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Abstract

The spore-forming, gram-positive bacteria Clostridium difficile can cause severe intestinal

illness. A striking increase in the number of cases of C. difficile infection (CDI) among

hospitals has highlighted the need to better understand how to prevent its spread. In this

dissertation, I discuss the development and structure of two different models of nosocomial

C. difficile transmission that we used to evaluate the efficacy of various control strategies

and to determine optimal interventions.

We begin with an update and modification of a compartmental model of nosocomial C.

difficile transmission to include vaccination. We then apply optimal control theory on this

epidemiological model to determine the time-varying optimal vaccination rate that minimizes

a combination of (1) disease prevalence and spread in the hospital population and (2) the

cost, in terms of time and money, associated with vaccination. Various hospital scenarios are

considered, such as times of increased antibiotic prescription rates and periods of outbreak,

to see how such scenarios affect the optimal vaccination rate. By comparing the values of

our objective functional with constant vaccination rates to those with time-varying optimal

vaccination rates, we illustrate the benefits of time-varying controls.

The second model is an agent-based model that also simulates the transmission of C.

difficile in a healthcare setting. This model explicitly incorporates healthcare workers

(HCWs) as vectors of transmission, tracks individual patient antibiotic histories, incorporates

varying risk levels of antibiotics with respect to CDI, and tracks contamination levels of

ward rooms by C. difficile. Using this model, we evaluated the efficacy of a variety of

control interventions and combinations of interventions on reducing C. difficile nosocomial

colonizations and infections. The control techniques included two forms of antimicrobial
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stewardship, increased environmental decontamination through room cleaning, improved

HCW compliance, and a preliminary assessment of vaccination.
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Chapter 1

Introduction

1.1 Background

In the United States, one of the most common causes of healthcare-associated infections

(HAIs) is the spore-forming, toxin-producing bacteria Clostridium difficile [50, 42]. In fact,

C. difficile has surpassed Staphylococcus aureus as the leading cause of nosocomial infections

[42]. Although C. difficile was first identified in the 1930s and has since been more intensely

studied beginning in the 1970s, there is still difficulty diagnosing, treating, and preventing C.

difficile infection (CDI) [19]. Between 2000 and 2010, the number of hospitalizations for CDI

among adults in the U.S. doubled [50]. This increase in both incidence and severity coincided

with the emergence of the epidemic NAP1/B1/027 strain, which is a highly virulent strain

[56]. In 2011, C. difficile was estimated to cause approximately 453,000 incident infections

and was linked to approximately 29,000 deaths [50]. For acute care facilities alone, the

estimated costs associated with C. difficile infection are as much as $4.8 billion [50], which

has placed a significant burden on healthcare facilities.

C. difficile spores are commonly found in the environment of healthcare facilities and are

transmitted through the fecal-oral route [48]. Symptomatic and asymptomatic individuals

shed C. difficile spores, and if ingested by a susceptible person, the spores can survive

the acidity of the stomach and reach the large intestine, where C. difficile can colonize.

Typically, the normal gut microbiota prevents C. difficile colonization by competing for

nutrients and producing inhibitory compounds against C. difficile. Antibiotics disrupt the
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normal gut microbiota, facilitating the colonization of C. difficile. Hence, use of antibiotics

is the strongest risk factor for developing CDI, and almost all antibiotics have been linked

to CDI [48]. With advanced age comes an increased risk of contracting CDI [48]. Toxins

A and B are responsible for most of the clinical manifestations of CDI including diarrhea,

abdominal pain, and bloating [48]. Once C. difficile reaches large numbers in the colon, both

toxins A and B are produced by C. difficile [19]. In response, some people will be able to

mount their own immune response and fight off the toxins. These individuals will become

asymptomatic carriers and never experience clinical symptoms [45].

Strategies to control and prevent CDI include antimicrobial usage restriction and

stewardship and methods to prevent the patient from exposure to C. difficile [18]. Current

practice includes identifying patients who have clinical CDI, putting them into isolation,

and taking proper contact precautions such as wearing gloves and gown, as well as vigilant

hand-washing with soap [18]. C. difficile cannot be eliminated by routine surface cleaning

nor by alcohol-based hand sanitizers, but washing with soap and water has been shown to

decrease C. difficile spores [48]. Worth noting is the fact that the large increase in CDI in the

early 2000s coincides with the expanded use of alcohol-based hand sanitizers in healthcare

settings [19].

In spite of these current practices, a notable difficulty in studying nosocomial C.

difficile transmission arises because many colonized patients, who also shed C. difficile

in their feces and contribute to transmission, are asymptomatic. Over the years, there

have been discrepancies in determining the relative contributions of asymptomatic carriers

versus those of symptomatic patients. In the 1980s, studies were conducted by [9] that

concluded symptomatic CDI patients were the main source of C. difficile transmission.

Therefore, protocol often focused on isolating and taking proper contact precautions with

only symptomatic CDI patients. Such protocol included healthcare workers’ wearing gloves

and gowns when interacting with symptomatic patients and the intense cleaning of their

hospital rooms after symptomatic patients were discharged [48]. However, since these

studies were completed, changes in the epidemiology of C. difficile may have altered the

relative contributions of symptomatic CDI patients and asymptomatic carriers [45, 80].

Typically, healthcare facilities are unable to readily identify asymptomatic patients, so their
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contribution to the spread of C. difficile is often more significant than that of symptomatic

patients because healthcare workers may not follow proper contact protocol when interacting

with them [19]. Therefore, it would be beneficial to identify not only symptomatic patients,

but also asymptomatic ones. There are two types of asymptomatic patients: those who are

able to mount an immune response and avoid infection and those who are unable to mount

an immune response, which leaves them vulnerable to contracting CDI.

Current treatment for patients experiencing CDI symptoms includes antimicrobial

therapy, specifically with metronidazole or vancomycin [73]. Data have indicated that

symptoms are resolved in 80% of patients treated with one of these antibiotics [45]. However,

the antibiotics may also disrupt the normal gut microbiota and lead to recurrence of CDI

upon cessation of treatment [73]. Therefore, it is often recommended that all antibiotic

usage be stopped if possible to allow the gut microbiota to return to normal, which is often

sufficient for controlling C. difficile [73]. Active vaccination is also being considered with the

current clinical trial testing of three toxoid vaccines that would fight off the main virulence

factors of C. difficile, toxins A and B. Initial trial phases have shown signs of efficacy [84],

and the hope is for at least one of these vaccines to be approved for implementation.

Since C. difficile infection and colonization have been acknowledged as a significant

burden to healthcare facilities [73], there is a strong need to better understand the

transmission and subsequent infection by C. difficile in order to prevent its spread.

Mathematical models have been used to successfully amalgamate theory with procedures and

data in order to simulate disease dynamics and predict emerging behaviors [46]. The goal of

my work is to develop mathematical models of C. difficile transmission in order to gain insight

into the dynamics of its spread, explore the role of the environment in its transmission, and

to assess optimal intervention strategies. Because the majority of CDI cases are nosocomial

[48], this dissertation focuses on modeling the within-hospital transmission of C. difficile.

Two different types of models are considered, and each incorporate different underlying

assumptions about how C. difficile is spread.
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1.2 Compartmental epidemiological model

The first model we developed is a modification of the compartmental model of C. difficile

nosocomial transmission in [45], consisting of ordinary differential equations (ODEs) that

group patients into classes based on their disease status (similar to the classic SIR model [6]).

The focus of this ODE model is on assessing the impact of vaccination on CDI transmission.

With a C. difficile toxoid vaccine still in testing, this model was our first exploration into

how a vaccine could theoretically affect the spread of CDI in a healthcare setting. A major

underlying assumption of this model is the direct transmission of C. difficile from an infected

patient to a susceptible patient, i.e., without the explicit modeling of an environmental

reservoir or healthcare workers.

Using this model, we aimed to determine the optimal time-varying rate of vaccination that

minimized both the cost associated with a vaccination program and the overall impact of the

disease, including the prevalence, incidence, and transmission. Obtaining the optimal rate

of vaccination involves assessing trade-offs between vaccinating a large number of patients to

control the disease while also keeping the associated cost low. To answer this, we used optimal

control theory to find the optimal rate of vaccination that minimized our objective functional

subject to the system of ordinary differential equations that simulated transmission. We

formulated the objective functional to represent our goal of controlling the vaccination rate

in a way that minimizes the cost and the overall impact of disease. This model and the

corresponding optimal control problem are detailed in Chapter 2. An overview of optimal

control theory is given in the following section.

1.2.1 Optimal control theory

Optimal control theory involves steering a dynamical system to a desired state by adjusting

the values of a control or multiple controls [70, 49]. The underlying dynamic system

being steered can be represented by ordinary differential equations, partial differential

equations, discrete equations, stochastic differential equations, integro-difference equations,

or a combination of discrete and continuous systems [49]. We will focus on an underlying
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system represented by ODEs. In the 1950s, Pontryagin and his collaborators developed the

theory of optimal control of systems of ODEs [70].

Suppose u(t) denotes a control and x(t) represents the underlying state dynamics and is

dependent on the control u(t). Then, we define x(t) by the differential equation:

x′(t) = g(t, x(t), u(t)). (1.1)

This dependence of the state system on the control means that a change in the control value

engenders a change in the state solution [49]. An optimal control problem involves solving

for the time-varying control, u(t), and corresponding state, x(t), that maximize the objective

functional, formulated to balance the tradeoffs being assessed [49]. In general, we want to

find the optimal control, u∗(t), that satisfies the following:

J(u∗) = sup
u∈U∗

J(u), (1.2)

where U∗ is the set of admissible controls and

J(u) =

[
φ(x(t1)) +

∫ t1

t0

f(t, x(t), u(t))dt

]
, (1.3)

subject to (1.1) with x(t0) = x0 and x(t1) unrestricted. J(u) represents the objective

functional. If an optimal solution exists and is unique, we refer to it as the optimal control

and denote it by u∗(t). The solution to the state system that corresponds to the optimal

control is denoted x∗(t) and is referred to as the optimal state. Together, (u∗(t), x∗(t)) are

referred to as an optimal pair [49].

Solving an optimal control problem involves solving a set of necessary conditions. First,

one must establish that an optimal control exists. If it is determined an optimal pair exists,

then Pontryagin’s Maximum Principle [70] provides necessary conditions for solving for

(u∗(t), x∗(t)). Pontryagin’s Maximum Principle introduces an adjoint variable(s), denoted

λ(t), to link the state equation(s) to the objective functional, J(u). This concept is similar

to the idea of introducing Lagrange multipliers to solve constrained optimization problems in

multivariable calculus. The Maximum Principle takes the original problem of finding u ∈ U∗
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that maximizes J(u) subject to the state equation (1.1) with specified initial conditions and

transforms it into the problem of maximizing what is referred to as the Hamiltonian with

respect to u, pointwise. The formal statement of the Maximum Principle follows below for

continuously differentiable functions f, g, and φ in their arguments and f and g concave in

u.

Theorem 1.1. Pontryagin’s Maximum Principle ([70]): If (u∗(t), x∗(t)) are an optimal

solution pair to (1.2) with (1.1), then there exists an adjoint variable, λ(t), such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)), (1.4)

for all u(t) ∈ U∗ at each time t, where

H(t, x(t), u(t), λ(t)) = f(t, x(t), u(t)) + λ(t) · g(t, x(t), u(t)) (1.5)

is called the Hamiltonian and

λ′(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x
, λ(t1) =

dφ

dx
(x∗(t1)). (1.6)

Pontryagin’s Maximum Principle can also be extended to a system of n state differential

equations: x1, ..., xn. In this case, there would be n adjoint differential equations: λ1, ..., λn,

one for each state equation. The Hamiltonian would be defined as

H(t, x1(t), ..., xn(t), u(t), λ1(t), ..., λn(t)) = f(t, x1(t), ..., xn(t), u(t))

+ λ1(t) · g1(t, x1(t), ..., xn(t), u(t)) + ...

+ λn(t) · gn(t, x1(t), ..., xn(t), u(t)), (1.7)

where gi refers to the right-hand side of the ith state differential equation, x′i(t). The adjoint

differential equations and corresponding transversality conditions would then be defined as

λi(t) = −∂H
∂xi

, λi(t1) =
dφ

dxi
(x1(t1), ..., xn(t1)), (1.8)
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at u∗, x∗1, ..., x
∗
n.

1.3 Agent-based model

The simplifying assumption of direct transmission of C. difficile from an infected individual

to a susceptible individual did not allow us to explicitly evaluate the role of a pathogen

environmental reservoir. Since C. difficile spores can survive for extended periods of time,

even years, in healthcare facilities [28], C. difficile in the environment plays a significant role

in transmission. Therefore, our second model, discussed in Chapter 3, incorporates the role

of environmental transmission through the explicit inclusion of the dynamics of healthcare

workers (HCWs). We then are able to assess the impact of various intervention strategies

while considering the contribution to transmission from an environmental pathway.

Often, models include simplifying assumptions that restrict their complexity in order

to maintain their mathematical tractability [72]. With agent-based models (ABMs), we

can remove many of these simplifying assumptions through the use of computer simulation.

Rather than modeling just the average behavior of a population, ABMs allow individuals

within a population to each be characterized by specific traits and events to be defined

and simulated on an individual-to-individual basis. These individual behaviors are then

simulated to observe overall system dynamics that arise over time, often referred to as

emergent behavior [72]. Interactions among agents (or individuals) are typically defined

locally, which adds a spatial component to the model. ABMs allow us to discern how the

overall behavior of a system is linked to individual behaviors. Another benefit of ABMs

is that they allow us to model processes that may be too complex to represent in a more

traditional equations-based model [72]. We have the freedom to include as much detail as we

want when developing ABMs; however, decisions and assumptions have to be made about

which individual characteristics, behaviors, and interactions to incorporate in the model and

which are not as influential on the overall system dynamics [72].

Of primary importance to pathogens with environmental reservoirs is spatial heterogene-

ity. Exposure to C. difficile depends on the varying survival and growth of the pathogen

on different hospital surfaces [34, 52], and control interventions often include a spatial

7



component. For example, we may want to more stringently clean a room from which a

symptomatic patient was discharged than a room from which a healthy individual was

discharged. Not all rooms in healthcare settings receive the same frequency of contact

and level of cleaning and disinfection [15, 7, 22], so a more detailed assessment of control

interventions for environmentally transmitted pathogens necessitates a spatially explicit

model, such as an ABM.

The level of compliance of HCWs to proper hand-washing and contact protocol differs

by individual, and the level of environmental cleaning is also variant. ABMs allow for the

incorporation of varying individual compliance levels and are inherently stochastic in nature.

Thus, different outcomes at the population level can arise from similar starting conditions

due to the stochasticity of individual behaviors.

In Chapter 3, we describe the ABM we developed to include environmental transmission

in the spread of C. difficile in a healthcare setting. By modifying and expanding an ABM

originally created by Bintz et al. [5], we developed an ABM that includes individual antibiotic

histories of patients, environmental contamination of individual rooms, and HCWs as vectors

of transmission. The explicit addition of HCWs allows us to consider individual HCW

behaviors and to assess the impact of increased overall HCW compliance on the spread

of C. difficile spores. We use this model to explore the effect of individual intervention

strategies as well as to assess if there is an optimal combination of intervention strategies

for reducing nosocomial infection incidence and colonization by C. difficile. Investigating

how an environmental reservoir affects transmission of a pathogen is an ongoing assessment,

and with this work, we aim to gain traction in pinpointing where control efforts should be

concentrated.
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Chapter 2

Compartmental model of nosocomial

C. difficile transmission

2.1 Introduction

Many healthy individuals have antibodies against C. difficile toxins A and B, and these

antibodies have a protective effect against clinical disease [85]. In a prospective study,

patients with low levels of IgG antibodies against toxin A were at greater risk of developing

C. difficile-induced diarrhea [43]. Vaccination can be an important addition to the current

intervention strategies against C. difficile. Currently, several toxoid vaccines (i.e., vaccines

that confer immunity against C. difficile toxins) are being tested in clinical studies for

efficacy, effectiveness, and safety [51]. Toxoid vaccines can provide protection against clinical

diseases but not against C. difficile colonization. In [47], a simulation study looking at C.

difficile vaccination was found to be cost-effective for a range of risk, vaccine efficacies,

and vaccine cost in two populations: a target vaccination for patients with CDI undergoing

antibiotic treatment and universal vaccination on at-risk patients. Vaccination as an infection

control measure was not evaluated. Although vaccination with a toxoid vaccine may not

prevent colonization, it may reduce transmission in hospital settings.

In this chapter, our goal is to better understand how vaccination would affect the

transmission and prevention of CDI in a healthcare setting and also to determine the most

cost-effective way to implement a vaccination strategy. In order to accomplish this goal,
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Table 2.1: Patient transition states developed in [45]

State Infection status
R resistant to colonization
S susceptible to colonization
C− asymptomatically colonized without protection against CDI
C+ asymptomatically colonized with protection against CDI
D diseased (with CDI)

we use techniques of optimal control on a system of ordinary differential equations (ODEs).

See [27, 53, 16, 2, 30, 24, 61] for examples of the use of optimal control theory to design

vaccination strategies in ODE models of infectious diseases.

We begin in Section 2.2 by developing a compartmental model that describes the

movement of hospital patients in and out of seven CDI-related states. A control variable

representing the vaccination rate is incorporated into the system. Then, in Section 2.4,

we utilize optimal control techniques to determine the time-varying optimal rate at which

hospitals should vaccinate in order to minimize the disease prevalence, disease transmission,

and the related cost, in terms of both time and money. In Section 2.5, we discuss the results

of our numerical simulations. In particular, we determine optimal vaccination strategies

for various hospital statuses, such as times of high transmission of C. difficile and periods

of increased administration of antibiotic prescriptions. We also compare the value of the

objective functional with a time-varying vaccination rate to that with a constant vaccination

rate to determine the benefits of varying the vaccination rate with time. Finally, in Section

2.6, we discuss our conclusions based on the numerical results.

2.2 ODE Model

Because mathematical models of disease transmission provide a solid framework for

understanding the spread of disease, we begin by extending the mathematical model of

C. difficile transmission developed by [45] to include vaccination. The original model is a

system of ODEs that depicts C. difficile transmission within a hospital setting, where all

patients are divided into five transition states, measured in number of patients, according to

infection status as listed in Table 2.1.
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Table 2.2: Additional patient transition states for vaccinated patients

State Infection status
V vaccinated for CDI and not colonized
C+

v asymptomatically colonized and vaccinated

Resistant patients (R) have not received antimicrobial treatment and have a normal

intestinal microbiota [39]. It is assumed that patients with a normal intestinal microbiota

are resistant to colonization since patients with a normal flora have a significantly lower

risk of developing CDI [45]. Susceptible patients (S) have received antimicrobial treatment

and are therefore susceptible to colonization. Colonized patients may or may not mount

a protective response. Those who are colonized, asymptomatic, and unable to mount an

immune response are labeled C− and could potentially develop CDI. C+ patients are also

colonized and asymptomatic, but they are able to mount an immune response and do not

become diseased. All C− and C+ patients are assumed to be colonized during their entire

stay at the hospital [58, 77], and both can transmit the disease to the susceptible population.

Diseased patients (D) are treated with antibiotics and either become susceptible again or

remain infected if treatment is unsuccessful.

In addition to the classes in the original model by [45], we will also consider two

additional transition states for vaccinated patients, listed in Table 2.2. In our model,

vaccination will be performed on patients in S, C−, and C+. As previously stated,

vaccination does not eliminate colonization from those who are in C− or C+. Because

colonized patients, even asymptomatic ones, contribute to the transmission of disease, it is

important to distinguish between those who are vaccinated and those who are vaccinated

but also colonized. For this reason, we consider two classes of vaccinated patients. It should

also be noted that although C+ patients are not at risk of contracting CDI, we still vaccinate

them because there is not a practical and quick method for distinguishing between C− and

C+ patients when deciding who needs vaccinating. Therefore, C+ and C+
v have the same

infection status, but both of these classes are necessary in the model to keep track of who

has been vaccinated and to prevent the same patient from being vaccinated multiple times.

Because they have the same infection status, we assume the transmission coefficients for C+
v

and C+ are equivalent.

11



Patients can be discharged and admitted in any of the seven states, but in all cases

presented in this chapter, we assume that none of the patients are already vaccinated when

admitted. All transitions are modeled deterministically as the system of ODEs given in (2.1),

an extension of the model developed by [45]:

dR

dt
= arδN + θS − (α + kr)R

dS

dt
= asδN + αR + pεD − (θ + λ+ k + v)S

dC−

dt
= acnδN + (1− f)λS − (φ+ k + v)C−

dC+

dt
= acpδN + fλS − (k + v)C+ (2.1)

dD

dt
= adδN + φC− − (pε+ kd)D

dV

dt
= avδN + vS − (λ+ k)V

dC+
v

dt
= acvδN + v(C+ + C−) + λV − kC+

v ,

where the transmission rate is

λ = βc(C
− + C+ + C+

v ) + βdD

and

N = R + S + C− + C+ +D + V + C+
v .

