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Abstract

No document is created in a vacuum. In all literature, there exists some influencing factor

either in the form of cited documents, collaboration, or documents which authors have read.

This influence can be seen within their works, and is present as a latent variable. This

dissertation introduces a novel method for quantifying these influences and representing

them in a semantically understandable fashion. The model is constructed by representing

documents as tensors, decomposing them into a set of factors, and then searching the corpus

factors for similarity.
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Chapter 1

Introduction

Nam cum pictor praecogitat quae facturus est, habet quidem in intellectu sed

nondum intelligit esse quod nondum fecit.

– Anselm of Canterbury [7]

In the eleventh century, Anselm of Canterbury wrote what has since come to be known as

the ontological argument for the existence of God [7]. Anselm’s argument was based on the

assumption that all ideas, or more specifically, all thoughts originate either from perceptions

of the outside world or from images formed within the imagination. From this he provides an

argument for the existence of a divine being. The research presented here follows this same

epistemological assumption to a much less trivial end. Instead of proving divine influence,

the present work shall attempt to measure the influence present in the written works of less

divine beings.

The basic assumption made about text documents is the same assumption that Anselm

made about the origin of thoughts. Every word, phrase, sentence, paragraph, and theme in

a document must come from one of two sources. Either the author created the thought from

within their own mind, and as such this counts as a literary contribution, or the author could

have transferred ideas from some outside source. These sources can take on many forms. In

the case of academic writing, the author is likely to have been influenced primarily by the

various books and papers that they have read over the course of their research. Another

form of influence is a coauthor (though in the case of academic literature, coauthors are
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almost always explicitly stated.) Of course, the influence over the text in a paper is not

constrained merely to the literature that the author has cited, but is ultimately a reflection

of an author’s entire life experience and background. In the case of literary writing, such

as a novel or play, a reasonable assumption is that an author is influenced by other works

within their genre as well as by the society in which they live.

Given that every written document is influenced by at least a small set of outside

documents, the present work attempts to model and quantify this influence by separating

documents into a set of factors and then searching for common factors among the documents.

The desired result has two parts. First, a weight is assigned to each factor indicating its

importance in the target work. Second, the factors themselves should carry enough semantic

meaning to identify the ideas and elements of style which have been transferred from a source

document to a target document. Thus, the goal of the present work is to identify influencing

factors and to quantify the influence they exert on a target document.

The usefulness of such a measurement should be readily apparent to anyone working in

any academic field. In modern research, the performance of participants is rooted in an

attempt to measure that person’s influence over their chosen field. Traditional approaches

to this problem involve counting citations over a specific window of time [1] while more

modern approaches tend to involve some document semantics [11, 16]. Measuring influence

in a written document can also be applied in situations where authorship is in question. Given

a corpus of works of confirmed provenance, and a disputed document, influence modeling

can identify the possible influence of each author. Thus textual influence modeling can be

used to answer the question of authorship where it is disputed, or could potentially be used

to identify plagiarized passages.

1.1 Modeling Influence

At a high level, an influence model identifies elements that appear to have been incorporated

into a target document from a source document. These elements are numerous, and are

generally perceived on an intuitive level. For example, they could include elements of style,

topics, phrases, or ideas. A human reader seems to be able to identify these elements on an

2



intuitive level, as can be seen readily whenever a reader says one author “sounds like” another.

This operation is also in effect when tracing ideas through written academic literature. In

either case, the text of a target document along with its corpus of cited documents seems to

provide sufficient evidence to identify potential sources of influence in the target document.

The chief problem with an intuitive model such as the one outlined in the previous

paragraph is that it is highly subjective. Every conclusion reached by human scholars in such

a system must appeal to intuition and logic, and so determining the strength of any perceived

relationships present in the corpus presents a difficult challenge. In recent years, the emerging

field of computational stylistics has offered several techniques for quantifying these elements

of style which can serve as markers of influence [3, 10, 6]. In so much as it can, computational

stylistics has the principal goal of using textual evidence to answer the question of authorship.

The current state of the art techniques for addressing these questions rely upon statistical

analysis of word frequencies within documents [10]. The typical approach is to use a set of

“marker words” to determine the likelihood of an author’s contribution to a target document.

Those words that are more likely to occur in the works of one author are ascribed to them

if there is sufficient statistical significance of the word’s classifying power. This current

approach offers only a coarse level of determination. Computational stylistic analysts can

identify words that are more likely to come from one author’s work, and they in turn identify

whether that author appears to have contributed to a target document. Thus the current

techniques only inform the probability of an author’s contribution as a dichotomy. Each

potential author was either a contributor, or they were not. The objective of the model

outlined in this dissertation is to extend this model to include more detail. As opposed to

determining whether an author has contributed to a target work directly, this model assumes

that influence is present in multiple forms; the present model seeks to identify the strength

of influence, as well as to identify what those specific influences were.

1.1.1 Tensors and Decompositions

In order to analyze a document, it must first be quantified in some way that allows for

analysis. The model discussed in this dissertation represents documents using tensors. The

term tensor has been broadly applied across multiple fields to describe several different types
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of related objects. For the purposes of factor analysis, a tensor is simply an extension of

matrices into a higher number of modes. In tensor terminology a “mode” is a dimension

along which the tensor can be indexed. A scalar is a mode zero tensor, a vector is a mode

one tensor, and a matrix is a mode two tensor. When the number of modes exceeds two,

it is customary to refer to the array simply as a tensor. A detailed account of the tensor

operations performed by this model is given in the next chapter. For a complete treatment

of tensors as they pertain to factor analysis, see Tamara Kolda’s tutorial [19].

The underlying principle of tensor analysis is polyadic decomposition, which was first

described by Frank Hitchcock in 1927 [15]. When a tensor is expressed in polyadic form, it

is expressed as the sum of rank 1 tensors, which is usually written as the outer product of

vectors. (This is also referred to as the tensor product of vectors, which is in line with the

geometric interpretation of tensors as the outer product of vector spaces.) Each polyadic

factor in a tensor of m modes is the tensor product of m vectors. For example, given a

3-mode tensor T ∈ RI×J×K , its polyadic decomposition into r factors is a set of factors

which satisfies Equation 1.1. For the sake of convenience, the remainder of this discussion

will assume a three mode tensor, however everything discussed here can readily be extended

to any number of modes.

T ≈
r∑

i=1

ai ⊗ bi ⊗ ci (1.1)

The tensor, or outer, product a ⊗ b used in Equation 1.1 results in a tensor where the

modes are the concatenation of the modes of a and b. For instance, if a and b are vectors of

size i and j respectively, a⊗ b results in a 2-mode tensor with dimensions i× j. In the case

of building a 3-mode tensor, three vectors are needed, and the elements of the product result

are computed as in in Equation 1.2. A graphical representation of this product is shown in

Figure 1.1. Of note is how each vector serves as scaling values for a mode.

