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ABSTRACT 

In this dissertation, the procurement and replacement of interdependent assets is 

considered in which the machines satisfy demand in parallel. A number of realistic 

scenarios are modelled that are current limitations of the Parallel Machine Replacement 

Problem (PMRP). Considerations prevalent in construction management provide new 

formulations of the problem. A stochastic planning horizon is considered which is in line 

with the direction of the research field. Likewise, multi-purpose challengers are presented 

to offer a solution to the current heterogeneous fleet limitations. Lastly, shipping 

considerations for multiple demand sites are studied. New mixed-integer programming 

models are presented for each problem formulation. Each model considers numerous 

aspects that are contributions to the current literature for the parallel machine replacement 

problem. The work integrates the PMRP into construction management. A new solution 

methodology is presented that offers a usable technique for solving larger systems when 

shipping is of concern, without the limitations of the current models. The contributions 

are: considering multiple demand sites with shipping, a heterogeneous fleet, stochastic 

demand and planning horizon, multi-purpose machines, the ability to work and purchase 

used assets, applications in construction management and a solution method that is 

realistic and computationally efficient.   
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CHAPTER ONE  

INTRODUCTION 

Background  

Assets are demanded in both industry and government to provide a service or produce a 

product. As the assets age through time and utilization, it is often the case that operations 

and maintenance costs increase, while the salvage values decrease, leading to higher costs 

for demand satisfaction. Not only do salvage, operations and maintenance cost vary, but 

the purchase price of an asset also changes with time and technology. It is desired to 

determine the optimal policy for purchasing and salvaging one or many assets over a 

planning horizon. Many aspects need to be considered to determine the optimal schedule 

for this problem. Often decisions such as purchasing, renting, selling, holding, and 

operating need to be determined. In both the single and multiple asset case, utilization of 

the assets is often studied, as it has an effect on the value of the assets. The problem, 

known to be combinatorial in nature, is Nondeterministic Polynomial hard (NP-hard), 

shown by Esra Büyüktahtakin, Cole Smith, Hartman, and Luo (2014), and can be 

computationally difficult to solve for realistic cases. As seen in the literature, many 

models are subject to economies of scale, capital budget constraints, and rapid technology 

changes. The basis of this research is that of an engineering economic analysis in asset 

replacement, yet a number of realistic instances have been included. In general, models 

have been applied to optimize multiple types of equipment, such as: buses, construction 

machines, aircraft, and medical devices (J. C. Hartman & C. H. Tan, 2014; J. Seif, Yu, & 

Shields, 2017).  

 

In 2017, the top ten highest valued construction projects totaled over 400 BN USD alone 

(ARCADIS, 2017).  Much of the cost of these projects are in the management of the 

equipment.  Ownership cost of machinery can vary from 20 to 200 times the purchase 

cost (Ryan, 1968). It is always economical to replace the machines after a certain amount 

of usage because as the machines age, salvage value decreases and operations and 
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maintenance (O&M) costs increase (Verheyen, 1979). Therefore, it is very important to 

find the optimal schedule for replacement of machinery and the application of this 

research is presented in construction asset management. Optimal replacement of 

equipment has been studied within the past century (Joseph C Hartman & Chin Hon Tan, 

2014). When the machines are economically interdependent, it is not optimal to schedule 

their salvage and purchase separately. Machine and asset replacement problems fall into 

two main categories: serial and parallel.  

Serial Replacement 

The serial replacement problem is concerned with finding an optimal replacement policy 

for a single asset, or multiple economically independent assets. In the case of multiple 

assets, it is just as beneficial to solve a model for each asset independently as it would be 

to solve for all assets at the same time. It is noted by Hartman that the multiple asset 

problem is decomposed into multiple single-asset problems and normally a decision is 

made in the first time period, in which the model is updated in each time period with new 

data. It can be seen in the literature that the serial replacement problem is often 

outperformed by a more realistic (in general) problem, parallel replacement Joseph C 

Hartman (2000).  

Parallel Replacement 

The Parallel Machine Replacement Problem (PMRP) is the problem of finding a 

minimum cost replacement schedule for a group of machines that are economically 

interdependent and operate in parallel to satisfy a demand. That is, it may be the case that 

the purchase price is subject to a constraint such as economies of scale or demand 

dependence. PMRP allows for the ability to make a keep or replace decision, 

traditionally. More realistic formulations of the PMRP include decisions on sending an 

asset into holding or satisfying demand with renting, as presented here. This problem 

formulation is combinatorial in nature, and grows quickly in complexity as the number of 

potential decisions increases. Parallel replacement analysis can be over a finite or infinite 

horizon, and can have stochastic and deterministic formulation.  
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Parallel replacement analysis fits well into the construction industry, and allows for some 

new problem formulations. Specifically, most construction projects have machines that 

satisfy demand in parallel. It could be the case that two excavators work on the same site, 

or two dump trucks haul rock away together. The planning horizon uncertainty of a 

construction project due to delays and run-overs can be modeled with PMRP. 

Furthermore, construction machinery is economically interdependent. Any decision for 

one machine has an effect on other assets. For instance, if demand for a piece of 

equipment is stationary and one asset is salvaged, either a new asset must be purchased, 

or the remaining machines must be utilized more. Lastly, in construction equipment 

management, the shipping of machines to and from projects is prevalent, and gives rise to 

a new PMRP formulation. It should be noted that in this work it is not desired to perform 

predictive analysis on equipment costs to determine the optimal replacement time, yet a 

schedule is being prescribed based on a number of available options that are 

combinatorial in nature in order to determine an optimal schedule.  

Infinite and Finite Horizon Problems 

There exist two main formulations of the Parallel Machine Replacement Problem: infinite 

and finite planning horizon. Finite planning horizons have a predetermined length, and 

are often considered stochastic. Infinite planning horizons are seen in the classical 

equipment replacement problems with stationary costs, in which it is optimal to replace a 

machine at its economic life. But, as noted in (J. C. Hartman & C. H. Tan, 2014), when 

the planning horizon is finite, this is not always the case. Therefore, finite horizon 

problems are studied more in the recent years. Furthermore, non-stationary costs give rise 

to the vast amount of work in finite horizon problems, as the complexity is much greater 

with infinite horizon assumptions, and requires more involved modelling techniques.  

Problem Definition: Adapting PMRP for Construction Industry  

There exist difficulties in the field of asset replacement in that many of the research 

methods that are currently applied account for a subset of the aspects that occur in 

practice. Specifically, in the construction industry, optimization methods and advanced 
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analysis techniques are not as predominant. There are also limitations on the solution 

methods, such as stochastic Dynamic Programming (DP), commonly used in the 

literature for large problem size. As stated by Hartman in (J. C. Hartman & C. H. Tan, 

2014) there is a need for the consideration of aspects such as multiple machine types and 

planning horizon uncertainty, which are not principal in the literature. Despite the 

plethora of literature on PMRPs, the current models leave out important aspects of the 

real world and few have integrated PMRP into the construction industry. Many authors 

have worked on analysis of asset replacement under realistic assumptions and have 

gained important managerial implications for assets. Yet, some aspects still need to be 

considered such as: optimal utilization level of the assets (extension of (Joseph C. 

Hartman, 2004)), multiple machine and operation types, and the impact of shipping when 

demand is at varying locations. The statement on optimal utilization level should not be 

confused with that of Hartman. In that work, Hartman showed the best way to utilize 

each machine based on the assumptions of the costs and salvage values. In this he showed 

that in some cases one should utilize each asset equally, and in others a set of assets 

should be utilized fully and others partially. Yet, this work aims to answer if each asset is 

to be utilized equally, what the level should be in the cases of multiple heterogeneous 

challengers, used purchases, and salvaging at any age. This is also an extension of (Jha, 

2000a) where a different problem formulation is proposed for determining the utilization 

levels.  

 

The specific problem in question is that of optimally replacing a set of physical assets 

that are economically interdependent, over a finite and potentially uncertain planning 

horizon. The assets in this work have a number of decisions at each time period, further 

complicating the combinatorial nature of the formulation. In each time period a current 

machine can be replaced or sent into holding, while new machines can be bought new, 

used, or rented to satisfy demand. These specific decisions are already an extension of the 

current machine replacement literature, yet this work also changes the general structure 
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of the problem to include machines of various operation type, multiple demand sites, and 

uncertain planning horizon.  

 

Likewise, this work intends to discover the impact of shipping, stochasticity, and 

operation type on the management of construction machinery. These aspects are not 

normally considered in PMRP, yet are prevalent in construction management and other 

industries. Finally, the presented work aims to provide general and specific solutions 

methods that are more applicable to industry and provide the capability to solve large 

real-world problem formulations, specifically for the case of transportation. Also, many 

small and large construction companies use suboptimal asset replacement schedules, 

utilizing machines without strategy, subject to daily needs. An analysis tailored to 

construction management is essential to optimizing the procurement and replacement in 

this setting. Without more insight into best policy practices for construction machine 

replacement, construction companies will suffer financially from higher procurement, 

maintenance, and operations costs. Furthermore, the lack of data collection in the average 

construction company facilitates a common culture of contentment with these costs, costs 

that may be unnecessary. This work also aims to provide insight into the importance of 

applying mathematical optimization to construction management and assists in creating a 

standard for equipment replacement.  

 

In this paper, the PMRP is analyzed in construction projects using deterministic and 

stochastic programming. Mixed integer models are presented that are customized for 

construction projects and consider a non-uniform demand over an uncertain project 

duration, multiple operation and machine types, and machine shipping; this is 

demonstrated in three independent models. Methods or processes for minimizing solution 

time and implementation ease are presented.  
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Delays in Construction Projects 

It is common for construction projects to be delayed due to various causes. In order to 

control the delays, contractors should avoid cost overruns and disputes by matching 

planning and scheduling processes with resources and time Assaf and Al-Hejji (2006, p. 

356). Construction machinery is one of the main resources for contractors, therefore 

optimal planning for their purchase and salvage is important.  

 

Causes of delay in construction industry can vary from one country, region, type of 

projects, or even period of time to another. Al-Momani (2000) concluded that the main 

causes in Jordan are related to designers, user changes, weather, site conditions, late 

deliveries, economic conditions and increase in quantity. Frimpong, Oluwoye, and 

Crawford (2003) conclude that the main causes of delay and cost overruns in construction 

of groundwater projects in Ghana include: monthly payment difficulties from agencies, 

poor contractor management, material procurement, poor technical performances, and 

escalation of material prices. “Change order” is considered as the main cause of delay in 

large construction projects in Saudi Arabia (Assaf & Al-Hejji, 2006). It seems that delay 

is inevitable regardless of what causes it. Assaf and Al-Hejji (2006) concluded that 70% 

of the construction projects experience time overrun with average of time overrun being 

between 10% and 30% of the original duration. Faridi and El‐Sayegh (2006) reveal in 

their research that, in the UAE, 50% of the construction projects get delayed and are not 

completed on time. The prevalence of an uncertain project horizon begs for better 

solutions to demand satisfaction, to avoid unnecessary costs when delays occur.  

Multiple Machine and Operation Types 

Multiple machine and operation types are prevalent in many industries, yet the work 

related to a heterogeneous fleet of assets has been limited. In (Keles & Hartman, 2004) 

Hartman considered a heterogeneous fleet of busses to determine the optimal replacement 

schedule, yet the consideration had no effect on the structure of the existing modelling. 

There is a need to model the realistic nature of the machines as heterogeneous in which 
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the assets can perform multiple operations. Likewise, the machines should be able to take 

on intersecting roles of operations. For example, an excavator may be able to perform the 

same operation as a backhoe, yet each machine also has unique operations they can 

execute. This, of course, may require excess fixed or operating costs and this is necessary 

for solving the problem. (Tosun, 2014) studied the best excavator type, considering the 

type of job that needed to be performed and the excavator aspects. This work presents a 

solution to this problem with a new way of modeling the issue to account for the machine 

skill set overlap.  

Construction Equipment Shipping 

A significant cost in the management of large assets is that of shipping. (Shane, 

Molenaar, Anderson, & Schexnayder, 2009) state that poor estimation and project 

schedule changes lead to escalation of project costs. It can be seen quite frequently that 

large construction equipment is constantly transported from project to project as either 

new demand is realized or an asset needs to return to a holding station. Without an 

accurate shipping and replacement schedule, it may be the case that excess costs will be 

incurred. In the PMRP there has not been shipping considerations thus far, leading to 

higher project costs for the companies, as well as the stake holders. The reason that these 

specific considerations have not appeared in this problem is that few have considered 

multiple demand sites, as seen in the construction industry. The ones who have 

considered location differences have simply allocated all demand and solved for one 

larger system, or have equivalently solved for each demand site independently. This 

means that without shipping considerations, the solutions are currently suboptimal.  To 

solve this, a new modeling structure is proposed that allows for the assets to be used at 

various demand sites.  

Contributions and Motivation 

The contributions of this research are that of solution methods, problem formulation, and 

application in construction management. The solutions methods proposed have not been 

considered in the literature and allow for more complex and larger problems to be solved 
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for multiple demand sites. The problem formulations depict a more realistic PMRP 

formulation than those that appear in the literature and offer new managerial 

implications. Also, the tailored fit to construction management offers a practical approach 

for implementing the PMRP into any construction company, offering vast savings in the 

replacement of heavy equipment.  

Limitations 

A few limitations of the research stem from the industry and mathematics. In the 

construction industry specifically, data collection and advanced analysis techniques 

greatly depend on the size of the company. Most general contractors are not 

implementing mathematical optimization, and even the large construction companies 

seem to lack in certain data collection. One of the goals of this research is to create a 

solution method that is easier for the construction community to implement, and inform 

the community of the benefits of applying PMRP, as well as optimization. Yet, there has 

not been available data to test the problem from a company, and the data was compiled 

from various sources.  

 

Furthermore, the modelling aspects of the problem have a limitation on how realistic one 

can make the models. Until a proof of 𝑃 = 𝑁𝑃, the nature of this combinatorial math 

problem is limited to only being able to consider a few of the aspects that happen in the 

real world at one time. For instance, it was not computationally economic to have both 

multiple machine and operation types in the same model as multiple projects (the number 

of variable indices would exceed that of 7). Unfortunately, this is a general limitation of 

integer programming and the community does the best it can, given the circumstances. 

Therefore, the balance between a mathematical model’s difficulty and its solution 

feasibility must be found.  

Assumptions 

The modelling and research assumptions vary based on the problem formulation. For the 

single asset case (the cases of stochastic planning horizon) the machines are assumed to 
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be identical. Also, the machines are assumed to satisfy demand in parallel and are 

economically interdependent. These assumptions are that of the Parallel Machine 

Replacement Problem and without them, the Serial Replacement Problem would be 

solved. Assumptions specific to the case where there exists multiple machines and 

machine types is that if a set of machines can perform the same operation, they can do so 

with equal quality and the same utilization.  Additionally, for all models, it is assumed 

that all demand must be satisfied, and partial satisfaction is not allowed. The machines 

are also assumed to have a limit on utilization and age for operation.  

Summary 

Equipment replacement has been studied over the past century (J. C. Hartman & C. H. 

Tan, 2014). As technology and mathematical abilities change, so has the research on asset 

replacement. Specifically, the Parallel Machine Replacement Problem has been adapted 

for various situations that have been realized. Here this work attempts to further that of 

previous works by creating and solving new instances of the PMRP. The work offers a 

realistic application tailored to the management of construction assets. It is known that 

the stochastic nature of the planning horizon is important to consider, both in replacement 

analysis and the construction industry. Given that the majority of construction projects 

extend beyond their initial planning timeframe, and that the replacement analysis experts 

have declared that the future direction of PMRP is involving stochastic planning horizon, 

this research solves a major real-world issue. The benefit and solution methodology of 

implementing this work is presented in the following sections. This work solves a number 

of issues: 

 

 Integration of PMRP in construction management 

 PMRP formulation limitations 

o Multiple machine and operation type  

o Limited stochastic planning horizon studies 

o A lack of shipping considerations 
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 Solution methodology for transportation decisions 
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CHAPTER TWO  

LITERATURE REVIEW 

History of PMRM 

In replacement analysis, all of the assets within a group should be considered together for 

several reasons including economies of scale in the purchase price, demand constraints, 

and budgeting constraints (Keles & Hartman, 2004). PMRPs are concerned with 

simultaneous replacement of machinery in a group as opposed to individually. PRMPs 

have appeared in the literature since 1955 according to (J. C. Hartman & C. H. Tan, 

2014). The term “parallel” replacement was coined by (Vander Veen, 1985; VanderVeen, 

1985). In the PMRP models, the number of machines required in each time period 

(demand) is usually known and the length of the planning horizon is constant (see, for 

example, Jones, Zydiak, and Hopp (1991)). These models can vary based on the 

applications.  

Multiple Asset Replacement   

Multiple asset replacement is concerned with replacing multiple assets utilized in an 

integrated system, therefore the replacement decisions of all assets in that system must be 

considered simultaneously (Leung & Tanchoco, 1990). The earliest work in the 

replacement of a set of machines was (Leung & Tanchoco, 1986), where the authors 

provided the initial framework for such a problem. Early works in multiple asset 

replacement such as,(Jones et al., 1991), simplified the solution space using two rules: 1. 

The no splitting rule (NSR) and 2. The older cluster replacement rule. The NSR states 

that all same aged assets are kept or replaced at the same time. While the older cluster 

rule states that a machine of older age is always replaced before a newer one. As noted in 

(Hartman, 2014), this requires assumptions of non-decreasing O&M costs, and non-

increasing salvage values, and their sum to be non-decreasing. STINSON and 

KHUMAWALA (1987) studied the multiple machine replacement problem considering 

lost production costs and machine downtime costs. The authors also present a heuristic 
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algorithm for solving large problem size, and provides multiple ranked alternative 

solutions. As problems became more realistic, more advanced models and solution 

procedures arose. (Lotfi & Suresh, 1994) considered a nonlinear MILP formulation of the 

replacement of CNC machines, solved with a two-level exact solution method via 

Dynamic Programming. (Chand, McClurg, & Ward, 2000) extended the standard PRMR 

to include capacity expansion. That is, demand is assumed to increase over time, Chand 

also considered economies of scale. (McClurg & Chand, 2002) developed a forward-time 

algorithm that determines the optimal replacement plan for the generalized PMRP. A 

proof of the NSR and the OCRR was presented by (Tang & Tang, 1993), and extensions 

of these proofs are found in (Hopp, Jones, & Zydiak, 1993). Buy, lease, and rebuild 

decisions are studied by (Joseph C Hartman & Lohmann, 1997), where the authors use 

Integer Programming (IP) to solve computational experiments. In (S Rajagopalan, 1998; 

Sampath Rajagopalan, Singh, & Morton, 1998) capacity expansion is introduced into the 

equipment replacement literature. Here future demand changes and economies of scale 

are considered in a general model that solves efficiently.  

 

More recent works include that of ( (Keles & Hartman, 2004), (Büyüktahtakin & 

Hartman, 2009), (Joseph C. Hartman, 2004),(Esra Büyüktahtakin et al., 2014), (des-

Bordes & Büyüktahtakın, 2017)). Keles and Hartman considered a mixed integer 

programming formulation for the replacement of a bus fleet. They determined 

implications of the model via sensitivity analysis and solved the problem with a 

commercial solver. Büyüktahtakin and Hartman considered the PMRP under technology 

change and deterioration and gave an integer programming formulation, and provide 

analysis on the effects the considerations had on the solution. A famous work by Hartman 

was that of replacement under stochastic horizon in 2004. Here, Hartman provided 

optimal utilization of machines given various assumptions of the input data. 

(Parthanadee, Buddhakulsomsiri, & Charnsethikul, 2012) studied the multiple machine 

replacement problem with assumptions that newer machines would be utilized more and 

studied: purchase-new-vehicles-only, no-splitting-in-selling, one-purchase-choice, older-
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vehicles-selling, and all-or-none rules. An aircraft replacement strategy was studied by 

(Bazargan & Hartman, 2012) in which the authors looked at optimal buying and leasing 

decisions for two US airline companies. Des-Bordes more recently considered the PMRP 

under economies of scale as well as a case study on MRI machines in 2017 with 

Büyüktahtakin. In this work the authors allowed for machines to satisfy demand that was 

service dependent by allowing for two sets of machines: a set whose demand can only be 

satisfied by their own asset style, and a set that can be satisfied by its own style as well as 

the first set. In 2014 Büyüktahtakin studied the parallel replacement problem under 

economies of scale (PRES). Here the author proved the NP-hardness of the problem 

formulation by transforming a 3SAT problem into the proposed formulation. More 

recently (Büyüktahtakın & Hartman, 2016) studied the PMRP under technology changes, 

considering capital gains where newer machines have a larger capacity.  

Stochastic PMRP 

While applying the existing PMRP models can be advantageous to the contractors in 

construction projects, it is very important to consider special characteristics of these 

projects so that the solutions become robust and trustworthy. The number of time periods 

in the planning horizon of a construction project is finite, yet uncertain. Also, even if the 

length of the planning horizon is certain, demand is not necessarily distributed equally; 

for example, the number of excavators required for each period in the beginning and 

closure phases of a project could be lower than the demand in mid phases. Such non-

uniform demand has been studied mostly as an increasing demand called capacity 

expansion. Chand et al. (2000) consider PMR and capacity expansion jointly, which 

results in a non-decreasing demand in PMRP models. Non-uniformity of demand has 

appeared in the literature under various terminologies such as fluctuating demand, non-

stationary or stochastic demands (see, for example, Jha (2000b); Joseph C. Hartman 

(2004); VanderVeen (1985)). One of the first stochastic works in the equipment 

replacement literature is (Childress & Durango‐Cohen, 2005), where the authors prove 

the Worse Cluster Replacement Rule (WCRR) and the NSR for the stochastic 
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formulation. More recently studied the replacement of aircraft under stochastic demand, 

using DP as a solution method. The most recent work to appear in the literature studies a 

stochastic planning horizon for a fleet replacement problem of alternative fuel type 

machines, see (Ansaripoor & Oliveira, 2018). 

 

Tan and Hartman (2010) consider horizon uncertainty in replacement of a single asset 

where the length of horizon or service, 𝑇, is a finite variable, which is unknown, ranges 

between an upper bound and a lower bound, and has a probability distribution. They use 

dynamic programming as the solution methodology which is commonly used in the 

literature of replacement analysis. When multiple assets and their economic 

interdependence is considered, the replacement problem becomes a difficult, 

combinatorial problem (Keles & Hartman, 2004). Modeling of horizon uncertainty 

becomes challenging when multiple parallel machines are involved in replacement 

analysis and the number of machines required each time period fluctuates.  

Utilization 

According to Dhillon (2009, p. 2), “life cycle cost (LCC) is the sum of all costs incurred 

during the life span of an item or system.” Javad Seif and Rabbani (2014) try to estimate 

LCC of construction machinery precisely by calculating the planned and unplanned 

maintenance activities based on the failure rates and failure probability distributions at a 

component level. They use this method in PMR and classify all components into three 

main categories based on their distributions. However, this method might not always be 

practical due to the high number of components and the complexity of realistic systems 

and machinery. Others have also tried to incorporate the cost of unplanned maintenance 

of critical or major equipment in LCC by considering failure distributions of such 

equipment (see, for example, Frangopol, Lin, and Estes (1997) and Sherwin (2000)). 

Joseph C. Hartman (2004) uses two indices that account for age and utilization level, 

making data collection easier and practical. In this research, two indices are also used for 

age and utilization level. This let us model PRM such that machinery can be purchased 
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and salvaged at any age and any utilization level. Heavy construction machinery is an 

expensive asset that is traded at varying ages and utilization levels. Utilization is 

expressed as the cumulative number of hours a machine has operated. Salvage and 

purchase at different ages and utilization levels expands the solution space, which can 

lead to a lower total cost of procurement. In addition, because practitioners may explore 

other options such as renting the machinery, renting is incorporated into our model.  

Literature Gap  

The literature gap analysis is provided in Table 1. To fit the attributes of each model in 

the table, a symbol is used for each such that: PT is the problem type, MO is multiple 

operations (multi-purpose machines), MM is multiple machine types, HU is horizon 

uncertainty, U is utilization considerations, MDS is multiple demand sites, and T is 

transportation considerations. As seen in Table 1, multiple authors consider utilization 

considerations. This is a trend in the literature that addresses a realistic problem. 

Likewise, multiple machines and horizon uncertainty are current directions of the field. 

This is explicitly stated in ((J. C. Hartman & C. H. Tan, 2014). Hartman was one of the 

first whom considered utilization extensively, and this research aims to add to that aspect 

of the field. In terms of multiple operation types or multi-purpose machines, only two 

papers address this to date, (J. Hartman & Ban, 2002)and (des-Bordes & Büyüktahtakın, 

2017). In the first paper, Hartman and Ban consider the Serial-Parallel replacement 

problem in which they have a number of machines that can perform various tasks in a 

production line. Although the context is slightly different, the idea of multiple machine 

and operation types stems here. Next, de-Bordes and  Büyüktahtakin provide a realistic 

extension of multi-purpose machines in which the authors allow for demand to be 

satisfied in two categories, or sets. That is, one set of assets can have demand only met by 

themselves, while a second set of assets can have demand met by both sets of assets. The 

work presented here further weakens the assumptions and allows for any combination of 

machines and operations that a machine can perform. The biggest literature gap is that of 

multiple demand sites and transportation decisions. Only one paper to date has 
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considered multiple demand sites mathematically, Hartman and Ban 2002. In this work, 

as mentioned previously, the machines are serial-parallel and have various operations. 

