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Abstract

Neutron scattering is a powerful tool for revealing magnetic structures of both single

crystal and powder materials. By combining neutron scattering with other measurements

such as AC and DC susceptibility, magnetization, specific heat, and resistivity, it is possible to

unearth the magnetic properties of many materials. Neutron scattering is especially useful

in the examination of geometrically frustrated materials, where the competition between

interactions can yield a variety of interesting magnetic ground states. For complex or

incommensurate structures, single crystal neutron diffraction is a powerful tool able to resolve

intricacies not possible with powder measurements. Here, neutron scattering techniques are

examined and used in combination with other measurements to examine two-dimensional

frustrated triangular compounds and 3d-transition metal monophosphides with a double

helical structure.
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Chapter 1

Introduction

With electron interactions governing the bulk properties of the materials we encounter,

understanding their base behaviors has long been a focus of condensed matter physics. Of

particular interest over the years due to unique phenomena are magnetic ordering and their

subsequent behavior. Here, the magnetic properties of non-collinear magnetic structures

are examined using neutron scattering and supplementary techniques. The evolution of

these structures under chemical substitution is examined to probe the fundamental physics

underlying both frustrated triangular and double helical magnetic structures. In this chapter,

the measurement techniques, accompanying concepts used, materials examined, and sample

growth by chemical vapor transport are briefly introduced.

1.1 Scattering measurements

Underlying the understanding of solids is a thorough knowledge of the crystalline

structure. While imaging techniques can be an ideal measurement to identify indexed

locations, the practical limits at small lengths scales make it impractical in many cases.

Long-range ordering (LRO) can be observed by making use of scattering of incoming plane

waves against a periodic array and observing the constructive and destructive interference

produced. In the scattered beam, a path length difference of nλ will interfere constructively

and form Bragg reflections. In an ordered crystal, these Bragg reflections are used to probe

interlayer distance, d, in the crystal by the relationship 2dsinθ = nλ, where θ is the angle
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of the observed Bragg reflection, n is an integer, and λ is the wavelength of the diffracting

wave. As interatomic, and thus interlayer, distances in solid state materials are of the order of

Ångströms, similar wavelengths are most useful for scattering measurements. X-ray, neutron,

and electron diffraction are all common practices to probe long-ranged order due to their

readily available comparable wavelengths.

1.2 Determining Magnetic Properties

Some of the most historically interesting and functionally useful properties of materials

are their magnetic properties. From the compass to high-density information storage,

magnetic properties have been both economically and scientifically prominent. The most

fundamental split of materials is into paramagnetic (magnetizes along the direction of the

field, no remnant magnetization), diamagnetic (magnetizes against the direction of the

field, no remnant magnetization), ferro- and ferrimagnetic (magnetizes along the field,

holds remnant magnetization), and antiferromagnetic (no bulk magnetization). These

can be distinguished by a simple measurement of magnetization in a field sweep. For

a microscopic view, magnetic properties are governed by the magnetic Hamiltonian, the

operator corresponding to the total energy of the electrons in the system. From a

known Hamiltonian, properties such as specific heat, susceptibility, magnetization, electronic

band structure, resistivity, and fundamental excitations can be calculated. Thus, an

accurate description of the magnetic Hamiltonian is the ultimate goal of magnetic property

measurements. To this end, the ground state of the magnetic structure is one of the

pivotal pieces of information and is the focus of much of this manuscript. Further detail

on measurement techniques used to determine magnetic properties is presented in Chapters

2 and 3.

1.2.1 Neutron measurements

Neutron scattering measurements are powerful tools to examine the magnetic ground

state and excitations in materials in addition to examining the structure and structural

excitations in a nondestructive manner. This makes neutron scattering measurements
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especially useful in revealing the material’s Hamiltonian as symmetry is a fundamental

determining factor in both the ground state and excitations. Neutrons have a mass of

1.6605×10−27 kg, meaning that the typical wavelengths for scattering of 1-10 Å correspond to

an energy range of approximately 1-100 meV. Magnetic excitations tend to fall in this energy

range, further reinforcing the usefulness of neutrons. Neutron scattering occurs following

Bragg’s Law with the neutrons scattering off of nuclei and electron spins. The scattering off

of the nuclei is essentially classical, while the scattering off of electron spins involves a spin

flip of both the electron’s and the neutron’s spin-1/2 moments. Elastic scattering techniques

reveal the positions and related parameters of the nuclei and spin while inelastic scattering

techniques probe the energy dependence of the excitations at different momentum transfer

values. These can be used to model the Hamiltonian of the materials.

1.2.2 Other Techniques

While neutron scattering can determine magnetic structures, it is a time-consuming

endeavor that requires powerful neutron sources. Due to small neutron scattering cross

sections, a large flux of neutrons is imperative to get useful data on magnetic ordering and

experiments tend to run on the order of hours to days. To probe magnetic behavior under

changing conditions, supplementing neutron scattering measurements with other techniques

can provide an understanding of the underlying magnetic phenomena. Some of the most

common uses are for finding the temperatures, fields, or pressures where materials undergo a

structural or magnetic phase transition. Measurements such as susceptibility, magnetization,

specific heat, and resistivity can be modeled via a Hamiltonian and thus can provide both

complementary and supplementary magnetic data. In this manuscript, these techniques are

used in conjunction with neutron scattering to provide magnetic phase information.

1.3 Non-collinear Magnetic Orders

Both ferromagnetic (FM) and antiferromagnetic (AFM) order tends to favor collinear

arrangement of the spins due to their energetic favoring of parallel and antiparallel ordering

respectively. Thus, a fundamental difference in the underlying magnetic ground state is

3



necessarily present to produce non-collinear magnetic order. While fundamental magnetic

excitations, spin waves, disturb the linear ordering of the ground state, the stabilization

of a non-collinear state is only found when there is some form of frustration of the spin

interactions. Frustration is the inability for all interactions to be energetically minimized

simultaneously. This can occur from a balance of the interactions due to the underlying

geometry or the strengths of competing interactions. A square lattice with nearest neighbor

interactions of J and next nearest neighbor interactions of −J will be frustrated due to their

exact energy difference for any spin orientation, thus further interactions will be responsible

for any stabilization of the magnetic ground state. Non-collinear order often arises from

frustration, while easy-axis or easy-plane anisotropy are another source of deviation from

collinear orders.

1.3.1 Geometrically Frustrated Magnets

Geometrical frustration often occurs due to the underlying structural symmetry of the

interactions. For a simple case, an Ising spin system with AFM interactions is not frustrated

in the bipartite square lattice Figure 1.1(a)) where all spins can align antiparallel. However,

an Ising spin on a triangle with AFM interactions is inherently frustrated. For two vertices to

be antiparallel, the third vertex cannot simultaneously be antiparallel to both (Figure 1.1(b)).

For AFM Ising spins, geometric frustration occurs in triangular, tetrahedral, face-centered

cubic, hexagonal-close-packed, pyrochlore, and Kagome lattices (examples in Figure 1.2).

For easy-axis FM interactions on a tetrahedron, the competition between the FM interaction

and the single ion, easy-axis anisotropy is the cause of the frustration. In this manuscript,

triangular lattice antiferromagnetic materials are examined due to their frustrated nature.

The result of frustration can be exotic ground states including spin liquid, spin ice, non-

collinear ground states, and fractional gauge fields [1, 2, 3]. Triangular lattice magnets

can have their frustration reduced by a multitude of perturbations, including interplane

interactions or anisotropy. For a true two-dimensional (2D) magnet, the magnetic ordering

temperature will increase logarithmically in magnitude of both the interplane interactions

and anisotropy [4, 5, 6, 7, 8]. As a result, reducing both of these parameters to near zero is an

essential step in isolating the two-dimensional magnetic behavior of the triangular lattice.
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Figure 1.1: Antiferromagnetic ising nearest neighbor interactions resulting in a) Neel
ordering on the unfrustrated square lattice and b) geometrical frustration on the triangular
lattice.
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Figure 1.2: Examples of geometrically frustrated lattices. For antiferromagnetic
interactions, triangular, Kagome, face-centered cubic, and pyrochlore lattices are all
frustrated. Ferromagnetic interactions with single ion, easy-axis anisotropy on a lattice of
tetrahedra, such as the face-centered cubic and pyrochlore lattices, also result in geometric
frustration [3].
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While the local anisotropy is difficult to predict and control, the reduction of interplane

interactions can be more efficiently realized. To this end, we used the approach of introducing

non-magnetic layers between triangular layers of magnetic ions. This led to small values in

the interplane coupling of the observed materials. Anisotropy effects were seen in some

materials while not in others examined. Combining these, we observed both quasi-2D and

effective true-2D behavior in triangular lattice magnets.

One of the most promising and potentially fruitful areas of frustrated systems is in

quantum spin liquids (QSLs). In a QSL, quantum fluctuations prevent the system’s spin

structure from reaching a unique ground state [3, 9, 10]. Much of the attention on QSLs

centers around the exotic phenomena resulting from their degenerate ground states, such as

proposed superconducting states, emergent gauge fields (monopoles), and fractional particle

excitations [2]. The quantum fluctuations are of the order of the spin moment themselves in

spin-1/2 systems and the various ground states can be accessed by the zero point motion.

