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ABSTRACT 

 

Technological enhancements in a low-power CMOS process have promoted 

enhancement of advanced circuit design techniques for sensor related electronic circuits such as 

wearable and implantable sensor systems as well as wireless sensor nodes (WSNs). In these 

systems, the powering up the electronic circuits has remained as a major problem because battery 

technologies are not closely following the technological improvements in semiconductor devices 

and processes thus limiting the number of sensor electronics modules that can be incorporated in 

the design of the system. In addition, the traditional batteries can leak which can cause serious 

health hazards to the patients especially when using implantable sensors. As an alternative 

solution to prolonging the life of battery or to mitigate serious health problems that can be caused 

by battery, energy harvesting technique has appeared to be one of the possible solutions to supply 

power to the sensor electronics. As a result, this technique has been widely studied and 

researched in recent years. In a conventional sensor system, the accessible space for batteries is 

limited, which restricts the battery capacity. Therefore, energy harvesting has become an 

attractive solution for powering the sensor electronics. Power can be scavenged from ambient 

energy sources such as electromagnetic signal, wind, solar, mechanical vibration, radio 

frequency (RF), and thermal energy etc. Among these common ambient sources, RF and 

piezoelectric vibration-based energy scavenging systems have received a great deal of attention 

because of their ability to be integrated with sensor electronics modules and their moderate 

available power density. In this research, both RF and piezoelectric vibration-based energy 

harvesting systems have been studied and implemented in 130 nm standard CMOS process. 

 

 

 

 

 



 

iv 
 

TABLE OF CONTENTS 

 

Chapter 1 – Introduction .................................................................................................................  

1.1 Motivation ........................................................................................................................... 1 

1.2 Research Goal ..................................................................................................................... 3 

1.3 Original Contribution .......................................................................................................... 5 

1.4 Thesis Overview .................................................................................................................. 6 

Chapter 2 – Background og Energy Harvesting .............................................................................  

2.1 Typical Ambient Energy Sources ....................................................................................... 7 

2.2 Ambient Energy Sources ..................................................................................................... 7 

2.2.1 Thermal Energy Sources .............................................................................................. 8 

2.2.2 Kinetic Energy Sources ................................................................................................ 9 

2.2.3 Electromagnetic Energy Sources ................................................................................ 10 

Chapter 3 –Vibration Based Energy Harvesting Materials.............................................................  

3.1 Ambient Energy Sources Based on Vibration................................................................... 11 

3.2 Theoretical Background of Piezoelectricity ...................................................................... 15 

3.2.1 Piezoelectric Effect ..................................................................................................... 15 

3.2.2 Piezoelectric Materials ............................................................................................... 16 

3.2.3 Piezoelectric Materials as Energy Sources ................................................................. 20 

Chapter 4 – Vibration Based Energy Harvesting Circuit................................................................  

4.1 Piezoelectric Transducer Modeling ................................................................................... 23 

4.2 Design of a Piezoelectric Energy Harvester ...................................................................... 25 

4.2.1 An AC-to-DC Rectifier Design .................................................................................. 25 

4.2.2 The Proposed AC-to-DC Rectifier Design ................................................................. 28 

Chapter 5 – Radio Frequency Based Energy Harvesting Circuit ...................................................  

5.1 Radio Frequency Energy Harvesting ................................................................................ 44 

5.2 The Antenna Modeling...................................................................................................... 46 

5.3 A Radio Frequency Rectifier............................................................................................. 50 

5.4 DC-DC Converters ............................................................................................................ 67 

5.4.1 The Fundamentals of DC-DC Converters .................................................................. 67 



 

v 
 

5.4.2 A PFM Type of a DC-DC Converter.......................................................................... 68 

5.4.3 Input Impedance Control of a DC-DC Converters ..................................................... 70 

     5.4.3.1 Input Impedance Control of Various Kinds of DC-DC Converters .................... 71 

         5.4.3.1.1 A Buck Type DC-DC Converter ................................................................... 73 

         5.4.3.1.2 A Boost Type DC-DC Converter .................................................................. 75 

         5.4.3.1.3 A Buck-Boost Type DC-DC Converter ........................................................ 79 

     5.5 Overall Operation of the Proposed DC-DC Converter ..................................................... 82 

5.5.1 Input Impedance Control of the Proposed DC-DC Converter ................................... 84 

5.5.2 The Proposed DC-DC Boost Converter Switch Controls .......................................... 94 

5.5.3 Power Conversion Efficiency ................................................................................... 100 

5.5.4 RF Rectifier Test Results .......................................................................................... 108 

     5.5.4.1 Test Set-up ......................................................................................................... 108 

     5.5.4.2 Test Constraint of the RF Rectifier ................................................................... 113 

     5.5.4.3 Testing the RF Rectifier .................................................................................... 117 

5.5.5 Testing the DC-DC Boost Converter ........................................................................ 119 

Chapter 6 – Conclusion and Future Works .....................................................................................  

6.1 Conclusion ....................................................................................................................... 129 

6.2 Future Works ................................................................................................................... 130 

References ................................................................................................................................. 131 

Vita ............................................................................................................................................ 140 

 

 

 

 

 

 

 



 

vi 
 

LIST OF TABLES 

 

Table 1.1. Various Types of Ambient Energy Sources. ..................................................... 3 

Table 1.2. Advantages and Disadvantages of Vibration-Based Materials. ......................... 4 

Table 3.1. Peak Frequency and Acceleration Amplitude of Various Vibration-Based 

Energy Sources. ................................................................................................................ 11 

Table 3.2. Summary of Power Generated by Various Vibration-Based Energy Sources. 14 

Table 3.3. Properties of Popular Piezoelectric Materials. ................................................. 16 

Table 4.1. Performance Comparison. ............................................................................... 43 

Table 5.1. RF Power Versus Voltage in 50 Ω Systems . .................................................. 54 

Table 5.2. Transistor Sizes for RF Rectifier Circuit. ........................................................ 57 

Table 5.3. Summary of Simulated Loads Versus Efficiency of RF Rectifier. .................. 66 

Table 5.4. Simulated Values of the Input Impedance of the Proposed DC-DC Boost 

Converter........................................................................................................................... 92 

Table 5.5. Measured Input Impedance of the Proposed DC-DC Boost Converter. ........ 125 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

LIST OF FIGURES 

 

Figure 3.1.   A general simplified model of a vibration translator .................................... 12 

Figure 3.2.   Three types of vibration based energy sources: (a) Electromagnetic (b) 

Electrostatic (c) Piezoelectric ............................................................................................ 13 

Figure 3.3.   (a) Polarizing (Poling) a piezoelectric ceramic (b) generator and motor 

(actuator) action of a piezoelectric material ...................................................................... 18 

Figure 3.4.   The properties of a polarized piezoelectric ceramic in an orthogonal system

............................................................................................................................. ………..18 

Figure 3.5.   Various working modes of a piezoelectric material ..................................... 20 

Figure 3.6.   The series and parallel operation of a piezoelectric material ....................... 21 

Figure 3.7.   A piezoelectric material operation in (a) 33 mode, and (b) 31 mode ........... 21 

Figure 4.1.   A piezoelectric transducer modeling in a mechanical domain and an electric 

domain............................................................................................................................... 23 

Figure 4.2.   A simplified electrical domain modeling at or close to resonance frequency

.............................................................................................................................. ……….24 

Figure 4.3.   Conventional rectifiers: (a) a full-bridige rectifier (b) a voltage-doubler  ... 26 

Figure 4.4.   Waveforms of conventional rectifiers .......................................................... 26 

Figure 4.5.   Waveforms showing reduction of energy loss in the proposed rectifier ...... 28 

Figure 4.6.   An active retifier (a) the proposed rectifier (b) a cross-coupled rectifier ..... 30 

Figure 4.7.   Rectifier operating states .............................................................................. 31 

Figure 4.8.   A comparison of a cross-coupled and the proposed structure. (a) VPN vs. IP, 

(b) magnified of blue circle in (a) ..................................................................................... 32 

Figure 4.9.   Loss reduction in the parasitic plate capacitance, CP ................................... 34 

Figure 4.10. A schematic of the piezoelectric transducer switch ..................................... 34 

Figure 4.11. (a) a switch-only configuration (b) an inductor based bias-flip configuration

............................................................................................................................... ………35 

Figure 4.12. A schematic of the one-shot control circuit .................................................. 38 

Figure 4.13. Simulated waveforms of a piezoelectric transducer ..................................... 39 

Figure 4.14. Measured waveform of VRECT and input voltage from a piezoelectric 

transducer .......................................................................................................................... 39 

Figure 4.15. Measured waveforms of one-shot voltage and input voltage from a 

piezoelectric transducer .................................................................................................... 40 

Figure 4.16. Test set-up and PCB ..................................................................................... 40 

Figure 4.17. (a) Layout and (b) chip microphotograph .................................................... 42 

Figure 5.1.   The antenna and the load model ................................................................... 48 

Figure 5.2.   A general wireless power transfer scheme ................................................... 50 

Figure 5.3.   A conventional cross-connected active rectifier........................................... 51 



 

viii 
 

Figure 5.4.   A RF cross-coupled active rectifier used in the proposed RF energy 

harvesting system ............................................................................................................... 51 

Figure 5.5.   The complete circuit of front end of a RF energy harvesting system .......... 52 

Figure 5.6.   A matching network in between an antenna and a rectifier ......................... 55 

Figure 5.7.   Operation of the proposed RF rectifier in each input cycle .......................... 57 

Figure 5.8.   Break down of the proposed RF rectifier, (a) Half-cycle schematic (b) 

Half-cycle voltage operation ............................................................................................. 59 

Figure 5.9.   Input power versus impedance of the RF rectifier ....................................... 61 

Figure 5.10. Waveforms of the circuits in Fig. 5.4 at -10 dBm ........................................ 63 

Figure 5.11. Magnified waveforms of the circuits in Fig. 5.10 at -10 dBm ..................... 64 

Figure 5.12. Simulation results of loads versus efficiency plots for RF rectifier circuit .. 65 

Figure 5.13. General schemes of (a) a Boost DC-DC converter, and (b) a Buck DC-DC 

converter ........................................................................................................................... 67 

Figure 5.14. A general waveform of a PWM control ....................................................... 69 

Figure 5.15. A PFM mode operation ................................................................................ 69 

Figure 5.16. An inductor current waveforms of (a) a CCM operation, and (b) a DCM 

operation ........................................................................................................................... 72 

Figure 5.17. A conventional DC-DC buck converter ....................................................... 73 

Figure 5.18. A conventional DC-DC boost converter ...................................................... 76 

Figure 5.19. A conventional DC-DC buck-boost converter ............................................. 80 

Figure 5.20. A flow chart of the proposed RF energy harvesting system   ...................... 83 

Figure 5.21. The schematic of the proposed DC-DC boost converter .............................. 84 

Figure 5.22. The proposed sample and hold circuit .......................................................... 85 

Figure 5.23. Sample and hold waveforms of (a) OSC and OSCB, and (b) sampling 

waveform .......................................................................................................................... 86 

Figure 5.24. Inductor current waveforms in (a) a CCM operation, and (b) a DCM 

operation ........................................................................................................................... 88 

Figure 5.25. Switches and inductor current waveforms in a DCM operation .................. 90 

Figure 5.26. A low-side switch control scheme ................................................................ 92 

Figure 5.27. A high-side switch control scheme............................................................... 95 

Figure 5.28. A zero current control signal, EN_DEL, generator circuit ........................... 97 

Figure 5.29. A low-side switch control waveforms .......................................................... 99 

Figure 5.30. A high-side switch control waveforms ......................................................... 99 

Figure 5.31. Layout and photograph of a RF rectifier .................................................... 109 

Figure 5.32. RF rectifier test set-up ................................................................................ 109 

Figure 5.33. The RF rectifier input impedance test set-up ............................................. 110 

Figure 5.34. RF rectifier input impedance testing with a network analyzer ................... 110 

Figure 5.35. RF rectifier matching circuit ...................................................................... 111 

Figure 5.36. S-parameter matching circuit simulation.................................................... 111 

Figure 5.37. ESD protection used in the RF rectifier ..................................................... 114 



 

ix 
 

Figure 5.38. ESD leakage testing set-up ......................................................................... 114 

Figure 5.39. ESD leakage testing at 0.2 V ...................................................................... 115 

Figure 5.40. ESD leakage testing at 0.36 V .................................................................... 115 

Figure 5.41. ESD leakage testing at 0.43 V .................................................................... 116 

Figure 5.42. RF rectifier input voltage (Both RF+ and RF – sides) ............................... 118 

Figure 5.43. RF rectifier output voltage.......................................................................... 118 

Figure 5.44. RF DC-DC boost converter layout and chip photograph ........................... 120 

Figure 5.45. The RF equivalent circuit for the input of the boost converter .................. 120 

Figure 5.46. The RF DC-DC boost converter test set-up ............................................... 121 

Figure 5.47. The bias current test .................................................................................... 122 

Figure 5.48. Sample and hold control signal (Oscillator) test ........................................ 122 

Figure 5.49. NMOS on-time waveform at - 7.5 dBm ..................................................... 123 

Figure 5.50. NMOS on-time waveform at - 10 dBm ...................................................... 124 

Figure 5.51. Comparasion of the input impedance of the DC-DC boost converter ........ 125 

Figure 5.52. The output voltage of the DC-DC boost converter at – 10 dBm ................ 126 

Figure 5.53. The switch node, VLX voltage of the DC-DC boost converter at – 10 dBm

............................................................................................................................ ……….127 

Figure 5.54. The measured and simulated efficiency of the DC-DC boost converter .... 128 

 



 

1 
 

CHAPTER 1 – INTRODUCTION 

 

1.1 Motivation 

 

In 1989, the World Wide Web (WWW) was developed by Tim Berners Lee. Since then, the 

internet technology has rapidly spread throughout the world and has become an essential part of 

our daily lives [1]. In addition, the internet technology has triggered technological advancements 

in various fields. With the help of wireless technology, the internet technology is now more and 

more expanding its territories into various fields. For example, as one of the products of this 

expanding technology, called Internet of Things (IoT) has emerged in recent years. The definition 

of IoT in Wikipedia states it as following; “The Internet of Things (IoT) is the network of physical 

devices vehicles, and other items embedded with electronics software, sensors, actuators, and 

network connectivity which enable these objects to collect and exchange data [2].” As stated above, 

the IoT utilizes computer-based system to allow direct access to various devices through the 

existing network infrastructures wirelessly. By accessing remotely into various systems or system 

components such as sensor electronics, one can do more things than ever imagined before. For 

examples, using the electronic systems in an automobile, one can measure numerous parameters 

such as tire pressure, temperatures etc. in various hard to reach places inside the vehicle, and can 

perform diagnostics of various automotive issues and so forth. In medical sensor systems, the 

doctors can monitor patients remotely with the help of various sensors that monitor health issues 

of the patients [3]. However, powering up these sensors or wireless devices is a major problem 

associated with the IoT systems. In the above example of an automobile, most sensors are located 

in hard to reach places and thus replacing or extending life of a battery is one of the major problems.                  
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For sensors used particularly in medical devices, it is not only difficult to change the battery 

but also a battery itself can be harmful to human body and can even be fatal in some cases. As a 

result, researchers have explored various solutions including the idea of the energy harvesting. In 

general, energy harvesting, alternatively knows as energy scavenging or power harvesting, exploits 

existing ambient energy such as solar, thermal, wind, kinetic, or radio frequency etc. The 

mechanism of acquiring or capturing such wasted or free energy from the ambient environment is 

called energy harvesting or energy scavenging [4]. Table 1.1 shows typical power density available 

in ambient energy sources [4,8,9,10].  

Energy harvesting was not feasible for CMOS circuits in the past due to the low harvestable 

energy density associated with the traditional ambient energy sources as well as high transistor 

turn-on voltage of common CMOS processes. However, recent advancements in semiconductor 

device technologies have resulted in highly advanced low power CMOS processes requiring power 

supplies below 1.2 V. Combination of low-current, low-threshold requirements of the transistors, 

and the low power supply voltages allows energy harvesting technology to be utilized in various 

miniaturized low-power CMOS electronic systems. This research is focused on energy harvesting 

utilizing vibrational and radio frequency energy sources. Due to the limitation of the energy density 

of the harvested or scavenged energy from vibration and radio frequency sources, the battery used 

in the medical system cannot be completely replaced with harvested energy sources. However, the 

harvested energy can be utilized to extend the life of the battery in applications involving small 

scale electronic systems.  
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Table 1.1 Various Types of Ambient Energy Sources [4,8,9,10] 

Energy Sources Performance 

Solar (Direct sunlight) 100 mW/cm2 

Solar (Illuminated office) 100 mW/cm2 

Thermoelectric 60 µW/cm2 at 5 °C gradient 

Blood Pressure 0.93 W at 100 mmHg 

Vibrational Micro-Generator 
4 µW/ cm2 (Human motion ~ Hz)                    

800 µW/ cm2 (Machines ~ KHz) 

Piezoelectric Push Buttons 50 µJ/N 

Ambient Radio Frequency 1 µW/cm2 

 

1.2 Research Goal  

 

The goal of this research is to design a vibration-based energy harvesting circuit using a 

piezoelectric transducer, as well as a radio frequency-based energy harvesting circuit with DC-DC 

converter incorporated with maximum power point tracking (MPPT) system. In the first part of 

this work, a piezoelectric transducer-based energy harvesting system has been proposed and 

designed. A piezoelectric transducer-based energy harvesting system is much simpler to design 

compared to an electrostatic based system because of its simpler system architecture. In addition, 

a piezoelectric transducer-based energy harvesting system can provide moderate power density. In 

addition, a piezoelectric transducer-based energy harvesting system can be easily utilized in our 

daily lives because of its small size. Table 1.2 shows the advantages versus disadvantages of the 

three vibration-based material systems.  
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Table 1.2 Advantages and Disadvantages of Vibration-Based Materials [7,8,9] 

Type Advantages Disadvantages 

Practical 

max.     

energy 

density 

(mJ/cm3) 

Piezoelectric 

1. No external energy 

sources 

2. Output voltage range of 

1 to 10 volts 

3. Do not require 

mechanical stops 

4. Highest energy density 

1. Difficult to integrated 

with micro-system 

2. Need high frequency 

and stress 

35 

Electrostatic 

1. Easy to merge with 

microsystems or small-

scale electronics 

2. Output voltage range of 

2 to 10 volts 

1. External voltage 

source required 

2. Mechanical stops 

required 

4 

Electromagnetic 

1. No external voltage 

source 

2. Do not require 

mechanical stops 

3. High output power 

1. Maximum output 

voltage of 0.1 volt 

2. Difficult to 

integrated with 

micro-system 

3. Complex design 

25 
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As can be seen from Table 1.2 [7.8.9], a piezoelectric transducer-based energy harvesting 

system is more advantageous compared to the other two systems. Therefore, in this dissertation, 

an extensive research has been performed to the development of energy harvesting system for the 

piezoelectric transducer and will be presented in the next chapter. 

In the second parts of this dissertation, a radio frequency (RF) based energy harvesting 

utilizing another freely available source with DC-DC boost converter will be presented. In a RF 

energy harvesting, a DC-to-DC boost converter with maximum power point tracking (MPPT) will 

be integrated to achieve a maximum power output of a radio frequency signal. An impedance 

matching circuitry to match a RF rectifier with a DC-to-DC converter will be employed so that the 

maximum available power from a RF rectifier can be squeezed out. 

 

1.3 Original Contribution  

 

In this dissertation, new and improved architectures of a piezoelectric transducer-based 

energy harvesting circuit will be presented. By adding a switching signal on a PMOS switch, there 

will be significantly reduced leakage current resulting in reduction of energy loss especially in low 

available input power from a piezoelectric transducer. In a radio frequency energy harvesting 

design, a new way of controlling zero current detection for a DC-DC converter will be presented, 

which enhances the total efficiency of the RF energy harvesting circuit. In addition, a simple but 

effective way of controlling the maximum power point tracking (MPPT) with wide range of the 

input impedance in a DC-DC converter will be presented. 
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1.4 Thesis Overview 

 

The remaining chapters of this research will cover followings. Chapter 2 will cover the 

general information regarding ambient energy sources for the energy harvesting system. In this 

chapter, a reader can find information on the general sources for energy harvesting system, reasons 

to develop such ideas, and the advantages of each ambient energy sources. Chapter 3 will cover 

the vibration-based energy harvesting materials. In this chapter, a reader can find the information 

regarding various materials that are currently used and researched as energy sources based on the 

vibration by many scholars. In addition, a reader can find the advantages and disadvantages of 

each vibration-based energy source. In Chapter 4 the actual implementation of energy harvesting 

circuits based on vibration will be presented. In this chapter, a reader can find the reasons for 

choosing a piezoelectric transducer as energy source for the vibration-based energy harvesting 

system. In addition, a detailed analysis of design and implementation of the proposed AC-to-DC 

rectifier for the piezoelectric transducer will be presented. Chapter 5 will cover background 

information and details of radio frequency-based energy harvesting circuits. In this chapter, a 

reader can find the general information regarding what the radio frequency energy harvesting is as 

well as detailed analysis of a radio frequency (RF) energy harvesting system. Chapter 6 will cover 

conclusion and future works for this proposed research.  
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CHAPTER 2 – BACKGROUND OF ENERGY 

HARVESTING 

 

2.1 Typical Ambient Energy Sources 

 

There are many kinds of available ambient sources for energy harvesting systems around 

us. Among them, the following sources are the most popular and have been researched by many 

researchers because of its ease of accessibility and availability. These energy sources are solar, 

thermal, electrostatic, acoustic noise, human generated, nuclear power, wind, radio frequency, and 

mechanical vibration [4,8,9,10]. Among these energy sources, electromagnetic, electrostatic, 

thermal, chemical and mechanical based energy harvesting systems are the ones typically used for 

small scale power required by electronic systems [7,8,9]. In addition, such power sources are small 

enough to be used in such system due to their ease of integration. 