Yet, the way in which Hartman and Ban formulated their mathematical model, the 

structure is equivalent to multiple demand sites, without a distance matrix. This was 

modelled in such a way to account for the locations of the machines in various sites 

within a warehouse. No research to date has considered shipping integrated with PMRP. 
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CHAPTER THREE  

METHODOLOGY 

In this chapter a general process is discussed to determine which problem formulation to 

consider, as well as a specific algorithm for solving the instance where shipping decisions 

are made. Data gathering and generation is also discussed for a realistic depiction of 

heavy construction equipment. Parameter functions are derived from the literature and 

real data is fit to each to properly generate purchase, operations, and maintenance costs. 

Other inputs are determined easily from online sources. For each problem formulation, a 

mixed integer programming model (MILP) is presented. Each formulation is based on an 

extension of the standard PMRP by (J. Seif, Shields,B. and Yu,A., 2018). Two extensions 

of the base model are for multi-purpose machines and transportation considerations. The 

model’s differences are discussed, and both stochastic and deterministic instances are 

considered. Lastly, a process for determining the optimal utilization level of all machines 

is given as an alternative to that of including utilization as a decision variable and further 

complicating the problems. It is also discussed how each formulation is analyzed by their 

Objective Function Values (OFV), the Value of Stochastic Solution (VSS), the Expected 

Value of Perfect Information (EVPI) and sensitivity analysis.  

 

In the proposed field there are eight problem formulations that can occur, seen in Figure 

1. Because of the limitations stated, only a subset of these are being studied. Problems 

P1, P4, P5, and P6 (denoted with a star) are those being considered. Most of the work is 

in the modelling and analysis of the problem formulations, where managerial 

implications and easier solutions are desired. Each of the four problems considered use 

data generated in the same way with functions derived from (Joseph C. Hartman, 2004) 

and fitted using online data. All models considered are deterministic or stochastic mixed 

integer programs, solved with Gurobi implemented in Python. A solution processe is 

presented to help minimize the solution time and to promote ease of implementation. 

Lastly, thorough sensitivity analysis is presented for each problem, giving insight and 

practical use for companies to use by evaluating modelling quality metrics. 
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Modelling 

The life cycle cost (LCC) of a machine is calculated from the beginning of acquisition to 

its salvaging. Initial costs are that of purchasing machines of specific ages and operating 

hours (cumulative utilization level). Mid-life costs would be that of operating the 

machines, possibly holding the machine as inventory, and maintaining the machines. 

Renting a number of machines has also been considered as an alternative. When renting, 

the LCC would only be that of renting a machine, which is considered per year, and 

operating the rented machines. End-life costs for purchased machines would include the 

negative cost of salvaging a machine, in form of selling price, again of a specific age and 

cumulative utilization level.  

 

A machine is salvaged when it reaches certain thresholds. Two thresholds are considered 

in the lifetime of a machine. The first threshold is the maximum number of years past the 

manufacturing date of the machine (L), i.e. a certain age. The second threshold is the 

maximum cumulative utilization level (U), e.g. a certain value for the total number of 

hours or miles a machine has operated. When a machine is owned, each time period 

(year) adds one unit to its age; however, the machine has to be operating in that period or 

the cumulative utilization level will not change. L is determined such that each year of 

operation adds one unit to the machine’s cumulative operating hours. Consider a 

bulldozer that is operated 8 hours/day and 300 days per year. If the useful life of the 

bulldozer is 20000 hours, L = ⌊20000/(300 × 8)⌋ = 8. If a machine reaches either of 

the thresholds, it should not be considered for operation and should be salvaged. 

Stochastic Programming 

Stochastic Programming is a field of mathematical optimization concerned with finding 

the optimal solution to (mostly) linear programs, under which one or more of the 

parameters are uncertain. The formulation of a stochastic program is either two-stage or 

multi-stage. A first stage is composed of a decision variable in which a decision is made 

in the current time, and the remaining stages are determined in consequence to the first 
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stage decision. A number of scenarios are considered, and the expected value over all 

optimal solutions (for each scenario) is the solution to a stochastic program, denoted the 

Recourse Problem (RP).  As an example, as seen in (Birge & Louveaux, 2011), a farmer 

is attempting to determine the optimal allocation of crops to a finite plot of land in order 

to maximize her profit. Each of her crops have varying yields and revenues dependent on 

the weather. Assume the crops can have a high, medium, and low yield, as three weather 

scenarios are realized. A first stage decision is to determine how much acreage of each 

crop to plant, and the second stage is determining the yields and sales. The optimal 

solution to the recourse problem finds the maximum expected profit, considering all 

scenarios.  

Evaluation Metrics 

To evaluate the solution quality and perform insightful analysis, a number of metrics are 

considered for the deterministic and stochastic problem formulations. For both cases, the 

objective function values (OFVs) are used as the primary metric. Also, in conjunction 

with Gurobi and Python, the solution times and time to retrieve a feasible solution are 

used to compare with the presented solution methodologies. Specific to stochastic 

models, the Value of Stochastic Solution (VSS), Recourse Problem (RP), Wait-and-See 

solution (WS), expected results from the expected value problem (EV and EEV), and 

Expected Value of Perfect Information (EVPI) are utilized in determining the 

performance of the problem formulations.  

 

The WS solution is the expected value of the optimal solutions for each scenario. The 

EVPI is the RP minus the WS, commonly defined as the amount the stakeholder should 

be willing to pay for accurate future information. The EV solution is a low-hanging fruit 

option, in which the expected value of each uncertain parameter is used as input and the 

model is solved in a deterministic manner. The EEV is the expected result of using the 

EV solution. Lastly, the VSS is the expected value of using the EV solution minus the 
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RP. VSS, along with EVPI, are important measures of the necessity of considering the 

uncertainties in the model.  

 

In this section, two stochastic PMRPs are presented (P5 and P6;Figure 1). P6 is a single 

project stochastic asset replacement and P5 is a stochastic asset replacement with 

multiple projects. Both are presented with their particular MILP models.  

Monte Carlo Simulation for Stochastic Demand 

In order to generate the scenarios for demand in the stochastic formulations, a Monte 

Carlo simulation was implemented in Excel and imported into python and then used to 

solve the optimization model with Gurobi. This sort of scenario generation was necessary 

because of the high number of instances and the limit on ability to code all scenarios into 

the stochastic program. First, the demand was modelled and the probabilities of each 

scenario was determined. A random number was generated and then an if statement was 

written that determined if the value was greater than the random number. If the number 

was greater than the probability of obtaining a project, the scenario existed, otherwise the 

scenario received zero demand. NORM.INV() was used to generate the project lengths 

and number of machines needed in each time period based on the initial demand. The 

simulation was then generated for a number of scenarios. Each scenario gave a demand 

site and project length, along with the required number of machines. This was used as the 

input into the MILP model. The code to connect the model to the simulation can be seen 

in Appendix A.  

Single Asset - Single Project  

The procurement of a particular construction machine over an uncertain planning horizon 

is modeled as a two-stage stochastic mixed integer program. A number of decision 

variables are introduced to model the schedule for purchasing, renting, holding in 

inventory, and salvaging the machines. In the first stage, a number of machines are 

purchased, and subsequently for the remaining time periods (second stage), machines are 

purchased, rented, set to idle (holding in inventory), or salvaged. The goal is to find an 
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optimal schedule that chooses the values of first-stage variables such that the total cost 

(first-stage cost plus the expected cost of the second stage) is minimized.  

In a real-world construction project, the number of periods in the project’s planning 

horizon is stochastic. Additionally, the age and current cumulative utilization level of a 

machine impacts all various types of costs associated with the machine. The parameters 

and mixed integer program are presented below. This problem formulation in 

deterministic form is the basis of the transportation and multi-purpose machine 

extensions.   

 

Parameters 

 

𝑐𝑖𝑗𝑡 Cost of purchasing a machine with age and utilization level (𝑖, 𝑗) in period 𝑡 

𝑞𝑡 Cost of renting a machine for one time period in period 𝑡 

ℎ𝑡 Cost of holding a machine in period 𝑡 

𝑜𝑡 Operating costs of a machine in period 𝑡 

𝑚𝑖𝑗𝑡 Cost of maintaining a machine with age and utilization level (𝑖, 𝑗) in period 𝑡 

𝑠𝑖𝑗𝑡 Salvage value of a machine with age and utilization level (𝑖, 𝑗) in period 𝑡 

𝜁𝑡
𝜔 Number of required machines in time period 𝑡 ∈ [1, 𝑇𝜔] under scenario 𝜔 ∈ 𝛺 

𝑝𝜔 Probability of scenario 𝜔 ∈ 𝛺 being realized 

𝐿 Maximum physical life (due to technological change) 

𝑈 Maximum cumulative utilization level (due to deterioration) 

𝑇𝜔 Length of the planning horizon under scenario 𝜔 ∈ 𝛺 

 

Decision Variables 

 

𝑋𝑖𝑗 Number of machines with age and cumulative utilization level (𝑖, 𝑗) to purchase in the first stage 

𝑦𝑖𝑗𝑡
𝜔  Number of machines with age and cumulative utilization level (𝑖, 𝑗) to purchase in period 𝑡 under 

scenario 𝜔 

𝑧𝑡
𝜔 Number of machines to rent in time period 𝑡 under scenario 𝜔 
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𝑆𝑖𝑗𝑡
𝜔  Number of machines with age and cumulative utilization level (𝑖, 𝑗) to sell (salvage) in period 𝑡 

under scenario 𝜔 

𝐼𝑖𝑗𝑡
𝜔  Number of machines with age and cumulative utilization level (𝑖, 𝑗) that are idle in period 𝑡 

under scenario 𝜔 

𝑎𝑖𝑗𝑡
𝜔  Number of operating machines with age and cumulative utilization level (𝑖, 𝑗) in period 𝑡 under 

scenario 𝜔 

 

The two-stage stochastic mixed integer programming model is formulated as follows. 

 

Minimize 𝑇𝐶 = ∑ ∑ 𝑐𝑖𝑗1𝑋𝑖𝑗
𝑈
𝑗=1

𝐿
𝑖=1 + 𝐸[𝑄(𝜉, 𝑌)], 

𝐸[𝑄(𝜉, 𝑌)] = ∑ 𝑝𝜔 (∑ [𝑞𝑧𝑡
𝜔 + 𝑜𝑡𝑎𝑡

𝜔 + ∑ ∑ (
𝑐𝑖𝑗𝑡𝑦𝑖𝑗𝑡

𝜔 + ℎ𝑡𝐼𝑖𝑗𝑡
𝜔

+𝑚𝑖𝑗𝑡𝑎𝑖𝑗𝑡
𝜔 − 𝑠𝑖𝑗𝑡𝑆𝑖𝑗𝑡

𝜔 )𝑈
𝑗=1

𝐿
𝑖=1 ]𝑇𝜔

𝑡=2 )𝜔∈Ω                        (4) 

The objective is to minimize the total expected cost of procuring a specific type of 

machine and meeting the demand for it over the stochastic duration of a construction 

project. This is given by the cost of purchasing initial machines (first stage) plus the 

expected cost of the operating, excess purchasing, holding, maintaining, renting, and 

salvaging costs in the following time periods (second stage). The objective function is 

two-stage. In the first stage a decision is made regarding the number of machines to 

purchase at the very beginning of the project. If the model is being used in the middle of 

the project, the first stage would be the current time period. The second-stage decision 

depends on the first stage and determines the costs of meeting the demand for machinery 

throughout the horizon. Because there can be multiple scenarios for the second stage, the 

expected value is minimized. The objective is subject to the following constraint sets: 

 

𝑧𝑡
𝜔 + ∑ ∑ 𝑎𝑖𝑗𝑡

𝜔

𝑈

𝑗=1

𝐿

𝑖=1

= 𝜁𝑡
𝜔 , ∀𝑡 ∈ [2, 𝑇𝜔] (5) 

𝑎𝑖𝑈𝑡
𝜔 = 0, ∀𝜔 ∈ 𝛺, 𝑡 ∈ [2, 𝑇𝜔], 𝑖 ∈ [1, 𝐿] (6) 

𝑎𝐿𝑗𝑡
𝜔 = 0, ∀𝜔 ∈ 𝛺, 𝑡 ∈ [2, 𝑇𝜔], 𝑗 ∈ [1, 𝑈] (7) 

𝑎𝑖𝑗1
𝜔 + 𝐼𝑖𝑗1

𝜔 + 𝑆𝑖𝑗1
𝜔 =  𝑋𝑖𝑗 , ∀𝜔 ∈ 𝛺, 𝑖 ∈ [1, 𝐿], 𝑗 ∈ [1, 𝑈] (8) 
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𝑎𝑖𝑗𝑡
𝜔 + 𝐼𝑖𝑗𝑡

𝜔 + 𝑆𝑖𝑗𝑡
𝜔 =  𝑦𝑖𝑗𝑡

𝜔 + 𝑎(𝑖−1)(𝑗−1)(𝑡−1)
𝜔

+ 𝐼(𝑖−1)𝑗(𝑡−1)
𝜔  , 

∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑖 ∈ [2, 𝐿], 𝑗 ∈ [2, 𝑈] (9) 

𝑎1𝑗𝑡
𝜔 + 𝐼1𝑗𝑡

𝜔 + 𝑆1𝑗𝑡
𝜔 =  𝑦1𝑗𝑡

𝜔  , ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑗 ∈ [1, 𝑈] (10) 

𝑎𝑖1𝑡
𝜔 + 𝐼𝑖1𝑡

𝜔 + 𝑆𝑖1𝑡
𝜔 =  𝑦𝑖1𝑡

𝜔 + 𝐼(𝑖−1)1(𝑡−1)
𝜔 , ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑖 ∈ [1, 𝐿] (11) 

𝑆𝐿𝑗𝑡
𝜔 =  𝑦𝐿𝑗𝑡

𝜔 + 𝑎(𝐿−1)(𝑗−1)(𝑡−1)
𝜔 + 𝐼(𝐿−1)𝑗(𝑡−1)

𝜔 , ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑗 ∈ [2, 𝑈] (12) 

𝑆𝑖𝑈𝑡
𝜔 =  𝑦𝑖𝑈𝑡

𝜔 + 𝑎(𝑖−1)(𝑈−1)(𝑡−1)
𝜔 , ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑖 ∈ [2, 𝐿] (13) 

𝑆𝐿𝑗1
𝜔 =  𝑦𝐿𝑗1

𝜔 , ∀𝜔 ∈ 𝛺, 𝑗 ∈ [1, 𝑈] (14) 

𝑆𝑖𝑈1
𝜔 =  𝑦𝑖(𝐿−1)1

𝜔 , ∀𝜔 ∈ 𝛺, 𝑖 ∈ [1, 𝐿] (15) 

𝑆𝑖11
𝜔 = 0, ∀𝜔 ∈ 𝛺, 𝑖 ∈ [1, 𝐿] (16) 

𝑆1𝑗1
𝜔 = 0, ∀𝜔 ∈ 𝛺, 𝑗 ∈ [1, 𝑈] (17) 

𝑋𝑖𝑗 , 𝑦𝑖𝑗𝑡
𝜔 , 𝑧𝑡

𝜔, 𝐼𝑖𝑗𝑡
𝜔 , 𝑆𝑖𝑗t

𝜔 , 𝑎𝑖𝑗𝑡
𝜔 ∈ ℤ+, ∀𝑡 ∈ [1, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑖, 𝑗 = 1, … , 𝐿 (18) 

 

Constraint set (5) ensures that the number of machines rented plus the number of 

machines operating in the current period satisfy the required number of machines in each 

time-period, under each scenario. Constraint sets (6) and (7) ensure those machines which 

have reached their thresholds (maximum age, 𝐿, or maximum cumulative utilization 

level, 𝑈) will not be operating in any time period. Constraint set (8) divides the total 

number of machines purchased in the first stage into different categories (operating, idle, 

and salvage). Similarly, and for each period, Constraint set (9) separates the total number 

of machines that are owned (machines purchased in the current period plus operating and 

idle machines from the immediate past period) into operating, idle, and salvage categories 

in the current period. Obviously, a machine that is new in terms of age (𝑖 = 1) cannot 

have been owned since the last period. Similarly, a machine that is new in terms of 

cumulative utilization level (𝑗 = 1) cannot have been operating since the last period. 
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Because of this, Constraint set (9) does not cover 𝑖 = 1 and 𝑗 = 1. Constraint sets (11) 

and (12) are the same as Constraint set (9) modified for 𝑖 = 1 and 𝑗 = 1, respectively.  

Constraint sets (13) and (14) ensure that all of the machines which are owned and reach 

their thresholds in the current period are salvaged. Similar to Constraints set (9), 

Constraints set (13) and (14) do not cover 𝑗 = 1 and 𝑖 = 1, respectively. Constraints set 

(15) and (16) follow the same logic as (13) and (14), but only cover 𝑗 = 1 and 𝑖 = 1, 

respectively. The final constraints make sure only integer solutions can occur. A rational 

solution is infeasible because buying half of a machine is not feasible.  

Single Asset - Multiple Projects 

Here, the considerations of replacement are integrated with transportation to and from 

various demand sites, denoted as projects. The base model is generalized to include, for 

the first time, network flow constraints that allow for shipping decisions to be made, as 

well as replacement, holding, renting, and operating. The premise of this model stems 

from a place of pure application in which, for this particular field of study, shipping is 

often part of the demand satisfaction. Although decisions are made at the end of the time 

period, shipping occurs in between time periods, presented as beginning of time period 

decisions in terms of notation. It is often that construction companies need to make 

annual, monthly, and even weekly decisions on where to send an asset to satisfy demand. 

Because the shipping of some assets is difficult, it is imperative that an accurate 

movement of machines is in place. Consider a 50,000lb excavator; this machine can take 

multiple days to transport, gain permits, schedule escorts, and may require alternative 

routes. Therefore, having an optimal schedule can mitigate time of arrival and potentially 

reduce delays in the projects in the future.  

 

The model is presented as an extension of the base model, here in stochastic form. This 

formulation is a Parallel Machine Replacement Problem with Shipping, termed PMRP-S. 

In this problem, the uncertainty of project number, as well as planning horizon of each 
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project is considered. For ease of understanding, the same parameter names are used for 

any that appear in the base model.  

Parameters 

𝑈 Maximum cumulative utilization of an asset 

𝐿 Maximum time-based life (lifetime) of an asset 

𝛺 Number of scenarios to be realized 

𝑃𝜔 Number of demand sites in varying location under scenario 𝜔 ∈ 𝛺 

𝑇𝜔 Length of the planning horizon under scenario 𝜔 ∈ 𝛺 

𝑐𝑖𝑗𝑡  Cost of purchasing an asset with age (𝑖, 𝑗) in time period 𝑡 

𝑞𝑡 Cost of renting an asset for one time period 𝑡 

ℎ𝑡 Cost of holding an asset for one time 𝑡 period sitting in a warehouse  

𝑜𝑡 Operating costs of an asset for one time period 𝑡 

𝑚𝑖𝑗𝑡 Cost of maintaining an asset with age (𝑖, 𝑗) for one time period, 𝑡 

𝑠𝑖𝑗𝑡  Salvage/Selling profit for an asset with age (𝑖, 𝑗) in time period 𝑡 

𝜉𝑡𝑝
𝜔  Number of required assets in time period 𝑡 ∈ [1, 𝑇𝜔] for project 𝑝 under scenario 𝜔 ∈ 𝛺 

𝑡𝑐(𝑛𝑚) Cost of shipping an asset from 𝑛 to 𝑚, where (𝑛, 𝑚) ∈ 𝑃 

𝑝𝑟𝜔 Probability of scenario 𝜔 ∈ 𝛺 being realized 

Decision Variables 

𝑋𝑖𝑗𝑝 Number of asset with age (𝑖, 𝑗) to be bought in the first stage (before the first period in the 

planning horizon) for demand site 𝑝 

𝑦𝑖𝑗𝑡𝑝
𝜔  Number of assets with age (𝑖, 𝑗) to buy in time period 𝑡 for demand site 𝑝 under scenario 𝜔 

𝑧𝑡𝑝
𝜔  Number of assets to be rented in time period 𝑡 for demand site 𝑝 under scenario 𝜔  

𝑆𝑖𝑗𝑡𝑝
𝜔  Number of assets with age (𝑖, 𝑗) to sell (salvage) in time period 𝑡 for demand site 𝑝 under 

scenario 𝜔   

𝐼𝑖𝑗𝑡𝑝
𝜔  Number of assets with age (𝑖, 𝑗) that are idle in time period 𝑡 for demand site 𝑝 under 

scenario 𝜔 

𝑎𝑖𝑗𝑡𝑝
𝜔  Number of assets with age (𝑖, 𝑗) in time period 𝑡 for demand site 𝑝 under scenario 𝜔 that 

are operating 

𝑇𝐶𝑖𝑗𝑡
𝜔(𝑛𝑚)

 Number of assets with age (𝑖, 𝑗) in time period 𝑡 shipped from 𝑛 to 𝑚 under scenario 𝜔 

 

The two-stage stochastic integer model is formulated as follows: 
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Minimize 𝛇 = ∑ ∑ ∑ 𝒄𝒊𝒋𝑿𝒊𝒋𝒑
𝑷
𝒑=𝟏

𝑼
𝒋=𝟏

𝑳
𝒊=𝟏 + 𝑬[𝑸(𝝃, 𝒀)]  (19) 

𝑄(𝜉, 𝑌) = 

∑ ∑ [𝑞𝑧𝑡𝑝
𝜔 + ∑ ∑(𝑐𝑖𝑗𝑡𝑦𝑖𝑗𝑡𝑝

𝜔 + ℎ𝐼𝑖𝑗𝑡𝑝
𝜔 + (𝑜 + 𝑚𝑖𝑗𝑡)𝑎𝑖𝑗𝑡𝑝

𝜔 − 𝑠𝑖𝑗𝑡𝑆𝑖𝑗𝑡𝑝
𝜔 )

𝑈

𝑗=1

𝐿

𝑖=1

]

𝑃

𝑝=1

𝑇𝜔

𝑡=1

+ [∑ ∑ ∑ ∑ ∑ 𝑡𝑐(𝑛𝑚)𝑇𝐶𝑖𝑗𝑡
𝜔(𝑛𝑚)

𝑃

𝑛=1

𝑃

𝑚=1

𝑈

𝑗=1

𝐿

𝑖=1

𝑇𝜔

𝑡=1

] 

The objective is to minimize the total expected cost of managing over the stochastic 

duration of a project. This is given by the cost of purchasing initial assets (first stage) plus 

the expected value of the operating, excess purchasing, holding, maintaining, renting, 

shipping, and salvaging costs in the following time periods (second stage). The addition of 

shipping requires the added cost for sending an asset from one demand site to another.  The 

objective function is two-stage. In the first stage, a decision is made on the number of assets 

to purchase at the very beginning of each project. The second stage decision is dependent 

on the first stage and determines the costs of meeting the demand for assets throughout the 

horizon. Because there can be multiple scenarios for the second stage, the expected value 

is minimized. As with the base model, the values are discounted to time zero. The objective 

is subject to the following constraint sets: 

 

∑ (𝑧𝑡𝑝
𝜔 + ∑ ∑ 𝑎𝑖𝑗𝑡𝑝

𝜔

𝑈

𝑗=1

𝐿

𝑖=1

)
𝑀

𝑘=1
≥ 𝜉𝑡𝑝

𝜔 , 

∀𝑝 ∈ 𝑃, ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔

∈ 𝛺 

(20) 

 

𝑎𝑖𝑗𝑡𝑝
𝜔 + 𝐼𝑖𝑗𝑡𝑝

𝜔 + 𝑆𝑖𝑗𝑡𝑝
𝜔

=  𝑦𝑖𝑗𝑡𝑝
𝜔 + ∑ 𝑇𝐶𝑖𝑗𝑡

𝜔(𝑛𝑝)
− ∑ 𝑇𝐶𝑖𝑗𝑡

𝜔(𝑝𝑚)

𝑃−1

𝑚≠𝑝

𝑃−1

𝑛≠𝑝

+ 𝑎(𝑖−1)(𝑗−1)(𝑡−1)𝑝
𝜔 + 𝐼(𝑖−1)𝑗(𝑡−1)𝑝

𝜔  , 

∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈

𝛺, 𝑖 ∈ [2, 𝐿], 𝑗 ∈

[2, 𝑈], ∀𝑝 ∈ 𝑃  

(21) 

 

𝑎𝑖(𝑈−1)𝑡𝑝
𝜔 = 0 ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑖

∈ [2, 𝑈], ∀𝑝 ∈ 𝑃  

(22) 

𝑎(𝐿−1)𝑗𝑡𝑝
𝜔 = 0 ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑗

∈ [2, 𝑈], ∀𝑝 ∈ 𝑃  

(23) 
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𝑎𝑖𝑗1𝑝
𝜔 + 𝐼𝑖𝑗1𝑝

𝜔 + 𝑆𝑖𝑗1𝑝
𝜔 =  𝑦𝑖𝑗1𝑝

𝜔  𝜔 ∈ 𝛺, 𝑖 ∈ [2, 𝐿], 𝑗

∈ [2, 𝑈], ∀𝑝 ∈ 𝑃  

(24) 

𝑦𝑖𝑗1𝑝
𝜔 = 𝑥𝑖𝑗𝑝 𝜔 ∈ 𝛺, 𝑖 ∈ [2, 𝐿], 𝑗

∈ [2, 𝑈], ∀𝑝 ∈ 𝑃  

(25) 

𝑆(𝐿−1)𝑗𝑡𝑝
𝜔 =  𝑦(𝐿−1)𝑗𝑡𝑝

𝜔 − 𝑎(𝐿−2)(𝑗−1)(𝑡−1)𝑝
𝜔 + 𝐼(𝐿−2)𝑗(𝑡−1)𝑝

𝜔 , ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑗

∈ [2, 𝑈], ∀𝑝 ∈ 𝑃  

(26) 

 

𝑆𝑖(𝐿−1)𝑡𝑝
𝜔 =  𝑦𝑖(𝑈−1)𝑡𝑝

𝜔 − 𝑎𝑖(𝑈−2)(𝑡−1)𝑝
𝜔 , ∀𝑡 ∈ [2, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑖

∈ [2, 𝐿], ∀𝑝 ∈ 𝑃  

(27) 

 

𝑋𝑖𝑗𝑝 , 𝑦𝑖𝑗𝑡𝑝
𝜔 , 𝑧𝑡𝑝

𝜔 , 𝐼𝑖𝑗𝑡𝑝
𝜔 , 𝑎𝑖𝑗𝑡𝑝

𝜔 ∈ ℤ+, ∀𝑡 ∈ [1, 𝑇𝜔], 𝜔 ∈ 𝛺, 𝑖, 𝑗

= 1, … , 𝑈, ∀𝑝 ∈ 𝑃  

(28) 

   

 

Constraint (20) is the demand constraint, ensuring at least the number of required 

machines are placed in each project for each time period. Constraint (21) is an extension 

of Constraint (9) from the base model that requires the flow of machines entering and 

leaving a project to be balanced. This network flow constraint ensures that no shortage or 

excessive number of machines are in the system. The remaining constraints are derived 

from the base model, where all gain an index of dimension 𝑃. It can be seen in Constraint 

(21) that shipping decisions are made at the beginning of the time period, while other 

decisions are made at the end. This is to attempt to model the decision in between the 

time period, which is a more accurate depiction of reality. Modelling in this particular 

way causes no shipping between the first and second time periods, yet all remaining time 

periods work fluently. To account for this, it is possible to add a dummy initial starting 

year with demand zero, and an initial set of machines at each location, if so desired.  

