modified 

soybeans and other plants, similar effects could have occurred within the oak and yellow-poplar 

seedlings within the radial treatments. The statistical data in this study does support the 
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likelihood that glyphosate applied around crop seedlings may inhibit growth. This may 

especially be true of the radial treatments as higher amounts of herbicide were applied all around 

the favored seedlings. The banded spray treatments also used glyphosate, however not all of the 

sample seedlings were located on the edge of the untreated bands. Thus, the herbicide may not 

have transferred into the crop seedling due to the buffer distance between the root stock and any 

movement of the herbicide directly down the soil profile. The sampled seedlings that were on the 

edge of the treated strip would be potentially exposed to only half (one side) the area compared 

to the entire area around radial sprays. Thus, the lack of or reduced amount of exposure may 

have had no or a lesser effect on the sample seedlings. 

 

Diameter and Height Response Among Species  

 Growth rates of yellow-poplar was significantly different from that of both the red oak 

and white oak groups. The rapid growth of yellow-poplar compared to other hardwood species 

following the clearcut disturbance were expected (McGee and Hooper 1975, Beck and Hooper 

1986, Heilegmannn and others 1985, Hilt 1985). Early successional competitor species such as 

yellow-poplar and pine species focus energy on stem elongation or above ground growth. 

Alternatively, oak species implement more conservative growth strategies by allocating more 

growth to root stock than stem elongation above ground (Crow 1988, Dickson 1991). Oak 

species focus carbohydrate allocation towards root development as opposed to above ground 

stem elongation during the early years of development. The use of chemical treatments creates 

conditions to counteract the lesser rate of above ground growth exhibited by oak. The removal of 

competing vegetation around the oaks enables oak seedlings more time to become established 

without being overtopped by adjacent seedlings or saplings. 

 Carlisle and others (2002) showed that white oak height growth was unaffected by both 

radial and complete broadcast sprays compared to a control where alternatively ash and black 

walnut did have significant growth increases. For this study, a difference in both diameter and 

height growth emerged between treatments when species grouping were statistically analyzed. 

The sulfometuron methyl only treatment promoted overall height growth when used in 

combination in all of the treatments that included glyphosate. Height growth differences were 

found between the sulfometuron methyl treatments and all other treatments. Yellow-poplar, in 

particular, appeared to respond the best to sulfometuron treatments. This response is likely 
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explained by the prolonged bare soil conditions created by the residual soil activity of 

sulfometuron methyl, and no negative impact by the active ingredient within the plant unlike 

glyphosate. Although bare soil conditions only existed for two months during the initial growing 

season, this duration was of sufficient length to allow for a height growth response. Yellow-

poplar capitalized on this open growing space more readily than the oaks. The average of all 

combined seedlings (without grouping) for the two growing seasons as well as species group 

comparisons did have a significant difference among the treatments. The sulfometuron methyl 

only treatment yielded the best results for absolute diameter (Table 13) and height growth (Table 

16 and Table 22) for each treatment comparison. Post emergent applications using this herbicide 

at a rate of two ounces per acre promoted seedling development in the analyses for combined 

species. Given the benefits of creating bare ground using this herbicide and seedling response 

implementing chemical treatments to hardwood seedlings is advisable.   

    

Other Potential Management Options for Degraded Stands 

 Findings from this study suggested that more intensive herbicide applications which use 

multiple herbicides may impede or not have a significant response for seedling growth. A 

reduction of competing tree species is necessary however to enable oak to occupy at least 50 – 

100 stems per acre at crown closure. Radial sprays applied directly around individual seedlings 

appeared to reduce growth of natural reproduction. The loss of productivity is likely accredited 

to the increased abundance of detrimental microorganisms or potentially to incidental drift or 

contact with a protective apparatus. This application yields increasing growing space by 

deadening surrounding competitors but at the cost of reduced diameter and height growth by 

favoring grass competition.  An alternative solution to controlling tree competitors would be a 

pre-harvest chemical midstory control applied as a stem injection treatment to deaden all less 

desirable reproduction occupying canopy space in both the midstory and understory.  The 

application would further enhance stump regeneration/coppice control.  Some stump sprout 

reproduction was still alive though apparently stunted based on casual observation within 

treatment units.  Thus, foliar sprays of stump sprouts may prove ineffective in providing an 

acceptable level of control for this highly competitive regeneration source. 

 Another alternative management action may be direct foliar sprays to individual less 

desirable reproduction as opposed to sprays around the preferred seedlings.  This treatment could 
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potentially reduce incidental contact with the preferred seedlings thus eliminating any potential 

growth loss attributed to herbicide.  Alternative herbicides with residual soil activity, such as 

Imazapyr, could be substituted which may further improve rates of control.  Uptake of the active 

ingredient by the desired crop trees may not be a factor given the proximity of the target stem.  

For target stems within the drift zone (within approximately five feet), stumps or seedlings could 

be chemically treated by injection or cut stump applications.  These silvicultural activities could 

be considered as forms of an early weeding thinning.  The effect from treatments should still 

provide the needed additional growing space required by oak seedlings to occupy a dominant or 

codominant position in the overstory at crown closure.  

 

Herbicide Applications Enable Oaks to Remain Competitive with Yellow-poplar 

The early herbicide applications provided a level of competition control which will 

enable a greater growth rate for the natural oak reproduction compared to untreated controls. 

Chemical treatments applied in the initial year have improved early seedling survival and height 

growth. Robinson and others (2003) also found that use of herbicides including Garlon, Accord 

plus Oust XP assisted oak competitive status with yellow-poplar. Chemical applications may not 

only improve early growth but may also enhance the probability of oak stems to successfully 

establish more dominant positions at crown closure by creating extra available growing space. 

The importance of controlling adjacent non-oak tree species will likely prove to be a necessity in 

oak establishment. Woody competitors within a given stand hinder oak development by 

overtopping adjacent oak stems; ultimately rendering them to occupy suppressed crown 

positions. Some of the research treatments were able to successfully control adjacent non-oak 

stems. Future seedling measurements are expected to test the theory that early applications will 

be needed to promote oak development. 