 

2.2 Ambient Energy Resources 

 

As discussed in section 2.1, electromagnetic, electrostatic, thermal, chemical and 

mechanical based ambient energy sources are the general categories of energy harvesting sources 

and are applicable to the small electronics or sensor application where relatively small amount 

power is required to power up and operate the systems. In this section, a brief introduction to these 

ambient energy sources will be presented. 
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2.2.1 Thermal Energy Sources 

 

Thermal device is the one which converts the temperature difference into an electrical 

energy. The potential thermal based energy sources are power plant generated wasted heat, heated 

ocean water, etc. A CMOS based thermoelectric device or generator is composed of an electrically 

connected p-type and n-type silicon in series. In general, this kind of device or generator generates 

a current proportional to the temperature deviation, due to the temperature difference between the 

hot side and the cold side of the device or the generator. The general efficiency equation of the 

thermoelectric device can be driven by the Carnot cycle and the maximum available power can be 

written as following [11], 

 

𝑃𝑀𝐴𝑋 = 𝑄
𝑇𝐻−𝑇𝐿

𝑇𝐻
                                                             (2.1) 

 

where, TH is high temperature of the hot side,  

            TL is the low temperature of the cold side, and Q is the temperature source. 

 

In real life, the conversion efficiency of the thermal energy is much lower than PMAX, and 

even in ideal calculation using equation (2.1), PMAX is lower than 100 %. The major drawback of 

using the thermal energy harvesting is that the temperature deviation between the hot and the cold 

sides should be large enough to achieve adequate harvested energy. An example of the thermal 

energy harvesting involving a wristwatch operated by the temperature difference between the 

human body and room temperature has been presented in [12]. 
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2.2.2 Kinetic Energy Sources 

 

The kinetic energy is associated with any moving object with movement or motion. The 

main advantages of the kinetic energy are the availability of many forms of these sources in the 

ambient. Therefore, it is very common energy source that can be easily fond and reused as a source 

of energy harvesting. Since the kinetic energy has the force (F), which makes an object to move, 

and the distance (d), which is the actual distance traversed, it follows the simple laws of physics. 

As a result, the equation of the instantaneous power (Pinst) as well as average power that a kinetic 

energy has generated can be written as following [13];     

 

𝑃𝑖𝑛𝑠𝑡 = 𝐹𝑑                                                                 (2.2) 

 

Since the kinetic energy is one of the most common energy sources available and due to 

its ability to adapt to a small scale electric devices or sensors, many researchers are focusing on 

this energy source for future energy harvesting. As an example, in [14], a wearable sensor using a 

rotor kinetic energy generator as a power source is presented. In addition, there are many real-

world products available out there and one of those involves a watch manufactured by Seiko which 

uses human motion to translate it into an electrical energy to power up the watch. Since the kinetic 

energy is one of the topics in this research, further details regarding the energy source will be 

discussed in the following sections. 
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2.2.3 Electromagnetic Energy Sources  

 

There are many different forms of electromagnetic energy sources. Among these, radio 

frequency and light have received the most attention from the researchers. The radio frequency 

form of electromagnetic energy is nowadays receiving a lot of attention since the radio signals are 

omni present in home, school, café, airport and so forth [15]. Therefore, it is very easy to access 

and utilize this energy source. On the other hand, light energy has been used and researched for a 

long time due to its ease of implementation and ability for miniaturization. As a good example, 

solar panels used for powering up the street lights or a home are widespread. In addition, there are 

many small electronics that are powered by solar panel such as a calculator. As can be seen from 

the examples, the light energy source is the most commonly used and can be found easily in our 

daily life. However, there are several problems with the light sources which make them less 

attractive compared to other ambient sources of energy. The typical efficiency of a photovoltaic 

cell, also called a solar cell, is not more than roughly 20 percent, and it is also achievable only 

when the cell gets sun light directly. In addition, the power generated by the solar cell depends 

mostly on its size [16]. Because of these reasons, many researchers are trying to find a better 

solution in terms of solar cell materials which can result in improved efficiency. Since a radio 

frequency is one of the topics in the research, radio frequency energy harvesting system will be 

covered in more details in later chapters. 
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CHAPTER 3 – VIBRATION BASED ENERGY 

HARVESTING MATERIALS 

 

3.1 Ambient Energy Sources Based on Vibration 

 

Kinetic energy based on vibration can be found in many different forms. For example, a 

human while walking can produce kinetic energy based on vibration. Table 3.1 shows different 

types of vibration energy generated based on frequency and amplitude of acceleration at the 

fundamental frequency.  

As can be seen from Table 3.1, there are many forms of vibration based kinetic energy 

present around us.  

 

Table 3.1 Peak Frequency and Acceleration Amplitude of Various Vibration-Based Energy 

Sources [6,17,18,19] 

Vibration Sources 
Peak Frequency                

(Hz) 

Acceleration Amplitude  

(m/s2) 

Clothes dryer 121 3.5 

Small microwave oven 121 2.25 

Washing machine 109 0.5 

Computer CD R/W 75 0.6 

Car engine 200 1.2 

Vehicles 5 ~ 2000 0.5 ~ 110 

Kitchen blender 121 3.4 

Refrigerator 240 0.1 
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(3.1) 

 

k

be b
m

y(t)

m

z(t)

 

Fig. 3.1 A general simplified model of a vibration translator [8]. 

 

In addition, the operating frequency of devices is relatively low.  Fig 3.1 shows the 

simplified model of a vibration translator [8].  

From Fig. 3.1, the power translated from vibration energy can be written as (3.1) [6]. 

 

𝑃𝑜𝑤𝑒𝑟 =
1

2
𝑏𝑒ż2 

 

where be is representing the coefficient of an electrically generated damping, 

           bm is representing the coefficient of a mechanical damping, 

           k is representing the coefficient of spring constant, 

           m is representing the mass. 
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Fig. 3.2 Three types of vibration based energy sources: 

(a) Electromagnetic, (b) Electrostatic, (c) Piezoelectric [27,28,29]. 
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There are three general types of widely used energy sources out there, which are derived 

from vibration-based energy sources such as electromagnetic, electrostatic, and piezoelectric. Fig. 

3.2 illustrates the three types of vibration-based energy sources [27,28,29].   

As shown in Table 3.2, there are several ongoing research efforts by numerous groups on 

electromagnetic and electrostatic energy sources. However, due to their inherent limitation of 

available power as well as problems associated with the operation of electrostatic and 

electromagnetic sources shown in Table 3.2, quite a few researchers are focused more on 

piezoelectric based energy sources compared to the other two. The detailed literature review will 

be discussed in the next section. 

 

Table 3.2 Summary of Power Generated by Various Vibration-Based Energy Sources 

Energy Sources Power Harvested 
Resonant 

Frequency 
References 

MEMS 4.29 µW _ [24] 

Variable-resonating 

Capacitor 
120 nW 50 Hz [25] 

Electromagnetic 

micro-generator 
1 µW 70 ~ 200 Hz [26] 

Electromagnetic 

micro-generator 
400 µW _ [20] 

Parametric 

Frequency-Increased 

Generator 

13.6 µW 50 Hz [27] 

MEMS based laser-

micro generator 
~ 830 µW 60 ~ 110 Hz [28] 
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3.2 Theoretical Background of Piezoelectricity 

 

In this section, short introduction of a piezoelectric material will be presented. 

 

3.2.1 Piezoelectric Effect 

 

The word “piezo” came from the Greek word meaning “pressure” [23]. The phenomenon 

of the piezoelectric effect was discovered by Jacques and Pierre Curie brothers in 1880, and 

demonstrated piezoelectric effect using a quartz and a tourmaline [23]. Piezoelectric materials can 

be demonstrated by means of a piezo-effect when subjected to electrical force or mechanical 

bending or stretching [23]. Such behavior will cause a piezoelectric material to undergo a change 

in electrical polarization. A direct piezoelectric effect is called a generator or a sensor effect, which 

converts mechanical energy into electrical energy [23]. In addition, an electrical potential can be 

applied causing a change in length or deformation of the shape of the piezoelectric material. This 

is called as the inverse piezoelectric effect or the actuator effect [23]. The reverse piezoelectric 

effect converts electrical energy into mechanical energy. There are numbers of common 

applications where the piezoelectric effect can be employed such as microphones, cigarette lighters, 

piezoelectric motors, ear phones, combustion engines, speakers, and signal transducers, etc.  
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3.2.2 Piezoelectric Materials 

 

There are diverse types of natural or synthetic piezoelectric materials currently available 

for commercial applications. Typical natural piezoelectric materials are quartz, salt, cane sugar, 

tourmaline etc. [23].  Examples of typical man-made or synthetic piezoelectric materials are lead 

zirconate titanate (PZT), barium titanate (BaTiO3), polyvinylidenefluoride (PVDF), ZnO etc. [23]. 

From industrial as well as research point of view, breakthrough of piezoelectric materials 

technology begins with the development of piezoelectric ceramics. 

 

Table 3.3 Properties of Popular Piezoelectric Materials 

Materials 
Shapes or 

Forms 

d31 (m/V 

or C/N)1 
(ɛ33 / ɛ0)2

 k31
3 TC(oC)4 Reference 

Quartz Single Crystal 2.3 4.4 - - [29] 

PZT Sol-gel thin film 190 ~ 250 800 ~ 1100 - - [30] 

PZT Polycrystalline 
-190 ~ 

320 

1800 ~ 

3200 

0.32 ~ 

0.44 

230 ~ 

350 
[31] 

PZT 
Sputtered thin 

film 
100 - - - [32] 

PVDF Film 23 12 ~ 13 0.12 80 ~ 100 [35] 

ZnO 
Sputtered thin 

film 

10.5 ~ 

11.5 
10.8 ~ 11 - - [30] 

 

1 d31 denotes the piezoelectric coefficient. 

2 ɛ0 = 8.854 x 10
-12 F/m which is the permittivity of the empty space, ɛ is the dielectric constant. 

3 k31 denotes the electromechanical coupling coefficient. 

4 TC is the Curie temperature. 
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Table 3.3 lists the most commonly used piezoelectric materials. From the table, it can be 

easily seen that there is one particular material, which has superior properties compared to the 

others.  

The superior material is PZT. Usually, a PZT has the highest Curie temperature as well as 

the largest electromechanical coefficient. Fig. 3.3 shows how the piezoelectric material acts with 

different applied forces or strains [33,34]. 

In general, a piezoelectric crystal is in non-symmetrical form and is electrically neutral as 

well. Therefore, electrons in piezoelectric materials have perfectly balanced charges. However, 

when a piezoelectric material is squeezed or stretched, atoms inside of piezoelectric crystals are 

getting closer together or fall apart from each other. Such action causes upsetting of the balance of 

positive and negative charges.  As a result, a piezoelectric material emits electrical charges. For 

commercial applications, two types of PZT materials are available right now. One is a hard type 

PZT, and the other is a soft type PZT [23,34]. Usually, a PZT ceramic is doped with either acceptor 

dopants or donor dopants. If a PZT is doped with an acceptor dopant, then it is called as a hard 

type PZT, and if it is doped with a donor dopant, then it is called as a soft type PZT. The difference 

between a hard and a soft type of PZT is whether a piezoelectric constant is higher or not. Since 

the domain wall motion of a hard type of a PZT is blocked or disrupted by its impurities, it has a 

lower piezoelectric constant but has lower loss. On the other hand, a soft type of PZT has a higher 

piezoelectric constant but higher loss as well. This is due to the fact, that an acceptor dopant creates 

an oxygen vacancy, while a donor dopant creates a metal vacancy. When the polarization process 

is performed with strong electrical field applied to two electrodes, the directions of polarization is 

determined to be the axis 3. 
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                                                   (a) 

 

 

(b) 

Fig. 3.3 (a) Polarizing (Poling) a piezoelectric ceramic 

(b) generator and motor (actuator) action of a piezoelectric material [33,34]. 

 

 

 

Fig. 3.4 The properties of a polarized piezoelectric ceramic in an orthogonal system [36]. 
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Fig. 3.4 shows this polarized piezoelectric ceramic in orthogonal system. The polarized 

piezoelectric material can be characterized by several coefficients [36].   

The basic simplified form of the polarized piezoelectric ceramic with respect to the 

relationship of the electrical charge and the mechanical strain, which describe the piezoelectric 

effect and can be formulated as followings [36], 

 

𝐷 = 𝑑 ∗ 𝑇 +  ɛ𝑇 ∗ 𝐸                                                       (3.2) 

 

𝑆 = 𝑆𝐸 ∗ 𝑇 + 𝑑 ∗ 𝐸𝑇                                                      (3.3) 

 

where D is the coefficient of an electrical flux density, 

            T is the coefficient of a mechanical stress, 

            E is the coefficient of an electric field, 

            S is the coefficient of a mechanical strain, 

            D is the coefficient of a piezoelectric charge, 

            ɛT is the coefficient of a permittivity, 

            SE is the coefficient of a compliance or elasticity. 

 

These simplified equations (3.2) and (3.3) can be applied to the small signal model. In 

addition, mechanical strain (S), electrical field (E), stress (T), and electrical flux density (D) are 

linear and the coefficients are constant. The coefficients are usually obtained from the piezoelectric 

material data sheet, and are permittivity (ɛ), piezoelectric charge, deformation and modulus (dij), 

voltage (gij), elastic compliance (sij), frequency (Ni), mechanical quality factor (Qm), and coupling 

factor (k) [36]. Among these various coefficients, the electromechanical coupling coefficient, k, is 
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the most important since it denotes how much mechanical energy can be changed into electrical 

energy or vice versa. 

 

3.2.3 Piezoelectric Materials as Energy Sources 

 

As explained in section 3.2.2, a piezoelectric material can be used as a generator, which 

converts mechanical energy into electrical energy, as well as an actuator, which converts electrical 

energy into mechanical. Since this research is focused on energy harvesting from an electrical 

energy of a piezoelectric material, therefore, this section concentrates on the mechanism of 

transformation of mechanical energy into electrical energy in piezoelectric materials. Fig. 3.5 

shows various working (energy generator) modes of a piezoelectric material [37].  As shown in 

Fig. 3.5, there are three general directions of force for the material to be working as a generator. 

Among these, the longitudinal compression mode produces the highest amount of electrical energy 

conversion and this direction is also called 33-mode. 

 

 

Fig. 3.5 Various working modes of a piezoelectric material [37]. 
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Fig. 3.6 The series and parallel operation of a piezoelectric material [38]. 

 

 

Fig. 3.7 A piezoelectric material operating in (a) 33 mode, and (b) 31 mode [39]. 
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Fig 3.7 shows the two modes of operation, which are 33 and 31 modes [39]. In addition to 

the direction of the force, there are two modes of operation in a piezoelectric material as an actuator: 

one is series and the other is parallel. The series and the parallel operations depend on the 

polarization and wiring shape or configuration of the piezoelectric material layer. If the voltage is 

applied over the entire piezoelectric layer, then it is called as series operation. If the voltage is 

applied on each layer of a piezoelectric material, then, it is called as a parallel operation. Fig. 3.6 

illustrates the series and parallel operations of a piezoelectric material [38].  
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CHAPTER 4 – VIBRATION BASED ENERGY 

HARVESTING CIRCUIT 

 

4.1 Piezoelectric Transducer Modeling 

 

As stated in the previous chapter, a piezoelectric material can be used as a generator, which 

produces electrical energy by applying mechanical energy as well as an actuator or a motor, which 

produces mechanical energy by applying electrical energy. In this section, a brief introduction of 

to the modeling of a piezoelectric material for transforming mechanical energy into electrical 

energy is presented. Fig. 4.1 shows the models of a piezoelectric transducer in mechanical and 

electrical domains [39]. 

In Fig. 4.1, LM denotes the mechanical mass, CM represents the mechanical stiffness, and 

RM denotes the mechanical losses. A transformer presented in the mechanical domain in Fig. 4.1 

allows for conversion of the mechanical stress into current. CP represents the parasitic capacitance 

of the piezoelectric material, and RP denotes the internal loss in an electrical domain. 

 

LM

CP

Mechanical Domain Electrical Domain

RP

IP

CMRM 1:n

 
Fig. 4.1 A piezoelectric transducer modeling in a mechanical domain and an electrical 

domain [39]. 
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Piezoelectric Transducer

IAC  

CP RP

 

Fig. 4.2 A simplified electrical domain modeling at or close to resonance frequency [40,41]. 

 

An electrical domain is transformed at or close to the resonance frequency of a piezoelectric 

material. Fig. 4.2 shows the simplified electrical domain modeling at or close to resonance 

frequency of a piezoelectric material [40,41]. 

When a piezoelectric transducer is agitated by sinusoidal vibrations, it can be modelled by 

a sinusoidal current source in parallel with a parasitic capacitance, CP and a parasitic resistance, 

RP. The model shown in Fig. 4.1 and Fig. 4.2 represent the general vibration-based piezoelectric 

energy harvester, which is based on the cantilever design [40,41]. Usually, a cantilever design 

requires resonance frequency which is based on the working environmental vibration frequency.  

In general, a typical power supply or a battery has a very low internal impedance. However, 

as shown in Figs. 4.1 and 4.2, the internal impedance of a piezoelectric transducer, RP, has a very 

high value. As a result, the amount of output current produced by the piezoelectric transducer is 

limited by this high internal impedance, RP. The common value of the output current produced by 

a piezoelectric transducer is in the micro-ampere range. In addition, because of this low current, 

the output voltage of a piezoelectric transducer is low as well.  
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The output current of a piezoelectric transducer is proportional to the input vibration 

amplitude and can be expressed by the following equation which assumes that the input vibration 

is sinusoidal and therefore, 

 

𝑖𝑃 = 𝐼𝑃 sin 𝜔𝑃𝑡                                                               (4.1) 

 

where 𝑖𝑃 is equal to IAC in Fig. 4.2,  𝐼𝑃 is the peak current of the sinusoidal current source,  𝜔𝑃 =

2𝜋𝑓𝑃, and 𝑓𝑃 is the excited frequency of the piezoelectric transducer [42]. 

 

4.2 Design of a Piezoelectric Energy Harvester  

       

4.2.1 An AC-to-DC Rectifier Design 

        

There are two kinds of conventional rectifier structures: diode full bridge rectifier and 

voltage doubler as illustrated in Fig.4.3. The drawback of a conventional structures is the high 

value of diode turn-on voltage. Since the charging current is the piezoelectric current, iP, where  

𝑖𝑃 = 𝐼𝑃 sin(𝜔𝑃𝑡) , 𝜔𝑃 = 2𝜋𝑓𝑃 as shown in equation (4.1), is a sinusoidal signal, it needs to charge 

a parasitic capacitor, CP before a piezoelectric transducer can transfer the energy to the output. As 

a result, it causes a problem of wasting energy by charging the parasitic capacitor, CP.  

In addition, due to the diode turn-on voltage, which is in the range of 0.5 V ~ 0.7 V for a 

conventional diode, a piezoelectric transducer has to overcome this voltage to transfer the power 

to the output or a load. 

In Fig. 4.4, the shaded regions of the red and the blue show the energy loss due to charging 

and discharging of a parasitic capacitor, CP, as well as a diode turn-on voltage. 
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Fig. 4.3 Conventional rectifiers. (a) a full-bridge rectifier (b) a voltage-doubler. 

 

 

Fig. 4.4 Waveforms of conventional rectifiers. 
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Fig. 4.4 shows the wave forms of conventional rectifiers. The available power from a 

conventional full-bridge rectifier as well as a voltage-doubler can be written as following equations 

(4.2) and (4.3) [42], 

 

𝑃𝑅𝐸𝐶𝑇,𝐹𝐵 = 4𝐶𝑃𝑉𝑅𝐸𝐶𝑇𝑓𝑃(𝑉𝑃 − 𝑉𝑅𝐸𝐶𝑇 − 2𝑉𝑑)                                (4.2) 

 

𝑃𝑅𝐸𝐶𝑇,𝑉𝐷 = 𝐶𝑃𝑉𝑅𝐸𝐶𝑇𝑓𝑃(2𝑉𝑃 − 𝑉𝑅𝐸𝐶𝑇 − 2𝑉𝑑)                                (4.3) 

 

where VP is the open circuit voltage amplitude of a piezoelectric transducer, 

           fP is the resonance frequency of a piezoelectric transducer, 

           Vd is the diode forward voltage drop, 

           VRECT is the output voltage of a rectifier, 

           CP is a parasitic capacitor of a piezoelectric transducer. 

 

The maximum power that can be harvested from those two topologies can be expressed by 

following equations (4.4) and (4.5) [42], 

 

                                   𝑃𝑅𝐸𝐶𝑇,𝐹𝐵 (𝑀𝐴𝑋) = 𝐶𝑃(𝑉𝑃 − 2𝑉𝑑)2𝑓𝑃                                           (4.4) 

 

                                   𝑃𝑅𝐸𝐶𝑇,𝑉𝐷 (𝑀𝐴𝑋) = 𝐶𝑃(𝑉𝑃 − 𝑉𝑑)2𝑓𝑃                                              (4.5) 

 

PRECT,FB (MAX) and PRECT,VD (MAX) occur at 𝑉𝑅𝐸𝐶𝑇,𝐹𝐵 =
𝑉𝑃

2
− 𝑉𝑑 , and 𝑉𝑅𝐸𝐶𝑇,𝑉𝐷 = 𝑉𝑃 −  𝑉𝑑 

respectively. 
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 Fig. 4.5 Waveforms showing reduction of energy loss in the proposed rectifier. 