Multiple Operation and Asset Type 

Here the base model is extended to include machines that can perform multiple 

operations. A number of parameters and constraints are added to model this particular 

scenario. Operations, maintenance, and an excess costs are modelled as operation 

dependent for each machine. The required number of machines in each time period is 
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extended to include the specific operation to be performed. A binary parameter is added 

that determines if a machine can perform a particular operation or not. It is assumed that 

if two machines can perform the same operation, they can do so under the same 

utilization and quality, yet not necessarily under the same costs. The salvage value is left 

independent of operation, yet varies by machine. Similarly, holding and renting costs are 

dependent only on machine type. The maximum age and cumulative utilization level is 

extended to depend on the type of machine under consideration.  

 

Parameters 

𝑀 Types of assets considered 

𝑂 Types of operations to be considered 

𝑈𝑘 Maximum cumulative utilization of asset 𝑘 

𝐿𝑘 Maximum time-based life (lifetime) of asset 𝑘 

𝑇   Length of the planning horizon 

𝑐𝑘𝑖𝑗𝑡  Cost of purchasing asset 𝑘 with age (𝑖, 𝑗) in time period 𝑡 

𝑢𝑐𝑘𝑜 Excess cost of using asset 𝑘 for operation 𝑜 

𝑞𝑡𝑘 Cost of renting asset 𝑘 in time period 𝑡 

ℎ𝑡𝑘 Cost of holding asset 𝑘 in time period 𝑡  

𝑜𝑘𝑡𝑜 Operating costs of asset 𝑘 for performing operation 𝑜 in time period 𝑡 

𝑚𝑘𝑖𝑗𝑡𝑜 Cost of maintaining asset 𝑘 with age (𝑖, 𝑗) in time period 𝑡 for operation 𝑜 

𝑠𝑘𝑖𝑗𝑡  Salvage/Selling profit for asset 𝑘 with age (𝑖, 𝑗) in time period 𝑡 

𝑟𝑡𝑜
  Number of required assets for operation 𝑜 in time period 𝑡 

𝑜𝑝𝑘𝑜  1 if asset 𝑘 can perform operation 𝑜, 0 otherwise  

Decision Variables 

𝑦𝑘𝑖𝑗𝑡
  Number of assets 𝑘 with age (𝑖, 𝑗) to buy in time period 𝑡 

𝑧𝑘𝑡𝑜
  Number of assets 𝑘 to be rented in time period 𝑡 that are performing operation 𝑜 

𝑆𝑘𝑖𝑗𝑡
  Number of assets 𝑘 with age (𝑖, 𝑗) to sell (salvage) in time period 𝑡  

𝐼𝑘𝑖𝑗𝑡
  Number of assets 𝑘 with age (𝑖, 𝑗) that are idle in time period 𝑡  

𝑎𝑘𝑖𝑗𝑡𝑜
  Number of assets 𝑘 with age (𝑖, 𝑗) in time period 𝑡 that are performing operation 𝑜  

 

The mixed-integer model is formulated as follows:  
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Minimize 𝒁 = (29) 

∑ ∑ [𝑞𝑡𝑘𝑧𝑘𝑡𝑜
 + ∑ ∑ (𝑐𝑘𝑖𝑗𝑡𝑦𝑘𝑖𝑗𝑡

 + ℎ𝑘𝑡𝐼𝑘𝑖𝑗𝑡
 + ∑(𝑢𝑐𝑘𝑜 + 𝑜𝑘𝑡𝑜 + 𝑚𝑘𝑖𝑗𝑡𝑜)𝑎𝑘𝑖𝑗𝑡𝑜

 

𝑂

𝑜=1

− 𝑠𝑘𝑖𝑗𝑡𝑆𝑘𝑖𝑗𝑡
 )

𝑈

𝑗=1

𝐿

𝑖=1

]

𝑀

𝑘=1

𝑇  

𝑡=1

 

Here again, the objective is to minimize the total expected cost of procuring assets over the 

planning horizon, 𝑇. The objective is extended to include the costs of a machine for 

performing a particular operation, as well as any excess cost incurred. Renting is 

considered as an alternative, that is also operation dependent. The objective is subject to 

the following constraint sets: 

 

∑ 𝑜𝑝𝑘𝑜 (𝑧𝑘𝑡𝑜
 + ∑ ∑ 𝑎𝑘𝑖𝑗𝑡𝑜

 

𝑈

𝑗=1

𝐿

𝑖=1

)

𝑀

𝑘=1

≥ 𝑟𝑡𝑜
 , 

∀𝑡 ∈ [2, 𝑇  ], ∀𝑜 ∈ 𝑂 (30) 

 

∑ ∑ (𝑧𝑘𝑡𝑜
 + ∑ ∑ 𝑎𝑘𝑖𝑗𝑡𝑜

 

𝑈

𝑗=1

𝐿

𝑖=1

)

𝑀

𝑘=1

𝑂

𝑜=1

≥ ∑ 𝑟𝑡𝑜
 

𝑂

𝑜=1

, 

∀𝑡 ∈ [2, 𝑇  ] 

 

(31) 

∑ (𝑧𝑘𝑡𝑜
 + ∑ ∑ 𝑎𝑘𝑖𝑗𝑡𝑜

 

𝑈

𝑗=1

𝐿

𝑖=1

)

𝑂

𝑜=1

≤ ∑ 𝑜𝑝𝑘𝑜𝑟𝑡𝑜
 

𝑂

𝑜=1

, 

∀𝑡 ∈ [2, 𝑇  ], 𝑘 ∈ 𝑀 

 

(32) 

∑ 𝑎𝑘𝑖𝑗𝑡𝑜
 

𝑂

𝑜=1

+ 𝐼𝑘𝑖𝑗𝑡
 + 𝑆𝑘𝑖𝑗𝑡

 

=  𝑦𝑘𝑖𝑗𝑡
 + 𝑎𝑘(𝑖−1)(𝑗−1)(𝑡−1)𝑜

𝜔

+ 𝐼𝑘(𝑖−1)𝑗(𝑡−1)
𝜔  , 

∀𝑡 ∈ [2, 𝑇  ], 𝑖 ∈ [2, 𝐿], 𝑗 ∈ [2, 𝑈], ∀𝑘

∈ 𝑀, ∀𝑜 ∈ 𝑂 

(33) 

𝑎𝑘𝑖(𝑈−1)𝑡𝑜
 = 0 ∀𝑡 ∈ [2, 𝑇  ], 𝑖 ∈ [2, 𝑈], ∀𝑘 ∈ 𝑀, ∀𝑜 ∈ 𝑂  (34) 

𝑎𝑘(𝐿−1)𝑗𝑡𝑜
 = 0 ∀𝑡 ∈ [2, 𝑇  ], 𝑗 ∈ [2, 𝑈], ∀𝑘 ∈ 𝑀, ∀𝑜 ∈ 𝑂  (35) 

∑ 𝑎𝑘𝑖𝑗1𝑜
 

𝑂

𝑜=1

+ 𝐼𝑘𝑖𝑗1
 + 𝑆𝑘𝑖𝑗1

 =  𝑦𝑘𝑖𝑗1
  

𝑖 ∈ [2, 𝐿], 𝑗 ∈ [2, 𝑈], ∀𝑘 ∈ 𝑀  (36) 

𝑦𝑘𝑖𝑗1
 = 𝑥𝑘𝑖𝑗  𝑖 ∈ [2, 𝐿], 𝑗 ∈ [2, 𝑈], ∀𝑘 ∈ 𝑀  (37) 

𝑆𝑘(𝐿−1)𝑗𝑡
 =  𝑦𝑘(𝐿−1)𝑗𝑡

 − ∑ 𝑎𝑘(𝐿−2)(𝑗−1)(𝑡−1)𝑜
 

𝑂

𝑜=1

+ 𝐼𝑘(𝐿−2)𝑗(𝑡−1)
 , 

∀𝑡 ∈ [2, 𝑇  ], 𝑗 ∈ [2, 𝑈], ∀𝑘 ∈ 𝑀  (38) 
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𝑆𝑘𝑖(𝑈−1)𝑡
 =  𝑦𝑘𝑖(𝑈−1)𝑡

 − ∑ 𝑎𝑘𝑖(𝑈−2)(𝑡−1)𝑜
 

𝑂

𝑜=1

, 
∀𝑡 ∈ [2, 𝑇  ], 𝑖 ∈ [2, 𝐿], ∀𝑘 ∈ 𝑀  (39) 

 

𝑋𝑘𝑖𝑗 , 𝑦𝑘𝑖𝑗𝑡
 , 𝑧𝑘𝑡𝑜

 , 𝐼𝑘𝑖𝑗𝑡
 , 𝑎𝑘𝑖𝑗𝑡𝑜

 ∈ ℤ+, ∀𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝑈, 𝑘 ∈ 𝑀, ∀𝑜 ∈ 𝑂 (40) 

 

The constraints here gain an index of 𝑜 and 𝑘. Three main demand constraints are added 

that ensure the proper number of machines is acquired. Constraint (30) ensures that no 

demand is satisfied by a machine that does not have the particular operation to satisfy 

said demand. Constrain (31) requires that the total number of machines for all operations 

is met, and Constraint (32) ensures that the machines can only satisfy up to the total 

amount of demand that the particular machine can take on. That is, each machine can 

only satisfy a subset of the demand, unless they can perform every operation, yet they are 

also not required to satisfy demand merely because they have a particular operation.  

Solution Methods 

In this section, the need for solution methodology for large problem size is considered, as 

well as the methodology for obtaining optimal utilization levels of the assets. A 

computational study is presented that shows the need for a solution method for multiple 

projects with shipping, while also demonstrating that the solver is computationally 

efficient for multiple machines. A clustering-based method is presented for the 

deterministic case for multiple project locations and can be used to solve the stochastic 

problem formulation as well. The clustering procedure decomposes the large problem 

size into multiple smaller instances that allow for a much more efficient computation 

time without giving up greatly on optimality. This procedure is compared to that of both 

solving the entire problem without shipping and the original formulation.  

Complexity of PMRP 

The parallel machine replacement problem is known to be NP-Hard (Esra Büyüktahtakin 

et al., 2014), and any of its generalizations are at least of the same complexity. The 

number of combinations of solutions grows quickly as the problem size increases. Yet, 

commercial solvers, such as Gurobi, can solve significantly large problems in a 
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reasonable time. For instance, for the base model considered in this research, Gurobi can 

solve for monthly decisions (𝑈 = 𝐿 = 72) for three years, 𝑇 = 36 in under one minute, 

using a standard laptop. This would be considered a large problem size for the base 

model, as this is as realistic as would need to be considered for a large construction 

project. But, when the model is extended to multiple demand sites, the number of 

decision variables increases significantly. For small and medium size problems, the most 

common problem sizes a company would have, commercial solvers perform quite well. 

Yet, for sufficiently large problem size, even the advanced capabilities of the solvers 

succumb to long run times due to memory allocation problems.  

Clustering Decomposition Algorithm  

Because of the large number of possible routes available 

(
𝑃(𝑃−1)

2
, 𝑤ℎ𝑒𝑟𝑒 𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠)  to satisfy demand while considering the 

optimal replacement schedule, a clustering of the projects is used to efficiently solve 

large problem size. The premise is to decompose the large problem size into smaller 

instances, with much fewer number of decisions. The process begins by determining a 

shipping frequency for the problem’s distance matrix based on the expected demand in 

each time period, for each project. This frequency is determined by solving a number of 

small test problems by taking small steps forward in time. Because shipping is demand 

dependent, all other parameters in the model remain unchanged. To illustrate this, a 

shipping will occur when the demand of a project decreases while another project has a 

surplus of machines for a particular time period, and the shipping is more cost effective 

than that of a machine purchase. It should be noted that if demand is stationary, shipping 

may not occur.  

 

After the shipping frequencies are determined, a clustering of the projects is created by 

iteratively adding projects to clusters based on the frequencies. This breaks the problem 

into multiple smaller complete graphs (clusters) with, at most, the original problem’s 

number of edges. This process yields instances that can be solved with the same model, 
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with shipping for any cluster that has frequency and without shipping for all remaining 

nodes in the network (eliminating many excess edges). This provides an efficient solution 

time, while allowing for a minimal tradeoff in optimality. To illustrate the process, a 

small general graphical representation is presented, as well as the pseudocode below. 

 

Clustering Decomposition Algorithm (CDA) 

Inputs: 

𝑇 Length of the planning horizon 

𝑠 Maximum cluster size 

𝑑 Length of the planning horizon in the sub-problems 

𝑵 Set of all the nodes (projects) 

Define 𝑭 = 𝟎|𝑁|×|𝑁| //The matrix of frequencies 

Define 𝑪 = ∅ //Set of clusters 

Define 𝜽 a (0,1)-matrix of size |𝑁| by |𝑁| //𝜃𝑖,𝑗 = 1 if shipping has happened between nodes 𝑖 and 

𝑗, and 0 otherwise. 

Define 𝑵′ = 𝑵 

Define 𝑡 = 1 

Solve the master problem for the planning horizon [𝑡, 𝑡 + 𝑑] 

Get the value of 𝜃𝑖,𝑗 , ∀𝑖&𝑗 ∈ 𝑁  

Set 𝐹𝑖,𝑗 = 𝐹𝑖,𝑗 + 𝜃𝑖,𝑗 , ∀𝑖&𝑗 ∈ 𝑁 

Set 𝑡 = 𝑡 + 1 

 

While 𝑡 + 𝑑 ≤ 𝑇 do 

Solve the master problem for the planning horizon [𝑡, 𝑡 + 𝑑] 

Get the value of 𝜃𝑖,𝑗 , ∀𝑖&𝑗 ∈ 𝑁  

Set 𝐹𝑖,𝑗 = 𝐹𝑖,𝑗 + 𝜃𝑖,𝑗 , ∀𝑖&𝑗 ∈ 𝑁 

Set 𝑡 = 𝑡 + 1 

End While 

 

Find (𝑖, 𝑗) ∈ (𝑵, 𝑵), 𝑖 ≠ 𝑗 such that 𝐹𝑖,𝑗 ≥ 𝐹𝑘,𝑙 , ∀(𝑘, 𝑙) ∈ (𝑵, 𝑵) //Find the largest element of 𝑭 

Add the set {𝑖, 𝑗} to 𝑪 

Set 𝐹𝑖,𝑗 = 0 

Set 𝑵′ = 𝑵′\{𝑖, 𝑗} 
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While |𝑵′| ≥ 1 do 

Find (𝑚, 𝑛) ∈ (𝑵, 𝑵), 𝑚 ≠ 𝑛, 𝑚 𝑜𝑟 𝑛 ∉ 𝑪 such that 𝐹𝑚,𝑛 ≥ 𝐹𝑘,𝑙 , ∀(𝑘, 𝑙) ∈ 𝑵 

For all 𝑠𝑢𝑏𝑠𝑒𝑡 ∈ 𝑪 do 

If |𝑠𝑢𝑏𝑠𝑒𝑡| < 𝑠 AND ∃(𝑎, 𝑏) ∈ ({𝑚, 𝑛}, 𝑠𝑢𝑏𝑠𝑒𝑡) such that 𝐹𝑎,𝑏 > 0 do  

Add the qualified node to 𝑠𝑢𝑏𝑠𝑒𝑡 \\break the ties by largest connection 

Else do 

Add the set {𝑚, 𝑛} to 𝑪 

End If 

End For 

Set 𝐹𝑚,𝑛 = 0 

Set 𝑵′ = 𝑵′\{𝑚, 𝑛} 

End While 

 

For all 𝑠𝑢𝑏𝑠𝑒𝑡 ∈ 𝑪 do 

Solve the master problem for the planning horizon [1, 𝑇] 

End For 

 

Aggregate the solutions 

 

To understand the general clustering, consider a small network of four nodes and all 

possible edges, denoted a 𝐾4, or a complete graph with four vertices, shown in Figure 2. 

In general, as defined in graph theory, a 𝐾𝑛 is a complete graph of 𝑛 number of nodes or 

vertices. Suppose that a number of smaller time periods is solved and shipping only 

occurs between nodes (1 and 2) and (2 and 3), as seen in Figure 3.  In this case, we would 

aggregate these three nodes into one cluster, and node 4 would be set into a separate 

cluster, Figure 4.   

 

In Figure 3, it can be seen that the bold edges represent the most frequent shipping routes. 

These frequencies determine that projects 1,2,3 should be clustered together (𝐾3), while 

project 4 is clustered separately (𝐾1). Subsequently, each cluster would be solved 

independently and the objective function values and solutions aggregated to form the 
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final solution. It should be noted that if the frequencies yield a connected graph between 

all projects, this would be equivalent to the original problem, 𝐾𝑁, and the reason for the 

limit on cluster size, 𝑠. This problem is denoted the Master Problem. Similarly, if no 

significant frequencies are determined and every project is in its own cluster, then this 

case is equivalent to the problem without shipping considerations (𝑁 number of base 

model problems, denoted 𝑁 − 𝐵𝑎𝑠𝑒). More specifically, if the clustering was chosen in 

such a way that there were 𝑁 number of 𝐾1 graphs, the 𝑁 − 𝐵𝑎𝑠𝑒 problem is returned. 

Therefore, the optimality is expected to fall between these two problems, where solving 

without shipping would yield a faster and less optimal solution and including shipping 

would result in a much more expensive computation time, yet an optimal solution. This 

provides a valid upper and lower bound for the algorithm. The bounds on optimality 

would be:  

 

𝑀𝑎𝑠𝑡𝑒𝑟 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 ≤ 𝐶𝐷𝐴 ≤ 𝑁 − 𝐵𝑎𝑠𝑒 

 

 The premise behind the clustering is to be able to efficiently solve large problem size 

without giving up optimality significantly. This is discussed in the Computational Results 

section.  

 

 

Proposition 1: The optimal solution to the Master Problem is less than or equal to N-base.  

 

Proof 

Because the solution space of the Master Problem contains all points of the N-base 

problem, we can say that the solution space of the master problem is a superset of the N-

base problem’s solution space. Therefore, by the properties of infima, if a set 𝐴 is a 

subset of a set 𝐵, any function defined on the appropriate domain, with a codomain in 𝑅 

gives: 

min(𝑓(𝐵)) ≤ min(𝑓(𝐴)) 
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Thus, with the objective functions defined, an optimal solution to the Master Problem is 

at most that of the N-base problem.  

■ 

 

Proposition 2: The optimal solution of the Clustering Decomposition Algorithm (CDA) is greater than or 

equal to the Master Problem, and less than or equal to the N-base problem.  

 

Proof 

 

We have three cases: 

Case a. The number of clusters is equal to the number of projects 

Case b. The number of clusters is one 

Case c. The number of clusters is strictly greater than one and strictly less than the 

number of projects.  

 

For Case a:  the number of clusters is equal to the number of projects, we return the N-

base problem, and we are done.  

 

For Case b: the number of clusters returned is one, then all projects are included into the 

problem, and we return the Master Problem. In this case we are done.  

For Case c: Because all clusters have to be considered and the CDA utilizes the Master 

Problem and the N-base models only, then the least number of clusters is two and the 

most number of clusters is 𝑃 − 1, with integer number of clusters required. Therefore, the 

solution space is at least a superset of the N-base problem and at most a subset for the 

Master Problem. Then, using the properties of infima as before, the minimum of the CDA 

is at most that of the N-base, and at least that of the Master Problem.  

■ 
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CHAPTER FOUR  

NUMERICAL EXAMPLES AND COMPUTATIONAL RESULTS 

Numerical Examples 

In this section, numerical examples for each problem formulation are presented in detail. 

The data collected are also presented to represent as realistic of instances as possible. The 

base model is solved in stochastic form, showing the benefits of considering an uncertain 

planning horizon. Next, the multiple demand sites are solved in deterministic form, 

highlighting the influence of shipping on the cost savings and practicality. Lastly, 

multiple purpose machines are considered, presenting the potential benefit of considering 

machines that can perform various jobs in replacement.  

Data Collection for Realistic Problem 

Here the application of the presented models in construction projects is shown. The data 

for these numerical examples from various resources. The replacement of a number of 

excavators working in parallel in a hypothetical construction project, which has a 

stochastic length. There are three main components that form the data for this case study: 

length of the project, number of projects and costs. First, a discussion on how the 

scenarios for the length of the project in the stochastic case are formed, and then the cost-

related data is presented. The number of projects is assumed to be one, unless specifically 

stated.  

 

The data was collected from a number of online and literature sources. The parameter 

values were calculated from searching online to determine standard values, such as heavy 

equipment purchase prices, maintenance costs, and salvage values. Although, this 

information is desired to be as accurate as possible, the value of the presented work is in 

the modelling and analysis. The data give a realistic depiction of the operations of a 

construction company, mainly for the ease of comparison and understanding.  
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Formulation of Horizon Uncertainty  

The demand for machinery is modelled in a stochastic planning horizon by having 

different distributions for demand over time. The length of the planning horizon changes 

as each scenario is realized. Each scenario, for the length of the planning horizon, has a 

determined probability of occurring. As an example, consider two potential scenarios for 

the length of a hypothetical project. In the first scenario, the project takes 3 years to 

complete and the demand for a certain type of machine is [5,7,5] (5 machines for the first 

and last periods and 7 machines for the second period). In the second scenario that takes 

5 years, the distribution of the demand is [2,4,5,4,2]. Note that the total number of 

required machines, 17, does not change in either scenario, as the workload is the same 

and it is only the time frame that changes. Therefore, the distribution of demand is also 

stochastic. 

Realistic Parameter Functions and Data 

Let us assume that a heavy construction project is scheduled to be completed in 5 years. 

Because of the stochastic nature of large construction projects, probabilities are assigned 

for finishing the project early, on time, or extending beyond the 5-year deadline. Table 2 

shows the possible scenarios that can be realized. These scenarios have been constructed 

as follows. The average ratio of actual time to the agreed time for road work varies 

between a maximum value of 2 and a minimum of 1/3 (Kaka & Price, 1991). Al-Momani 

(2000) conducted a quantitative analysis on the delays in 130 construction projects. The 

following implications from the data were observed: 

 

 Compared to projects that were delayed, projects that finish early were close to 

the planned finish date; and 

 Projects that have a planned duration of 2 years or more are more likely to get 

delayed instead of finish early. 
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Based on these observations, only one scenario is considered in which the projects finish 

one year earlier. In the second scenario, the project finishes on time. Because Assaf and 

Al-Hejji (2006) concluded that 70% of the projects get delayed, it is determined that the 

sum of these first two scenarios to be 0.30. Kaliba, Muya, and Mumba (2009) studied the 

delays in 13 road construction projects in Jordan, and it was observed that the projects 

that were finished could get extended up to four years; and in one case the project 

continued after four years of delay. Five more scenarios were considered in which the 

project finishes beyond the schedule. In Scenarios 3 to 6, the project gets delayed from 

one year to four years. In Scenario 7 (the last Scenario) the project gets delayed beyond 

four years. 