Findings in this study indicate the initial change in diameter between the red oak, white 

oak group, and yellow-poplar were significantly different.  This is relevant since yellow-poplar is 

one of the primary competitors with oak for available growing space. The herbicide treatments 

may have improved the oak growth rate to a point in which oaks may maintain higher 

competitive status reducing the chance of mortality or delaying the time until the oak stem is 

overtopped. Future seedling measurements may reveal that the early chemical applications 

enable oak species to form a higher proportion of the dominant crown positions. If this prediction 
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is confirmed, early chemical applications may be a crucial component to oak regeneration 

methodology.   
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7. CONCLUSION 

 The use of diameter limit harvesting or high-grading methodology is vigorously used 

across Tennessee upland hardwood stands. Such inappropriate management leads to stands that 

commonly regenerate with shade tolerant species. This response is attributed to a higher 

prevalence of shade and loss of desirable parent seed stock. These conditions occurred on the 

study site for this project prior to any management disturbance. Larger sized reproduction greater 

than three feet in height comprised approximately 80% of the pre-harvest population sample. 

Forest stands will typically regenerate after a disturbance from these larger seedlings and 

saplings. Findings from this study suggest that implementation of clearcutting can yield a 

significant abundance of more desirable seedling growing stock, though early sampling indicated 

minimal advanced regeneration in place, within degraded stands. The implementation of timber 

harvesting during the late winter/early spring facilitated the removal of larger sized shade 

tolerant reproduction from the site. Moist soil conditions may have created loosened soil 

conditions that enabled complete root extraction of residual stems or seedlings by heavy 

equipment during active logging periods.  

 The removal of larger reproduction improves the possibility that newly germinated 

seedlings or small advance reproduction can establish dominance in the future developing stand. 

Larger seedlings and saplings will sprout from root stock and out-complete new seedlings. The 

removal of these larger reproduction stems, however, means that new seedlings will occupy most 

of the available growing space on the site with exception to stump sprouts derived from 

merchantable poletimber sized stems. Given the site contains an adequate stocking of oak and 

yellow-poplar seedlings and more advanced regeneration sources have been removed, the future 

stand has an increased probability of being comprised of more favorable and economically 

attractive species. 

 Research has demonstrated that oak species will typically be outcompeted in natural 

environments by other faster growing tree species without some form of applied management to 

enable oaks to reach competitive size. Herbicide applications to control undesirable or competing 

vegetation have been shown to improve early survival and growth of artificially planted 

hardwood seedlings. Both sulfometuron methyl and glyphosate are commonly used to control 

competing vegetation around seedlings. This deadening of adjacent vegetation has multiple 

benefits including increased microclimate conditions for favorable soil temperatures and 
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moisture/nutrient availability. Photosynthetic activity can also be enhanced by promoting sun 

exposure to seedling foliage.  

 Within the first few years post-disturbance, some early form of management such as 

silvicultural weeding or early crop tree release should be conducted. These management 

practices should incorporate common forestry herbicides, applied within a naturally regenerated 

clearcut, to potentially improve the probability that oak will form dominant positions at crown 

closure. Nix (2004) reported that ten years following an early chemical competition control 

treatment, applied within a four year oak clearcut, had nearly 400 oaks per acre remaining in at 

least codominant canopy positions. This finding was nearly three times more numerous 

compared to those in control. Reducing reproduction density should create the available growing 

space needed for crown expansion and prevent overtopping or suppression of desired oak stems. 

This may involve direct foliar spray treatments of individual competing trees and unwanted 

herbaceous weeds and grasses. Chemical control of plant competition should promote growth by 

creating bare soil conditions around the crop tree seedlings. Bare soil conditions extends overall 

duration of the growing season by more rapidly increasing soil temperature which directly can 

add extra weeks of active growth for various plants (Rosenberg and others 1983; Oke 1987). 

Bare ground also minimizes seedling damage attributed to both extreme cold and heat including 

frost damage and loss of soil moisture (Ball and others 1997, Oke 1987, Lambers and others 

1998). 

 The change in diameter and height growth was statistically different among some of the 

herbicide treatments and the untreated control when all seedlings were compiled for analysis. For 

individual species groups (red oak, white oak, and yellow-poplar) of seedlings for each 

treatment, differences were present between species. Yellow-poplar had greater growth for both 

diameter and height compared to the oak groups. White oak had inferior amounts of growth 

compared to those of the red oaks. Results indicated that height growth using sulfometuron 

methyl only yielded the greatest response of all the herbicide treatments but was not significantly 

different than the untreated control. 

 There are various potential explanations for the lack of differentiation between 

treatments. The first may be attributed to the low precipitation levels of the early spring period 

for 2014, 2015, and 2016. At the end of the 2014 growing season (September), rainfall was 

extremely low. This lack of soil moisture during these periods may have caused high levels of 
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stress which may have altered physiological processes in the young seedlings reducing diameter 

and height growth.  

 The unexpected response within the area was the copious establishment of warm-season 

grasses including primarily broomsedge bluestem. Control of competing plants was effective for 

the initial growing season following chemical applications in 2014. The grasses emerged the 

following growing season when all other herbaceous plants had been controlled. These grasses 

share the same active growing season and were able to overtop the vast majority of the sample 

oak and yellow-poplar seedlings. The great abundance of warm-season grasses could have 

reduced the available soil moisture for seedlings as the root systems of both plants inhabit the 

same soil horizons. The grass root systems likely altered the tree seedling root stock as tree roots 

are not as effective in absorbing moisture as the fibrous root system of grasses. The presence of 

grass also alters the soil surface microclimate creating shorter growing seasons, enhances frost 

damage potential and soil moisture loss, and may create semi-shaded conditions that reduce the 

photosynthetic ability of oak and yellow-poplar seedlings. 

 The use of glyphosate may have had some impact on seedling growth and development 

within the study. The active ingredient of glyphosate is utilized by various micro-organisms with 

the soil community. Certain types of bacteria and fungi can utilize the extra available 

micronutrients. As such communities are able to expand their range within the soil horizons and 

likely impact interactions with tree root systems. In some instances, this result may positively 

affect tree growth by promoting symbiotic mycorrihizal fungi. Potentially detrimental organisms 

are promoted that are pathogens causing tree disease which could reduce tree growth. The 

breakdown of glyphosate creates a metabolite named amino-methylphosphonic acid (AMPA) 

which is a known phototoxin in plants. Plants can uptake AMPA in the rhizosphere after it is 

released from dead plant material. The compound can affect chlorophyll biosynthesis, reduce the 

amount of amino acids, and ultimately reduce plant growth. 