Tijk = aibjck (1.2)
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(a) Mode Vectors (b) a⊗ b (c) a⊗ b⊗ c

Figure 1.1: Tensor Product
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The notion of the tensor product also gives rise to the notion of tensor rank. Tensor rank

is not the same as matrix rank, and is in fact much more difficult to compute. Perhaps the

easiest way to understand the notion of tensor rank is recursive. A rank 1 tensor is a tensor

which can be constructed completely from the tensor product of 1-mode tensors (vectors).

The tensor described in Equation 1.2 and Figure 1.1 is therefore a rank-1 tensor, as are all

the factors in the polyadic decomposition. A tensor of general rank r is the result of the

summation of r rank-1 tensors. The rank of a tensor T is therefore defined as the minimum

number of rank-1 tensors needed to sum to T .

Hitchcock’s paper mainly presents the polyadic decomposition from a purely mathemat-

ical perspective, with applications to studying tensor invariants and tensor rank. In fact, as

later papers show, the problem of determining the rank of a tensor is NP-Complete [14].

Polyadic decomposition began to see other uses when it was rediscovered in 1970 by

Richard Harshman [12], Douglas Carroll, and Jih-Jie Chang [8]. Harshman coins the term

“PARAFAC”, a portmanteau of “Parallel Factors” while Carroll and Chang refer to the

model as “CANDECOMP” in placed of “Canonical Decomposition”. Both papers present the

model as a means of studying psychological data by treating the tensor factors as explanatory

variables for the variance in the tensor data. In recent years, tensor analysis has begun to

take root in other fields such as chemometrics [4] and text mining [3]. In several modern

treatments, the polyadic decomposition is referred to as “CPD” or “Canonical Polyadic

Decomposition”. For the purposes of factor analysis, factors are often normalized, without

loss of generality [4, 3], yielding the decomposition shown in Equation 1.3.

T ≈
r∑

i=1

λia
′
i ⊗ b′i ⊗ c′i (1.3)

Here λi is a scalar where λi = norm(ai⊗ bi⊗ ci). This is desirable because the factors in this

form are proportional profiles [12] with all of the magnitude of the factor contained in λi.

As can be clearly seen from Equation 1.3, λi is also an expression of the influence that factor

i exerts over the tensor T . For this reason, factors are typically expressed in order from

largest λi to the smallest λi. Thus these factor norms serve a similar purpose as eigenvalues

in principal component analysis, or as singular values in singular value decomposition.
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In fact, the similarities between PCA, SVD, and CPD do not end with the inclusion of

weights! Nor is it true that CPD is the only tensor decomposition. The closest competing

decomposition is the Tucker decomposition, first proposed in 1963 and fully formed in

1966 [19]. Given tensor T , the Tucker decomposition yields the factor matrices A ∈ RI×P ,

B ∈ RJ×Q, and C ∈ RK×R. The model also contains a so-called core tensor G ∈ RP×Q×R.

These factors are fit to satisfy Equation 1.4, where G ×n M is the n-mode product of tensor

G and matrix M.

T ≈ G ×1 A×2 B×3 C (1.4)

An element-wise version of the tucker decomposition is shown in Equation 1.5. For a

complete treatment of the n-mode tensor matrix product, see the Kolda tutorial [19].

tijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr (1.5)

As was shown by Henk Kiers, the relationship between PCA, Tucker decomposition, and

CPD is hierarchical [18]. While Kiers’s paper focuses on 3-way analysis, his results extend

to any number of modes. Because a tensor can be unfolded along any dimension to form

a two dimensional matrix, it is always possible to use PCA to find explanatory factors for

tensor data. In fact, Tucker-3 is a constrained version of PCA. The exact nature of these

constraints is beyond the scope of the present discussion, however they are a direct result of

the presence of the core tensor. A simplified summary is that the core tensor’s dimensions

predetermines the number of factors to be discovered. CPD, in turn, is a constrained variant

of the Tucker decomposition. While the CPD is usually written without a core tensor, it can

be thought of as having an identity tensor as its core. The identity tensor is simply a tensor

with ones along its super-diagonal and zeros everywhere else. (Or stated more formally, an

identity tensor is a tensor containing ones where i1 = i2 = . . . = in for all n modes and zeros

in all other positions.) Also, in CPD, P = Q = R (and so on if there are more than three

modes). Tucker decomposition allows for each mode to have a different number of factors,

while CPD does not. As can be expected, the more constraints placed upon the explanatory

model of the tensor comes at the expense of quality of fit. Hence, PCA will always provide
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the best fit, Tucker will either be as good or worse than PCA, and CPD will always be as

good or worse than a Tucker model [18, 4].

So then if the tensor decomposition models provide a worse fit, the question becomes why

are they important? The answer lies in several properties of the tensor decompositions. First,

tensor decompositions retain the structure of the original data [12, 19]. Unfolding a tensor

into a matrix loses semantic information about the variables being analyzed, and extracting

intuitive semantics from the resultant PCA model is difficult and usually impossible [4]. Also,

in the case of CPD, the factors are unique under rotation so long as the number of factors

extracted is greater than or equal to the rank of the tensor [13]. Another desirable property

of the CPD is that it does not partition space by hyper-surfaces. Instead, it creates a sort of

implicit set of axes for factor separation by providing a proportional profile along the tensor’s

basis [13]. Thus if several tensors of like dimensions are decomposed, their factors can be

logically thought of as existing within the same space. This allows for comparison among

the factors to be carried out, unlike under PCA where the factor space of each matrix is a

projection into a new space, making comparison of factors from disparate matrices difficult

to perform in a meaningful way.

In some instances of tensor analysis, it can be convenient to apply additional con-

straints to the model. The most common constraint applied to CPD is a non-negativity

constraint [21, 4, 19]. This is done for a variety of reasons, most notably as a form of

dimension reduction and when analyzing data which are naturally predisposed to be non-

negative. In the model presented in this dissertation, both outcomes are necessary. First, the

tensors used in this model are extremely sparse, and so introducing negative factors makes

the search space for factors so large that fitting the model becomes intractable. Second, the

tensors used in this model represent frequency data, which means that negative values in

factors would have no valid semantic meaning.

1.1.2 Representing Documents as Tensors

The text documents to be analyzed are represented as a tensor by dividing them into

phrases of length n. These phrases, commonly referred to as n-grams, are counted and

their frequencies are entered into a tensor. Each word in the corpus vocabulary is assigned
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an index, and the tensors n modes refer to these indexes. For example, suppose n = 3. The

document tensor D would have 3 modes. The entry dijk refers to the frequency of the n-gram

consisting of words i, j, and k from the corpus vocabulary.

The tensors produced by this encoding will be cubic. Given a vocabulary consisting of v

words, the resultant tensor will have v indexes in each mode. The tensor can represent the

frequency of all possible n-grams, and as such will be extremely sparse as very few of these

n-grams are likely to appear in a document. When decomposed into polyadic form, these

tensors will yield sets of related words as well as related n-grams that appear in the same

factors.

1.1.3 Modeling Influence

The basic model applied to the document begins with the decomposition of a document into

its individual factor tensors.