This resonating valence bond (RVB) state was coined in 1973 by Anderson [11] and has

been studied extensively in the intervening years. Despite the spins being highly correlated,

quantum fluctuations persist down to absolute zero and cause the ground state to form a

superposition of the degenerate ground states. The resonating bonds allow for a spin flip to

move fluidly by a rearrangement of the bonds into another degenerate ground state instead

of maintaining a rigid order (Figure 1.3) [2].

The condensed matter community has shown much interest in 2D triangular lattice

magnets (TLMs) as they host a multitude of different ground states [12, 13, 14]. In

Ba3CoSb2O9 with Co2+ (effective spin-1/2) ions residing on triangular lattices, the ground

state is a 120 degree ordered state at zero field and an up-up-down (uud) phase under

applied field [15, 16, 17, 18] (see Figure 1.4). The spin wave spectra for Ba3CoSb2O9 can

be reasonably described by an XXZ model with small easy-plane anisotropy. However,

linear and nonlinear spin wave theories do not pick up the abnormal magnon decay and line

broadening that result from the quantum spin fluctuations [19]. In isostructural Ba3BNb2O9

(B = Co [20], Ni [21], Mn [22]) as well as CuCrO2 [23, 24] and RbFe(MoO4)2 [25, 26],

multiferroic properties are seen in the 120 degree ordered ground state. Alternatively,

AAg2M(VO4)2 (A = Ba, Sr; M = Co, Ni) [27, 28] possesses a FM ordering due to the
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Figure 1.3: a) The ground state of a quantum spin liquid as a superposition of possible
orientation of the short ranged singlet bonds. b) A spin flip excitation is able to move
without energy cost in a spin liquid. This is accomplished by rearranging the valence bonds
in a ground state configuration [2].
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Figure 1.4: a) 120 degree ground state for triangular lattice antiferromagnets and b) up-
up-down phase of a purely quantum nature. The up up down state is often manifest as a
magnetization plateau under increasing fields for low spin, triangular compounds.
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superexchange via the bridging vanadates on the triangular lattice. A collinear alternating

striped AFM state related to strong easy axis anisotropy is manifest in this family of

AAg2M(VO4)2. In NaVO2 [29, 30], rare ordering of the V3+ orbitals is seen. LRO occurs as

a consequence of the ordering of the V3+ orbitals relieving the geometrical frustration. More

recently, and holding much promise, the exotic QSL ground state was realized in YbMgGaO4

[31, 32, 33, 34]. The effective spin-1/2 Yb3+ ions reside on a triangular lattice and both the

spin anisotropy and next-nearest neighbor interactions are vital.

1.3.2 Double Helical Structures

While geometrically frustrated systems have an obvious cause for the non-collinear

ordering, in the 3d-transition metal pnictides (3dTMPs) it is common to observe a double

helical magnetic structure. Double helical magnetic structures have been reported in MnP,

CrAs, FeP, and FeAs [35] with modulation of the magnetic structure varying between the

samples. FeP has been shown to be a bunched helix [36], MnP and CrAs are reported as

circular helixes [37, 38], and FeAs is a non-collinear spin-density wave [39]. The relation

between the chemical composition and the magnetic structure has not been thoroughly

examined and doping between end members is a natural progression to explore the evolution

of the magnetic ordering of the double helical structure. Making use of FeP and MnP both

having a double helical structure while MnP has an additional FM transition, a complete

magnetic phase diagram of the Fe1−xMnxP is examined in this manuscript.

1.4 Chemical Vapor Transport

One of the primary driving forces for improvement in experimental condensed matter

physics is the improvement in sample quality resulting from improved growth methods.

While there are a variety of ways to grow single crystals, some methods have been almost

entirely replaced. The well-known growth of single crystals by supersaturation posses many

problems in controlling the crystal growth and has been superseded by methods such as flux,

floating zone, thin film vapor deposition, and chemical vapor transport (CVT). Each method

has both benefits and limitations. Flux reactions generally require little supervision, but the
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compounds able to be grown by flux are limited by an appropriate phase diagram and a

method to extract the grown crystals from the surrounding flux. Floating zone growths is

a rapid way to grow very large crystals, but growth requires careful monitoring and the

selection of compounds that can be grown this way are limited. Thin film vapor deposition

allows for fine control over layer thickness to examine finite sized effects but is not practical

for production of bulk samples. CVT is robust in that it is resistant to impurities, whether

chemical or phase, but is limited due to the interconnected processes involved. All elements

must be transported in gaseous form, whether as elements or part of a compound, by the

same transport agent and temperature gradient. While the somewhat limited scope caused

by these limitations prevents CVT from being used in all cases, the sample quality produced

is arguably unsurpassed by any other bulk methods. This is especially useful in the growth

of doped compounds where high crystal purity is imperative, as in doped superconductors.

The high crystal quality produced by CVT is a result of the robust mechanisms

underpinning the growth. In CVT, all of the crystal’s elements are required to be converted

into a gaseous phase such that these elements can deposit over time to create bulk single

crystals. By controlling the growth rate, it is possible to grow large, single domain crystals.

The simplest example of such a method would be sublimation and deposition. Picking

the endothermic case, a solid is placed under a temperature gradient where the source is

sublimated at the hot end, translates down the tube, and deposits the seed at the cold

end. Crystal growth then occurs when the partial pressures of the constituent elements are

sufficient and the temperature is low enough (high enough for exothermic reactions) for the

reverse process. After the seeding of nanoparticles, it is energetically favorable for deposition

to occur on these nanoparticles over the vessel walls. A slightly more involved example is

decomposition, where a compound breaks down into elements or simpler compounds that

are then deposited as separate single crystals.

Transport methods of growth are generally referred to as those in which the solvent is

involved in the creation of the gaseous phase(s) of the constituent elements. Generically, the

provided heat will sublimate the transport into a gaseous phase that will then dissolve part

or all of the elements and compounds found in the source material. If there are remaining

elements or compounds after the removal of this solute, they then are heated into the gaseous
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phase as well. After sufficient partial pressures have developed at the seed end, there is a

reversal of this process in which single crystals of the desired composition are deposited and

the remaining solvent, and any unwanted source elements if any, are separately deposited.

This process is summarized in Figure 1.5. While the crystal quality is robust, there are

various factors that must be considered for successful growth. Once such consideration is

the transport agent for the investigated system must be sufficient to transport all required

elements to the seed end. In the 3dTMPs, FeP, CoP, and MnP, are all readily transported

by iodine. The second consideration is the endothermic or exothermic nature of the reaction

and the accompanying temperature gradient. For the mentioned 3dTMPs, FeP and CoP

dissolution is endothermic while MnP dissolution is exothermic. As a result, only Fe1−xCoxP

doped single crystals have been successfully synthesized by us. A third consideration is that

the deposition process must be able to occur faster than the sublimation process. Once

these factors are considered, CVT is a method that offers the potential for very pure crystal

quality.

With this in mind, CVT reactions have been very successful in our research. We have

successfully synthesized a variety of different structure compounds both for our own research

and in collaboration with other researchers (Figure 1.6). Of the crystals we have grown, pure

and single domain crystals have been obtained for the following:10 mm3 FeP and MnP, 1

mm3 CoP, Fe1−xCoxP, and FeS, 15 mm3 iron-yttrium garnet, 10 mm3 Ni2InSbO6, and both

10 mm2 monolayers and 1 mm3 bulk MnPS3.
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Figure 1.5: Here [40], a) the partial pressures as a function of temperature for ZnO
transport by Cl2 is shown. The partial pressures for Zn and O elemental gas by simple
sublimation decomposition is insufficient for reasonable crystal growth. By introducing Cl2
gas, Zn is dissolved as ZnCl2 will gaseous O2 is also released. The partial pressures remain
sufficient to lower temperature gradients, where the endothermic nature of forming ZnCl2
will cause the process to reverse, producing single domain crystals of ZnO. B) A simplified
model of transport and deposition is shown.
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Figure 1.6: Laue diffraction images of a) FeP, b) MnP, and c) MnPS3. d) X-ray diffraction
refinement of samples grown using chemical vapor transport.
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Chapter 2

Neutron Diffraction

Explanation of macroscopic properties of materials via theoretical condensed matter

physics relies on an understanding of the structure of the underlying atoms. Due to the

Ångström scale interatomic distances, a comparable wavelength is needed to probe these

distances with accuracy. X-ray diffraction is a powerful tool for such measurements, but

has some fundamental limitations. X-rays interact with the relatively large electron cloud

and thus have limited penetrating power, limiting sample environments. Additionally, X-ray

scattering cross sections are determined by the size of the electron cloud and do not vary

strongly for most similar atomic number atoms. In contrast, neutrons interact via nuclear

forces and are deeply penetrating (Figure 2.1) and thus able to probe samples through a

variety of containers. This also results in a differing cross section for atomic isotopes and

also a strongly varying cross section with atomic number. This is very useful for resolving

the atomic orderings of materials. Some neutron scattering cross sections, such as hydrogen,

are negative. This allows for such methods as contrast matching in certain samples by

doping hydrogen containing samples with deuterium to examine only certain components

of a system. As a trade-off, the low intensity of scattering of incoming neutrons limits

resolution as does available neutron flux, as even the most powerful neutron sources are

orders of magnitude weaker in flux than common X-ray sources. However, the presence of a

magnetic moment on the neutron allows it to interact with unpaired spins and scatter off of

them in addition to the nuclei. This is useful in determining the magnetic structure of these

spins. The spin of the neutron allows it to undergo spin flip interactions, allowing for the
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Figure 2.1: Penetration depth of neutrons (red), X-rays (blue) and electrons (yellow) before
the intensity has decreased by a factor of 1/e for various elements. [41]
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distinction between interactions such as magnetization of the sample being perpendicular or

parallel to the neutron moment.