 The lack of early growth response between treatments was expected prior to study 

implementation. The hypothesis still being tested is that even though growth responses were 

significant at these early growth stages, they may become even more pronounced as the stand 

reaches crown closure evident and and may become more relevant with additional growth. The 

early management activity is suspected to create the additional growing space likely required for 

the oak species to still occupy more dominant crown positions at crown closure (Beck 1970, 
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Hannah 1987). Without the initial year weeding or release treatments, other tree species would 

have developed at a more rapid rate of growth in close proximity of the preferred crop tree 

seedlings. Ultimately, as with previous findings (Loftis 1988, Beck and Hooper 1986, Johnson 

and others 1985) the majority of oak stems would likely have become suppressed by non-oak 

species and succumb to natural mortality. The sulfometuron methyl treatment may have 

increased early survival but may not ultimately improve the percentage of oak stems in more 

dominant crown positions at the onset of the stem exclusion stage; where the glyphosate 

treatments may have a beneficial impact by reducing woody competitor stems. Future 

measurements will reveal whether the hypothesis holds true and is validated statistically.    
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Relative Ground Line Diameter Change Among Treatments 

 The type III test found that the treatments differed (P <0.0001) when the analysis was 

performed using all seedlings combined. Table A1 portrays the statistical test summary. 

 

Table A1. Type III tests of fixed effects for relative diameter change among  
treatments for all seedlings combined    
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 1554 38.39 7.68 <.0001 

 

 The sulfometuron methyl treatment had the greatest performance with an estimate of 

2.0717 of relative diameter growth (Table A2). The radial application had the lowest estimated 

relative growth at only 1.4819.  

 

Table A2. Least square means estimates for relative diameter change for  
among treatments for all seedlings combined   
     

Treatment Estimate Std. Error T - value P - value 
Banded 1.9836 0.258 7.69 0.0091 
Banded + SFM 75 1.5772 0.258 6.11 0.0157 
Control 1.727 0.2564 6.74 0.0134 
SFM 75 2.0717 0.2577 8.04 0.0084 
Radial 1.4819 0.2588 5.73 0.0177 
Radial + SFM 75 1.5573 0.2607 5.97 0.0148 

 

 Post ANOVA analysis using the Tukey least squares means comparison found a 

significant difference for ten of the fifteen treatment comparisons. The sulfumeturon methyl only 

treatment and the radial treatment had the greatest separation compared to all other significant 

treatment comparisons in regards to the relative change in diameter growth (Table A3). 
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Table A3. Tukey-Kramer least squares means comparison estimates for relative change in   
diameter for all seedlings combined between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error T - value Pr > |t| Adjusted P-value 

Banded / Banded + SFM75 0.4064 0.1226 3.31 0.0009 0.012 
Banded / Control 0.2566 0.1194 2.15 0.0317 0.2623 
Banded / Radial  0.5017 0.1245 4.03 <.0001 0.0008 
Banded / Radial + SFM 75 0.4263 0.1282 3.32 0.0009 0.0117 
Banded + SFM 75 / SFM 75 -0.4945 0.1221 -4.05 <.0001 0.0008 
Control / SFM 75 -0.3447 0.1187 -2.9 0.0037 0.0432 
Control / Radial 0.2451 0.1212 2.02 0.0432 0.3296 
SFM75 / Radial 0.5898 0.1239 4.76 <.0001 <.0001 
SFM75 / Radial + SFM 75 0.5144 0.1273 4.04 <.0001 0.0008 
Radial / Radial + SFM 75 -0.0754 0.13 -0.58 0.5621 0.9924 

 

Relative Height Change Among Treatments 

 The relative height change for combined seedlings among treatments strongly differed. 

The pairwise test indicated that a P-value of <0.0001 existed. Table A4 presents the statistical 

test summary. 

 

Table A4. Type III tests of fixed effects for relative height change among  
treatments for all seedlings combined    
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 1554 65.66 13.13 <.0001 

 

 Similar to data presented for the relative diameter change, the sulfometuron methyl 

treatment had the optimal performance with an estimate of height growth equal to 4.6273 (Table 

A5). Likewise, the radial application was dramatically lower with an estimate of only 2.2343. 

The radial estimate was also less than the control estimate. 
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Table A5. Least square means estimates for relative height change for  
among treatments for all seedlings combined   
     

Treatment Estimate Std. Error T - value P - value 
Banded 3.281 0.5018 6.54 0.0091 
Banded + SFM 75 3.1098 0.5018 6.20 0.0104 
Control 3.0526 0.4968 6.14 0.0119 
SFM 75 4.6273 0.5009 9.24 0.0037 
Radial 2.2343 0.5042 4.43 0.0239 
Radial + SFM 75 3.2676 0.5101 6.41 0.0079 

 

 Nine out of the fifteen treatment comparisons were significantly dissimilar from one 

another (Table A6). The most pronounced range (2.393) between mean height change estimates 

was found between the sulfometuron and radial treatments. The significant comparisons are 

presented below. 

 

Table A6. Tukey-Kramer least squares means comparison estimates for relative change in   
height for all seedlings combined between individual treatment 
comparisons  
      

Treatments Compared Estimate Std. Error T - value Pr > |t| Adjusted P-value 
Banded / SFM75 -1.3463 0.2982 -4.52 <.0001 <.0001 
Banded / Radial  1.0467 0.3053 3.43 0.0006 0.0082 
Banded + SFM 75 / SFM 75 -1.5175 0.2993 -5.07 <.0001 <.0001 
Banded + SFM 75 / Radial 0.8755 0.3053 2.87 0.0042 0.0481 
Control / SFM 75 -1.5747 0.2909 -5.41 <.0001 <.0001 
Control / Radial 0.8183 0.2971 2.75 0.0059 0.0656 
SFM75 / Radial 2.393 0.3038 7.88 <.0001 <.0001 
SFM75 / Radial + SFM 75 1.3597 0.3122 4.35 <.0001 0.0002 
Radial / Radial + SFM 75 -1.0333 0.3187 -3.24 0.0012 0.0153 

 

Relative Diameter Change by Reproduction Size 

 Only yellow-poplar new germinant reproduction absolute change in diameter was 

significant (P = 0.0161) among all the species by reproduction size comparisons (Table A7). Red 

oak new germinant and sprout reproduction, white oak new germinant and sprout reproduction, 

and yellow-poplar sprout reproduction were all insignificant with P-levels of 0.1984, 0.9517, 

0.3792, 0.1252, and 0.2434 respectively. 
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Table A7. Type III tests of fixed effects for relative diameter change among  
treatments for new germinant reproduction    
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 502 13.59 2.72 0.0195 

 

 The sulfometuron methyl treatment had the best relative diameter change for new 

germinant reproduction with an estimate of 2.9406 (Table A8). The most intensive herbicide 

treatments that utilized both glyphosate and sulfometuron had the lowest mean estimates. Only 

the banded and sulfometuron only applications were higher than the control estimate (2.292).  