D =
∑
Fi (1.6)

where Fi ∈ F is a factor of the tensor D, (Fi = ai ⊗ bi ⊗ ci). As has been previously noted,

the model becomes more expressive by separating out a normalizing value λi from each fi.

Thus the decomposed document becomes:

D =
∑

λiF ′i (1.7)

where F ′i = 1
|Fi|Fi and λi = |Fi|. This is desirable for two reasons. Given that all tensors

within the corpus have the same dimensions, and that all are decomposed using Non-Negative

CPD, the factors occupy the same type of space as the factors of other documents. By

normalizing them into a proportional model of the document, the factors become directly

comparable irrespective of the magnitude of influence they exert in their source document.

Let C be a corpus of documents, encoded as tensors Dj ∈ C. Let Dt be the target

document to be studied, and all other documents in S = C − Dt are treated as source

documents for Dt. The goal of the influence model is to ascribe the factors of Dt to a factor

9



from each source document Ds ∈ S and assign weights to each of the source document

influences. Each document in C is decomposed as per Equation 1.7. Dt is also decomposed

into its components. This produces sets of factors F′s and Λs for each source document

as well as F′t and Λt for the target document. By measuring the similarity of each factor

f ′t ∈ F′t and source factors f ′s ∈ F′s in every F′s, each factor can be ascribed to a source

document Ds or as being original to Dt. Using the similarity measurements between the f ′t

and f ′s factors, each corresponding ft factor of Dt is categorized as either belonging to one

of several sets: F s
t for all factors of Dt ascribed to some factor of Ds and F n

t for all factors

with no matching source.

For each of these factor sets, tensors can be formed by summing over the set. For every

Fs
t , the tensor F s

t is the sum of all components of document t ascribed to document s.

Hence, the model of the target document can be rewritten:

Dt ≈
|S|∑
s=1

F s
t + Fn

t (1.8)

Normalizing as in the previous equations, the target document’s model becomes:

Dt ≈
|S|∑
s=1

λstF ′st + λnt F ′nt (1.9)

These new factor tensors, which are no longer necessarily rank 1 tensors, contain the

proportions of related n-grams, separated into components according to their attributed

source. This comprises the sought after semantic model of the document.

Given these new factors, the influence of each document is extracted:

Λt = (λ1, λ2, . . . λ|S|, λt) (1.10)

Weights for each document are then extracted as their proportion of importance to the

target document.

W =
1∑
Λt

Λt (1.11)
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Note that the weights from the source documents are not used. Essentially, the only

purpose the factors of the source documents serve is to classify the factors of the target

document. Having accomplished the classification step and constructed the model in

Equation 1.9, and extracted the weights in Equation 1.11, the target document has been

decomposed into a set of tensors which identify both the semantic shape of each contribution

and its corresponding weight.

1.1.4 Summary of Influence Modeling Procedure

Generating the above model can be subdivided into the following steps:

1. Encode each document in the corpus as a tensor.

2. Decompose each document using non-negative CPD.

3. Classify each factor of the target document Dt as either belonging to a source document

or as an original contribution of the author.

4. Extract weights from each subset of factors to determine the influence of each class of

factors.

The details of how each of these steps is accomplished appears in the next chapter of this

dissertation.

1.2 Related Work

Much of the inspiration for frequency based analysis for authorship detection comes from

the work of John Burrows and Hugh Craig [5, 6, 10]. In their papers, Burrows and Craig

utilize a variety of numerical techniques to explore marker words, and they use frequencies of

marker works coupled with T-distribution sampling to provide an argument for attributing

authorship of disputed works. They explore a variety of literary works, ranging from poetry

to Shakespeare’s plays. (Most of their focus is on Elizabethan and Victorian era works.) In

all of these works, the frequencies explored are based on single marker words, and the words

are extracted based on how unique they are to the authors in question.
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For n-gram classification, Noriaki’s Kawamae’s paper has shown that n-grams are capable

of building a generative topic model of a corpus of documents [17]. Kawamae’s work

shows that a combination of n-gram and word frequencies reveals information about a

corpus’s structure, especially hierarchical information pertaining to topics within the corpus.

Kawamae’s model builds a tree with probabilistic relationships which are then used to infer

information about the structure of a corpus, and shows that n-grams provide a sufficient

basis for modeling the transfer of ideas through a corpus.

Another related n-gram study was performed by Antonia, Craig, and Elliott [2]. In this

paper, Antonia et al. attempt to reproduce marker word studies using n-gram frequencies

in place of word frequencies. They were able to show that n-gram frequencies are able to

identify stylistic signatures of contributors to a text document. When n = 1, their model is

equivalent to marker words, and as they increase n, they retest to determine how expressive

the model is. They noted that there is no one length that seems to work best in all cases

when analyzing English language documents. Their results show that 1-gram, 2-gram, and

3-gram analysis tends to work well, but when exploring longer phrases the power of the

model drops off. Even in instances where 1-grams or 2-grams are best, 3-grams are still a

reasonable choice. Based on this result, 3-grams will be used in the tests in this dissertation.

The analysis performed in Antonia et al.’s work was conducted using delta and zeta tests

as was established in the standard marker word approach. As such, only the most frequent

n-grams of each author were explored, and they were only used as an evidentiary marker

of an author’s participation. One advantage that the analysis proposed in this dissertation

has is that it will account for all n-grams, and will explore how n-grams relate to each other

within the target document’s structure.

1.3 Outline of this Dissertation

The rest of this dissertation is organized as follows. First, there is a chapter detailing the

approach of building, fitting, and evaluating the influence model. Following the approach

explanation is an application which analyzes a conference paper and its sources. The final

12



chapter discusses the findings in the case study as well as some notes for further application

of this analysis technique.
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Chapter 2

Approach

This chapter details the approach used to build the influence model for a target document

and its corpus of supporting documents. This chapter also covers details of implementing this

model and the challenges inherent in realizing this model. The first section of this chapter

outlines the various steps required to build the influence model. The chapter concludes with

implementation challenges and details.

2.1 Influence Modeling

The influence model is governed by a document list and a set of parameters. The inputs

to the model are described in Table 2.1. The document list contains a list of all of the

documents in the corpus and is comprised of potential source documents and one target

document. The target document is placed at the end of the document list by convention.

The generated model’s output consists of the set of factors which have been found to

influence the target document, the weights of each document’s influence on the target

document, and the set of factors found from the decomposition of the document tensors.

The output variables of the generated model are described in Table 2.2.
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Table 2.1: Model Input

Parameter Explanation
docs A list of documents in the corpus. The target document

is the final entry in the list.
n The number of modes to use in tensor construction.
nfactors The number of factors for tensor decomposition.
threshold The threshold value for factor matching.

Table 2.2: Model Output

Parameter Explanation
W Set of weights of each factor of the target document.

Wi is the weight of target document factor i.
S The set of source indexes for each factor.

Si is the index of the source factor, 0
if the factor is unique to the target document.