Neutron scattering makes use of interference between scattered neutrons based off of the

location of the scattering nucleus. For a periodic array of nuclei, maxima will be located at

path length differences of n2π. For a distance between planes of d and a scattering angle of

θ, this leads to Braggs Law of nλ = dsinθ as diagramed in Figure 2.2.

For neutrons, it is more helpful to think in terms of momentum k with k = 2πmv/h,

where m is the neutron mass, v the velocity, and h is Planck’s constant. During a collision,

it is easy to be seen from Figure 2.2 that the momentum transfer is equal to hQ/2π =

h(k − k′)/2π where Q is known as the scattering vector. For elastic scattering, with no

energy transfer and thus |k| = |k′|, this yields |Q| = 4πsin(θ/λ). Including possible energy

transfer complicates the calculations, but, by making use of the Born approximation, Van

Hove was able to show that the intensity of scattering as a function of Q and energy, E,

could be given by

I(Q.E) =
1

h

k′

k

∑
i,j

bibj

∫ ∞
−∞

〈
e−iQ·ri(0)e−iQ·rj(t)

〉
ei−(E/~)tdt, (2.1)

where b is the scattering length of the nuclei, i and j are position labels such that nucleus j is

at rj at time t, and the angled brackets indicate a thermodynamic average over the thermal

fluctuations of the sample. Since the nuclear spin is generally decoupled from the position

of the nucleus, Equation 2.1 can be written more generally as

I(Q.E) =
∑
i,j

〈bibj〉Aij =
∑
i,j

〈b〉2Aij +
∑
i

(
〈b2〉 − 〈b〉2

)
Aii, (2.2)

where Aij represents the integral in Equation 2.1. In this representation, the first term

represents coherent scattering of neutrons off of separate nuclei and interfere as shown in

Figure 2.2. The second term represents incoherent scattering, where the scattering results as

a sum of events from non-interfering scattered neutrons. For elastic scattering, the coherent

scattering provides information about the atomic structure while the inelastic scattering

provides information about excitations of the nuclei or unpaired spin.
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Figure 2.2: Diagram of Bragg diffraction [41]. The wavelength, λ, separation between
scattering planes, d, and scattering angle, θ, determine the difference in path length between
scattering events. When this difference is a multiple of 2π, constructive interference occurs
and a Bragg reflection is seen. This is Bragg’s Law of nλ = dsinθ.
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2.1 Single Crystal Diffraction

Perhaps the most straightforward, yet one of the most useful for determining atomic

structure, forms of coherent scattering is single crystal (SC) diffraction. As the nuclei

form a three dimensional (3D) periodic array, the resulting diffraction pattern will produce

diffraction spots as described originally by Laue [42]. These equations are given as

a · ∆k = 2πh, b · ∆k = 2πk, c · ∆k = 2πl, where a, b, c are primitive lattice vectors and

h, k, l are Miller indices that must take integer values. For elastic scattering, the possible

scattering nuclei are those that intersect what is known as the Ewald Sphere. This is a trace

of length |k| = |k′| in reciprocal space. It follows that for a reciprocal lattice vector G,

where G · (a + b + c) = 2π(h + k + l), then ∆k = G. This rearranges into 2ki ·G = G2

and consequently back to Bragg’s Law of nλ = 2dsinθ. The resulting pattern provides

information on the symmetry and cell parameters of the sample.

2.1.1 Background

While the majority of the scattering process is elastic, many neutron detectors measure

scattered neutrons of all energies. Including this energy integral in the Van Hove formalism

results in evaluating the correlation function at time equal to zero. For a single isotope

system, this results in

I(Q.E) = b2
coh

∑
i,j

〈
e−iQ·(ri−rj)

〉
, (2.3)

For samples at zero temperature, nuclear positions would be stationary and the

thermodynamic average could be discarded. If the atoms are instead allowed to oscillate

about their equilibrium position, the scattering intensity becomes

I(Q.E) = b2
coh

∑
i,j

e−iQ·(ri−rj)e−Q
2〈u2〉/2 =

∣∣∣bcoh∑
i

eiQ·ri
∣∣∣2e−Q2〈u2〉/2 ≡ S(Q), (2.4)
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where S(Q) is the structure factor and e−Q
2〈u2〉/2 is the Debye-Waller factor in which 〈u2〉

is the average of the squared displacements of the atomic nuclei. For non-zero values of

S(Q),Q · (ri − rj) must be multiples of 2π, indicating that Q is also a reciprocal lattice

vector. This represents parallel planes of atoms, recovering neatly Bragg’s Law from before,

despite no longer requiring only elastic scattering.

2.1.2 Data and Refinement

Single crystal data used in this thesis was taken at the HB-3A four-circle diffractometer

(schematic shown in Figure 2.3) located at the High Flux Isotope Reactor (HFIR) at the

Oak Ridge National Laboratory (ORNL). This diffractometer can examine scattering angles

for −27° < 2θ < 160° with a neutron flux of up to 2.2 × 107 n/cm2/s. A monochromator

of silicon creates reflections of 1.005, 1.546, and 2.541 Å using the (011), (022), and (111)

planes. Using a 2D scintillator-based detector, 2D images of each diffraction peak are taken.

By rotating the sample and camera location, scans in h, k, and l are easily obtained. The

data is converted into an integrated intensity file using a fitting of a Gaussian function

(exp(− 4 ln 2
FWHM2x2)) and a linear background via a python script in MantidPlot [43]. This

provides a list of relative intensities for each reflection that can then be used to refine the

magnetic structure using the Rietveld method in Fullprof [44].

Rietveld refinement is a powerful tool for determining magnetic and atomic structures of

various diffraction patterns. Rietveld refinement works by minimizing the function

M =
∑
i

Wi

{
yobsi −

1

c
ycalci

}2

, (2.5)

where Wi is a statistical weight, yi is the intensity of peak i, and c is an overall scale factor.

Due to the integration of the peak intensities for the data taken at HB-3A, this means that the

shape of the peak does not have to be matched and factors such as asymmetry do not affect

the refinement. The nuclear structure can be refined from these integrated intensities using

an established symmetry group. The magnetic structure can be refined by subtracting the

integrated intensities in the paramagnetic phase from those in the ordered phase, leaving only

the intensities of the magnetic structure. These can be solved with a magnetic propagation
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Figure 2.3: Schematic diagram of a four-circle diffractometer, such as the HB-3A, showing
that by rotating the sample and detector a scan of reciprocal space is possible. Image
courtesy of the International Union of Crystallography [45].
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vector, often called the k-vector due to being defined in reciprocal space but is distinct from

the momentum of the incoming and outgoing neutrons. This represents how the magnetic

structure is modulated and, when converted back into real space, will describe over how

many unit cells in each direction the magnetic structure repeats. The magnetic propagation

vector can be found by locating the magnetic reflections in relation to nuclear reflections.

Magnetic reflections will be located at allowed values of (h + δh, k + δk, l + δl) where the

h, k, and l are integers along the a-, b-, and c-axes respectively and the k-vector is defined

as (δh, δk, δl). Magnetic reflections for FM ordering will have a k-vector of (0, 0, 0) and

occur at the same location as the nuclear peaks while AFM ordering will produce magnetic

reflections shifted off of the nuclear peak. By scanning the appropriate hkl space, the AFM

peaks will be included in the integration of the intensities so that any overlap with nuclear

peaks can be subtracted out.

Our refinements in this thesis were performed using the FullPROF software suite [44],

which allows for modeling of the magnetic structure using either basis vectors determined

from the space group and k-vector or by controlling the magnetic moments individually.

This allows for control of the magnetic structure using the space group from the k-vector

as well as the freedom to refine individual magnetic moments separately. Due to measuring

the reflections with respect to the sample orientation, anisotropic effects can be examined

and complex magnetic structures can be resolved, such as bunched helical versus elliptical

helical versus spin-density wave structures.

2.2 Powder Diffraction

The nature of crystal growth is not always amenable to growing single crystals of all

structures. While advances in growth techniques such as optical floating zone, molten flux,

and chemical vapor transport have increased the availability of pure samples in the recent

years, some samples may only be successfully prepared as polycrystalline samples. These

samples, instead of possessing a single domain, are made up of randomly oriented, nano-

sized grains. As a result, there is no single direction for each of the crystallographic planes

in the sample to produce distinct diffraction spots. Instead, there is a powder average of
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the diffraction. While this makes the data more convoluted and difficult to analyze, powder

diffraction does have its advantages. As it is generally easier to prepare large amounts

of polycrystalline samples, larger sample volumes can be used in diffraction experiments.