To maintain a constant total population, we define δN similarly to that in [45], which allows

discharges to be balanced with admissions:

δN = krR + kS + kC− + kC+ + kdD + kV + kC+
v . (2.2)

The movement among states described by the system in (2.1) is illustrated in Figure

2.1. Details about each parameter are listed in Table 2.3; a similar table is found in the

work completed by [45] with a few modifications and updates made here. Parameter values

are based on hospital data or published literature. In particular, the restoration rate of
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Figure 2.1: Summary of movement among patient transition states with corresponding
parameters

colonization resistance, θ, is taken from [71]. The fraction of colonized patients that mount

an immune response, f , comes from [44], and both the treatment rate, ε, and the probability

of successful treatment, p, are taken from [57]. All remaining parameters are either based

directly on hospital data or are an adjustment of hospital data to reflect observed disease

incidence. More details on these adjustments are given in the following paragraphs.

At the time [45] developed their model, hospital data indicated that the proportion

of admitted patients that were asymptomatically colonized totaled 2%. Therefore, in [45],

acn = acp = 0.01. Since this time, new research in [1] has indicated that approximately 15% of

admitted patients were observed to be asymptomatically colonized upon arrival. We divided

this updated percentage into 9% admitted with protective response, acp, and 6% without

protective response, acn. Once these values were determined, the admission proportion for

susceptible patients was accordingly decreased by 13% from the value of 22% used in [45],

which updated as to 0.09 as listed in Table 2.3. The values for av and acv were assumed to

be 0 for all results presented. Once the admission percentages were all adjusted to match

updated observed rates, the transmission coefficients, βc and βd, and the clinical disease

rate, φ, were then adjusted so that the average number of observed incident cases of CDI

per month per ward was comparable to the value of 2.2 given in [45].
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Table 2.3: Model parameter descriptions and values

Symbol Description, units
Baseline
Value

ar
Proportion of admitted patients that are resistant,
dimensionless

0.75

as
Proportion of admitted patients that are suscepti-
ble, dimensionless

0.09

acn
Proportion of admitted patients that are colonized
without protective response, dimensionless

0.06

acp
Proportion of admitted patients that are colonized
with protective response, dimensionless

0.09

ad
Proportion of admitted patients with C. difficile
infection, dimensionless

0.01

av, acv

Proportion of admitted patients who are vacci-
nated and vaccinated who are colonized, respec-
tively, dimensionless

0

α Antibiotic prescription rate, per day 0.5
θ Restoration rate of colonization resistance, per day 0.033

βc, βd

Transmission coefficients for asymptomatic car-
riers and diseased patients, respectively, per
individual-day

10−6

f
Fraction of colonized patients that mount immune
response, dimensionless

0.6

ε Treatment rate, per day 0.1
p Probability of successful treatment, dimensionless 0.8
φ Clinical disease rate, per day 0.06
kr Discharge rate for resistant patients, per day 0.33

k
Discharge rate for susceptible, colonized, and
vaccinated patients, per day

0.15

kd Discharge rate for diseased patients, per day 0.068
v Vaccination rate, per day varied
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Table 2.4: Exploration of a biologically feasible range of values for vaccination rate, v

v % effectively vaccinated out of
total admitted (in 30 days)

2 73.46%
1 67.51%
0.5 58.07%
0.3 48.91%
0.1 27.24 %
0.05 16.33%

We define the vaccination rate v to be the effective vaccination rate, which encompasses

both effort and efficacy. To estimate a feasible range of values for the effective vaccination

rate v, we solved the system in (2.1) numerically for various v values and noted the resulting

percentage of patients who were effectively vaccinated out of the total number of patients

admitted over a 30-day period. A few of these scenarios are summarized in Table 2.4.

While determining this range for the vaccination rate, we decided for most simulations to

not consider cases in which significantly more than 50% of those admitted in 30 days were

effectively vaccinated. Therefore, we concentrate most of our focus on 0 ≤ v ≤ 0.3. Because

of the short time frame evaluated, we do not consider waning immunity.

For our simulations, we assume a hospital setting containing five wards of 30 beds each

for a total population of N = 150 patients, which is kept constant by assumption (2.2). The

initial conditions used were based on the admission proportions given in the list of parameter

values shown in Table 2.3; that is, we set R(0) = 112, S(0) = 14, C−(0) = 9, C+(0) = 13,

D(0) = 2, V (0) = 0, and C+
v (0) = 0.

2.3 Existence and uniqueness

In this section, we will provide results about the existence, uniqueness, and non-negativity of

solutions to our system in (2.1) for a given initial condition vector in R7
+. To begin, consider

the general initial value problem

x′(t) = f(x(t)) (2.3)

x(t0) = φ,
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where f : C → Rn is continuous, C ⊂ Rn is open, and φ ∈ Rn. Define R to be the following

rectangular region:

R = R((t0, φ), a, b)) = {(t, x) : |t− t0| ≤ a, |x− φ| ≤ b}, (2.4)

where a and b are two positive numbers. Recall that a function f : C → Rn is Lipschitz if

there exists a constant L > 0 such that

||f(x)− f(y)|| ≤ L||x− y||, (2.5)

for all x, y ∈ C. We will use the following theorem, taken from [35], to prove the existence

and uniqueness of a solution to our initial value problem formed by (2.1) with specified initial

conditions.

Theorem 2.1. (Modified from [35]) If the entries of f are real-valued and continuous on

a rectangular region R and if f satisfies the Lipschitz condition on R, then there exists a

unique solution to the initial value problem (2.3) for all t within a given distance of t0.

The next theorem (a simplified case of a theorem from [79]) specifies conditions on f which

ensure that non-negative initial conditions will guarantee non-negative solutions to (2.3).

Theorem 2.2. ([79]: Simpler case of Theorem 2.1, Chapter 5) Assume that when φ ∈ Rn

satisfies φ ≥ 0 with φi(0) = 0 for some i, then fi(φ) ≥ 0. Then, if φ ∈ Rn satisfies φ ≥ 0,

the solution of (2.3) satisfies x(t) ≥ 0 for all t ≥ t0.

We now use Theorem 2.2 to prove non-negativity of solutions to (2.1) with non-negative

initial conditions, assuming a solution exists, and Theorem 2.1 to prove the existence and

uniqueness of a solution to our system.

Theorem 2.3. For any vector of initial conditions φ = (R0, S0, C
−
0 , C

+
0 , D0, V0, (C

+
v )0) ≥ 0,

the system in (2.1) has a non-negative solution.

We check the hypotheses of Theorem 2.2.
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1. Assume φ = (0, S0, C
−
0 , C

+
0 , D0, V0, (C

+
v )0) ≥ 0. Then,

f1(φ) = ar(kS0 + kC−0 + kC+
0 + kdD0 + kV0 + k(C+

v )0) + θS0 ≥ 0.

2. Assume φ = (R0, 0, C
−
0 , C

+
0 , D0, V0, (C

+
v )0) ≥ 0. Then,

f2(φ) = as(krR0 + kC−0 + kC+
0 + kdD0 + kV0 + k(C+

v )0) + αR0 + pεD0 ≥ 0.

3. Assume φ = (R0, S0, 0, C
+
0 , D0, V0, (C

+
v )0) ≥ 0. Then,

f3(φ) = acn(krR0 + kS0 + kC+
0 + kdD0 + kV0 + k(C+

v )0)

+(1− f)S0(βcC
+
0 + βc(C

+
v )0 + βdD0) ≥ 0.

4. Assume φ = (R0, S0, C
−
0 , 0, D0, V0, (C

+
v )0) ≥ 0. Then,

f4(φ) = acp(krR0 + kS0 + kC−0 + kdD0 + kV0 + k(C+
v )0)

+fS0(βcC
−
0 + βc(C

+
v )0 + βdD0) ≥ 0.

5. Assume φ = (R0, S0, C
−
0 , C

+
0 , 0, V0, (C

+
v )0) ≥ 0. Then,

f5(φ) = ad(krR0 + kS0 + kC−0 + kC+
0 + kV0 + k(C+

v )0) + φC−0 ≥ 0.

6. Assume φ = (R0, S0, C
−
0 , C

+
0 , D0, 0, (C

+
v )0) ≥ 0. Then,

f6(φ) = av(krR0 + kS0 + kC−0 + kC+
0 + kD0 + k(C+

v )0) + vS0 ≥ 0.

7. Assume φ = (R0, S0, C
−
0 , C

+
0 , D0, V0, 0) ≥ 0. Then,

f7(φ) = acv(krR0 + kS0 + kC−0 + kC+
0 + kD0 + kV0) + v(C−0 + C+

0 )

+V0(βcC
−
0 + βcC

+
0 + βdD0) ≥ 0.
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Therefore, whenever φ ≥ 0 (with φi(0) = 0 for some i), we have fi(φ) ≥ 0. By Theorem 2.2,

if a solution, X(t), to (2.1) exists for φ ≥ 0, the solution is non-negative for all t ≥ 0. �

Observe that
dR

dt
+
dS

dt
+
dC−

dt
+
dC+

dt
+
dD

dt
+
dV

dt
+
dC+

v

dt
= 0.

This implies R(t)+S(t)+C−(t)+C+(t)+D(t)+V (t)+C+
v (t) = c̄, for some constant c̄ ≥ 0.

If a solution to the system exists, then each component of the state solution must be less

than or equal to c̄ for all t ≥ t0, which (combined with the results of Theorem 2.3) means

0 ≤ R(t), S(t), C−(t), C+(t), D(t), V (t), C+
v (t) ≤ c̄, (2.6)

for all t ≥ t0. Thus, if a solution exists, then our states are uniformly bounded.

Theorem 2.4. There exists a unique solution to the initial value problem formed by (2.1)

with specified initial conditions.

Proof : First, we denote X(t) = (R(t), S(t), C−(t), C+(t), D(t), V (t), C+
v (t)) and define

dR

dt
= f1(X(t))

dS

dt
= f2(X(t))

dC−

dt
= f3(X(t))

dC+

dt
= f4(X(t)) (2.7)

dD

dt
= f5(X(t))

dV

dt
= f6(X(t))

dC+
v

dt
= f7(X(t)),

with X(0) = X0 = (R0, S0, C
−
0 , C

+
0 , D0, V0, (C

+
v )0). Observe that the entries of f are all

real-valued and continuous. We now show f = (f1, f2, f3, f4, f5, f6, f7) is Lipschitz. We will

proceed by showing each component of f is Lipschitz. First, note that if a function of one

real variable has a bounded derivative, it is Lipschitz. If we can show that fi is Lipschitz in

each of its seven inputs, then fi is Lipschitz. To show each fi is Lipschitz with respect to
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a single input variable, we must show that the derivative of fi with respect to the ith state

variable is bounded. In particular, to show f1 is Lipschitz, we must show its derivative with

respect to each input variable is bounded. The partial derivatives of f1 with respect to each

of the state variables are as follows:

∂f1
∂R

= arkr − (α + kr)

∂f1
∂S

= ark + θ

∂f1
∂C−

=
∂f1
∂C+

=
∂f1
∂V

=
∂f1
∂C+

v

= ark

∂f1
∂D

= arkd.

For f3, we have

∂f3
∂R

= acnkr

∂f3
∂S

= acnk + (1− f)[βc(C
+ + C− + C+

v ) + βdD]

∂f3
∂C−

= acnk + (1− f)Sβc − (φ+ k + v)

∂f3
∂C+

= acnk + (1− f)Sβc

∂f3
∂D

= acnkd + (1− f)Sβd

∂f3
∂V

= acnk

∂f3
∂C+

v

= acnk + (1− f)Sβc.

The resulting partial derivatives of fi with respect to each of the state variables for

i = 2, 4, 5, 6, and 7 are similar to the ones illustrated above in that they depend only on

products of parameter values and of parameter values with state variables. Thus, each partial

derivative is bounded. On compact subsets of C, each fi is Lipschitz in each of its inputs for

every i; thus, f is Lipschitz. Since the entries of f in (2.1) are real-valued and continuous

and since f is Lipschitz, by Theorem 2.1, there exists a unique solution to the initial value

problem formulated by (2.1) with specified initial conditions. �
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2.4 Optimal control of vaccination rate

We implement optimal control on the vaccination rate v to determine the time-varying,

optimal rate of vaccination over a particular time period because the cost-effectiveness of

a vaccine, in terms of both monetary and time resources, is so important. Our goal is

to minimize not only the overall impact of the disease but also the cost associated with

vaccination over a given period of time, [0, T ] for T > 0. The objective functional that

represents this goal is shown in (2.8).

J(v) := c0C
−(T ) +

∫ T

0

[
c1v(t)

(
S(t) + C−(t) + C+(t)

)
+ c2

(
v(t)

)2
+ c3D(t) + c4C

−(t) + c5λ(t)
(
S(t) + V (t)

)]
dt (2.8)

The first term in the objective functional, c0C
−(T ), counts the number of patients

asymptomatically colonized without protection at the final time and also ensures that

the value of the control is not forced to zero for some t ∈ [0, T ], as further explained

in Section 2.5.1. The next term, c1v(t)
(
S(t) + C−(t) + C+(t)

)
, represents the linear

cost associated with the vaccination process while c2
(
v(t)

)2
represents the nonlinear cost

that arises from difficulties faced when implementing a successful vaccination program.

The objective functional also accounts for the number of diseased patients with the term

c3D(t); by including this term, the disease prevalence in the population will be minimized.

Additionally, the objective functional includes terms for the number of C− patients, c4C
−(t),

and for nosocomial disease transmission, c5λ(t)
(
S(t) + V (t)

)
. Recall the transmission rate

λ(t) = βc
(
C−(t) + C+(t) + C+

v (t)
)

+ βdD(t). The coefficients ci ≥ 0, 0 ≤ i ≤ 5, represent

weights on the different terms of the objective functional. For some M > 0, the control set

is

V ∗ := {v : [0, T ]→ [0,M ] : v Lebesgue measurable}.
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The goal is to characterize the optimal control v∗ satisfying

inf
v∈V ∗

J(v) = J(v∗),

subject to the state system (2.1) with specified non-negative initial conditions for R, S, C−,

C+, D, V, and C+
v . In order to use Pontryagin’s Maximum Principle (Theorem 1.1, [70]) to

characterize an optimal control, we must first prove that an optimal control exists.

2.4.1 Existence of optimal control

Theorem 2.5. There exists an optimal control v∗ that minimizes the objective functional

J(v) in (2.8) subject to the state system in (2.1) with specified non-negative initial conditions.

Proof. By (2.6) and Theorem 2.3, we know our state solutions are uniformly bounded for all

t ∈ [0, T ]. This, together with the boundedness of our control, implies that J(v) is bounded

below by 0, and, therefore, a minimum exists. Let {vn}∞n=1 be a minimizing sequence such

that

min
v∈V

J(v) = lim
n→∞

J(vn),

where Xn = (Rn, Sn, C
−
n , C

+
n , Dn, Vn, (C

+
v )n) are the state sequences corresponding to vn and

V = {v : [0, T ]→ [0,M ]|v Lebesgue measurable}.

The boundedness of the state sequences and control sequence imply that dRn

dt
, dSn

dt
, dC−

n

dt
,

dC+
n

dt
, dDn

dt
, dVn

dt
, d(C+

v )n
dt

are each bounded for all t ∈ [0, T ]. Bounded derivatives imply Lipschitz

continuity; thus, each state sequence is Lipschitz continuous, and the state sequences are,

therefore, also equicontinuous. The Arzela-Ascoli Theorem states that every uniformly

bounded, equicontinuous sequence on a compact set has a uniformly convergent subsequence.

Therefore, each state sequence has a uniformly convergent subsequence:

Rnk
→ R∗ ∈ [0, N ], Snk

→ S∗ ∈ [0, N ], ..., (C+
v )nk

→ (C+
v )∗ ∈ [0, N ].
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Now, because |vn(t)| ≤ M for all n ∈ N and for all t ∈ [0, T ], we know vn ∈ L2(0, T ), and

for some constant C1 ≥ 0,

||vn||L2 ≤ C1, (2.9)

for all n ∈ N. As a consequence of the Banach-Alaoglu Theorem [25], every bounded sequence

in L2 has a weakly convergent subsequence; that is, there exists v∗ such that vnk
⇀ v∗ in

L2. Using lower-semicontinuity of L2 norms with respect to weak convergence (see Theorem

4.10.7 in [25]), we have

||v∗||2(0,T ) ≤ lim inf
k→∞

||vnk
||2(0,T ). (2.10)

Let λnk
= βc(C

−
nk

+ C+
nk

+ C+
vnk

) + βdDnk
and λ∗ = βc(C

−∗
+ C+∗

+ C+∗
v ) + βdD

∗. Note

that because J(vn) converges to min
v
J(v), any subsequence of J(vn) must converge to that

same limit. Additionally, because the state sequences and control sequence are L∞-bounded,

vnk
⇀ v∗ in L2, and the state subsequences converge uniformly in L2,

∫ T

0

vnk

(
Snk

+ C−nk
+ C+

nk

)
dt→

∫ T

0

v∗(S∗ + C−∗ + C+∗)dt.

We then have the following:

min
v
J(v) = lim

n→∞
J(vn) = lim

k→∞
J(vnk

)

= lim inf
k→∞

J(vnk
)

≥ lim inf
k→∞

∫ T

0

[
c1vnk

(Snk
+ C−nk

+ C+
nk

) + c3Dnk
+ c4C

−
nk

+ c5λnk
(Snk

+ Vnk
)
]
dt

+ lim inf
k→∞

c0C
−
nk

(T ) + lim inf
k→∞

c2||vnk
||22(0,T )

≥
∫ T

0

[
c1v
∗(S∗ + C−∗ + C+∗) + c3D

∗ + c4C
−∗ + c5λ

∗ (S∗ + V ∗)
]
dt

+c0C
−∗(T ) + ||v∗||22(0,T )

= J(v∗).

Thus, min
v
J(v) = J(v∗), so v∗ is optimal. �
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2.4.2 Characterization of optimal control

Now that we have established existence, we can apply Pontryagin’s Maximum Principle

(Theorem 1.1, [70]) to derive necessary conditions on the optimal control.

Theorem 2.6. Given an optimal control v∗ and solutions to the corresponding state system

in (2.1), there exist adjoint variables λi, i = 1, ..., 7, satisfying

λ′1 = −λ1(arkr − α− kr)− λ2(askr + α)− kr(λ3acn + λ4acp + λ5ad)

−kr(λ6av + λ7acv)

λ′2 = −c1v − c5λ− λ1(kar + θ)− λ2(ask − θ − k − λ− v)

−λ3[acnk + (1− f)λ]− λ4(acpk + fλ)− λ5adk

−λ6(kav + v)− λ7acvk

λ′3 = −c1v − c4 − c5βc(S + V )− λ1ark − λ2(kas − βcS)

−λ3[acnk + (1− f)βcS − φ− k − v]− λ4(fβcS + kacp)

−λ5(kad + φ)− λ6(kav − βcV )− λ7(βcV + kacv + v)

λ′4 = −c1v − c5βc(S + V )− λ1ark − λ2(kas − βcS)− λ3[acnk + (1− f)βcS]

−λ4(fβcS + kacp − k − v)− λ5adk − λ6(kav − βcV ) (2.11)

−λ7(βcV + kacv + v)

λ′5 = −c3 − c5βd(S + V )− λ1arkd − λ2(pε− βdS + askd)

−λ3[acnkd + (1− f)βdS]− λ4(fβdS + acpkd)− λ5(adkd − pε− kd)

−λ6(avkd − βdV )− λ7(βdV + acvkd)

λ′6 = −c5λ− λ1ark − λ2kas − λ3acnk − λ4acpk − λ5adk

−λ6(avk − k − λ)− λ7(acvk + λ)

λ′7 = −c5βc(S + V )− λ1ark − λ2(kas − βcS)− λ3[acnk + (1− f)βcS]

−λ4(fβcS + kacp)− λ5adk − λ6(kav − βcV )− λ7(βcV + kacv − k),

λi(T ) = 0, for i 6= 3

λ3(T ) = c0.
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Furthermore, v∗ is represented as

v∗ = min{M,max{0, v̂}}, (2.12)

where

v̂ =
λ2S + λ3C

− + λ4C
+ − λ6S − λ7(C+ + C−)− c1(S + C+ + C−)

2c2
. (2.13)

Proof. The Hamiltonian is given by

H = c1v(S + C− + C+) + c2v
2 + c3D + c4C

− + c5(S + V )λ

+λ1
dR

dt
+ λ2

dS

dt
+ λ3

dC−

dt
+ λ4

dC+

dt
+ λ5

dD

dt
+ λ6

dV

dt
+ λ7

dC+
v

dt
.

Pontryagin’s Maximum Principle (Theorem 1.1, [70]) gives the existence of adjoint variables

satisfying the system in (2.11) using

λ′1 = −∂H
∂R

, λ′2 = −∂H
∂S

, λ′3 = − ∂H

∂C−
, λ′4 = − ∂H

∂C+
, λ′5 = −∂H

∂D
,

λ′6 = −∂H
∂V

, and λ′7 = − ∂H

∂C+
v

,

with transversality conditions λi(T ) = 0 for i 6= 3 and λ3(T ) = c0. We then have

∂H

∂v
= c1(S + C− + C+) + 2c2v − λ2S − λ3C− − λ4C+ + λ6S + λ7(C

− + C+).