 

As can be seen in Fig. 4.5, reduction of the loss described above and represented by the 

shaded regions in Fig. 4.3, can result in more energy output from a piezoelectric transducer. 

 

4.2.2 The Proposed AC-to-DC Rectifier Design 

 

As shown in section 4.2.1, conventional structures have problems of a high diode turn-on 

voltage, which causes a voltage conversion loss as well as charging and discharging a parasitic 

capacitance CP, which results in a charge loss. As can be seen in Fig. 4.5, if there is a way to reduce 

the charging time of a parasitic charge CP, then one can save quite a bit of energy generated by the 

piezoelectric transducer. In [43] - [47], researchers presented various techniques. One of the 

common technique involves lowering of the diode turn-on voltage drop loss. This is typically 
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achieved by replacing of the off-chip diode with CMOS switches so that loss due to the high 

voltage drop can be significantly reduced since the typical diode turn-on voltage is in the range of 

0.5 V ~ 0.7 V, which is usually larger than typical threshold voltage, Vth, of the MOSFET. 

Researchers have also proposed various techniques such as a switch-only, a SSHI, a bias-flip, a 

DSSI, a capacitor integrated switch and so forth. Except for the switch-only topology, all other 

topologies use either an inductor or a capacitor to store the energy from a piezoelectric transducer 

whenever it changes polarity. As explained earlier, before the energy can be transferred to the 

output load, CP has to charge from zero up to +(VRECT + 2Vd) when IP is in positive state, while the 

CP has to be discharged from – (VRECT + 2Vd) to zero when IP is in negative state. Therefore, flipping 

such stored voltage from one end to the other is considered as wasted energy (the energy is used 

only for charging and discharging of CP of the piezoelectric transducer). As a result, the above 

enhanced energy storing topologies have been developed. However, the major problem of such 

topologies is that they require a large inductor or a capacitor to store energy up to VRECT + 2Vd so 

that it does not have to suffer from charging and discharging all the way to the end of each positive 

and negative cycle. In addition, such topologies require very complex circuits to detect and manage 

inductor and the stored energy in a capacitor. Such complex circuits consume significant amount 

of energy from a stored output capacitor to control such complex control circuits or even in worst 

case, they require external voltage source to power up the control circuits.  

The proposed active rectifier with switch-only scheme requires no external components 

other than a piezoelectric transducer and an output load capacitor.  

In addition, the harvested power level is moderate compared to such power enhanced 

topologies. Fig. 4.6 shows the switch-based topologies. 
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(b) 

Fig. 4.6 An active rectifier (a) the proposed rectifier (b) a cross-coupled rectifier [20], [43], [45]. 
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Fig. 4.7 Rectifier operating states. 

 

Fig. 4.6 (a) shows the proposed architecture, and Fig. 4.6 (b) shows the cross-coupled based 

architecture, and both rectifier circuits are based on a switch topology [20], [43], [45].   

The main difference between the schemes shown in Fig. 4.6 (a) and Fig. 4.6 (b) is the 

method of activating or turning on of the PMOS switches. In Fig. 4.6 (a), a PMOS switch is turned 

on by the signal of a NMOS switch, which is controlled by the comparator. On the other hand, the 

circuit shown in Fig. 4.6 (b) is turned on by the threshold voltage of a PMOS. That means, if either 

VN or VP is greater than |Vthp| of a PMOS transistor, then a PMOS switch is turned on. The basic 

operation of the two configurations is same. In the first phase of operation, IP, the charging current 

from a piezoelectric transducer charges CP, which is a parasitic plate capacitor of a piezoelectric 

transducer and the voltage VPN starts to increase. As soon as IP finishes charging CP, it goes to next 

phase.  
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(a) 

 

 

(b) 

Fig. 4.8 A comparison of a cross-coupled and the proposed structure. (a) VPN vs. IP, (b) 

magnified of blue circle in (a) 
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At the phase two, VPN of a piezoelectric transducer will be increased further, and if VPN is 

larger than |Vthp|, then a PMOS switch starts turning on and begins to transfer the energy into the 

output capacitor, CL, of the rectifier. In phase 3, if VPN further increases, then it causes VN goes to 

zero or below zero. 

As a result, the comparator starts turning on. Therefore, a NMOS switch is turned on as 

well. Fig. 4.7 shows the active rectifier working states. The states 1 through 3 apply to the cross-

coupled active rectifier reported in [20], [43], [45], as well as in the most of systems, which utilize 

active rectifier structures. However, there is a minor difference between the proposed and the 

power enhanced structures mentioned previously. The proposed structure goes though the state 

one, but state two and three are merged together in the proposed structure, which saves available 

input amplitude or power from a piezoelectric transducer. Since the PMOS switch of the proposed 

active rectifier is controlled by the NMOS turn-on signal, it does not have to go through state 2 in 

the ideal case. Even, in real case, the delay due to the buffer is very short (~ 10 ns) resulting in 

very short duration of the state 2. In state 2, a cross-coupled structure has to wait until VPN is large 

enough to exceed the |Vthp| of a PMOS so that it can turn on PMOS switch properly. In addition, 

the current from a piezoelectric transducer has to charge Csg of the PMOS switch. This charging 

action of a parasitic capacitance, Csg causes two problems. First, from the stand point of a 

piezoelectric transducer, Cgs can be considered as another load. Second, since a piezoelectric 

transducer should charge the gate capacitance, Csg, the available current from a piezoelectric 

transducer is reduced by the amount of wasted charges to charge Csg. Therefore, the total available 

time to transfer the power to the output has been reduced.  

Fig. 4.8 shows the comparison of VPN versus IP of a piezoelectric transducer. The time to 

reach to peak available current from a piezoelectric transducer is indicated in Fig. 4.8 (a).  
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                            (a)                                                                                       (b) 

Fig. 4.9 Loss reduction in the parasitic plate capacitance, CP. 
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Fig. 4.10 A schematic of the piezoelectric transducer switch. 
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From this waveform, it can be observed that the proposed system shows that the time to 

reach the peak current reaching is 100µs lower than the proposed system in [20], [43], [45]. This 

means that the total available time of power to transfer to the output of the active rectifier has been 

increased.  

In addition, this shortening of the time to reach the peak current can slightly boost the 

output voltage of the active rectifier. Therefore, more available power can be transferred in respect 

to the load. Fig. 4.8 (b) shows the off-time of a PMOS switch. This figure indicates that turning-

off time is also significantly reduced. Therefore, possible loss of power induced by this discharging 

action can be reduced as well compared to other proposed structures in [20], [43], [45].Fig. 4.10 

shows the switch inserted in between VN and VP of a piezoelectric transducer input. As explained 

earlier, a parasitic plate capacitor of CP should charge up to +(VRECT + 2Vd) in a positive cycle of 

IP and discharge down to – (VRECT + 2Vd) in a negative cycle of IP before a piezoelectric transducer 

can transfer energy to the output load capacitor, CL. This means that in every cycle, CP causes the 

problem of wasting charges. Therefore, many researchers try to find a way to reduce this charging 

and discharging time [39] – [47].   

 

 

                                (a)                                                                                (b) 

Fig. 4.11 (a) A switch-only configuration (b) An inductor based bias-flip configuration [20], 

[48]. 



 

36 
 

Fig. 4.9 (a) shows a conventional rectifier waveform with charge losses in black shaded 

region, and Fig. 4.9 (b) shows the charge reduction in green shaded region. As shown in Figs. 4.9 

(a) and 4.9 (b), if the shaded region can be reduced from the orange shaded region to the green 

shaded region as shown in Fig. 4.9 (b), the available power transfer time can be increased.  

Therefore, more power can be transferred to the output load capacitor, CL. In order to 

achieve this reduction of wasting charges caused by a CP can be achieved by inserting a switch in 

between VN and VP of a piezoelectric transducer input as shown in Fig. 4.10 charges [14].  

Fig. 4.11 shows the two example of reduction techniques of charging and discharging of 

CP. In Fig 4.11 (a) is the technique that has been used in this proposed active rectifier, and Fig. 

4.11 (b) in another example of enhancing the power extraction using an inductor [14], [40]. The 

switch shown in Fig. 4.10 is inserted in between VP and VN as shown in Fig. 4.11. From Fig. 4.9 

(a), a charge loss in every cycle for a conventional rectifier can be calculated following equation, 

 

Q lost

cycle

= 2CP(VRECT − (−VRECT)) = 4CPVRECT                                    (4.6) 

 

And, a charge loss in every cycle for a switch-only rectifier as shown in Fig. 4.11 (a) can 

be calculated as,   

 

Q lost

cycle

= 2CPVRECT                                                         (4.7) 

 

Similarly, a charge loss in every cycle for a bias-flip rectifier as shown in Fig. 4.11 (b) can 

be calculated as, 
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𝑄𝑙𝑜𝑠𝑡 𝑐⁄ 𝑦 = 2𝐶𝑃𝑉𝑅𝐸𝐶𝑇(1 − 𝜀
−𝜋𝛽

𝜔 )                                                (4.8) 

 

 𝑤ℎ𝑒𝑟𝑒 𝛽 =
𝑅𝐵

2𝐿𝐵
,  𝜔 = √(𝜔𝑜

2 − 𝛽2), 𝜔𝑜 =
1

√𝐿𝐵𝐶𝑃
  

 

              RB is a parasitic resistance of an inductor, LB. 

 

From equations (4.6) through (4.8), it can be observed that the bias-flip rectifier topology 

has the lowest charge loss. However, there is one problem with Fig. 4.11 (b) configuration. The 

problem is that since this topology uses an inductor, the charge loss totally depends on an inductor. 

That means, if an inductor is large enough, this topology can significantly reduce charge loss due 

to the action of charging and discharging of CP and store this energy into an inductor. However, 

for a small inductor, the improvement is only slight. As a result, to make it work properly, size of 

an inductor should be large enough and this causes significant amount of space taken by an 

inductor. In addition, since this kind of topology uses an inductor, very complex control circuit is 

required to detect the inductor current as well as turn on/off the switch inserted in between an 

inductor. Therefore, in a low available input power in the proposed structure, the switch-only 

topology is better option since it requires less complex control circuit compared to bias-flip one as 

well as it does not require any off-chip components other than the input piezoelectric transducer 

and an output load capacitor, CL.  

The control signal generator that is used for controlling a circuit shown in Fig. 4.10 is 

relatively simple. It takes the signal from two comparators, which control the bottom NMOS in 

Fig. 4.6 (a), and are fed into the one-shot generator. Whenever IP crosses a zero point, the one-shot 

signal generator generates a short pulse which allows to turn on the circuit shown in Fig. 4.10. As 

a result, this short pulse helps shorten the voltage between VP and VN, and it allows reduction of 
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the time to charge CP as explained earlier. Fig. 4.13 shows the simulation results of an active 

rectifier with switch-only configuration. The operation states of the proposed full-wave rectifier 

can be broken down into three parts. In phase 1 of interval at t0 to t1, the sinusoidal current of a 

piezoelectric transducer, iP starts charging the parasitic capacitor, CP.  

In contrast to a conventional piezoelectric transducer as shown in Fig. 4.6 (b), charging 

time of CP has been cut down significantly because of the inserted switch in between VP and VN 

nodes.  

In Fig. 4.12, it can be observed that as the one-shot is turned on, VP and VN nodes are 

shorted instantly. As a result, it does not have to charge or discharge from its previous stored value 

in CP, but rather it begins from zero. For example, in a typical rectifier, when iP is flipping its 

polarity from positive to negative, CP should release its stored charges from (VRECT + 2Vd) to zero 

and it should be charged back from zero to – (VRECT + 2Vd). In phases 2 and 3, because charging a 

parasitic capacitor CP has been acquired, the energy can be delivered to the output capacitor, CL 

through the proposed full-wave rectifier. 

 

One_Shot
One_Shot

Output

P_Control

N_Control

One_Shot
One_Shot

Output

P_Control

N_Control

 

Fig. 4.12 A schematic of the one-shot control circuit. 
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Fig. 4.13 Simulated waveforms of a piezoelectric transducer. 

 

 

Fig. 4.14 Measured waveforms of VRECT and input voltage from a piezoelectric transducer. 
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Fig. 4.15 Measured waveforms of one-shot voltage and input voltage from a piezoelectric 

transducer. 

 

 

                              (a) Test set-up                                                     (b) PCB  

Fig. 4.16 Test set-up and PCB. 
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Fig. 4.10 shows the inserted switch between VP and VN nodes of a piezoelectric transducer 

which helps capacitor to discharge to zero quickly.   

The working principle of the one-shot signal generator is fairly simple. Whenever a 

piezoelectric transducer voltage swing is crossing the zero voltage, the one-shot control circuit is 

producing a short one-shot pulse which allows shorting the input ports of a piezoelectric transducer 

and this one-shot signal resets the voltage of VP and VN.  

The output voltage in Fig. 4.13 is 0.694 V, and the voltage conversion efficiency is 98.7 %. 

The power conversion of this systems is 52.2 %. 

In Fig. 4.14, the red line represents the output voltage of the proposed system, which is 

VRECT, and blue line represents the input voltage from the piezoelectric transducer. 

Fig. 4.15 shows the waveform of a piezoelectric transducer as well as one-shot pulse signal. 

As can be seen from this waveform, one-shot generates low signal when the piezoelectric 

transducer crosses a zero point, which will save power by shorting the piezoelectric transducer 

inputs, VP and VN.  

Fig. 4.16 shows the test sets up as well as the PCB for the proposed rectifier, and Fig. 4.17 

shows the layout as well as the chip microphotograph. The overall size of chip is 540 µm x 540 

µm. Table 4.1 shows the performance comparison.  

As can be seen from the table, the input voltage of the proposed full-bridge rectifier is the 

lowest. In addition, the input power from a piezoelectric transducer is the lowest. However, the 

overall efficiency of a proposed system is very comparable with other systems reported in literature. 

In addition, this proposed system demonstrates that it can take very low input available power and 

convert it to moderate usable power. The proposed system does not require any external 
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component except for the output load capacitor. In addition, the proposed system is powered by 

the output voltage generated by itself. 

 

 

                             (a) Layout                                                   (b) Chip 

Fig. 4.17 (a) Layout and (b) chip microphotograph. 
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Table 4.1 Performance Comparison 

Publications [14],SO [35] [37] This Work 

Inductor and External 

Components 
No Yes No No 

External Power No Yes No No 

Amplitude of IP by PD or 

Applied force 
3.35 g 2 mA 188 µA 45 µA 

Parasitic Capacitance of PD 12 nF 330 nF 25 nF 25 nF 

Vibration Frequency 225 Hz 185 Hz 200 Hz 200 Hz 

VIN,Peak 2.4 3.5 3 0.704 

VOUT (V) 2 3.34 2.9 0.694 

RL (KΩ) 75 3.51 50 45 

PCE (%) 53 53.4 65 52.2 
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CHAPTER 5 – RADIO FREQUENCY BASED ENERGY 

HARVESTING CIRCUIT 

 

5.1 Radio Frequency Energy Harvesting 

 

Radio frequency (RF) is one of the most widely used technology nowadays. RF or wireless 

energy in the electromagnetic waveform can be divided into two categories: non-radiative energy, 

and the radiative energy [49]. The example of a non-radiative energy is magnetically coupled near-

field inductive coils [49]. A non-radiative energy transfer demands that to transfer the energy in 

between the devices, two devices must be in close proximity to each other for proper energy 

transfer operation. In addition, the operating frequency of this method is limited to around a few 

MHz ranges. In general, a non-radiative method of energy transfer has relative high efficiency 

since the air loss or energy transfer loss in between the devices is relatively low compared to a 

radiative energy transfer method [49,50]. The example for a radiative or far-fields energy transfer 

method is the one that will be discussed and explored in this research.  

Since the radiative energy transfer typically occurs between the two devices which are 

farther apart compared to those in a non-radiative or near-field energy transfer method, there exists 

significant amount of air or energy transfer loss as well as low energy density of the received 

energy. However, despite the low available energy density and low efficiency of a far-field energy 

transfer method, a radiative or far-field energy transfer method has been receiving its own attention 

because of the advantage that it can transfer energy or receive energy remotely as well as in all 

directions. Currently, RF or far-field radiative technology is available basically everywhere in the 

forms of wireless internet connections, and mobile communications [51]. In addition, there are 

various applications such as medical sensors, commercial sensors and industrial sensors etc. Since 
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the development of the concept of IoT, researchers are trying to deploy RF into more electronic 

devices and applications which was never thought to be possible before [51]. In addition, the 

communication systems that we are currently used is within the license-free Industrial, Scientific 

and Medical (ISM) frequency band (300 MHz to 3 GHz). Therefore, plenty of RF energy can be 

accessed wherever the wireless technology is deployed [52,53]. Despite of such advantages of the 

availability of RF signals many problems associated with RF signals still exist. A major problem 

associated with design of a RF energy harvesting system is that there is a free-space path loss over 

the distance through the air. A free-space loss is called as the Friis transmission loss which can be 

formulated by equation (5.1). Therefore, the free-space path loss is [53], 

 

𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟 (
𝜆

4𝜋𝑑
)

2

                                                        (5.1) 

 

where Pr denotes a received power, 

           Pt denotes a transmitted power, 

           Gt and Gr denote the antenna gain for both transmitter and receiver, 

           λ denotes a signal wavelength, and 

           d denotes a distance between antennas.  

 

From the equation (5.1), it is easy to notice that the received power is inversely proportional 

to the distance, d. In addition, the available received power depends on the wavelength, λ and the 

antenna gains, Gt and Gr. The antenna gains as well as the wavelength are typically fixed. As a 

result, the distance, d, is very important factor that determines the maximum available power with 

respect to the receiver side. Therefore, as a distance between the transmitter and the receiver 

increases, the available maximum power in a receiver side decreases significantly. In addition, 
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according to the U.S. Federal Communications Commission (FCC) regulations, there exists a 

maximum transmittable power limitation in every frequency bands [54]. For example, frequency 

ranges from 300 MHz to 1.5 GHz, power density should not exceed 
ƒ

300
 mW/cm2, where f is 

frequency [54]. Therefore, the maximum available power at around 900MHz, which is the 

frequency range of interest for this work, is about 4W, and the same power level is applied to 2.45 

GHz as well according to the FCC regulations [54]. As a result, for example the maximum 

available power at 2.4 GHz will go down to approximately 100 µW at 10 m and 10 µW at 20 m 

away from a transmitter, which usually depends on the antenna gain and other factors usually.  

In this chapter, the energy harvesting using this widely available but limited RF energy 

source with a DC-to-DC boost converter will be implemented with the idea of a maximum power 

point tracking method to achieve the maximum available power from the receiver. 

 

5.2 The Antenna Modeling 

 

In a transmitter as well as in a receiver side, radio frequency is transmitted and received in 

the form of basically a sine wave signal. Therefore, to utilize this sine wave signal as a power 

source, an AC-to-DC rectifier is required. There are many ways to rectifying AC signal but because 

of the available frequency ranges, which are usually in the range of 800 MHZ to 3 GHz, the 

commonly used techniques of rectifying RF AC signal cannot be implemented simply because of 

high frequency of the signal. Since the signal from a transmitter is usually very weak in terms of 

the voltage amplitude level, there should a way to boosting such a low-level voltage amplitude 

signal into proper voltage amplitude level so that a rectifier composed with CMOS transistors can 
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operate. In addition, as can be seen in equation (5.2), the overall efficiency of the rectified power 

versus received power depends on the efficiency of a rectifier if received power is fixed [55],  

 

𝜂𝑒𝑓𝑓 =
𝑃𝑅𝑒𝑐𝑡

𝑃𝑟
∗ 100                                                          (5.2) 

 

where PRect is rectified power, and 

           Pr is received power from an antenna. 

 

Therefore, designing an efficient RF rectifier is very important part of the work. Before 

discussing the actual design of a RF AC-to-DC rectifier, one needs to understand the role of an 

antenna since it is the first and the beginning point of a RF energy harvesting system. An antenna 

is that facilitaes the interconnection of wireless energy and a RF energy harvesting system. That 

means, an antenna works as a transducer by converting electromagnetic energy into electrical 

energy on a receiver side, and vice versa on a transmitter side.  Therefore, choosing or designing 

a right antenna is very crucial issue even though designing an antenna is out of scope in this 

research. Equation (5.1) expresses the actual received power from the antenna. In addition to the 

received power efficiency, the antenna radiation efficiency can be calculated using equation (5.3) 

[55], 

 

𝜂𝑟𝑎𝑑−𝑒𝑓𝑓 =
𝑃𝑟𝑎𝑑

𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
                                                        (5.3) 

 

where Prad is representing the radiated power by the antenna, and 

          Preceived is representing the power received or accepted by the antenna. 
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Prad can be calculated by integrating the power density in a closed surface with radius, r 

[55]. Preceived is the actual power that the antenna receives or transmitts. The radiation efficiency 

of an antenna can be further divided into two parts: ηcond and ηeleelectric. Therefore, ηrad-eff can be 

expressed as ηrad-eff  = ηcond* ηdielectric. The conductivity efficiency, ηcond, can be modeled with the 

antenna radiation resistance, Rrad, and the loss resistance, Rloss. The antenna radiation resistance, 

Rrad, represents only the dissipated power into free-space or so called, air, and it is not incorporated 

with any structural resistance in the antenna. The loss resistance, Rloss, represents the power 

dissipated by the antenna itself. As a result, it could be considered as a conduction loss in the 

antenna. Therefore, the conductivity efficiency, ηcond, can be expressed as in equation (5.4) [55], 

 

𝜂𝑐𝑜𝑛𝑑 =
𝑅𝑟𝑎𝑑

𝑅𝑟𝑎𝑑+𝑅𝑙𝑜𝑠𝑠
                                                          (5.4) 

 

The dielectric efficiency, ηeleelectric, is very hard to calculate and is intensively depends on 

element around an antenna. Therefore, in this dissertation, it is assumed that that antenna is 

surrounded by air, which is considered as free-space. In free-space, the dielectric efficiency, 

ηeleelectric, is considered as 1. As a result, ηrad-eff becomes ηrad-eff  = ηcond.  