For such weakly interacting particles as neutrons, this is especially important as many

measurements are limited by the flux of scattered neutrons. Additionally, this improves

the signal to noise ratio that can become an issue with complex sample environments. The

time required for powder diffraction is also generally much shorter than for SC diffraction.

This is due to SC diffraction requiring a reorientation of the sample and detector in two

dimensions, while for powder diffraction only one dimension must be scanned (as discussed

in Subsection 2.2.1). Taking into account these factors, neutron powder diffraction is a

powerful and affordable tool for determining magnetic structures.

2.2.1 Theory

While SC samples have the atomic planes in well-defined directions, powder samples

are composed of small, generally nano-sized, grains that are randomly oriented. The

Laue equations still hold true, but now for all orientations of the grains. Any reflection

obeying Bragg’s Law of nλ = 2dsinθ will be seen, thus changing from individual points

into diffraction rings of equal angles. For this, a one-dimensional (1D) detector is sufficient

to capture the accessible Bragg reflections. However, for complex structures where there

are multiple planes of various atoms, this can lead to the convolution of diffraction peaks

as the angles of diffraction are not separated enough from each other. This shows how

essential monochromated incident neutrons are to improve resolution, as any uncertainty in

neutron wavelength will increase the full-width half-max parameters and further convolute

the diffraction peaks. As each peak will provide a distance of separation for atomic planes,

it is possible to model the diffraction pattern from symmetry, lattice parameters, and atomic

positions.
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2.2.2 Setup

Neutron powder diffraction (NPD) data used in this thesis was taken at HB-2A powder

diffractometer (Figure 2.4) at HFIR at ORNL that makes use of Debye-Scherrer geometry.

HB-2A has a range of 2 < 2θ < 155 covered by 44 3He detectors. Each detector is separated

by approximately three degrees in 2θ so the detector bank is moved to scan the desired 2θ

range. The neutrons are reflected off of a germanium wafer-stack monochromator to provide

wavelengths of 1.54 and 2.41 Å. Collimation is provided by a 12’ pre-sample collimator, a

removable 21’ post-sample collimator, and 12’ collimators for each detector tube. Samples

are loaded into aluminum, copper, or vanadium cans and can be mounted inside of a variety of

sample environments. Due to the low background of HB-2A, measurements can be performed

in cryofurnaces (4-800 K), 3He cryostat (> 300 mK), dilute refrigeration cryostat (> 30 mK),

or furnace (< 1800 K). In addition, magnetic fields up to 7 T can be applied and high-pressure

cells including diamond anvils.

2.2.3 Refinement of Data

As with the refinement of SC data, powder data can be refined using the Rietveld method

and the Fullprof suite [44]. However, as the powder diffraction does not have the spatial

resolution found in four-circle diffractometers due to powder averaging, Bragg reflections are

often convoluted and multiple reflections will often be located at the same position in 2θ. As

a result, individual peaks can often not be sufficiently isolated to be integrated individually.

Instead, the geometry of the peaks (determined by the configuration and geometry of the

scattering instrument) must also be modeled. For X-ray diffraction, a simple Gaussian

profile is generally sufficient. However, it is common for there to be a Lorentzian ( 2/πH
1+4/H2x2

)

component present or instead of the Gaussian. To accommodate this range of weighting, a

pseudo-Voigt profile function is used of the following form

Σ(x) = ηL′(x) + (1− η)G′(x), (2.6)
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Figure 2.4: Image of HB-2A powder diffractometer located at Oak Ridge National
Laboratory. The pre-sample collimator, detector bank of 44 He 3He detector tubes,
goniometer for mounting sample environments, and the beam stop are labeled [46].

25



where L′(x) and G′(x) are the Lorentzian and Gaussian contributions respectively. For data

collected at HB-2A, the peak shape is determined by a Thompson-Cox-Hastings pseudo-Voigt

convoluted with axial divergence asymetry function modeled with Gaussian and Lorentzian

halfwidth components (HG and HL respectively) of

H2
G = (U +D2

ST )tan2θ + V tanθ +W +
IG

cos2θ
, (2.7)

HL = Xtanθ +
[Y + F (SZ)]

cosθ
, (2.8)

where U, V, and W are halfwidth parameters, DST is a strain paramter, IG is an isotropic

size effect, X is the Lorentzian isotropic strain parameter, Y is the Lorentzian isotropic

size paramter, and F (SZ) is an isotropic size parameter [47]. Similar to SC refinement, a

minimization of the variance between the peak intensities of the observed yi and calculated

patterns yc,i(α) at each step given as

χ2 =
∑
i

Wi

{
yi − yc,i(α)

}2

, (2.9)

In powder diffraction, the calculated pattern is a function of the parameter vector α

and contains the refined variables mentioned above. For a single phase, this can be more

explicitly represented at the ith step by

yc,i =
∑
h

{LACF 2}hΩ(Ti − Th) + bi, (2.10)

where h labels the Bragg reflection, Lh contains Lorentzian factors, Ah is the absorption

correction, Fh is the structural form factor, Ch contains further parameters such as preferred

orientation and extinction, and Ω is the profile function including sample and instrumental

effects described above.

The Fullprof software suite includes a tool, k-search, for the determination of the

magnetic propagation vector. Reasonable candidate propagation vectors are then inputted

into SARAh-Representational Analysis [48] to calculate magnetic structures allowed by the

crystalline space group and the magnetic propagation vector. SARAh-Refine [48] then allows

for selection of the irreducible basis of the magnetic symmetry. The corresponding basis
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vectors of the magnetic structure are used to produce a magnetic phase to be refined in

Fullprof. After the crystalline structure and all of the shape parameters have been refined

from a diffraction pattern taken above the magnetic transition temperature, refinement is

performed including one of the magnetic phases with a diffraction pattern taken below the

magnetic transition. The magnetic phase will take a form factor of

F 2
h = |F⊥(h)|2 − (e · Fm(h))2, (2.11)

where Fm(h) is the magnetic structure factor and e is the unit vector along h. By fixing the

refined parameters from the crystalline structure, the magnetic profile will retain the same

profile parameters and the magnetic structure can be refined as a coefficient for each of the

magnetic basis vectors. The statistical fit is taken into consideration with other experimental

results as well as theoretical justification or modeling to determine the magnetic ground state

of the sample.

2.3 Inelastic neutron diffraction

Elastic neutron scattering can provide magnetic and atomic structures, but it provides no

insight into energy transfers and therefore does not probe the electron, phonon, nor magnon

energy dispersions of the material. As mentioned in Subsection 2.1.1, integration over all

energies of scattered neutrons results in evaluating the correlation function at time equal to

zero. However, by measuring the energy of the scattered neutrons, it is possible to determine

the energy transfer during the collision. Combining this with the scattering vector provides

a dispersion relation that probes the excitations of both the atomic and magnetic structures.

The physical excitations from the atomic structure manifest in phonons and the excitations

can be classified as acoustic or optical. The excitations of the magnetic structure revolve

around exciting the spins in the ordered structure. The most simple case would be in an

FM chain where the most fundamental excitation would be a single spin flip. However, as

phonons spread the physical excitation over the atomic lattice, so too do magnons spread the
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magnetic excitations. Describing these excitations with a Hamiltonian gives further insight

into the mechanisms of magnetic behavior of the studied materials.

2.3.1 Background

While elastic neutron diffraction measures the cross section’s angular derivative, inelastic

neutron scattering (INS) measures both angular and energetic derivatives. This means that

for along dE = 0, inelastic measurements will coincide with elastic measurements. Inelastic

scattering provides the dynamical structure factor S(q, ω). The coherent signal measures

collective phenomena such as phonons and spin waves, while the incoherent signal measures

individual phenomena like atomic diffusion. The intensity limits on inelastic scattering and

the requirement of being able to measure the energy of outgoing neutrons mean that inelastic

scattering is more time consuming and costly than elastic scattering. Two approaches to

acquiring INS spectra are using time of flight (TOF) or a triple-axis setup. For TOF methods,

incident neutrons are monochromated and the scattered neutrons are measured for their time

of flight and their scatter position. By measuring TOF, it is straightforward to calculate the

energy shift of the neutrons. For the data in Chapter 4, INS measurements were taken at the

Disk Chopper Spectrometer (DCS) at the National Institute of Standards and Technology.

DCS utilizes seven disk choppers to monochromate and pulse the incoming neutrons. The

discrete pulses allow for measuring of TOF. The other primary method for INS is triple-

axis spectrometers. Triple-axis spectrometers use an analyzer to measure the energy of the

scattered neutrons.

INS measurements probe both magnetic and structural excitations. Structural excitations

can be understood from the frame of coupled harmonic oscillators where E = (n+ 1
2
)~ω for

each oscillator. Quantizing the phonons reveals that the total energy of phonon excitations

can be described by

Ephonons =
∑
q,b

Eq,b =
∑
q,b

(nq,b +
1

2
)~ωb(q), (2.12)

where q is the wave vector and b is the phonon branch. As powder INS will average over

the domain orientations, the directional dependence of q convolutes similar to in diffraction.