On the interior of the control set, ∂H
∂v

∣∣
v∗

= 0. Thus, we can solve for the optimal control on

the interior:

v∗(t) =
λ2S + λ3C

− + λ4C
+ − λ6S − λ7(C+ + C−)− c1(S + C+ + C−)

2c2
.

Note that on {t|v∗(t) = 0}, ∂H
∂v
≥ 0 and on {t|v∗(t) = M}, ∂H

∂v
≤ 0. Combining all three cases

leads to the characterization of our optimal control given in (2.12).

24



2.5 Numerical results

The optimality system, which consists of the state system in (2.1) with initial conditions,

adjoint system in (2.11) with transversality conditions, and characterization of the optimal

control in (2.12), is solved using a Forward-Backward Sweep method [33, 49]. This is an

iterative method that solves the system using a fourth-order Runge-Kutta (RK4) scheme.

We start with an initial guess for our control value and then use RK4 and the given initial

conditions to solve the state system in (2.1) forward in time. Then, we use the initial control

guess, the transversality conditions given for our adjoints, and the values for the state system

solution to solve the adjoint system in (2.11) backward in time. Next, our control value v is

updated by entering the new state and adjoint values into the characterization of the control

in (2.12). Finally, convergence is checked, and the process is repeated until values converge

sufficiently.

Unless otherwise stated, M = 0.3 per day so that 0 ≤ v(t) ≤ 0.3 as discussed at the end

of Section 2.2. Additionally, we set T = 30 so that we are considering 30-day intervals. Short

periods of time are considered because the hospital will change states, thereby potentially

shifting some parameter values, and the vaccination strategy will need to be reevaluated

after the 30 days and possibly modified in response to this shift.

2.5.1 Summary of exploration into weighting coefficient values

Before any results were determined, we first gained an understanding of how changing the

values of our weighting coefficients, ci, affected the optimal control, v∗. Because vaccination

against CDI is still in testing, we do not have data that details the cost associated with

such a program. Once this data is known, it can be incorporated into the appropriate

weighting coefficient values. For now, to establish how a particular weighting coefficient

changes the optimal vaccination rate, we varied the value for one weighting coefficient while

keeping all other coefficients fixed, some at 0. Additionally, we compared the relative size

of each term, without being multiplied by the corresponding weighting coefficient, in the

objective functional J(v) given in (2.8). In particular, we observed that the nonlinear cost
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associated with vaccination, given as v2, and the transmission, λ(S + V ), are relatively

small in comparison to the other terms. Therefore, we allow their corresponding weighting

coefficients, c2 and c5, to be relatively large in comparison to the remaining coefficients.

After considering various scenarios in which we varied one weighting coefficient value

while keeping the others fixed, we made several conclusions. First, we concluded that if

control cost coefficient c1 exceeds some threshold value, then v∗(t) = 0 for all t ∈ [0, T ].

Since we do not want to consider a case in which vaccination is too costly to implement at

all, we keep c1 relatively small. Note that because the nonlinear cost term is smaller than

the linear cost term in the objective functional, increasing c2 does not force v∗ to be 0 for

the entire time period in the way that increasing c1 does.

Next, note that if c0, the weighting coefficient on the final time condition, is 0, the optimal

vaccination rate will always drop down to 0 at some point in our time period no matter what

the values are for the remaining weighting coefficients. In fact, there exists some threshold

value ĉ0 such that for c0 < ĉ0, v
∗(t) = 0 for t ∈ [t̂, T ], for some t̂ ∈ [0, T ]. This is because

if c0 = 0, then λi(T ) = 0 for i = 1, ..., 7, which means v̂, in (2.13), is negative at the final

time, and by the characterization of the optimal control in (2.12), this implies v∗(T ) = 0. It

is not practical to have to drop down to a vaccination rate of 0 in every scenario; therefore,

we considered values for c0 large enough to prevent this forced decrease to 0. Finally, note

that an increase in c3 or c4 adds emphasis to our desire to minimize the overall impact of the

disease and thereby leads to an increased v∗. The last term in J(v), c5λ(S + V ), involves a

bit of a balancing act. We want to increase the number of vaccinated patients V while also

minimizing this term as part of the objective functional. Thus, depending on the value of

V , increasing c5 may decrease v∗ or increase v∗.

The exploration of values summarized in this section provided us with an idea of how to

set weighting coefficient values in the simulations to come. The weighting coefficient values

chosen are as follows: c0 = 3, c1 = 0.1, c2 = c5 = 15, and c3 = c4 = 0.5, and the resulting v∗

obtained using this combination of weighting coefficients is shown in Figure 2.2.
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Figure 2.2: Optimal vaccination rate v∗ for c0 = 3, c1 = 0.1, c2 = c5 = 15, c3 = c4 = 0.5,
M = 0.3, and T = 30

2.5.2 Determining the impact of vaccination

In this section, we compare the population behavior with no vaccination to its behavior with

vaccination implemented using optimal control and observe the differences. In Figure 2.3,

the optimal states that correspond to the time-varying optimal vaccination rate v∗ illustrated

in Figure 2.2 are plotted alongside the states corresponding to no vaccination. We see from

Figure 2.3 that without vaccination, each of the classes reaches its steady state before the

30 days have expired. Furthermore, Figure 2.3 illustrates that this particular vaccination

rate v∗ decreases the number of patients in C− by approximately 4 in 30 days and the

number of patients in D by approximately 2. Figure 2.3 also shows that the total number

of colonized patients remains approximately the same (a difference of less than 1 person)

when this optimal time-varying vaccination rate is implemented. Additionally, vaccination

also leaves the hospital with a significantly lower number of patients who are susceptible to

becoming colonized (approximately 47 fewer), which is significant since C. difficile spores

can survive for extended time periods on various hospital surfaces.

Because the restriction of M = 0.3 per day is not a strict one, we also considered an

increased upper bound on v. Figures 2.4(a) and 2.4(b) compare the optimal vaccination rate

v∗ for M = 0.3 per day to that in the increased case of M = 0.6 per day with the same
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Figure 2.3: Dynamics of patient transition states with optimal vaccination rate v∗ shown
in Figure 2.2 compared to those without vaccination for c0 = 3, c1 = 0.1, c2 = c5 = 15,
c3 = c4 = 0.5, M = 0.3, and T = 30

weighting coefficient values previously considered. Observe from Figure 2.4(a) that for this

case, an increase in M only initially alters v∗. Figure 2.4(b) zooms in on this initial change

in v∗ by displaying an interval of only 3 days. Additionally, note that the v∗ obtained for

M = 0.6 produces the exact same corresponding state populations for all 30 days that the

v∗ with M = 0.3 produces (results not shown).

To determine the impact of using a time-varying vaccination rate, we compare the value of

the objective functional, J(v) in (2.8), obtained with our time-varying optimal vaccination

rate to that obtained with a constant vaccination rate of 0.3 per day for the entire time

period. For the particular case of weighting coefficient values illustrated in Figures 2.2 and

2.3 and for the case with an increased upper bound (shown in Figure 2.4), various J(v) values

are compared in Table 2.5. First, observe that whether M = 0.3 or M = 0.6, a time-varying

optimal vaccination rate engenders a savings over a constant rate. Furthermore, if M is

increased to 0.6 per day, then a time-varying vaccination rate leads to a much more notable

savings over the case of a constant rate than the M = 0.3 case does. Thus, if we allow for
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Figure 2.4: (a) Comparison of optimal vaccination rate v∗ with upper bound M = 0.3 to
that with the increased value of M = 0.6 with c0 = 3, c1 = 0.1, c2 = c5 = 15, c3 = c4 = 0.5,
and T = 30 (b) View of (a) over a 3-day interval to observe the initial difference in v∗

Table 2.5: Comparison of J(v) with constant vaccination rate to J(v) with time-varying
optimal vaccination rate, shown in Figure 2.4, for various upper bounds, M , on v(t)

M J(v) with constant v(t) = M J(v) with time-varying optimal v∗

0.3 203 192
0.6 305 192

an increased upper bound on the vaccination rate, then we see a more stark difference and

impact of time-varying vaccination versus that of constant vaccination.

2.5.3 An increase in susceptible patients

In this section, we explore the question of how hospitals should modify their vaccination

strategy in order to handle a larger number of susceptible patients. To do this, we consider

alternate hospital statuses in which an increased number of patients have either received

antibiotics after admission or taken them prior to admission.

First, if a particular hospital is prescribing high-risk antibiotics at an increased rate, this

corresponds to an increase in α and thereby also an increase in the number of susceptible

patients since more patients will have an altered intestinal microbiota. Assessing the effect of

varying α on the resulting optimal control is also an interesting scenario because we showed
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Table 2.6: Comparison of J(v) and total vaccinated with constant vaccination rate to J(v)
and total vaccinated with time-varying optimal vaccination rate, shown in Figure 2.5, for
various antibiotic prescription rates, α

α
J(v) with
constant
v(t) = 0.3

J(v) with
time-varying
optimal v∗

Total vaccinated
with constant
v(t) = 0.3

Total vaccinated
with

time-varying
optimal v∗

0.5 203 192 405 319
1 201 187 447 332
5 199 181 493 338

that our objective functional, (2.8), was particularly sensitive to α (see Appendix A). For

all simulations thus far, α = 0.5 per day as listed in Table 2.3. Figure 2.5 illustrates how

v∗ changes for increasing α. Note that as α is increased, v∗ decreases. To understand this

downward shift, we first compare the patient population dynamics for the various α values,

shown in Figure 2.6. From this, we see that when α is increased, we are able to reduce C−

and D to approximately the same number seen for the lower α-value of 0.5, but we do so

with a lower v∗ and therefore also a lower value of J . Additionally, with the higher antibiotic

prescription rate, we observe that the total colonized population is also decreased.

Note that the number of susceptible patients vaccinated per day is given by vS. Since S

is increased in this scenario, v∗ can correspondingly decrease to lead to the same, or even

a slightly increased, number of susceptible patients being vaccinated per day. Essentially,

because there is an increased number of susceptible patients available to vaccinate due to the

increase in α, we are able to vaccinate more patients (even at a lower rate). This increase

in V engenders the decrease in the number of C− and D patients. From Table 2.6, observe

that we vaccinate more patients as α is increased whether we use a constant vaccination

rate or a time-varying one. Furthermore, Table 2.6 also indicates that time-varying rates of

vaccination in this scenario may be more economical than constant rates.

Another way for a hospital to experience an increase in susceptible patients is to have

more upon admission due to a greater number of patients taking antibiotics before entering

the hospital. We considered this case by increasing the proportion of susceptible patients

admitted, as, and thereby also increasing the initial number of susceptible patients by

adjusting the remaining admission proportions and initial conditions to reflect the change.
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Figure 2.5: Optimal vaccination rate v∗ for increasing antibiotic prescription rate, α, and
for c0 = 3, c1 = 0.1, c2 = c5 = 15, c3 = c4 = 0.5, M = 0.3, and T = 30
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Figure 2.6: Dynamics of patient transition states for increasing antibiotic prescription rate,
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Table 2.7: Comparison of J(v) with constant vaccination rate to J(v) with time-varying
optimal vaccination rate, shown in Figure 2.7, for various transmission coefficients, βc and
βd

βc, βd J(v) with constant v(t) = 0.3 J(v) with time-varying optimal v∗

10−6 203 192
0.0007 1,224 1,216
0.007 6,416 6,416

This scenario produced results that were similar to those obtained when increasing α and

are omitted here.

2.5.4 Increasing transmission coefficients

Another scenario we considered is the case of an outbreak, meaning an increase in the

transmission coefficients, βc and βd. Such an increase in transmission coefficients could occur

for a multitude of reasons, one of which being an understaffed hospital in which workers may

not be following proper protocol such as adequate washing of hands and wearing of gloves

when necessary. Additionally, note that the system in [45] was found to be particularly

sensitive to βc and our objective functional, (2.8), was found to be sensitive to βc and βd (see

Appendix A), so we determined the case of changing βc and βd was one worth exploring.

Recall that thus far βc = βd = 10−6.

Figure 2.7 shows how such an increase in βc and βd affects the optimal vaccination rate.

As expected, in such a scenario, we should increase the vaccination rate in order to contain

the outbreak. As βc and βd are increased, a time-varying optimal vaccination rate is just

barely more cost-effective than a constant vaccination rate since v∗ is increased closer to its

maximum allowed rate of 0.3 per day. The savings in J(v) are decreased as βc and βd are

increased, as shown in Table 2.7. In a particularly bad outbreak, the optimal vaccination

rate is constant at the upper bound of M = 0.3, as shown in Figure 2.7 for βc, βd = 0.007.

The resulting patient state dynamics for each set of transmission coefficient values

considered in Figure 2.7 are illustrated in Figure 2.8. For the increased transmission

coefficient values of βc, βd = 0.007, a comparison of the state dynamics with no vaccination

to those with vaccination implemented using optimal control is shown in Figure 2.9. In this

32



Days
0 5 10 15 20 25 30

O
p
ti
m

a
l 
v
a
c
c
in

a
ti
o
n
 r

a
te

 v
*

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

β
c
,β

d
=10

-6

β
c
,β

d
=0.0007

β
c
,β

d
=0.007

Figure 2.7: Optimal vaccination rate v∗ for increasing transmission coefficients, βc, βd, and
for c0 = 3, c1 = 0.1, c2 = c5 = 15, c3 = c4 = 0.5, M = 0.3, and T = 30

case, observe that vaccination has a much more significant impact than the scenario shown

in Figure 2.2, and in 30 days decreases the number of C− patients by approximately 20 and

the number of D patients by approximately 10.

We also considered scenarios in which we increased the clinical disease rate φ while

simultaneously increasing the transmission coefficients βc and βd. Note that in this case,

the trend remains essentially the same to that when only βc and βd are increased. The

only difference is that there is an increase in D when φ is also increased, which is expected.

Because the results were similar, they are omitted.

Note that an increase in the upper bound M on the vaccination rate may be reasonable

for some hospitals depending on a combination of factors. One such factor is how many

people a hospital can manage to vaccinate in a day. If staff increases its efforts, the hospital

may be able to handle an increase in vaccination rate. Additionally, if it becomes easier to

convince persons to be vaccinated, such a scenario would also call for an increase in M . Since

the most extreme outbreak, with βc, βd = 0.007, forces v∗ to become constant at its upper

bound, we also wanted to explore how v∗ would change with an increase in the upper bound

M to 0.6. The resulting v∗ is illustrated in Figure 2.10 alongside v∗ with M = 0.3. The

corresponding state trajectories are given in Figure 2.11 for M = 0.3 and 0.6. This figure

33



Days
0 5 10 15 20 25 30

R
0

50

100

150

Days
0 5 10 15 20 25 30

S

0

20

40

60

Days
0 5 10 15 20 25 30

C
-

0

5

10

15

Days
0 5 10 15 20 25 30

C
- +

C
+
+

C
v+

0

50

100

150

Days
0 5 10 15 20 25 30

D

2

3

4

5

6

Days
0 5 10 15 20 25 30

V
+

C
v+

0

20

40

60

80

β
c
, β

d
=10

-6

β
c
, β

d
=0.0007

β
c
, β

d
=0.007

Figure 2.8: Dynamics of patient transition states for increasing transmission coefficients,
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c0 = 3, c1 = 0.1, c2 = c5 = 15, c3 = c4 = 0.5, and T = 30

Table 2.8: Comparison of J(v) with constant vaccination rate to J(v) with time-varying
optimal vaccination rate, shown in Figure 2.10, for various upper bounds, M , on v(t) with
increased βc, βd = 0.007

M J(v) with constant v(t) = M J(v) with time-varying optimal v∗

0.3 6,416 6,416
0.6 6,433 6,398

shows that D and C− are decreased more in the case when M = 0.6 than when M = 0.3.

Furthermore, from Table 2.8, observe that in the case of the increased upper bound, there

is a notable benefit to using time-varying control over a constant rate of vaccination for all

30 days. Notably, the value of J(v) for the optimal v∗ corresponding to M = 0.6 is smaller

than the value of J(v) for the optimal v∗ corresponding to M = 0.3. Thus, allowing for an

increase in the upper bound on v(t) could lead to an overall savings and a greater impact on

reducing disease prevalence and incidence. We conclude that time-varying vaccination could

be beneficial in more extreme outbreak scenarios (i.e., βc, βd = 0.007) with this upper bound

increase, whereas without this increase, a constant rate of vaccination would be preferred.
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Figure 2.11: Dynamics of patient transition states with optimal vaccination rates shown
in Figure 2.10 with various upper bounds M for the increased values of βc, βd = 0.007 for
c0 = 3, c1 = 0.1, c2 = c5 = 15, c3 = c4 = 0.5, M = 0.3, and T = 30

2.6 Discussion

The recent striking growth in the prevalence of Clostridium difficile infection (CDI) in

healthcare facilities highlights the need for finding effective strategies for prevention. A new

potential prevention strategy is being considered as two international studies are underway

to test the effectiveness of a vaccine against the toxins produced by C. difficile [48]. In

anticipation of this vaccine, we have extended and updated a mathematical model of C.

difficile transmission in hospitals to include vaccination. We then employed optimal control

theory in order to find the time-varying optimal rate at which hospitals should vaccinate

patients that minimizes disease prevalence and transmission while also minimizing the cost

associated with vaccination.

In this chapter, our simulations considered 30-day time periods since vaccination

strategies will need to be reevaluated after this due to parameter values that may change

during this period. We considered different hospital statuses and compared time-varying

rates to constant rates in order to determine in which scenarios a time-varying rate would

be preferred. First, we considered a scenario in which hospitals have an increased number

of susceptible patients due to more high-risk antibiotics being given either prior to or after
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admission. We saw that with this increase in the number of susceptible patients, the optimal

vaccination rate decreased. In this scenario, hospitals could reduce all colonized populations

(asymptomatic and symptomatic) by the same amount (or slightly more), with a lower

vaccination rate and lower objective functional value. This is because there are more patients

available to be vaccinated in this scenario. In this case, a time-varying rate of vaccination

was shown to be more beneficial.

Another situation that hospitals commonly experience is that of an outbreak. In this

scenario, we saw that an increase in transmission coefficients led to a simultaneous increase in

the optimal vaccination rate. Because part of our main goal is to minimize disease prevalence

and transmission, as C. difficile spores are being transmitted at a higher rate, we must

vaccinate more to control this outbreak. Once the transmission coefficients increased to

some threshold value, the optimal vaccination rate became constant at its upper bound.

Therefore, in more severe outbreaks a constant vaccination rate is optimal to accomplish our

goal rather than a time-varying one, unless we allow for an increase in the upper bound on

the vaccination rate.

It is important to note that the upper bound of 0.3 we imposed on the vaccination

rate is not a strict upper bound. For this reason, we also considered how an increased upper

bound changed our results. In particular, we observed that in some cases of severe outbreak a

time-varying optimal vaccination rate is more economical when the upper bound is increased.
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Chapter 3

Agent-based model of nosocomial C.

difficile transmission

3.1 Introduction

Since the early 2000s, a notable increase in the incidence and severity of CDI has placed a

substantial burden on healthcare facilities [41, 40, 84]. In particular, the North American

population has experienced a fivefold increase in CDI incidence with an eightfold increase in

the elderly [68], and the cost associated with CDI in United States acute-care facilities alone

has been estimated to be as much as $4.8 billion annually [20]. These increases are due, in

part, to significant changes in the epidemiology of C. difficile with the emergence of a new

hypervirulent strain [40]. Thus, there is a critical need to better identify primary sources of

transmission in order to determine optimal methods for prevention.

Mathematical and computational models provide a mechanism for evaluating the complex

interactions driving transmission and for making recommendations about disease control and

surveillance. Models using differential equations have previously been developed to represent

nosocomial transmission [6, 86, 45, 36, 88, 81]. Using a compartmental model of C. difficile

transmission in a healthcare setting, Lanzas et al. [45] concluded that asymptomatic patients

are significant contributors to within-ward transmission. Increased awareness of the role of

environmental transmission in the spread of some pathogens has led to the development

of models that incorporate environmental components [38, 83, 74]. Updated studies have
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indicated that the primary reservoirs of CDI are both colonized individuals (asymptomatic

and symptomatic) and contaminated environments [39, 8, 75]. Because of this, we aim to

expand our modeling assumptions to explicitly include the additional transmission pathway

of environmental contamination.

Evidence has linked the acquisition of nosocomial pathogens to their presence on hospital

surfaces, and C. difficile, in particular, has been found on beds, sinks, toilets, walls, rails,

call buttons, and stretchers [28]. C. difficile spores can survive for extended periods of

time, even years, on these hospital surfaces and are resistant to drying, heat, exposure to

air, and most disinfectants and detergents [28]. Because the persistence time of C. difficile

in the environment is often longer than the duration of pathogen shedding by infectious

individuals, the risk of a susceptible individual becoming colonized greatly depends on the

level of pathogen in the surrounding environment [18]. The survival of C. difficile spores

on hospital surfaces makes healthcare workers (HCWs) important vectors of transmission,

particularly if they exhibit poor hand-hygiene practices [28].