 

Regarding the cost parameters, most of the data comes from various online sources, 

including Vorster (2014), WRS (2015), ZIEGLER (2017). Excavators are considered as a 

single type of machine for which parallel machine replacement analysis is performed. 

The cost of renting a machine was established by searching multiple websites for the 

average cost of renting a 50,000 lbs. excavator for a month, and then using that value to 

obtain the cost of renting the machine for one time period (one year). Similarly, the 

operations cost was derived from fuel usage and operator costs, assuming around 2,000 

hours of annual work for each machine, which is an average level of utilization. In the 

next section, the optimal common utilization level is discussed, followed by all of the 

machines that are working in parallel. The maximum age of a machine (𝐿) is assumed to 

be 6 years. Because the excavators are assumed to operate under 12,000 hours, the 

maximum cumulative utilization level (𝑈) is ⌊
12000

2000
⌋ = 6. Note: if it is desired to make 

monthly decisions, 𝑈 and 𝐿 have to be multiplied by 12, giving 𝑈 = 𝐿 = 72. This greatly 

increases the complexity of the problem and is discussed in detail in Computational 

Results. Because it is not possible to operate the excavator more than 8,000 hours per 

year, the utilization level cannot be more than 4 (1 ≤ j ≤ 4) when its age is one-year old 

(i = 1). The utilization can be at most 16,000 hours for an excavator that is two-years old 

(1 ≤ j ≤ 8 for i = 2), and it cannot be more than 20,000 hours for older excavator 
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because the assumed policy is that the useful life of the machine is 10 years, or 20,000 

hours of operation. 

 

The cost of purchasing a machine of specified age and cumulative utilization level is 

assumed to decrease as the age of the machine, as well as the cumulative utilization level, 

increases. Maintenance costs are assumed to increase when maintaining a machine of 

higher age and cumulative utilization level, while the salvage value is assumed to 

decrease as time passes. The rest of the data is as follows. Renting an excavator costs 

$90000

𝑦𝑒𝑎𝑟
, holding cost is 

$5000

𝑦𝑒𝑎𝑟
, and operating cost is 

$50000

𝑦𝑒𝑎𝑟
. Table 3 shows the purchase 

price of a CAT 320E L hydraulic excavator that is dependent upon 𝑖 ∈ [1, 𝐿] and 𝑗 ∈

[1, 𝑈]. This particular machine was chosen for the case study because of the vast amount 

of cost data and the observed popularity of the asset. Also, the E series from Caterpillar 

meets US EPA Tier 4 Interim emissions standards, which is an attractive attribute 

(Caterpillar, 2013). The values in this table are generated as follows. Joseph C. Hartman 

(2004) formulated the operations and maintenance costs, as well as salvage values as 

functions of time, interest rate, and utilization level. The following functions were 

derived from the mentioned functions: 

 

𝑐𝑖𝑗𝑡 = (𝑐11𝑡 − 𝛼 ⌈
𝑖

𝛿
⌉ − 𝛽 ⌈

𝑗

𝛿
⌉

𝑢

) (1 + 𝑟)𝑡 , (14) 

𝑚𝑖𝑗𝑡 = (𝑚11𝑡 + 𝛼 ⌈
𝑖

𝛿
⌉ + 𝛽 ⌈

𝑗

𝛿
⌉) ((⌈

𝑗

𝛿
⌉ + 𝑢)

𝛾

− ⌈
𝑗

𝛿
⌉

𝛾

) (1 + 𝑟)𝑡, 
(15) 

 

where 𝛼 and 𝛽 are scaling parameters that determine the change in costs for every step in 

(𝑖, 𝑗). 𝑟 is a defined rate that can be used to account for inflation and/or technology change 

for each time period, 𝑡. This rate is typically the market rate. The exponent 𝛾 is an input 

strictly greater than 1, as defined in (Joseph C. Hartman, 2004). The indices 𝑖 𝑎𝑛𝑑 𝑗 are 

divided by a parameter, 𝛿 = {1,12,365}, depending on the planning horizon type (annual, 

monthly, or yearly). This is necessary to properly model the utilization of the machines 

over their respectful horizons. For the numerical example, 𝛿 = 1, as the assumption is an 
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annual replacement schedule.  The data for this case study was generated based on these 

functions with a standard utilization factor set to Level 1, 𝑢 = 1. For the purchase price, 

217 data points were obtained for the mentioned excavator from MachineryTrader.com 

(2017), and fit the above functions to this dataset. Each data point includes the age (in 

years), cumulative utilization level (in hours), and purchase price (in USD), giving a real 

estimate of 𝛼 and 𝛽. For the cost generation of the excavator 𝛼 = 12000 𝑎𝑛𝑑 𝛽 =  3000, 

while for the maintenance cost 𝛼 = 500 𝑎𝑛𝑑 𝛽 = 5000. A similar process was used for 

the maintenance cost. However, due to the scarcity of maintenance data found online or in 

the literature, the coefficients were determined based on the author’s judgment. A base 

purchase price is assumed to be $22,000 and a base maintenance cost is assumed to be 

$10,000. These bases, along with functions (14) and (15) give a better representation of 

the cost behavior of the excavators over time and utilization. Salvage values were assumed 

to be 57% of the purchase price of a machine with the same age and cumulative utilization 

level. Table 3 and Table 4 show the generated data for the purchase price and maintenance 

costs for time periods 1 and 4, separated by a comma. Table 5 shows the assumed number 

of excavators required in each time-period, under various scenarios. The total number of 

required excavators over the planning horizon does not change from one scenario to 

another. This is because the workload (for example, the size of the land that is going to 

undergo earthmoving operations) is independent of how long it takes to complete the 

operations. In each scenario, the total number of excavators has been distributed across the 

planning horizon, while assuming that the respective length of the project is known in 

advance for that scenario. The following is the optimal solution of the case study, using the 

Gurobi optimization package implemented in Python. This solution is referred to as the 

recourse problem (RP), where all the scenarios are considered in optimizing the value of 

the first stage variables (X’s). The first-stage solution is 𝑋2,1 = 3, 𝑋3,1 = 1, and 𝑋𝑖,𝑗 = 0, 

for all the remaining 𝑋’s.  

 

Table 6 shows the optimal values of the second-stage decisions. These values are read as 

follows. The first letter indicates the type of decision (P for purchase, I for inventory/idle, 
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S for salvage/sell, R for renting, and O for operating) followed by the (𝑖, 𝑗) values (age and 

cumulative utilization level) and the number of machines. For example, in the second time 

period of Scenario 1, three machines that are two years old with cumulative utilization level 

1 are purchased (P(2,1)3), one three-year old machine which has been utilized up to Level 

2 is kept in inventory as idle (I(3,2)1), and six machines are assigned to the operations 

(O(2,1)3, O(3,2)2, and O(4,2)1). Some trends in these values can be observed that might 

give general guidelines to the decision makers.  

 

The optimal value for the objective function, total expected cost, is $2,196,599.30. As 

seen in, the optimal solution algorithm of Gurobi chooses to purchase used machines in the 

first stage and subsequently fulfill the requirements by obtaining new machines and 

salvaging said machines throughout the project. The solver did not choose to rent machines. 

This result is intuitive considering the small data set provided in that there is no salvage 

value for renting. Likewise, it can easily be seen that purchasing used machines which have 

been lightly utilized is the best option. 

 

Here, Another variation of the model is solved according to Birge (1982), in order to have 

a better understanding of the value of the stochastic model. Wait–and-See (WS) solution 

is the expected value of the objective function when the problem is separately solved for 

each scenario. This value is: 

 

𝑊𝑆 =  0.05 × $2,148,330.65 +   0.25 × $ 2,209,583.55 +  0.30 × $2,281,496.50

+   0.20 × $2,347,708.93 +  0.10 × $2,383,898.49 +   0.07 

× $2,445,768.77 +  0.03 × $2,510,051.64 = $2,060,308.78. 

 

The expected value of perfect information, EVPI = WS − RP = $136,290.52. The WS 

solution is not very useful in practice as it does not give one solution for the whole problem 

and instead gives a solution for each individual scenario, assuming that the scenario 

certainly happens. Furthermore, it is not possible to know which scenario is being realized 
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as we proceed through the project. We know which scenario has been realized only when 

the project ends. The EVPI is the price that one should be willing pay to know which 

scenario is going to be realized with certainty. 

 

A much simpler problem has also been solved, which is called the Expected Value 

Problem (EV), where the expected value of demand for excavators is considered for each 

time period for the maximum length of the planning horizon. This problem gives a first-

stage solution that can be fixed in the WS problem to obtain the expected value of using 

the EV solution (EEV), which allows the second-stage decisions to be chosen optimally 

as functions of the first-stage solution obtained from the EV problem. Table 7 shows the 

optimal solution for the EV problem. Unlike the recourse solution, here the solver 

chooses to satisfy the demand by only renting when the expected number of required 

excavators is less than three (Time Periods 5-10). By fixing the first-stage solution of the 

EV problem (𝑋4,1 = 4, and 𝑋𝑖,𝑗 = 0, for all the remaining 𝑋’s) the EVV is calculated as  

 

𝐸𝐸𝑉 =  0.05 × $2148910.33 +   0.25 × $2209583.55 +  0.30 × $2282655.81

+   0.20 × $2348288.60 +  0.10 × $2488788.37 +   0.07 

× $2665074.62 +  0.03 × $2834421.17 = $2,334,762.56. 

 

Value of the Stochastic Solution (VSS) is the difference between the EEV and the 

solution of the recourse problem, namely 𝑉𝑆𝑆 = 𝐸𝐸𝑉 − 𝑅𝑃 = $138,163.26. This value 

is “the cost of ignoring uncertainty in choosing a decision” (Birge & Louveaux, 2011) 

and shows the value of the proposed model for the small case study. Obviously, the VSS 

increases as the problem size and the number of scenarios increases. It should be noted 

that, practically, the input data (purchase prices) should accurately reflect the prices and 

availability of machines in the used excavator market. However, if there is no machine 

available in the market with the age and utilization of those found in the optimal solution, 

it can be dealt with in two ways: 1) the price of the unavailable machines can be set to 

infinity so that they are not considered in the optimal solution, or 2) a constraint can be 
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added that forces the associated decision variables to take on zero value. The problem can 

be solved again to find the next best solution.  

PMRP-S 

Here, the effect of shipping on the solution is considered in detail. The cost data from the 

base model is again used here, along with the consideration of six cities (demand sites):  

San Antonio, TX, Bozeman, MT, Los Angeles, CA, Orlando, FL, Chicago, IL, and San 

Francisco, CA. The cities where chosen to represent the practicality of using the model 

nationally. The assumed requirements for each city’s construction site can be seen in 

Table 8. It can be seen that the length of project in each city varies from 5 years being the 

shortest duration in San Francisco, CA to 8 years in Orlando, FL. The distribution of 

demand was chosen to represent various instances that may occur: stationary demand 

periods, monotonically increasing or decreasing periods, and increasing to the middle of a 

project and decreasing until the end of the planning period.  

 

The distances between each city were determined using Google Maps, taking only the 

routes which a large excavator could be sent (interstates), shown in Table 9. It should be 

noted that it is assumed that the shipping cost to and from each location is equivalent 

(symmetric), yet the model can easily handle various costs in each direction. The 

assumed cost per mile for shipping is $4.00 and all other data is the equivalent to the 

previous case, solving over a 10-year period (Transport, 2017). Figure 5 gives a visual 

representation of the city locations and all possible combinations of shipping routes 

available (
6(6−1)

2
= 15 𝑒𝑑𝑔𝑒𝑠). It can be seen that even for a small network, the number 

of possible solutions is quite large for shipping alone. Here 𝑃 = 6, 𝐼 = 𝐽 = 6, 𝑎𝑛𝑑 𝑇 =

10 and the decisions being made include buying, holding, operating, selling, and shipping 

machines. Note: renting is not considered for ease of understanding, yet can easily be 

included if so desired.  
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The results in Table 10 show the schedule for purchasing, holding, salvaging and 

shipping the Caterpillar 320E excavator to satisfy demand. The solutions are represented 

as before, with the exception of shipping, which is represented as an age pair 𝑇(𝑖, 𝑗), then 

the number of machines shipped, followed by a pair of cities shipped from, (𝑝𝑔 → 𝑝ℎ), 

for some 𝑔, ℎ ∈ 𝑃. Consider the first time period schedule for San Antonio, TX. The 

demand is one machine and the model simply obtains a new machine to satisfy the 

requirement. The decision also shows that the purchased machine is operated in that same 

time period. In the subsequent time period, demand stays uniform at one, yet another 

excavator is purchased to take advantage of the increase in demand for the next time 

period, which jumps to three. This means that the decision to obtain and hold the asset 

(un-utilized) is a cheaper option than to buy two new in the next time period. The 

schedule continues in this standard fashion until time period six, when an asset has 

reached the end of its useful life and must be salvaged. Notice that the sole machine 

required in the last time period is not salvaged until the next time period after it has 

operated to satisfy demand.  

 

There are four shipping instances in this particular example. In time period two, one 

excavator is shipped from Los Angeles to San Francisco of age one-year-old and that has 

worked 2000 hours. Next, in year 5, one excavator is transported back to Los Angeles 

from San Francisco of age four years old and has worked around 6000 hours. Note: this is 

a different asset than was sent to that project originally. The next shipping occurrence 

happens in time period six, in which two machines near the end of their life are sent from 

San Francisco to Bozeman, MT to finish out their useful lives. Lastly, one machine is 

sent from Chicago to Orlando in year seven, also at the end of its life.  

 

Considering the first shipping instance, it is easy to see that demand in San Francisco 

dropped, while the demand in Los Angles increased, allowing for the opportunity for 

transportation to satisfy demand. It can also be observed that demand increased in 

Chicago as well, yet the cheaper option was to ship to the cheaper city. In the next 
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shipping schedule, it can be seen that demand increased in San Francisco, yet there were 

already excess machines in holding in said city from the previous time period, and the 

model took advantage of the idling ability to send the assets to Los Angles in the next 

time period. This demand increase was less than the number of machines available in San 

Francisco; therefore, the model would need to decide to hold for another year, sell the 

machine, or ship it. This instance would not be possible with the current modelling 

techniques that exist. 

 

The third shipping happens in the sixth time period, when demand in San Francisco drops 

to zero (i.e. the project ends). In Bozeman, two machines are at the end of their lives and 

need to be salvaged. The model globally realizes the advantage and ships two machines 

to Montana. The last shipping occurrence is similar to that of the shipping in time period 

six. The Chicago project is coming to an end and although demand in Orlando is 

decreasing, it is advantageous to ship an excavator there and finish out the machines life. 

The shipping routes can be seen visually in Figure 6, where orange nodes are cities that 

have been transported to or from.  

 

The benefit of considering the integration of shipping decisions into PMRPs can be 

quantified, even in this small example, as quite significant. The objective function value 

(OFV) of the Master Problem considering all shipping routes is $12,176,448.24; while, 

solving the problem with the current available models does not consider shipping and has 

an objective function value of $12,210,123.14, a $33,674.9 difference. This cost will 

obviously amplify with larger problem size, discussed in the Computational Results.  

 

MP-PMRP 

The presented model with multiple operations and machine types, denoted multi-purpose 

machines, is considered with a small problem size. The benefit of considering machines 

that can perform various job tasks is given numerically. The costs data from the previous 
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numerical examples is again used with a few stated changes shown in the tables. Here, 

three machine types are considered and assumed to take on one or two available 

operations (one-to-many). The model is solved for this instance and compared to that of a 

one-to-one correspondence of machines to jobs. As seen in Table 11, machine 1 can 

perform operation 1, machine 2 can perform operation 2, and machine 3 can perform both 

operations.  This is seen in practice, specifically for excavators. Excavators have been 

known to be used for digging, pile driving, brush cutting and material handling. Many 

operations are demanded in a construction project, and modelling with multi-purpose 

machines will allow for a cost-effective demand satisfaction.  

 

Excess costs and varying O&M values are included for a machine performing a task. For 

instance, there may be no additional cost for a task that an excavator is normally used for, 

yet requires additional resources in order to perform a separate operation. To accurately 

represent this scenario, the machines have the assumed costs shown in Table 12. It may 

also be the case that a machine that can perform multiple tasks has a higher initial cost. 

Likewise, it may be that machines have varying holding and renting costs, seen in Table 

12. 

 

The holding cost for machines 1 and 2 is assumed to be $5000 annually, while machine 3 

is assumed to have double the cost at $10,000. The renting cost of the multi-purpose 

machine is also more expensive by $30,000. Following the same premise, the purchase 

price of the multi-purpose machine is higher. Here it is assumed that the cost increase of 

machine 3 is due to the greater capabilities. Likewise, the assumed O&M cost of machine 

3 is higher for operation 1, yet is lower for operation 2, seen in Table 13. Here it is 

assumed that operation 2 is easily completed by machine 3, yet any cost input can be 

entered and still retrieve an optimal solution.  

 

The demand for this particular type of problem is necessarily operational dependent and 

requires the assumed extension given in Table 14. The demand for operation 1 is for an 
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eight-year period, while operation 2 is only needed for six years. Demand for the first 

operation increases to a point and then decreases after (both monotonically), until the end 

of the planning horizon. For operation two, the same demand structure is used. Table 13 

also gives the optimal schedule for the numerical example. In this table, in order to fit the 

solutions into the table space for representation, the decision variable that determines the 

number of machines operating of each type is represented by 𝑂(𝑘, 𝑜), removing the ages 

of the machines, for machine type 𝑘 and operation, 𝑜. Purchasing, Idling, and salvaging 

are represented as 𝑃(𝑖, 𝑗, 𝑘), 𝐼(𝑖, 𝑗, 𝑘), and 𝑆(𝑖, 𝑗, 𝑘), giving the age (𝑖, 𝑗) and machine type 

𝑘 obtained, held, or sold.  

 

The optimal solution given in Table 14 utilizes both the single purpose machines, as well 

as the machine that can perform both operations. In the first time period, a total of four 

machines are needed to satisfy demand, and the model initially chooses to purchase two 

new machine 2’s for performing operation 2, and one used machine 1 for performing 

operation 1. In the second time period, one machine 3 is purchased that is two years old 

and has worked less than 2000 hours, and a similarly used machine 1 is purchased. 

Machine 3 operates on operation 2, while machines 1 and 2 operate on their specific 

tasks. One older machine 1 is sent to holding with age three years old and has worked 

under 4000 hours. In time period three, another used machine 3 is purchased, and a used 

machine one is purchased. Here machine 3 only operates on operation 2, and all other 

demands are satisfied by machines 1 and 2. One machine of age three years old and that 

has worked under 6000 hours is idled. For time period four, two machine 2’s are obtained 

of two years old and that have worked under 2000 hours. Again, the multi-purpose 

machines only work on operation 2 and remaining demand is satisfied by single purpose 

machines. A different machine is held for one time period. It should be noted that the 

model avoids idling machine number 3, most likely because of its significantly higher 

holding cost, even though it is sent to work with its higher operations cost. In time period 

5, machine 3 works on both operations 1 and 2. A machine reaches the end of its useful 
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life and must be salvaged. Demand satisfaction happens in the same manner in the 

subsequent years, until the end of the planning horizon.  

 

The model was solved allowing for multi-purpose machines and compared to that of a 

more restrictive assumption, a one-to-one relationship between machines and operations. 

For this small example, the benefit of considering multi-purpose machines is the OFV of 

the model solved with a one-to-one assumption minus the presented formulation, shown 

here: 

 

if machine 3 can only perform operation 1: 

$1,397,449.84 − $1,385,973.84 = $11,476 

 

if machine 3 can only perform operation 2: 

$1,389,590.84 − $1,385,973.84 = $3617 

 

Therefore, even for a small problem size, there can be significant cost savings in 

satisfying demand by considering the various operations a machine can perform. For this 

model to be implemented, the demand needs to be operation specific. Although the multi-

purpose machine has much higher costs, the model globally determines a schedule that 

may be counterintuitive, especially for larger problem size as the number of machines 

and operations grows combinatorically.  

Computational Results  

In this section, small and large problems are solved to show the value of using the 

modeling techniques and solution methods presented. Also, sensitivity analysis and 

determination of the optimal utilization levels are given. Here the application of the 

presented model is shown in a construction project for each problem instance. The data 

for the case studies were obtained from various resources discussed previously. Parallel 

machine replacement of excavators is considered in construction projects, which have 
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stochastic and deterministic lengths. It is also desired to not only consider the sensitivity 

of parameters, but also the efficiency and effectiveness of the Clustering Decomposition 

Algorithm.  

Sensitivity Analysis 

In this section, the managerial implications are presented from the sensitivity analysis 

performed on the model. Conventional sensitivity analysis determines the sensitivity of 

the objective function value associated with an optimal solution to available resources 

(budget) or demand. In the analysis presented in this section, the concern is with 

sensitivity of the solutions to the uncertainty in the input data. It is desired to see if the 

recommended optimal schedule for purchasing, selling, or holding the machines remains 

optimal if the data fed into the model changes up to a reasonable percentage. 

 

Because the objective is a linear function of cost-coefficients, and according to Equations 

(14) and (15) these coefficients are themselves linear functions of the factors (α,β,etc.), it 

implies that the objective is also a linear function of the factors. Therefore, a linear 

relationship between a change in a factor and a change in the optimal OFV implies that 

the optimal solution does not change when the factor changes (when the optimal solution 

is not unique, the OFV associated with the set of optimal solutions does not change when 

the relationship is linear). If the optimal solution (the OFV associated with the set of 

optimal solutions) changes, a nonlinear relationship may be observed due to a shift in the 

growth of the optimal OFV. 

 

The slope of a linear relationship determines the overall impact of the factor on the OFV. 

When the slope is 0 (a horizontal line), the decision variables associated with the factor 

under consideration have a value of 0 in the optimal solution. A larger slope indicates a 

higher overall impact on the objective function. If the functions in Equations (14) and 

(15) where nonlinear with respect to a certain factor, it could still be seen if the optimal 

solution changes by checking for sharp points due to shifts in the growth of the optimal 
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OFV, indicating a change in the optimal solution, or change in the OFV associated with 

the set of optimal solutions.  

 

In order to gain insight into the model’s behavior in a realistic manner, the utilization 

coefficients, age coefficients, and base costs were changed to determine the effect on the 

objective function. The utilization coefficient on the purchase price and O&M costs is a 

model of how much cost would be incurred if the impact utilization had on the cost 

changed. As an example, an increase in the utilization coefficient would imply that, if 

each utilization level previously changed the purchase or O&M costs by $10, now it 

changes by >$10. Likewise, for the age coefficients, if the amount of a used machine 

purchase decreased $10 for every year since the machine was new, then a larger age 

coefficient would mean the savings of purchasing the used machine would be >$10 per a 

year. Each of the factors were considered individually while the others were held fixed. 

The model was solved multiple times at each percentage increase of the factor in 

question. Figure 7 gives the results from the analysis. As seen in the figure, the base 

purchase price had the greatest impact on the objective function, intuitively with the 

steepest slope. That is, an 8% increase in the base cost of a new machine can alter the 

objective by 1%. Base maintenance cost and the utilization coefficient on maintenance 

cost showed the next most significant, with both having almost the exact same slope. 

Next, the utilization coefficient of the purchase price shows that a 12% variation can 

change the objective function by 0.5%. The utilization coefficient of a purchased machine 

has a slight effect on the objective, and the age coefficient for maintenance and purchase 

price have a far less significant impact.  

 

Considering the results from this analysis, it can be concluded that if the purchase price 

of the machines increases, the corresponding OFV increase is to be expected. The same 

goes for all aspects, yet it is arguable that a larger increase of age-based cost for purchase 

and maintenance is not of much concern. Note that all effects are linear and can easily be 

predicted. An interesting finding is that the amount of utilization of the O&M costs has 
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more of an impact on the OFV than that of the purchase price, while the age changes 

have almost the same effect. This means that the amount of utilization has a much more 

significant influence on the final total cost of satisfying demand. Because of this, the 

second analysis performed was on the assumptions of utilization of the machines.  

 

Utilization factor levels were used to determine the implications of varying levels of 

utilization assumptions of the machines on the optimal objective function values. These 

implications are extensions of work completed by (Joseph C. Hartman, 2004). Hartman 

showed the optimal way to utilize each machine under various operations, maintenance, 

and salvage value assumptions. Yet, here the assumption is of equal utilization of all 

machines based on Hartman’s conclusions (exponentially increasing O&M costs and 

linearly decreasing salvage values), and determining what level all machines should be 

equally utilized. Hartman has considered this in (Jha, 2000a) and (Joseph C. Hartman, 

2004), where they make utilization a decision variable, yet this work aims to simply the 

process by decomposing the work and solving multiple easier problems. That is, we 

know that because the O&M and salvage costs are structured in such a way, each 

machine should be utilized the same number of operation hours; yet, what should that 

uniform quantity be?  