 

Table A8. Least square means estimates for relative diameter change for  
among treatments for new germinant reproduction  
     

Treatment Estimate Std. Error T - value P - value 
Banded 2.5336 0.3850 6.58 0.0110 
Banded + SFM 75 2.2571 0.3902 5.78 0.0132 
Control 2.2920 0.3960 5.79 0.0112 
SFM 75 2.9406 0.3959 7.43 0.0057 
Radial 2.2828 0.4152 5.50 0.0077 
Radial + SFM 75 2.0155 0.4195 4.80 0.0108 

 

 The post-ANOVA least squares means test indicated that four of the fifteen treatments 

were statistically dissimilar (Table A9). The greatest contrast appears to be between the most 

intensive treatments when paired with the sulfometuron only treatment. The post-ANOVA 

summary is presented below. 
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Table A9. Tukey-Kramer least squares means comparison estimates for relative change in   
diameter for new germinant reproduction between individual treatment comparisons 

      

Treatments Compared 
Estimat

e 
Std. 
Error 

T - 
value 

Pr > 
|t| Adjusted P-value 

Banded + SFM 75 / SFM 75 -0.6835 0.247 -2.77 
0.005

9 0.0644 

Control / SFM 75 -0.6486 0.2578 -2.52 
0.012

2 0.1213 

SFM75 / Radial 0.6578 0.2879 2.28 
0.022

7 0.2021 

SFM75 / Radial + SFM 75 0.9251 0.2933 3.15 
0.001

7 0.0210 
 

 The absolute diameter change for the combined sprout reproduction was also highly 

different among treatments. The pairwise test indicated that a P-value of <0.0001 existed. Table 

A10 presents the statistical test summary. 

 

Table A10. Type III tests of fixed effects for relative diameter change among  
treatments for sprout reproduction     
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 1045 29.49 5.90 <.0001 

 

 The sulfometuron treatment yielded the greatest estimate (1.6841) for relative diameter 

growth (Table A11). The control estimate (1.494) was greater than all other treatments except for 

the banded and the sulfometuron only applications. 

 

Table A11. Least square means estimates for relative diameter change for  
among treatments for sprout reproduction   
     

Treatment Estimate Std. Error T - value P - value 
Banded 1.5388 0.1929 7.98 0.0038 
Banded + SFM 75 1.1344 0.1914 5.93 0.0099 
Control 1.4940 0.1864 8.01 0.0061 
SFM 75 1.6841 0.1887 8.92 0.0038 
Radial 1.2220 0.1879 6.50 0.0095 
Radial + SFM 75 1.3990 0.1903 7.35 0.0058 
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 Post ANOVA analysis using the Tukey-Kramer least squares means found a significant 

difference between eight of the fifteen treatment comparisons (Table A12). The sulfumeturon 

methyl only treatment and the banded plus sulfometuron treatment had the largest range (0.5497) 

between diameter growth estimates for sprout reproduction. The pairwise treatment comparisons 

that were significant are illustrated below. 

 

Table A12. Tukey-Kramer least squares means comparison estimates for relative change in   
diameter for sprout reproduction among individual treatment comparisons 

      

Treatments Compared 
Estimat

e 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted P-
value 

Banded / Banded + SFM75 0.4044 0.1267 3.19 0.0015 0.018 
Banded / Radial 0.3168 0.1211 2.62 0.009 0.0942 
Banded + SFM 75 / Control -0.3596 0.1164 -3.09 0.0021 0.0250 
Banded + SFM 75 / SFM 75 -0.5497 0.1207 -4.55 <.0001 <.0001 
Banded + SFM 75 / Radial + SFM 
75 -0.2646 0.1229 -2.15 0.0315 0.2610 
Control / Radial 0.272 0.1106 2.46 0.0141 0.1376 
SFM75 / Radial 0.4621 0.1145 4.04 <.0001 0.0008 
SFM75 / Radial + SFM 75 0.2851 0.118 2.42 0.0158 0.1512 

 

Relative Height Change by Reproduction Size 

 The relative change in diameter growth for sprout reproduction was also strongly 

different among treatments (Table A13). A low P-value of <0.0001 was estimated from the type 

III two-way pairwise test. 

 

Table A13. Type III tests of fixed effects for relative height change among  
treatments for sprout reproduction     
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 503 45.29 9.06 <.0001 

 

 The relative diameter change for sprout reproduction had the greatest estimate (2.9192) 

for the sulfometuron methyl only treatment (Table A14).  The radial treatment had the poorest 

response in relative diameter change with an estimate of 1.5933.  
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Table A14. Least square means estimates for relative height change   
among treatments for sprout reproduction   
     

Treatment Estimate Std. Error T - value P - value 
Banded 2.0135 0.349 5.77 0.0083 
Banded + SFM 75 1.8854 0.346 5.45 0.0108 
Control 2.1756 0.3359 6.48 0.0093 
SFM 75 2.9192 0.3406 8.57 0.0036 
Radial 1.5933 0.3389 4.70 0.0197 
Radial + SFM 75 2.4716 0.3438 7.19 0.0052 

 

 Eight of the fifteen treatment comparisons showed a difference in the least square means 

post-ANOVA test. The largest separation of relative diameter growth was between the 

sulfometuron treatment and the radial treatment (Table A15). 