F The set of all document factor tensors.
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2.1.1 Approach Overview

The overall process was described in Chapter 1. What remains is to see the detailed

formulation of how each component of the model is computed. The overall algorithm is

described in Algorithm 1. The principal activities in the model building process are document

preparation, tensor construction, and influence extraction.

2.1.2 Document Filtering and Vocabulary Extraction

The first step is to prepare the document corpus as detailed in Algorithm 2.The documents

are left mostly intact with the only filtering being to remove punctuation, numbers, and

convert to lower case. The document strings are then treated as a list of lower case words

and will be treated as such for the rest of this explanation.

Note that none of the words, including stop words, of the document are removed during

filtering, and no stemming is performed. The reason for this is that these elements go to the

style of the author. In fact, both stop words and unstemmed words have been shown to be

powerful markers for authorship and style [2, 23, 6].

In order to build tensors, a vocabulary is first extracted from the corpus. The vocabulary

is simply the set of all words within the corpus. The set V contains a single entry for each

word. The index of each word is used in the next step to create tensor representation of each

document. This process is described in Algorithm 3.

2.1.3 Tensor Construction

Following the preparation of the corpus and vocabulary extraction, the next step is key to

the construction of the tensor model. In this step, each document is represented by a tensor.

The tensor is constructed with n modes where each mode contains |V| dimensions. For

example, 3-mode tensor over a a 30-word vocabulary would result in a 30× 30× 30 tensor.

This is used to count the frequency of n-grams within each document. Thus, entry Dijk

counts the number of occurrences of the phrase ViVjVk within the document.
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input : docs, n, nfactors, threshold
output: W, S, F

prepare(docs);
V ← build vocabulary(docs);
C ← ∅;
foreach d in docs do
D ← build tensor (d, n, V);
C← C ∪ {D};

end
Λ,F ← extract factors(C, nfactors);
M ← build distance matrix(F);
λ← the entries in Λ corresponding to the target document.;
W, S ← extract influence(|docs|, M ,F,λ, threshold);
return W, S, F;

Algorithm 1: Influence Model Construction

input : docs
output: None

foreach d in docs do
Remove Punctuation from d;
Remove Numbers from d;
Convert d to lower case;

end
Algorithm 2: Prepare

input : docs
output: V

V← ∅;
foreach d in docs do

foreach word in d do
V← V ∪ {word};

end

end
return V;

Algorithm 3: Build Vocabulary
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The construction of this tensor is detailed in Algorithm 4. The tensor is constructed

using a sliding window, beginning with the first word of the document and proceeding until

n words from the end of the document. This process is illustrated in Figure 2.1.

The resultant tensor is typically very sparse as it counts the frequency of all possible n-

grams over the vocabulary V, and intuitively few (if any) documents would use every possible

n length combination of its vocabulary as most of these phrases would be nonsensical. Thus

the set of tensors C produced by Algorithm 4 is a set of sparse tensors representing the

document corpus. The last tensor in the set is the representation of the target document as

it has been placed at the end of the document list, as mentioned previously.
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input : d, n, V, n
output: D
D ← Tensor with dimension |V| × |V| . . .×n |V|;
Fill D with 0;
len← number of words in d;
for i← 1 to len− n do

/* Compute Tensor Element Index */

index← list of n integers;
for j ← 1 to n do

index[j]← index of word d[i] in V;
end
/* Update Frequency of This n-gram */

D[index]← D[index] + 1;

end
return D

Algorithm 4: Build Tensor

Figure 2.1: Sliding Window
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2.1.4 Tensor Decomposition

The next step in the process is to decompose each document tensor into rank-1 components.

As noted in Chapter 1, several decompositions exist which can accomplish this task. Because

the data the present model consumes is frequency counting, the tensors comprising the

corpus are all strictly non-negative. This arrangement naturally lends itself to non-negative

factorization. Moreover, as these tensors are expected to be very sparse, any factorization

that admits negative numbers would likely take a very long time to converge as it explores

many combinations of factors which sum to zero. In fact, these alternating negative and

positive factors would necessarily dominate the factors and would make comparison of

factors very difficult while providing no useful information about the underlying document.

Therefore, not only is non-negative factorization a logical choice, it is also a necessary choice

to ensure the expressiveness of the resultant model.

The method of non-negative factorization employed in this model is the Columnwise

Coordinate Descent (CCD) method described in Ji Liu et al.’s paper [21]. The CCD method

decomposes a tensor A into a core tensor C and a set of factor matrices U1...m where m is the

number of modes. The result of this decomposition is shown in Equation 2.1. The object

of the model is to minimize the error tensor E , and CCD accomplishes this by iteratively

solving for Ui by holding the other factor matrices constant. The optimal solution for each

entry of Ui is determined by a differential equation which is solved iteratively as it has no

closed form solution. The big advantage to the CCD method is that rows in each column

are independent, and so entire columns can be solved in parallel. CCD also allows for L1

sparsity constraints to be applied, though this is not used in the present model. (The L1

penalty is set to 0 for this model.)

A = (C ×1 U1 ×2 . . .×m Um)− E (2.1)

Note that the CCD model is a non-negative version of the Tucker decomposition. By

constraining the CCD model to use a square identity tensor (of dimension n×n×. . . n) for C,

the model becomes equivalent to the non-negative canonical polyadic decomposition. Each

Ui matrix will contain n columns, and when this product is carried out, it can be rewritten
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as the sum of the tensor product of the columns of U . That is, the equivalent CP model can

be expressed using Equation 2.2.

A =
n∑

i=1

U1
:,i ⊗ U2

:,i ⊗ . . .⊗ Um
:,i − E (2.2)

Having extracted the rank-1 tensors which approximate A, the last remaining step is to

normalize these factors. The norm used in this model is the L1 norm. Separating these out,

the final approximation of each document tensor is shown in Equation 2.3.

A ≈
r∑

i=1

λiFi (2.3)

The L1 norm is used here, and in the distance calculation in a later step, because it produces

a sparse solution. The tensors being factored in this model are already very sparse, and

the non-negative decomposition produces factors which are also sparse. Using the L2 norm

would tend to allow large differences between the factors to dominate the model’s selection

of related factors when the differences between factors are computed. Because the lower

sensitivity of the L1 norm is desired in the distance calculation, it is also used here. Doing

so sets the range of distances between factors to the interval [0, 2].

The entire process of the construction of these factors is shown in Algorithm 5. The

result is an L1-normalized set of rank-1 tensors.

As noted in Chapter 1, the number of factors determines the uniqueness of the

decomposition. In the case of canonical polyadic decomposition, the solution is unique if

the number of factors exceeds the tensor rank. However, computing the tensor rank is

intractable, and so it must be approximated through trial and error. One rule of thumb

for a 3-mode tensor, which is what is used in the case study in this dissertation, is that its

expected minimal rank is given in Equation 2.4 [9].