 

Rrad Rloss
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+

-
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-
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Fig. 5.1 The antenna and the load model. 
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To better understand the antenna, the simplified antenna model as shown in Fig. 5.1 can be 

used. As can be seen in Fig. 5.1, the antenna has its own internal loss, RANT, where the RANT is Rrad 

+ Rloss.  

In addition, the power achieved by the antenna can be calculated as the following equation 

in (5.5) [55], 

 

𝑃𝐴𝑁𝑇 =
(𝑉𝑖𝑛)2

2𝑅𝐴𝑁𝑇
                                                                  (5.5) 

 

where Vin can be expressed as VANT / 2, and 

           RANT is Rrad + Rloss. 

 

Combing the equation (5.1) and the equation (5.5), one can get VANT as following 

equation (5.6) [55]. 

 

𝑉𝐴𝑁𝑇 = √(8𝑃𝐴𝑁𝑇𝑅𝐴𝑁𝑇)                                                  (5.6) 

 

From the equation (5.6), it can be concluded that the lower value of PANT due to decreasing 

ηrad-eff will result in a lower VANT. Lowering the efficiency of the antenna comes from the additional 

Rloss. As a result, designing an antenna or finding a proper antenna should be carefully considered 

with minimum Rloss coefficient. Using the equation (5.6), estimate the voltage from the antenna 

can be estimated according to the power received. For example, if a received power in the antenna 

is -10 dBm (100 µW), the voltage, VANT, will be around 99.9 mV with a 50 Ω antenna system. In 
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section 5.2.1, design a RF AC-to-DC rectifier and impedance matching, which is very important 

in a RF energy harvesting system design, are discussed. 

 

5.3 A Radio Frequency Rectifier 

 

As shown in Fig. 5.2, a RF AC-to-DC rectifier that composed of CMOS transistors or 

passive elements should be presented in between an antenna, a matching network and a storage 

device or a regulator [56]. Since the RF signal received through the antenna is an AC signal, a 

rectifier should be placed so that receiving AC signal can be properly rectified to a DC source to 

be used as power sources for the subsequent system modules or for charging the storage devices. 

In reference [57], the author demonstrated that at -15 dBm of an input power, the end-to-end power 

conversion efficiency (PCE) of the system can be around 7 % with this topology. 

However, the problem is that as the input power is getting higher and higher, the leakage 

current will be also increase. This higher leakage is induced because of the turn-on mechanism of 

a NMOS and a PMOS transistor. Since in this structure, there is a time when a NMOS and a PMOS 

transistors are turned on simultaneously, as a result, a shoot-through current will exist. 

 

 
Fig. 5.2 A general wireless power transfer scheme. 
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VIN+

VIN-

CL RL

VOUT

 

Fig. 5.3 A conventional cross-connected active rectifier [56]. 

 

VRECT

CL RL

RFIN + RFIN -

 

Fig. 5.4 A RF cross-coupled active rectifier used in the proposed RF energy harvesting system. 
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Fig. 5.5 The complete circuit of front end of a RF energy harvesting system. 

 

Fig. 5.5 shows the complete circuit diagram of the input part RF energy harvesting system 

including an active rectifier as well as a matching network in between the antenna and the RF AC-

to-DC rectifier. 

The power from an antenna can be modelled as an AC sinusoidal voltage source (VANT) in 

series with a resistance loss, RANT. The voltage amplitude generated by the antenna can be 

expressed as [57,58], 

 

𝑉𝐴𝑁𝑇 = 2√2𝑅𝐴𝑁𝑇𝑃𝐴𝑁𝑇                                                   (5.7) 

 

where PANT is power from the antenna. 

 

In addition, the minimum power that should be applied to achieve a required Vin_RECT can 

be calculated in equation (5.8) [57,58], 
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𝑃𝐴𝑁𝑇 = (
𝑅𝐴𝑁𝑇+𝑅𝑟𝑒𝑎𝑙_𝑅𝐸𝐶𝑇

𝑋𝑖𝑚𝑎𝑔_𝑅𝐸𝐶𝑇
)

2

(
𝑉𝑖𝑛_𝑅𝐸𝐶𝑇

2

8𝑅𝐴𝑁𝑇
)                                         (5.8) 

 

where RANT is the sum of internal resistances, Rloss and Rrad, 

           Rpar_RECT is the input impedance real part of a RF rectifier, and 

           Ximag_RECT is the input impedance imaginary part of a RF rectifier. 

 

Due to the fact explained above, a high PCE can be obtained from this structure but the 

range of the high PCE will be limited. Fig. 5.3 shows the rectifier structure that has been used in 

reference [56]. 

Fig. 5.4 shows the rectifier used in this proposed RF energy harvesting system. As 

explained before, a cross-connected structure can produce relatively high PCE with limited 

available input power ranges. 

From equation (5.7), it can be seen that as PANT is getting lower, VANT is also reduced. From 

Table 5.1, if the available power from an antenna is below -6 dBm, the voltage coming from an 

antenna is too low to operate a rectifier [59]. For example, at -11 dBm, the amplitude of voltage 

from an antenna is only 89mV and obviously, this voltage is not enough to turn-on a MOSFET.  

From equation (5.8), it is easy to notice that the real part of the input impedance, Rreal_RECT, 

and imaginary part, Ximag_RECT can be adjusted to achieve a proper value of PANT. Therefore, the 

equation (5.8) indicates that proper sizing of a MOSFET is very important. As it has been shown 

in equation (5.7), with such a low available voltage amplitude from RF rectifier input, operating a 

RF rectifier is a major problem. To resolve this low available input voltage amplitude from a RF 

rectifier, an impedance matching network is used which acts as one of the most important parts in 

a RF rectifier design. 
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Table 5.1 RF Power Versus Voltage in 50 Ω Systems [59] 

Input (dBm) Power (mW) Vrms (mV) Vpeak (mV) Vpk-pk (mV) 

-11 0.0794 63.021 89.112 178.223 

-10 0.1 70.711 99.985 199.97 

-9 0.126 79.339 122.185 224.37 

-8 0.158 89.019 125.874 251.747 

-7 0.2 99.881 141.232 282.465 

-6 0.251 112.069 158.465 316.931 

-5 0.316 125.743 177.801 355.602 

-4 0.398 141.086 199.496 398.992 

-3 0.501 158.301 223.838 447.677 

-2 0.631 177.617 152.151 502.301 

-1 0.974 199.29 281.796 563.591 

0 1 223.607 316.18 632.36 

1 1.26 250.891 354.76 709.094 
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Fig. 5.6 A matching network in between an antenna and a rectifier.  

 

There are two roles for a matching network: serving as a matching impedance between the 

antenna and the input of a RF rectifier and working as a voltage boosting from a RF rectifier. 

Matching an impedance in between the antenna and the RF rectifier is very important to minimize 

loss due to mismatch of two different impedances. As mentioned earlier, because of the low 

available input voltage from an antenna, it is very important to increase such low voltage to an 

adequate voltage level so that a RF rectifier can properly work. 

There are several types of impedance matching networks such as shunt inductor, L network, 

and transformer [60]. In this design, L-matching network has been chosen as shown in Fig. 5.6 

because of its simplicity as well as ease of tuning a network. The matching network Cm and Lm can 

be calculated using equation (5.9) through (5.11) [60,61], 

 

𝐶𝑚 =  
1

𝜔𝑟𝑅𝐴𝑁𝑇
√

𝑅𝐴𝑁𝑇

𝑅𝑖𝑛−𝑅𝐴𝑁𝑇
                                                            (5.9) 
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𝐿𝑚 =  
𝑅𝑖𝑛

𝜔𝑟

1

𝜔𝑟𝑅𝑖𝑛𝐶𝑖𝑛+
1

√
𝑅𝐴𝑁𝑇

𝑅𝑖𝑛−𝑅𝐴𝑁𝑇

                                                    (5.10) 

 

where 𝜔𝑟 =  
1

√𝐿𝐶
 

 

Gain =  
𝑉𝑖𝑛_𝑅𝐸𝐶𝑇

𝑉𝐴𝑁𝑇
=  

1

2
√

𝑅𝑖𝑛

𝑅𝐴𝑁𝑇
                                                      (5.11) 

 

From equations (5.9) through (5.11), it can be concluded that if Rin > RANT, then, the voltage 

from a matching network can be boosted. To calculate a proper value of Cm and Lm, following 

calculation procedure need to be processed. 

 

1. Select a suitable gain to get a desired value of Vin_RECT. 

2. From the equation (5.11), select an arbitrary RANT. From this RANT, the Rin can be calculated. 

3. From given value of 𝞈r, and Cin, Cm and Lm can be evaluated from the equation (5.9) and (5.10). 

4. Go back and start from 1 following proper simulation. 

 

From above steps of calculation and by trial and error simulation, the proper value of 

network can be obtained. The values, which has been chosen in this design are that Cm is 550 fF, 

and Lm is 45 nH. In addition, a capacitor Cp has been chosen as 45 nF in Fig. 5.5. Further trimming 

is required with the impedance measurement tool so that the impedance of rectifier can be 

measured exactly. In Fig. 5.7, sizes of PMOS and NMOS should be chosen carefully since if the 

size of the MOSFET is too big then, the input power will be wasted or dissipated by charging Csg 

of a PMOS transistor and Cgs of a NMOS transistor. 
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Table 5.2. Transistor Sizes for RF Rectifier Circuit 

MOSFET Size (µm) Number of Fingers 

PMOS 50/0.12 100 

NMOS 20/0.12 40 

 

 

Fig. 5.7 Operation of the proposed RF rectifier in each input cycle. 
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Similarly, if MOSFET sizes are too small then it will increase Ron. As a result, this 

increased Ron will result in higher loss in Vds, which will cause lower output voltage, VRECT in 

Fig.5.7. With all the reasons that explained above, careful simulation is also required to achieve 

right sizes of MOSFET switches. 

Using trial and error simulations with arbitrary sizes of PMOS and NMOS, the optimized 

sizes PMOS and the NMOS have been chosen as shown in Table 5.2. 

Fig. 5.7 shows the operation of the proposed RF rectifier in each cycle of the RF input. A 

blue circle shows the positive cycle or a discharging phase, and a red circle shows the negative 

cycle or a charging phase. Fig. 5.8 shows the circuit diagram in half-wave (RF input) as well as 

the charging and discharging phase in each RF input cycle.  

The output voltage of a proposed RF rectifier can be calculated by applying a KVL, and it 

is shown in the following equations (5.11) and (5.12). At charging state shown in Fig. 5.8 (b), Vcp 

can be expressed as, 

 

𝑉𝑐𝑝 = −𝑉𝑅𝐹_𝐼𝑁 + 𝑉𝑑𝑛 − 𝑉𝐷𝐶                                         (5.11) 

 

At discharging state shown in Fig. 5.8 (c), VRF_IN can be expressed as, 

 

𝑉𝑅𝐹_𝐼𝑁 = 𝑉𝑐𝑝 + 𝑉𝐿 + 𝑉𝑑𝑝                                              (5.12) 

 

To obtain the load voltage VCap at load capacitor CL or VRECT of the proposed RF rectifier, 

the equation (5.11) should be combined with the equation (5.12). Therefore, VCap or VRECT can be 

expressed as, 
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(a) Half-circuit 

 

 

(a) Charging Phase                  (c) Discharging Phase 

Fig. 5.8 Break down of the proposed RF rectifier, (a) Half-cycle schematic (b) Half-cycle 

voltage operation. 
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     𝑉𝐶𝑎𝑝 𝑜𝑟 𝑉𝑅𝐸𝐶𝑇 = 2𝑉𝑅𝐹_𝐼𝑁 + 𝑉𝑑𝑐 − (𝑉𝑑𝑛 + 𝑉𝑑𝑝)                              (5.13) 

 

As it can be seen from the equation (5.13), the final output voltage, VRECT, of the proposed 

RF rectifier is twice that of an input voltage, RFInput. In addition, equation (5.13) shows that if the 

voltages Vdn and Vdp which are related to the Ron of a PMOS as well as a NMOS (MP1, MP2, MN1, 

and MN2 in Fig. 5.7) are reduced, the output voltage can be even more optimized or reach higher 

value. From. Fig. 5.8, it can be recognized that the available voltage to turn on the MOSFET in 

each cycle is only around 300 mV or less. As a result, MP1, MP2, MN1, and MN2 are in subthreshold 

region during most of their operating ranges. The drain-to-source current in subthreshold operation 

is shown in equations (5.11) through (5.12), 

 

𝐼𝐷𝑆−𝑀𝑃1_𝑀𝑁2 = µ0−𝑀𝑃1,𝑀𝑁2𝐶𝑜𝑥−𝑀𝑃1,𝑀𝑁2 (
𝑊𝑀𝑃1,𝑀𝑁2

𝐿𝑀𝑃1,𝑀𝑁2
) [(𝑉𝐺𝑆−𝑀𝑃1,𝑀𝑁2 − 𝑉𝑡ℎ−𝑀𝑃1,𝑀𝑁2)𝑉𝐷𝑆−𝑀𝑃1,𝑀𝑁2 −

(
𝑉𝐷𝑆−𝑀𝑃1,𝑀𝑁2

2
)

2
]                                                                                                       (5.14) 

 

𝐼𝐷𝑆−𝑀𝑃2_𝑀𝑁1 = µ0−𝑀𝑃2,𝑀𝑁1𝐶𝑜𝑥−𝑀𝑃2,𝑀𝑁1 (
𝑊𝑀𝑃2,𝑀𝑁1

𝐿𝑀𝑃2,𝑀𝑁1
) [(𝑉𝐺𝑆−𝑀𝑃2,𝑀𝑁1 − 𝑉𝑡ℎ−𝑀𝑃2,𝑀𝑁1)𝑉𝐷𝑆−𝑀𝑃2,𝑀𝑁1 −

(
𝑉𝐷𝑆−𝑀𝑃2,𝑀𝑁1

2
)

2
]                                                                                                       (5.15) 

 

Equations (5.5) and (5.6) express Ron of MP1, MP2, MN1, and MN2. 

 

𝑅𝑂𝑁−𝑀𝑃1,𝑀𝑁2 = (
1

𝜕(𝐼𝐷𝑆−𝑀𝑃1,𝑀𝑁2)

𝜕(𝑉𝐷𝑆−𝑀𝑃1,𝑀𝑁2)

) =
(

𝐿𝑀𝑃1,𝑀𝑁2

𝑊𝑀𝑃1,𝑀𝑁2
)

𝜇0−𝑀𝑃1,𝑀𝑁2𝐶𝑜𝑥−𝑀𝑃1,𝑀𝑁2(𝑉𝐺𝑆−𝑀𝑃1,𝑀𝑁2−𝑉𝑡ℎ−𝑀𝑃1,𝑀𝑁2−𝑉𝐷𝑆−𝑀𝑃1,𝑀𝑁2)
        (5.16) 
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𝑅𝑂𝑁−𝑀𝑃2,𝑀𝑁1 = (
1

𝜕(𝐼𝐷𝑆−𝑀𝑃2,𝑀𝑁1)

𝜕(𝑉𝐷𝑆−𝑀𝑃2,𝑀𝑁1)

) =
(

𝐿𝑀𝑃2,𝑀𝑁1

𝑊𝑀𝑃2,𝑀𝑁1
)

𝜇0−𝑀𝑃2,𝑀𝑁1𝐶𝑜𝑥−𝑀𝑃2,𝑀𝑁1(𝑉𝐺𝑆−𝑀𝑃2,𝑀𝑁1−𝑉𝑡ℎ−𝑀𝑃2,𝑀𝑁1−𝑉𝐷𝑆−𝑀𝑃2,𝑀𝑁1)
        (5.17) 

 

Equations (5.16) and (5.17) can be used to calculate the desired W/L ratio to achieve a 

proper Ron of all MOSFETs. In addition, equations (5.14) through (5.17) indicate that choosing 

right MOSFET transistors such as low-threshold MOSFETs can help achieve better low-input 

power sensitivity as well as proper operation of MOSFETs. After all the MOSFET sizing as well 

as the passive elements values of the matching network are calculated, the simulated impedance 

versus input power is obtained as shown in Fig. 5.9.  

Finally, the RFVX1 and RFVY1, which are the inputs of a RF cross-connected rectifier show 

roughly two times of the RFP1 and RFN1 since this cross-connected configuration has the output of 

2Vin approximately. In designing a RF rectifier, choosing a right MOSFET is very important. If 

the voltage from a matching network is low, which comes from the low available input power of 

an antenna, then this input voltage may not sufficient to turn on the MOSFET switches in a rectifier.  

 

 

Fig. 5.9 Input power versus impedance of the RF rectifier 
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Therefore, low threshold MOSFET transistor should be chosen to guarantee operation even 

in a low available input voltage. However, as the voltage from an antenna is increased, because of 

the natural structural problem of a cross-connected rectifier, a leakage current or a shoot-though 

current will be increased resulting in even higher leakage current with low threshold voltage 

devices. If a normal or a high threshold voltage MOSFET is used, then a rectifier cannot take a 

low input voltage from an antenna. In this design, a low threshold design has been chosen because 

of a low input available voltage from an antenna. Fig. 5.12 shows the simulation of a rectifier 

representing a load versus efficiency. The simulation has been done with 1.5dB loss of a balun at 

920MHz of a RF input frequency. In this RF energy harvesting system, finding an optimum load 

impedance is one of the most important tasks for designing the energy harvesting system.   

As can be seen from waveforms, as the loads of a rectifier changes, the efficiency also 

changes due to the change of an impedance in the RF rectifier. Table 5.3 shows that the efficiency 

is getting lower as expected. Highest efficiency can be achieved at -10 dBm of the input available 

RF power. 
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Fig. 5.10 Waveforms of the circuits in Fig. 5.4 at -10 dBm. 
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Fig. 5.11 Magnified waveforms of the circuits in Fig. 5.10 at -10 dBm. 
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(a)  

 

 

(b)  

 

 

(c) 

Fig. 5.12 Simulation results of loads versus efficiency plots for RF rectifier circuit. 
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(d)  

Fig. 5.12 Continued 

 

Table 5.3 Summary of Simulated Loads Versus Efficiency of RF Rectifier 

Input Power Load Range (Ω) VRECT Range (V) Efficiency Range (%) 

-10 3.4 K ~ 4.1 K 0.37 ~ 0.41 40.36 ~ 40.11 

-7.5 2.4 K ~ 3.1 K 0.39 ~ 0.45 37.6 ~ 37.1 

-5 1.7 K ~ 2.4 K 0.42 ~ 0.49 32.67 ~ 33.5 

-2.5 1.4 K ~ 1.9 K 0.48 ~ 0.56 29.24 ~ 30.2 
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5.4 DC-DC Converters 

 

5.4.1 The Fundamentals of DC-DC Converters 

 

Generally, a DC-DC converter converts one voltage level of a direct current source (DC) 

into different levels of voltage sources to power up electrical or electronic systems [62]. There are 

three general types of DC-to-DC converters: boost, buck, and buck-boost DC-DC converters [63]. 

Among these, a boost and a buck type of a DC-DC converter are the most widely used to power 

up systems, where a higher output voltage compared to the input voltage is required (boost type) 

or vice versus (buck type), as well as, where a system requires a high efficiency [63].  

 

 

(a) 

 

 

(b) 

Fig. 5.13 General schemes of (a) a Boost DC-DC converter, and (b) a Buck DC-DC converter 

[63]. 

VIN CL RLSW1

L D

VIN CL RL

SW1

L

D
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Fig.  5.13 shows the general DC-DC converter schematics of (a) a boost configuration, and 

(b) a buck configuration.  

In general, if a system requires a higher output voltage than input voltage, then a boost DC-

DC converter is chosen. If a system requires lower output voltage than input voltage, then a buck 

DC-DC converter is the choice to power up the system. Especially in a buck regulator case, a low 

drop-out voltage regulator can be used instead of a buck converter. However, if a system requires 

high output load current as well as a high efficiency, then usually, a buck DC-DC converter is the 

one that delivers such requirements. 

 

5.4.2 A PFM Type of a DC-DC Converter 

 

There are two distinct more of operations in DC-DC converters. First is a pulse width 

modulation (PWM), and second is a pulse frequency modulation (PFM) [64]. A PWM operation 

is the most general control method used in a DC-DC converter [65]. A PWM is based on a fixed 

frequency [65]. Therefore, the amount of energy stored in an inductor is determined by the duty 

cycle. Fig. 5.14 shows the waveform of a PWM controlled DC-DC converter. In Fig. 5.14, “ON” 

denotes the on-time of a low side switch, which is representing the charging state of an inductor. 

“OFF” denotes the off-time of a low side switch. In addition, this off-time means on-time of a 

high-side switch, which is presenting energy transfer or discharging state through an inductor. The 

most important advantage of using this controlling method is that because it uses a fixed frequency 

a PWM based DC-DC converter can predict EMI (Electromagnetic Interface) noise [66]. As a 

result, a filter design can be easily done. The disadvantage is that since its frequency is fixed, at 

light load or at standby, the efficiency is degraded because of unnecessary switching actions [66].  
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Fig. 5.14 A general waveform of a PWM control [64]. 