 

Table A15. Tukey-Kramer least squares means comparison estimates for relative change in   
height for sprout reproduction among individual treatment comparisons  
      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted P-
value 

Banded / SFM75 -0.9057 0.2328 -3.89 0.0001 0.0015 
Banded + SFM 75 / SFM 75 -1.0338 0.2305 -4.48 <.0001 0.0001 
Banded + SFM 75 / Radial + SFM 
75 -0.5862 0.2347 -2.50 0.0126 0.1256 
Control / SFM 75 -0.7435 0.2141 -3.47 0.0005 0.0071 
Control / Radial 0.5824 0.2113 2.76 0.0059 0.0655 
SFM75 / Radial 1.3259 0.2186 6.06 <.0001 <.0001 
SFM75 / Radial + SFM 75 0.4476 0.2253 1.99 0.0472 0.3504 
Radial / Radial + SFM 75 -0.8783 0.2236 -3.93 <.0001 0.0013 

   

 The relative change in height for new germinant reproduction was also highly significant 

among treatments (Table A16). A low P-value of <0.0001 was estimated from the type III two-

way pairwise test. 

 

Table A16. Type III tests of fixed effects for relative height change among  
treatments for new germinant reproduction    
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 1045 44.04 8.81 <.0001 
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 The sulfometuron methyl only treatments had the largest response (8.3351) in relative 

height growth for new germinant reproduction (Table A17). The radial treatment had the lowest 

estimate for relative diameter growth at 4.2896. All glyphosate applications, other than the radial 

plus the sulfometuron methyl treatment were lower estimates than the control.  

 

Table A17. Least square means estimates for relative height change for  
among treatments for new germinant reproduction  
     

Treatment Estimate Std. Error T - value P - value 
Banded 4.9281 0.5654 8.72 0.0002 
Banded + SFM 75 4.948 0.5877 8.42 <.0001 
Control 5.1636 0.6136 8.41 <.0001 
SFM 75 8.3351 0.6129 13.6 <.0001 
Radial 4.2896 0.6928 6.19 <.0001 
Radial + SFM 75 5.7758 0.7093 8.14 <.0001 

 

 Five out of the fifteen treatment comparisons were significantly dissimilar from one 

another (Table A18). The most pronounced range between mean height change estimates was 

found between the sulfometuron and radial treatments. Multiple significant comparisons between 

individual treatments are presented below. 

 

Table A18. Tukey-Kramer least squares means comparison estimates for relative change in   
height for new germinant reproduction between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted P-
value 

Banded / SFM75 -3.407 0.6211 -5.49 <.0001 <.0001 
Banded + SFM 75 / SFM 75 -3.3871 0.6361 -5.33 <.0001 <.0001 
Control / SFM 75 -3.1715 0.6638 -4.78 <.0001 <.0001 
SFM75 / Radial 4.0455 0.7409 5.46 <.0001 <.0001 
SFM75 / Radial + SFM 75 2.5593 0.7543 3.39 0.0007 0.0097 

 

Relative Change in Growth by Species Groups 

 Relative diameter change for all combined red oak stems was marginally insignificant (P 

= 0.0940). Relative diameter change for white oak was found to be different. The type III test 

estimated a P-value of 0.0048 (Table A19). 
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Table A19. Type III tests of fixed effects for relative diameter change among  
treatments for all white oak stems     
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 434 17.13 3.43 0.0048 

 

 The sulfometuron treatment estimate (1.5101) was the only treatment greater than the 

control estimate (1.5027) (Table A20). The more intensive treatments and the radial treatment 

appear to have the lesser estimates. All significant comparisons between individual treatments 

are below. 

 

Table A20. Least square means estimates for relative diameter change   
among treatments for all white oak stems   
     

Treatment Estimate Std. Error T - value P - value 
Banded 1.4803 0.2485 5.96 0.0047 
Banded + SFM 75 0.8967 0.2480 3.62 0.0251 
Control 1.5027 0.2303 6.52 0.0090 
SFM 75 1.5101 0.2464 6.13 0.0048 
Radial 1.2267 0.2360 5.20 0.0130 
Radial + SFM 75 1.4523 0.2549 5.70 0.0041 

 

 The post-ANOVA least squares means test indicated that four of the fifteen treatments 

were statistically dissimilar. The greatest contrast appears to be between the sulfometuron only 

treatment and the banded with the sulfometuron. Table A21 depicts the post-ANOVA summary. 

 

Table A21. Tukey-Kramer least squares means comparison estimates for relative change in   
diameter for all white oak stems between individual treatment comparisons  
      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted P-
value 

Banded / Banded + SFM75 0.5836 0.1993 2.93 0.0036 0.0415 
Banded + SFM 75 / Control -0.6061 0.1703 -3.56 0.0004 0.0055 
Banded + SFM 75 / SFM 75 -0.6134 0.1914 -3.20 0.0015 0.0181 
Banded + SFM 75 / Radial + SFM 75 -0.5556 0.1979 -2.81 0.0052 0.0582 
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 The relative diameter change for yellow-poplar reproduction was also strongly different 

among treatments (Table A22). A low P-value of <0.0001 was estimated from the type III two-

way pairwise test. illustrates the test summary. 

 

Table A22. Type III tests of fixed effects for relative diameter change among  

treatments for all yellow-poplar stems    

      

Effect Num DF Den DF Chi-Square F-Value Pr > F 

Treatment 5 494 31.25 6.25 <.0001 
             

        Yellow-poplar relative diameter growth had the greatest mean estimate (3.0021) for the 

sulfometuron only treatment (Table A23). The two treatments that used both herbicides had the 

lowest estimates. These two treatments were also lower than the control estimate (2.3717).  