R =

⌈
IJK

I + J +K − 2

⌉
(2.4)

However, this estimate assumes a generic tensor and not a sparse tensor! In fact, in every

instance of the document tensors used here, this minimal rank would far exceed the number
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input : C, nfactors
output: Λ, F

F← ∅;
Λ← ∅;
nmodes← number of modes in C[1];
foreach D in C do

U← ccd ntfd(D, nfactors);
for i = 1 to nfactors do

/* Build the Factor */

T ← U[1][:, i];
for m = 2 to nmodes do
T ← T ⊗ U[m][:, i];

end
/* Compute the norm and normalize the factor */

λ←L1 norm(T );
T ← T /λ;
/* Insert the factor and norm into the list */

F← F ∪ {T };
Λ← Λ ∪ {λ};

end

end
return Λ, F

Algorithm 5: Extract Factors
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of non-zero elements. This leaves the choice up to searching for a number of factors which

gives the best fit to the model. The approach used to find this number begins with assuming

that the non-zero elements, nnz, of the document tensor were packed into a dense tensor with

dimensions 3
√
nnz× 3

√
nnz× 3

√
nnz. This starting point is then computed using Equation 2.5.

From this point, decompositions are attempted with increasing rank until the fit begins to

become worse, or until the error ratio drops below 20% (Equation 2.6). (Of course a different

threshold could be used if desired.)

R0 =

⌈
nnz

3 3
√
nnz − 2

⌉
(2.5)

|D − D̂|
|D|

(2.6)

Extending the starting point from Equation 2.5 for tensors of arbitrary, n, modes yields

Equation 2.7. However, the rank of sparse tensors is very much an open question. There is

no real theoretical basis for these equations other than sensible conjectures. The process of

finding the number of modes is, for now, confined to a process of trial and error. The objective

is always to find a model that fits reasonably well, and until the problem of sparse tensor

rank is solved this is all that can be achieved without an exhaustive search of all possible

ranks. These starting points do seem to yield good results in practice, and as 3-grams have

been shown to work best for author classification [2], 3-mode tensors (and Equation 2.5 will

be used in all of the experiments in this dissertation.

R0 =

⌈
nnz

n n
√
nnz − 2

⌉
(2.7)

2.1.5 Factor Classification

Having extracted factors from the document corpus, the next step is to classify each of the

target document’s factors as either belonging to the set F s
t (target factors with sources) or

F n
t (target factors without sources). In order to do this, the similarity of each factor pair

must be measured. Because each factor has the same dimension, and each factor’s modes

represent indexes over the same vocabulary, they can be compared by distance from each

23



other within the factor space. Algorithm 6 accomplishes this task by finding the L1 distance

between each pair of factors. The result is a matrix M where Mij is the L1 distance between

Fi and Fj. Of course, this matrix will have zeroes on the diagonal. Because each factor is

non-negative and already L1 normalized, 0 ≤ Mij ≤ 2, where 0 is a perfect match and 2

indicates maximum distance.

In actuality, only the entries corresponding to the target document factors are necessary.

That is, M [i, j] is only needed where i is the index of a target factor and j is the index of

a potential source factor. The entire distance matrix is useful for studying the distribution

of factor distances which is useful in finding model thresholds as well as quantifying the

uniqueness of each factor.

The final task to be performed in constructing the model is to identify which source

factors are closest to each target factor and compute the corresponding weights of those

factors. This task is carried out by Algorithm 7. The basic strategy is for each factor in

the target document to be assigned the source factor with the minimum distance. The only

issue with this approach is it would always assign a source to a target factor, even though

some target factors are expected to have no relatable source. For this reason, two steps

are needed. First, the minimum is found, second it is compared against a threshold. If the

minimum value is below this threshold, the factor is assigned a source. If, on the other hand,

the minimum distance is above the threshold it is not assigned a source.

The threshold value is a heuristic parameter which controls the matching of factors.

Recall that the factors are L1-normalized, and the distance computed between the factors is

the L1-distance. If two factors are a perfect match, this results in a distance of 0 If they are

completely disparate, the result will be a maximum distance of 2. This latter arrangement

implies that no non-zero entries in the factor tensors were found in the same position and

would therefore signify completely unrelated factors. A sensible default setting for this

threshold is 0.2 as this requires a 90% agreement of the entries. Another approach to selecting

a threshold value is to examine the distribution of distances within the distance matrix and

use that information to select the threshold. For the applications in this dissertation, a

threshold value of 0.2 is used.

24



input : F
output: M

M ← Matrix with dimension |F| × |F|;
for i = 1 to |F| do

for j = 1 to |F| do
M [i, j]← L1 norm(F[i]− F[j]);

end

end
return M

Algorithm 6: Build Distance Matrix

input : ndocs, M , F, λ, threshold
output: W, S

/* Compute Weights */

sum←
∑
λ;

W← λ/sum;
S← list of integers of size |λ|;
/* Classify Factors */

nfactors← |λ|;
for i = 1 to nfactors do

min←M [row, 1];
minIndex← 1;
row ← i+ nfactors ∗ (ndocs− 1);
for j = 1 to nfactors ∗ ndocs do

if M [row,j]< min then
min←M [row, j];
minIndex← j;

end

end
if min ≤ threshold then

S[i]← minIndex;
else

S[i]← 0;
end

end
return W, S;

Algorithm 7: Extract Influence
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The result of the classification operation is the set W which is simply the normalized set

of λ values for the target document, and the set S where entry Si is the index of the factor

which is the source for target factor i. If target factor i has no assignable source, then a

value of 0 is written to position Si.

After the factors have been matched, the final output of the model can be summarized

by summing the influence of each source document and author contribution factor using

Algorithm 8.
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input : ndocs, S, W
output: I, author

I← List of 0 repeated ndocs− 1 times;
for i = 1 to ndocs do

if S[i] = 0 then
author = author + W[i];

else
j ← Document number corresponding with S[i];
I[j]← I[j] + W[i];

end

end
Algorithm 8: Final Summation
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2.2 Implementation

Implementing the model described in this chapter comes with several challenges. The biggest

challenge is the size of the tensors, as well as a lack of good support for sparse tensors in

available software. Several packages were tried, but ultimately a custom tensor library

was needed to support these tensors. The attempted software packages were Tensor Flow

(Python), Tensor Toolbox (Matlab), SciPy/NumPy (Python). While all three packages

provide support for sparse tensors, their operations are not well optimized for sparse tensor

usage. Also, in some cases, tensors were converted into dense tensors before operations were

performed. Unconstrained vocabularies can often have tens of thousands of words, which

leads to a tensor which far exceeds the capacity of any machines available for this project.

Before these libraries were abandoned, constrained vocabularies were attempted.

2.2.1 Constraining Vocabularies

As already stated, the tensors used in this model are very sparse. Essentially, every word in

a document is the beginning of a new phrase, and so every document tensor will contain the

same number of non-zero entries as there are words in the document. (With the exception

being the last n-gram as each word following the first in the n-gram cannot be the start of

a new n-gram.) Storing the frequency counts of these documents is trivial, but the model

needs them in their positions within the tensor in order to decompose and fit elements. Most

of the complexity, therefore lies with the dimensionality of the tensor which is driven by the

size of the vocabulary.