Antibiotic use has been shown to be the primary risk factor for contracting CDI since

antibiotics disrupt the normal gut microbiota [63], allowing C. difficile to proliferate and

colonize [3]. Certain antibiotics may make individuals more susceptible to colonization by

C. difficile than others. This depends on the spectrum, duration, and number of antibiotics

received [78, 14, 5]. Prolonged duration of antibiotic use and use of multiple antimicrobial

agents are both linked to increased risk of contracting CDI [40]. Broad-spectrum antibiotics,

such as amoxicillin, work against a broad range of bacteria, which results in more significant

gut microbiota disturbance and, thereby, an increased risk for C. difficile colonization [67].

Strategies have been implemented to reduce the transmission of C. difficile in healthcare

environments. Such strategies include antimicrobial usage restriction and stewardship,

isolation of patients with CDI, environmental decontamination of rooms with bleach, and

improved HCW hand-hygiene and contact protocol [18]. Antimicrobial stewardship involves

an overall reduction in the number of antibiotics prescribed and/or a reduction targeted

specifically at the proportion of antibiotics prescribed that are associated with a higher

chance of contracting CDI, such as broad-spectrum antibiotics [23, 82, 5]. Current hospital

practice calls for the identification and subsequent isolation of patients with CDI so that
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proper contact precautions can be implemented to decrease the chances of pathogen spread

[18]. Assessments of hospital cleaning practices have shown that routine disinfection is

often not performed efficiently and as a result, it is ineffective at eradicating nosocomial

pathogens [28]. Therefore, more purposeful cleaning with bleach can be an important

strategy for reducing the pathogen level in a healthcare setting [29]. HCWs’ hands can

become contaminated after touching surfaces with C. difficile spores [60, 17], and studies

have shown that adherence to best hand-hygiene and contact protocol practices have been

difficult to maintain [64, 10]. Because the spread of nosocomial pathogens has been linked

to poor hand-hygiene practices [28], improved adherence of HCWs to proper hand-washing

and contact protocols is also an important control measure. Vaccination may soon be an

addition to the current control strategies since early results of clinical trials of a C. difficile

toxoid vaccine show efficacy in preventing CDI [84]. Although this vaccine does not prevent

colonization by C. difficile, it may be effective for reducing transmission in hospital settings.

Studies have been completed to determine the individual impact of these control measures

on the spread of C. difficile [55, 31, 66, 21], and several computational models [75, 10, 13, 5]

have been designed to determine the optimal combination of intervention strategies for

reducing C. difficile transmission. Agent-based and individual-based models allow us to

define a system based on individual behaviors and interactions. These individual behaviors

are simulated to observe emergent behaviors of the entire system [72]. Agent-based

models (ABMs) also allow us to incorporate spatial heterogeneity, consider a variety of

transmission pathways, and incorporate individual patient characteristics that are significant

in determining transmission. ABMs also inherently have stochastic components that can

result in different outcomes from similar starting conditions.

D’Agata et al. [13] used an individual-based model to determine the key contributing

factors to nosocomial transmission of a general antimicrobial-resistant bacteria. Their

model focused on the admission and exit of patients, infection of patients by HCWs, and

contamination of HCWs by patients; however, their study did not include an environmental

reservoir. They also analyzed the role of antibiotics, including the duration of treatment and

the scheduling of treatment initiation. One drawback of considering a general antimicrobial-

resistant bacteria is the inability to incorporate characteristics specific to a single type of
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bacteria. By only monitoring one individual patient characteristic (the bacterial load during

antibiotic treatment), this model ignores other individual patient characteristics that are

especially relevant to CDI incidence, such as disease status at admission. In particular,

patients colonized at admission significantly contribute to C. difficile transmission [12], so

tracking patient disease status at admission is important when modeling CDI transmission.

The ABM created by Codella et al. [10] specifically considered C. difficile and included

patients, HCWs, and visitors. The agents were able to interact with each other and the

environment as possible sources of transmission. Neither this model nor the one created by

D’Agata et al. [13] considered within-hospital patient history, such as the level of risk of C.

difficile colonization associated with the particular antibiotics prescribed. Additionally, it is

important to track when antibiotic treatment began since both the spectrum and duration

of antimicrobial treatment affect the probability of a susceptible patient becoming colonized.

The ABM of C. difficile transmission developed by Rubin et al. [75] does group antibiotics

into classes based on the level of risk; however, none of the three ABMs mentioned evaluated

antimicrobial stewardship as a control measure. This is notable because antimicrobial

stewardship has been linked with the greatest evidence for preventing CDI in healthcare

environments [37].

The ABM of C. difficile transmission created by Bintz et al. [5] focused on evaluating the

efficacy of various control measures aimed at “reducing environmental contamination and

mitigating the effects of antibiotic use on transmission” of C. difficile in order to reduce

colonization and infection incidence within the hospital. Their model accounts for the

heterogeneity of the environment and of the antibiotics prescribed. They denote various

risk levels for antibiotics, according to the degree of microbiota disturbance they cause,

and, consequently, the likelihood of colonization by C. difficile. By accounting for both the

type and number of antibiotics each patient receives while in the hospital, they were able

to simulate antimicrobial stewardship programs. In addition to considering antimicrobial

stewardship as a control measure, they also considered environmental decontamination

strategies. They tracked many individual patient characteristics that are relevant for

determining the probability of colonization, such as disease status at admission, risk level

of the antibiotic received, and the local contamination level. A major assumption of their
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model is that the impact of HCWs on transmission can be estimated without explicitly

incorporating HCWs as agents in the model. Bintz et al. [5] implicitly incorporate the impact

of HCWs by considering ward-level contamination in addition to room-level contamination,

but they do not consider HCWs as agents.

In this study, we develop an ABM of the spread of C. difficile in healthcare environments

that includes environmental transmission and explicitly includes HCWs as vectors of

transmission. The goal of our work is to build on the ideas formulated by Bintz et al. [5]

in order to create an ABM of C. difficile transmission that incorporates specific patient

histories, antibiotic histories, and antibiotic risk levels and that explicitly incorporates

HCWs as agents. Using this model, we aim to evaluate various control strategies, such as

environmental cleaning, antimicrobial stewardship, improved HCW hand-hygiene practices,

and vaccination in order to determine the optimal combination of strategies for reducing

nosocomial C. difficile colonization and infection incidence. Specifically, we hope to answer

questions that the previous model [5] with only implicit HCWs was unable to answer, such

as the effectiveness of improved HCW hand-hygiene practices as a control intervention. It

is worth noting that none of the ABMs previously mentioned considered vaccination as a

control measure. With positive early results of C. difficile toxoid vaccine trials [84], we

saw benefit in performing a preliminary assessment of vaccination both individually as an

intervention strategy and coupled with other interventions.

In Section 3.2, we give an overview of the structure of and components in our ABM,

including a description of patient-HCW-environment interactions and specific characteristics

tracked for HCWs, patients, and rooms. In Section 3.3, we discuss the control interventions

and the combinations of interventions that we evaluated. Section 3.4 describes the

computational methods we used to obtain our results, and Section 3.5 summarizes the results

of our simulations and intervention comparisons. A discussion of implications and conclusions

follows in Section 3.6. Specific details about the model structure and implementation are

described using the standard Overview, Design Concepts, and Details (ODD) protocol [72]

in Section 3.7.
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3.2 Model overview

In this section, we give an overview of the structure of and components in our ABM of

nosocomial C. diffcile transmission. For all the specific details about model design and

implementation in their entirety, see the ODD protocol in Section 3.7 and the descriptions of

the submodels in Section 3.8. Our ODD protocol follows the standard formatting originally

developed by Grimm, Railsback, and their collaborators [32].

3.2.1 Model setting

We developed our ABM using NetLogo, a coding language primarily used for the creation of

ABMs. Our model is a modification and extension of the ABM originally created by Bintz

et al. [5]. The model environment is a hospital consisting of six wards, each with 35 patient

rooms. A snapshot of the graphical user interface of our model environment in NetLogo is

shown in Figure 3.1. We assume these are all single-patient rooms, so there can be at most

210 patients in the hospital at a time. For simplicity and to ensure we never have more

patients than available rooms, we maintain a constant occupancy level. That is, the number

of new patients admitted at a given time always equals the number of patients discharged at

the previous time. The number of HCWs in the hospital is chosen to maintain a 3:1 ratio of

patients to HCWs, and each time an HCW leaves the hospital, a new one arrives to maintain

a constant total population of HCWs.

The model has two types of agents: patients and HCWs, and the environmental patches

represent ward rooms. We track behaviors and characteristics specific to each individual

agent and each individual patch. The individual characteristics and interactions can give rise

to interesting overall population dynamics, and the resulting outputs of model simulations

will vary based on the individual behaviors. Patient interactions and characteristics are

updated at every half-day time-step, which mimics the time-scale of the ABM in [5], while

HCW interactions and characteristics are updated at every 15-minute time-step. Many of

the values for the parameters used in the model were taken from a dataset originally used

in [45] that was collected from Barnes-Jewish Hospital in St. Louis, Missouri.
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Figure 3.1: Snapshot of the graphical user interface of our model environment in NetLogo
as a hospital with six wards that each have 35 rooms, where the dice represent patients,
the people represent HCWs, and the colors represent the amount of contamination in that
room (yellow indicates low contamination, green is medium contamination, and brown is
high contamination)

3.2.2 Model components

For each ward room, we track its contamination level over time. The more surfaces in a room

contaminated by C. difficile spores, the higher the room’s contamination level. Pathogen

shedding of both symptomatic and asymptomatic patients will increase the contamination

level of a room. However, we assume that the shedding of symptomatic patients contributes

more to room contamination than that of asymptomatic carriers since it has been shown that

those with CDI shed more C. difficile in their stool [18], which leads to more environmental

contamination. Patients who are not colonized by C. difficile will have no effect on the

contamination level of the room in which they are residing.

For all patients, we assign a length of stay in the hospital based on their disease status

upon admission and on data for the lengths of stays of patients at Barnes-Jewish Hospital

[45, 5]. We also track each patient’s time since admission, and once the time since admission

reaches the preassigned length of stay, that patient is discharged from the hospital.

All patients, regardless of their disease status with respect to C. difficile, have a
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probability of receiving an antibiotic (for treating illnesses not related to C. difficile) at

each half-day time-step. Because different types of antibiotics result in varying degrees of

microbiota disturbance and, therefore, varying risks of colonization by C. difficile [78, 14],

we group antibiotics into three risk levels with respect to C. difficile: low-, high-, and very

high-risk [5]. The risk level of an antibiotic directly affects the time until restoration of a

normal gut microbiota and a patient’s incubation period (the time between exposure to C.

difficile and the onset of symptoms). In particular, higher risk antibiotics are associated

with shorter incubation periods and longer periods until successful restoration of the gut

microbiota. The model tracks the associated risk level of each antibiotic a patient receives

and the number of antibiotics each patient receives while in the hospital. Additionally, the

amount of time each patient spends on a particular antimicrobial therapy is tracked. Because

of this, we are able to incorporate the impact of the antibiotic type, duration of treatment,

and number of antibiotics on the risk of colonization and subsequent infection by C. difficile.

Throughout a patient’s stay, we track the progression of his or her disease status, and

we begin by noting the patient’s disease status at admission. There are four possible disease

statuses of patients: resistant, susceptible, (asymptomatically) colonized, and diseased.

Upon admission, a patient’s disease status is determined based on the admission proportions

for each disease class. We use the same admission proportions here as we used in our ODE

model in Chapter 2, in which the proportions were based on hospital data with modifications

made to the colonized admission proportion because of updated data given by Alasmari et

al. [1].

All possible transitions among disease states are represented in Figure 3.2. Because

antibiotic use is widely recognized as the most significant risk factor for colonization by

C. difficile [48, 40], we make the same assumption here that we made in our ODE model

(Chapter 2): a patient only becomes susceptible to colonization after beginning antimicrobial

therapy. Those who have not recently undergone antimicrobial therapy are considered

resistant to colonization and will not be affected by exposure to C. difficile spores. Since,

on average, a patient’s microbiota will return to normal after 30 days [45], our model allows

susceptible patients to return to resistant if they are not exposed to C. difficile while

susceptible or if they do not receive an additional antibiotic in those 30 days. However,
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the susceptible individuals who do come into contact with C. difficile spores have a chance

of becoming colonized. Each individual susceptible patient has his or her own probability of

becoming colonized that changes at each 15-minute time-step and depends on the risk level

of the antibiotic prescribed and on the contamination level of his or her room. The more

contamination in a room, the greater the chances of exposure and subsequent colonization.

Similarly, the higher the antibiotic risk level with respect to C. difficile, the greater the

chances of colonization.

Upon colonization, patients are randomly assigned as either immunocompromised or not

immunocompromised, indicating whether or not they mount their own immune response

against the toxins produced during colonization. In keeping with the values used by Bintz

et al. [5], there is a 10% chance a colonized individual will be immunocompromised. All

colonized patients have a chance of receiving one or more additional antibiotics (for the

treatment of illnesses not related to C. difficile). For those who are not immunocompromised

and receive an additional antibiotic, it is possible they will clear their colonization but still

have an altered gut microbiota. Therefore, this subset of colonized patients may return to

susceptible. For colonized patients who are not immunocompromised and do not receive an

additional antibiotic, they may clear their colonization and also have their gut microbiota

return to normal. This subset of colonized patients will return to the resistant class. Finally,

those colonized who are immunocompromised will contract CDI. If they receive an additional

antibiotic prior to becoming diseased, this will shorten their incubation period and cause

them to experience CDI symptoms more quickly than they would have otherwise. Our

model includes screening of symptomatic patients for CDI with the turnaround time for the

screening test and the sensitivity of the screening test also incorporated. After the turnover

time for the screening test has elapsed, the symptomatic patients who were unsuccessfully

screened are tested again. Those diseased patients who are successfully screened for CDI will

be quarantined, and their symptoms will be treated with one of the typical antibiotics used

to treat CDI. There is an 80% chance of successful treatment and resolution of symptoms

[45] that will allow diseased patients to return to the susceptible class.

Upon arrival to the hospital, each HCW is assigned a shift length. For simplicity, we

consider either 8-hour or 12-hour shifts, with a 50% chance of each. We track each HCW’s
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Figure 3.2: Summary of movement among disease statuses of patients in agent-based model

time since beginning a shift, and once this time surpasses the total shift length assigned, that

HCW leaves the hospital. We divide HCWs into two groups: Type 1 and Type 2. Type 1

HCWs are assumed to be completing more routine, less time-consuming tasks and, therefore,

move from patient to patient every 15 minutes. In contrast, Type 2 HCWs spend more time

with the patients they visit and only move from patient to patient every 45 minutes. Our

model assumes that no HCW will visit a vacant room and that HCWs of the same type will

never be in the same room simultaneously; however, a Type 1 and Type 2 HCW may visit

the same patient at the same time.

HCWs have individual contamination levels that represent the amount of C. difficile they

are carrying. We do not track C. difficile colonization or infection of HCWs and view them

only as vehicles of pathogen spread from room to room. Because C. difficile is primarily

acquired nosocomially [48], we assume each HCW has a contamination level of zero upon

entry into the hospital. However, we should note that there has been a significant increase

in community-acquired infection by C. difficile [48], so this parameter can be varied to

mimic contamination from this increase. Each time an HCW visits a patient, the chances
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of becoming contaminated by C. difficile depends on the type of task being performed on

the patient and on the amount of contamination in the room. For this reason, we divide the

types of tasks HCWs complete into three groups: low-, medium-, and high-risk. The risk

associated with a particular task depends on the invasiveness of the task and the likelihood of

coming into contact with a large number of surfaces in the room. For example, we consider

a task such as giving a patient a scrub bath to put an HCW more at risk of becoming

contaminated than taking a patient’s temperature does. Although both types of HCWs can

perform any level of task, we assume Type 1 HCWs have a greater chance of performing

low-risk tasks while Type 2 HCWs have a greater chance of performing high-risk tasks.

3.2.3 Model processes

Before beginning simulations, the model environment is first initialized. In this process,

we populate the hospital with enough patients to meet the specified occupancy level. The

disease status of these patients upon admission is based on the admission proportions: ar,

as, ac, and ad, whose values are given in Table 3.12. The room contamination levels are then

initialized based on the disease status of the patient in the room. Rooms with resistant or

susceptible patients will have a contamination level of zero. Because colonized and diseased

patients will shed C. difficile spores, the contamination level of their rooms will be increased

to reflect this. The exact process for determining the amount of increase is the same as that

described in Section 3.8.4, where each submodel of the ABM is outlined. The hospital is

next populated with enough HCWs to maintain a 3:1 ratio of patients to HCWs, and the

contamination level of all HCWs is initialized to zero. In this initialization process, HCWs

are randomly assigned a length of time remaining on their shift, varying from 0 to 12 hours.

We let the model run for a three-week time period before recording outputs to ensure the

resulting outputs are not significantly dependent on the specified initial conditions.

After initialization, the model executes the following processes, in the order presented

below, at every 15-minute time-step. The flow of these processes is also illustrated in Figure

3.3.

1. New HCWs arrive to begin their shifts.
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Figure 3.3: Summary of ABM processes that are run at each 15-minute time-step

2. If it is time to do so, HCWs move to begin a visit with a new patient; otherwise, they

do not move and continue their visit with the current patient.

3. Risk level of task being performed is determined.

4. HCW contamination levels and room contamination levels are updated based on the

transfer of C. difficile.

(a) The probabilities of transfer from HCW to room and vice versa are first

determined.

(b) Separate probabilities of transfer are determined for HCWs visiting quarantined

patients.

5. HCWs wash their hands at the conclusion of their patient visit.

6. HCWs who have completed their shifts leave the hospital.

To update the contamination levels of rooms and HCWs, we first determine the

probability of pathogen transfer occurring. When HCWs visit rooms, they have a chance of

picking up C. difficile spores, which would add to the existing contamination on their hands,

and they also have a chance of transferring C. difficile spores already on their hands to the
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room. The probability of an HCW picking up pathogen when visiting a room depends on the

amount of contamination in the room and the risk level of the task being performed. The

greater the room contamination and the higher the risk associated with the task, the more

likely an HCW will pick up pathogen from the room. Similarly, the probability of an HCW

transferring pathogen from his or her hands to a room surface depends on the contamination

level of the HCW and on the risk level of the task being performed. The more C. difficile on

an HCW’s hands and the higher the risk of the task, the more likely an HCW will transfer

pathogen to the room. We refer to the chance of HCWs picking up pathogen from the room

as prob-room-transfer and refer to the chance of HCWs transferring some of their existing

contamination to the room as prob-HCW-transfer. To calculate these probabilities at each

15-minute time-step for each HCW and room, we use three transfer functions, one for each

task risk level. When determining prob-room-transfer, we consider these transfer functions

to be functions of the room contamination level, and when determining prob-HCW-transfer,

we consider them to be functions of the HCW contamination level. For more details and

to see the specific functions used, refer to Section 3.8.9. Based on these probabilities, the

model then determines whether or not transfer will occur between a room and an HCW.

Note that the process of determining the probability of transfer between a room and an

HCW is different for quarantined patients. For these patients who were successfully identified

with CDI and then placed in isolation, there is either a 100% chance of transfer or 0% chance

of transfer between their room and the visiting HCW. We incorporate this into the model to

reflect the fact that HCWs are likely to behave differently when they know they are visiting

a patient quarantined with C. difficile. In fact, data shows a greater likelihood of HCWs

adhering to contact protocol when visiting patients in isolation. We refer to the likelihood of

HCWs complying with proper hand-hygiene and contact protocol when visiting quarantined

patients as hcw-contact-compliance and set its baseline value to 0.6, based on data given

by Rubin et al. [75]. If HCWs properly comply, there is a 0% chance of pathogen transfer

between that room and the HCW; if they do not, there is a 100% chance of transfer.

After determining whether transfer will occur for each HCW-room combination, the

model next updates HCW and room contamination levels to reflect the transfer. In

particular, if an HCW picks up pathogen from a room, we decrease the room contamination

50



level by 10% and increase the HCW contamination level by that same amount to represent

the transfer. Similarly, if an HCW transfers pathogen to a room, we decrease the HCW

contamination level by 90% and increase the room contamination level by the same amount.

These percentages were chosen to reflect the fact that ward rooms contain many surfaces,

so one HCW is likely to only pick up a small percentage of the total contamination in the

room during one visit. In contrast, we are only tracking the contamination of HCWs on

their hands, so they are likely to transfer a vast majority of their total contamination to the

room if it is determined that a transfer will occur.