 

Table A23. Least square means estimates for relative diameter change for  
among treatments for all yellow-poplar stems   
     

Treatment Estimate Std. Error T - value P - value 
Banded 2.9054 0.4924 5.90 0.0192 
Banded + SFM 75 2.3924 0.5028 4.76 0.0259 
Control 2.3717 0.5067 4.68 0.0251 
SFM 75 3.0021 0.4934 6.08 0.0176 
Radial 2.4499 0.5230 4.68 0.0191 
Radial + SFM 75 1.7716 0.5068 3.50 0.0494 

 

 Nine of the fifteen treatment comparisons were significant according to the Tukey least 

squares means test (Table A24). The largest separation occurred between the sulfometuron 

treatment and the radial plus sulfometuron comparison (1.2305). Treatments using singly applied 

herbicides or control were distinguished from the combination herbicide treatments.  
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Table A24. Tukey-Kramer least squares means comparison estimates for relative change in   
diameter for all yellow-poplar stems between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted P-
value 

Banded / Banded + SFM75 0.513 0.2492 2.06 0.0401 0.3110 
Banded / Control 0.5337 0.2547 2.10 0.0367 0.2914 
Banded / Radial + SFM 75  1.1338 0.2569 4.41 <.0001 0.0002 
Banded + SFM 75 / SFM 75 -0.6097 0.2349 -2.60 0.0097 0.1002 
Banded / Radial + SFM 75 0.6208 0.2591 2.40 0.0170 0.1596 
Control / SFM 75 -0.6304 0.2488 -2.53 0.0116 0.1163 
Control / Radial + SFM 75 0.6001 0.2759 2.17 0.0301 0.2514 
SFM75 / Radial + SFM 75 1.2305 0.2453 5.02 <.0001 <.0001 
Radial / Radial + SFM 75 0.6783 0.3054 2.22 0.0268 0.2298 

 

 Relative diameter change was not different (P = 0.2121) among treatments for red oak 

stems. The relative change in diameter for white oak was significant (P = 0.0161) among all the 

treatments. Table A25 illustrates the test summary for white oak.  

 

Table A25. Type III tests of fixed effects for relative height change among  
treatments for all white oak stems     
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 433 24.13 4.83 0.0003 

 

 The radial with the sulfometuron methyl treatment yielded the greatest mean relative 

height estimate (2.7123) for white oak stems (Table A26). The sulfometuron only application 

had the next largest estimate of 2.4431. The lowest mean estimate (1.5514) was associated with 

the radial treatment. 

 

 

 

 

 



 

128 

 

Table A26. Least square means estimates for relative height change   
among treatments for all white oak stems   
     

Treatment Estimate Std. Error T - value P - value 
Banded 1.7944 0.2822 6.36 0.0002 
Banded + SFM 75 1.6549 0.2806 5.90 0.0005 
Control 2.1126 0.2414 8.75 0.0007 
SFM 75 2.4431 0.2774 8.81 <.0001 
Radial 1.5514 0.2544 6.10 0.0014 
Radial + SFM 75 2.7123 0.2954 9.18 <.0001 

 

 Eight of the fifteen treatment comparisons showed a difference in the least square means 

post-ANOVA test. The largest separation occurred between the radial with the radial plus 

sulfometuron treatment. Applications with higher amounts of glyphosate tended to separate from 

both the control and sulfometuron treatments (Table A27). 

 

Table A27. Tukey-Kramer least squares means comparison estimates for relative change in   
height for all white oak stems between individual treatment comparisons  
      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted 
P-value 

Banded / SFM75 -0.6487 0.3053 -2.12 0.0342 0.2763 
Banded / Radial + SFM 75 -0.9178 0.3242 -2.83 0.0049 0.0545 
Banded + SFM 75 / SFM 75 -0.7883 0.2996 -2.63 0.0088 0.0920 
Banded + SFM 75 / Radial + SFM 75 -1.0574 0.3104 -3.41 0.0007 0.0093 
Control / Radial 0.5612 0.2417 2.32 0.0207 0.1875 
Control / Radial + SFM 75 -0.5997 0.2825 -2.12 0.0344 0.2775 
SFM 75 / Radial 0.8917 0.2783 3.2 0.0015 0.0181 
Radial / Radial + SFM 75 -1.1609 0.2933 -3.96 <.0001 0.0012 

 

 The relative change in height for yellow-poplar reproduction was also highly different 

among treatments. A low P-value of <0.0001 was estimated from the type III two-way pairwise 

test. Table A28 illustrates the test summary. 
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Table A28. Type III tests of fixed effects for relative height change among  
treatments for all yellow-poplar stems    
      

Effect Num DF Den DF Chi-Square F-Value Pr > F 
Treatment 5 494 36.56 7.31 <.0001 

 

 The sulfometuron methyl only treatments had the largest response in relative height 

growth for yellow-poplar reproduction (Table A29). The radial treatment yielded the lowest 

estimate at 4.8276. All treatments other than the sulfometuron only treatment were lesser 

estimates compared to the control estimate. 

 

Table A29. Least square means estimates for relative height change   
among treatments for all yellow-poplar stems   
     

Treatment Estimate Std. Error T - value P - value 
Banded 5.5882 0.8466 6.6 0.0083 
Banded + SFM 75 5.807 0.8847 6.56 0.005 
Control 5.9773 0.8997 6.64 0.0038 
SFM 75 8.1304 0.8496 9.57 0.0029 
Radial 4.8276 0.9586 5.04 0.0048 
Radial + SFM 75 5.1854 0.8997 5.76 0.0061 

 

 Five of the fifteen treatment comparisons showed a difference in the least square means 

post-ANOVA test (Table A30). The greatest separation in estimates was found between the 

sulfometuron and radial applications. presents the least squares means test results. 

 

Table A30. Tukey-Kramer least squares means comparison estimates for relative change in   
height for all yellow-poplar stems between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted P-
value 

Banded / SFM75 -2.5423 0.5795 -4.39 <.0001 0.0002 
Banded + SFM 75 / SFM 75 -2.3234 0.5993 -3.88 0.0001 0.0017 
Control / SFM 75 -2.1531 0.6349 -3.39 0.0008 0.0097 
SFM75 / Radial 3.3028 0.7237 4.56 <.0001 <.0001 
SFM75 / Radial + SFM 75 2.9450 0.6260 4.70 <.0001 <.0001 
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New Germinant Versus Sprout Reproduction (by Species) Relative Diameter Growth Response to 

Treatments 

 An analysis of variance indicated that four of the six analyses did have a significance 

between treatments. The two species by size groups that were not significant included white oak 

germinants (Pr>ChiSq = 0.2100) and red oak sprout (P = 0.1208) reproduction. Post ANOVA 

testing of least squares means is not provided for these insignificant groups. White oak new 

germinant, yellow-poplar new germinant, white oak sprout, and yellow-poplar sprout 

reproduction all had a difference in relative diameter growth among treatments. 

 Red oak new germinant reproduction relative diameter growth did vary significantly (Pr 

> ChiSq = 0.0191) among treatments (Table A31). All treatments had inferior relative diameter 

growth compared to the control (mean estimate of 2.2032). The radial application returned the 

next highest mean estimate at 2.1497. All treatments were significant at the 95% level. 