Looking at the vocabularies in several documents during preliminary experiments showed

that each document only had about five hundred to one thousand frequent words. By

sorting the vocabulary in descending order by frequency, the vocabulary can be shortened

with minimal disturbance to the structure of the document and the makeup of most of

the n-grams. Constraining the vocabulary to 600 words when building a 3-gram tensor

results in a tensor which has 216,000,000 potential entries. Even in dense format, this can

be comfortably accommodated by the memory of even a modest modern desktop machine.

However, a problem still remains with this approach. Decompositions of a tensor of this
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size, typically into 100-200 factors, requires too much time. When using Matlab on an 8-

core 3.4GHz Intel Linux machine with 16GB of RAM, non-negative factorization tended to

require about 2 hours of elapsed wall-clock time, and so a faster method was still needed even

in the constrained case. Searching for the optimal number of factors by multiple factorings

proved even more challenging. This is especially challenging when considering that this

model requires the decomposition of multiple documents within a corpus.

2.2.2 The sptensor Library and Tool

To address the problems of time and memory constraints, a new library was created. This

library is called sptensor, and it is written in ANSI C. C was selected because it provides

enough control for optimizing memory usage and it is well situated to have libraries for other

languages bound to it.

The sptensor library is implemented as a shared library, and also has a command line

tool which allows tensor operations to be performed on files. The main components of the

sptensor library are:

vector An array list styled general purpose storage structure. This grows dynamically as

needed.

sptensor A sparse tensor storage structure. Tensors are stored as a list of coordinates with

indexes and values stored in separate vectors. The tensor indexes are maintained in

sorted order giving O(lgn) lookups.

tensor view A series of overlays for tensor objects. These provide general ways of accessing

tensors, printing tensors, and performing operations. Operations included in the library

are reshaping tensors, slicing tensors, and general tensor arithmetic. Mechanisms are

provided to allow the library’s user to provide their own tensor views.

tensor math A set of tensor operations. These include element wise operations, scalar

multiplication, and a set of tensor products.

ccd An implementation of Liu’s Columnar Coordinate Descent non-negative tensor factor-

ization algorithm [21].
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The goals for the development of this library are:

1. Implement a library for dealing with sparse tensors efficiently.

2. Provide fast CCD tensor decomposition.

3. Provide an MPI implementation for common tensor functions to allow for operations

on very large tensors.

At the time of this writing, the first two goal have been achieved but unfortunately the MPI

version of sptensor does not yet exist. The sptensor library is designed to only represent

sparse tensors, and so it has the opposite problem the common tensor libraries have. Dense

tensors in sptensor are therefore fairly inefficient both in time and space complexity. However,

for the present application the library performs quite well. Where Matlab factorization of

tensors over constrained vocabularies typically require 1-2 hours to complete on a modest

desktop computer (3.4GHz), sptensor can accomplish the task in 5-10 minutes. This speedup

allowed for the construction and testing of the model to proceed.

2.2.3 Text Modeling Suite

The text model described in this chapter is implemented as a series of stand-alone programs.

Essentially, each of the algorithms described in this chapter are implemented as either part of

the sptensor library or as a stand alone utility. The decision of whether to build an algorithm

into sptensor was based on whether the operation was a generic tensor operation, or whether

it was specific to this model. The sptensor tool provides the following facilities:

• CCD Factorization (as used in Algorithm 5)

• Extraction of normalized factors from the matrix output of CCD, also from Algo-

rithm 5.

• Distance matrix computation (Algorithm 6)

In addition to the sptensor utility, the following standalone programs are used to build

the model:
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prepare This is a simple bash shell script which uses the UNIX command tr to perform the

filtering and lower case conversion found in Algorithm 6.

vocabulary A small python program that reads all the documents in a corpus, builds a

vocabulary, and counts word frequencies. The vocabulary is then sorted and truncated

to a desired length. An @ symbol is inserted at the end as a wildcard for all the

infrequent words. The output of this program is a vocabulary file, which simply lists

each word in the vocabulary one per line.

doctns A C program which uses the sptensor library to build the document tensors

according to Algorithm 4. If doctns encounters a word not in the vocabulary, it uses

the wildcard at the end of the list.

classify A C program which uses the sptensor library to classify and report classification of

factors. The output of this corresponds to the S and W sets in Algorithm 1.

build-model A shell script which invokes all the other programs as per Algorithm 1.
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Chapter 3

Results

This chapter contains the results of two sample runs of the model. The first is a simple

example which is intended to show what the model’s results look like. The second example

is the result of the classification of a regional conference paper.

3.1 A Simple Example

One of the problems with a model such as this one is that ground truth is difficult to find.

In fact, this model quantifies a property which even the author of the documents in question

may be unaware of. As such, verification of the model depends on the sensibility of its

answers. However, this again presents a challenge because the total structure of all of the

factors and relationships among them is very complex and difficult to visualize. To help

alleviate this problem, this section contains a very simple example, one in which all of the

components of the model may be seen. This example uses three simple stories, written for

this purpose, drawing on a 30 word vocabulary. The first story is in Figure 3.1, the second

is in Figure 3.2, and the third is in Figure 3.3. The third story is intended to be a sequel

of sorts, drawing on material from the previous stories. The complete vocabulary for this

example is shown in Table 3.1.
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The cat sat on the mat. The cat was happy to be on the mat. The cat saw the mouse
running but was too lazy to chase it.

Figure 3.1: The Cat’s Tale

The dog walked to the house. The dog saw the food bowl, and the dog saw a squirrel. The
dog chased the squirrel from the food bowl.

Figure 3.2: The Dog’s Tale

The dog saw the cat on the mat. The dog walked to the house, and the dog chased the cat.
The squirrel was happy to see the dog chase the cat on the mat. The dog saw the squirrel,
and decided to chase the squirrel instead. The cat sat on the mat.

Figure 3.3: The Saga Continues

Table 3.1: Cat and Dog Vocabulary

I Word I Word
1 the 16 chased
2 house 17 sat
3 mouse 18 be
4 squirrel 19 happy
5 it 20 on
6 saw 21 from
7 lazy 22 food
8 cat 23 decided
9 mat 24 to
10 a 25 was
11 bowl 26 dog
12 walked 27 running
13 too 28 instead
14 and 29 but
15 see 30 chase
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The number of factors was determined by trial decomposition of the target document.

The target document consists of 52 words, which yields 49 3-grams, of which 42 are unique.

The resultant document tensor has 42 non-zero entries. Of course, one unique solution to

the decomposition of this tensor would be 42 tensors consisting of the individual non-zero

entries in the same position as in the target tensor. This would be the maximal candidate for

the rank of the tensor. Tensor decompositions were performed for between 1 and 42 factors.