 

 

Fig. 5.15 A PFM mode operation [64]. 
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A PFM control technique can be divided into two types. First is a fixed on-time type, and 

second is a fixed off-time type [66]. Fig. 5.15 shows the PFM mode operation [64]. A fixed on-

time means its charging time is fixed and discharging through high side switch is controlled by 

varying its time or duty. A fixed off-time means discharging time is fixed and its charging time is 

varying. The advantage of a PFM mode control is that since its switching frequency can be varied, 

at light load or standby, the number of switching can be decreased so that its switching loss can be 

reduced [66]. However, also because of this variable switching frequency, an EMI filter is very 

hard to design and even at lower than 20 kHz, which produces audible noise, it can affect other 

electronic devices [66].  

 

5.4.3 Input Impedance Control of a DC-DC Converter 

  

As explained in section 5.2.1, a cross-connected rectifier has an optimum load resistance 

value Ropt. In addition, a matching network in between an antenna and the input of a cross-

connected rectifier is required to deliver an optimum power from the antenna to the RF rectifier 

circuit. Likewise, a cross-connected rectifier should be connected to the input of a DC-DC 

converter with an optimum input impedance so that the DC-DC converter can receive maximum 

available power from a RF rectifier. This idea of transferring or receiving maximum power is 

coming from the idea of a Maximum Power Point Tracking (MPPT) [67]. The MPPT technique 

has been used in a solar system for the first time [68]. The reason to deploy the idea of a MPPT is 

that a solar cell has a different load impedance as light strength has been changed [68]. Therefore, 

to send out the maximum power to the following loads such as a battery, a supercapacitor (storage 

devices), or a system, tracking an optimal impedance is very important point to have maximum 
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possible power to various kinds of loads. If the impedance in between a solar panel and a power 

extractor or power sender is not matched properly, then there will be significant amount of energy 

loss before energy is transferred from the extractors to the loads. This phenomenon can be applied 

into a RF energy harvesting system as well. If the impedance of between the output of a rectifier 

and the input of a DC-DC converter is not matched properly, then there is no way to transfer 

maximum available power from a rectifier into a DC-DC converter. That is why in section 5.2.1, 

the optimum impedances for the cross-connected RF rectifier at various available input RF powers 

is discussed. Since the optimum output impedance of a cross-connected rectifier at specific 

available input RF power is known, then the following work involves control of an input 

impedance of a DC-DC converter so that the regulator can receive maximum available power with 

well-matched impedance. 

 

5.4.3.1 Input Impedance Control of Various Kinds of DC-DC Converters 

 

To transfer or to extract maximum available power from a rectifier, which converts AC 

signal from RF input signal to DC signal, the input impedance of a DC-DC converter should be 

matched with the one from a rectifier. This section describes how the input impedance of different 

topologies can be calculated. The calculation of the input impedance for different topologies of 

DC-DC converters will be based on the Continuous Conduction Mode (CCM), and the 

Discontinuous Conduction Mode (DCM) [69]. In general, a CCM operation means that an inductor 

current during a switching cycle is always higher than zero. On the other hand, a DCM operation 

means that an inductor current during a switching cycle hits zero current level [69]. 
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In Fig.5.16, t1 and t2 represent the on-time of a NMOS and a PMOS switch respectively. 

The input impedance as well as the output voltage conversion ratio are affected by the operation 

of CCM and DCM in all DC-DC converter topologies. As stated in [69], the input impedance of 

DC-DC converter in steady-state condition is based on the average inductor current waveform. 

The input impedance as well as output voltage conversion ratio presented in this dissertation will 

be verified in simplified form. 

 

 

(a) 

 

 

(b) 

Fig 5.16. An inductor current waveforms of (a) a CCM operation, and (b) a DCM operation. 
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5.4.3.1.1 A Buck Type DC-DC Converter 

 

A DC-DC buck converter is used when the input voltage sources such as a battery or 

supercapacitor are higher than the required output voltage. Fig. 5.17 shows the conventional buck 

converter. The input to output voltage conversion ratio in CCM can be calculated as shown in 

equation (5.18) [70], 

 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝐷                                                            (5.18) 

 

The output current of a buck converter can be denoted as shown in (5.19) 

 

𝐼𝑜𝑢𝑡 =
𝐼𝑖𝑛

𝐷
                                                           (5.19) 

 

where D represents a duty cycle of the buck converter. 

 

+

-

Vin

Iin

SW

L

CL RL

Vout

D1

S1

Rin

Iout

 

Fig. 5.17 A conventional DC-DC buck converter. 
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In steady-state, the average charge Q, which charges the output load capacitor, CL, is zero. 

Therefore, the output current, Iout, can be calculated as shown in equation (5.20), 

 

𝐼𝑜𝑢𝑡 =
𝐼𝑜𝑢𝑡

𝑅𝐿
                                                         (5.20) 

 

The input impedance of a buck converter can be calculated using equations (5.18) through 

(5.20). Therefore, the input impedance of a buck converter is, 

 

  𝐼𝑖𝑛 = D (
𝑉𝑜𝑢𝑡

𝑅𝐿
) 𝑜𝑟 𝐷(

𝐷𝑉𝑖𝑛

𝑅𝐿
)  

 

𝑅𝑖𝑛,𝐶𝐶𝑀 = (
𝑉𝑖𝑛

𝐼𝑎𝑣𝑔
) = (

𝑅𝐿

𝐷2)                                               (5.21) 

 

From equation (5.21), it can be concluded that the input impedance of a buck converter in 

CCM depends only on the output load resistance, RL, and the duty cycle, D [70]. Similarly, the 

input impedance of a buck converter in DCM can be calculated as CCM. First, the peak current, 

Iin can be computed by the maximum inductor current during the on-time of S1 and then, this can 

be averaged over the entire duty cycle, Ts to obtain the average input current, Iavg. 

 

                                                      𝐼𝑝𝑒𝑎𝑘 =
(𝑉𝑖𝑛−𝑉𝑜𝑢𝑡)𝐷1𝑇𝑠

𝐿
 

 

𝐼𝑎𝑣𝑔 =
𝐼𝑝𝑒𝑎𝑘𝐷1

2
=

(𝑉𝑖𝑛−𝑉𝑜𝑢𝑡)𝐷1
2𝑇𝑠

2𝐿
                                                 (5.22) 
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The output to input voltage conversion ratio of the buck converter in DCM can be 

calculated as follow [70]. 

 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝑉𝑐𝑜𝑛𝑣 =

2

1+√1+
8𝐿

𝐷1
2𝑅𝐿𝑇𝑠

                                                      (5.23) 

 

To obtain the input impedance of a buck converter, the voltage conversion ratio needs to 

be submitted, and therefore, the input impedance is, 

 

𝑅𝑖𝑛,𝐷𝐶𝑀 =
𝑉𝑖𝑛

𝐼𝑎𝑣𝑔
=

2𝐿

(1−𝑉𝑐𝑜𝑛𝑣)𝐷1
2𝑇𝑠

                                                  (5.24) 

 

From the equation (5.24), it can be easily observed that unlike CCM operation in a buck 

converter, the input impedance of a buck converter depends on the on-time periods, D1 of the 

converter, the inductance value, L, and the load resistance, RL. In addition, since the input 

impedance is affected by the output load, RL, it is very important to monitor the output load 

resistance to achieve an accurate controlling of an input impedance, which is controlled by the on-

time of switching periods D1 [70].  

 

5.4.3.1.2 A Boost Type DC-DC Converter 

 

A DC-DC boost converter is used when the input voltage sources such as a battery or 

supercapacitor is lower than the required output voltage.  
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Fig. 5.18 A conventional DC-DC boost converter. 

 

Fig. 5.18 shows the conventional DC-DC boost converter. The input to output voltage 

conversion ratio of a DC-DC boost converter operating in CCM can be expressed as shown in 

equation (5.25) [70], 

 

             𝑉𝑜𝑢𝑡 =
1

(1−𝐷)
𝑉𝑖𝑛                                                           (5.25) 

 

where D is the duty cycle, which is turn-on time of S1. 

 

The inductor current, IL, is equal to the input current, Iin, so the average inductor current 

can be expressed as shown in equation (5.26), 

 

𝐼𝑎𝑣𝑔 =
𝑉𝑖𝑛

𝑅𝐿(1−𝐷)2                                                             (5.26) 
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To obtain the input impedance of a DC-DC boost converter in CCM operation, equations 

(5.25) and (5.26) should be combined. Therefore, the input impedance, Rin,CCM can be denoted as 

following equation (5.27), 

 

𝑅𝑖𝑛,𝐶𝐶𝑀 =
𝑉𝑖𝑛

𝐼𝑎𝑣𝑔
= 𝑅𝐿(1 − 𝐷)2                                                  (5.27) 

 

From equation (5.27), it can be concluded that the input impedance of a DC-DC boost 

converter in CCM operation depends on the output load resistance, RL, as well as the duty cycle of 

a boost converter [70]. 

On the other hand, the input impedance of a boost converter in DCM operation can be 

calculated in a similar manner as in CCM operation. The inductor peak current in DCM operation 

of a boost converter can be expressed as following equation (5.28) [67,70,71], 

 

𝐼𝑝𝑒𝑎𝑘 =
𝑉𝑖𝑛𝐷1𝑇𝑠

𝐿
                                                              (5.28) 

 

where D1 is the duty cycle of S1. 

 

The average inductor current of a boost converter in DCM operation can be divided into 

two parts. First, during the charging state, which is D1, and second is during the discharging state, 

which is D2 as can be seen in Fig. 5.16 (b). 

Therefore, the average inductor during D1 and D2 can be calculated using the following 

equations (5.29) and (5.30) [67,70,71], 
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𝐼𝑎𝑣𝑔,𝐷1
=

𝑉𝑖𝑛𝐷1
2𝑇𝑠

2𝐿
                                                     (5.29)   

 

𝐼
𝑎𝑣𝑔,𝐷2=

𝑉𝑖𝑛𝐷1𝐷2𝑇𝑠
2𝐿

                                                     (5.30)   

            

where Ts is switching periods of a boost converter. 

 

To obtain the input impedance of a boost converter in DCM operation, the total average 

current over the total switching period, Ts needs to be calculated. Therefore, the average inductor 

in the period of Ts can be expressed as following equation (5.31) [67,70,71], 

 

𝐼𝑎𝑣𝑑,𝑇𝑠
=

𝑉𝑖𝑛𝐷1𝑇𝑠

2𝐿
(𝐷1 + 𝐷2)                                                       (5.31) 

 

As a result, the input impedance of a boost converter in DCM operation can be denoted as 

following equation (5.32) [67,70,71]. 

 

𝑅𝑖𝑛,𝐷𝐶𝑀 =
𝑉𝑖𝑛

𝐼𝑎𝑣𝑔,𝑇𝑠

=
2𝐿

𝐷1𝑇𝑠(𝐷1+𝐷2)
                                                 (5.32) 

 

From equation (5.32), it can be concluded that the input impedance of a boost converter in 

DCM operation depends on the total switching period, Ts, the charging state, D1, the discharging 

state, D2, as well as the in  ductor value. Therefore, to control the input impedance of a boost 
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converter in DCM operation, it is very important to control D1 as well as D2 precisely to achieve a 

proper value of the input impedance. 

 

5.4.3.1.3 A Buck-Boost Type DC-DC Converter 

 

A DC-DC buck-boost converter is used when the input voltage sources such as a battery 

or supercapacitor is lower than the required output voltage. In addition, it can be used when the 

output is lower than the input.  

Therefore, it looks more like combing a buck and a boost converter into one topology. 

However, as can be seen in Fig. 5.19, the output voltage, Vout, polarity is flipped unlike the other 

two topologies. 

Fig. 5.19 shows the conventional DC-DC buck-boost converter. The input to output voltage 

conversion ratio can be expressed like equation (5.32) [70,72], 

 

𝑉𝑜𝑢𝑡 = −
𝐷

(1−𝐷)
𝑉𝑖𝑛                                                        (5.32) 

 

The inductor can be calculated as following equation (5.33) 

 

𝐼𝐿 = −
𝑉𝑜𝑢𝑡

𝑅𝐿
                                                                    (5.33) 
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Fig. 5.19 A conventional DC-DC buck-boost converter. 

 

The average input current can be calculated using equation (5.33) with charging state of 

switching cycle of a buck-boost converter and it is shown in equation (5.34) [70,72]. 

 

𝐼𝑎𝑣𝑔 = −
𝐷𝑉𝑜𝑢𝑡

𝑅𝐿(1−𝐷)
                                                           (5.34) 

 

To obtain the input impedance of a buck-boost converter in CCM operation, the equations 

(5.32), and (5.34) should be combined, and the result is shown in equation (5.35) [70,72], 

 

𝑅𝑖𝑛,𝐶𝐶𝑀 =
𝑉𝑖𝑛

𝐼𝑎𝑣𝑔
= 𝑅𝐿

(1−𝐷)2

𝐷2                                                        (5.35) 

 

From equation (5.35), it can be seen that the input impedance of a buck-boost converter 

operating in CCM depends on a load resistor, RL as well as a duty cycle, D. 
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The buck-boost converter operating in DCM can be analyzed in a similar manner as 

operating in CCM. First, a peak inductor in a buck-boost converter in DCM operation can be 

expressed as following equation (5.36) [70,72],  

 

        𝐼𝑝𝑒𝑎𝑘 =
𝑉𝑖𝑛𝐷1𝑇𝑠

𝐿
                                                                 (5.36) 

 

where D1 is the duty cycle of switch S1. 

 

The average current of a buck-boost converter in DCM operation is same as the input 

inductor current over the inductor charging state, which is the turn on cycle of S1 and it is defined 

as D1. Therefore, the input impedance of a buck-boost converter in DCM operation can be 

calculated with the average inductor current over the input voltage, Vin. First, the average inductor 

current can be expressed as following equation (5.37) [70,72], 

 

     𝐼𝑎𝑣𝑔 =
𝐼𝑝𝑒𝑎𝑘𝐷1

2
                                                          (5.37) 

 

Second, the input impedance of a buck-boost converter over the entire switching period 

can be expressed in equation (5.38) [70,72]. 

 

𝑅𝑖𝑛,𝐷𝐶𝑀 =
𝑉𝑖𝑛

𝐼𝑎𝑣𝑔
=

2𝐿

𝐷1
2𝑇𝑠

                                                   (5.38) 
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As can be seen from equation (5.38), the input impedance of a buck-boost converter in 

DCM operation depends on the inductor, L, a charging cycle, D1, and an entire switching cycle, 

Ts. The advantage of a buck-boost converter in DCM is that since the variables, which affect the 

changing of the input impedance are easy to keep constant. It can therefore be concluded that a 

buck-boost converter in DCM can have a decent constant input impedance. 

 

5.5 Overall Operation of the Proposed DC-DC Converter 

 

Fig. 5.20 shows the simple flow chart describing the operation of the proposed DC-DC 

boost converter. Since the proposed DC-DC boost converter does not have an internal reference, 

which is usually used as a reference voltage to determine the duty cycle of a DC-DC converter, 

the proposed DC-DC converter needs to have a reference voltage from outside unlike an ordinary 

DC-DC boost converter. As can be seen from Fig. 5.20, the operation of a DC-DC boost converter 

starts from sampling the open circuit voltage of a RF rectifier, where a RF rectifier is working as 

an input power source of a DC-DC boost converter. The sampling frequency of a sample and hold 

(S&H) circuit is approximately 5 Hz.  

The operating frequency of a S&H is determined based on the time in which a S&H can 

store a proper open circuit voltage from a RF rectifier and this frequency should not affect the 

operation of a DC-DC boost converter. Once a S&H circuit finishes its sampling job, then the 

inverted sampling frequency generator or so called the inverted signal of an oscillator (OSCB) will 

turn on the switch in between a RF rectifier and a DC-DC converter so that the RF rectifier can 

supply the input power to a DC-DC boost converter. Therefore, the DC-DC converter of an energy 

harvesting system is turned on whenever the oscillator generates the inverted oscillator signal. 
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Fig. 5.20 A flow chart of the proposed RF energy harvesting system. 
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Otherwise, the system falls into the sampling stage. The protection function of the proposed 

DC-DC boost converter can be implemented externally. The internal protection triggering bit sets 

as 0. As a result, if the protection is detected and logic low signal is generated and the boosting 

action will be halted until the protection bit is cleared. 

 

5.5.1 Input Impedance Control of the Proposed DC-DC Converter 

 

Fig. 5.21 shows the structure of the proposed DC-DC converter. Usually, the output voltage 

from a RF cross-connected rectifier which generally depends on the distance between the 

transmitter and the receiver as well as the available transmittable power from a transmitter, is too 

low to be used directly as a voltage source for the subsequent blocks of the system. In addition, 

the output voltage is not properly regulated as well. Therefore, a boost converter can be used to 

boost up the input voltage up to usable output voltage level as well as to get a regulated output 

voltage for the system 
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Fig. 5.21 The schematic of the proposed DC-DC boost converter. 
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Fig. 5.22 The proposed sample and hold circuit. 

 

 The boost converter architecture is composed of an NMOS low side switch, MN2, a PMOS 

high side switch MP2, an inductor free-wheeling current switch, MP1, and a sample and hold switch, 

MN1. Fig. 5.22 shows the schematic of the sample and hold circuit. This circuit measures the open 

circuit output voltage of a RF rectifier and stores this sampled open circuit voltage into an external 

storage capacitor, C1. When the system falls into the sampling stage, MN1, MN2, and MP2 as shown 

in Fig. 5.21, are falling into the off-state. Therefore, a boost converter stops its boosting operation. 

This action of sampling the output voltage of a RF rectifier is controlled by the sampling oscillator 

signal.   

Fig. 5.23 shows the output of waveform in a sample and hold circuit.  
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(a) 

 

 

(b) 

Fig. 5.23 Sample and Hold waveforms of (a) OSC and OSCB, (b) sampling waveform. 
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In Fig 5.23, (a) shows the waveform of an oscillator where a red waveform shows the 

inverted oscillator waveform (OSC and OSCB), and Fig. 5.23 (b) represents the oscillator signal 

as well as the sampling action of the output voltage from a RF rectifier. The pulse width of the 

oscillator is 2.5 ms, and the frequency of this sampling is 5 Hz.A sampling frequency as well as 

the width of turn on-time should be carefully chosen so that the output voltage of the sample and 

hold should maintain proper value in between sampling periods. That means the leakage from a 

capacitor, C1, should not affect the proper sampling voltage from a capacitor, C1, during its DC-

DC booster operation. Otherwise, it will generate errors for the reference voltage, which is 

generated by C1 due to the lower sampling voltage than the actual sampling voltage.   

In addition, if the sampling output voltage periods from a RF rectifier is too frequent, then 

it could interrupt the switching action of a DC-DC boost convert since whenever sampling action 

kicks in, the operation of a DC-DC converter stops until the sampling action is finished and could 

cause improper operation of a DC-DC converter. In Fig. 5.23, (b) shows this action. When OSC 

or OSCB falls into a ON-state, SW_NMOS (MN2), and SW_PMOS (MP2), which are the switching 

MOSFETs of a DC-DC converter, are falling into OFF- state, and only a sampling and hold circuit 

(S&H) is falling into working state. As a result, the OUT_SAMPLE voltage is increased with 

respect to the voltage, VIN_RECT in open circuit sampling voltage state. Since a sampling circuit is 

working only during a sampling period, the current consumption needs to be minimized so that its 

static current consumption can be optimized as well. To minimize the static current, a switch 

controlled by the OSC signal in Fig. 5.22 has been used.  As a result, S&H current consumption 

range is only in ~ 100’s nA.  
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(a) 

 

 

(b) 

Fig. 5.24 Inductor current waveforms in (a) a CCM operation, and (b) a DCM operation. 

 

Turning on/off action of a S&H circuit is done by the NMOS and the PMOS of a sampling 

circuit, which are controlled by the oscillator signal OSC and OSCB as shown in Fig. 5.22. R1 and 

R2 values are carefully chosen for proper reference voltage as well as to prevent drawing too much 

current from a rectifier voltage storage capacitor, CRECT in Fig. 5.21.  

The actual current flows through the external resistors, R1 and R2 will be about 410 nA, 

and C1 will be used as a storage capacitor for a sampling voltage. Internal resistors, R3, R4, and R5 

are used as protection resistors which protect the input MOSFETs of an operational amplifier 

buffer as well as the drain and the source of a switch MOSFET that is controlled by the OSCB 

signal since C1 is an externally connected storage capacitor. 
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Before discussing the detailed design of an input impedance control of a proposed DC-DC 

boost converter, the modes of operation in a DC-DC converter are studied briefly. There are 

basically two modes of operation in a DC-DC converter: CCM (Continuous conduction mode), 

and DCM (Discontinuous conduction mode). 

Fig. 5.24 shows the inductor current waveforms in (a) CCM and (b) DCM. The typical 

advantages of a CCM mode of operation are summarized below: 

 

1) The voltage gain is function of duty cycle. 

2) The input current is continuous. 

3) The ripple component of inductor current is lower than other component average current. 

4) Higher efficiency can be achieved compared to a DCM mode of operation. 

 

However, the major drawback of a CCM operation is that since the inductor current is 

always greater than zero even though it has a small ripple current, the efficiency in light load is 

very low. In addition, if the input available power is low, then CCM is very hard to maintain its 

original waveform as shown in Fig. 5.24 (a).    