 

Table A31. Least squares means estimates for relative change in diameter for new  
germinant red oak reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 1.1254 0.3141 3.58 0.0101 

Banded + SFM 75 1.4630 0.3057 4.79 0.0026 
Control 2.2032 0.3334 6.61 <.0001 
SFM 75 1.1651 0.3514 3.32 0.0066 
Radial 2.1497 0.3883 5.54 <.0001 

Radial + SFM 75 1.7160 0.3880 4.42 0.0004 
 

 The least squares mean separation test revealed a difference between five out of the 

fifteen individual treatment comparisons. Table A32 illustrates the significant treatment 

comparisons. The greatest relative diameter change estimate was -1.0777 between the banded 

and control treatments. 
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Table A32. Tukey-Kramer least squares means comparison estimates for relative change in    
diameter for new germinant red oak reproduction between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| Adjusted P-value 

Banded / Control -1.0777 0.3739 -2.88 0.0050 0.0548 
Banded / Radial -1.0243 0.4283 -2.39 0.0190 0.1713 

Banded + SFM 75 / Control -0.7402 0.3717 -1.99 0.0497 0.3562 
Control / SFM 75 1.0381 0.4099 2.53 0.0132 0.1267 
SFM 75 / Radial -0.9846 0.4531 -2.17 0.0327 0.2617 

 

 Yellow-poplar new germinant relative diameter growth was different between treatments 

(P = 0.0020) (Table A33). The sulfometuron methyl only application yielded the highest estimate 

(3.5055) for all treatments. The comparison of all treatments for new germinant yellow-poplar 

reproduction is depicted below.  

 

Table A33. Least squares means  estimates for relative change in diameter for new  
germinant yellow-poplar reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 3.2543 0.396 8.22 0.0043 

Banded + SFM 75 2.6463 0.4136 6.4 0.0053 
Control 2.4159 0.4266 5.66 0.0053 
SFM 75 3.5055 0.4087 8.58 0.0024 
Radial 2.6361 0.4741 5.56 0.0015 

Radial + SFM 75 2.2188 0.4778 4.64 0.0035 
 

 The post ANOVA differences of least squares means test exposed differences for six 

individual treatment comparisons (Table A34). The estimate for the sulfometuron only with the 

radial with sulfometuron treatments was the highest among treatment comparisons. This estimate 

was 1.2867. The lowest estimate (-1.0896) was for the control with sulfometuron only 

comparison. 
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Table A34. Tukey-Kramer least squares means comparison estimates for relative change in  
diameter for new germinant yellow-poplar reproduction between individual treatment 
comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| Adjusted P-value 

Banded / Control 0.8384 0.3390 2.47 0.0139 0.1353 
Banded / Radial + SFM75 1.0354 0.3984 2.60 0.0098 0.1005 
Banded + SFM75 / SFM75 -0.8592 0.3227 -2.66 0.0082 0.0858 

Control / SFM75 -1.0896 0.3450 -3.16 0.0017 0.0214 
SFM75 / Radial  0.8694 0.4079 2.13 0.0338 0.2739 

SFM75 / Radial + SFM75 1.2867 0.4061 3.17 0.0017 0.0207 
 

 White oak sprout reproduction relative diameter change was also significant among 

treatments (P = 0.0006). The banded treatment had the maximal estimate with 1.5866. The 

minimum estimate was 0.7411 for the banded with the sulfometuron treatment. Table A35 

illustrates relative diameter change values and statistics for the treatments.  

 

Table A35. Least squares means estimates for relative change in diameter for white 
oak sprout reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 1.5866 0.2634 6.02 0.0025 

Banded + SFM 75 0.7411 0.253 2.93 0.0446 
Control 1.347 0.234 5.76 0.012 
SFM 75 1.4476 0.25 5.79 0.0056 
Radial 1.0617 0.2398 4.43 0.0195 

Radial + SFM 75 1.271 0.2624 4.85 0.0062 
 

 The post-ANOVA differences of least square means test revealed that six of the fifteen 

treatment comparisons were distinctive (Table A36). The banded treatment and the banded with 

sulfometuron treatment has the largest separation with an estimate of 0.8454. Four of the 

comparisons were highly different. Each of these comparisons included the sulfometuron only 

treatment. 
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Table A36. Tukey-Kramer least squares means comparison estimates for relative change in   
diameter for white oak sprout reproduction between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| Adjusted P-value 

Banded / Banded + SFM75 0.8454 0.2204 3.84 0.0001 0.0021 
Banded - Radial 0.5249 0.2043 2.57 0.0106 0.1078 

Banded + SFM 75 - Control -0.6059 0.1776 -3.41 0.0007 0.0093 
Banded + SFM75 / SFM75 -0.7065 0.1982 -3.57 0.0004 0.0055 
Banded / Radial + SFM75 -0.531 0.2088 -2.54 0.0114 0.114 

SFM75  / Radial 0.386 0.1848 2.09 0.0374 0.2955 
 

 Yellow-poplar sprout reproduction relative diameter change also varied (P = 0.0071) 

between treatments (Table A37). Seedlings within the control treatment performed better than all 

other treatments. The radial release with the sulfometuron treatments showed the largest 

reduction in growth (1.3749). The treatments and there statistical values are depicted below. 

 

Table A37. Least squares means estimates for relative change in diameter for yellow- 
poplar sprout reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 2.1306 0.4425 4.81 0.0161 

Banded + SFM 75 1.8098 0.4716 3.84 0.019 
Control 2.2575 0.4642 4.86 0.0099 
SFM 75 2.1761 0.4267 5.1 0.0197 
Radial 2.173 0.4721 4.6 0.0101 

Radial + SFM 75 1.3749 0.4325 3.18 0.0554 
 

 The post ANOVA differences of least squares means test exposed differences for four 

individual treatment comparisons. The estimate for the optimal (control) treatment paired against 

the minimal (radial with sulfometuron) treatment had the greatest difference in estimate (0.8825) 

for all significant comparisions. Table A38 illustrates the significant treatment comparisons. 
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Table A38. Tukey-Kramer least squares means comparison estimates for relative change in   
diameter for yellow-poplar sprout reproduction between individual treatment comparisons 

      