Above 15 factors, the CCD algorithm produced factorizations that were mostly zeroes. That

is, most of factor tensors consisted entirely of zero entries. This is due to the small number of

entries present, and the small amount of variation between them. Because the higher-ranked

factorizations all suffered from this problem, they were excluded from consideration. For the

factorizations between 1 and 15 factors, 7 yielded the best fit with an error ratio of 0.45,

and so 7 was determined to be the optimal number of factors for this corpus. Even with this

relatively poor fit, the model was able to distinguish features of the stories. The distances

between the factors, other than the diagonals, range from 0 to 1.4. The final classification

step yielded the classification of factors shown in Table 3.2.

The model threshold value was set to 0.2, which is a sensible value as this requires a 90%

match in a factor. In this case it would not have mattered, however, as the matching factors

were all perfect matches with an L1 distance of 0.

Factor two was matched to the cat story, and factor seven was matched to the dog story.

These factors are shown in Table 3.3 and Table 3.4. As can be seen in these factors, the

principal takeaway from the cat’s story is that it was “on the mat”, a theme which is indeed

carried to the target document. For the dog’s contribution, the 3-grams show the various

actions that the dog performs, and in the sequel the dog is the clear actor (for better or

worse). The remaining factors (1,3,4,5, and 6) were determined to be original to the target

document. These factors are seen in Table 3.5. The unmatched factor includes interactions

which were not in the original stories, as well as actions the animals did not perform in the

original.

The separation that the model accomplished, even with very scant data, shows that the

expected similarities in the resultant factors are present. The next step is to look at a more

substantial example.

34



Table 3.2: Cat Dog Model

Factor Factor Weight Classification
1 0.28 Author Contribution
2 0.15 Cat Factor 1
3 0.14 Author Contribution
4 0.14 Author Contribution
5 0.11 Author Contribution
6 0.11 Author Contribution
7 0.06 Dog Factor 1

Table 3.3: Factor 2 - Matched to Cat Factor 1

Word 1 Word 2 Word 3 Proportion
on the mat 1.00

Table 3.4: Factor 7 - Matched to Dog Factor 1

Word 1 Word 2 Word 3 Proportion
the dog saw 0.40
the dog walked 0.20
the dog chased 0.20
the dog chase 0.20
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Table 3.5: Sequel Original Factors

Word 1 Word 2 Word 3 Proportion
saw the squirrel 0.267417
saw the cat 0.223651
saw the dog 0.192194
cat the squirrel 0.044066
cat the cat 0.036854
cat the dog 0.031670
mat the squirrel 0.034331
mat the cat 0.028712
mat the dog 0.024674
see the squirrel 0.032132
see the cat 0.026873
see the dog 0.023094
chased the squirrel 0.013437
chased the cat 0.011238
chased the dog 0.009657
squirrel and happy 0.249836
squirrel and decided 0.262960
squirrel was happy 0.237368
squirrel was decided 0.249836
decided to chase 1.000000
happy to see 1.000000
cat saw the 0.345830
cat see the 0.040819
cat chased the 0.172914
cat chase the 0.213734
walked saw the 0.056987
walked see the 0.006726
walked chased the 0.028493
walked chase the 0.035220
to saw the 0.044398
to see the 0.005240
to chased the 0.022199
to chase the 0.027439

36



3.2 A Conference Paper Case Study

For a real-world case study, a conference paper was pulled from the ACM Digital library.

This was the first paper listed in the first conference listed in their regional conference

proceedings. This paper cites four other papers and two websites. The two websites were

used to pull data, and so they are not included in the corpus. In addition to the four

cited papers, two unrelated papers are included to test if the model will select factors from

these unrelated papers. The complete corpus, listed with the target paper last, is shown

in Table 3.6. Documents 1-4 are the papers cited by the target paper, documents 5-6 are

unrelated papers, and document 7 is the target paper.

The entire corpus consists of 45,152 words. As described in the previous chapter, the

vocabulary was truncated to 600 words. The 600 words were the most frequent words across

the corpus. The other parameters are shown in Table 3.7 Again, 0.2 is used as the threshold

as it is a good default setting. The decomposition of the 7 documents into 150 factors

was carried out on a machine with a 3.9GHz 8-core Intel processor and 15GB of RAM.

The decomposition and construction of normalized tensors took approximately 2.5 hours to

complete. Calculation of the distance matrix and classifying the factors required another

hour and a half. The results are shown in Table 3.8.

The distribution of the factor distances are shown in Figure 3.4. The vertical red line

on the graphs shows the threshold for factor matching. Figure 3.4(a) shows the distribution

of factor distances for the entire factor matrix while 3.4(b) shows the distribution of the

distances from the target factors. Note that both distributions are tri-modal. The two spikes

on the far right correspond to factors from the unrelated documents, which shows that they

are well separated from the target document’s factors and from each other.
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Table 3.6: Conference Paper Corpus

Num Document Information
1 Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A

symbolic representation of time series, with implications for
streaming algorithms. In Proc. DMKD 2003, pages 211. ACM Press, 2003.

2 Andreas Schlapbach and Horst Bunke. Using hmm
based recognizers for writer identification and
verification. In Proc. FHR 2004, pages 167172. IEEE, 2004.

3 Yusuke Manabe and Basabi Chakraborty. Identity
detection from on-line handwriting time series. In Proc.
SMCia 2008, pages 365370. IEEE, 2008.

4 Sami Gazzah and Najoua Ben Amara. Arabic
handwriting texture analysis for writer identification
using the dwt-lifting scheme. In Proc. ICDAR 2007,
pages 11331137. IEEE, 2007.

5 Kolda, Tamara Gibson. Multilinear operators for higher-order
decompositions. 2006

6 Blei, David M and Ng, Andrew Y and Jordan, Michael I. Latent
dirichlet allocation. 2007

7 Serfas, Doug. Dynamic Biometric Recognition of Handwritten Digits
Using Symbolic Aggregate Approximation. Proceedings of the ACM
Southeast Conference 2017

Table 3.7: Conference Model Parameters

n nfactors threshold
3 150 0.2

Table 3.8: Conference Classification Results

Document Influence Number of Matched Factors
1 0.21 10
2 0.09 9
3 0.06 3
4 0.06 1
5 0.00 0
6 0.00 0
Author 0.57 127
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(a) All Factor Distances (b) Target Factor Distances

Figure 3.4: Factor Distance Distribution
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Given the separation of the factors, and that the model excluded two obviously unrelated

papers, the model appears to have produced the desired results. For final verification, the

text of the documents in question will now be summarized. The target paper details an

algorithm which is used to identify handwritten characters [22]. The algorithm presented is

an extension of another algorithm, Symbolic Aggregate Approximation (SAX), which was

first presented in Lin et al.’s paper [20]. Because the target paper is an extension of this one,

a reasonable assumption would be that it would be heavily influenced by this source. This

is precisely what the model stated in that this paper was assigned a weight of 0.21, and had

a total of ten matching factors. The remaining citations that were found to influence the

document present competing algorithms, and are primarily mentioned in the target paper’s

related works section. A summary of one of the most influential of the 10 matched factors

is shown in Table 3.9. This is the factor 56 (out of 150) in the decomposition of the target

document and represents a weight of 0.04. The factor was sorted in decreasing order by

proportion and only the first 30 n-grams are shown. (The actual factor contains 11,661

n-grams, most of which have very small proportional entries.) Note most of the n-grams are

discussing the SAX algorithm, and various properties of it. In fact, this is what is found in

the other nine factors, they all discuss different elements of SAX.