Fig. 5.24 (b) shows the waveform of the DCM mode operation. The advantages of DC 

mode operation are: 

 

1) The voltage gain is function of load as well as frequency. 

2) An inductor component size usually smaller than a CCM mode. 

3) At light load, the efficiency is higher than a CCM mode of operation. 

 

Other than abovementioned advantages of a DCM mode operation, it can perform better 

with respect to its efficiency as well as design of the system if the input available power is low.  
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Fig. 5.25 Switch and inductor current waveforms in a DCM operation. 

 

Since the input available power of the proposed RF energy harvesting circuit is very small 

and is limited by the available RF transmittable power as well as the distance between a transmitter 

and a receiver, a DCM mode of operation is chosen in this design due to the reasons explained 

above. 

From Fig. 5.25, the inductor current, IL can be calculated using the following equation. At 

the end of SW_NMOS switching period, IL_peak is,  

 

𝐼𝐿_𝑝𝑒𝑎𝑘 =  
𝑡1

𝐿
                                                                (5.39) 

 

This current is back to zero at the end of SW_PMOS switching. Therefore, the average 

current of IL can be expressed as following, 
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𝐼𝐿_𝑎𝑣𝑔 =  
𝑉𝐼𝑁𝑡1(𝑡1+𝑡2)𝑓𝑠

2𝐿
                                                         (5.40) 

 

where VIN is input voltage of a DC-DC converter (output voltage of a RF rectifier), 

           t1 is rising time (SW_NMOS ON-time), 

           t2 is falling time (SW_PMOS ON-time), 

           fs is switching frequency of a DC-DC converter, 

           L is a value of the inductor. 

 

The input impedance of a DC-DC boost converter can be expressed as the ratio of the input 

voltage, VIN, to the average inductor current, IL_avg.  Aa a result, the input impedance of a DC_DC 

boost converter can be expressed as, 

 

𝑉𝐼𝑁

𝐼𝐿_𝑎𝑣𝑔
=  

2𝐿

𝑡1
2𝑓𝑠

(1 +
𝑡2

𝑡1
)−1                                                 (5.41) 

 

If the boost conversion ratio is high enough (for example, conversion ratio is greater than 

3), then the equation (5.41) can be further simplified as shown below, 

 

 
𝑉𝐼𝑁

𝐼𝐿_𝑎𝑣𝑔
=  

2𝐿

𝑡1
2𝑓𝑠

                                                                 (5.42) 

 

Equation (5.42) is good as long as t1 » t2. 
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Table. 5.4 Simulated Values of the Input Impedance of the Proposed DC-DC Boost Converter 

dBm L (µH) t1 (µs) fs (Hz) 

RIN_simulated of  

a DC-DC 

Converter (KΩ) 

RRectifier_opt_Range of  

a RF Rectifier     

(KΩ) 

-10 30 7.87 250 3.87 3.4 ~ 4.1 

-7.5 30 7.86 316 3.07 2.4 ~ 3.1 

-5 30 7.28 406 2.79 1.7 ~ 2.4 

-2.5 30 6.95 478 2.6 1.4 ~ 1.9 

  

Out_Sample

VIN

SWN

SWNB

SWN
OSCB

OVP
SW_NMOS

 

Fig. 5.26 A low-side switch control scheme. 
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From equation (5.42), it can be easily observed that the input impedance is a function of 

the inductor value, the switching frequency as well as SW_NMOS on-time, t1. In addition, the 

equation shows that for the cases of fixed switching frequency, fs, and on-time, t1, an increase in 

the value of an inductor, L can increase the input impedance of a DC-DC boost converter.  

The simulation is performed with following external components values, 

 

The inductor, L, is 30 µH.  

The capacitor, CRECT, is 0.7 µF. 

The capacitor, Cin, is 0.2 µF. 

 

The schematic of the proposed DC-DC boost converter is shown in Fig. 5.21.  

From Table 5.4, it can be seen that the input impedance of the proposed DC-DC boost 

converter closely follows the output impedance of a RF rectifier for the maximum power transfer 

from a RF rectifier to a DC-DC boost converter.  

Table 5.4 shows the simulated input impedance of the DC-DC boost converter, RIN_simulated, 

and the optimum output impedance of a RF rectifier, RRectifier_opt_Range. The input impedance of a 

DC-DC boost converter is determined by the circuit shown in Fig. 5.26. The sampled voltage from 

a sample and hold circuit is used as reference in comparator shown in Fig. 5.26. The reference 

voltage is compared with the input voltage, VIN of a DC-DC boost converter. The comparator 

provides high value if a OUT_Sample is higher than VIN, otherwise, it produces a low output signal. 

The switching frequency of a DC-DC boost converter is determined by this low or high voltage of 

the comparator output signals, and these output voltage signals are fed into and AND gate with the 

inverted oscillator output frequency. 
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Whenever a sample and hold circuit is in action, a switching action from a DC-DC boost 

converter should be stopped so that the inverted oscillator frequency, OSCB, can be used as enable 

signal with a switching input signal, SWN, which is coming from a comparator that compares 

OUT_Sample voltage with VIN. 

 

5.5.2 The Proposed DC-DC Boost Converter Switch Controls 

 

Since the proposed DC-DC boost converter is a synchronous type, there should be two 

MOSFETs working as switches. One is called as a low-side MOSFET, which is a switch to be 

used as charging an inductor and the other is called as a high-side MOSFET, which is a switch to 

be used as discharging an inductor. The low and the high side MOSFETs are presented as MN1 

and MP1 respectively in Fig. 5.21. The advantage of using two low and high side MOSFETs is that 

the turn-on or threshold voltages (Vth) of both MOSFETs are lower than that of a conventional 

diode, which is trypically around 0.7V. Therefore, in general, a synchronous type of a DC-DC 

converter can achieve higher voltage conversion efficiency than a conventional asynchronous type 

DC-DC converter which uses a diode in a high-side MOSFET location (Refer to Fig. 5.21, a MP1 

is a high-side MOSFET). In addition, since Ron of low and high side MOSFETs can be adjusted 

by the designer (as Ron depends on the size of the MOSFET), the power loss (or, also called as 

conduction loss) due to the Ron is less than a conventional asynchronous DC-DC converter as well 

and can be expressed as,   

 

𝑅𝑜𝑛 =
1

𝜇𝑛𝐶𝑜𝑥
𝑊

𝐿
(𝑉𝐺𝑆−𝑉𝑡ℎ)

                                                 (5.43) 
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where µn is representing an electron mobility 

          Cox is representing an oxide capacitance 

          W is representing the width of gate 

          L is representing the length of gate 

          VGS is representing the gate-source voltage 

          Vth is representing the threshold voltage of a MOSFET.  

 

Equation (5.43) can be used for calculation of typical Ron values. This equation can be 

applied to both N-type as well as P-type MOSFETs. As it can be seen from the equation (5.43), 

Ron will be lower if the aspect ratio of a MOSFET is increased. 

The NMOS control signal is generated by the comparator as shown in Fig. 5.26. The 

comparator is comparing two voltages coming from a sample and hold circuit, OUT_Sample and 

the input voltage of a DC-DC converter, VIN.  

 

VOUT

VLX

ZCD

ZCDB

EN_Del
ZCDB

SWNB
SW_PMOS

FWIN

 

Fig. 5.27 A high-side switch control scheme. 
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This signal is them combined logically with an inverted sample and hold sampling 

oscillator signal, OSCB and over voltage protection signal. This combined signal finally produces 

the switching signal for the low side MOSFET, which is a MN1 in Fig. 5.21. Fig. 5.27 shows the 

circuit scheme for the high-side switching control. The PMOS switch control scheme is very 

similar to the NMOS switch control circuit. A PMOS switch (or a high-side switch) should be 

turned off whenever the current through the high-side MOSFET current is crossed the zero point.  

This is because if a high-side PMOS switch is not turned off properly whenever an inductor 

completely discharges its stored energy, there will be a reverse current flowing through a high-

side switch, which will cause several problems. 

Therefore, turning on/off a PMOS switch is one of the important design points in a 

synchronous DC-DC boost converter. One of the problems with detecting an inductor current is 

that it requires very complex and medium to high current (several tens of micro-amperes to 

hundreds of micro-amperes) consumed by control circuits. As a result, it is not realistic using such 

a method to apply in a low power DC-DC converter like the one proposed in this research. 

Therefore, in this proposed DC-DC boost converter, the simplistic way of detecting a zero-current 

sensing circuit is applied.  

Zero-current in an inductor means that it finishes discharging stored current. Therefore, 

even though there exists some delay time in between zero inductor current and zero inductor 

voltage, it is still fine to use a simple method of detecting zero voltage of an inductor because of 

low switching frequency (~ 10 to 100’s of Hz). The proposed simple method of detecting zero 

inductor current starts from a comparator. By comparing output voltage of a DC-DC boost 

converter, VOUT, with an inductor node voltage, VLX (refer to Fig. 5.21), the comparator output 

produces a signal for controlling a high-side switch. When the inductor node voltage VLX goes 
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below VOUT, it means that an inductor current is fully discharged. Therefore, the high side PMOS 

switch should be turned off immediately. Otherwise, there will be reverse current flowing through 

the output of a DC-DC boost converter, VOUT, to the input of a DC-DC boost converter. However, 

a problem still exists when VOUT starts charging from zero. Since a load capacitor or an output 

storage capacitor, CL in Fig. 5.21, is discharged completely in the beginning of a DC-DC boost 

operation, initial charging current from an inductor is not enough to increase the voltage of a 

capacitor if a load capacitor value is too large similar to a super capacitor. Therefore, there should 

some sort of a pseudo signal generator for a high-side PMOS control signal. In addition, a high-

side switch control signal should remain off when a low-side switch control signal is active. As a 

result, SW_NMOS signal, which is a control signal for a low-side switch should be implemented 

into controlling a high-side switch control signal generator.   

Fig. 5.28 shows the pseudo signal generator for a high-side switch control. In Fig. 5.28, 

INV1, INV2, and INV3 are current controlled inverter so that C1, C2, and C3 can be as small as 

possible. The current flowing through INV1 through INV3 are about 6 nA.  

 

SW_NMOS

EN_Del
C1 C2

C3

INV1 INV2

INV3

 

Fig. 5.28 A zero current control signal, EN_Del, generator circuit. 
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C1 is an external capacitor with value of 4 pF. C2, and C3 values are 1.4 pF and 2 pF, 

respectively. The reason for using an external capacitor is that it provides a convenient means of 

tuning the delay and the width of an EN_Del signal. All the external capacitors will be integrated 

into chip later on after finding an optimum value so that the area of PCB can be optimized later. 

Fig. 5.29 shows the simulation waveform of a low-side switch control signal. As can be 

seen from this waveform, whenever an OCSB control signal is kicked in (active low), all the control 

signal including a low-side switching control signal are stopped so that a sample and hold circuit 

can start sampling the open circuit voltage of the RF rectifier.  

Otherwise, all control circuits are working as normal so that a DC-DC boost converter can 

do its work. Fig. 5.30 shows the simulation waveform of a high-side switch control signal. An 

EN_Del signal gives enough masking or delaying time for a ZCDB signal, which can provide a 

fault signal especially when the output voltage, VOUT is very low. Fault signal is mainly due to tight 

hysteresis of a comparator. Large hysteresis voltage of a comparator can solve this problem but 

large hysteresis means it will produce more errors in the switching time. Therefore, instead of 

using large hysteresis comparator voltage, using an EN_Del signal can eliminate fault comparator 

signal during the operation of a low-side switching circuit especially in low DC-DC boost output 

voltage. 
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Fig. 5.29 A low-side switch control waveforms. 

 

 

Fig. 5.30 A high-side switch control waveforms. 
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5.5.3 Power Conversion Efficiency 

 

One of the most important design points involves reducing the power loss in various 

parasitic components as well as power consumed by the control circuits. The power conversion 

efficiency is getting more and more attention in designing a DC-DC power converter since there 

are more devices out there using a battery as a primary power source [73]. Likewise, since the 

proposed RF rectifier produces limited available power, which depends on the available output 

power from a transmitter and the distance between transmitter and receiver at the same time, 

reducing a power loss in a DC-DC converter is also one of the important design factor to produce 

maximum available output power from the RF energy harvesting system. To reduce or to minimize 

the power loss in a DC-DC boost converter, it is important to understand the basics of the power 

loss mechanism.  

In general, there are two major power losses in a DC-DC converter, one is called as the 

conduction loss while the other is called as the switching loss. In general, a DC-DC converter has 

many integrated internal and external components and the DC current is always flowing through 

such components. Whenever DC current is flowing through them, so called conduction loss occurs 

because of the parasitic or equivalent resistors of these components. The switching loss mechanism 

is similar to the conduction loss. The main difference between the conduction loss and the 

switching loss is that the switching loss is due to the periodical changes of the current in 

components such as switching devices in a DC-DC converter.  

The main switching components in a DC-DC converter is an inductor and the power 

switches. Since an inductor and the power switches in a DC-DC converter have parasitic capacitors, 

these capacitors are the main components causing the switching loss. In reference [74], the 
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conduction loss calculation is fairly simple. The required values to calculate the conduction loss 

are the average current flowing through the devices and the on-resistance or the parasitic resistance 

of the components. However, unlike the conduction loss, the switching loss calculation is very 

complex since it depends on many parasitic capacitances as well as the frequency of operation of 

the devices. Therefore, it is almost impossible to calculate the exact value of the switching loss 

and typically approximation values are used [75]. As a result, the calculated value of the switching 

loss has fairly large error compared to its actual measured value.  

Because of the facts mentioned above, the designer of a DC-DC converter usually, 

considers following seven loss terms for the analysis of the power loss in a DC-DC converter. First 

is the conduction loss of an inductor incorporated with a DCR (DC resistance of the inductor and 

it can be found on the spec. sheet usually). Second is the loss of a load capacitor due to the ESR 

(equivalent series resistance of a load capacitor which can be found also in specification sheets of 

the capacitor). Third is the loss due to the power consumption of the control circuits in a DC-DC 

converter. Fourth is the conduction loss of power switches. Fifth and the sixth is the gate charging 

loss and the inductor switching loss, and the last is the switching loss of the MOSFET switches. 

Every single inductor used in a DC-DC converter has its own DC resistance (DCR) which 

depends on the winding size as well as its structure. The DCR of an inductor is the main problem 

causing the conduction loss during its charging and discharging operating phases. Therefore, 

whenever current is flowing through an inductor in phase of charging or discharging, the DC 

resistance dissipates some energy and it causes the conduction loss of an inductor. The equation 

(5.44) shows the calculation of the inductor conduction loss [76], 

 

𝑃𝐿𝐷𝑅𝐶
=

𝑅𝐿𝐷𝐶𝑅

𝑇
∫ 𝑖𝐿

2(𝑡)𝑑𝑡
𝑇

0
                                             (5.44) 
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where 𝑅𝐿𝐷𝐶𝑅
 is the DCR of an inductor, 

           iL is the inductor current, 

           T is the operating or switching frequency of a DC-DC converter. 

 

It can be very clearly observed from the equation (5.44) that the main conduction loss is 

coming from the DCR of an inductor. Therefore, to minimize the conduction loss of an inductor, 

it is very important to choose the low DCR inductor component. 

The loss due to the load capacitor is very complex to calculate since a capacitor has various 

kinds of parasitic components and related loss terms on its own such as temperature effect, leakage 

and dielectric losses, contact resistance etc. Therefore, to simplify such complex loss terms, the 

ESR from a datasheet is used instead since almost of all the complex variables of loss incorporated 

with a capacitor are reflected into the value of the ESR. With the ESR value, the loss of a load 

capacitor can be calculated as shown in equation (5.45) [76], 

 

𝑃𝐶𝐸𝑆𝑅
=

𝑅𝐶𝐸𝑆𝑅

𝑇
∫ 𝑖𝑜

2(𝑡)𝑑𝑡
𝑇

0
                                              (5.45) 

 

where 𝑅𝐶𝐸𝑆𝑅
 is the ESR of a load capacitor, 

           io is the output current flowing into a load capacitor, 

           T is the operating or switching frequency of a DC-DC converter.  

 

It can be also very clearly observed from the equation (5.45) that the main load capacitor 

loss is coming from the ESR of a load capacitor. Therefore, to minimize the load capacitor loss, it 

is very important to choose the low ESR capacitor component. 

The power loss due to the power consumption of the control circuits can be optimized by 

reducing the static current of the control circuits. Usually, digital circuits are not consuming any 
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static current, it is desired to use digital circuits as much as possible. In addition, for the analog 

control circuits, it is very important to optimize the static current used for biasing.The conduction 

loss of switches is due to Ron resistance or turn-on resistance of the MOSFET transistors. In an 

asynchronous DC-DC converter, a low-side switch has Ron due to the MOSFET but the on 

resistance of the high-side switch is due to the Ron of the diode. Thus, the designer does not have 

any control over the Ron value of the high-side switch. Therefore, it is very important to choose 

right Ron for high-side diode switch similar to an inductor or a load capacitor. In a synchronous 

DC-DC converter it is very important to control the optimum size of MOSFET transistors since in 

this type of a converter there are two switches formed with MOSFET transistors. Since the energy 

wasted by Ron of both a high-side as well as a low-side switches occurs whenever current is flowing 

through the switches. The dissipated energy by the both switches can be calculated with following 

equations (5.46) and (5.47) [76], 

 

𝑃𝐿𝑆𝑊 =
𝑅𝑜𝑛𝐿𝑆𝑊

𝑇
∫ 𝑖𝐿

2(𝑡)𝑑𝑡
𝑡𝑂𝑁𝐿𝑆𝑊

0
                                   (5.46) 

 

𝑃𝐻𝑆𝑊 =
𝑅𝑜𝑛𝐻𝑆𝑊

𝑇
∫ 𝑖𝐿

2(𝑡)𝑑𝑡
𝑡𝑂𝑁𝐻𝑆𝑊

0
                                  (5.47) 

 

where 𝑅𝑜𝑛𝐿𝑆𝑊
,and 𝑅𝑜𝑛𝐻𝑆𝑊

 are the Ron of the low-side and the high-side MOSFET transistors, 

            𝑡𝑂𝑁𝐿𝑆𝑊
, and 𝑡𝑂𝑁𝐻𝑆𝑊

are the ON-time of the low-side and the high-side MOSFET switches, 

            iL is the inductor current flowing through both low-side and high-side MOSFET 

transistors, 

            T is the switching periods of a DC-DC converter.  
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In addition, Ron of both the low-side and the high-side MOSFET switches can be calculated 

using following equation (5.48) [76], 

 

𝑅𝑜𝑛 =
1

𝜇𝐶𝑜𝑥(
𝑊

𝐿
)(𝑉𝐺𝑆−𝑉𝑡ℎ)

                                                (5.48) 

 

From equations (5.46) through (5.48), it can be clearly seen that the conduction losses of 

both the low and the high-side switches depend on the value of Ron as well as current flowing 

through switches, iL. In case of a Ron value, as can be seen from equation (5.48), if the gate bias 

voltage, VGS, is limited by the supply voltage of the system, and the values of µ, Cox, and Vth are 

known and fixed by the design variable, then only term that a designer can deal with is the value 

of width, W, and length, L. Therefore, by optimizing the size of the transistors, a designer can 

achieve optimum Ron value for both the low and the high-side MOSFET switches. In general, with 

minimum size of L, larger W will give lower Ron value. To optimize the inductor current, iL, one 

needs to deal with various terms since the inductor current depends not only on the turn-on time 

of the switches but also on the operating frequency of a DC-DC converter. In addition, the inductor 

current depends on the input and the output voltages of a DC-DC converter, Therefore, it is a very 

difficult and tedious procedure to get the right and the optimum value of it. As an example of the 

inductor current flowing through the switches, equations (5.49) and (5.50) show inductor current 

of DC-DC boost converter at a continuous conduction mode (CCM) and a discontinuous 

conduction mode (DCM), respectively.  

 

𝐼𝐿_𝐴𝑣𝑔 =
𝑉𝑖𝑛

𝑅𝐿(1−𝐷)2
                                                          (5.49) 
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𝐼𝐿_𝐴𝑣𝑔 =
𝑉𝑖𝑛𝐷1𝑇

2𝐿
(𝐷1 + 𝐷2)                                            (5.50) 

 

where IL_Avg is the average inductor current of CCM (5.49), and DCM (5.50), 

           D is the duty cycle of a DC-DC boost converter, 

           D1 is the low-side duty cycle of a DC-DC boost converter, 

           D2 is the high-side duty cycle of a DC-DC boost converter, 

           Vin is the input voltage of a DC-DC boost converter, 

           L is an inductor, 

           T is the period of a DC-DC boost converter, 

           RL is the load resistor of a DC-DC boost converter. 

 

As can be observed from equations (5.49) and (5.50), an inductor current depends on 

various parameters such as input voltage, switching frequency, on-time of low and high-side 

switches, inductor value as well as the load resistor value. In addition, an inductor current is varied 

by the mode of a DC-DC boost converter operation. 

The gate and the inductor switching losses come from the fact that the gate of MOSFET 

transistor switches and other parasitic capacitances need to go through the phase of charging and 

discharging whenever switches are going through their on/off states. To calculate the gate 

switching power loss, the gate parasitic capacitance should be calculated first. The calculated gate 

parasitic capacitance is [77], 

 

𝐶𝐺𝑝 = 𝐶𝑜𝑥𝑊𝑝𝐿𝑝 + 2𝐶𝑜𝑊𝑝                                           (5.51) 

 

𝐶𝐺𝑛 = 𝐶𝑜𝑥𝑊𝑛𝐿𝑛 + 2𝐶𝑜𝑊𝑛                                           (5.52) 
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where Cox is representing the gate oxide capacitance, 

           W is representing the width of a MOSFET transistor, 

           L is representing the length of a MOSFET transistor. 