HCWs may decrease their contamination levels by following proper hand-washing and

contact protocols. Our model includes HCW routine hand-washing after every patient visit

with a 45% chance that the hand-washing was effective at reducing contamination. This

value was obtained by averaging the adherence percentage after patient contact of nurses

and physicians given by Rubin et al. [75]. We refer to this compliance as hcw-compliance

and set its baseline value to 0.45 (Table 3.12).

In addition to the processes run at each 15-minute time-step, the model will run the

following processes, in the order presented, at each half-day time-step. These processes are

also illustrated in the flow diagram in Figure 3.4.

1. Update the disease status of patients.

(a) Determine if each patient will receive an antibiotic (based on the global variable

for the overall probability of patients receiving antibiotics).

(b) Determine each patient’s probability of becoming colonized.

(c) Screen symptomatic patients for CDI.

(d) Quarantine and treat patients who tested positive for CDI.

2. Update the contamination level of rooms based on contributions from symptomatic

and asymptomatically colonized patients.

3. Discharge patients from the hospital (once their time since admission equals their

assigned length of stay).
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Figure 3.4: Summary of ABM processes that are run at each half-day time-step

4. Clean vacant ward rooms.

5. Admit new patients to replace those who were discharged.

At each half-day time step, all patients have a 27% chance of receiving an antibiotic. This

number was chosen by Bintz et al. [5] so that the output for the total number of antibiotic

treatments per patient matched the data from the hospital. Whether or not a patient receives

an antibiotic will affect his or her disease status, as described in Section 3.2.2. When the

model updates each patient’s disease status, it first determines if that patient will receive an

antibiotic and then determines the risk level of the antibiotic given. In this step, the model

also updates the number of antibiotics each patient receives. The changes to disease status

were all described in Section 3.2.2 and are described in the most detail in Section 3.8.3.

After patient disease statuses are updated, the room contamination levels are updated

based on contributions from patients. As described in the initialization process, patients

with CDI and asymptomatically colonized patients contribute to the contamination level of a

room by shedding C. difficile spores in their feces. Resistant and susceptible patients will not

contribute. Note that our model does not explicitly include pathogen transfer directly from

HCW to patient or vice versa; rather, we model the transfer between HCWs and rooms and
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Figure 3.5: Summary of modes of C. difficile transmission included in the ABM, where
prob-room-transfer refers to the probability of an HCW picking up C. difficile spores from
a room, prob-HCW-transfer refers to the probability of an HCW contaminating room
surface(s) with spores, and prob-becoming-colonized represents the probability of a patient
becoming colonized based on the contamination level of the room and on the risk level of
the antibiotic received

between patients and rooms. Transfer between patients and HCWs is considered implicitly

as a result of the spread between rooms and HCWs and between rooms and patients. A

summary of all possible C. difficile transfer routes is represented in Figure 3.5.

Once the disease status of patients and room contamination levels are updated, patients

whose time since entering the hospital exceeds their length of stay assigned at admission

are discharged. After this, the model admits new patients to replace those who were just

discharged. This admission of patients is run in the same way patients were admitted

during the initialization process. When new patients are admitted, we assign them a disease

status and initialize all other patient characteristics that we are tracking. A complete list

of these patient characteristics is given in Section 3.7.3 of the ODD protocol, and a detailed

description of the admission of patients process run by the model is given in Section 3.8.2.

3.3 Control interventions

Our goal is to compare the impact of various control interventions, and combinations of

control interventions, on the transmission of and subsequent infection by C. difficile. We

consider the following intervention strategies:

1. Antimicrobial stewardship
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2. Increased HCW adherence to hand hygiene and contact protocol (with all patients and

specifically with quarantined patients)

3. Improved environmental decontamination

We consider antimicrobial stewardship in two forms (using the same techniques described

in [5]): (1) an overall reduction in the number of antibiotics prescribed and/or (2) a

reduction targeted at the proportions of high-risk and very high-risk antibiotics prescribed.

To implement an overall reduction in the number of antibiotics prescribed, we reduce the

half-daily probability of a patient receiving an antibiotic by a certain proportion. At baseline,

this reduction is assumed to be 0% so that there is a 27% chance of patients receiving an

antibiotic each half-day, as described by the global variable prob-antib listed in Table 3.12.

The intervention scenarios considered include a reduction of this probability by 10% and by

20%, resulting in a 24.3% and a 21.6% chance, respectively, of patients receiving an antibiotic

each half-day. For easy reference, these values are given in Table 3.1.

To implement the second form of antimicrobial stewardship, we alter the probabilities

of the antibiotic prescribed being low risk, high risk, or very high risk with respect to CDI.

The scenarios considered here are the same as those used by Bintz et al. [5] and are listed in

Table 3.2. In the baseline scenario, we set the proportion of low-risk antibiotics prescribed

to be 0.4, the proportion of high-risk to be 0.26, and the proportion of very high-risk to

be 0.34. We will refer to this as Risk Scenario 1. The second risk scenario considered

involves reducing the probability of very high-risk antibiotics being prescribed by half, and

as a result, increasing the probability of high-risk antibiotics being prescribed by that same

amount. The third and final risk scenario considered involves replacing both half of the

proportion of very high-risk antibiotics prescribed with high-risk antibiotics and half of the

high-risk antibiotics prescribed with low-risk antibiotics. As noted by Bintz et al. [5], these

particular antimicrobial stewardship strategies and values were chosen to represent programs

that could feasibly be implemented; more extreme values, such as a 0% chance of receiving

an antibiotic, are not realistic. Data indicate that even when hospitals were successfully

able to reduce the number of unnecessary antibiotics prescribed, there were always still some

unavoidable prescriptions, even at the very high-risk level, remaining [5].
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Table 3.1: Antimicrobial stewardship strategy: reduction in the overall number of
antibiotics prescribed

Probability of receiving antibiotic
baseline 0.27

10% reduction 0.243
20% reduction 0.216

Table 3.2: Antimicrobial stewardship strategy: reduction in the proportions of antibiotics
prescribed according to risk level with respect to CDI

Risk scenario 1 2 3
proportion of low-risk 0.4 0.4 0.53
proportion of high-risk 0.26 0.43 0.3

proportion of very high-risk 0.34 0.17 0.17

The next intervention strategy considered involves the increased adherence of HCWs to

hand-hygiene and contact protocols. To increase HCW compliance, a hospital might need

to have additional HCWs due to the time spent adequately sanitizing. Our model does

not explicitly account for the time HCWs spend adequately washing, but this is something

that could be further explored in the future. We consider both improved HCW hand-

hygiene compliance after each patient visit and improved HCW compliance when visiting

quarantined patients. The baseline value for HCW compliance after completing a routine

visit with a patient is 0.45, as mentioned in Section 3.2.3 to be taken from data given in [75],

and is referred to as hcw-compliance. To assess the impact of improved HCW adherence on

transmission and infection, we consider values greater than 0.45, including 0.65, 0.75, 0.85,

and 1. Although a compliance of 100% is not the most likely scenario, this extreme case

allows us to determine the impact of this particular control intervention. In addition to this

more routine HCW compliance, we also consider an increase in compliance when visiting

quarantined patients, referred to as hcw-contact-compliance. As mentioned in Section 3.2.3,

the baseline value for this compliance is 0.6, and we increase it by various amounts up to,

and including, 1 to assess the impact of this control strategy.

The third control intervention strategy considers improved environmental decontamina-

tion. Different types of cleaning and disinfection strategies will have varying impacts on
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the removal of C. difficile spores in the environment. Thus, we incorporate a probability

of sufficient cleaning into our model with a baseline value of 0.5 [5] that represents the

effectiveness of routine cleaning. An increased value of this probability indicates the

implementation of a more stringent and effective cleaning strategy that targets C. difficile.

For now, we only consider terminal cleaning of rooms after patients are discharged rather

than routine daily cleaning of all rooms.

3.4 High-performance computing setup

Because of the stochasticity embedded in ABMs, to best assess the impact of the control

intervention strategies, we ran our model for 100 iterations over a one-year simulated time

period with each combination of parameter values (representing different control strategies).

Since our model is on a 15-minute time-step, this requires simulating the model for over

35,000 ticks, 100 times each, for more than 40 different parameter combinations. It proved

to be very ineffective and time-consuming to run these computations on a single machine.

A common approach for dealing with such a large number of parameter combinations and

high numbers of iterations is to use computing clusters to enable parallelization and speed

up execution time. Therefore, we ran all simulations via the computing cluster available at

the Advanced Computing Facility (ACF), a high-performance computing facility available

for use by students and faculty at the University of Tennessee.

In order to submit jobs to the cluster efficiently, we worked closely with Eduardo Ponce

Mojica, a graduate student in the Department of Electrical Engineering and Computer

Science, to create a process for submission and for organizing the resulting outputs. The

process begins with the BehaviorSpace tool in NetLogo. This built-in NetLogo tool allows

us to specify the various parameter combinations we want to simulate and the resulting

outputs of interest. We then use the code created by BehaviorSpace to write a setup file.

To submit the job to the cluster, we use a PBS file that does the following: (1) specifies

the file path for the ABM, NetLogo, and the setup file, (2) calls the specified setup file,

(3) specifies a maximum run-time and number of nodes to use, and (4) includes code for

calling the Python file that orders and organizes the resulting simulation outputs according
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to each parameter combination. For a more thorough description of this method, Mojica

has submitted a conference proceedings paper entitled “PaPaS: A Lightweight and Generic

Framework for Parallel Parameter Studies” [62] that outlines the details of the process for a

general NetLogo ABM to serve as a reference for those interested in doing something similar.

3.5 Results

To assess the impact of the control interventions, we examine the resulting number of

nosocomial colonizations and nosocomial infections over a year’s time period under each

particular control strategy. Because simulations result in varying numbers of total patient

admissions per year, we normalize all of the outputs to 10,000 admitted patients per year for

comparison. Without this normalization, comparison of colonization and disease incidence

can be misleading [5].

3.5.1 Baseline results

The baseline parameter values are given in Table 3.12 of Section 3.7.3, and the resulting

numbers of nosocomial colonizations and infections for the 100 iterations of the baseline

case are shown in the box plots in Figure 3.6. Note that the median values of nosocomial

colonizations and infections for the 100 iterations are indicated by the red lines, and

each box (outlined in blue) represents the inter-quartile range, which includes the middle

50% of output values. Specifically, the median number of nosocomial colonizations per

year at baseline, normalized to 10,000 admissions, was 2,161, and the median number of

nosocomial infections per year normalized to 10,000 was 111. Our numbers of nosocomial

colonizations per year are significantly lower than the numbers obtained in [5]; we adjusted

select parameters purposely (details in Section 3.8.13) so that our numbers of nosocomial

colonizations matched updated data indicating that nosocomial colonization incidence affects

20% of admitted patients [11, 40].

To obtain a better understanding of the types of patients becoming colonized and/or

diseased while hospitalized, we split up the total nosocomial colonizations and infections

according to each patient’s disease status at admission, with the results shown in Figure
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(b) Baseline nosocomial infections

Figure 3.6: Baseline parameter values: Number of (a) nosocomial colonizations and (b)
nosocomial infections by C. difficile, normalized to 10,000 admissions, for 100 iterations over
a one-year time period with baseline parameter values

3.7. Figure 3.7a indicates that the majority of nosocomial colonizations are coming from

those who were resistant at admission while Figure 3.7b illustrates that the majority of

nosocomial infections come from those who are admitted colonized. The high number of

resistant patients becoming colonized while in the hospital is likely a result of the fact that

there is a 75% chance of patients being admitted resistant, so the number of resistant patients

hospitalized is much higher than that of any other disease status. In fact, only approximately

19.64% of the total number of admitted resistant patients become colonized (Table 3.3).

Still, the higher number of nosocomial colonizations coming from resistant patients suggests

that restricting antibiotic prescriptions in a way that keeps resistant patients from becoming

susceptible will be an important control strategy. Table 3.3 also indicates that the percentage

of admitted susceptible patients who become colonized is the highest of any admission class

(though not by a significant amount). This suggests that controlling the amount of C.

difficile in the environment and reducing possible exposure pathways will be an important

control strategy. Table 3.4 indicates that the largest percentage of admitted patients who

will contract CDI are those who are colonized upon admission.
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Figure 3.7: Breakdown of (a) nosocomial colonizations and (b) nosocomial infections based
on disease status at admission for 100 iterations over a one-year time period with baseline
parameter values

Table 3.3: Median percentage of patients admitted in each class who eventually become
colonized during their hospital stay out of 100 iterations

Admitted resistant who become colonized 19.64%
Admitted susceptible who become colonized 32.87%
Admitted colonized who clear colonization but then eventually
return to colonized

25.07%

Admitted diseased who return to susceptible and then become
colonized again

17.37%

Table 3.4: Median percentage of patients admitted in each class who eventually become
diseased during their hospital stay out of 100 iterations

Admitted resistant who become diseased < 1%
Admitted susceptible who become diseased < 1%
Admitted colonized who become diseased 5.56%
Admitted diseased who return to susceptible and then experience
recurrence

< 1%
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Figure 3.8: Reducing the half-daily probability of receiving an antibiotic: Resulting number
of (a) nosocomial colonizations and (b) nosocomial infections for baseline probability of
receiving an antibiotic (p = 0.27) and for the the reduced probabilities of receiving an
antibiotic (10% reduction and 20% reduction) described in Table 3.1, normalized to 10,000
admissions, for 100 iterations over a one-year time period

3.5.2 Single control interventions

We begin our assessment of control interventions by weighing the impact of each control

strategy implemented on its own on the numbers of nosocomial colonizations and infections.

In Section 3.3, we described two types of antimicrobial stewardship, and we consider

these first. Figure 3.8 illustrates the impact of reducing the overall number of antibiotics

prescribed, and Figure 3.9 shows the effect of reducing the proportions of very high-risk and

high-risk antibiotics with respect to CDI, according to the risk scenarios described in Table

3.2. In each graph, the first box plot corresponds to the baseline scenario for comparison.

Both of these antimicrobial stewardship strategies have a notable impact on reducing the

nosocomial colonizations (Figures 3.8a, 3.9a), and we see that reducing the proportions of

high-risk and very high-risk antibiotics has more of an impact on decreasing the nosocomial

infections (Figure 3.9b) than reducing the half-daily probability of receiving an antibiotic

has on reducing nosocomial infections (Figure 3.8b).

The next control strategy we implement is more effective terminal ward room cleaning.

Figure 3.10a indicates that this particular strategy is not as impactful as the antimicrobial

stewardship strategies at reducing nosocomial colonizations, even if 100% effective cleaning
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Figure 3.9: Reducing the proportion of very high-risk and high-risk antibiotics: Resulting
number of (a) nosocomial colonizations and (b) nosocomial infections for each risk scenario
(specifying proportions of low-risk, high-risk, and very high-risk antibiotics) described in
Table 3.2, where Risk Scenario 1 is baseline, normalized to 10,000 admissions, for 100
iterations over a one-year time period

is maintained. This result is similar to the conclusions made by Bintz et al. [5]. Additionally,

more effective cleaning has little impact on nosocomial infections (Figure 3.10b).

Another form of environmental decontamination is achieved by improved HCW adherence

to the best hand-hygiene and contact protocol. Figure 3.11a shows that increased HCW

compliance with all patients is more impactful on nosocomial colonizations than improved

room cleaning is; however, this general improved HCW compliance does not have a notable

impact on reducing nosocomial infections (Figure 3.11b). The results of improved HCW

compliance with quarantined patients is shown separately in Figure 3.12a. If HCWs achieve

100% compliance with quarantined patients, there is an extremely noticeable decrease in

nosocomial colonizations. Such a vast decrease is likely due to our model structure: if

HCWs are compliant with quarantined patients, there is a 0% chance of pathogen transfer

from HCW to room, or vice versa. This assumes that when fully compliant, HCWs will wear

gloves and strictly follow contact protocol so that there is no chance of exposure or transfer,

which is more likely to happen when HCWs know a patient is isolated due to symptomatic

CDI. This control strategy also results in a nice reduction of nosocomial infections (Figure

3.12b).
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Figure 3.10: Increasing the probability of sufficiently cleaning ward rooms: Resulting
number of (a) nosocomial colonizations and (b) nosocomial infections for increased
probabilities of sufficiently cleaning ward rooms, where 0.5 is baseline, normalized to 10,000
admissions, for 100 iterations over a one-year time period
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Figure 3.11: Increasing HCW compliance with all patients: Resulting number of (a)
nosocomial colonizations and (b) nosocomial infections for increased probabilities of HCWs
sufficiently cleaning their hands after visiting patients, where 0.45 is baseline, normalized to
10,000 admissions, for 100 iterations over a one-year time period
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Figure 3.12: Increasing HCW contact compliance with quarantined patients: Resulting
number of (a) nosocomial colonizations and (b) nosocomial infections for increased
probabilities of HCW contact compliance when visiting quarantined patients, where 0.6
is baseline, normalized to 10,000 admissions, for 100 iterations over a one-year time period

For easier comparison of individual control strategies, Table 3.5 gives the median numbers

of nosocomial colonizations and infections for the most extreme cases of each of the individual

strategies. We see that reducing the proportions of very high-risk and high-risk antibiotics

is the most effective strategy at reducing nosocomial infections while increasing HCW

contact compliance with quarantined patients has the largest impact on reducing nosocomial

colonizations. However, there is not one strategy that is best at reducing both nosocomial

colonizations and nosocomial infections simultaneously. It is essential for hospital policy to

not only consider how to effectively reduce infection incidence, but also colonization incidence

since these colonized individuals may develop CDI after leaving the hospital [5]. Discharging

colonized patients may will inevitably result in a subsequent increase in the admission of

diseased patients to healthcare facilities [5, 65] and to the amount of C. difficile in the

environment. Therefore, we next to compare the impact of various combinations of these

control strategies on both nosocomial colonizations and nosocomial infections.

3.5.3 Combination strategies

We begin this section by considering various combinations of antimicrobial stewardship and

improved cleaning. Initially considering the same scenarios as Bintz et al. [5] allows us to
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Table 3.5: Median numbers of nosocomial colonizations and nosocomial infections per year
for 100 iterations, normalized to 10,000 admissions, for the individual control scenarios listed

Median
nosocomial

colonizations

Median
nosocomial
infections

Baseline 2,161 111
Reduce antibs by 20% 1,740 103
Risk scenario 3 1,776 86
100% probability of effective cleaning 2,077 112
100% HCW compliance 1,843 106
100% HCW contact compliance (with quarantined patients) 952 93

compare our results to theirs and assess the impact of the modifications and extensions we

made to their ABM, such as the explicit inclusion of HCWs as agents. The combinations

of antimicrobial stewardship and cleaning considered were taken from [5] and are listed and

numbered in Table 3.6. Figure 3.13a displays the resulting median numbers of nosocomial

colonizations with the 27 strategies ordered in the way [5] determined most effective at

reducing colonizations while Figure 3.13b ranks the 27 control strategies according to

increasing median numbers of nosocomial colonizations resulting from our model. It is

immediately noticeable that, with our model, many of these strategies have a different impact

on nosocomial colonizations than they did on the resulting colonizations in [5].

First, note that the baseline scenario is indicated by Strategy 2. Comparison of Figures

3.13a and 3.13b shows that cleaning has less impact on nosocomial colonizations in our

model than it did using the model in [5]. We see that for our model there is only one

scenario (Strategy 1) worse than baseline at reducing nosocomial colonizations, compared to

five scenarios in [5] that were worse than baseline. In both cases, the strategies worse than

baseline all had less effective cleaning (specifically, a probability of effective cleaning set to

0.2). This insensitivity of less effective cleaning on nosocomial colonizations in our ABM

is further illustrated by the fact that the best-ranked strategies for our model are 27, 26,

and 25, which have varying levels of effective cleaning. The higher ranking of Scenario 25

for our model, even with its lower probability of effective cleaning, shows that antimicrobial

stewardship is more impactful than cleaning. With the addition of HCWs, we were able
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(b) Nosocomial colonizations

Figure 3.13: Combination strategies involving antimicrobial stewardship and ward room
cleaning: Resulting number of nosocomial colonizations for each of the 27 strategies listed
in Table 3.6 that incorporate both antimicrobial stewardship and ward room cleaning as
control interventions, normalized to 10,000 admissions, for 100 iterations over a one-year
time period, where the x-axis gives the strategies listed in order from the most effective
strategy to the least effective strategy for reducing nosocomial colonizations (a) based on
conclusions from Bintz et al.’s model [5] and (b) based on the results from our model

to consider room-level contamination, rather than ward-level contamination (as used in [5]),

when determining the probability of patients becoming colonized due to C. difficile exposure.

Thus, the cleanliness of the whole ward affected a patient’s likelihood of becoming colonized

in [5], so more effective cleaning could affect a larger number of patients’ probabilities of

colonization. Despite these model differences, we still come to the same conclusion as [5]

with respect to this combination of control strategies: even in the event of less sufficient

ward room cleaning, antimicrobial stewardship is noticeably effective at reducing nosocomial

colonizations.