For atoms with more than a single atom per primitive cell, there will exist both acoustic
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and optical branches of phonons. The extra branches are a result of the degrees of freedom

resulting from the atoms in each primitive cell. The acoustic branches are lower in energy

while the optical branches are higher in energy. At the boundary of the first Brillouin

zone, there is a frequency gap between the optical and acoustic branches where there are no

wavelike solutions for the equations of motion.

For magnetic excitations, the spectrum depends extensively upon the Hamiltonian

description. One of the strengths of INS is the ability to test model Hamiltonians against

the neutron dispersion. This becomes of particular importance in small spin systems where

quantum fluctuations often cause deviations from the classical models. Limits on theoretical

models often require for certain assumptions and estimations, and experimental data to

support or contradict these simplifications.

For the case of spin-1/2 1D chain with FM interactions, the simplest excitation is a single

spin flip at a single site, a change in spin of 1 indicating a boson. This bosonic excitation

is referred to as a magnon. This resulting state, with all atoms aligned except on-site anti-

aligned, is not an eigenstate of the Hamiltonian. However, using a plane wave to diagonalize

the Hamiltonian gives

E(q) = −2NS2J + 4JS(1− cosqa), (2.13)

where N is the number of sites, S is the spin size (here 1/2), J is the nearest neighbor

interaction strength, and a is the interatomic spacing. This shows how the single spin flip

is not localized to a single site, but is spread over the lattice with a dispersion relation of

~ω = 4JS(1 − cosqa). This is similar to how a singular atomic displacement results in

an excitation that also extends over the lattice as a phonon. Thus magnon excitations are

expected to follow a similar function and not result in a continuous dispersion.

One magnetic excitation that has attracted much attention is the spinon. The spinon

is a fermion, spin-1/2, excitation that occurs as a splitting of a magnon excitation. One

well-studied example is the 1D spin-1/2 AFM chain. As seen in Figure 2.5, a single spin flip

into an uuu section can be separated into two spin-1/2 uu sections (a). These domain walls

can propagate freely in an unperturbed chain (b)-(c). In a strictly isotropic 1D Heisenberg

chain, there is no binding of the spinon excitations. However, the presence of a staggered
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Figure 2.5: (a) A single, localized spin flip along a one-dimensional, spin-1/2 AFM chain.
(b)-(c) Separation of spin-1/2 domain walls, spinons. (d) In the presence of a staggered field,
thus breaking the symmetry between odd and even sites, the attraction of spinons creates a
bound pair [49].

30



field breaking the symmetry between odd and even sites creates a binding energy between

the pair (d) [49]. Instead of the singular values of the dispersion relation seen in magnons,

the bound pairs form a spectrum of possible energies for a given q as seen in Figure 2.6. This

continuum in the dispersion is one of the indicators for fractional spin excitations and such

excitations have attracted much attention for the exotic behaviors seen in such systems. The

novel behavior is of particular interest due to the ability to compare quantum theoretical

models with experimental data. Experimental INS data is crucial to test the limitations of

these theoretical models and offers an ideal route to investigate the fundamental magnetic

interactions of complex materials.

2.3.2 Data analysis

Data reported in Chapter 4 was examined using the data analysis software Dave [51]. Due

to the complex nature of S(q, ω), it is generally not possible to refine data in the same way as

for elastic scattering. Instead, simulations using the appropriate Hamiltonian are matched

to the data and parameters are accordingly adjusted. The nature of the excitations can often

be determined from the qualitative behavior of the form factor. Experimental inelastic data

provides a testing ground for theory as well as reveals the shortcomings in current theoretical

models (like linear SWT). Modeling of INS data in Chapter 4 was performed by Luwei Ge

from Georgia Tech.

31



Figure 2.6: Examples of both the spinon continuous spectrum and magnon dispersion
revealed in CuSO4·5D2O by Martin Mourigal et al [50].
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Chapter 3

Non-scattering Measurements

While neutrons are one of the most efficient and developed methods for revealing the

magnetic structure of materials, additional techniques are key to provide a more complete

understanding of material properties. Practical limitations on neutron measurements include

both cost and time. Due to the weak interaction of neutrons with matter, an advantageous

property in many ways, large neutron sources are required to make scattering measurements

feasible. Additionally, depending on the instrument capabilities, the temperature resolution

that can be obtained is limited. To explore material properties further, measurement

techniques that provide different information than scattering include transport property,

thermal, density of states, susceptibility, and localized microscopy. There also exist

complementary techniques to probe elementary excitations such as resonant inelastic X-

ray scattering. A prudent selection of measurement techniques is necessary to provide the

greatest return of useful information.

In this dissertation, complementary and supplementary techniques were used to examine

structural, magnetic, and transport properties of the materials presented. X-ray diffraction

(XRD) was used to determine the purity of the synthesized samples, measure lattice

parameters and atomic positions, and measure the temperature dependence of lattice

parameters. Specific heat measurements were used to corroborate transition temperatures

and for the fitting of interaction strengths using high-temperature series expansion.

Magnetization measurements probe the FM or AFM nature of the dominant interactions,

the magnetic moment at saturation, and transition field strengths. DC and AC susceptibility
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measurements were used to determine magnetic ordering temperatures and for fitting

with high-temperature series expansion. By applying DC fields during susceptibility

measurements, field dependence of the transitions helps reveal the FM or AFM nature of the

transitions and can be used to produce magnetic phase diagrams. Resistivity measurements

were used to supplement susceptibility measurements to determine transition temperatures.

3.1 X-ray Diffraction

One of the most pervasive difficulties facing condensed matter physics is sample quality.

To address this, X-ray diffraction is an important step in providing a check of sample quality

by providing structural information on the sample via an affordable and quick measurement.

Returning to nλ = 2dsinθ, photons of ∼1-2Å are useful to probe interatomic distances on

that order. This is provided by photons of ∼104eV. One of the primary advantages of XRD is

the availability, affordability, and small size of X-ray sources. X-ray diffraction techniques are

non-destructive and exposed samples do not pose a radiation hazard as may be the case from

neutron measurements. Limitations for XRD include a strong sinθ/λ dependence and, as a

result, data quality at high Q values may suffer. X-rays also interact with the valence electron

cloud and not the nucleus, as in neutron techniques. This makes neutron scattering preferable

for precise measurement of the atomic positions and Debye-Waller factor. The Debye-Waller

factor provides the average of the squared displacements of the atomic nuclei. The large,

established databases of structural parameters for many materials allows for comparison to

isostructural materials. Databases allow for quick searching of phases including constituent

atoms. Impurity phases can also be indexed and weighted.

All materials presented in this dissertation were analyzed by XRD prior to further

measurements to ensure that only high-quality samples were used. Each sample was annealed

under increasing temperatures with intermediate grindings and the temperature profile with

the best XRD was used to produce the remaining sample. Diffraction was performed on

polycrystalline or single crystal samples that were ground with an agate mortar and pestle

into nano-sized, randomly distributed powder. The powder was placed between Teflon foil in

a thin layer to reduce multiple scattering events. A fixed anode X-ray tube is reflected and
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focused using a monochromator to select the Cu Kα1 radiation of 1.54059 Å (9.048 keV). A

HUBER imaging-plate Guinier camera 670 is used to record the diffraction pattern (Figure

3.1). Structural refinements are performed using FullProf [44] as described in Subsection

2.2.3. For temperature dependent measurements, a closed cycle refrigeration unit is used to

reach as low as 5 K.

3.2 Specific Heat

Specific heat measures the change in average kinetic energy of particles with the addition

of heat energy. For purposes of this dissertation, isobaric specific heat of CP =
(
δQ
δT

)
. For a

purely classical and magnetically isolated system, upon cooling to absolute zero, CP would

drop to 3
2
NkB where N is the number of atoms in the gas. However, in certain quantum

systems with discrete energy levels, such as an electron gas in a magnetic field, the specific

heat at zero temperature drops to zero. In these quantum systems, there will be a low-

temperature maximum around ∼ kbT arising from thermal excitations between two states

called the Schottky anomaly [52]. However, in reality, degrees of freedom can remain down

to zero temperature including magnetic degrees of freedom that are of interest in condensed

matter. One example would be in a spin liquid, where a spin flip could freely propagate

and thus continue to contribute to the specific heat. Triangular magnetic structures of the

Heisenberg model were also shown to approach nonzero values at zero temperature [53], a

result that is used in the fitting of specific heat data taken to ultra-low temperatures (∼ 50K)

to examine anisotropy in this dissertation.

Specific heat measurements performed in this dissertation were carried out using a

Quantum Designs physical properties measurement system. A thermometer and heater are

attached to a thermally conducting platform upon which the sample is mounted. Apiezon

grease is used to provide a thermal contact. The platform is also connected to a thermal

bath with a sufficient time constant to allow both the platform and sample to reach thermal

equilibrium during measurements. Prior to measuring the sample, the puck and grease are

measured to determine the addenda specific heat. While measuring the sample, a recording

of the heat provided by the heater and the temperature of the sample allows a thorough
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Figure 3.1: Labeled image of Huber X-ray Diffractometer showing the X-ray source tube
with a copper anode, a monochromator to select the Cu Kα1 wavelength, sample holder for
the crushed powder sample, and imaging plate where the diffraction pattern is recorded.