 

Using the value calculated in equations (5.5117) and (5.5218), the power loss due to the 

gate capacitance can be calculated with help of the following equation (5.5319) [78], 

 

𝑃𝐿𝑜𝑠𝑠−𝐺𝑎𝑡𝑒 = (𝐶𝐺𝑝 + 𝐶𝐺𝑛)𝑉𝐺𝑆
2 𝑓                                   (5.53) 

 

where CGp is representing the total gate capacitance of a P-type MOSFET transistor, 

           CGn is representing the total gate capacitance of a N-type MOSFET transistor, 

           VGS is representing the voltage of gate-source, 

           f is representing the switching frequency of a DC-DC converter. 

 

From equation (5.53), it can be observed that the loss due to the gate capacitance depends 

on the total parasitic gate capacitances as well as the switching frequency of a DC-DC converter. 

Therefore, to minimize the gate capacitance loss, it is important to reduce the switching frequency 

as well as the size of the switching MOSFET. However, as stated earlier, if a designer reduces the 

size of the switching MOSFET, then it will increase the conduction loss due to the increased Ron.  

In addition, depending on the system requirement, it may not possible to reduce the 

switching frequency of a DC-DC converter. Decreasing switching frequency means increasing 

size of an inductor. Therefore, a designer should carefully decide between the conduction loss and 

the gate capacitance switching loss since there is trade-off them. In addition, at the point of VLX in 

Fig. 5.21, there is a parasitic capacitance of an inductor as well as the switching MOSFET parasitic 

capacitance. The parasitic capacitance of an inductor can be calculated using equation (5.54) [79], 
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𝐶𝑝𝑎𝑟−𝑖𝑛𝑑 =
𝜖𝐿𝑊

2𝑡𝑑𝑖
                                                            (5.54) 

 

where ϵ is the permittivity of the surroundings and it can be expressed as ϵ = 𝜖𝑟𝜖𝑜, 

           L is the length of the spiral, 

           W is the width of the spiral, 

           tdi is the dielectric thickness in between the spiral inductor and substrate. 

 

In addition, the total parasitic capacitance seen in the point of VLX can be calculated as 

following equation (5.55) [78]. 

 

𝐶𝑝𝑎𝑟−𝑠 = 𝐶𝑜(𝑊𝑛 + 𝑊𝑝)                                               (5.55) 

 

Therefore, the loss due to the parasitic capacitance of an inductor as well as parasitic 

capacitances of switches can be calculated using equation (5.56) [78], 

 

𝑃𝐿−𝑀 = (𝐶𝑝𝑎𝑟−𝑖𝑛𝑑 + 𝐶𝑝𝑎𝑟−𝑠)𝑉𝑜𝑢𝑡
2 𝑓                             (5.56) 

 

where Vout is the output voltage of a DC-DC converter. 

 

Therefore, the total gate switching loss and an inductor switching loss can be calculated 

using equation (5.57) [78], 

 

𝑃𝑠𝑤−𝑖𝑛𝑑−𝑔𝑎𝑡𝑒 = (𝐶𝑝𝑎𝑟−𝑠 + 𝐶𝑝𝑎𝑟−𝑖𝑛𝑑+𝐶𝐺𝑝 + 𝐶𝑔𝑛)𝑉𝐺𝑆
2 𝑓                      (5.57) 
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The switching loss occurs because of the charging and discharging of the parasitic 

capacitance of MOSFET switches during a switching action. The switching loss depends on 

various kinds of parameters such as the time to charge, ton, and the time to discharge, toff. Therefore, 

the switching loss can be expressed as [80], 

 

𝑃𝑠𝑤 =
𝐼𝐿𝑉𝐷𝑆(𝑡𝑜𝑛+𝑡𝑜𝑓𝑓)𝑓

2
+

(𝐶𝑝𝑎𝑟−𝑠+𝐶𝐺𝑝+𝐶𝐺𝑛)𝑓

2
                              (5.58) 

 

Therefore, the total loss of a switching DC-DC converter can be calculated by combing all 

the equations shown from (5.44) through (5.58). 

 

 

5.5.4 RF Rectifier Test Results 

 

5.5.4.1 Test Set-Up 

 

Fig. 5.31 shows the chip layout as well as the chip microphotograph of the RF rectifier. 

The blue square shows the RF rectifier. It has been fabricated in a standard 130 nm CMOS process. 

The area of the RF rectifier is 232 µm x 662 µm approximately.  

Since the RF rectifier operates at the frequency ranges of 895 MHz to 920 MHz, all the 

ESD pads are separated from other circuits used in a DC -DC boost converter so that its frequency 

cannot affect the operation of other circuits associated with a DC-DC converter.  
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Fig. 5.31 Layout and photograph of a RF rectifier. 

 

 

Fig. 5.32 RF rectifier test set-up. 

 

 

RF+ 

RF- 

RF Rectifier 
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Fig. 5.33 The RF rectifier input impedance test set-up. 

 

 

Fig. 5.34 RF rectifier input impedance testing with a network analyzer. 
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Fig. 5.35 RF rectifier matching circuit. 

 

 

Fig. 5.36 S-parameter matching circuit simulation. 
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In addition, RF+ and RF- input ports are shielded with ground pads in between each RF 

input ports so that the signals cannot interfere with each other. Fig. 5.32 shows the test set-up of 

the RF rectifier.  

The RF signal is coming from an Adafruit Feather 32u4 SX1276 Lora based RF signal 

generator. Its control unit is based on ATmega32u4 8-bit microcontrollers with Arduino libraries. 

Feather 32u4 can generator RF signal ranges from 868 MHz to 915 MHz. The power generated by 

Feather 32u4 is from + 5 dBm to + 23 dBm.  

The brief specifications of the Feather 32u4 signal generator are listed below [81]. 

 

• SX1276 LoRa® based module with SPI interface 

• Packet radio with ready-to-go Arduino libraries 

• Uses the license-free ISM bands (ITU "Europe" @ 433MHz and ITU "Americas" @ 

900MHz) 

• +5 to +20 dBm up to 100 mW Power Output Capability (power output selectable in 

software) 

• ~300uA during full sleep, ~120mA peak during +20dBm transmit, ~40mA during active 

radio listening. 

• Simple wire antenna or spot for uFL connector 

 

As can be seen from the specifications of the Feather 32u4 that the attenuators should be 

used to have desired power ranges of – 10 dBm to -2.5 dBm. Before the RF rectifier testing is 

performed, the input impedance of the RF rectifier should be measured so that a matching circuit 

can be implemented into the PCB board.  

Fig. 5.33 shows the test set-up for the impedance testing. A signal from a network analyzer 

is connected by using a SMA connector with -10 dBm of input power with frequency ranges of 

100 MHz to 2 GHz. Pre-printed PCB board is wired with 0 Ω resistors. The balun used in a PCB 
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is single to differential ended with 1.3 dB loss. Its input and output impedances are 50 Ω and it is 

1-to-1 type of a balun. 

Fig. 5.34 shows the input impedance of the RF rectifier. The measured value of the input 

impedance through the balun is 43 – 116j. As a next step of making a matching network, this 

measured value is plugged into ADS program so that the matching network can be calculated. Fig. 

5.35 shows the ADS circuit simulation of the matching circuit. The matching network is formed 

with a simple LC network and the value plugged into ADS program is following. 

 

CMatch is 1.42 pF, and 

LMatch is 12.24 nH. 

 

Fig. 5.36 shows the simulation results of S-parameter matching circuit. As it can be seen 

from Fig. 5.36, the calculated and the simulated values of the matching network suggest a well-

designed circuit and frequency at 900 MHZ shows about -55 dBm gain.  

 

5.5.4.2 Test Constraint of the RF Rectifier 

 

Fig. 5.37 shows the circuit diagram of the ESD protection used in this RF rectifier while 

Fig. 5.38 shows the test set-up for the ESD leakage.  

In Fig. 5.37, I/O pad are used at the output of the RF rectifier and the power protection is 

used at VDD_ESD port which supplies voltage for the ESD power. In addition, R and C values used 

in the power protection pad are 1 MΩ and 1 pF, respectively, which will give time constant of 

approximately 1 µs.  
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Fig. 5.37 ESD protection used in the RF rectifier. 

 

 

Fig. 5.38 ESD leakage testing set-up. 

By-pass TR 

VDD_ESD 
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Fig. 5.39 ESD leakage testing at 0.2 V. 

 

 

Fig. 5.40 ESD leakage testing at 0.36 V. 
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Fig. 5.41 ESD leakage testing at 0.43 V. 

 

To test the ESD leakage, the input port of the RF rectifier is grounded through the SAM 

connected wire, and the ESD power is applied through the power supply to the ESD power port 

pin as shown in Fig. 5.38. 

Fig. 5.39 through Fig. 5.41 shows the ESD test results at 0.2, 0.36, and 0.43 Volts 

respectivelyThe leakage current though the ESD at each ESD power is shows below. At 0.2 V, the 

leakage is about 1.9 µA, at 0.36 V the leakage current is about 50 µA, and at 0.43 V the leakage 

current is about 123 µA. 

As can be seen from the test results, as the ESD power is increased, the leakage is also 

increased. Therefore, it can be concluded that the ESD cell is partially damaged and the cell is 

working as resistive network rather than a protection cell. The possible causes of such problem 

can be driven from the tested phenomena.  
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There are two problems that can hurt the ESD cell. Electrical overstress (EOS) and 

electrostatic discharge (ESD) are the two major problems that cause failure of the ESD cell. 

Usually, the duration of EOS is longer than the ESD time. As shown in Fig. 5.37, if very high 

voltage is applied through the VDD_ESD in short time of nano-seconds, then the bypass TR should 

absorb all the excessive current so that the high current does not pass through the circuit to prevent 

the breakdown of the internal circuits. However, if the bypass TR is not capable of absorbing such 

high leakage current, then it will breakdown partially or completely. On the other hand, if the time 

constant formed by RC network is not long enough in ESD or EOS situation, it could also destroy 

the bypass TR because of lack of absorption of such high current for a long time. In addition, if 

excessive heat is applied during the packaging, it will cause breakdown of the protection cell as 

mentioned in reference [82]. Another possibility of destroying or partially destroying the ESD cell 

is that while packaging a chip or soldering a chip, excessive voltage applied into the pad can 

breakdown the back-to-back diode if the diode sustainable voltage is less than the applied 

excessive voltage, which will eventually make reverse biased the diode. To further observe the 

exact cause of the ESD cell problem, dissection of the chip will be required so that exact place of 

ESD failure can be pointed out and the causes of failure can be identified. 

 

5.5.4.3 Testing the RF Rectifier 

 

Section 5.5.4.1 discusses design of the matching network. The calculated values for CMatch 

and LMatch are 1.42 pF and 12.24 nH, respectively. The real value plugged into a PCB is 1.4 pF and 

12 nH.  
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Fig. 5.42 RF rectifier input voltage (Both RF + and RF – sides). 

 

 

Fig. 5.43 RF rectifier output voltage. 
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In addition, as explained as in section 5.5.4.2, because of the ESD problem in the RF 

rectifier, testing of the RF rectifier cannot be performed properly. Therefore, testing has only been 

performed to check the functionality of the RF rectifier. 

Fig. 5.42 shows the input voltage of the RF rectifier, which are RF+ and RF-. Fig. 5.43 

shows the output voltage from the RF rectifier. With the input voltage of approximately 89 mV, 

the output voltage from the RF rectifier is about 170 mV. This means that the RF rectifier is 

working as expected. Recalling from the equation (5.13) in section 5.2.1 the output voltage of the 

RF rectifier is approximately twice of whatever the input voltage for the RF rectifier. 

The equation of (5.31) can be rewritten approximately as equation (5.59), 

 

𝑉𝑅𝐸𝐶𝑇 = 2𝑉𝑅𝐹_𝐼𝑁                                                           (5.59) 

 

5.5.5 Testing the DC-DC Boost Converter 

 

Fig. 5.44 shows the layout as well as the chip photograph of the proposed DC-DC boost 

converter with MPPT. The red box shows the DC-DC boost converter and yellow box shows the 

proposed maximum power point tracking (MPPT) system in the proposed DC-DC boost converter. 

The chip size of the DC-DC boost converter is approximately 1500 µm x 1500 µm, and the MPPT 

is about 253 µm x 230 µm. The chip has been fabricated in a standard 130 nm CMOS process. 

Due to the ESD problem with the RF rectifier circuit, the input power for the DC-DC boost 

converter is coming from the equivalent RF rectifier model. 

Fig. 5.45 shows the equivalent circuit of the RF rectifier used for the input of the DC-DC 

boost converter.  
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Fig. 5.44 RF DC-DC boost converter layout and chip photograph. 

 

 

Fig. 5.45 The RF equivalent circuit used for the input of the boost converter. 
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Fig. 5.46 The RF DC-DC boost converter test set-up. 

 

The VDC ranges used for the input of the boost convert is from 0.62 V to 0.78 V, and the 

variable resistor, R ranges from 10 KΩ to 20 KΩ. 

Fig. 5.46 shows the test set-up. The blue circle shows the RF DC-DC boost converter chip 

and the inductor used in the system is 30 µH. The red circle shows the ESD power as well as chip 

power sources which are provided by the low-drop regulator. 

The ESD power is 1.5 V and the chip power is 1.2 V. The DC-DC input power is coming 

from the circuit shown in Fig. 5.45 to the point shown in the orange circle in Fig. 5.46.  

First, the testing of the bias current generator is performed. Since the bias current is one of 

the core circuits that provides all the necessary bias current for the comparator, buffers, and 

oscillator, the accuracy of the bias current is important to measure. Fig. 5.47 shows the test result 

of the bias current. 

The biasing current is measured through 5 MΩ of externally-connected resistor, as shown 

in Fig. 5.46 indicated with light red circle.  
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Fig. 5.47 The bias current test. 

 

 

Fig. 5.48 Sample and hold control signal (Oscillator) test. 
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Fig. 5.49 NMOS on-time waveform at – 7.5 dBm. 

 

Fig. 5.48 shows the waveform of the oscillator used in sample and hold circuit of the MPPT. 

The simulated frequency of the oscillator is 5 Hz and the measured frequency is 5.2 Hz. The 

difference is only 0.2 Hz and it is due to the parasitics associated with the PCB, the socket and the 

chip package. This measured frequency also verifies that the current generated by the biasing 

circuit, which is 200 nA is very close to the original value.  

The red waveform is the oscillator and the green waveform shows the actual oscillator 

signal used in the MPPT system in Fig. 5.48.  

In green waveform of oscillator for the MPPT, the pulse width is about 1.25 ms while the 

simulated value is 2 ms. This pulse width of the oscillator signal is for due to the charging time of 

the sampling capacitor as shown in Fig. 5.22 as C1. In the testing procedure, 1.25 ms of width was 

sufficient time to charge, C1, so it was not necessary to increase the width of the oscillator. Since 

the width of oscillator signal is externally programmable, it can be increased or decreased by using 

the external capacitor whose value used in the test board is 2.5 nF. 
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Since one of the current mirror legs is pulled out to measure the current, the external resistor 

is used to measure the current that is generated by the current bias circuit. 

The internal current biasing circuit generates 200 nA. As a result, with 5 MΩ of external 

resistor, the biasing circuit should generate 1 V. However, due to the parasitics generated by the 

PCB, the chip package as well as the socket used to connect the chip, the final measured result for 

the biasing circuit is 1.15 V, which is considered as very close to the actual design value of 200 

nA.  

Figs. 5.49 and 5.50 show the on-time waveform of the proposed DC-DC boost converter. 

Since the on-time of NMOS switch is one of the important parameters along with inductor value 

as well as the switching frequency, which determines the actual input impedance of the boost 

converter, it is important to measure the on-time of the NMOS switch width. Fig. 5.49 shows the 

measured waveform at – 7.5 dBm and Fig. 5.50 shows the measured waveform at –10 dBm. 

 

 

Fig. 5.50 NMOS on-time waveform at – 10 dBm. 
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Fig. 5.51 Comparison of the input impedance of DC-DC boost converter. 

 

Table 5.5 Measured Input Impedance of the Proposed DC-DC Boost Converter 

Input 

Power 

(dBm) 

L 

(µH) 

t1 

(µs) 

fs 

(Hz) 

Rinput_tested 

(Ω) 
 

Ropt 

(Ω) 
 

Difference 

R 

CRect 

(µF) 

CIN 

(µF) 

CL 

(µF) 

-10 30 12 120 3470 3700 228 0.9 0.2 5 

-7.5 30 11 169 2930 2700 234 0.9 0.2 5 

-5 30 11 189 2620 1900 724 0.9 0.2 5 

 

where Rinput_test is measured input impedance of the proposed DC-DC converter, 

           Ropt denotes the optimum output impedance of the RF rectifier, 

           and Difference R denotes the difference between Rinput_tested and Ropt. 
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Table 5.5 shows the summary of the measured input impedance of the proposed DC-DC 

boost converter. Fig. 5.51 shows the comparison of calculated, simulated and test values of the 

input impedance. As can be seen from Fig. 5.51 as well as Table 5.5, the proposed MPPT structure 

is very effective design in terms of controlling the input impedance of a DC-DC boost converter 

compared with a conventional MPPT system controlled by an ADC. Since the proposed 

architecture of the MPPT system is consuming only less than 1 µA of current, it has a lot of 

advantage in terms of current consumption with comparable input impedance control for the 

maximum matching between the RF rectifier and the DC-DC boost converter.  

In addition, this measured width of the DC-DC boost converter with the frequency verifies 

the equation (5.42), which is 𝑅𝑖𝑛 ≈
2𝐿

𝑡1
2𝑓𝑠

.  

Fig. 5.52 shows the output waveform of the DC-DC boost converter at –10 dBm. The 

simulated output voltage is about 0.98 V but the measured value is about 1.3 V. 

 

 

Fig. 5.52 The output voltage of the DC-DC boost converter at – 10 dBm. 
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The difference is due to the high parasitic component of the socket. Usually, the parasitic 

components of the connecting socket are very high. As a result, the output voltage of the proposed 

DC-DC boost converter is higher than the simulated value. Fig. 5.53 shows the inductor switching 

node, VLX voltage. As can be observed from Fig. 5.53, the peak voltage is over 3 V which is much 

higher than the ESD limiting voltage, which is 1.5V. Therefore, the energy that is supposed to be 

stored into an inductor is limited by this peak voltage since over 1.5 V of peak voltage will be 

wasted by the ESD power.  

As a result, huge loss occurs because of this very high peak voltage at the switching node, 

VLX. The high peak voltage is coming from the parasitic components of the PCB, package and 

socket used in the testing. The main parasitic that causes this high peaking voltage is coming from 

the socket. Therefore, socket should be removed for the future revised version. 

 

 

Fig. 5.53 The switch node, VLX voltage of the DC-DC boost converter at – 10 dBm. 
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Fig. 5.54 The measured and simulated efficiency of the DC-DC boost converter. 

 

Fig. 5.54 shows the efficiency of the proposed DC-DC boost converter. As explained in 

previous paragraph, due to the high peak voltage at the switching node, the energy loss is very 

high. As a result, the efficiency is degraded, and even at higher input power of – 7.5 dBm, the 

efficiency cannot be measured due to this high peak voltage. 
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CHAPTER 6 – CONCLUSION AND FUTURE WORKS 

 

6.1 Conclusion 

 

In this research, a piezoelectric transducer-based energy harvesting as well as radio 

frequency-based energy harvesting systems have been presented. A piezoelectric transducer-based 

energy harvesting system can be implemented into a system where a moving or shaking is utilized 

such as in wrist watches, shoes, automobiles, bridges etc. An energy harvesting system based on 

vibration presented in this research is focused on very low input power. The reason for focusing 

on very low input power is that the input power from a vibration-based energy source is not always 

adequate.  Even with very low available input power, if the system can harvest the energy it can 

contribute to extension of the life of battery. The proposed piezoelectric transducer-based energy 

harvesting system shows this possibility of harvesting even very low available input power. In the 

second part of this dissertation, a RF based energy harvesting system has been presented. The 

proposed system showed the new approach of maximum power point tracking (MPPT). Unlike 

previous reported RF energy harvesting systems using ADC as the main controlling source of 

MPPT, the proposed MPPT system is composed with simple resistive network with storage 

capacitor and buffer. With this simple design, the proposed MPPT system does not require any 

calibration whenever the system is powered off. The conventional MPPT system with ADC 

actually requires calibration if there is no stored calibration data such as MCU or memory. In 

addition, the proposed system is using only less than 1 µA of current consumption, which is 

substantially less than typical ADC controlled MPPT system.  
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6.2 Future Works 

 

For the future works, a piezoelectric transducer with specific parasitic components value 

such as CP and RP can be made and calibrated. With this specially made piezoelectric transducer, 

the energy harvesting system based on a vibration can be tested properly. In addition, for the RF 

energy harvesting system, a well-made ESD for the RF rectifier should be used. In addition, the 

ESD cells used in the switching node, VLX should be replaced with metal pads so that the peak 

voltage does not affect the overall system efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

131 
 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

132 
 

[1]     “World Wide Web,” https://en.wikipedia.org/wiki/World_Wide_Web 

 

[2]    “Internet of Things,” https://en.wikipedia.org/wiki/Internet_of_things 

 

[3]    R. Gyanenfra, and A. Fujii, “Extracting knowledge from technological research papers in 

       application of IoT,” 2016 Portland International Conference on Management of 

Engineering and Technology, pp. 2645-2651, 2016. 