 

In order to perform the analysis, some changes to the model were implemented to 

account for the changing utilization amounts. A decision variable was added to the 

model, namely, 𝐸𝑡 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 𝑏𝑒𝑖𝑛𝑔 𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡. The new 

objective function is presented here: 

 

Minimize 𝑇𝐶 = ∑ ∑ 𝑐𝑖𝑗1𝑋𝑖𝑗
𝑈
𝑗=1

𝐿
𝑖=1 + 𝐸[𝑄(𝜉, 𝑌)]  (42) 

 



 

52 

 

𝐸[𝑄(𝜉, 𝑌)] = ∑ 𝑝𝜔 (∑ [𝑠𝑐𝑎𝑙𝑒 ∗ 𝐸𝑡
 + 𝑞𝑧𝑡

𝜔 + 𝑜𝑡𝑎𝑡
𝜔

𝑇𝜔

𝑡=2𝜔∈Ω

+ ∑ ∑((𝑓𝑐𝑝 + 𝑐𝑖𝑗𝑡)𝑦𝑖𝑗𝑡
𝜔 + ℎ𝑡(𝐼𝑖𝑗𝑡

𝜔 + S𝑖𝑗𝑡
𝜔 ) + 𝑚𝑖𝑗𝑡𝑎𝑖𝑗𝑡

𝜔 + 𝑓𝑐𝑠𝑆𝑖𝑗𝑡
𝜔 − 𝑠𝑖𝑗𝑡𝑆𝑖𝑗𝑡

𝜔 )

𝑈

𝑗=1

𝐿

𝑖=1

]) 

 

The objective contains a penalty function that increases the objective when the capacity 

of each time period is exceeded. The function is assumed to be linear and adds cost with a 

scaling factor determined by the engineer. Also, the salvage and purchase values include 

a fixed cost for each purchase or sale. That is, the fixed costs for buying can include 

staffing for finding the machines, shipping prices for each purchase, or any other fixed 

cost associated. Likewise, a fixed cost for salvaging is given to account for the cost 

incurred for finding a buyer and finalizing a sale. For this reason, the machines that are 

salvaged are assumed to take an inventory cost, seen in objective with inventory. Also, a 

constraint was added to the model in order to perform the analysis, shown in inequality 

(43).  

 

𝐸𝑡
 ≥  ∑ ∑ 𝑎𝑖𝑗𝑡

𝑈

𝑗=1

𝐿

𝑖=1

− 𝑐𝑎𝑝𝑡   ∀𝑡 ∈ [2, 𝑇𝜔] (43) 

 

Constraint (43) is the penalty constraint that works in conjunction with the objective 

function. The constraint forces the objective to add additional costs when the model 

chooses to exceed capacity. This can occur when it is desired to utilize multiple machines 

at a lower level each, versus fewer machines working harder, in each time period.  

 

The utilization factor is a change of assumption for the utilization amount of all 

machines. When the utilization factor is at 1, we have the standard assumptions discussed 

previously (2000 hours of work annually). But, when the utilization factor changes to, say 

2, all of the machines work twice as much and fewer machines will be needed to satisfy 
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demand. Likewise, a utilization level of 0.5 means that all machines are utilized at half of 

the initial assumptions (3 hours/day), yet more machines will be required to fulfill all 

machine requirements. This is reflected in the model by changing the right-hand-side of 

Constraint set (2) to 𝑟 𝑡
𝜔/𝑢 . Therefore, the question becomes what level of utilization is 

optimal for this particular data set? To test this, the case study was solved multiple times 

while changing the utilization factor levels. Note that the highest possible factor level is 

4, as the machines cannot work more than 24 hours per day. 

 

It should also be noted that the capacity restriction was set so the model does not attempt 

to choose infinitely many machines at a very low utilization level. As shown in Figure 8, 

the optimal utilization level should be that of 1, giving the minimum objective value 

when the excavators are used 6 hours a day. It can be seen that working the excavators 

slightly more or slightly less would yield a sub-optimal solution. It should be also noted 

that if the excavators are to be utilized more intensely, it is better to work them at u=2, 

which is the next cheapest option. This tool can aid the project managers in prescribing a 

common utilization level for the machinery of the same type. 

 

For each unique problem solved using the presented model, this process can be 

performed to determine the optimal utilization of all machines, under the proper 

assumptions given in Hartman (2004). For the construction industry, it seems that the 

presented implications would hold true because of the way operations and maintenance 

costs increase and the salvage values decrease. The process would still need to be 

performed in order to understand what utilization level would be optimal, yet in most 

cases it is probable that utilizing all assets equally is optimal. 

 

To determine the effects that interest rate assumptions have on the objective function, an 

interest rate or 1% was assumed and then a uniform percentage increase was considered, 

subsequently solving for the optimal solution at each instance. The percentage change in 

the OFV was recorded. As seen in Figure 9, as interest rates increase, the percent change 
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in the objective function increases non-linearly. This is not a surprising result because of 

the effect that interest has on costs data as time increases.  

 

Sensitivity of the multiple project model was also considered. The questions of when 

does a shipping happen and how do shipping prices affect the optimal solution are driven 

from managerial and realistic perspectives. As described in the numerical example, 

shipping is both demand and cost dependent. Because demand is especially sensitive, and 

any fluctuation of demand may yield an infeasible solution, the sensitivity analysis is 

performed on the distance matrix, changing the assumptions of the cost-per-mile of the 

shipping cost. This is performed starting with a base cost of $1/mile and increasing to 

over $20/mile. As seen in Figure 10, the increase in cost-per-mile has a linear effect on 

the value of the objective function. In fact, a large increase in shipping cost has a minimal 

effect on the percent objective increase.  

 

For instance, even if the cost-per-mile of shipping an excavator increased to $20 a mile, 

the overall cost of satisfying demand only increases by 0.06%. This is due to the value of 

having an optimal shipping schedule incorporated into the replacement and demand 

satisfaction decisions. It is arguable that implementing this particular model formulation 

is imperative to any multiple demand site instance. That is, with the optimal shipping and 

replacement decision in place, outside influences that would normally effect shipping are 

mitigated. 

 

To gain insight on the effects that multi-purpose machines have in the solution and 

objective function, the base cost of the machine that can take on two operations from the 

numerical example was changed, holding all other cost the same. Seen in Figure 11, as 

the multi-purpose machine’s base cost increases (closer to the costs of the other 

machines), the objective is affected in a nonlinear manner. The 20% difference in the 

multi-purpose machine yields around a 10% decrease in the OFV. A base cost of 

$240,000 was used. Also, as the machine’s value increases to the value of the single 
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purpose machines, the model determines that it is not economical to continue purchasing 

the multi-purpose machine. In fact, at a 9% increase in the multi-purpose machine value, 

the optimal solution never buys one for use.  

 

Next, because of the implications from the first sensitivity analysis, all values are held 

fixed for the single purpose machines and change the base maintenance cost of the multi-

purpose machine to determine the effect on the solution as well as the percent change in 

objective. A base cost of $8000 was used for operation 2 and $12,000 for operation 1. 

The costs are again increased or decreased incrementally for the analysis. It can be seen 

that the optimal solution decreased by up to 3% and increased to almost 1%.  As seen in 

Figure 12, the base cost of both operations for the multi-purpose machine have a 

nonlinear effect on the objective function. With a large percentage decrease in the value 

for both operations, it is observed that the percentage the OFV decreases grows quickly. 

An increase in the maintenance cost of operation 1 seems to increase linearly with an 

increase greater than 1, and in parabolic fashion for an increase of operation 2’s 

maintenance cost.  

Efficiency of CDA for Large Problem Size 

In this section, a number of large problem sizes are solved for the instance where 

shipping is of concern. For the models that only consider one demand site, the solution 

time for any realistic problem size is instantaneous. For instance, solving the base model 

for over 100 years was less than a 60 second computation time. Even making monthly 

decisions, for any realistic case (monthly decisions for say three years) it can be seen that 

the solution time is also instant. Any monthly or annual decisions beyond these 

thresholds lose a realistic scheduling in that demand realization may change greatly over 

time, and when this is the case, Stochastic Programming is the best solution method. For 

the shipping instances where the problem size and solution time grows much faster as 

more demand sites are solved for, an efficient solution methodology is possibly required. 
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Twenty test problems of various medium and large size are presented to evaluate the 

performance in terms of optimality and solution time for this case. The experiments were 

performed on a computer cluster made up of 11 Dell DSS 1500 servers, each containing 2 

Intel Xeon E5-2630 8-core processors running at 2.4 GHz. Each server has 32 GB of 

RAM. There are a total of 176 processor cores and 352 GB of RAM. Table 15 gives the 

sizes of the sets for each problem size solved. Up to 25 projects are solved because it was 

observed that the largest construction company in the world, Bechtel, has presented 

around this number of projects in the US that are currently under construction (although 

they have 100s of projects worldwide). It is desired to determine at what point the CDA is 

required for solution. Because the complexity grows significantly with 𝑈 and 𝐿, it was 

decided to make monthly decisions, versus annual. If daily decisions were desired, these 

parameters would need to take on the values of 365𝑥6 = 2190; yet, this is not practical 

in this case, as most construction projects seem to leave assets in place for at least one 

month. It was also determined that the most practical planning horizon for making 

monthly decisions would most likely not exceed that of 3 years, and 36 months is the 

largest considered here. It should be noted that it is not desired to determine how large of 

a problem size that can be solve, yet more importantly how large of a realistic problem 

can be solved before a solution method is necessary. Furthermore, it may be the case that 

weekly decisions be made, yet to solve this level of complexity would require significant 

changes in the model and is not in the scope of this work.  

 

The computational results can be seen in Table 16. The objective function value (OFV) 

and the solution time in seconds are presented for each problem type and size. The gap 

between the Master Problem and the CDA is presented as Gap 1, and the gap between the 

CDA and the model without considering shipping is presented as Gap 2. The problem 

size changes in number of projects every five instances; consider the first five. The 

number of projects is five, and the Master Problem solves the model efficiently for the 

largest size in that realm in under 500 seconds. The performance of the CDA for small 

problem size is much less efficient, although the gap is always within 1% of the optimal 
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solution. As the problem sizes increase, it is observed that the gap of the CDA stays 

significantly closer to the Master Problem, as the advantage of shipping is still in place. 

The average of Gap 1 is 0.16% while the average Gap 2 is 1.06%, both of which are 

considered good. Yet, the CDA performs much better in terms of optimality as the 

problems become much more complex, in retrospect to not considering shipping.  

 

The CDA allows for the possibility of obtaining the optimal solution, as seen in Problem 

size 7. For Problem Sizes 10,14,15,18,19, and 20, the Master Problem and the No 

Shipping was not able to find a solution, while the CDA provided a solution relatively 

fast. In one case, Problem 17, the Master Problem could not find a solution, yet the No 

Shipping formulation could. This shows the advantage of a less complex model on 

solution time, yet the CDA algorithm provided a solution that was 2.58% better. In 

general, the fastest of the three methods is without shipping considerations, yet when the 

problem size is sufficiently large, even this formulation cannot find a solution. This is due 

to the CDA taking advantage of the structure of the problem formulation and shipping 

frequencies, allowing the problem to be broken up into clusters of maximum defined size, 

here six.   
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CHAPTER FIVE  

CONCLUSION 

In this dissertation, the Parallel Machine Replacement Problem was tailored to the 

specifications of construction machinery. The models generalize that of previous works 

in the parallel case, while considering the ability to purchase and salvage used machines 

at any age and utilization level, keep the machines in the inventory, rent to satisfy 

demand, transport machines, and utilize multi-purpose machines. These are often the case 

in application, especially in the management of heavy equipment. An application for 

construction projects was presented. The data was gathered and generated based on 

functions appearing in the literature and the parameters were set based on various data 

sets from the literature and online. Specific cost functions were used that generated the 

purchase prices, maintenance costs, and salvage values based on the real data. These 

functions take into consideration inflation and technology changes for the assets. The 

stochastic nature of the construction projects was considered yielding an uncertain time 

horizon and demand. These considerations are imperative to the construction industry due 

to the fact that most large projects get extended beyond the initial planning periods. 

Therefore, the Expected Value of Perfect Information (EVPI) and the Value of Stochastic 

Solution (VSS) were calculated to show the need to consider uncertainty in these types of 

projects. The EVPI and VSS showed significant figures at $136,290.52 and $138,163.26, 

respectively. Data from six real cities were collected based on distances and shipping 

costs of a large excavator. To show the value and importance of considering shipping 

decisions in PMRPs, the problem was solved with and without shipping, giving a 

difference of dollar amounts in the millions (Computational Results). Likewise, the 

comparison of considering multiple purpose machines is presented, having a value of 

over $11,000 for a small problem size.  

 

A sensitivity analysis was performed to determine any managerial implications of the 

work for the procurement and replacement of assets. The impact of a changing purchase 

price and maintenance costs on the objective function was studied. This considered the 
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effect of which a change in age and utilization had on the objective for both parameters. 

It was observed that the base purchase price had the most effect, followed by that of base 

maintenance costs and the costs of maintenance as it is utilized. The value of purchase 

price as it was utilized at various levels had the next most influence on the optimal 

solution, yet the values of purchase price and maintenance as the machines aged had little 

effect. Utilization level is known to be an important aspect of the PMR problems, yet it 

was desired to find the optimal utilization level of the machines under the proper 

assumptions. If it is known that the assets should be utilized equally, which was the case, 

then it is beneficial to determine at what level they should operate. The most cost-

effective utilization level out of a set of possible values was determined in the sensitivity 

analysis, while avoiding utilization level as a decision. For the particular case study 

tested, it was found that the machines should work in 6-hour shifts, yet the analysis 

provides the next best value when utilizing the machines at 12 hours, with fewer 

machines. Any deviation from the best utilization level would yield an increase in the 

costs for the case study that would be from $100,000 to greater than $1,000,000. This 

process can be performed to determine the most cost-effective level for each individual 

project.  

 

Similarly, sensitivity analysis was performed on the interest rate, shipping cost-per-mile, 

and cost parameters of multi-purpose machines. It is seen that interest has a nonlinear 

effect on the objective function value, and with an optimal solution in place, the shipping 

cost has little effect on the cost of satisfying demand. The implications of shipping 

price’s minimal impact imply the importance of using the presented modelling 

techniques. Large construction companies can benefit significantly from integrating 

transportation decisions with the replacement decisions simultaneously. It was also 

observed that the base purchase price and maintenance cost of the multi-purpose 

machines can have various effects on the objective function value, in a non-linear 

manner. Each of these sensitivity analyses provide a basis for companies to base their 

replacement studies on. Each alternative solution provides opportunity costs, if varying 
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alternatives are chosen. If the optimal solution is chosen, the loss from choosing a 

separate alternative is minimized, yet in reality many external factors affect the costs, and 

the sensitivity analysis provides a framework for considering multiple alternatives, to 

mitigate the lost opportunity.  

 

Because the PMRP is combinatorial in nature, an efficient solution method was presented 

to solve large problem size when a number of demand sites are introduced. The algorithm 

begins by taking small time steps forward through the planning horizon, solving smaller 

instances of the problem. Then, the algorithm aggregates cities (project demand sites) 

into clusters. The original problem is then efficiently solved for each cluster and the 

solutions combined to obtain the full schedule. The algorithm was observed to perform 

well for large problem size, yet when the number of projects is small, the Master Problem 

outperformed the CDA. The CDA consistently held a larger gap between itself and the 

base problem, compared to the Master Problem, showing the CDA perforce closer to the 

global optimal solution.   

 

Future works can include that of more solution methods to the PMRP-S problem, as the 

formulation is new, applying the M-PMRP to additive manufacturing for optimal 

replacement, and considering more on horizon uncertainty for PMRP-S. More 

specifically, the impact of varying salvage and purchase prices in different locations 

should be considered in the PMRP-S formulation. This type of cost behavior was 

observed on multiple machine purchasing websites, and would be desired when applying 

this work in a company. This extension, although easily implemented, would slightly 

increase the complexity, and more comparative computational results would be desired.  

 

It would also be beneficial to extend this research to include capital budgeting and capital 

gains considerations. If the machine benefit can be measured, a possible look at return 

rates for each project and each replacement schedule. A possible consideration would be 
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to study the effects of investing the money saved on each project, back into the projects. 

This may change the project length, machine utilization, and replacement schedules. 

 

Furthermore, it is necessary to develop solution methods that are independent of 

commercial solvers. For instance, the problem structure may benefit from metaheuristic 

techniques, which have not been applied to the PMRP. The CDA algorithm presented 

provides a good general solution method for when advanced optimization software are 

available, yet for problem sizes larger than what is considered in this work, a subsequent 

heuristic technique should be developed, to be used in conjunction with the CDA. 

Likewise, the formulation with multiple operations may need a heuristic developed if a 

large number of assets and operations is considered, as may be the case in other 

applications.  

 

Lastly, it is desirable to implement this research into a large construction company. The 

ability to look at the problem formulation under more accurate and specific data can 

derive much more general managerial implications and realistic solutions. This work can 

be implemented systemically with other works in construction management, such as the 

optimization of maintenance and production, where solutions of one may have 

implications on the other.  
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Appendix A: Tables and Figures 

 

Table 1: Gap analysis of problem formulations appearing and not appearing in the 

literature. 

 

PAPER  PT MO MM HU U MDS T 

Dissertation 

Base Model  

MILP       

Dissertation 

MM-PMRP 

MILP       

Dissertation 

PMRP-S 

MILP       

(Hartman and Ban 

2002) 

DP       

(Hartman 2004) DP       

(Keles and 

Hartman 2004) 

IP       

(Childress and 

Durango‐Cohen 

2005) 

IP   (stoch)    

(Hartman 1999) IP       

(Tan and Hartman 

2010) 

DP\L

P 

      

(de-Bordes and  

Büyüktahtakin, 

2017) 

MIP       
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Figure 1: The heirarchical structure of the PMRPs (denoted P1-P8) being studied.  

 

 

Figure 2: A starting graph with four projects and all possible shipping routes (𝐾4). 
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Figure 3: Frequent shipping routes of a network determined by solving random test 

problems (bold). 

 

 

Figure 4: Clusters determined by the shipping frequency.  
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Table 2: Scenarios for the length of the project. 

 

Table 3: Purchase price (USD) of an excavator with age and cumulative utilization level 

(i,j) in time periods 1 and 4. 

 j 

i 1 2 3 4 5 6 

1 220000,240399 208000,227287 196000,214174 184000,201061 172000,187949 160000,174836 

2 173000,206874 163400,195411 153800,183948 144200,172485 134600,161023 125000,149560 

3 170000,203596 160400,192133 150800,180670 141200,169207 131600,157745 122000,146282 

4 167000,200317 157400,188855 147800,177392 138200,165929 128600,154467 119000,143003 

5 164000,197039 154400,185577 144800,174114 135200,162651 125600,151188 116000,139725 

6 161000,193761 151400,182299 141800,170836 132200,159372 122600,147910 113000,136447 

 

Table 4: Maintenance cost (USD) of an excavator with age and cumulative utilization 

level (i,j) in time periods 1 and 4. 

 j 

i 1 2 3 4 5 6 

1 10000,10927 21485,23478 47369,51762 89166,97434 147967,161688 224638,245468 

2 10500,11473 21985,24024 47869,52308 89666,97981 148467,162234 225138,246014 

3 11000,12019 22485,24571 48369,52854 90166,98527 148967,162781 225638,246561 

4 11500,12566 22985,25117 48869,53401 90666,99073 149467,163327 226138,247107 

5 12000,13112 23485,25663 49369,53947 91166,99620 149967,163873 226638,247653 

6 12500,13659 23985,26210 49869,54493 91666,100166 150467,164420 227138,248200 

 

 Scenario (𝜔) 

 1 2 3 4 5 6 7 

Description Early On-time 

  Beyond schedule  

  

Project Length (𝑇𝜔 , in years) 4  5  6  7 8 9 >9 

Probability (𝑝𝜔) 0.05 0.25 0.30 0.20 0.10 0.07 0.03 
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Table 5: The required number of excavators in each time period under different scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario (𝜔) 
Time Period (Year) 

Total 
1 2 3 4 5 6 7 8 9 10 

1 4 6 6 4       20 

2 4 6 5 3 2      20 

3 4 5 4 3 2 2     20 

4 4 4 3 3 2 2 2    20 

5 3 3 4 3 2 2 2 1   20 

6 2 3 3 3 2 2 2 2 1  20 

7 1 2 3 3 3 2 2 2 1 1 20 



 

73 

 

Table 6: Optimal solution to the recourse problem. 

 

 

 

 

 
Time Period (Year) 

1 2 3 4 5 6 7 8 9 10 11 

Demand 4 6 6 4        

Schedule 

for 

Scenario 1 

P(2,1)3 

P(3,1)1 

O(2,1)3 

O(3,1)1 

P(2,1)3 

I(3,2)1 

O(2,1)3 

O(3,2)2 

O(4,2)1 

 

S(5,3)1

O(3,2)3 

O(4,2)1 

O(4,3)2 

 

S(5,4)2 

O(4,3)3 

O(5,3)1 

 

S(5,4)3 

S(6,4)1 

      

Demand 4 6 5 3 2       

Schedule 

for 

Scenario 2 

P(2,1)3  

P(3,1)1 

O(2,1)3 

O(3,1)1 

P(2,1)2 

O(2,1)2 

O(3,2)3 

O(4,2)1 

P(2,1)1 

I(3,2)1 

S(5,3)1 

O(2,1)1 

O(3,2)1 

O(4,3)3 

 

S(5,4)3 

O(3,2)1 

O(4,2)1 

O(4,3)1 

S(5,4)1 

O(4,3)1 

O(5,3)1 

S(5,4)1 

S(6,4)1 

     

Demand 4 5 4 3 2 2      

Schedule 

for 

Scenario 3 

P(2,1)3 

P(3,1)1 

O(2,1)3 

O(3,1)1 

P(2,1)1 

O(2,1)1 

O(3,2)3 

O(4,2)1 

S(5,3)1 

O(3,2)1 

O(4,3)3 

P(2,1)2 

S(5,4)3

O(2,1)2 

O(4,3)1 

 

S(5,4)1

O(3,2)2 

 

O(4,3)2 S(5,4)2     

Demand 4 4 3 3 2 2 2     

Schedule 

for 

Scenario 4 

P(2,1)3 

P(3,1)1 

O(2,1)3 

O(3,1)1 

 

O(3,2)3 

O(4,2)1 

S(5,3)1

O(4,3)3 

 

P(2,1)3 

S(5,4)3

O(2,1)3 

 

I(3,2)1 

O(3,2)2 

I(4,3)1 

O(4,2)1 

O(4,3)1 

S(5,4)1

O(5,3)2 

 

S(6,4)2    

Demand 3 3 4 3 2 2 2 1    

Schedule 

for 

Scenario 5 

P(2,1)3 

P(3,1)1 

O(2,1)3 

O(3,1)1 

I(3,2)1 

O(3,2)2 

O(4,2)1 

O(4,2)1 

O(4,3)2 

O(5,3)1 

P(2,1)2 

S(5,4)2 

S(6,4)1

O(2,1)2 

O(5,3)1 

 

S(6,4)1

O(3,2)2 

 

P(2,1)1 

I(4,3)1 

O(2,1)1 

O(4,3)1 

S(5,4)1

O(3,2)1 

O(5,3)1 

 

S(6,4)1

O(4,3)1 

 

S(5,4)1   
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Table 6: Optimal solution to the recourse problem (Continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Time Period (Year)  

Demand 2 3 3 3 2 2 2 2 1   

Schedule 

for 

Scenario 6 

P(2,1)3 

P(3,1)1 

O(2,1)3 

O(3,1)1 

I(3,2)1 

O(3,2)2 

O(4,2)1 

P(2,1)1 

S(4,3)1 

S(5,3)1

O(2,1)1 

O(4,2)1 

O(4,3)1 

 

P(2,1)1 

S(5,4)1

O(2,1)1 

O(3,2)1 

O(5,3)1 

 

S(6,4)1

O(3,2)1 

O(4,3)1 

 

P(2,1)1 

S(5,4)1

O(2,1)1 

O(4,3)1 

 

P(2,1)1 

S(5,4)1

O(2,1)1 

O(3,2)1 

 

O(3,2)1 

O(4,3)1 

S(5,4)1

O(4,3)1 

 

S(5,4)1  

Demand 1 2 3 3 3 2 2 2 1 1  

Schedule 

for 

Scenario 7 

P(2,1)3 

P(3,1)1

O(2,1)3 

O(3,1)1 

I(3,2)2 

O(3,2)1 

O(4,2)1 

S(5,3)1

O(4,2)2 

O(4,3)1 

 

P(2,1)1 

S(5,4)1

O(2,1)1 

O(5,3)2 

P(2,1)2 

S(6,4)2

O(2,1)2 

O(3,2)1 

 

I(3,2)1 

O(3,2)1 

O(4,3)1 

S(5,4)1

O(4,2)1 

O(4,3)1 

 

P(2,1)1 

S(5,4)1

O(2,1)1 

O(5,3)1 

S(6,4)1

O(3,2)1 

 

O(4,3)1 S(5,4)1 
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Table 7: Optimal solution for the expected value problem. 

 

Table 8: Machine requirements at each city in each year.  

 

Table 9: Distance matrix between cities. 