36



mapping of specific heat as a function of temperature. Subtraction of the addenda isolates

the sample contribution to specific heat. A dilute refrigeration insert allows for temperatures

as low as 50 mK to be reached and a heater allows measurement of up to 350 K.

3.3 DC Susceptibility and Magnetization

One of the most straightforward measurements of magnetic properties is the bulk

magnetization (M ). By using B = µ0(H +M ), measurement of magnetic flux density (B)

as a function of magnetic field strength (H) provides magnetization. Magnetic susceptibility

(χ) measures the change in magnetization with an applied magnetic field strength by

M = χ(H) or B = µ0(1 + χ)H . Diamagnetism is a magnetic repulsion that arises in

all materials due to the rearrangement of electron pairs in an external field and corresponds

with a negative susceptibility. Due to the weak nature of diamagnetism, it is overcome by

other magnetic orderings. For a paramagnetic materials, unpaired electrons will align under

application of external field and will provide a positive susceptibility that increases with

lowering temperatures as 1/T . FM materials with spontaneous domain magnetization will

show a large positive value of the magnitude of the susceptibility. This is due to the ability

to align the magnetic domains along the direction of the applied field. Upon transitioning

from paramagnetic to ferromagnetic ordering, complex magnetic behavior is seen. AFM

materials will have a small positive susceptibility relating to the ability to excite spins out

of the magnetic ground state. Due to the LRO into a state with a net magnetization of

zero, there is less of a response from an applied field as any alignment along with the field

requires breaking this LRO. Ordering into the antiferromagnetic state from a paramagnetic

state is usually accompanied by a peak and a reduction in susceptibility upon decreasing

temperatures. For the paramagnetic phase of materials, the magnetic susceptibility behaves

as

χ =
C

T − TCW
, (3.1)

where C is the Curie constant and TCW is the Curie-Weiss constant in Kelvin. This predicts

a singularity at a temperature of |TCW | and TCW will be positive for ferromagnetic ordering,

zero for a purely paramagnetic material, and negative for antiferromagnetic ordering.
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DC susceptibility (χDC) and magnetization measurements included in this dissertation

were performed using a Quantum Design superconducting quantum interference device

magnetometer. For this design, the sample is suspended in a coil of superconducting loops

containing two similar Josephson junctions in each loop. In the absence of any magnetic flux

in the loops, when a current is applied across the loop, it should pass through each Josephson

junction equally. However, in the presence of a magnetic flux (Φ), an electromotive force

will produce unequal currents across each junction. Due to the quantized nature of the

magnetic flux, if the magnetic flux were to increase from zero beyond one-half quanta, the

current in the loop would energetically favor increasing to yield one quantum. To avoid this,

a critical current is used to keep the SQUID in resistive mode so that there is no sign change

in current flow. For measuring χDC, Φ is measured to provide the magnetic flux density

of B = µ0(1 + χ)H . By maintaining a constant field and varying the temperature of the

sample, the temperature dependence of χDC can be mapped. By maintaining a constant

temperature and varying the magnetic field strength H then B = µ0(H +M ) yields the

bulk magnetization. DC susceptibility can be measured from 2 - 350 K with this setup.

3.4 AC Susceptibility

AC susceptibility (χAC) mirrors χDC in many ways. However, it is often possible to reach

lower temperatures with χAC measurements, down to 300mK as opposed to 2K for most

available χDC measurements. While frequency dependence requires consideration and can

provide additional information about the magnetic behavior of the sample, low-frequency

measurements capture effective DC behavior and can be scaled with DC measurements to

provide a full susceptibility curve down to very low temperatures.

The AC susceptibility measurement is obtained using an AC-DC current calibrator

(Valhalla Scientific, model 2700) and three lock-in amplifiers (Stanford Research, SR 830)

[54]. The phases of the lock-in amplifiers are set to measure each harmonics signal, which is

shifted from the oscillating magnetic field according to

E = A{χt0h0cosωt+ χt1h
2
0sin2ωt− 3/4χt2h

3
0cos3ωt− ...}, (3.2)
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where χt0, χt1h0, and 3/4χt2h
2
0 are the first harmonic, second harmonic, and third harmonic

components of χAC. The lock-in amplifiers are also set to read the linear component (first

harmonic response) and the nonlinear components (second and third harmonic responses)

with respect to the oscillating AC field frequency. The root mean square amplitude of the

AC excitation field (h0) varies from 0.43 to 4.3 Oe with frequency (f) ranging from 40 to 1000

Hz. The applied external DC magnetic field (HDC) varies from 0 to 1000 Oe. The data were

taken while warming up the sample from the base temperature with a rate of 7.6 mK/min

with the zero-field-cooling process. Using small excitation fields, χt0 ≈ χDC Thus, in our

analysis the linear AC susceptibility values have been scaled to the linear DC susceptibility

measurements and are used to normalize both linear and nonlinear χAC components.

3.5 Resistivity

With magnetism stemming from the order of electron spins, it is natural that other

electronic properties would provide insight into magnetic ordering. Electron mobility can

be measured in bulk via resistivity, ρ, measurements and can distinguish between metals,

insulators, semiconductors, and semimetals. For free electrons in an electric field, the force,

F, is related to velocity, v, and wavevector, k, F = mdv
dt

= ~dk
dt

and in a constant electric

field E yields j = nqv = E/ρ = ne2τE/m where j is the electron current density, n is

electron density, and τ is the average time between collisions. Resistivity is defined by these

parameters as m/ne2τ . For metallic samples, the resistivity will be small in magnitude and

increase in magnitude with increasing temperature. This increase is due to the increased

scattering from thermally excited ions. Semiconductors will have intermediate magnitudes

of resistivity while insulators will have high magnitude values. Both semiconductors and

insulators have decreasing resistivity with increasing temperatures due to the thermal

excitation of the charge carriers into more mobile states. The exact nature of the resistivity

behavior is based on the electronic band structure. As long-range magnetic ordering will alter

the electronic band structure, a feature in resistivity may occur when the band structure

is sufficiently changed near the Fermi surface. For this reason, resistivity measurements
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were used to look for possible magnetic ordering and to provide concurring results with

susceptibility measurements to create magnetic phase diagrams.

Resistivity measurements carried out in this dissertation were performed using a

Quantum Design Physical Properties Measurement System. ρ was measured using the four-

wire resistance method, where two wires measure the voltage, V , difference across a sample

and two separate wires provide the current, I, across the sample. Combining this with Ohm’s

Law of V = IR, resistance (R) can be easily found by a simple V/I calculation. In order to

extract the resistivity, the relation of ρ = RA
l
, where A is the cross-sectional area and l is the

length of the measured sample, is required to isolate the resistivity. To assist in the accuracy

of this relationship, samples were pressed into pellets and cut using a rotating diamond saw

into rectangular plates. The distance between the voltage leads on the sample are used to

record l and the cross-sectional area was measured with calipers.
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Chapter 4

Two Dimensional Frustrated

Triangular Lattice Compounds

2D triangular lattice magnets (TLMs) have attracted much attention for their exotic

magnetic properties. 2D structures such as the triangular lattice have been studied exten-

sively theoretically, but experimental measurements have revealed previously unpredicted

behaviors. Here, select triangular lattice materials have been examined to further the

understanding of the lattice as well as to search for novel behaviors. In this chapter, we

present the results of our research into 2D TLMS. Many of the results presented in this

chapter have been published in Physical Review B in “Magnetic properties of the triangular

lattice magnets A4B′B2O12 (A = Ba, Sr, La; B′ = Co, Ni, Mn; B = W)” (2017) [55]

and “Ba8CoNb6O24: A spin-1
2

triangular-lattice Heisenberg antiferromagnet in the two-

dimensional limit” (2017) [56]. I would like to extend thanks to Haidong Zhou, Clarina

dela Cruz, Jie Ma, Jaan Oitmaa, Minseong Lee, Eun Sang Choi, Kuan-Wen Chen, Ryan

Baumbach, Harish Agrawal, Yoshimoto Kamiya, Nicholas P. Butch, Xuefeng Sun, Cristian

Batista, Huibo Cao and Martin Mourigal for all of their contributions in both experimental

and theoretical aspects of this research.
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4.1 A4B
′B2O12 Transition Metal Compounds

To fully probe the intriguing ground states seen, as well as to provide experimental

realizations of theoretical predictions, new TLMs must be discovered and explored. One of

the most straightforward methods to engineer a 2D triangular lattice is by using a stacked

layer model, such as that in the perovskite structure [57, 58]. The basic perovskite structure

(ABO3) can be considered as a stacking of three layers of AO3 intercalated with layers

of B ions. Both A and B site ions consist of corner-sharing octahedra formed with the

surrounding oxygens. Other stacking mechanisms can be explored by possessing layers in

which the alternating layers are instead edge sharing oxygen octahedra [57]. This can result in

multilayered stacking structures with complex stacking orders. This is of particular interest

from a materials engineering standpoint, as the introduction of non-magnetic and even vacant

layers can reduce the interplane interactions and manifest a truer 2D behavior. The presence

of vacant layers is promising to help ensure the interlayer interactions are sufficiently small

compared to the intralayer interactions.