The numbers of nosocomial infections resulting from the 27 combination control strategies

listed in Table 3.6, ordered the same way as those in Figure 3.13b (based on resulting median

numbers of nosocomial colonizations), are illustrated in Figure 3.14a. For comparison, Figure

3.14b also illustrates the numbers of nosocomial infections for the 27 strategies, but they are

ordered according to increasing median number of nosocomial infections. From these figures,

we can conclude that Strategies 26 and 27 are the best two strategies for reducing both the

nosocomial colonizations and infections simultaneously while Strategies 1 and 2 (baseline)

are the worst for both.
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Table 3.6: Antimicrobial stewardship and ward room cleaning combination strategies
numbered for easy reference, where the specific distributions of antibiotic-risk-level
probabilities for each risk scenario are given in Table 3.2

Combination
number

Half-daily antibiotic
probability

Risk scenario Probability of sufficient
cleaning

1 0.27 1 0.2
2 0.27 1 0.5
3 0.27 1 0.8
4 0.27 2 0.2
5 0.27 2 0.5
6 0.27 2 0.8
7 0.27 3 0.2
8 0.27 3 0.5
9 0.27 3 0.8
10 0.243 1 0.2
11 0.243 1 0.5
12 0.243 1 0.8
13 0.243 2 0.2
14 0.243 2 0.5
15 0.243 2 0.8
16 0.243 3 0.2
17 0.243 3 0.5
18 0.243 3 0.8
19 0.216 1 0.2
20 0.216 1 0.5
21 0.216 1 0.8
22 0.216 2 0.2
23 0.216 2 0.5
24 0.216 2 0.8
25 0.216 3 0.2
26 0.216 3 0.5
27 0.216 3 0.8
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(b) Nosocomial infections

Figure 3.14: Combination strategies involving antimicrobial stewardship and ward room
cleaning: Resulting number of nosocomial infections for each of the 27 strategies listed
in Table 3.6 that incorporate both antimicrobial stewardship and ward room cleaning as
control interventions, normalized to 10,000 admissions, for 100 iterations over a one-year
time period, where the x-axis gives the strategies listed (a) in order of increasing resulting
median number of nosocomial colonizations determined in Figure 3.13b and (b) in order of
increasing resulting median number of nosocomial infections

Next, we consider the addition of improved HCW compliance to the current combinations

of antimicrobial stewardship with improved cleaning. To keep the number of parameter

combinations under control, we select 5 of the 27 strategies listed in Table 3.6 to be

representative of their varying effects on nosocomial colonizations and infections. To these 5

strategies (Strategies 6, 15, 18, 22, and 25), we incorporate improved HCW compliance. We

consider three values for HCW compliance with non-quarantined patients: 0.45 (baseline),

0.75, and 1, and we consider two values for HCW contact compliance with quarantined

patients: 0.6 (baseline) and 1. The resulting 15 parameter combinations considered are

listed and numbered in Table 3.7. We will consider these 15 combinations first with baseline

HCW contact compliance with quarantined patients and then all 15 combinations again

with the increased HCW contact compliance. The results for these 15 combinations with

baseline HCW contact compliance are shown in Figure 3.15a and those with 100% contact

compliance with quarantined patients are illustrated in Figure 3.15b. Similar plots are given

for the resulting number of nosocomial infections (Figures 3.16a and 3.16b).

Figure 3.15a shows that scenarios 25.2, 18.2, and 18.1 are most effective at reducing
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nosocomial colonizations. These four scenarios implemented Risk Scenario 3 (Table 3.2),

which accounts for the most extreme reductions in high-risk and very high-risk antibiotics.

The next two best scenarios, 22.2 and 15.2, surpassed Scenarios 25.0 and 18.0 (that

implement Risk Scenario 3 but only consider baseline HCW compliance) in their effectiveness

at reducing nosocomial colonizations. This is one example of many observations we made

that often a more extreme version of one control (such as HCW compliance) can compensate

for a less extreme version of another (such as a smaller reduction in the overall antibiotic

probability). We do not, however, see this same trend when HCW contact compliance with

quarantined patients is increased to 100% (Figure 3.15b). In this case, Scenario 25 is always

better than the remaining 4 strategies for all values of general HCW compliance. This is

expected since increasing HCW contact compliance with quarantined patients leads to less

overall pathogen transfer between HCWs and rooms, so nosocomial colonizations are no

longer as sensitive to changes in general HCW compliance.

The resulting ranking of control scenarios for nosocomial infections matches what we

discovered when running the control scenarios individually. In particular, we saw that Risk

Scenario 3 was the most effective at reducing nosocomial infections, and we see in Figures

3.16a and 3.16b that all of the strategies from Table 3.7 with Risk Scenario 3 (18.0, 18.1,

18.2, 25.0, 25.1, 25.2) were the most effective at reducing nosocomial infections, regardless

of the values of other parameters.

3.5.4 Vaccination

The control scenarios and combinations of controls considered so far were all more impactful

on reducing the number of nosocomial colonizations than on reducing the number of

nosocomial infections. They all targeted the reduction of C. difficile in the environment and

the reduction of patients’ susceptibility to colonization more intensely than the prevention of

progression from colonized to diseased. Because there has been an increase in the percentage

of patients admitted already colonized by C. difficile, many colonized patients will not be

affected by the control scenarios we have considered. Therefore, considering a control scenario

that will inhibit a patient’s transition from colonized to diseased, such as a toxoid vaccine,

would be a beneficial addition to the other controls considered.
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Table 3.7: Parameter combinations representing control interventions with increased HCW
compliance (where 0.45 is baseline) combined with select combinations of antimicrobial
stewardship and ward room cleaning (Scenarios 6, 15, 18, 22, and 25 from Table 3.6)

Combination
number

Half-daily
antibiotic

probability

Risk
scenario

Probability
of sufficient

cleaning

HCW
compliance

(all
patients)

6.0 0.27 2 0.8 0.45
6.1 0.27 2 0.8 0.75
6.2 0.27 2 0.8 1
15.0 0.243 2 0.8 0.45
15.1 0.243 2 0.8 0.75
15.2 0.243 2 0.8 1
18.0 0.243 3 0.8 0.45
18.1 0.243 3 0.8 0.75
18.2 0.243 3 0.8 1
22.0 0.216 2 0.2 0.45
22.1 0.216 2 0.2 0.75
22.2 0.216 2 0.2 1
25.0 0.216 3 0.2 0.45
25.1 0.216 3 0.2 0.75
25.2 0.216 3 0.2 1
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(a) HCW contact compliance = 0.6

25.2 25.1 25.0 18.2 18.1 18.0 22.1 22.2 22.0 15.2 15.1 15.0 6.2 6.1 6.0

Scenario

550

600

650

700

750

800

850

900

950

1000

N
o
s
o
c
o
m

ia
l 
c
o
lo

n
iz

a
ti
o
n
s
 i
n
 o

n
e
 y

e
a
r

(b) HCW contact compliance = 1

Figure 3.15: Combination strategies involving antimicrobial stewardship, ward room
cleaning, and HCW compliance: Resulting number of nosocomial colonizations for each of
the 15 strategies listed in Table 3.7 that incorporate antimicrobial stewardship, ward room
cleaning, and HCW compliance as control interventions, normalized to 10,000 admissions, for
100 iterations over a one-year time period, where the x-axis (a) corresponds to the strategies
in Table 3.7 with HCW contact compliance with quarantined patients equal to 0.6 and (b)
corresponds to the strategies in Table 3.7 with HCW contact compliance with quarantined
patients equal to 1
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(a) HCW contact compliance = 0.6
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(b) HCW contact compliance = 1

Figure 3.16: Combination strategies involving antimicrobial stewardship, ward room
cleaning, and HCW compliance: Resulting number of nosocomial infections for each of
the 15 strategies listed in Table 3.7 that incorporate antimicrobial stewardship, ward room
cleaning, and HCW compliance as control interventions, normalized to 10,000 admissions, for
100 iterations over a one-year time period, where the x-axis (a) corresponds to the strategies
in Table 3.7 with HCW contact compliance with quarantined patients equal to 0.6 and (b)
corresponds to the strategies in Table 3.7 with HCW contact compliance with quarantined
patients equal to 1
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The C. difficile vaccine currently being tested is a toxoid vaccine, meaning that it will

only fight against clinical infection and will not protect against colonization by C. difficile.

Therefore, an effective version of this vaccine would result in a decrease in the proportion

of immunocompromised patients. We perform a preliminary assessment of vaccination by

making the strong assumption that a vaccination program has been successfully implemented

in the hospital for a period of time such that it has already resulted in an overall reduction in

the percentage of immunocompromised patients. To simulate this, we decrease the baseline

value for the probability of a patient being immunocompromised from 10%, used by Bintz

et al. [5], down to values such as 5% or 1%. Note that this a simplified implementation

of vaccination because it relies on the major assumptions that all patients at risk will be

vaccinated and will be vaccinated effectively. Our future work will involve the addition of

a vaccinated disease class, a probability of patients being vaccinated, and a vaccine efficacy

probability to more thoroughly assess the impact of vaccination as a control strategy.

We begin by implementing vaccination individually with no other controls. As expected,

since vaccination does not prevent colonization, it has a large impact on the nosocomial

infections (Figure 3.17b) and a minimal impact on the nosocomial colonizations (Figure

3.17a). To avoid an excessive number of parameter combinations, we selected 8 scenarios

from Table 3.7 (6.1, 6.2, 18.1, 18.2, 22.1, 22.2, 25.1, and 25.2) to which we added vaccination.

The resulting combinations are numbered and labeled in Table 3.8. Figure 3.18 shows the

resulting number of nosocomial colonizations for each of the control combinations in Table

3.8.

We observed that vaccination in combination with other control techniques did not

change the effectiveness of those scenarios at reducing colonizations in the absence of

vaccination (Figure 3.18b). That is, the same scenarios we found to be most effective

at reducing nosocomial colonizations in the absence of vaccination were still the most

effective once vaccination was added. Furthermore, vaccination in combination with other

control techniques had a similar impact on reducing nosocomial infections as it did when

implemented in the absence of additional controls, as illustrated by Figure 3.19. Thus,

if a healthcare facility is able to implement a vaccination program that would lead to a

reduction in the probability of patients being immunocompromised to 5% or 1%, then they
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Figure 3.17: Reducing probability of being immunocompromised as a form of effective
vaccination: Resulting number of (a) nosocomial colonizations and (b) nosocomial infections
for decreasing probabilities of being immunocompromised, where 0.10 is baseline, normalized
to 10,000 admissions, for 100 iterations over a one-year time period

would experience a significant decrease in the number of nosocomial infections but not a

notable change in nosocomial colonizations.

3.6 Discussion

Because C. difficile can survive on environmental surfaces for extended time periods [28],

there is benefit to incorporating environmental transmission when modeling its spread in

healthcare facilities. To consider the roles of contaminated environments and of both

symptomatic and asymptomatic carriers as C. difficile reservoirs, we developed an ABM (a

modification and extension of the ABM in [5]) that explicitly incorporates HCWs as vectors

of transmission, tracks individual patient antibiotic histories, incorporates varying risk levels

of antibiotics with respect to CDI, and tracks contamination of ward rooms by C. difficile.

We use this ABM to simulate and evaluate the impact of different control strategies on the

resulting numbers of nosocomial colonizations and infections by C. difficile. The control

strategies considered included two forms of antimicrobial stewardship (overall reduction

in antibiotics and a reduction of specifically high-risk and very-risk antibiotics), increased

environmental decontamination through room cleaning, improved HCW compliance with

quarantined and non-quarantined patients, and a preliminary assessment of vaccination. To
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Table 3.8: Parameter combinations representing control interventions with decreased
probability of being immunocompromised (where 0.10 is baseline), combined with select
combinations of improved HCW compliance, antimicrobial stewardship, and ward room
cleaning (Scenarios 6.1, 6.2, 18.1, 18.2, 22.1, 22.2, 25.1, and 25.2 from Table 3.7)

Combination
number

Half-daily
antibiotic

probability

Risk
scenario

Probability
of sufficient

cleaning

HCW
compliance

Probability of
being immuno-
compromised

6.1.0 0.27 2 0.8 0.75 0.10
6.1.1 0.27 2 0.8 0.75 0.05
6.1.2 0.27 2 0.8 0.75 0.01
6.2.0 0.27 2 0.8 1 0.10
6.2.1 0.27 2 0.8 1 0.05
6.2.2 0.27 2 0.8 1 0.01
18.1.0 0.243 3 0.8 0.75 0.10
18.1.1 0.243 3 0.8 0.75 0.05
18.1.2 0.243 3 0.8 0.75 0.01
18.2.0 0.243 3 0.8 1 0.10
18.2.1 0.243 3 0.8 1 0.05
18.2.2 0.243 3 0.8 1 0.01
22.1.0 0.216 2 0.2 0.75 0.10
22.1.1 0.216 2 0.2 0.75 0.05
22.1.2 0.216 2 0.2 0.75 0.01
22.2.0 0.216 2 0.2 1 0.10
22.2.1 0.216 2 0.2 1 0.05
22.2.2 0.216 2 0.2 1 0.01
25.1.0 0.216 3 0.2 0.75 0.10
25.1.1 0.216 3 0.2 0.75 0.05
25.1.2 0.216 3 0.2 0.75 0.01
25.2.0 0.216 3 0.2 1 0.10
25.2.1 0.216 3 0.2 1 0.05
25.2.2 0.216 3 0.2 1 0.01
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(a) Nosocomial colonizations with scenarios in the order listed in Table 3.8
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(b) Nosocomial colonizations with scenarios ordered according to increasing number of colonizations

Figure 3.18: Combination strategies involving antimicrobial stewardship, ward room
cleaning, HCW compliance, and vaccination: Resulting number of nosocomial colonizations
for each of the 24 strategies listed in Table 3.8 that incorporate antimicrobial stewardship,
ward room cleaning, HCW compliance, and vaccination as control interventions, normalized
to 10,000 admissions, for 100 iterations over a one-year time period, where the x-axis (a)
lists the scenarios in the order presented in Table 3.8 and (b) lists the scenarios according
to increasing number of colonizations
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Figure 3.19: Combination strategies involving antimicrobial stewardship, ward room
cleaning, HCW compliance, and vaccination: Resulting number of nosocomial infections
for each of the 24 strategies listed in Table 3.8 that incorporate antimicrobial stewardship,
ward room cleaning, HCW compliance, and vaccination as control interventions, normalized
to 10,000 admissions, for 100 iterations over a one-year time period, where the x-axis lists
the scenarios in the order presented in Table 3.8

improve HCW compliance, a hospital would need to bring in additional HCWs due to the

time needed to adequately sanitize. Although our model does not explicitly account for the

time HCWs spend adequately washing, this is something that could be further explored in

future work.

We illustrated the efficacy of each of the control interventions individually and in various

combinations on reducing the numbers of nosocomial colonizations and infections in order

to determine where control efforts should be concentrated. It is important for hospitals

to implement strategies that are effective at decreasing incidence of both infection and

colonization by C. difficile [5]. However, in our modeling study, we demonstrated that there

was no single strategy that was best at reducing nosocomial colonizations and nosocomial

infections simultaneously. In particular, improved cleaning did not have a significant impact

on either while improved HCW compliance with all patients proved to be effective at

reducing colonizations but was not impactful on reducing nosocomial infections. Both forms

of antimicrobial stewardship were shown to be effective at decreasing colonizations, and
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both had a more notable impact on reducing nosocomial infections than did cleaning or

improved HCW compliance (with all patients and specifically with quarantined patients).

Increased HCW compliance with quarantined patients was more notable in its impacts

on both nosocomial colonizations and infections than increased HCW general compliance.

Overall, targeted reduction of high-risk and very high-risk antibiotics with respect to CDI was

the most effective strategy at reducing nosocomial infections, and increased HCW compliance

with quarantined patients was most effective at reducing nosocomial colonizations.

Additionally, we determined that when the control strategies are combined in various

ways, a more extreme version of one control could often compensate for a less extreme

version of another to effectively reduce nosocomial colonizations. We also determined that

the resulting impact of the control scenarios on nosocomial colonizations and infections

were not completely additive. In particular, the reduction in nosocomial colonizations (or

infections) made by a particular combination strategy was not equal to the sum of the

reduction made by the strategies individually.

Because an increased number of patients are coming into hospitals already colonized, we

considered an additional control strategy that would prevent these patients from progressing

to diseased. In particular, we performed a preliminary evaluation of vaccination in order to

assess how a vaccine would impact the resulting colonizations and infections in a hospital

both on its own and in combination with other control strategies. As expected, vaccination

had a large impact on disease incidence with little impact on nosocomial colonizations

since the C. difficile toxoid vaccine does not prevent colonization, but only subsequent

infection. This preliminary assessment of vaccination comes with strong assumptions and

is considered the best case scenario. Results such as these may help hospitals determine

what kind of vaccination strategy would be necessary to achieve the desired results and the

implementation feasibility of such a strategy. In the future, we would like to expand our

preliminary assessment of vaccination by including vaccine efficacy at the individual patient

level and a protocol efficacy to more thoroughly evaluate the impact of vaccination as a

control measure.
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3.7 ODD Protocol: Overview

In this section, we describe the Overview, Design concepts, and Details (ODD) of our agent-

based model to provide a more complete and rigorous model description. ODD was designed

by experienced modelers to create a complete, quick, and exhaustive method for describing

agent-based models for the purpose of standardization and replication [72].

3.7.1 Purpose

We modified and expanded the agent-based model in [5], which simulates the transmission

of C. difficile in a healthcare setting. In particular, we explicitly incorporated healthcare

workers as vectors of transmission and then evaluated the following: (1) the efficacy of control

measures such as antimicrobial and environmental stewardship and (2) the impact of HCWs

on the spread of nosocomial CDI.

3.7.2 Input data

The agent behaviors, parameter values, and initial conditions are based on information

from either published literature or data collected from six medicines wards at Barnes-Jewish

Hospital in St. Louis, Missouri. Information about the collection of this data is described by

Lanzas et al. in [45]. We also incorporated updated hospital data that was collected after

the publication of [45], such as an increased admission of colonized patients, described by

Alasmari et al. [1].

By varying model inputs, we simulated and compared the impact of a variety of control

measures on reducing nosocomial colonization and infection. The first such strategy involved

varying the probability of effective cleaning. As in the original ABM in [5], we defined

effective cleaning to be “cleaning that reduces the contamination level of a ward room.”

The cleanliness, or lack thereof, of each ward room affects the probability that a patient

will become colonized, so increasing the probability of effective cleaning serves as a disease

control measure.

Because healthcare workers are the only agents that move from room to room, they are
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important vectors of spore transmission, so our second control strategy involved varying

healthcare worker (HCW) compliance and HCW contact compliance. HCW compliance is

defined as the level of compliance that HCWs adhere to when washing their hands after

visiting patients. Our baseline value for HCW compliance was based on the values given

by Rubin et al. in [75].We define HCW contact compliance to be the level of compliance

that HCWs adhere to after visiting a quarantined patient. Data indicates that HCWs are

more compliant with hand-washing and other contact precautions when they know they are

visiting an infected patient. We set the baseline value of this variable to be 0.6 to match the

data for percentage of adherence to the use of contact precautions in isolation rooms given

in [75].

Antimicrobial stewardship was determined in [5] to be another important control measure.

One method of implementing antimicrobial stewardship involves reducing the overall number

of antibiotics given to patients. We implement this in the same way that Bintz et al. do in

[5]: define q to be the proportion by which we want to reduce antibiotic treatments in the

hospital. Then, out of all patients who will receive an antibiotic at each time-step, determined

by the probability of receiving an antibiotic, only 1−q of them will now receive an antibiotic.

A second method of antimicrobial stewardship involves altering the relative proportions of

antibiotics given. As in [5], we define three risk levels of antibiotics prescribed (low, high,

or very high) based on whether they make patients more or less at risk of contracting CDI.

The baseline values for the probability of receiving a low-risk, high-risk, or very-high-risk

antibiotic (0.4, 0.26, and 0.34, respectively) were taken from the data and are the same as

those used in [5]. Control strategies considered involve decreasing the proportion of very-

high-risk antibiotics prescribed.

3.7.3 Entities, state variables, and scales

Our ABM has three entities: patients, healthcare workers, and ward rooms. The model was

designed to mimic characteristics of Barnes-Jewish Hospital, from where the original data

was obtained. As such, we considered a hospital with six medical wards of 35 rooms each,

with at most one patient occupying a room at any given time. This allowed for a total

possible capacity of 210 patients, and we set the baseline occupancy level to be 0.85. Patient
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Table 3.9: Room state variable explanations and values

Room Variable Description
Possible
Value(s)

ward-number Specifies in which ward the room is located 1, 2, ..., 6

contamination-level Tracks the amount of contamination in room [0,∞)

quarantine-patient-
here

Specifies whether or not current occupant is under
quarantine

yes, no

prob-room-transfer
Gives the probability the room will transfer
pathogen to an HCW

[0, 1]

state variables are updated on a half-day time scale, which reflects the time-step used in [5].

HCW state variables are updated every 15 minutes to reflect their movement from room to

room.