Another property of the target paper that bears examination is the makeup of the text

itself. The paper is 4 pages long, the first page being devoted to front matter and the related

works. The second page contains the conclusion of the related works section, which occupies

approximately 25% of the page. The rest of the second page, and the entirety of the third

page have the author’s contributions and the conclusion. Half of the fourth page has the final

conclusion paragraph, and then the bibliography. By rough estimate, therefore, the paper

contains 1.75 pages of what is essentially the summary of existing work. This leaves 2.25

pages of original material, which means that a cursory analysis of the paper would imply

that the author has contributed 56% of the text of the paper. The model’s output weight

for the author’s contributions of 57% is in line with this rough estimate.

As these results show, the model makes a set of reasonable matches, and it does not select

unrelated documents. The actual makeup of the factors are much more complex, however

ideas can be traced through them. Unfortunately, these factors are much too large to be
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included verbatim in this chapter. However, the factors that were matched from paper one

all deal with a technique which generates a symbolic representation of a time series. This

technique serves as the basis for the invention in the paper, and is talked about many times

with many of the same explanations used in the first paper. Thus the model has not only

avoided unrelated information, it has given a greater weight to the paper which had the

greatest semantic influence on the work being studied.
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Table 3.9: First 30 Non-Zero Entries of Factor 56

Word 1 Word 2 Word 3 Proportion
is the sax 0.000887
into the data 0.000886
symbols the sax 0.000874
digits the timeseries 0.000865
digits the data 0.000857
with the sax 0.000856
from the square 0.000852
however the sax 0.000844
up the sax 0.000844
characters the sax 0.000844
becomes the sax 0.000844
note the sax 0.000843
using the sax 0.000841
for the square 0.000838
into the sax 0.000838
from the svc 0.000833
from the paa 0.000832
author the square 0.000828
on the author 0.000824
for the svc 0.000819
for the paa 0.000818
on the accuracy 0.000814
on the array 0.000814
digits the sax 0.00081
author the svc 0.000809
author the paa 0.000808
on the distance 0.000806
on the x 0.000806
from the timeseries 0.000804
of the author 0.000802
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Chapter 4

Conclusions

This chapter contains a summary of the results, a justification of the model, an outline of

various weaknesses of the model, and then concludes with a discussion of future work.

4.1 Model Performance

As can be seen from the experiments in the previous chapter, the model performs as expected.

The factors discovered by non-negative tensor decomposition all contain related n-grams.

Moreover, the factors are unique enough that a match, or a near match within some heuristic

bound, provides evidence of a relationship between factors. The related factors also make

sense on an intuitive level, each having a clear semantic relationship to both target and

source material.

The quantifications of the influencing factors also perform as expected. While no ground

truth is available for a weighted mixture of source documents to the target documents,

inspecting the documents in the corpus shows that the model’s output reasonably matches

the expectations of a human reader.

4.2 Justification of the Model

This influence model is based on a factorization of tensors describing the n-gram frequency

counts of the document. n-grams are a fairly common approach to modeling the topic and
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style of documents, and therefore the topic and styles of the documents can logically be

said to be contained within the tensor representation of them. By decomposing a document

tensor into a non-negative polyadic decomposition, the resultant factors will be a mixture

of covariant and contravariant factors. That is, the frequencies of the n-grams found within

each factor will have similar covariant properties. This is done irrespective of the order of

the n-grams within the document.

The next step of the model normalizes all the factors. In so doing, this removes the

magnitude of the frequencies and leaves the factor tensors with a proportional profile of the

n-gram composition of the document. This factor now contains a description of each of the

principal elements of the document in relationship to its vocabulary.

By repeating this process for every document in the corpus, this technique produces a set

of proportional profiles that describe the make up of each document within the corpus. By

searching for commonality among these factors, the influence model locates documents which

have common explanatory factors. If a document has a strong enough match on one or more

of its factors, it provides evidence of a relationship between the documents. This evidence

can be considered to vary in strength according to the selection heuristic, and because the

factors are based on the distribution of phrases within the document, this provides a sound

model of document influence.

Another aspect of this operation that makes this a useful model is that it compares all

factors irrespective of their influence in their original source document. That is to say if

a source puts forward some topic, which is subsequently modeled as a proportional factor,

and that topic is relatively unimportant in its source this will have no impact on how much

influence it may exert in a target document. In traditional influence models, which are

based on word frequency, this sort of relationship will not be found. However, with the

present model it will, and its weight will be based upon the total impact it has on the target

document.
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4.3 Weaknesses of the Model

Perhaps the greatest weakness of the present model is that no ground truth is available. This

sort of quantification of influence is not readily available, but given the justification of the

model the information it discovers can still be considered useful.

Another problem with this model is that it is sensitive to three input parameters. n

for the number of words, nfactors for the number of decomposition factors and threshold

for the selection criteria. Of course, justifications for the selection of n and threshold have

already been discussed. In the case of n, the setting of 3 is a standard starting point in

the field of n-gram analysis for English, but this would likely need to be tuned for other

languages. The biggest impediment to successfully modeling influence in this fashion is the

nfactors. In order to get a well-fit and unique document tensor decomposition, the rank of

the tensors is needed. However, knowing the true value of this parameter is intractable and

it must be searched for. Further study and research into the open question of the rank of

sparse tensors would alleviate this problem.

Finally, this model is based on n-gram frequencies. As such, small documents are often

difficult to model because they will have relatively few repeated n-grams. If the distribution

of n-grams is completely uniform, this will also act as an impediment to meaningful tensor

decompositions.

4.4 Future Research

The immediate future plans for this research involve the further development of the sptensor

library. Further optimization is needed, as well as completion of its MPI interface. Following

that, library bindings to higher level languages will be created.

Another application of the model is to replicate the studies conducted by Craig and

Burrows [6, 10]. Addressing the problem of Shakespearean authorship using this model

poses several unique challenges, not least of which is due to the inconsistencies in Elizabethan
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spelling (which necessitates the decomposition over full vocabularies). Additional applica-

tions will also be explored, including establishing chronologies of documents via topological

sorting and modeling the influence flow through a hierarchical network of documents.

The effects of constrained vocabularies are another area which needs to be addressed.

Following the authorship studies, another future effort will be to address the effect of the

vocabulary size on the output of the model. Other aspects warranting further study are the

effects of the various parameters of the model.

Finally, several experiments are under way to extend the reach of the model from influence

modeling to plagiarism detection. This last branch will perhaps be the most important as

it will examine not only plagiarism from one source document, but will take into account

many potential documents of origin.
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