As an extension of this approach, we use close-packed stacking of perovskite layers to

examine new 2D TLMs. One such promising structure is A4B′B2O12 (A = Ba, Sr, La; B′ =

Co, Ni, Mn; B = W, Re). In this family of compounds, using Ba2La2NiW2O12 as the example

shown in Figure 4.1, the magnetic transition metal (TM, here Ni2+) and nonmagnetic

W6+/Re7+ ions reside at the center of the oxygen octahedra from the perovskite close-

packed stacking. The magnetic and nonmagnetic ions occupy the (3a) and (6c) positions,

respectively. This results in the TM octahedra that are corner sharing with the adjoining

W/Re octahedra. The TMO6 octahedral layer forms a TM2+-triangular lattice in the ab

plane. The TM layers are between two adjacent W/Re layers with a sequence of W/Re,

vacant, W/Re layers between each TM layer. The vacant layer results from the strong electric

repulsion between the W6+/Re7+ ions. As desired, this significantly reduces the interplane

interactions between the TM ions and enhances the 2D nature of the structure over the base

perovskite structure. Of especial boon is the flexible chemistry of this structure, allowing

for tuning of the magnetic properties. This can be accomplished by two means, applying

chemical pressure or changing spin magnitude. To introduce chemical pressure in A4B′B2O12,
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Figure 4.1: Crystal structure of Ba2La2NiW2O12, member of isostructural A4B′B2O12

family [55].
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the A site ions can be chosen from barium, strontium, and lanthanum with the appropriate

choice of tungsten and rhenium on B′ to preserve charge. With the significant difference in

ionic size between Ba2+, smaller La2+, and even smaller Sr2+, there is a coinciding increase in

chemical pressure. For the cobalt-containing family, this allows for the set of Sr4CoRe2O12,

Sr2La2CoW2O12, Ba2La2CoW2O12, Ba3LaCoReWO12, and Ba4CoRe2O12. Additionally, the

spin numbers in the system can be varied by selection of the B′ ion. Here, in the family

of Ba2La2TMW2O12, the selected TMs possess spins numbers of effective spin-1/2 (Co2+)

to spin-1 (Ni2+), and spin-5/2 (Mn2+). Combining these, the magnetic properties of new

TLMs can be studied in A4B′B2O12 along with how the perturbations of chemical pressure

and spin numbers affect them. Several members of the A4B′B2O12 have been previously

reported [59, 60, 61] and the susceptibility of Ba2La2MnW2O12 [62] has been measured

down to 2 K. No detailed studies of the magnetic properties of this family have been carried

out.

We have examined a total of seven members of A4B′B2O12 for their structural and

magnetic properties by means of X-ray diffraction, DC and AC susceptibility (χAC, χDC),

neutron powder diffraction (NPD), and specific heat (CP) measurements. The ground state

is shown to be determined by the spin size of the B′ ions. For low spin compounds, FM

interactions dominate with B′ = Ni yielding FM LRO and B′ = Co yielding FM behavior.

Alternatively, for high spin, B′ = Mn, the ground state adopts an AFM LRO. Due to the

competing superexchange interactions present in the A4B′B2O12, we propose the dominant

interaction is selected by moment size.

The samples examined in this dissertation are Sr4CoRe2O12, Sr2La2CoW2O12,

Ba2La2CoW2O12, Ba3LaCoReWO12, Ba4CoRe2O12, Ba2La2NiW2O12 and Ba2La2MnW2O12.

The polycrystalline samples were prepared via the standard solid state reaction method.

Stoichiometric amounts of BaCO3/SrCO3, La2O3 (pre-dried at 980 C overnight), CoCO3/

NiO/MnO, and WO3/Re metal were mixed in agate mortars and compressed into pellets.

The pressed pellets were annealed at temperatures of 1000 C for Ba4CoRe2O12, 1050

C for Ba3LaCoReWO12, 1100 C for Sr4CoRe2O12, and 1250 C for Ba2La2CoW2O12,

Sr2La2CoW2O12, Ba2La2MnW2O12, and Ba2La2NiW2O12 for a duration of 20 hours each.
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4.1.1 Cobalt Containing Compounds

All five Co containing compounds are pure single phase with the space group R-3mH.

Rietveld refinement of the XRD patterns are presented in Figure 4.2. For ease of reference,

Sr4CoRe2O12 will be used as a continuing example throughout this section. Sr4CoRe2O12

has lattice constants of a = b = 5.5446(3) Å and c = 26.7382(13) Å with refined structural

parameters for all compounds presented in Table 4.1. The A site ion governs the lattice

parameters, with increasing radii from strontium to lanthanum to barium resulting in

increased lattice parameters. Site mixing betwen Co ions on the B site and W/Re ions

on the B′ site were also tested. There was no improvement in the refinements from the fully

ordered structure, indicating there is not significant disorder in these compounds. The XRD

resolution incidates the disorder is likely below 5%.

DC susceptibility measurements were performed on all five Co-containing members and

show no order down to 2 K. The inverse χDC data is shown in Figure 4.3. All compounds

show a slope change in these 1/χDC versus T curves around 80 K, indicating the spin state

transition of the Co2+ ions from high spin (S = 3/2) to low spin (S = 1/2). This spin

transition occurs due to the octahedral environment created by the surrounding oxygens.

The crystal field and spin-orbital coupling combine to create a low-temperature ground state

with effective S = 1/2 Kramers doublet, as described by Low [63] and further examined by

Lloret et al. [64]. Linear fitting of the high temperature regime of 150 K to 300 K, continuing

use of Sr4CoRe2O12 as an example, yields a Curie-Weiss constant of θCW = -17 K and µeff

= 4.72 µB while the linear fitting in the low temperature regime from 4.0 K to 15 K yields

θCW = 1.0 K and µeff = 3.91 µB. The positive θCW at low temperatures indicate the effective

spin-1/2 Co2+ ions interact via FM exchange interactions. Both the spin state transition

and the positive θCW at low temperatures were observed in the other four Co-containing

compounds. DC magnetization data was taken at 1.8 K and is presented in the insets of

Figure 4.3. In order to calculate the saturation magnetization (MS), a linear fit of high field

data was used to account for the Van Vleck paramagnetism. The magnetization data shows a

consistent tendency to saturate at around µ0Hs ≈ 3 T. The extrapolated value of MS = 1.52

µB/Co2+ and a powder-averaged gyromagnetic ratio g = 3.04 were found in Sr4CoRe2O12.
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Figure 4.2: Refinement of X-ray diffraction data for cobalt containing members of
A4B′B2O12 [55].
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Table 4.1: Structural parameters for the Co containing compounds at room temperature
(space group R-3mH) determined from refined XRD measurements [55].

Refinement Atom Site x y z Occupancy

Sr4CoRe2O12

χ2 = 2.29
(a)

Sr1 6c 0 0 0.12982(5) 0.16666
Sr2 6c 0 0 0.29351(6) 0.16666
Co 3a 0 0 0 0.08333
Re 6c 0 0 0.42186(3) 0.16667
O1 18h 0.50289(50) 0.49711(50) 0.12312(14) 0.50
O2 18h 0.49249(53) 0.50751(53) 0.29174(19) 0.50

a = b = 5.54464(26) (Å), c = 26.73815(126) (Å)

Overall B-factor = 1.332 (Å2)

Sr2La2CoW2O12

χ2 = 5.41
(b)

Sr 6c 0 0 0.13664(13) 0.16667
La 6c 0 0 0.28914(8) 0.16667
Co 3a 0 0 0 0.08333
W 6c 0 0 0.42105(8) 0.16667
O1 18h 0.50728(82) 0.49272(82) 0.12425(22) 0.50
O2 18h 0.48772(73) 0.51228(73) 0.29016(28) 0.50

a = b = 5.60493(41) (Å), c = 26.58453(197) (Å)

Overall B-factor = 2.211 (Å2)

Ba2La2CoW2O12

χ2 = 3.45
(c)

Ba 6c 0 0 0.13467(8) 0.16667
La 6c 0 0 0.29032(7) 0.16667
Co 3a 0 0 0 0.08333
W 6c 0 0 0.41635(7) 0.16667
O1 18h 0.50913(77) 0.49087(77) 0.11994(23) 0.50
O2 18h 0.48361(62) 0.51639(62) 0.29662(28) 0.50

a = b = 5.68043(12) (Å), c = 27.37418(60) (Å)

Overall B-factor = 2.671 (Å2)

Ba3LaCoWReO12

χ2 = 1.43
(d)

Ba1 6c 0 0 0.12939(6) 0.12500
La1 6c 0 0 0.12944(6) 0.04167
Ba2 6c 0 0 0.29533(6) 0.12500
La2 6c 0 0 0.29533(6) 0.04167
Co 3a 0 0 0 0.08333
W 6c 0 0 0.42185(6) 0.08333
Re 6c 0 0 0.42185(6) 0.08333
O1 18h 0.51068(82) 0.48932(82) 0.12143(23) 0.50
O2 18h 0.48365(80) 0.51635(80) 0.29260(32) 0.50

a = b = 5.70429(9) (Å), c = 27.675722(54) (Å)