Treatments Compared Estimate Std. Error 
T - 

value Pr > |t| Adjusted P-value 
Banded / SFM75 0.7557 0.2841 2.66 0.0085 0.0888 

Control / Radial + SFM75 0.8825 0.3088 2.86 0.0048 0.0532 
SFM75 / Radial + SFM75 0.8011 0.2313 3.46 0.0007 0.0086 
Radial / Radial + SFM75 0.7981 0.3157 2.53 0.0123 0.1215 

 

New Germinant Versus Sprout Reproduction (by Species) Relative Height Growth Response to 

Treatments 

 An analysis of variance indicated that there half of the six analyses did not show any 

significance between treatments (Table A39). This included red oak sprout (Pr > ChiSq = 

0.2093), red oak new germinant (P = 0.8530), white oak new germinant (P = 0.115) 

reproduction. Post ANOVA testing is not provided for these insignificant groups. White oak 

sprout reproduction did vary significantly (P = 0.0001) among treatments. The sulfometuron 

methyl with radial spray yielded the highest mean estimate (2.3539 inches) for relative change. 

The minimal estimated mean was 1.423 for the sulfumeturon and banded spray treatment. All 

treatments were significant at the 95% level. 

 

Table A39. Least squares means estimates for relative change in height for white oak 
sprout reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 1.8244 0.3073 5.94 0.0005 

Banded + SFM 75 1.423 0.2889 4.92 0.0031 
Control 2.0396 0.2552 7.99 0.0022 
SFM 75 2.2305 0.2839 7.86 0.0004 
Radial 1.3137 0.2657 4.94 0.0072 

Radial + SFM 75 2.3539 0.3055 7.7 0.0001 
  

 A post-ANOVA analysis of the white oak sprout reproduction indicated that six treatment 

comparisons out of the total fifteen were significantly different from one another (Table A40). 

The largest positive separation was for the sulfometuron and radial treatments followed by the 
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control and radial treatments (mean estimates of 0.9168 and 0.7259, respectively). The 

significant treatment comparisons are presented in Table A40.  

 

Table A40. Tukey-Kramer least squares means comparison estimates for relative change in    
height for white oak sprout reproduction between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| 

Adjusted P-
value 

Banded + SFM75 / Control -0.6167 0.2517 -2.45 0.0148 0.1424 
Banded + SFM75 / SFM75 -0.8075 0.2807 -2.88 0.0043 0.0485 
Banded + SFM75 / Radial + 

SFM75 -0.931 0.2963 -3.14 0.0018 0.0223 
Control / Radial 0.7259 0.2278 3.19 0.0016 0.0194 
SFM75 / Radial 0.9168 0.2617 3.50 0.0005 0.0069 

Radial / Radial + SFM75 -1.0402 0.2812 -3.70 0.0003 0.0034 
 

  Yellow-poplar sprout reproduction also differed (P = 0.0009) among treatments for 

relative height change. The sulfometuron methyl only application yielded the highest mean 

estimate (4.7867) for relative change. The minimal estimated mean was 2.8775 for the 

sulfumeturon and banded spray treatment. Individual treatments were statistically different 

(Table A41). 

 

Table A41. Least squares means estimates for relative change in height for yellow- 
poplar sprout reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 3.5531 0.9489 3.74 0.0366 

Banded + SFM 75 3.8983 0.9985 3.90 0.0230 
Control 3.7175 0.9857 3.77 0.0277 
SFM 75 4.7867 0.9226 5.19 0.0211 
Radial 3.2292 0.9991 3.23 0.0390 

Radial + SFM 75 2.8775 0.9323 3.09 0.0640 
  

 Post ANOVA analysis using the Tukey mean separation found an apparent difference 

between three out of the fifteen treatment combinations for the relative change in height growth 

(Table A42).  The greatest contrast was between the sulfometuron methyl only and sulfometuron 

and radial spray treatment. The mean estimate was 1.9093.   
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Table A43. Tukey-Kramer least squares means comparison estimates for relative change in  
height for yellow-poplar sprout reproduction between individual treatment comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| Adjusted P-value 

Banded / SFM75 -1.2336 0.5169 -2.39 0.0181 0.1666 
 Control / Radial 1.5576 0.5843 2.67 0.0084 0.087 

SFM75 / Radial + SFM75 1.9093 0.4397 4.34 <.0001 0.0003 
 

 The relative change in height for yellow-poplar new germinants was also significant (P < 

0.0001). The sulfometuron only treatment again generated the largest mean estimate (10.2732 

inches) for the six treatments. A value of 6.0248, for the radial treatment, was the lowest mean 

estimate. All treatments were strongly different (Table A43). 

 

Table A44. Least squares means estimates for relative change in height for new  
germinant yellow-poplar reproduction among treatments 

     
Treatment Estimate Std. Error T - value P - value 
Banded 6.7140 0.5466 12.28 <.0001 

Banded + SFM 75 6.6934 0.5888 11.37 <.0001 
Control 7.0293 0.6613 10.63 <.0001 
SFM 75 10.2732 0.5862 17.52 <.0001 
Radial 6.0248 0.8280 7.28 <.0001 

Radial + SFM 75 8.2555 0.8257 10 <.0001 
 

 The post-ANOVA differences of least square means test revealed that six of the fifteen 

treatment comparisons were distinctive. The sulfometuron only and the radial treatment has the 

largest separation with an estimate of 4.2484. Four of the comparisons were highly different. 

Each of these comparisons included the sulfometuron only treatment (Table A44).  
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 Table A44. Tukey-Kramer least squares means comparison estimates for relative change in  
height for new germinant yellow-poplar reproduction between individual treatment 
comparisons 

      

Treatments Compared Estimate 
Std. 
Error 

T - 
value Pr > |t| Adjusted P-value 

Banded / SFM75 -3.5593 0.7528 -4.73 <.0001 <.0001 
Banded + SFM75 / SFM75 -3.5798 0.7675 -4.66 <.0001 <.0001 

Control / SFM75 -3.2439 0.8308 -3.9 0.0001 0.0016 
SFM75 / Radial 4.2484 0.9733 4.37 <.0001 0.0003 

SFM75 / Radial + SFM75 2.0177 0.965 2.09 0.0374 0.295 
Radial / Radial + SFM75 -2.2307 1.1266 -1.98 0.0486 0.3564 
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