Room State Variables Each ward room is characterized by four state variables, listed

in Table 3.9. First, each room is assigned to a specific ward. Next, all rooms have a

contamination level that is updated on the 15-minute time-step scale. HCWs can increase the

contamination level of a room upon entering, depending on prob-hcw-transfer, the probability

that an HCW will transfer pathogen to the room, described more in Section 3.8.9. Each half-

day symptomatic and asymptomatic patients contribute to the contamination level of a room.

Effective cleaning can reduce the contamination level of a room, and cleaning is implemented

each half day only after a patient is discharged from that room. The contamination level

of an individual room affects the probability that a susceptible patient in that room will

become colonized.

The next state variable that governs room characteristics is whether or not a room is

occupied by a patient under quarantine. According to [29], symptomatic patients are placed

in quarantine to ensure proper contact precautions are implemented. Finally, a room is

characterized by the state variable prob-room-transfer. This probability is updated each

15-minute time-step and determines the likelihood of an HCW picking up pathogen upon

entering that particular room. More information about determining this probability is also

described in Section 3.8.9.
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Patient State Variables Patient behavior is characterized by many state variables, all of

which are listed in Table 3.10. A patient’s disease status is tracked beginning at admission. A

patient can either be resistant to contracting CDI, susceptible to contracting CDI, colonized

by C. difficile (asymptomatic), or diseased (symptomatic CDI). Because taking an antibiotic

is the strongest risk factor for contracting CDI [48], our assumption is that any patient who

has not received an antibiotic is resistant to CDI. In particular, it has been shown that more

than 90% of patients of hospitalized patients with CDI recently underwent antimicrobial

therapy [19]. Once an antibiotic is given, a patient becomes susceptible to colonization.

Depending on a patient’s probability of becoming colonized, a susceptible patient who

comes into contact with C. difficile spores may become colonized and, therefore, become

an asymptomatic carrier.

A patient either will or will not be immunocompromised. An immunocompromised

patient is a colonized patient who is unable to mount his or her own immune response

and, therefore, will contract CDI. Those who are not immunocompromised are able to

mount an immune response and will not experience CDI symptoms. Each susceptible

and asymptomatically colonized patient has a probability of his or her gut microbiota

returning to normal (and therefore regaining resistance). If a colonized patient is not

immunocompromised and receives an antibiotic, it is possible to revert to being susceptible;

if he or she is immunocompromised and does not receive an antibiotic, it is possible to

regain resistance. An immunocompromised colonized patient who receives an antibiotic will

contract CDI more quickly than immunocompromised patients who do not receive antibiotics.

The movement among disease states are illustrated in Figure 3.2.

Each patient that is admitted is assigned a length of stay based on his or her disease

status. Patients’ time since admission and time since current disease status are both tracked

while, for patients who have received an antibiotic, their time since beginning antibiotics

is tracked in addition to the risk level (low, high, or very high) of the antibiotic taken and

the number of antibiotics taken. Diseased patients may or may not be identified as diseased

upon screening, and their time since a successful screening is tracked. Additionally, diseased

patients who are successfully identified may or may not be treated successfully, and their

time since beginning treatment is tracked.
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Table 3.10: Patient state variable explanations and values

Patient Variable Description
Possible
Value(s)

disease-status Tracks patient disease status R,S,C,D

disease-status-at-
admission

Identifies patient disease status upon admission R,S,C,D

length-of-stay
Specifies a patient’s length of stay in the hospital
(half-days)

[0, 160]

time-since-admission
Tracks amount of time since patient was admitted
(half-days)

0, 1, 2, ...

time-since-current-
disease-status

Tracks amount of time since patient current disease
status began

0, 1, 2, ...

immunocompromised
Indicates whether or not a patient will mount an
immune response to colonization

yes, no

treatment-length
Gives prescribed length of current antibiotic
treatment (half-days)

14

time-to-normal
Gives time until patient’s gut microbiota returns to
normal (half-days)
low-risk antibiotic 28
high-risk antibiotic 28
very-high-risk antibiotic 70

time-since-began-
antib

Tracks time since patient began current antibiotic
treatment (half-days)

0, 1, 2, ...

prob-regaining-
resistance

Gives the probability of regaining resistance to
colonization

[0, 1]

prob-becoming-
colonized

Gives the probability of a susceptible patient
becoming colonized

[0, 1]

antib-risk-level
Indicates the risk level of the current antibiotic with
respect to CDI

low, high,
very-high

number-hosp-antibs
Tracks the number of antibiotics a patient has
received

0, 1, 2, ...

length-incubation-
period

Gives the length of time between colonization and
becoming diseased (half-days)
low-risk antibiotic [20, 60]
high-risk antibiotic [14, 40]
very-high-risk antibiotic [8, 20]

time-until-diseased
Gives the length of time until an immunocompro-
mised, colonized patient becomes diseased (half-
days)

[0, 60]

will-ID
Indicates whether a screening will correctly test
positive for CDI

yes, no

time-since-succ-
screen

Tracks the amount of time since patient correctly
tested positive for CDI (half-days)

0,1,2...

will-treat-succ
Determines whether a patient will be treated for
CDI successfully

yes, no
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Healthcare Worker State Variables HCWs are initially assigned a ward, and it is

assumed HCWs visit only patients in that same ward for the entirety of their shift. Each

HCW is assigned a shift length upon entry to the hospital, and an HCW’s time since

beginning a shift is tracked. There is a 50% chance an HCW will have an 8-hour shift

and a 50% chance an HCW will work a 12-hour shift. Healthcare workers are divided into

two types: Type 1 HCWs visit many patients for short periods of time (assumed to be 15

minutes), and Type 2 HCWs visit fewer patients for longer periods of time (assumed to be

45 minutes). Type 1 HCWs move systematically from room to room, meaning that they

move to the next closest occupied room at each 15-minute time-step. Type 2 HCWs move

randomly from room to room within the same ward. It is assumed there will never be more

than one Type 1 HCW or more than one Type 2 HCW in a given room simultaneously;

however, there can be a Type 2 and a Type 1 HCW visiting the same patient at the same

time. HCWs will never enter rooms not occupied by a patient.

All HCWs have individual contamination levels similar to the contamination levels

tracked for each ward room. We refer to HCWs’ contamination levels as their carrier level,

which represents the amount of pathogen on their hands. For simplicity, we assume that

all HCWs begin their shifts with carrier levels of zero; however, this could soon need to

be increased as data indicates community-associated CDI is increasing [87]. Once in the

hospital, HCW carrier levels can be increased upon picking up pathogen in contaminated

rooms and can be decreased by adherence to proper hand-washing and contact precaution

protocols. Each HCW has a probability of transferring pathogen to a room upon entry,

referred to as prob-hcw-transfer (Section 3.8.9).

Not only does the time HCWs spend with patients vary, but also the type of task they

perform on a patient can affect their probability of picking up C. difficile spores. We define

three task levels (low risk, medium risk, or high risk) based on the risk of transfer. HCWs

can perform any risk level task, but we assume Type 1 HCWs are more likely to perform

low-risk tasks while Type 2 HCWs are more likely to perform high-risk tasks. A list of all

HCW variable values along with explanations is given in Table 3.11.
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Table 3.11: HCW state variable explanations and values

HCW Variable Description
Possible
Value(s)

shift-length Specifies length of HCW’s shift (hours) 8, 12

time-since-shift-
began

Tracks the time since an HCW began a shift (hours) [0, 12]

carrier-level
Tracks amount of contamination on an HCW’s
hands

[0,∞)

hcw-type
Indicates whether an HCW will be Type 1 or Type
2

Type 1, Type 2

hcw-risk
Indicates the risk level of the task an HCW is
performing

low, medium,
high

prob-hcw-transfer
Gives the probability an HCW will transfer
pathogen to a room

[0, 1]

Global State Variables A summary description of all global variables is given in Table

3.12. Admission proportions for each disease status (ar, as, ac, and ad) are global variables

based on the Barnes-Jewish Hospital data detailed in [45] with modifications made based

on the updated data in [1]. This new data indicated that 15% of admitted patients were

colonized upon arrival, so we updated ac and thereby decreased as to reflect this. Thus, we

set the probability of a patient being colonized upon admission to 0.15, the probability of a

patient being susceptible upon admission to 0.09, the probability of a patient being resistant

upon admission to 0.75, and the probability of a patient having CDI upon admission to 0.01.

The probability of an HCW complying with proper hand-washing and contact precaution

protocol after leaving a room has a baseline value of 0.45. In particular, we averaged the

percentage of hand-hygiene adherence for nurses and doctors in non-isolated rooms given in

[75]. The probability an HCW who has just visited a quarantined patient will follow proper

protocol is set slightly higher to 0.6 to match the percentage of adherence to the use of

contact precautions in isolation rooms given in [75]. The percentage of total contamination

that an HCW will transfer to a room after determining transfer will occur is a global variable

set to 90% while the percentage of pathogen a room will transfer to an HCW is set to

10%. Assessments of hospital cleaning practices have shown that routine cleaning results

in decontamination of no more than 56% of targeted surfaces [28]. If a room is effectively

cleaned, we set the contamination level to be reduced by 50%.
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The probability of susceptible patients becoming colonized depends on both the

contamination level of their room and the risk level of their current antibiotic. Similar

to antibiotic risks, room contamination levels are divided into three groups (low, medium,

or high contamination). Rooms with contamination levels between 0 and 0.4 are considered

low contamination while rooms with contamination levels between 0.4 and 0.8 are considered

to have medium contamination. Any rooms with contamination levels higher than 0.8 are

considered highly contaminated. Each probability of becoming colonized is denoted with

a subscript referring to the antibiotic-risk level and a superscript referring to the room-

contamination level. For example, phl is the probability a patient on a low-risk antibiotic

becomes colonized in a highly contaminated room. Probabilities for each combination of

antibiotic-risk level and room-contamination level are denoted in a similar way. Values for

each of these probabilities and for the room-contamination cut-off levels were chosen so that

nosocomial colonizations accounted for 20% of admissions [11, 40]. More details about these

calculations are given in Section 3.8.13.

All global variables described in the remainder of this section are kept the same as those

used in the original ABM in [5]. We define the hospital occupancy level to be a global

variable that is set to 0.85. The probability a patient is immunocompromised is a global

variable with baseline value 0.1. To determine the probability that a susceptible or not-

immunocompromised colonized patient will regain resistance, we define a global variable

for the minimum probability of regaining resistance, prrmin. At each half-day, there is a 27%

chance a patient will begin antibiotic therapy. Bintz et al. [5] chose this value as the baseline

so that the simulated total number of antibiotic treatments per patient matched the data.

The baseline values for the probabilities of receiving a low-risk, high-risk, or very-high-risk

antibiotic were taken from the dataset to be 0.4, 0.26, and 0.34, respectively.

The probability of effectively cleaning a room is set to a baseline value of 0.5, described

more in Section 3.8.6. Symptomatic patients are screened for CDI, and the sensitivity of this

test is a global variable set to 0.91. The turnover time for this test is assumed to be 2 half

days [69]. The probability of successfully treating a patient with CDI has a baseline value

of 0.8, based on the dataset from Barnes-Jewish Hospital.
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Table 3.12: Global variable explanations and baseline values

Global Variable Description Baseline value

occupancy hospital occupancy level 0.85

ar probability a patient is resistant upon admission 0.75

as probability a patient is susceptible upon admission 0.09

ac probability a patient is colonized upon admission 0.15

ad probability a patient is diseased upon admission 0.01

immcomp-prob
probability a colonized patient will not mount an
immune response

0.1

prrmin minimum probability of regaining resistance 0.2

prob-antib
half-daily probability of a patient beginning an
antibiotic treatment

0.27

prob-low-risk
probability of a prescribed antibiotic being low-risk
with respect to CDI

0.4

prob-high-risk
probability of a prescribed antibiotic being high-
risk with respect to CDI

0.26

prob-vhigh-risk
probability of a prescribed antibiotic being low-risk
with respect to CDI

0.34

phl
probability of becoming colonized if treated with
low-risk antibiotic in a highly contaminated room

1/30

prob-eff-clean probability of effective room cleaning 0.5

sensitivity sensitivity of the CDI screening test 0.91

turnover turnover time (half-days) of the CDI screening test 2

prob-succ-treat probability of successful treatment of CDI 0.8

hcw-contact-
compliance

probability of an HCW following proper contact
precautions when visiting a quarantined patient

0.6

hcw-compliance
probability of an HCW effectively sanitizing after
visiting a non-quarantined patient

0.45

clean-reduction
proportion by which the contamination level of a
room is reduced after effective cleaning

0.5

hcw-transfer-percent
proportion of an HCW’s carrier level that is
transferred to a room upon successful transfer

0.9

room-transfer-
percent

proportion of a room’s contamination level that is
transferred to an HCW upon successful transfer

0.1

contam-level-low
maximum contamination level of a low-
contamination room

0.4

contam-level-med
maximum contamination level of a medium-
contamination room

0.8
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3.7.4 Process overview and scheduling

Our model runs some processes with a 15-minute time-step and other processes with a half-

day time-step. The following HCW processes occur every 15 minutes: first, some HCWs

may begin a new shift, and all HCWs will perform tasks on patients. Type 1 HCWs will

move from room to room every 15 minutes, and Type 2 HCWs will move every 45 minutes

(3 time-steps). Once an HCW enters a room, the risk level of the task he or she will

perform is determined. Then, the probability of an HCW transferring pathogen to a room

and the probability of a room transferring pathogen to an HCW are determined. Based on

these probabilities, HCW carrier levels and room contamination levels are updated. After

HCWs leave a room, they can reduce their contamination levels if they effectively wash their

hands. Finally, a shift change occurs, and those who have finished their shift will leave the

hospital before the process starts again. After the shift change, HCW time characteristics

are updated.

Patient behaviors and interactions are updated each half-day in the following order:

patients are admitted, their disease status is updated, the room contamination levels are

then updated based on contributions from asymptomatic and symptomatic patients, and

then patients may be discharged. Upon discharge, vacant rooms are then cleaned. Lastly,

time characteristics are updated for the patients.

3.7.5 Initialization

The hospital is initially populated by patients whose disease statuses are based on the

proportions ar, as, ac, and ad given in Table 3.12. There are 210 available rooms that are

filled to 85% occupancy. This occupancy proportion remains constant because we set the

number of patients admitted each half-day equal to the number of patients discharged in the

previous half-day. The number of HCWs is chosen so that there is a 3:1 ratio of patients to

HCWs, and this is kept constant by assuming the number of HCWs who begin their shifts at

each 15-minute time-step equals the number of HCWs who left at the last time-step. Initial

room contamination levels are based on the disease status of the patient in the room upon
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initialization, and the initial carrier level of all HCWs is assumed to be zero. The shift-

lengths of HCWs who initially populate the model are set to random lengths between 0 and

12 hours since we assume that not all of them arrived to work at the same time. We simulate

a three-week time period before recording any outputs to ensure that initial conditions are

not significantly affecting the results.

3.8 Submodels

In this section, we detail all the submodels that together form the overall simulation routine.

3.8.1 Admit HCWs

At the beginning of each 15-minute time-step, new HCWs arrive to replace those who left

the hospital at the end of the previous time-step. The number who arrive is set equal to

the number who left at the previous time-step to ensure that the ratio of 1 HCW to every 3

patients is maintained. Upon arrival, each HCW is randomly assigned to a ward, and he or

she remains in that same ward for the entirety of the shift. HCWs are only initially admitted

into patient-occupied rooms where no other HCWs are currently present.

Once a new HCW arrives to the hospital, he or she is assigned a Type 1 or Type 2 role

with a 50% chance of each. Additionally, a HCW’s pathogen level is set to 0 upon arrival,

and he or she is assigned a length of shift. For simplicity, we consider two possible shift

lengths: 8 hours or 12 hours. There is a 50% chance a HCW will work an 8-hour shift, and a

50% chance he or she will work a 12-hour shift; this is decided for each HCW once arriving

to the hospital.

3.8.2 Admit patients

This subroutine is modeled in the same way as that described in [5] with small modifications.

At the beginning of each half-day time-step, new patients are admitted to replace those

discharged at the end of the previous time-step. Similar to the arrival of HCWs, the number

of new patients admitted equals the number of patients discharged at the previous time-step
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to maintain a constant total population. Because of the variability in the number of patients

discharged at the end of each time-step, this also ensures consistency and keeps the number

of patients lower than the total number of ward rooms. The assignment of disease status

upon admission is determined with the same probabilities used in the initialization process:

ar, as, ac, and ad, listed in Table 3.12. That is, there is a 75% chance an admitted patient

is resistant [45], a 9% chance an admitted patient is susceptible, a 15% chance an admitted

patient is colonized [1], and a 1% chance an admitted patient has CDI [45]. After a patient

is assigned a disease status, we set his or her time since entering this disease status to 0 so

that we can track this throughout the patient’s hospital stay. The only exception to this

is for resistant patients; we do not track their time since becoming resistant since this time

does not affect their probability of moving to another disease class or how long it will be

until they move to another disease class.

When patients are admitted, we initialize their number of antibiotics received in the

hospital to 0, and their time since admission is also set to 0. Patients are randomly assigned

a room upon admission and will only be assigned to vacant rooms since we assume all hospital

rooms are single patient rooms. Also upon arrival, each patient is assigned a length of stay,

which is determined by the subroutine described in Section 3.8.16.

When a patient is admitted as susceptible, we first assign that patient an antibiotic

history because of our assumption that the only way to become susceptible to colonization

is through the disruption of the normal gut microbiota by antibiotics. The process for

determining the type of antibiotic that we will assign is described in Section 3.8.12. We next

assign the susceptible patient a time since beginning antibiotic treatment (which will vary

since antibiotic treatment began prior to entering the hospital). As described in [5], we set

this time to “a random integer drawn from a uniform distribution ranging from 0 to an upper

limit defined as the sum of the treatment length (14 half-days) and time until microbiota

recovery (28 half-days for low- and high-risk antibiotics and 70 half-days for very-high-risk

antibiotics).” This mimics our assumption that patients become susceptible immediately

after receiving antimicrobial treatment and remain susceptible until the restoration of their

normal gut microbiota. Lastly, a susceptible patient’s time since becoming susceptible is set

equal to his or her time since beginning an antibiotic.
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Upon admission of a colonized patient, we first must determine whether or not this patient

is immunocompromised. We do so by using the global variable for the probability a colonized

patient will not mount an immune response, listed in Table 3.12. Once it is determined that

a patient is not immunocompromised, we then assign the patient an antibiotic, using the

subroutine described in Section 3.8.12. Next, we assign a time since beginning antibiotics in

the same way described in the previous paragraph for susceptible patients. Because these

patients can become colonized anytime after receiving an antibiotic, we lastly set their time

since becoming colonized to be a random integer chosen from a uniform distribution ranging

from 0 to their time since beginning antibiotics.

If it is determined that a colonized patient is immunocompromised upon admission,

this patient will contract CDI, and the time until doing so is referred to as the incubation

period. The length of the incubation period for a particular patient depends on the risk

level of the antibiotic assigned. Therefore, for each immunocompromised patient, we begin

by assigning an antibiotic (Section 3.8.12). The minimum and maximum possible lengths of

the incubation period for various antibiotic-risk levels are given in Table 3.10. In particular,

for those patients assigned a low-risk antibiotic, their incubation period is assigned to be a

random integer from a uniform distribution over 20 to 60 half-days. Patients on a high-risk

antibiotic have a greater chance of contracting CDI more quickly, so they are assigned an

incubation period ranging from 14 to 40 half-days while patients on very-high-risk antibiotics

are assigned an incubation period between 8 and 20 half-days. Once an immunocompromised

patient is assigned an incubation period, he or she is then assigned a time until becoming

diseased, which we set to a random integer less than or equal to the incubation period.

Lastly, we track their time since becoming colonized by setting it equal to the length of the

incubation period minus the time until becoming diseased, as described in [5].

If a patient is diseased upon admission, we begin by setting his or her time since becoming

diseased to be a random integer less than or equal to 21 half-days, as used in [5]. We then

assign whether or not each diseased patient will be treated successfully by using the global

variable for the probability of successful treatment, listed in Table 3.12 as 0.8 [57]. Next, we

decide if the hospital will successfully identify a diseased patient as diseased upon screening.

Note that all patients are screened upon admission and/or upon becoming diseased [5]. The
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success of the screening depends on the sensitivity of the test for CDI, which we represent

with the sensitivity global variable listed in Table 3.12 as 0.91 [69]. If a patient will be

successfully identified as diseased, we initialize his or her time since a successful screening to

0. Similarly, we will set the time since an unsuccessful screening to 0 for those patients who

are not successfully identified. The turnaround time for the test is set to be 2 half-days [69];

once a patient’s time since a successful screening reaches this turnaround time, he or she

will be quarantined and begin treatment for CDI, a procedure described in Section 3.8.15.

Those diseased patients who were unsuccessfully screened for CDI will not be tested again

until after the turnaround time has passed.