 

 Time Period (Year) 

 1 2 3 4 5 6 7 8 9 10 11 

Expected 

Demand 

3.67 4.67 4.05 3.05 1.93 1.40 0.80 0.30 0.10 0.03 0.00 

Schedule 

P(2,1)4 

O(2,1)4 

P(2,1)2 

I(3,2)1 

O(2,1)2 

O(3,2)3 

I(4,3)1 

O(3,2)2 

O(4,2)1 

O(4,3)2 

S(5,4)2

O(4,3)2 

O(5,3)2 

 

S(5,4)2 

S(6,4)2

R 2 

 

R 2 R 1 R 1 R 1 R 1  

Project 
Time Period (Year) 

Total 
1 2 3 4 5 6 7 8 9 10 

San Antonio, 

TX 

1 1 3 5 5 3 2    
20 

Bozeman, MT 3 4 4 5 4 4 2    26 

Los Angeles, 

CA 

5 4 4 3 2 1     
19 

Orlando, FL 1 1 4 4 5 4 3 2   24 

Chicago, IL 2 4 4 4 4 1     19 

San 

Francisco, CA 
4 5 5 6 7      27 

Project 

Location 

Project Location 

San Antonio, 

TX 

Bozeman, 

MT 

Los Angeles, 

CA 

Orlando, 

FL 

Chicago, 

IL 

San Francisco, 

CA 

San Antonio, 

TX 
0 1613 1350 1160 1200 1730 

Bozeman, MT 1613 0 1100 2397 1388 1000 

Los Angeles, 

CA 
1350 1100 0 2500 2000 382 

Orlando, FL 1160 2397 2500 0 1124 2813 

Chicago, IL 1200 1388 2000 1124 0 2132 

San Francisco, 

CA 
1730 1000 382 2813 2132 0 
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Table 10: Results for the numerical example of six cities.  

 

 Time Period (years) 

1 2 3 4 5 6 7 8 9 10 

Demand 1 1 3 5 5 3 2    

Schedule 

for San 

Antonio, 

TX 

P(1,1)1 

O(1,1)1 

P(2,1)1 

O(2,1)1 

I(2,2)1 

P(2,1)1 

O(2,1)1 

O(3,2)2 

P(2,1)2 

O(2,1)2 

O(3,2)1 

O(4,3)2 

O(3,2)2 

O(4,3)1 

O(5,4)2 

O(4,3)2 

O(5,4)1 

S(6,5)2 

O(5,4)2 

S(6,5)1 

S(6,5)2   

Demand 3 4 4 5 4 4 2    

Schedule 

for  

Bozeman, 

MT   

P(1,1)1 

O(1,1)1 

P(2,1)2 

O(2,1)2 

P(2,1)1 

O(2,1)1 

O(2,2)1 

O(3,2)2 

 

O(3,2)1 

O(3,3)1 

O(4,3)2 

P(2,1)2 

O(2,1)2 

O(4,3)1 

I(4,4)1 

O(5,4)2 

 

O(3,2)2 

O(5,4)2 

S(6,5)2 

 

O(4,3)2 

O(5,4)2 

S(6,5)2 

O(5,4)2 

S(6,5)2 

S(6,5) 2   

Demand 5 4 4 3 2 1     

Schedule 

for   Los 

Angeles, 

CA 

P(1,1)2 

O(1,1)2 

P(2,1)3 

O(2,1)3 

O(2,2)1 

O(3,2)3 

O(3,3)1 

O(4,3)3 

 

I(4,4)1 

O(5,4)3 

O(4,3)1                                                                                                     

O(5,4)1                                                                                                     

S(6,5)3 

 

O(5,4)1 

S(6,5)1 
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Figure 5: All possible shipping routes between the 6 cities.  
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Figure 6: Visual representation of the shipping solutions (decisions). 

 

 

Table 11: The operations each machine has 

 

 

 

 

Table 12: Holding, Renting, and Purchase costs for various machine types.  

 

 

 

 

 

Operation 
Machine Type 

1 2 3 

1 1 0 1 

2 0 1 1 

Cost 
Machine Type 

1 2 3 

Holding $5000 $5000 $10,000 

Renting $90,000 $90,000 $120,000 

Purchase $230,000 $220,000 $240,000 

𝑻 = 𝟔 

𝑻 = 𝟓 

𝑻 = 𝟐 

𝑻 = 𝟕 



 

79 

 

Table 13: Operations and Maintenance cost for each machine performing a specific 

operation.  

 

 

 

 

Table 14: Demand and Optimal Schedule for each operation in each time period.  

 

Operation 
Machine Type 

1 2 3 

1 $11,000 / $13,000 

2 / $11,000 $8800 

 Time Period (years) 

1 2 3 4 5 6 7 8 9 

Demand 

𝑜 = 1 
1 1 3 5 5 3 2 1  

Demand 

𝑜 =  2 
2 3 3 3 3 1    

Demand 

Total 
3 4 6 8 8 4 2 1  

Optimal 

Schedule 

P(1,1,2)2 

P(2,1,1)1 

O(2,2)2 

O(1,1)1 

P(2,1,1)1 
P(2,1,3)1 

O(3,2)1 

O(1,1)1 

O(2,2)2 

I(3,2,1)1 

 

P(2,1,1)1 

O(1,1)1 

P(2,1,3)1 

O(3,2)1 

O(1,1)1 

O(3,2)1 

O(2,2)1 

O(1,1)1 

I(3,3,2)1 

 

 

P(2,1,1)2 

O(1,1)1 

O(1,1)2 

O(3,2)1 

O(1,1)1 

O(2,2)1 

O(3,2)1 

O(1,1)1 

I(4,4,2)1 

 

O(1,1)1 

O(1,1)2 

O(3,2)1 

O(1,1)1 

O(2,2)2 

O(3,1)1 

S(6,5,3)1 

O(1,1)2 

O(1,1)1 

O(3,2)1 

S(6,5,1)1 

S(6,5,3)1 

O(1,1)2 

S(6,5,1)1 

S(6,5,3)1 

S(6,5,1)2  
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Figure 7: The effects of changing the base prices, age coefficients, and utilization 

coefficients on the objective function. 
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Figure 8: Optimal objective function values (OFVs) at varying utilization levels. 

 

 

Figure 9: The sensitivity of the OFV to a percentage increase in assumed interest rate.  
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Figure 10: The sensitivity of the OFV to a percentage increase in the shipping cost per 

mile.  

 

 

Figure 11: Sensitivity of the cost of the multi-purpose machine OFV.  
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Figure 12: Sensitivity of the maintenance cost of the multi-purpose machine on the 

optimal OFV. 
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Table 15: The problem sizes solved for each presented parameter.  

Problem Size 

Number 𝑃 𝑇 𝑈 𝐿 

1 5 6 72 72 

2 5 8 72 72 

3 5 12 72 72 

4 5 24 72 72 

5 5 36 72 72 

6 10 6 72 72 

7 10 8 72 72 

8 10 12 72 72 

9 10 36 72 72 

10 15 6 72 72 

11 15 8 72 72 

12 15 12 72 72 

13 15 24 72 72 

14 15 36 72 72 

15 25 6 72 72 

16 25 8 72 72 

17 25 12 72 72 

18 25 24 72 72 

19 25 36 72 72 
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Table 16: Computational results of three solution methods for each defined problem size.  

 Master Problem CDA No Shipping   

Problem 

Size 

Solution 

Time 

(s) 

OFV Solution 

Time 

(s) 

OFV Solution 

Time 

(s) 

OFV Gap 1 

(%) 

Gap 2 

(%) 

1 23.0 11487914.7 58.0 

 

11491183.6 

 

11.0 11495498.8 

 

0.03% 

 

0.04% 

 

2 28.0 

 

10761291.0 

 

67.0 

 

10766003.4 

 

34.0 

 

10766003.5 

 

0.04% 

 

0.00% 

 

3 60.0 

 

15717444.0 

 

873.0 

 

15746179.0 

 

353.0 

 

15755033.6 

 

0.18% 

 

0.06% 

 

4 133.0 

 

30162371.2 

 

764.0 

 

30161638.3 

 

170.0 

 

30193235.9 

 

0.00% 

 

0.10% 

 

5 413 

 

38915377.0 

 

145.0 

 

38996430.5 

 

250.0 

 

39021657.5 

 

0.21% 

 

0.06% 

 

6 68.0 

 

16897557.8 

 

63.0 

 

16906242.4 

 

46.0 

 

17128209.4 

 

0.05% 

 

1.31% 

 

7 89.5 16646129.0 

 

177.0 

 

16646128.9 

 

114.0 

 

16946954.0 

 

0.00% 

 

1.81% 

 

8 228.0 

 

23135014.9 

 

1584.0 

 

23167955.5 

 

84.0 

 

23511251.4 

 

0.14% 

 

1.48% 

 

9 N/A 

 

N/A 

 

397.0 

 

62303571.3 

 

N/A 

 

N/A 

 

N/A 

 

N/A 

 

10 150.0 

 

25527551.1 

 

248.0 

 

25527915.7 

 

89.0 

 

26174613.9 

 

0.00% 

 

2.53% 

 

11 214.22 

 

26204783.2 

 

80.3 

 

26208024.3 

 

66.0 

 

27066686.7 

 

0.01% 

 

3.29% 

 

12 

 

349.0 36719271.6 319.3 36719271.6 128.0 37810463.9 0.24% 2.97% 

13 

 

N/A N/A 594.0 71058577.8 N/A N/A N/A N/A 

14 

 

N/A N/A 1184.7 99288922.5 N/A N/A N/A N/A 
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Table 16: Computational results of three solution methods for each defined problem size 

(Continued).  

 Master 

Problem 

CDA No 

Shipping 

     

Problem 

Size 

Solution 

Time 

(s) 

OFV Solution 

Time (s) 

OFV Solution 

Time 

(s) 

OFV Gap 1 

(%) 

Gap 2 

(%) 

16 

 

N/A N/A 222.5 44030475.8 135.9 45266770 N/A 2.81% 

17 

 

N/A N/A 746.8 61392672.4 N/A N/A N/A N/A 

18 

 

N/A N/A 1870.3 119007914.2 N/A N/A N/A N/A 

19 N/A N/A 1478.1 261370244.6 N/A N/A N/A N/A 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

87 

 

Appendix B: Computer Codes 

 

The presented codes were developed in Python.  

 

Base Model 

from gurobipy import * 

import matplotlib.pyplot as mpl 

import numpy as np 

import math as math 

import xlsxwriter 

 

workbook = xlsxwriter.Workbook('17B-Costs.xlsx') 

worksheet = workbook.add_worksheet('costftn') 

    # Add a bold format to use to highlight cells. 

bold = workbook.add_format({'bold': 1}) 

underline = workbook.add_format({'underline': 1}) 

    # Add a number format for cells with money. 

res_format = workbook.add_format({'num_format': '0.000000'}) 

bad_res_format = workbook.add_format({'num_format':'0.000000','color': 

'#FF0000','bold':1}) 

    # Add an Excel date format. 

date_format = workbook.add_format({'num_format': 'mmmm d yyyy'}) 

    # coloring 

blue_format = workbook.add_format({'color': '#0000FF'}) 

red_format = workbook.add_format({'color': '#FF0000'}) 

green_format = workbook.add_format({'color': '#008000'}) 

 

 

row = 1 
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L = 6 

U = 6 

#20000 hours is the life 

# each year: 2000 hours of work 

# UtilFactor range: [0.2,4] 

W=1 

T=[5,6,7,8,9,10,11] 

 

c = {} 

for i in range(L): 

    for j in range(U): 

        for t in range(max(T)): 

            if i == 0: 

                c[i,j,t] = int((220000 - 12000*j)*(1.03)**t) 

            else: 

                c[i,j,t] = int((c[0,j,t]*(.8) - 3000*i)*(1.03)**t) 

            # print c[i,j,t] .577 - hartman 

 

m = {} 

 

for i in range(L): 

    for j in range(U): 

        for t in range(max(T)): 

            m[i,j,t] = int((10000 + 500*i + 5000*j*((j+1)**1.2) - j**1.2)*(1.03)**t) 

 

s = {} 

for t in range(max(T)): 

    for i in range(L): 
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        for j in range(U): 

                s[i,j,t] = (.57)*(c[i,j,t]) 

 

# cap = {} 

# for t in range(max(T)): 

#     for w in range(W): 

#         cap[t,w] = 2 

# 

# from mpl_toolkits.mplot3d import Axes3D 

# fig = mpl.figure(figsize=(7,6))   # This creates a new figure object. 

# ax = fig.add_subplot(111, projection='3d')   # This adds a subplot to the figure with 3D 

projection, and returns the axes object. 

# x, y = np.linspace(0.0, L, L), np.linspace(0.0, U, U)   # Create the 2D space 

# X, Y = np.meshgrid(x, y)  # Get the plaid version (the 'meshgrid' version, similar to 

Matlab's meshgrid function) 

# z = (200000*(.577) - 1000*X - 5000*(Y**.8))*(1.03)**3 

# csf = ax.contourf(X, Y, z, 15) 

# cs = ax.contour(X, Y, z, 15, cmap=mpl.cm.Oranges_r) 

# csl = ax.clabel(csf, fmt='%2.1f', colors='k', fontsize=14) 

# cbar = mpl.colorbar(csf) 

# mpl.show() 

# 

q = {} 

for t in range(max(T)): 

    q[t] = 90000*1.03**t 

 

h = {} 

for t in range(max(T)): 

    h[t] = 5000*1.03**t 
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o = {} 

for t in range(max(T)): 

    o[t] = 50000*1.03**t 

 

r = {} 

r[ 0 , 0 ]= 4 

r[ 0 , 1 ]= 6 

r[ 0 , 2 ]= 6 

r[ 0 , 3 ]= 4 

r[ 0 , 4 ]= 0 

r[ 0 , 5 ]= 0 

r[ 0 , 6 ]= 0 

r[ 0 , 7 ]= 0 

r[ 0 , 8 ]= 0 

r[ 0 , 9 ]= 0 

r[ 0 , 10 ]= 0 

 

r[ 1 , 0 ]= 4 

r[ 1 , 1 ]= 6 

r[ 1 , 2 ]= 5 

r[ 1 , 3 ]= 3 

r[ 1 , 4 ]= 2 

r[ 1 , 5 ]= 0 

r[ 1 , 6 ]= 0 

r[ 1 , 7 ]= 0 

r[ 1 , 8 ]= 0 

r[ 1 , 9 ]= 0 

r[ 1 , 10 ]= 0 
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r[ 2 , 0 ]= 4 

r[ 2 , 1 ]= 5 

r[ 2 , 2 ]= 4 

r[ 2 , 3 ]= 3 

r[ 2 , 4 ]= 2 

r[ 2 , 5 ]= 2 

r[ 2 , 6 ]= 0 

r[ 2 , 7 ]= 0 

r[ 2 , 8 ]= 0 

r[ 2 , 9 ]= 0 

r[ 2 , 10 ]= 0 

 

r[ 3 , 0 ]= 4 

r[ 3 , 1 ]= 4 

r[ 3 , 2 ]= 3 

r[ 3 , 3 ]= 3 

r[ 3 , 4 ]= 2 

r[ 3 , 5 ]= 2 

r[ 3 , 6 ]= 2 

r[ 3 , 7 ]= 0 

r[ 3 , 8 ]= 0 

r[ 3 , 9 ]= 0 

r[ 3 , 10 ]= 0 

 

r[ 4 , 0 ]= 3 

r[ 4 , 1 ]= 3 

r[ 4 , 2 ]= 4 

r[ 4 , 3 ]= 3 
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r[ 4 , 4 ]= 2 

r[ 4 , 5 ]= 2 

r[ 4 , 6 ]= 2 

r[ 4 , 7 ]= 1 

r[ 4 , 8 ]= 0 

r[ 4 , 9 ]= 0 

r[ 4 , 10 ]= 0 

 

r[ 5 , 0 ]= 2 

r[ 5 , 1 ]= 3 

r[ 5 , 2 ]= 3 

r[ 5 , 3 ]= 3 

r[ 5 , 4 ]= 2 

r[ 5 , 5 ]= 2 

r[ 5 , 6 ]= 2 

r[ 5 , 7 ]= 2 

r[ 5 , 8 ]= 1 

r[ 5 , 9 ]= 0 

r[ 5 , 10 ]= 0 

 

r[ 6 , 0 ]= 1 

r[ 6 , 1 ]= 2 

r[ 6 , 2 ]= 3 

r[ 6 , 3 ]= 3 

r[ 6 , 4 ]= 3 

r[ 6 , 5 ]= 2 

r[ 6 , 6 ]= 2 

r[ 6 , 7 ]= 2 

r[ 6 , 8 ]= 1 
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r[ 6 , 9 ]= 1 

r[ 6 , 10 ]= 0 

 

# r[ 0 , 0 ]= 2 

# r[ 0 , 1 ]= 2 

# r[ 0 , 2 ]= 2 

# r[ 0 , 3 ]= 2 

# r[ 0 , 4 ]= 2 

# r[ 0 , 5 ]= 2 

# r[ 0 , 6 ]= 2 

# r[ 0 , 7 ]= 2 

# r[ 0 , 8 ]= 2 

# r[ 0 , 9 ]= 2 

# r[ 0 , 10 ]= 0 

 

p = {} 

p[0] = 0.05 

p[1] = 0.25 

p[2] = 0.30 

p[3] = 0.20 

p[4] = 0.10 

p[5] = 0.07 

p[6] = 0.03 

 

# R={} 

# for t in range(10): 

#     R[t] = sum([float(p[w]*r[w,t]) for w in range(W)]) 

 

model = Model("17B") 
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x={} 

for i in range(L): 

    for j in range(U): 

        x[i,j] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

y={} 

for i in range(L): 

    for j in range(U): 

        for w in range(W): 

            for t in range(max(T)): 

                y[i,j,t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

z = {} 

for w in range(W): 

    for t in range(max(T)): 

        z[t,w] = model.addVar(vtype='I',lb=0, ub=GRB.INFINITY) 

Z = model.addVar(vtype='I',lb=0, ub=GRB.INFINITY) 

 

S={} 

for i in range(L): 

    for j in range(U): 

        for w in range(W): 

            for t in range(max(T)): 

                S[i,j,t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

I={} 

for i in range(L): 

    for j in range(U): 
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        for w in range(W): 

            for t in range(max(T)): 

                I[i,j,t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

a={} 

for i in range(L): 

    for j in range(U): 

        for w in range(W): 

            for t in range(max(T)): 

                a[i,j,t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

# E={} 

# for w in range(W): 

#     for t in range(max(T)): 

#         E[t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

model.update() 

 

# # model.addConstr(x[0,0]==3) 

# # model.addConstr(x[1,8]==1) 

# # model.addConstr(Z==1) 

# # model.addConstr(quicksum(x[i,j] for i in range(L) for j in 

range(youmotherfucker))==4) 

#EEV Stochastic Programming 

# cx1={} 

# for i in range(L): 

#     for j in range(U): 

#         model.addConstr(x[1,0] == 4) 

# cx2={} 

# model.addConstr(quicksum(x[i,j] for i in range(L) for j in range(U)) == 4) 
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c2={} 

for w in range(W): 

    for t in range(max(T)): 

        # c2[w,t]=model.addConstr(z[t,w] + quicksum(a[i,j,t,w] for i in range(L) for j in 

range(U)) >= r[w,t],name='c2_'+str(w)+"-"+str(t)) 

        # EV         ## model.addConstr(z[t,w]==1) 

        c2[w,t]=model.addConstr(z[t,w] + quicksum(a[i,j,t,w] for i in range(L) for j in 

range(U)) >= quicksum(p[ww]*r[ww,t] for ww in 

range(7)),name='c2_'+str(w)+"-"+str(t)) 

 

c3={} 

for w in range(W): 

    for t in range(max(T)): 

        for i in range(L): 

            c3[w,t,i] = model.addConstr( a[i,U-1,t,w] == 0 , 

name="c3_"+str(w)+"_"+str(t)+"_"+str(i)) 

c4={} 

for w in range(W): 

    for t in range(max(T)): 

        for j in range(U): 

            c4[w,t,j] = model.addConstr( a[L-1,j,t,w] == 0 ) 

c5={} 

c52={} 

for w in range(W): 

    for i in range(L-1): 

        for j in range(U-1): 

            c5[w,i,j] = model.addConstr(a[i,j,0,w]+I[i,j,0,w]+S[i,j,0,w] == y[i,j,0,w]) 
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            c52[w,i,j] = model.addConstr(y[i,j,0,w] == x[i,j]) 

c6={} 

for w in range(W): 

    for t in range(1,max(T)): 

        for j in range(1,U): 

            for i in range(1,L): 

                c6[w,t,j,i] = model.addConstr(a[i,j,t,w]+I[i,j,t,w]+S[i,j,t,w] == y[i,j,t,w]+a[i-1,j-

1,t-1,w]+I[i-1,j,t-1,w]) 

c62={} 

for w in range(W): 

    for t in range(1,max(T)): 

            for i in range(1,L): 

                c62[w,t,0,i] = model.addConstr(a[i,0,t,w]+I[i,0,t,w]+S[i,0,t,w] == 

y[i,0,t,w]+I[i-1,0,t-1,w]) 

c7={} 

for w in range(W): 

    for t in range(1,max(T)): 

        for j in range(U): 

            c7[w,t,j] = model.addConstr(a[0,j,t,w]+I[0,j,t,w]+S[0,j,t,w] == y[0,j,t,w]) 

c8={} 

for w in range(W): 

    for t in range(1,max(T)): 

        for i in range(L): 

            c8[w,t,i] = model.addConstr(a[i,0,t,w]+I[i,0,t,w]+S[i,0,t,w] == y[i,0,t,w]) 

 

c9={} 

for w in range(W): 

    for t in range(1,max(T)): 

        for j in range(1,U): 
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            c9[w,t,j] = model.addConstr( S[L-1,j,t,w] == y[L-1,j,t,w] + a[L-2,j-1,t-1,w] + I[L-

2,j,t-1,w] ) 

 

c10={} 

for w in range(W): 

    for t in range(1,max(T)): 

        for i in range(1,L): 

            c10[w,t,i] = model.addConstr( S[i,U-1,t,w] == y[i,U-1,t,w] + a[i,U-2,t-1,w] ) 

c11={} 

for w in range(W): 

    for j in range(1,U): 

        c11[w,j] = model.addConstr( S[L-1,j,0,w] == y[L-1,j,0,w] ) 

c12={} 

for w in range(W): 

    for i in range(1,L): 

        c12[w,i] = model.addConstr( S[i,U-1,0,w] == y[i,U-

1,0,w],name="c_12_"+str(w)+"_"+str(i) ) 

c13={} 

c14={} 

for i in range(L): 

    for w in range(W): 

        c13[i] = model.addConstr( S[i,0,0,w] == 0 ) 

for j in range(U): 

    for w in range(W): 

        c14[j] = model.addConstr( S[0,j,0,w] == 0 ) 

c15={} 

for w in range(W): 

    c15[w,t] = model.addConstr(z[0,w] == Z) 
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c16={} 

for w in range(W): 

    c16[w] = model.addConstr(quicksum(S[i,j,t,w] for t in range(T[w],max(T)) for i in 

range(L) for j in range(U))==0) 

 

# c17={} 

# for w in range(W): 

#     for t in range(max(T)): 

#         c17[t,w] = model.addConstr(E[t,w] >= quicksum(a[i,j,t,w] for i in range(L) for j in 

range(U)) - cap[t,w]) 

 

# Fix a solution in the model 

# if isFixed==1: 

#     for i in range(L): 

#         for j in range(U): 

#             model.addConstr(x[i,j]==xx[i,j]) 

#             for w in range(W): 

#                 for t in range(max(T)): 

#                     model.addConstr(y[i,j,t,w]==yy[i,j,t,w]) 

#                     model.addConstr(I[i,j,t,w]==II[i,j,t,w]) 

#                     model.addConstr(a[i,j,t,w]==aa[i,j,t,w]) 

#                     model.addConstr(S[i,j,t,w]==SS[i,j,t,w]) 

#     for t in range(max(T)): 

#         for w in rangr(W): 

#             model.addConstr(z[t,w]==zz[t,w]) 

 

 

model.update() 
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objective =  0 #Z*q+Z*o + quicksum((c[i,j,0]+o+m[i,j,0])*x[i,j] for i in range(L) for j in 

range(U)) 

for w in range(W): 

    for t in range(max(T)): 

        objective += (1/1.03)**t*float(p[w])*(q[t]*z[t,w] + o[t]*z[t,w] + 

quicksum(o[t]*a[i,j,t,w] + c[i,j,t]*y[i,j,t,w] + m[i,j,t]*a[i,j,t,w] + h[t]*I[i,j,t,w] 

- s[i,j,t]*S[i,j,t,w] for i in range(L) for j in range(U))) 

        #float(p[w])* 

 

model.setObjective(objective) 

model.setParam("MIPGap",0.00) 

model.modelSense = GRB.MINIMIZE 

model.update() 

model.optimize() 

print("model status is:",model.status) 

if model.status==GRB.OPTIMAL: 

    print("Optimal", model.objVal) 

    Jimmy = model.objVal 

    xx={} 

    yy={} 

    SS={} 

    II={} 

    aa={} 

    zz={} 

 

    for i in range(L): 

        for j in range(U): 

            xx[i,j] = x[i,j].x 

            if x[i,j].x>0: 
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                print("X",i,j,x[i,j].x) 

    for w in range(W): 

        print("****SCENARIO ",w) 

        for t in range(max(T)): 

            zz[t,w] = z[t,w].x 

            print("     ****TIME PERIOD ",t) 

            expy = 0 

            for ww in range(7): 

                expy += p[ww]*r[ww,t] 

            print("expected demand",expy) 

            if z[t,w].x>0: 

                print("R",z[t,w].x) 

            for i in range(L): 

                for j in range(U): 

                    yy[i,j,t,w] = y[i,j,t,w].x 

                    SS[i,j,t,w] = S[i,j,t,w].x 

                    II[i,j,t,w] = I[i,j,t,w].x 

                    aa[i,j,t,w] = a[i,j,t,w].x 

                    if y[i,j,t,w].x>0: 