     

[4]     J. A. Paradiso, and T. Starner, “Energy scavenging for mobile and wireless electronics,” 

IEEE Pervasive Computing, Vol. 4, Issue 1, pp. 18 -27, 2005. 

     

[5]    A.H. Mahammad, M. Saad, A.S. Salina, and H. Aini, “Energy harvesting for the 

implementable biomedical devices:issues and challenges,” BioMedical Engineering 

Online,13:78, 2014. 

 

[6]    S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source 

for wireless sensor nodes,” Computer Communications, Vol. 26, pp. 1131-1144, 2003. 

 

[7]  S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless 

electronics,” Smart Materials and Structures, Vol. 13, pp. 1131-1142, 2004. 

 

[8]    S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M.Rabaey, P. K. 

Wright, and V. Sundararajan, “Improving power output for vibration-based energy 

scavengers,” IEEE Pervasive Computing, Vol. 4, pp. 28-36, 2005. 

  

[9]     P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes, “Architectures for 

vibration-driven micropower generators,” Journal of Microelectromechanical Systems, Vol. 

13, pp. 429-440, 2004. 

 

[10]  H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. 

Plescher, A. Schubert, and K.-H. Schlereth, “New thermoelectric components using 

microsystems technologies,” Journal of Microelectromechanical Systems, Vol. 13, pp. 414-

420, 2004. 

 

[11]  “Carnot Cycle,” 2017, 

https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textboo

k_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics

/Thermodynamic_Cycles/Carnot_Cycle 

 

https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Internet_of_things
https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics/Thermodynamic_Cycles/Carnot_Cycle
https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics/Thermodynamic_Cycles/Carnot_Cycle
https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics/Thermodynamic_Cycles/Carnot_Cycle


 

133 
 

[12]  G. Despesse, and T. Jager, “Exploitation of the thermo-tunnel effect for energy                                                       

scavenging,” Journal of Applied Physics, Vol. 96, no. 9, Nov 1, pp. 5026-5031, Nov. 1, 2004. 

 

[13]   “Kinetic Energy,” https://en.wikipedia.org/wiki/Kinetic_energy 

 

[14]   Q. Zhang, L. Gu, K. Yang, M.A. Halim, R. Rantz, and S. Roundy, “Kinetic energy harvesting 

using improved eccentric rotor architecture for wearable sensors,” IEEE Sensors, pp. 1-3, 

2016. 

 

[15] “What is electromagnetic radiation?," 

http://www.qrg.northwestern.edu/projects/vss/docs/space-environment/2-what-is 

electromagnetic-radiation.html 

 

[16]  V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, M. Srivastava, “Design considerations for 

solar energy harvesting wireless embedded systems,” Information Processing in Sensor 

Networks, April 2005. 

    

[17]  Y. Aiba, S. Ohshiba, H. Ishizuka, K. Sakamoto, I. Morioka, K. Miyashita, and H. Iwata, “A 

study on the effects of countermeasures for vibrating tool workers using an impact wrench,” 

Industrial Health, Vol. 37, pp. 426-431, 1999. 

  

[18]  S. Roundy, “On the effectiveness of vibration-based energy harvesting,” Journal of 

Intelligent Material Systems and Structures, Vol. 16, pp. 809-823, 2005. 

  

[19]  K. Ikeda, H. Ishizuka, A. Sawada, and K. Urishiyama, “Vibration acceleration magnitudes 

of hand-held tools and workpieces,” Industrial Health, Vol. 36, pp. 197-208, 1998. 

  

[20]  R. Amirtharajah, and A.P.  Chandrakasan, “Self-powered signal processing using vibration-  

based power generation.” IEEE Journal of Solid-State Circuit. 1998. 

 

[21]   M. Perez, S. Boisseau, P. Gasnier, J. Willemin, M. Geisler, and J. L. Reboud, “A cm scale 

electret-based electrostatic wind turbine for low speed energy harvesting applications,” 

Smart Materials and Structures, Vol. 25 No. 4, March 14, 2016. 

 

[22] “Types and basics of energy harvesting techniques or methods thermoelectric, piezoelectric, 

           photovoltaic, pyroelectric, electromagnetic, wind, vibration,” http://www.rfwireless-

world.com/Articles/Types-and-basics-of-Energy-Harvesting-Techniques.html 

 

[23]  “History of piezoelectricity,” http://www.piezo.com/tech4history.html 

 

https://en.wikipedia.org/wiki/Kinetic_energy
http://www.qrg.northwestern.edu/projects/vss/docs/space-environment/2-what-is%20electromagnetic-radiation.html
http://www.qrg.northwestern.edu/projects/vss/docs/space-environment/2-what-is%20electromagnetic-radiation.html
http://www.rfwireless-world.com/Articles/Types-and-basics-of-Energy-Harvesting-Techniques.html
http://www.rfwireless-world.com/Articles/Types-and-basics-of-Energy-Harvesting-Techniques.html
http://www.piezo.com/tech4history.html


 

134 
 

[24] R. Amirtharajah, S. Meninger, J. O. Mur-Miranda, A. Chandrakasan, and J. Lang, “A 

micropower programmable DSP powered using a MEMS-based vibration-to-electric energy 

converter,” IEEE International Solid-State Circuit Conference, San Francisco, CA, pp. 362-

363, 2000. 

  

[25] M. Miyazaki, H. Tanaka, G. Ono, T. Nagano, N. Ohkubo, T. Kawahara, and K. Yano, 

“Electric-energy generation using variable-capacitive resonator for power-free LSI: 

efficiency analysis and fundamental experiment,” Proceedings of the 2003 International 

Symposium on Low Power Electronics and Design, Seoul, South Korea, pp. 193-198, 2003. 

   

[26]   C.B. Williams and R.B. Yates, “Analysis of a micro-electric generator for microsystems,” 

Sensors and Actuators A: Physical, Vol. 52, Issues 1–3, pp. 8-11, 1996. 

 

[27]   T. Galchev, H. Kim, and K. Najafi, “Micro power generator for harvesting low-frequency 

and nonperiodic vibrations,” Journal of Microelectromechanical Systems, Vol. 20 Issue 4 pp. 

852 -866, 2011. 

 

[28]   M.D. Shaker, H. Salleh, “Apporaches and developments in MEMS power harvesting 

generators,” 2010 34th IEEE/CMPT International Electronic Manufacturing Technology 

Symposium (IEMT), pp. 1 - 7, 2010. 

 

[29]   J.F. Antaki, G.E. Bertocci, E.C. Green, A. Nadeem, T. Rintoul, R.L. Kormos, and B.P. 

Griffith, “Gait-powered autologous battery charging system for artificial organs,” ASAIO 

Journal, Vol. 41, pp. 588-595, 1995. 

 

[30]  W. Tljhen, T. Tamagawa, C.P. Ye, C.C. Hsueh, P. Schiller, and D.L. Polla, “Properties of 

piezoelectric thin films for micromechanical devices and systems,” Proceedings of IEEE 

Micro Electromechanical Systems, Nara, Japan, 1991, pp. 114-119. 

 

[31]  Product Catalog, http://www.piezo.com/catalog.html 

 

[32]   K. Tsuchiya, T. Kitagawa, Y. Uetsuji, and E. Nakamachi, “Fabrication of smartmaterial PZT 

thin films by RF magnetron sputtering, method in micro actuators,” Transactions of the 

Japan Society Mechanical Engineers, Part A, Vol. 71, pp. 66-72, 2005. 

 

[33]  “Piezoelectric Effect,” https://www.pc-control.co.uk/piezoelectric_effect.htm 

 

[34] “Piezoelectricity,” https://www.americanpiezo.com/knowledge-center/piezo-

theory/piezoelectricity.html 

 

http://www.piezo.com/catalog.html
https://www.pc-control.co.uk/piezoelectric_effect.htm
https://www.americanpiezo.com/knowledge-center/piezo-theory/piezoelectricity.html
https://www.americanpiezo.com/knowledge-center/piezo-theory/piezoelectricity.html


 

135 
 

[35]  “Performance Reports,” http://www.te.com/documentation/electrical-

models/documents_dechrome.asp?rpt=3 

 

[36]  “Piezo-technology,” https://www.piceramic.com/en/piezo-technology 

 

[37]  John, “Ultrasonic Flowmeter,” 2013, http://www.instrumentationtoday.com 

 

[38]   H.J. Lee, S. Zhang, Y. Bar-Cohen, and S. Sherrit, “High temperature, high power 

piezoelectric composite transducers,” Sensors, Vol. 14, No. 8, pp. 14526-14552, 2014. 

 

[39]   T. Hehn, and Y. Manoli, “CMOS circuits for piezoelectric energy harvester, Springer Series 

in Advanced Microelectronics, 38, DOI 10.1007/978-94-017-9288-2_2 

 

[40]  T. Le, J. Han, A. von Jouanne, K. Mayaram, and T. Fiez, “Piezoelectric micro-power 

generation interface circuits,” IEEE Journal of Solid-State Circuits, Vol. 41, No. 6, pp. 1411-

1420, June 2006. 

 

[41] G. Ottman, H. Hofmann, A. Bhatt, and G. Lesieutre, “Adaptive piezoelectric energy 

harvesting circuit for wireless remote power supply,” IEEE Transactions on Power     

Electronics, Vol. 17, No. 5, pp. 669-676, Sep. 2002. 

 

[42]    T. Oh, S.K. Islam, M. Mahfouz, G. To, “A low-power CMOS piezoelectric transducer based 

energy harvesting circuit for wearable sensors for medical applications,” Journal of Low 

Power Electronics and Applications, Vol. 7., No. 33, doi:10.3390/jlpea7040033, 2017. 

 

[43]   N. Krihely, and. S.B. Yaakov, “ Self-contained resonant rectifier for piezoelectric sources 

under variable mechanical excitation,” IEEE Transaction on Power Electronics, Vol, 26 

Issue 2, pp. 612-621, 2011.  

 

[44]   A. U. Din, D. Chung, D. Park, H. Lee, and J. W. Lee, “A high energy extraction self-

controllable CMOS resonant rectifier circuit for piezoelectric energy scavenging system,” 

2014 International SoC Design Conference (ISOCC), pp. 40-41, 2014. 

 

[45]    X. D. Do, H. H. Nguyen, S. K. Han, D. S. Ha, and S. G. Lee, “A self-powered high-efficiency 

rectifier with automatic resetting of transducer capacitance in piezoelectric energy harvesting 

systems,” IEEE Transaction on Very Large Scale Integration Systems, Vol. 23, No. 3, pp. 

444-453, 2015. 

 

https://www.piceramic.com/en/piezo-technology
http://www.instrumentationtoday.com/
http://dx.doi.org/10.3390/jlpea7040033


 

136 
 

[46]   E. Dallage et al., “Active self-supplied AC-DC converter for piezoelectric energy scavenging 

systems with supply independent bias,” Proceedings of  IEEE International  Symposium on  

Circuits and Systems, May, pp. 1448–1451, 2008. 

 

[47]   N. J. Guilar, R. Amirtharajah, and P. J. Hurst, “A fully-wave rectifier for interfacing with 

multi-phase piezoelectric energy harvesters,” IEEE International Solid-State Circuit 

Conference, San Fransisco, CA, Feb., pp. 302–304, 2008. 

 

[48]   A. Tabesh and L. G. Fréchette, “Ultra low power stand-alone circuitry for harvesting energy 

from a micro-power piezoelectric generator,” Proceedings of PowerMEMS/microEMS, 

Sendai, Japan, Nov., Vol. 1, pp. 289–292, 2008. 

[49]  O. Lazaro and G. A. Rincon-Mora, “A nonresonant self-synchronizing inductively Coupled 

0.18-µm CMOS power receiver and charger,” IEEE Journal of Emerging and Selected 

Topics in Power Electronics, Vol. 3, No. 1, pp 261-271, Mar. 2015. 

 

[50]  J. Yi, W. H. Ki, C. Y. Tsui, “Analysis and design strategy of UHF micro-power CMOS 

Rectifier for micro-sensor and RFID applications,” IEEE Transactions on Circuits and 

Systems I, Vol. 54, No. 1, pp. 153-166, Jan. 2007. 

 

[51]  “Radio frequency,” https://en.wikipedia.org/wiki/Radio_frequency 

 

[52]  “Free-space path loss,” https://en.wikipedia.org/wiki/Free-space_path_loss 

 

[53]   C.A. Balanis, Antenna Theory Analysis and Design. Wiley and Sons, Inc., 3rd ed., 2005. 

 

[54] FCC, Code of Federal Regulations, Title 47, Part 15. Federal Communications            

Commission, May 2015, http://www.ecfr.gov. 

 

[55]  M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips, W.A. Serdjiin, “Co-design of a CMOS 

rectifier and small loop antenna for highly sensitive RF energy harvesters,” IEEE Journal of 

Solid-State Circuits, Vol. 49, No. 3, pp. 622-634, Mar. 2014. 

 

[56]  Y. Lu, H. Dai, M. Huang, M.K. Law, S.W. Sin, S.P.U, and R. P. Martins, “A Wide Input 

Range Dual-Path CMOS Rectifier for RF Energy Harvesting,” IEEE Transactions on Circuit 

and Systems II: Express Briefs, Vol. 64, Issue 2, pp. 166-170, 2017. 

 

[57]   V. Kuhn, C. Lahuec, F. Seguin, C. Person, “A multi-band stacked RF energy harvester with 

RF-to-DC efficiency up to 84%”, IEEE Transactions on Microwave Theory and Technques, 

Vol. 63, No. 5, pp. 1768-1778, May 2015. 

 

https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Free-space_path_loss
http://www.ecfr.gov/


 

137 
 

[58]  U. Karthaus, and M. Fischer, “Fully integrated passive UHF RFID transponder IS with 

16.7µW minimum RF input power,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 10, 

pp. 1602-1608, Oct 2003. 

  

[59]  Power vs. Voltage, 2015, http://wera.cen.uni-hamburg.de/DBM.shtml 

 

[60]  I. A. Echearte, D. J. Lopez, M. Gasulla, F. Giuppi, and A. Georgidis, “A High-efficiency 

Matching Tenhnique for Low Power Levels in RF Harvesting,” PIERS Proceedings, 

Stockholm, Sweden, August 2013. 

 

[61]  A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, and F. D. Flaviis, “Power harvester 

design for passive UHF RFID tag using a voltage boosting technique,” IEEE Transactions 

on Microwave Theory and Techniques, Vol. 55, No. 6, pp. 1089-1097, 2007. 

 

[62]  “DC-to-DC converter,” https://en.wikipedia.org/wiki/DC-to-DC_converter 

 

[63]  T. Agarwal, “Different DC to DC Voltage Conversion Methods,”   

https://www.elprocus.com/different-types-dc-to-dc-converters/ 

 

[64]  “Characteristics and Evaluation Methods of Switching,” 2016/03/14, 

         http://micro.rohm.com/en/techweb/knowledge/dcdc/dcdc_sr/dcdc_sr01/897 

 

[65]  U. Sengupta, “PWM and PFM Operation of DC/DC Converters for Portable Applications,” 

         https://pdfs.semanticscholar.org/c885/a1d9de3a1873e46ee4cecf33983184e6006a.pdf 

 

[66]  N. Mohan, T.Underland and W.P. Robbins, Power electronics: converters, applications and 

devices, John Wiley & Sons. 1989. 

 

[67]  S. Bandyopadhyay, and A.P. Chandrakasan, “Platform Architecture for Solar, Thermal, and 

Vibration Energy Combining with MPPT and Single Inductor,” IEEE Journal of Solid-State 

Circuits, Vol. 47, No. 9, Sept. 2012. 

 

[68]   “What is MPPT?,” http://www.leonics.com/support/article2_14j/articles2_14j_en.php 

 

[69]  V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch. Part II: 

Discontinuous Conduction Mode,” IEEE Transactions on Aerospace and Electronics 

Systems, Vol. 26, No. 3, pp. 490-496 and pp. 497-505, 1990. 

 

[70]   R.W. Erickson, and D. Maksimovic, Fundamentals of power electronics, 2nd Edition, New 

York: Kluwer Acadimic Publishers, 2001. 

http://wera.cen.uni-hamburg.de/DBM.shtml
https://en.wikipedia.org/wiki/DC-to-DC_converter
https://www.elprocus.com/different-types-dc-to-dc-converters/
http://micro.rohm.com/en/techweb/knowledge/dcdc/dcdc_sr/dcdc_sr01/897
https://pdfs.semanticscholar.org/c885/a1d9de3a1873e46ee4cecf33983184e6006a.pdf
http://www.leonics.com/support/article2_14j/articles2_14j_en.php


 

138 
 

[71]  Y. Roshan, and M. Moallem, “Maximum power point tracking using boost converter input 

resistance control by means of Lambert W-Function,” Power Electronics for Distributed 

Generation Systems (PEDG), 2012 3rd IEEE International Symposium, June 2012. 

 

[72]  R. D’hulst, P. D. Mitcheson, J. Driesen, “CMOS buck-boost power processing circuitry for 

power MEMS generators,” 6th International Workshop on Micro & Nanotechnology for 

Power Generation and Energy Conversion Applications (PowerMEMS), Berkeley, USA, 

Nov. 29th – Dec. 1st, 2006. 

 

[73]  “An Efficiency primer for switch-Mode, DC-DC converter power supplies,” Application 

Note 4266, Maxim Integrated Products, Inc., 2008.  

         URL: http://www.maximintegrated.com/en/app-notes/index.mvp/id/4266 

 

[74]   “Calculating Efficiency,” Application reports, SLVA390-February 2010, 

          http://www.ti.com/lit/an/slva390/slva390.pdf  

 

[75]   “MOSFET Selection to Minimize Losses in Low-Output-Voltage DC-DC Converters,” 

            Fairchild Semiconductor Power Seminar 2008-2009, 

https://www.fairchildsemi.com/technical-articles/MOSFET-Selection-to-Minimize-       

Losses-in-Low-Output-Voltage-DC-DC-Converters.pdf 

 

[76]  Mike Wens, Michiel Steyaert. “Design and implementation of fully-integrated DC-DC 

converters in standard CMOS,” Springer, 2011. 

 

[77] H.K Gummel, and K. Singhal, “Intrinsic MOSFET Capacitance Coefficients,” IEEE 

Transactions on Electron Devices, Vol. 48, No. 10, Oct. 2001. 

 

[78]   D. Jauregui, B. Wang and R. Chen, “Power loss calculation with common  source inductance 

consideration for synchronous buck converter,” Texas Instruments, 2011. 

                          

[79]  Antonio Massarini, Marian K. K. “Self-Capacitance of Inductors,” IEEE Transactions on 

Power Electronics, Vol. 12, No. 4, July 1997.  

 

[80]   Z. Shen, Y. Xiong, X. Cheng, Y. Fu and P. Kumar, "Power MOSFET Switching Loss               

Analysis: A New Insight,” Industry Applications Conference, Conference Record of the 2006 

IEEE, Vol.3, No., pp. 1438,1442, 2006. 

 

[81]  Adafruit Feather 32u4 RFM95 LoRa Radio 868 or 915 MHz RadioFruit         

         https://www.adafruit.com/product/3078  

 

http://www.maximintegrated.com/en/app-notes/index.mvp/id/4266
http://www.ti.com/lit/an/slva390/slva390.pdf
https://www.fairchildsemi.com/technical-articles/MOSFET-Selection-to-Minimize-%20%20%20%20%20%20%20Losses-in-Low-Output-Voltage-DC-DC-Converters.pdf
https://www.fairchildsemi.com/technical-articles/MOSFET-Selection-to-Minimize-%20%20%20%20%20%20%20Losses-in-Low-Output-Voltage-DC-DC-Converters.pdf


 

139 
 

[82] C. Diaz, C. Duvvury, S-M. Kang, "Thermal failure simulation for electrical overstress in 

Semiconductor devices,” 1993 IEEE International Symposium on Circuits and Systems, Vol. 

2, pp. 1389 - 1392, 1993. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

140 
 

VITA 

 

Taeho Oh was born in Seoul, South Korea on December 11th, 1975. He has come to US on 

1994 right after he graduated from Shin-Il high school to pursuit his B.S. degree. 1994 through 

1995, he has studied English and some college courses at Saint Louis University as well as Saint 

Louis community college to prepare for the university. In 1995 fall, he entered the University of 

Alabama in Huntsville to study electrical engineering. From 1998 fall to 2000 spring semester, he 

had worked as Co-Op student at Magnetek Inc. (Now with part of Panasonic Lighting group) 

located at Decatur Alabama. During his Co-Op periods, he designed and tested a ballast for the 

lamps. After finishing his college, he served his duty at 56th infantry division. Right after finishing 

his duty, he worked at TRW Inc. for 1 year as a member of marketing and sales team. In 2005, he 

came to the University of Tennessee at Knoxville to study an electrical engineering as a master 

student under supervision of Dr. Syed K. Islam. After finishing his master degree, he came back 

to Korea and worked about 9 years as an analog IC design engineer including at Dawin Technology 

Inc. (Now merged with Hancom GMD), TLI Inc., and Samsung Electronics. While he was working 

as an IC design engineer, his primarily jobs were designing IC for LED display driver IC and smart 

phone power management IC. On 2014, he came back again to the University of Tennessee at 

Knoxville to pursuit his PhD degree under same advisor, Dr. Syed K. Islam. 

 

 

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2018

	DESIGN AND IMPLEMENTATION OF ENERGY HARVESTING CIRCUITS FOR MEDICAL DEVICES
	Taeho Oh
	Recommended Citation


	tmp.1543874887.pdf.lRqIm