3.8.3 Update disease status

This subroutine is run at each half-day time-step and is implemented similarly to the update-

disease-status procedure described in [5]. There is a global variable for the probability that

a patient will receive an antibiotic each half-day. In [5], they determined this probability

should be 0.27 so that the total number of antibiotic treatments per patient matched the

data from Barnes-Jewish Hospital. All possible disease-status transitions for a patient are

illustrated in Figure 3.2 and were briefly described in Section 3.7.3. In this section, we

describe in more detail the transitions and how they are implemented.

Once patients transition to a new disease status, their time since entering this new status

is set to 0. A resistant patient’s only possible movement is to the susceptible class by taking

an antibiotic. If it is determined that a resistant patient receives an antibiotic, then that

patient will be assigned an antibiotic (Section 3.8.12). We also keep track of the number of

antibiotics a patient receives while in the hospital, so we update this number here. Next, an

updated length of stay will be determined based on the patient’s new status as susceptible;

more details about this are given in Section 3.8.16. If this updated length of stay is greater

than the current length of stay assigned to the patient, then the patient’s current length of

stay will be modified to reflect the longer length of stay.

A susceptible patient can either move back to the resistant class or become colonized

after being exposed to pathogen. For each susceptible patient, this subroutine begins by
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determining his or her probability of regaining resistance, which varies at each half-day time-

step. Details about the calculation of this probability are given in Section 3.8.14. Based on

this probability, a susceptible patient may return to the resistant class. If a susceptible

patient does not return to resistant, there is a 27% chance that he or she will receive an

additional antibiotic, and the type of antibiotic received is determined by the procedure

described in Section 3.8.12.

Each susceptible patient also has a probability of becoming colonized that depends on the

local contamination level and on the risk level of the antibiotic(s) received. Details about the

calculation of this probability are given in Section 3.8.13. We also keep track of the number

of patients who become colonized while in the hospital. If it is determined a susceptible

patient will become colonized, we count him or her in this list and then determine whether

or not he or she will be immunocompromised. For those who are immunocompromised,

their incubation period is set in the same way as described in the admit-patients subroutine

(Section 3.8.2).

For those colonized patients who are not immunocompromised, they also have a

probability of regaining resistance (Section 3.8.14), or, like susceptible patients, they may

receive an additional antibiotic. If so, their total number of hospital antibiotics and time

since beginning an antibiotic are updated to reflect this.

Colonized patients who are immunocompromised also have a chance of receiving an

additional antibiotic. Once the type of antibiotic is determined, this additional antibiotic

may decrease their incubation period. In particular, for a high-risk antibiotic, their time

until becoming diseased is decreased by 10%, and for a very-high-risk antibiotic, their time

until becoming diseased is decreased by 20%. Once their time until becoming diseased

reaches 0, they move to the disease class and receive an updated length of stay based on

this new disease status (Section 3.8.16). Now that these patients are symptomatic, they will

be screened at the next half-day time-step. We then determine whether these patients will

be treated and/or screened successfully (in the same manner as described in Section 3.8.2).

These patients are then counted in the number of patients who become diseased while in the

hospital.

The only possible transition for diseased patients is back to the susceptible class. If a
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diseased patient had a successful screening, he or she will be quarantined and begin treatment

once the turnover time for the screening test has elapsed. If it is determined that the

treatment will be successful, then the diseased patient may move back to the susceptible

class after 20 half-days [5]. If a diseased patient had an unsuccessful screening, then after

the turnover time has elapsed, he or she will be re-screened for CDI.

3.8.4 Update room contamination levels

After patient disease statuses are updated, the model updates the room contamination levels

based on the disease status of the patient in the room. This particular subroutine only

considers patient contributions to overall room contamination levels; HCW contributions are

updated every 15 minutes using a different submodel (Section 3.8.9). A colonized patient

will contribute an amount in the range [1, 2) to the room contamination level at each half-

day time step. Because the transmission potential is higher for patients with active disease

than in asymptomatic carriers [26], a diseased patient will contribute an amount in the range

[2, 3) at each half-day time-step. Note that these ranges are larger than the possible ranges

for HCW contributions since HCW contributions are updated at every 15-minute time-step.

3.8.5 Discharge patients

Once a patient’s time since being admitted reaches his or her length of stay (assigned upon

admission based on the procedure described in Section 3.8.16), that patient is discharged

from the hospital. Discharges can only occur at each half-day time-step. In the discharge

subroutine, we also tally the total number of patients discharged, the total number of patients

discharged for each disease status, and the total number of antibiotics given in the hospital.

The average length of stay for all discharged patients is also calculated.

3.8.6 Clean ward rooms

After patients are discharged, their vacant room is cleaned. The probability the room will

be effectively cleaned is a global variable, listed in Table 3.12 as 0.5. This baseline value

was chosen because, depending on which cleaning measures are used, the cleaning could be
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more or less effective, and this probability can be adjusted to mimic more or less intensive

cleaning. Our model only explicitly accounts for terminal cleaning; however, daily cleaning

of select rooms could be implemented in the case of an outbreak. This can be incorporated

in our model by modifying the contamination level of rooms that were targeted by extra

cleaning.

In this subroutine, if it is determined a room will be effectively cleaned, the contamination

level of the room will decrease by 50%, which is represented by the global variable clean-

reduction. Similar to the probability of effective cleaning, this percentage can be increased

to model more targeted and intensive cleaning.

3.8.7 Update patient time characteristics

Patient time characteristics are updated at each half-day time-step. This includes their time

since being admitted and, for all patients except resistant patients, their time since entering

their current disease status. As mentioned in Section 3.8.2, we do not track this time for

resistant patients because it does not affect whether or not they will become susceptible;

this is only determined by their probability of receiving an antibiotic.

For susceptible and colonized (non-immunocompromised) patients, this submodel in-

creases their time since beginning an antibiotic by one half-day time-step each time it is

run. For the colonized (immunocompromised) patients, their time until becoming diseased

is decreased by one half-day. We also update the time since a diseased patient has received

a successful, or unsuccessful, screening for CDI, and for those diseased patients who have

begun treatment, we update their time since beginning treatment.

3.8.8 HCW movement

This subroutine defines how HCWs move from room to room, which depends on whether

or not they are Type 1 HCWs or Type 2 HCWs. HCWs are instructed to only move into

rooms that are currently occupied by a patient and will never enter vacant ward rooms. We

also assume that all HCWs remain in the same ward for the entirety of their shift and never

move from ward to ward.
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In each ward, the rooms are numbered from 1 to 35. Type 1 HCWs, skipping any rooms

that are unoccupied, move every 15-minute time-step from one room to the next in order of

room number. Upon reaching room 35, a Type 1 HCW will next move to room 1 of that

ward (as long as it is occupied at that time). Type 2 HCWs move randomly within a ward,

and only move every three 15-minute time-steps. It is not possible for two Type 1 HCWs to

be in the same room at the same time or for two Type 2 HCWs to be in the same room at

the same time; however, it is possible for a Type 1 and a Type 2 to visit the same patient

at the same time.

3.8.9 Update HCW and room contamination levels

This subroutine defines both how an HCW will transfer pathogen to a room and how an

HCW will pick up pathogen from a room. It has three parts: defining risk level of tasks being

performed, determining the probability of transfer, and updating contamination levels based

on that transfer. Note that in our model there is no direct pathogen transfer from an HCW

to a patient or vice versa. This transfer pathway is indirectly considered by assuming that

colonized patients shed pathogen and increase the contamination level of their rooms, and

the contamination level of the room affects the probability of HCWs picking up pathogen

from that room.

The submodel begins by determining the risk level of the task each HCW will perform at a

particular time-step. Type 1 HCWs have a greater chance of performing low-risk tasks while

Type 2 HCWs have a greater chance of performing high-risk tasks. The specific probabilities

used are shown in Table 3.13. The risk level of the task is chosen at every 15-minute time-

step for both Type 1 HCWs and Type 2 HCWs. Therefore, a Type 2 HCW may perform

different risk level tasks while with the same patient.

After determining the task-risk level, this submodel determines both the probability that

an HCW will transfer pathogen to a room and the probability that a room will transfer to

an HCW. Both of these probabilities depend on the risk level of the task being performed

and on the amount of contamination already in the room or on the HCW’s hands. We use

three transfer functions, one for each risk level, to determine these probabilities. Each is a

function of the following form, where x represents the contamination level (of the room or
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of the HCW) and k depends on the risk level of the task:

f(x) =

1− exp

(
−x
k

)
1 + 300 exp

(
−x
k

) .
The value of k controls the steepness of the curve. In particular, we use k = 1, 0.5, and 0.15

for a low-risk, medium-risk, and high-risk task, respectively. The resulting transfer functions

are shown in Figure 3.20. The higher the contamination level of the HCW (or the room), the

higher the probability of transfer. For a high-risk task, there is a greater chance of transfer

at lower contamination levels than there is for a medium-risk or low-risk task at the same

contamination level. Note that this process is only used for non-quarantined patients. For

those patients who are quarantined, there is either a 100% chance of transfer or a 0% chance

of transfer, depending on the variable hcw-contact-compliance. As listed in Table 3.12, we

set this value to 0.6 [75] since HCWs are more likely to comply with proper contact protocol

when visiting a quarantined patient. When an HCW does comply with contact regulations

with a quarantined patient, then there is a 0% chance of pathogen transfer; when an HCW

does not, there is a 100% chance of transfer.

The final process in this submodel involves the actual transfer of pathogen. If is

determined that an HCW will transfer pathogen to the room, then he or she will transfer

90% of his or her total contamination level to the room. This then decreases the HCW

contamination level by 90% and increases the room contamination level by that same amount.

This percentage is represented by the global variable hcw-transfer-percent listed in Table 3.12.

Similarly, if it is determined that a room will transfer pathogen to an HCW, then the room

contamination level will decrease by 10%, and the HCW contamination level will increase

by that amount. This value for room-transfer-percent was chosen with the assumption that,

because a room has many surfaces on which pathogen may live, one HCW will only pick up

a small percentage of the total contamination in one visit.
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Table 3.13: Probabilities used to determine risk level of tasks performed by HCWs

Type 1
Task Risk Level Probability

low 0.60
medium 0.25

high 0.15

Type 2
Task Risk Level Probability

low 0.15
medium 0.25

high 0.60
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Figure 3.20: Transfer functions used to determine the probability a room (or HCW) will
transfer pathogen at a particular time-step
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3.8.10 HCW compliance

Each time HCWs leave a room, they wash their hands with a 45% chance of effectively doing

so [75]. Based on this probability, if it is determined they will effectively do so, they reduce

their total contamination level to 5% of what it was prior to washing their hands. If not,

their contamination level remains the same.

3.8.11 Shift change and update of HCW time characteristics

Once an HCW’s time since beginning a shift reaches the total length of his or her shift,

assigned upon arrival (Section 3.8.1), he or she will leave the hospital. After this, we update

the counter tracking the time since each HCW’s shift began before starting the next 15-

minute time-step.

3.8.12 Antibiotic assignment

The degree of microbiota disturbance (and resulting susceptibility to colonization) caused by

antibiotics depends on the spectrum, duration, and number of antibiotics received [78, 14, 5].

For this reason, we maintain the three risk levels for antibiotics defined in [5]: low risk, high

risk, and very high risk. This categorization of antibiotics was based on studies completed to

analyze the association of particular antibiotics with C. difficile. In the antibiotic assignment

submodel, we assign an antibiotic-risk level based on the probabilities of the antibiotic being

low risk, high risk, or very high risk in terms of its association with C. difficile. The baseline

values for these probabilities are given in Table 3.12. The risk level of an antibiotic also

affects the time until microbiota returns to normal, which we assign in this subroutine based

on the risk level assigned. For all patients, we set the length of treatment to one week as a

simplifying assumption also used in [5].

3.8.13 Colonization probability assignment

At each half-day time-step, a susceptible patient’s probability of being exposed to C. difficile

and becoming colonized depends on two things: the contamination level of the room and
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the risk level associated with the antibiotic received. To determine this probability, we

divide room contamination levels into three categories: low, medium, or high contamination.

Together with the three antibiotic-risk levels (low, high, or very high), this makes nine

possible combinations of antibiotic-risk and room-contamination levels, which gives us nine

different probabilities of colonization.

We denote plh to represent the probability of a susceptible patient becoming colonized

given that he or she is in a room with low contamination and has received a high-risk

antibiotic. We use this notation similarly for the eight remaining probabilities, where the

superscript refers to the room contamination level (l, m, or h) and the subscript refers to

the risk level associated with the antibiotic (l, h, or vh).

To determine values for each of these probabilities, we began by using those calculated

by Bintz et al. in [5]. Because studies have quantified the odds ratios for the risk of infection

assigned to specific antibiotics [4] [23] [78], Bintz and his coauthors used odds ratios to

represent the chances of becoming colonized if given a high-risk or very high-risk antibiotic

compared to the odds of becoming colonized after given a low-risk antibiotic. Specifically,

they were able to estimate odds ratios for high-risk and very high-risk antibiotics and then

use those values, along with the data for the number of nosocomial infections, to determine

the probabilities.

In our model, we used the nine probabilities calculated in [5] as a foundation but then

modifed each of these values so that our number of nosocomial colonizations more closely

matched the dataset. To make this match, we divided the nine probabilities used by Bintz

et al. by the same scaling factor so that nosocomial colonizations accounted for 20% of all

admissions [11, 40]. The final values we used for the probabilities are given in Table 3.14.

3.8.14 Resistance-restoration probability assignment

Once the microbiota returns to normal, a patient’s resistance to colonization by C. difficile

is restored. The chances of regaining resistance depend on how long a patient has been on

an antibiotic and the type of antibiotic the patient received since the associated antibiotic

risk affects the length of time until a normal microbiota is restored.

To determine the probability that resistance will be restored for a patient at a particular
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Table 3.14: Probabilities of becoming colonized for each combination of antibiotic-risk and
room-contamination level

Antibiotic Risk Level Room Contamination Level Value
phl low high 0.0333

phh high high 0.0920

phvh very high high 0.1301
pml low medium 0.0250

pmh high medium 0.0748

pmvh very high medium 0.1119
pll low low 0.0167

plh high low 0.0544

plvh very high low 0.0874

time-step, we use the same function Bintz et al. use in [5]. This function is logistic, where

the input t represents the time since a patient began taking an antibiotic and T is the sum

of the treatment length and the time until a normal microbiota is restored:

p(t, T ) =
1− pmin

1 + exp
(
−12

T

(
t− T

2

)) + pmin.

The variable pmin is set to 0.2 and represents the minimum probability of regaining resistance

while the parameter value of 12 controls the steepness of the curve.

3.8.15 Quarantine and treat

This submodel allows us to identify those patients who were successfully screened for CDI,

mark them as quarantined, and model the effects of their isolation. Once patients are

quarantined, they begin antimicrobial treatment for CDI, so we assign them an antibiotic

using the procedure described in Section 3.8.12. Then, we update the patient’s total number

of hospital antibiotics to reflect this and initialize the time since beginning treatment to 0.
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3.8.16 Patient length of stay

Depending on their disease status at admission, patients’ length of stay in the hospital will

vary. We assign patients a length of stay upon admission (Section 3.8.2) and determine

this length in the same manner used in [5]. In their model, the authors resampled from the

dataset generated by the Barnes-Jewish Hospital values for the length of stay of patients

in each particular disease status. They then determined that resistant patients will stay

between 0 and 16 days, susceptible and colonized patients will stay between 0 and 34 days,

and diseased patients will stay between 0 and 80 days.
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Chapter 4

Future work

The results we obtained in Chapter 2 are only a starting point for the analysis of vaccination

against CDI. Because such a vaccine is still in testing, we were unable to incorporate data

for quantities such as the monetary cost associated with this vaccination program. Once this

data is obtained, we hope to carry out a more quantitative modeling study.

Additionally, the form of vaccination implemented in the ABM presented in Chapter 3

was based on the following assumptions: (1) everyone who needed to be vaccinated was able

to be and (2) the vaccine was successfully implemented in such a way that the hospital

experienced an overall reduction in the percentage of colonized, immunocompromised

patients. Will vaccination actually result in the overall decrease in the percentage of

colonized, immunocompromised patients that we assumed in Chapter 3? We would like

to weaken our assumptions and observe how modeling and tracking the vaccination of

individual patients in the ABM affects the overall disease prevalence. In particular, we

want to incorporate age and other CDI risk factors when deciding who to vaccinate.

Future plans also include expanding our exploration of the role environmental reservoirs

play in C. difficile transmission. Specifically, we will examine the effect of fomite touch

frequency on transmission. To model these dynamics, we will utilize a stochastic model that

incorporates patient and pathogen populations, where the patients are divided according

to disease status with respect to C. difficile and the pathogen levels are divided based on

high-frequency touch surfaces and low-frequency touch surfaces. Our goal is to use this
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model to better understand how surfaces with varying touch frequencies affect nosocomial

colonizations and infections by C. difficile.
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A Sensitivity analysis

Sensitivity analysis is used to quantify uncertainty by evaluating how variations in model

outputs can be attributed to different input sources, such as parameter values and initial

conditions [54, 76]. Because a few of our parameters in Chapter 2 were numerically estimated

and did not come directly from data or the literature, it is useful to quantify the impact

of each of our parameters on the objective functional value, J(v∗), in (2.8). If our output

is notably sensitive to a particular parameter value, it becomes more important for us to

estimate that parameter as accurately as possible.

We use Latin Hypercube Sampling (LHS) and partial rank correlation coefficients

(PRCCs) to perform our sensitivity analysis. LHS is a sampling technique that requires

fewer samples than many other sampling methods, but with equivalent accuracy [54]. This

sampling process involves taking the assigned interval for each parameter, dividing it into

n intervals of equal probability, and then sampling each of the intervals to obtain n values

for each parameter. We then use the vector of n values for each of the k parameters being

evaluated to create an n× k matrix, referred to as the LHS matrix. As a result, the ith row

of the LHS matrix contains a specific value for each of the k parameters to be used on the

ith run of the computer model.

For our analysis, we aim to quantify the impact of 11 inputs, in this case parameter

values, on the objective functional value J(v∗). The 11 parameters of interest are listed, with

their corresponding baseline values and intervals sampled, in Table A.1, and we assume the

parameters are uniformly distributed across the their specified intervals, which were chosen

so that the baseline value used in Chapter 2 is the average of the lower and upper bound of

the interval. For LHS to be used correctly, it is required that the output be monotonic with

respect to each of the parameters [59]. Before begin the sampling process, we ensure that

this monotonicity requirement is met for each parameter, and any parameter that does not

satisfy this criteria cannot be included in the sensitivity analysis. To verify monotonicity,

we vary one parameter while fixing the remaining parameters at baseline and then solve our

optimal control problem several times across the assigned interval for the parameter being

varied. We were able to illustrate that the objective functional value J(v∗) was monotonic
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with respect to each of the 11 parameters being considered.

Next, we created the n × 11 LHS matrix. The number of trials, n, that we used was

100. Each column of our LHS matrix then represents 100 different values for a particular

parameter that were chosen from 100 different subintervals of equal probability between

the lower bound and upper bound for that parameter. The 100 chosen values for each

parameter are permuted so that they are randomly ordered. Each row of the LHS matrix

then represents one particular parameter combination to be used to solve our optimal control

problem and then to calculate the resulting objective functional. Thus, we solve the optimal

control problem 100 times for 100 different parameter combinations contained in each row

of the LHS matrix.

Correlation quantifies the strength of a linear association between an input and an output

while controlling for the impact of the remaining inputs [54] . We calculate PRCCs for each of

our parameters and then use significance tests to assess if the PRCC is significantly different

from zero and if two PRCCs are significantly different from each other. To calculate the

PRCCs and corresponding p-values of the significance tests, we use the partialcorr() function

in MATLAB. The resulting values are illustrated for easy comparison in Figure A.1 and are

listed in Table A.2.

Using a significance level of 0.01, we conclude that α, βc, βd, kr, and k have PRCCs

that are significantly different from 0. Thus, the antibiotic prescription rate, transmission

coefficients (for both asymptomatic and symptomatic patients), and discharge rates for all

patients except diseased patients have a significant impact on the objective functional value

J(v∗).
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Table A.1: List of parameters considered in the sensitivity analysis procedure with their
corresponding intervals sampled and baseline values

Parameter Interval Baseline value

α [0.35, 0.65] 0.5

θ [0.023, 0.043] 0.033

βc [10−8, 10−4] 10−6

βd [10−8, 10−4] 10−6

f [0.45, 0.75] 0.6

ε [0.07, 0.13] 0.1

p [0.6, 1] 0.8

φ [0.03, 0.1] 0.06

kr [0.23, 0.43] 0.33

k [0.105, 0.195] 0.15

kd [0.048, 0.088] 0.068
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Figure A.1: Resulting PRCCs for each of the parameters considered
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Table A.2: PRCCs and corresponding p-values for each parameter

Parameter PRCC p-value
α 0.54 < 0.01
θ -0.18 0.08
βc 0.99 << 0.01
βd 0.76 < 0.01
f -0.12 0.28
ε -0.10 0.34
p -0.18 0.09
φ 0.03 0.81
kr 0.64 < 0.01
k -0.63 < 0.01
kd -0.18 0.10
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