                        print("P(",i+1,",",j+1,")",y[i,j,t,w].x) 

                    if S[i,j,t,w].x>0: 

                        print("S(",i+1,",",j+1,")",S[i,j,t,w].x) 

                    if I[i,j,t,w].x>0: 

                        print("I(",i+1,",",j+1,")",I[i,j,t,w].x) 

                    if a[i,j,t,w].x>0: 

                        print("O(",i+1,",",j+1,")",a[i,j,t,w].x) 

 

    # for w in range(W): 

    #     for t in range(max(T)): 
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    #         zz[t,w] = z[t,w].x 

    #         if z[t,w].x>0: 

    #             print("z",t,w,z[t,w].x) 

 

    row=1 

 

    worksheet.write('A1', 'i', bold) 

    worksheet.write('B1', 'j', bold) 

    worksheet.write('D1', 'Cost', bold) 

    worksheet.write('E1', 'O&M', bold) 

    for i in range(L): 

        for j in range(U): 

            for t in range(1): 

                worksheet.write_number(row, 0, i) 

                worksheet.write_number(row, 1, j) 

                worksheet.write_number(row, 3, c[i,j,t]) 

                worksheet.write_number(row, 4, m[i,j,t]) 

                row += 1 

 

    workbook.close() 

    # return (xx,yy,SS,II,aa,zz,Jimmy) 

else: 

    model.computeIIS() 

#    Print the names of all of the constraints in the IIS set. 

    print("--------IIS CONSTRAINTS") 

    for c in model.getConstrs(): 

        if c.IISConstr > 0: 

            print(c.ConstrName) 

#    Print the names of all of the variables in the IIS set. 
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    print("--------IIS VARIABLES") 

    for v in model.getVars(): 

        if v.IISLB > 0 or v.IISUB > 0: 

            print(v.VarName) 

 

Multiple Operation Types Model  

import numpy as np 

import scipy.stats as stats 

import math as mt 

import random as random 

import openpyxl 

from random import randint 

import os 

 

M = 3 

O = 2 

L = 6 

U = 6 

 

#22500 hours is the life 

# each year: 1500 hours of work 

# T=[4,8,10] 

TT = 10 

for SENSE in 

[200000,220000,230000,240000,250000,300000,350000,400000,1000000]: 

#[1000, 10000,20000,170000,35000,50000,62000,75000, 88000, 100000] 

    print("SENSE 

IS:____________________________________________________________

_",SENSE) 
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    c = {} 

    interest = 1.03 

    for i in range(L): 

        for j in range(U): 

            for t in range(TT): 

                for k in range(M): 

                    if i == 0: 

                        c[i,j,t,0] = int((220000 -12000*mt.ceil(j/12))*(interest)**t) #12000 

DIVIDE BY TIME CHANGE mt.ceil(j/12) 

                        c[i,j,t,1] = int((220000 -12000*mt.ceil(j/12))*(interest)**t) #12000 

DIVIDE BY TIME CHANGE mt.ceil(j/12) 

                        c[i,j,t,2] = int((SENSE -12000*mt.ceil(j/12))*(interest)**t) #12000 

DIVIDE BY TIME CHANGE mt.ceil(j/12) 

                    else: 

                        c[i,j,t,0] = int((.8*c[0,j,t,0] - 3000*mt.ceil(i/12))*(interest)**t) #3000 

                        c[i,j,t,1] = int((.8*c[0,j,t,0] - 3000*mt.ceil(i/12))*(interest)**t) #3000 

                        c[i,j,t,2] = int((.8*c[0,j,t,0] - 3000*mt.ceil(i/12))*(interest)**t) #3000 

 

 

    ex = {} 

    for k in range(M): 

        for o in range(O): 

            if k == 0 and o == 0: 

                ex[k,o] = 3 

            elif k == 0 and 0 == 1: 

                ex[k,o] = 3 

            elif k == 1 and 0 == 0: 

                ex[k,o] = 3 

            elif k == 1 and 0 == 1: 
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                ex[k,o] = 3 

            elif k == 2 and 0 == 0: 

                ex[k,o] = 3 

            else: 

                ex[k,o] = 0 

 

    q = {} 

    for k in range(M): 

        for t in range(TT): 

            if k == 0: 

                q[k,t] = 100000000 #100000*(1.03)**t 

            else: 

                q[k,t] = 100000000 #75000*(1.03)**t 

 

    h = {} 

    for k in range(M): 

        for t in range(TT): 

            if k == 0: 

                h[k,t] = 1000*(interest)**t 

            elif k == 1: 

                h[k,t] = 1000*(interest)**t 

            else: 

                h[k,t] = 1000*(interest)**t 

 

    om = {} 

    for k in range(M): 

        for t in range(TT): 

            for o in range(O): 

                if k == 0 and o == 0: 
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                    om[k,t,o] = 5 

                elif k == 1 and 0 == 1: 

                    om[k,t,o] = 6 

                elif k == 2 and 0 == 0: 

                    om[k,t,o] = 4 

                elif k == 2 and 0 == 1: 

                    om[k,t,o] = 3 

                else: 

                    om[k,t,o] = 0 

 

    m = {} 

    for i in range(L): 

        for j in range(U): 

            for t in range(TT): 

                for k in range(M): 

                    for o in range(O): 

                        if k == 0: 

                            m[i,j,k,t,0] = int((10000 + 500*mt.ceil(i/12) + 

5000*mt.ceil(j/12)*((mt.ceil(j/12)+1)**1.2) - 

mt.ceil(j/12)**1.2)*(interest)**t) 

                            m[i,j,k,t,1] = int((10000 + 500*mt.ceil(i/12) + 

5000*mt.ceil(j/12)*((mt.ceil(j/12)+1)**1.2) - 

mt.ceil(j/12)**1.2)*(interest)**t) 

                        elif k == 1: 

                            m[i,j,k,t,0] = int((10000 + 500*mt.ceil(i/12) + 

5000*mt.ceil(j/12)*((mt.ceil(j/12)+1)**1.2) - 

mt.ceil(j/12)**1.2)*(interest)**t) 
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                            m[i,j,k,t,1] = int((10000 + 500*mt.ceil(i/12) + 

5000*mt.ceil(j/12)*((mt.ceil(j/12)+1)**1.2) - 

mt.ceil(j/12)**1.2)*(interest)**t) 

                        else: 

                            m[i,j,k,t,0] = int((10000 + 500*mt.ceil(i/12) + 

5000*mt.ceil(j/12)*((mt.ceil(j/12)+1)**1.2) - 

mt.ceil(j/12)**1.2)*(interest)**t) 

                            m[i,j,k,t,1] = int((10000 + 500*mt.ceil(i/12) + 

5000*mt.ceil(j/12)*((mt.ceil(j/12)+1)**1.2) - 

mt.ceil(j/12)**1.2)*(interest)**t) 

 

 

    s = {} 

    for t in range(TT): 

        for i in range(L): 

            for j in range(U): 

                for k in range(M): 

                    s[i,j,t,0] = (.57)*(c[i,j,t,0]) 

                    s[i,j,t,1] = (.57)*(c[i,j,t,1]) 

                    s[i,j,t,2] = (.57)*(c[i,j,t,2]) 

                     #int((.75)*(c[i,j,k,t]) - 500*i - 1500*(j**.8)) 

                    # elif t >= i and k == 1: 

                    #     s[i,j,k,t] = int((.75)*(c[i,j,k,t-i]) - 5000*i - 1500*(j**.8)) 

                    # elif t < i and k== 0: 

                    #     s[i,j,k,t] = int((.75)*(c[i,j,k,t-i]) - 5000*i - 1500*(j**.8)) 

                    # else: 

                    #     s[i,j,k,t] = int((.75)*(c[i,j,k,t-i]) - 5000*i - 1500*(j**.8)) 
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    r={} 

    wb = openpyxl.load_workbook('25ProjectsMM.xlsx') 

    type(wb) 

    wb.get_sheet_names() 

    sheet = wb.get_sheet_by_name('Projects1') 

    for t in range(TT): 

        for o in range(O): 

            r[t,o] = (sheet.cell(row=o+2,column=t+2).value) 

            # r[w,t,p] = 

randint((sheet.cell(row=p+2,column=t+2).value),(sheet.cell(row=p+2,column

=t+2).value)+2) 

            # print("Demand is:  ",t,p,r[w,t,p]) 

 

 

    u = {} 

    # for k in range(M): 

    #     for o in range(O): 

    #         u[k,o] = random.randint(0,1) 

    u[0,0] = 1 

    u[0,1] = 0 

 

    u[1,0] = 0 

    u[1,1] = 1 

 

    u[2,0] = 1 

    u[2,1] = 1 
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    # pr = {} 

    # pr[0] = 1 #0.05 

    # pr[1] = 0.68 

    # pr[2] = 0.27 

    # for w in range(W): 

    #     p[w] = 0.01  #CHECK THIS 

 

    # R={} 

    # for t in range(TT): 

    #     for o in range(O): 

    #         R[t,o] = sum([int(pr[t,o])]) 

 

 

 

    from gurobipy import * 

    model = Model("17B") 

 

    x={} 

    for i in range(L): 

        for j in range(U): 

            for k in range(M): 

                x[i,j,k] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    y={} 

    for i in range(L): 

        for j in range(U): 

            for t in range(TT): 

                for k in range(M): 

                    y[i,j,t,k] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 
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    z = {} 

    for t in range(TT): 

        for k in range(M): 

            for o in range(O): 

                z[t,k,o] = model.addVar(vtype='I',lb=0, ub=GRB.INFINITY) 

    Z = model.addVar(vtype='I',lb=0, ub=GRB.INFINITY) 

 

    S={} 

    for i in range(L): 

        for j in range(U): 

            for t in range(TT): 

                for k in range(M): 

                    S[i,j,t,k] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    I={} 

    for i in range(L): 

        for j in range(U): 

            for t in range(TT): 

                for k in range(M): 

                    I[i,j,t,k] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    a={} 

    for i in range(L): 

        for j in range(U): 

            for t in range(TT): 

                for k in range(M): 

                    for o in range(O): 

                        a[i,j,t,k,o] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 
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    # O = {} 

    # for w in range(W): 

    #     for t in range(T[w]): 

    #         O[t,w] = model.addVar(vtype='I',lb=0, ub=GRB.INFINITY) 

    model.update() 

 

 

    # model.addConstr(x[0,0]==3) 

    # model.addConstr(x[1,8]==1) 

    # model.addConstr(Z==1) 

    # model.addConstr(quicksum(x[i,j] for i in range(L) for j in range(L))==4) 

    # 

 

    # model.addConstr(x[1,8,1] == 1) 

    # model.addConstr(x[5,6,1] == 2) 

    # model.addConstr(quicksum(x[i,j,k] for i in range(L) for j in range(L) for k in 

range(M)) == 3) 

    c1={} 

    for t in range(TT): 

        for o in range(O): 

            c1[t,o]=model.addConstr(quicksum(u[k,o]*(z[t,k,o] + quicksum(a[i,j,t,k,o] for i in 

range(L) for j in range(U))) for k in range(M)) >= r[t,o],name='c1_'+str(t)+"-

"+str(o)) 

    #         model.addConstr(z[t,w]==1) 

 

    c11={} 

    for t in range(TT): 
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        c11[t]=model.addConstr(quicksum(z[t,k,o] for k in range(M) for o in range(O)) + 

quicksum(a[i,j,t,k,o] for i in range(L) for j in range(U) for k in range(M) for o 

in range(O)) >= quicksum(r[t,o] for o in range(O)),name='c11_'+str(t)) 

    #         model.addConstr(z[t,w]==1) 

 

    c12={} 

    for t in range(TT): 

        for k in range(M): 

            c12[t,k]=model.addConstr(quicksum(z[t,k,o] for o in range(O)) + 

quicksum(a[i,j,t,k,o] for i in range(L) for j in range(L) for o in range(O)) <= 

quicksum(u[k,o]*r[t,o] for o in range(O)),name='c12_'+str(t)+"_"+str(k)) 

    #         # model.addConstr(z[t,w]==1) 

 

    c2={} 

    for t in range(TT): 

        for i in range(L): 

            for k in range(M): 

                for o in range(O): 

                    c2[t,i,k,o] = model.addConstr(a[i,U-1,t,k,o] == 0) 

    c3={} 

    for t in range(TT): 

        for j in range(U): 

            for k in range(M): 

                for o in range(O): 

                    c3[t,j,k] = model.addConstr(a[L-1,j,t,k,o] == 0) 

    c4={} 

    for t in range(1,TT): 

        for j in range(1,U): 

            for i in range(1,L): 
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                for k in range(M): 

                    c4[t,j,i,k] = model.addConstr(quicksum(a[i,j,t,k,o] for o in 

range(O))+I[i,j,t,k]+S[i,j,t,k] == y[i,j,t,k]+quicksum(a[i-1,j-1,t-1,k,o] for o in 

range(O))+I[i-1,j,t-1,k]) 

    c5={} 

    c6={} 

    for i in range(L-1): 

        for j in range(U-1): 

            for k in range(M): 

                for o in range(O): 

                    c5[i,j,k] = model.addConstr(quicksum(a[i,j,0,k,o] for o in 

range(O))+I[i,j,0,k]+S[i,j,0,k] == y[i,j,0,k]) 

                    c6[i,j,k] = model.addConstr(y[i,j,0,k] == x[i,j,k]) 

    c7={} 

    for t in range(1,TT): 

        for j in range(U): 

            for k in range(M): 

                c7[t,j,k] = model.addConstr(quicksum(a[0,j,t,k,o] for o in 

range(O))+I[0,j,t,k]+S[0,j,t,k] == y[0,j,t,k]) 

    c8={} 

    for t in range(1,TT): 

        for i in range(L): 

            for k in range(M): 

                for o in range(O): 

                    c8[t,i,k] = model.addConstr(quicksum(a[i,0,t,k,o] for o in 

range(O))+I[i,0,t,k]+S[i,0,t,k] == y[i,0,t,k]) 

 

    c9={} 

    for t in range(1,TT): 
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        for j in range(1,U): 

            for k in range(M): 

                for o in range(O): 

                    c9[t,j,k] = model.addConstr( S[L-1,j,t,k] == y[L-1,j,t,k] + quicksum(a[L-2,j-

1,t-1,k,o] for o in range(O)) + I[L-2,j,t-1,k] ) 

    c10={} 

    for t in range(1,TT): 

        for i in range(1,L): 

            for k in range(M): 

                for o in range(O): 

                    c10[t,i,k] = model.addConstr( S[i,U-1,t,k] == y[i,U-1,t,k] + quicksum(a[i,U-

2,t-1,k,o] for o in range(O)) ) 

    c11={} 

    for j in range(1,U): 

        for k in range(M): 

            c11[j,k] = model.addConstr( S[L-1,j,0,k] == y[L-1,j,0,k] ) 

    c12={} 

    for i in range(1,L): 

        for k in range(M): 

            c12[i,k] = model.addConstr( S[i,L-1,0,k] == y[i,L-

1,0,k],name="c_12_"+str(i)+"_"+str(k)) 

 

    c13={} 

    c14={} 

    for i in range(L): 

        for k in range(M): 

            c13[i,k] = model.addConstr( S[i,0,0,k] == 0 ) 

            c14[i,k] = model.addConstr( S[0,i,0,k] == 0 ) 

    c15={} 
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    for k in range(M): 

        for o in range(O): 

            c15[t,k] = model.addConstr(z[0,k,o] == Z) 

 

    # calg = {} 

    # for j in range(U): 

    #     for i in range(L-1): 

    #         for k in range(M): 

    #             for t in range(TT): 

    #                 model.addConstr(S[i,j,t,k] == 0) 

    model.update() 

 

 

 

 

    objective =0# Z*q+Z*o + quicksum((c[i,j]+o+m[i,j,t])*x[i,j] for i in range(L) for j in 

range(L)) 

    for t in range(TT): 

        for l in range(M): 

            objective += quicksum(q[l,t]*z[t,l,o] for o in range(O)) + 

quicksum(c[i,j,t,l]*y[i,j,t,l] + quicksum((m[i,j,l,t,o]+ om[l,t,o] + 

ex[l,o])*(a[i,j,t,l,o]) for o in range(O)) + h[l,t]*I[i,j,t,l] - s[i,j,t,l]*S[i,j,t,l] for i 

in range(L) for j in range(U)) 

 

    model.setObjective(objective) 

    model.setParam("MIPGap",0.00) 

    model.modelSense = GRB.MINIMIZE 

    model.update() 

    model.optimize() 
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    print("model status is:",model.status) 

    if model.status==GRB.OPTIMAL: 

        print("Optimal", model.objVal) 

        for i in range(L): 

            for j in range(U): 

                for k in range(M): 

                    if x[i,j,k].x>0: 

                        print("X",i+1,j+1,k+1,x[i,j,k].x) 

 

        for t in range(TT): 

            print("     ****TIME PERIOD ",t) 

            for o in range(O): 

                print("DEMAND of Operation",o+1,"is",r[t,o]) 

            for i in range(L): 

                for j in range(U): 

                    for k in range(M): 

                        if y[i,j,t,k].x>0: 

                            print("P(",i+1,j+1,t+1,k+1,")",y[i,j,t,k].x) 

                        if S[i,j,t,k].x>0: 

                            print("S(",i+1,j+1,t+1,k+1,")",S[i,j,t,k].x) 

                        if I[i,j,t,k].x>0: 

                            print("I(",i+1,j+1,t+1,k+1,")",I[i,j,t,k].x) 

                        for o in range(O): 

                            if a[i,j,t,k,o].x>0: 

                                print("O(",i+1,j+1,t+1,k+1,o+1,")",a[i,j,t,k,o].x) 

    #                         print "A_(",t,",",i,",",j,")^",w,"=",int(a[i,j,t,w].x) 

 

        for t in range(TT): 

            for k in range(M): 
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                if z[t,k,o].x>0: 

                    print("R(",t+1,k+1,o+1,")",z[t,k,o].x) 

    else: 

        model.computeIIS() 

    #    Print the names of all of the constraints in the IIS set. 

        print("--------IIS CONSTRAINTS") 

        for c in model.getConstrs(): 

            if c.IISConstr > 0: 

                print(c.ConstrName) 

    #    Print the names of all of the variables in the IIS set. 

        print("--------IIS VARIABLES") 

        for v in model.getVars(): 

            if v.IISLB > 0 or v.IISUB > 0: 

                print(v.VarName) 

 

Multiple Projects 

import numpy as np 

import scipy.stats as stats 

import math as mt 

import random as random 

import openpyxl 

from random import randint 

import os 

 

#PROJECTS / CLUSTERS OF PROJECTS 

P = [0,1,2,3,4,5,6,7,8,9] 

#[0,16,7,10,8,17,2]#(CLUSTER1) 

#[1,3,4,5,6,9,11,12,13,15,18,19,20,21,22] (CLUSTER2) 

#[23,24,14] (CLUSTER3) 
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#[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] (ALL PROJECTS) 

 

FREQ = 1 

freq = {} 

for p in P: 

    for p2 in P: 

        freq[p,p2] = 0 

for f in range(FREQ): 

    W = 1 

    pr = {} 

    for w in range(W): 

        pr[w]= 1/W 

        # print("prrr",pr[w]) 

 

    def readData(weekNumber): 

        fileName=str(weekNumber)+"/w"+str(weekNumber)+"-p.txt" 

        cwd = os.getcwd() 

 

        clusters={} 

        with open(cwd+"/DATA/"+fileName) as f: 

            for line in f: 

                if "set J := " in line: 

                    pointer = 8 

                    i=0 

                    while pointer+2<len(line): 

                        clusters[i] = line[pointer+1:pointer+4] 

                        i += 1 

                        pointer += 6 

                    C = i #or: len(consultants) 
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        #                 print(len(line)) 

        #                 print(line) 

        #                 print(clusters) 

                    # print(C) 

                    break 

 

        #DISTANCE MATRIX 

        R = {} 

        for j in range(C): 

            for c in range(C): 

                R[j,c] = 0 

        fileName6=str(weekNumber)+"/w"+str(weekNumber)+"-r.txt" 

        with open(cwd+"/DATA/"+fileName6) as f: 

            for line in f: 

                if "#" not in line and "param" not in line: 

                    if ";" in line: 

                        break 

                    else: 

                        cluster1 = line[:3] 

        #                 print "cons: ",consultant 

                        line = line[line.index("\t")+1:] 

                        cluster2 = line[:3] 

        #                 print "clust: ",cluster 

                        line = line[line.index("\t")+1:] 

                        j = [k for k in range(C) if clusters[k]==cluster1][0] 

                        c = [l for l in range(C) if clusters[l]==cluster2][0] 

                        # print("R: ",line) 

                        R[j,c] = float(line)*10 

        return(clusters,R) 
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    [clusters,R] = readData(15) 

 

    # print(R) 

    T = 30 

    r={} 

    wb = openpyxl.load_workbook('25Projects.xlsx') 

    type(wb) 

    wb.get_sheet_names() 

    sheet = wb.get_sheet_by_name('Projects1') 

    for w in range(W): 

        for t in range(T): 

            for p in P: 

                r[w,t,p] = (sheet.cell(row=p+2,column=t+2).value) 

                # r[w,t,p] = 

randint((sheet.cell(row=p+2,column=t+2).value),(sheet.cell(row=p+2,column

=t+2).value)+2) 

                # print("Demand is:  ",t,p,r[w,t,p]) 

 

 

    L = 18 

    U = 18 

    interest = 1.01 

 

    c = {} 

    for i in range(L): 

        for j in range(U): 

            for t in range(T): 

                if i == 0: 

                    c[i,j,t] = int((220000 - 4000*j)*(interest)**t) #12000 
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                else: 

                    c[i,j,t] = int((.8*c[0,j,t] - 1000*i)*(interest)**t) #3000 

                # print c[i,j,t] .577 - hartman 

 

    m = {} 

    for i in range(L): 

        for j in range(U): 

            for t in range(T): 

                m[i,j,t] = int((10000 + 167*i + 1667*j*((j+1)**1.2) - j**1.2)*(interest)**t) 

#500 and #5000 

 

    s = {} 

    for t in range(T): 

        for i in range(L): 

            for j in range(U): 

                    s[i,j,t] = (.57)*(c[i,j,t]) 

 

    q = {} 

    for t in range(T): 

        q[t] = 90000*interest**t 

 

    h = {} 

    for t in range(T): 

        h[t] = 5000*interest**t 

 

    o = {} 

    for t in range(T): 

        o[t] = 50000*interest**t 
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    # for black in range(HORSE): 

 

    from gurobipy import * 

    model = Model("17C") 

 

    x={} 

    for i in range(L): 

        for j in range(U): 

            for p in P: 

                x[i,j,p] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    y={} 

    for i in range(L): 

        for j in range(U): 

            for w in range(W): 

                for t in range(T): 

                    for p in P: 

                        y[i,j,t,w,p] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    # z = {} 

    # for w in range(W): 

    #     for t in range(T): 

    #         for p in P: 

    #             z[t,w,p] = model.addVar(vtype='I',lb=0, ub=0) #GRB.INFINITY) 

    # Z = model.addVar(vtype='I',lb=0, ub=GRB.INFINITY) 

 

    S={} 

    for i in range(L): 
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        for j in range(U): 

            for w in range(W): 

                for t in range(T): 

                    for p in P: 

                        S[i,j,t,w,p] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    I={} 

    for i in range(L): 

        for j in range(U): 

            for w in range(W): 

                for t in range(T): 

                    for p in P: 

                        I[i,j,t,w,p] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    a={} 

    for i in range(L): 

        for j in range(U): 

            for w in range(W): 

                for t in range(T): 

                    for p in P: 

                        a[i,j,t,w,p] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    TC={} 

    for i in range(L): 

        for j in range(U): 

            for w in range(W): 

                for t in range(T): 

                    for g in P: 

                        for b in P: 
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                            TC[i,j,t,w,g,b] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    model.update() 

 

 

    c1={} 

    for w in range(W): 

        for t in range(T): 

            for p in P: 

                c1[w,t,p]=model.addConstr(quicksum(a[i,j,t,w,p] for i in range(L) for j in 

range(U)) >= r[w,t,p],name='c1_'+str(w)+"-"+str(t)+"-"+str(p)) 

    # quicksum(r[w,t,p] for p in P) 

    #         model.addConstr(z[t,w]==1) z[t,w,p]+ 

 

 

    c2={} 

    for w in range(W): 

        for t in range(T): 

            for i in range(L): 

                for p in P: 

                    c2[w,t,i] = model.addConstr( a[i,U-1,t,w,p] == 0 , 

name="c2_"+str(w)+"_"+str(t)+"_"+str(i)) 

    c3={} 

    for w in range(W): 

        for t in range(T): 

            for j in range(U): 

                for p in P: 

                    c3[w,t,j] = model.addConstr( a[L-1,j,t,w,p] == 0 ) 
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    #WITH SHIPPING CONSTRAINT 

    c4={} 

    for w in range(W): 

        for t in range(1,T): 

            for j in range(1,U): 

                for i in range(1,L): 

                    for p in P: 

                        c4[w,t,j,i,p] = model.addConstr(a[i,j,t,w,p]+I[i,j,t,w,p]+S[i,j,t,w,p] == 

quicksum(TC[i,j,t,w,g,p] for g in P if g != p) - quicksum(TC[i,j,t,w,p,b] for b 

in P if b != p) + y[i,j,t,w,p]+a[i-1,j-1,t-1,w,p]+I[i-1,j,t-1,w,p]) 

 

    #TURN OFF SHIPPING CONSTRAINT 

    # c4={} 

    # for w in range(W): 

    #     for t in range(1,T): 

    #         for j in range(1,U): 

    #             for i in range(1,L): 

    #                 for p in P: 

    #                     c4[w,t,j,i,p] = model.addConstr(a[i,j,t,w,p]+I[i,j,t,w,p]+S[i,j,t,w,p] ==  

y[i,j,t,w,p]+a[i-1,j-1,t-1,w,p]+I[i-1,j,t-1,w,p]) 

 

    c5={} 

    c6={} 

    for w in range(W): 

        for i in range(L-1): 

            for j in range(U-1): 

                for p in P: 
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                    c5[w,i,j,p] = model.addConstr(a[i,j,0,w,p]+I[i,j,0,w,p]+S[i,j,0,w,p] == 

y[i,j,0,w,p]) 

                    c6[w,i,j,p] = model.addConstr(y[i,j,0,w,p] == x[i,j,p]) 

    c7={} 

    for w in range(W): 

        for t in range(1,T): 

            for j in range(U): 

                for p in P: 

                    c7[w,t,j,p] = model.addConstr(a[0,j,t,w,p]+I[0,j,t,w,p]+S[0,j,t,w,p] == 

y[0,j,t,w,p]) 

    c8={} 

    for w in range(W): 

        for t in range(1,T): 

            for i in range(L): 

                for p in P: 

                    c8[w,t,i,p] = model.addConstr(a[i,0,t,w,p]+I[i,0,t,w,p]+S[i,0,t,w,p] == 

y[i,0,t,w,p]) 

 

    c9={} 

    for w in range(W): 

        for t in range(1,T): 

            for j in range(1,U): 

                for p in P: 

                    c9[w,t,j,p] = model.addConstr( S[L-1,j,t,w,p] == y[L-1,j,t,w,p] + a[L-2,j-1,t-

1,w,p] + I[L-2,j,t-1,w,p] ) 

    c10={} 

    for w in range(W): 

        for t in range(1,T): 

            for i in range(1,L): 
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                for p in P: 

                    c10[w,t,i,p] = model.addConstr( S[i,U-1,t,w,p] == y[i,U-1,t,w,p] + a[i,U-2,t-

1,w,p] ) 

    c11={} 

    for w in range(W): 

        for j in range(1,U): 

            for p in P: 

                c11[w,j,p] = model.addConstr( S[L-1,j,0,w,p] == y[L-1,j,0,w,p] ) 

    c12={} 

    for w in range(W): 

        for i in range(1,L): 

            for p in P: 

                c12[w,i,p] = model.addConstr( S[i,U-1,0,w,p] == y[i,U-

1,0,w,p],name="c_12_"+str(w)+"_"+str(i)) 

 

    c13={} 

    c14={} 

    for i in range(L): 

        for w in range(W): 

            for p in P: 

                c13[i] = model.addConstr( S[i,0,0,w,p] == 0 ) 

    for j in range(U): 

        for w in range(W): 

            for p in P: 

                c14[j] = model.addConstr( S[0,j,0,w,p] == 0 ) 

    # c15={} 

    # for w in range(W): 

    #     for p in P: 

    #         c15[w,t,p] = model.addConstr(z[0,w,p] == Z) 
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    # model.update() 

 

 

 

 

    objective =0# Z*q+Z*o + quicksum((c[i,j]+o+m[i,j,t])*x[i,j] for i in range(L) for j in 

range(L)) 

    for w in range(W): 

        for t in range(T): 

            for l in P: 

                objective += (1/interest)**t*quicksum(o[t]*a[i,j,t,w,l] + c[i,j,t]*y[i,j,t,w,l] + 

m[i,j,t]*(a[i,j,t,w,l]) + h[t]*I[i,j,t,w,l] - s[i,j,t]*S[i,j,t,w,l] for i in range(L) for j 

in range(U)) 

    for i in range(L): 

        for j in range(U): 

            for t in range(T): 

                for w in range(W): 

                    objective += quicksum(R[g,b]*TC[i,j,t,w,g,b] for g in P for b in P) 

                #((o[t]+q[t])*z[t,w,l] float(pr[w]) 

    model.setObjective(objective) 

    model.setParam("MIPGap",0.00) 

    model.modelSense = GRB.MINIMIZE 

    model.update() 

    model.optimize() 

    print("model status is:",model.status) 

    if model.status==GRB.OPTIMAL: 

        print("Optimal", model.objVal) 

        Jimmy = model.objVal 

        xx={} 
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        yy={} 

        SS={} 

        II={} 

        aa={} 

        zz={} 

 

        for i in range(L): 

            for j in range(U): 

                for p in P: 

                    xx[i,j,p] = x[i,j,p].x 

                    if x[i,j,p].x>0: 

                        print("X",i+1,j+1,p+1,x[i,j,p].x) 

        # for w in range(W): 

        #     print("****SCENARIO ",w+1) 

        #     for p in P: 

        #         print("****PROJECT ",p+1) 

        #         for t in range(T): 

        #             # zz[t,w,p] = z[t,w,p].x 

        #             print("     ****TIME PERIOD ",t+1) 

        #             # # expy = 0 

        #             # # for ww in range(W): 

        #             # #     expy += p[ww]*r[ww,t] 

        #             # # print("expected demand",expy) 

        #             # if z[t,w,p].x>0: 

        #             #     print("R",z[t,w,p].x) 

        #             print("DEMAND:",r[w,t,p]) 

        #             for i in range(L): 

        #                 for j in range(U): 

        #                     yy[i,j,t,w,p] = y[i,j,t,w,p].x 
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        #                     SS[i,j,t,w,p] = S[i,j,t,w,p].x 

        #                     II[i,j,t,w,p] = I[i,j,t,w,p].x 

        #                     aa[i,j,t,w,p] = a[i,j,t,w,p].x 

        #                     if y[i,j,t,w,p].x>0: 

        #                         print("P(",i+1,",",j+1,",",p+1,")",y[i,j,t,w,p].x) 

        #                     if S[i,j,t,w,p].x>0: 

        #                         print("S(",i+1,",",j+1,",",p+1,")",S[i,j,t,w,p].x) 

        #                     if I[i,j,t,w,p].x>0: 

        #                         print("I(",i+1,",",j+1,",",p+1,")",I[i,j,t,w,p].x) 

        #                     if a[i,j,t,w,p].x>0: 

        #                         print("O(",i+1,",",j+1,",",p+1,")",a[i,j,t,w,p].x) 

        # 

        for b in P: 

            print("Project",b+1) 

            for w in range(W): 

                for i in range(L): 

                    for j in range(U): 

                        for g in P: 

                            for t in range(T): 

                                if TC[i,j,t,w,g,b].x>0: 

                                    print("Receive(",i+1,",",j+1,",",g+1,",",b+1,")",TC[i,j,t,w,g,b].x) 

                                    freq[g,b] += 1 

 

    # 

 

    else: 

        model.computeIIS() 

    #    Print the names of all of the constraints in the IIS set. 

        print("--------IIS CONSTRAINTS") 
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        for c in model.getConstrs(): 

            if c.IISConstr > 0: 

                print(c.ConstrName) 

    #    Print the names of all of the variables in the IIS set. 

        print("--------IIS VARIABLES") 

        for v in model.getVars(): 

            if v.IISLB > 0 or v.IISUB > 0: 

                print(v.VarName) 

for g in P: 

    for b in P: 

        if freq[g,b]>1: 

            print("Frequent Shipping from",g+1,"to",b+1,":",freq[g,b],"times") 

 

Optimal Utilization 

import mySolverTP as ms 

import xlsxwriter 

 

workbook = xlsxwriter.Workbook('17B-utilFactor.xlsx') 

worksheet = workbook.add_worksheet('sensAn') 

    # Add a bold format to use to highlight cells. 

bold = workbook.add_format({'bold': 1}) 

underline = workbook.add_format({'underline': 1}) 

    # Add a number format for cells with money. 

res_format = workbook.add_format({'num_format': '0.000000'}) 

bad_res_format = workbook.add_format({'num_format':'0.000000','color': 

'#FF0000','bold':1}) 

    # Add an Excel date format. 

date_format = workbook.add_format({'num_format': 'mmmm d yyyy'}) 

    # coloring 



 

132 

 

blue_format = workbook.add_format({'color': '#0000FF'}) 

red_format = workbook.add_format({'color': '#FF0000'}) 

green_format = workbook.add_format({'color': '#008000'}) 

 

row=1 

 

P1 = 220000 

P2 = 10000 

P3 = 3000 

P4 = 12000 

P5 = 500 

P6 = 5000 

UtilFactor=1; 

 

[x,y,S,I,a,z,OFV] = ms.mySolver(P1,P2,P3,P4,P5,P6,UtilFactor,0,0,0,0,0,0,0) 

 

worksheet.write('A1', 'UtilFactor', bold) 

worksheet.write('B1', 'OFV', bold) 

 

for UtilFactor in [0.25,0.5,0.75,1,1.25,1.5,1.75,2,2.25,2.5,2.75,3,3.25,3.5,3.75,4]: 

    [xx,yy,SS,II,aa,zz,OFVV] = ms.mySolver(P1,P2,P3,P4,P5,P6,UtilFactor,0,x,y,S,I,a,z) 

    worksheet.write_number(row, 1, OFVV) 

    worksheet.write_number(row, 0, UtilFactor) 

    row += 1 

 

workbook.close() 

 

from gurobipy import * 
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def 

mySolver(purchasePrice,maintBaseCost,purchaseAge,purchaseUtil,maintAge,

maintUtil,UtilFactor,isFixed,xx,yy,SS,II,aa,zz): 

 

    import matplotlib.pyplot as mpl 

    import numpy as np 

    import math as math 

 

 

 

    row = 1 

 

    L = 20 

    U = int(math.ceil(10/UtilFactor)) 

    #20000 hours is the life 

    # each year: 2000 hours of work 

    # UtilFactor range: [0.2,4] 

    W=7 

    T=[4,5,6,7,8,9,10] 

 

    c = {} 

    for i in range(L): 

        for j in range(U): 

            for t in range(max(T)): 

                if i == 0: 

                    c[i,j,t] = purchasePrice*(1.03)**t 

                else: 

                    c[i,j,t] = int((c[0,j,t]*(.577) - purchaseAge*i - 

purchaseUtil*(j**(.8*UtilFactor)))*(1.03)**t) 
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                # print c[i,j,t] 

 

    m = {} 

 

    for i in range(L): 

        for j in range(U): 

            for t in range(max(T)): 

                m[i,j,t] = int((maintBaseCost + maintAge*i + 

maintUtil*UtilFactor*j*((j+1)**1.2) - j**1.2)*(1.02)**t) 

 

    s = {} 

    for t in range(max(T)): 

        for i in range(L): 

            for j in range(U): 

                    s[i,j,t] = (.75)*(c[i,j,t]) 

 

    cap = {} 

    for t in range(max(T)): 

        for w in range(W): 

            cap[t,w] = 2 

 

    # from mpl_toolkits.mplot3d import Axes3D 

    # fig = mpl.figure(figsize=(7,6))   # This creates a new figure object. 

    # ax = fig.add_subplot(111, projection='3d')   # This adds a subplot to the figure with 

3D projection, and returns the axes object. 

    # x, y = np.linspace(0.0, L, L), np.linspace(0.0, U, U)   # Create the 2D space 

    # X, Y = np.meshgrid(x, y)  # Get the plaid version (the 'meshgrid' version, similar to 

Matlab's meshgrid function) 

    # z = (200000*(.577) - 5000*X - 5000*(Y**.8))*(1.03)**3 
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    # csf = ax.contourf(X, Y, z, 15) 

    # cs = ax.contour(X, Y, z, 15, cmap=mpl.cm.Oranges_r) 

    # csl = ax.clabel(csf, fmt='%2.1f', colors='k', fontsize=14) 

    # cbar = mpl.colorbar(csf) 

    # mpl.show() 

    # 

    q = 100000 

    h = 5000 

    o = 50000 

 

    r = {} 

    # r[ 0 , 0 ]= 4 

    # r[ 0 , 1 ]= 6 

    # r[ 0 , 2 ]= 6 

    # r[ 0 , 3 ]= 4 

    # r[ 0 , 4 ]= 0 

    # r[ 0 , 5 ]= 0 

    # r[ 0 , 6 ]= 0 

    # r[ 0 , 7 ]= 0 

    # r[ 0 , 8 ]= 0 

    # r[ 0 , 9 ]= 0 

    # r[ 1 , 0 ]= 4 

    # r[ 1 , 1 ]= 6 

    # r[ 1 , 2 ]= 5 

    # r[ 1 , 3 ]= 3 

    # r[ 1 , 4 ]= 2 

    # r[ 1 , 5 ]= 0 

    # r[ 1 , 6 ]= 0 

    # r[ 1 , 7 ]= 0 



 

136 

 

    # r[ 1 , 8 ]= 0 

    # r[ 1 , 9 ]= 0 

    # r[ 2 , 0 ]= 4 

    # r[ 2 , 1 ]= 5 

    # r[ 2 , 2 ]= 4 

    # r[ 2 , 3 ]= 3 

    # r[ 2 , 4 ]= 2 

    # r[ 2 , 5 ]= 2 

    # r[ 2 , 6 ]= 0 

    # r[ 2 , 7 ]= 0 

    # r[ 2 , 8 ]= 0 

    # r[ 2 , 9 ]= 0 

    # r[ 3 , 0 ]= 4 

    # r[ 3 , 1 ]= 4 

    # r[ 3 , 2 ]= 3 

    # r[ 3 , 3 ]= 3 

    # r[ 3 , 4 ]= 2 

    # r[ 3 , 5 ]= 2 

    # r[ 3 , 6 ]= 2 

    # r[ 3 , 7 ]= 0 

    # r[ 3 , 8 ]= 0 

    # r[ 3 , 9 ]= 0 

    # r[ 4 , 0 ]= 3 

    # r[ 4 , 1 ]= 3 

    # r[ 4 , 2 ]= 4 

    # r[ 4 , 3 ]= 3 

    # r[ 4 , 4 ]= 2 

    # r[ 4 , 5 ]= 2 

    # r[ 4 , 6 ]= 2 
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    # r[ 4 , 7 ]= 1 

    # r[ 4 , 8 ]= 0 

    # r[ 4 , 9 ]= 0 

    # r[ 5 , 0 ]= 2 

    # r[ 5 , 1 ]= 3 

    # r[ 5 , 2 ]= 3 

    # r[ 5 , 3 ]= 3 

    # r[ 5 , 4 ]= 2 

    # r[ 5 , 5 ]= 2 

    # r[ 5 , 6 ]= 2 

    # r[ 5 , 7 ]= 2 

    # r[ 5 , 8 ]= 1 

    # r[ 5 , 9 ]= 0 

    # r[ 6 , 0 ]= 1 

    # r[ 6 , 1 ]= 2 

    # r[ 6 , 2 ]= 3 

    # r[ 6 , 3 ]= 3 

    # r[ 6 , 4 ]= 3 

    # r[ 6 , 5 ]= 2 

    # r[ 6 , 6 ]= 2 

    # r[ 6 , 7 ]= 2 

    # r[ 6 , 8 ]= 1 

    # r[ 6 , 9 ]= 1 

 

    p = {} 

    p[0] = 0.05 

    p[1] = 0.25 

    p[2] = 0.30 

    p[3] = 0.20 



 

138 

 

    p[4] = 0.10 

    p[5] = 0.07 

    p[6] = 0.03 

 

    # R={} 

    # for t in range(10): 

    #     R[t] = sum([float(p[w]*r[w,t]) for w in range(W)]) 

 

    model = Model("17B") 

 

    x={} 

    for i in range(L): 

        for j in range(U): 

            x[i,j] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    y={} 

    for i in range(L): 

        for j in range(U): 

            for w in range(W): 

                for t in range(max(T)): 

                    y[i,j,t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    z = {} 

    for w in range(W): 

        for t in range(max(T)): 

            z[t,w] = model.addVar(vtype='I',lb=0, ub=GRB.INFINITY) 

    Z = model.addVar(vtype='I',lb=0, ub=GRB.INFINITY) 

 

    S={} 
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    for i in range(L): 

        for j in range(U): 

            for w in range(W): 

                for t in range(max(T)): 

                    S[i,j,t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    I={} 

    for i in range(L): 

        for j in range(U): 

            for w in range(W): 

                for t in range(max(T)): 

                    I[i,j,t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    a={} 

    for i in range(L): 

        for j in range(U): 

            for w in range(W): 

                for t in range(max(T)): 

                    a[i,j,t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

    E={} 

    for w in range(W): 

        for t in range(max(T)): 

            E[t,w] = model.addVar(vtype='I',lb=0,ub=GRB.INFINITY) 

 

    model.update() 

 

    # # model.addConstr(x[0,0]==3) 

    # # model.addConstr(x[1,8]==1) 

    # # model.addConstr(Z==1) 
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    # # model.addConstr(quicksum(x[i,j] for i in range(L) for j in 

range(youmotherfucker))==4) 

 

    c2={} 

    for w in range(W): 

        for t in range(max(T)): 

            c2[w,t]=model.addConstr(z[t,w] + quicksum(a[i,j,t,w] for i in range(L) for j in 

range(U)) >= int(math.ceil(r[w,t]/UtilFactor)),name='c2_'+str(w)+"-"+str(t)) 

            # model.addConstr(z[t,w]==1) 

    c3={} 

    for w in range(W): 

        for t in range(max(T)): 

            for i in range(L): 

                c3[w,t,i] = model.addConstr( a[i,U-1,t,w] == 0 , 

name="c3_"+str(w)+"_"+str(t)+"_"+str(i)) 

    c4={} 

    for w in range(W): 

        for t in range(max(T)): 

            for j in range(U): 

                c4[w,t,j] = model.addConstr( a[L-1,j,t,w] == 0 ) 

    c5={} 

    c52={} 

    for w in range(W): 

        for i in range(L-1): 

            for j in range(U-1): 

                c5[w,i,j] = model.addConstr(a[i,j,0,w]+I[i,j,0,w]+S[i,j,0,w] == y[i,j,0,w]) 

                c52[w,i,j] = model.addConstr(y[i,j,0,w] == x[i,j]) 

    c6={} 

    for w in range(W): 
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        for t in range(1,max(T)): 

            for j in range(1,U): 

                for i in range(1,L): 

                    c6[w,t,j,i] = model.addConstr(a[i,j,t,w]+I[i,j,t,w]+S[i,j,t,w] == y[i,j,t,w]+a[i-

1,j-1,t-1,w]+I[i-1,j,t-1,w]) 

 

    c7={} 

    for w in range(W): 

        for t in range(1,max(T)): 

            for j in range(U): 

                c7[w,t,j] = model.addConstr(a[0,j,t,w]+I[0,j,t,w]+S[0,j,t,w] == y[0,j,t,w]) 

    c8={} 

    for w in range(W): 

        for t in range(1,max(T)): 

            for i in range(L): 

                c8[w,t,i] = model.addConstr(a[i,0,t,w]+I[i,0,t,w]+S[i,0,t,w] == y[i,0,t,w]) 

 

    c9={} 

    for w in range(W): 

        for t in range(1,max(T)): 

            for j in range(1,U): 

                c9[w,t,j] = model.addConstr( S[L-1,j,t,w] == y[L-1,j,t,w] + a[L-2,j-1,t-1,w] + 

I[L-2,j,t-1,w] ) 

 

    c10={} 

    for w in range(W): 

        for t in range(1,max(T)): 

            for i in range(1,L): 

                c10[w,t,i] = model.addConstr( S[i,U-1,t,w] == y[i,U-1,t,w] + a[i,U-2,t-1,w] ) 
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    c11={} 

    for w in range(W): 

        for j in range(1,U): 

            c11[w,j] = model.addConstr( S[L-1,j,0,w] == y[L-1,j,0,w] ) 

    c12={} 

    for w in range(W): 

        for i in range(1,L): 

            c12[w,i] = model.addConstr( S[i,U-1,0,w] == y[i,U-

1,0,w],name="c_12_"+str(w)+"_"+str(i) ) 

    c13={} 

    c14={} 

    for i in range(L): 

        for w in range(W): 

            c13[i] = model.addConstr( S[i,0,0,w] == 0 ) 

    for j in range(U): 

        for w in range(W): 

            c14[j] = model.addConstr( S[0,j,0,w] == 0 ) 

    c15={} 

    for w in range(W): 

        c15[w,t] = model.addConstr(z[0,w] == Z) 

 

    c16={} 

    for w in range(W): 

        c16[w] = model.addConstr(quicksum(S[i,j,t,w] for t in range(T[w],max(T)) for i in 

range(L) for j in range(U))==0) 

 

    c17={} 

    for w in range(W): 

        for t in range(max(T)): 
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            c17[t,w] = model.addConstr(E[t,w] >= quicksum(a[i,j,t,w] for i in range(L) for j 

in range(U)) - cap[t,w]) 

 

    # Fix a solution in the model 

    if isFixed==1: 

        for i in range(L): 

            for j in range(U): 

                model.addConstr(x[i,j]==xx[i,j]) 

                for w in range(W): 

                    for t in range(max(T)): 

                        model.addConstr(y[i,j,t,w]==yy[i,j,t,w]) 

                        model.addConstr(I[i,j,t,w]==II[i,j,t,w]) 

                        model.addConstr(a[i,j,t,w]==aa[i,j,t,w]) 

                        model.addConstr(S[i,j,t,w]==SS[i,j,t,w]) 

        for t in range(max(T)): 

            for w in rangr(W): 

                model.addConstr(z[t,w]==zz[t,w]) 

 

 

    model.update() 

    # 

    # 

    # 

    # 

    objective =  0 #Z*q+Z*o + quicksum((c[i,j,0]+o+m[i,j,0])*x[i,j] for i in range(L) for j 

in range(U)) 

    for w in range(W): 

        for t in range(max(T)): 
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            objective += float(p[w])*(10000*E[t,w] + q*z[t,w] + o*UtilFactor*z[t,w] + 

quicksum(o*UtilFactor*a[i,j,t,w] + (20000 + c[i,j,t])*y[i,j,t,w] + 

m[i,j,t]*(a[i,j,t,w]) + h*(S[i,j,t,w]+I[i,j,t,w]) - s[i,j,t]*S[i,j,t,w] 

+10000*S[i,j,t,w] for i in range(L) for j in range(U))) 

 

    model.setObjective(objective) 

    model.setParam("MIPGap",0.00) 

    model.modelSense = GRB.MINIMIZE 

    model.update() 

    model.optimize() 

    print("model status is:",model.status) 

    if model.status==GRB.OPTIMAL: 

        print("Optimal", model.objVal) 

        Jimmy = model.objVal 

        xx={} 

        yy={} 

        SS={} 

        II={} 

        aa={} 

        zz={} 

 

        for i in range(L): 

            for j in range(U): 

                xx[i,j] = x[i,j].x 

                if x[i,j].x>0: 

                    print("X",i,j,x[i,j].x) 

        for w in range(W): 

            print("****SCENARIO ",w) 

            for t in range(max(T)): 
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                print("     ****TIME PERIOD ",t) 

                for i in range(L): 

                    for j in range(U): 

                        yy[i,j,t,w] = y[i,j,t,w].x 

                        SS[i,j,t,w] = S[i,j,t,w].x 

                        II[i,j,t,w] = I[i,j,t,w].x 

                        aa[i,j,t,w] = a[i,j,t,w].x 

                        if y[i,j,t,w].x>0: 

                            print("y",i,j,t,w,y[i,j,t,w].x) 

                        if S[i,j,t,w].x>0: 

                            print("S",i,j,t,w,S[i,j,t,w].x) 

                        if I[i,j,t,w].x>0: 

                            print("I",i,j,t,w,I[i,j,t,w].x) 

                        if a[i,j,t,w].x>0: 

                            print("a",i,j,t,w,a[i,j,t,w].x) 

 

        for w in range(W): 

            for t in range(max(T)): 

                zz[t,w] = z[t,w].x 

                if z[t,w].x>0: 

                    print("z",t,w,z[t,w].x) 

        return (xx,yy,SS,II,aa,zz,Jimmy) 

    else: 

        model.computeIIS() 

    #    Print the names of all of the constraints in the IIS set. 

        print("--------IIS CONSTRAINTS") 

        for c in model.getConstrs(): 

            if c.IISConstr > 0: 

                print(c.ConstrName) 
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    #    Print the names of all of the variables in the IIS set. 

        print("--------IIS VARIABLES") 

        for v in model.getVars(): 

            if v.IISLB > 0 or v.IISUB > 0: 

                print(v.VarName) 
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