Overall B-factor = 1.757 (Å2)

Ba4CoRe2O12

χ2 = 4.51
(e)

Ba1 6c 0 0 0.12911(8) 0.16666
Ba2 6c 0 0 0.29435(9) 0.16666
Co 3a 0 0 0 0.08333
Re 6c 0 0 0.42089(8) 0.16667
O1 18h 0.50262(108) 0.49738(108) 0.12325(29) 0.50
O2 18h 0.47513(97) 0.52487(97) 0.28794(41) 0.50

a = b = 5.72455(33) (Å), c = 27.76966(161) (Å)

Overall B-factor = 1.694 (Å2)
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Figure 4.3: (a-e) A4CoB2O12 compound DC susceptibilities [55]. The solid red and dashed
blue lines are the Curie-Weiss fittings of the low-temperature (4 - 15 K) and high-temperature
(150 - 300 K) regimes, respectively. Insets: The DC magnetization taken at 1.8 K with
the saturation magnetization of the Co2+ ion extrapolated using a linear fit to account
for the Van Vleck paramagnetic contribution. (f-j) The real part of the AC susceptibility
χAC for A4CoB2O12 compounds measured from 0.3 to 2.0 K under applied DC magnetic
fields. Excitation fields of 2 Oe at low AC frequencies were used to help comparison to DC
susceptibility behavior.
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For the four other compounds, the obtained g is around 3 ∼ 4.2. The magnetic parameters

for all compounds are summarized in Table 4.2.

AC susceptibility measurements were taken on all five Co-containing compounds under

different DC fields down to 300 mK and are shown in Figure 4.3. For Sr4CoRe2O12, χAC

shows a swift increase upon decreasing temperature below 1.5 K and a subsequent broad

peak. While this is not necessarily indicative of FM LRO in and of itself, it is evidence for

FM behavior such as FM correlations or the formation of FM clusters. To this end, we define

TFM to be the FM behavior temperature based on a local minimum in the first derivative of

χAC. For Sr4CoRe2O12, TFM = 1.0 K. The broad peak shifts to higher temperatures while

simultaneously decreasing in magnitude with the increasing strength of the applied DC field.

This increase of TFM under applied field is consistent with the FM nature described by χDC.

All Co-containing compounds show similar overall behavior for χAC yet distinct TFM. These

results are summarized in Table 4.2 with all Co compounds showing FM behavior near 1 K.

Two compounds, Sr2La2CoW2O12 and Ba2La2CoW2O12, have an additional second peak in

χAC at lower temperatures with the application of a 0.05 T DC field. The nature of this

peak and if it represents further magnetic behavior remain to be explored.

4.1.2 Ba2La2NiW2O12

Ba2La2NiW2O12 was examined by NPD and shown to be pure phase of the space group

R-3mH, as are the other members of A4B′B2O12. Rietveld refinement of the NPD pattern is

presented in Figure 4.4 (a). Refined structural parameters for Ba2La2NiW2O12 are a = b =

5.6622(4) Å and c = 27.3661(22) Å. Detailed structural parameters are reported in Table 4.3.

Specific heat data taken at zero field shows a sharp peak at 6.2 K as shown in Figure 4.4 (b).

On applying fields, the peak broadens out and shifts to higher temperatures. The transition

temperatures increase linearly with increasing field as shown in the insert of Figure 4.4 (b).

Measuring with a 50 Oe field, χDC shows a sharp rise under cooling with TC = 6.2 K as

shown in Figure 4.4 (c), in agreement with CP. Similar to the behavior in CP, increasing

applied fields shift the transition to higher temperatures while becoming broader. Linear

fitting of the inverse DC susceptibility from 150 to 300 K give positive θCW = 25.5 K and µeff
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Table 4.2: Summary of magnetic properties (FM behavior, FM transition, and AFM
transition temperatures T FM, T C, T N, Curie-Weiss constant θCW, effective magnetic moment
µeff, saturation magnetization MS, and gyromagnetic ratio g) of A4B′B2O12 compounds [55].

Compound T FM/T C/T N (K) θCW (K) µeff (µB) MS (µB) g
Sr4CoRe2O12 1.0 1.0 3.91 1.5 3.0

Sr2La2CoW2O12 1.26 1.5 3.95 2.0 4.0
Ba2La2CoW2O12 1.28 1.6 4.01 2.1 4.2
Ba3LaCoReWO12 0.83 0.78 3.89 1.9 3.8

Ba4CoRe2O12 0.87 0.61 3.87 1.6 3.2
Ba2La2NiW2O12 6.2 25.5 3.19 ≈ 2 ≈ 2
Ba2La2MnW2O12 1.7 -10.7 5.73 – –
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Figure 4.4: For Ba2La2NiW2O12 [55], (a) the Rietveld refinement of the neutron
powder diffraction pattern measured using a neutron wavelength of λ = 1.5405Å at room
temperature. (b) The temperature dependence of specific heat measured under different
strength DC fields. Inset: the field dependence of the Curie temperature found from the
peak in specific heat. (c) The inverse DC susceptibility with the solid line being the Curie-
Weiss linear fitting. Inset: the temperature dependence of DC susceptibility measured under
different strength DC fields. (d) The DC magnetization curve measured at 2 K showing
hysteresis loop.
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Table 4.3: Structural parameters for Ba2La2NiW2O12 and Ba2La2MnW2O12 at room
temperature (space group R-3mH) determined from refined neutron powder diffraction
measurements [55].

Refinement Atom Site x y z Occupancy

Ba2La2NiW2O12

(a)

Ba 6c 0 0 0.13324(60) 0.16667
La 6c 0 0 0.29309(44) 0.16667
Ni 3a 0 0 0 0.08333
W 6c 0 0 0.41881(68) 0.16667
O1 18h 0.49760(81) 0.50240(81) 0.11707(27) 0.50
O2 18h 0.47868(74) 0.52132(74) 0.29302(37) 0.50

a = b = 5.66221(40) (Å), c = 27.36606(224) (Å)

Overall B-factor = 1.401 (Å2)
Refinement Atom Site x y z Occupancy

Ba2La2MnW2O12

(b)

Ba 6c 0 0 0.13551(85) 0.16667
La 6c 0 0 0.29341(47) 0.16667
Mn 3a 0 0 0 0.08333
W 6c 0 0 0.41653(86) 0.16667
O1 18h 0.49847(95) 0.50153 (95) 0.11839(30) 0.50
O2 18h 0.47415(88) 0.52586(88) 0.29343(38) 0.50

a = b = 5.72804(74) (Å), c = 27.38715(384) (Å)

Overall B-factor = 1.558 (Å2)
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= 3.19 µB, Figure 4.4 (c), indicating FM interactions. Magnetization data taken at 2.0 K and

reported in Figure 4.4 (d) shows clear hysteresis and a magnetic saturation value of MS ≈ 2

µB. NPD measurements performed at 2 K and 20 K show definitive magnetic Bragg peaks

that overlap the lattice Bragg peaks (Figure 4.5). This is clear evidence for the onset of FM

LRO. Rietveld refinement of the ferromagnetic component reveals a magnetic moment of ≈

2 µB, consistent with the value from DC magnetization. Spin orientation cannot be resolved

due to the powder nature of the sample. All of the above data, including the increase of

TC under fields of CP and χDC, the sharp peak in CP and rapid increase χDC at 6.2 K, the

positive θCW, the magnetization hysteresis, and magnetic Bragg peaks from NPD indicate

that Ba2La2NiW2O12 is a spin-1 system with long range FM ordering onset at 6.2 K at zero

field.

4.1.3 Ba2La2MnW2O12

Ba2La2MnW2O12 is shown to be pure phase with the space group R-3mH from the

Rietveld refinement of the NPD pattern measured at room temperature. The refined lattice

parameters are a = b = 5.7280(4) Å and c = 27.3872(38) Å. Detailed structural parameters

are reported in Table 4.3. In Figure 4.6 (b), specific heat shows a sharp peak at TN = 1.7

K, indicating the onset of LRO. Figure 4.6 (c) shows that a linear fitting of the inverse χDC

from 150 to 300 K gives a negative θCW = -10.7 K and µeff = 5.73 µB, indicating that AFM

interactions are dominant.

χAC was measured both as a function of temperature under varying applied DC fields

(Figure 4.6 (a)) and as a function of DC field under varying applied temperatures (Figure

4.6 (b)). Transitions were again determined from local minima in dχAC/dT and dχAC/dH.

Under zero field, Figure 4.6 (a) χAC as a function of temperature has no significant features,

however there is a weak slope change around TN = 1.7 K, consistent with the peak in

CP. Upon applying a DC field of H = 2 T, a peak appears at 1.5K and shifts to higher

temperatures upon increasing DC fields before inflecting and shifting to lower temperatures

with further increase, as indicated by the curved arrow in Figure 4.6 (a). Field scans at

300 mK show two slope changes around 4 T and 11 T that are accompanied by two sharp

valleys in the dχAC/dH curve (Figure 4.6 (c)). The minima positions at 300 mK are defined
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Figure 4.5: Neutron powder diffraction of Ba2La2NiW2O12 taken at 2 and 20 K [55] on
HB-2A powder diffractometer. The overlap of magnetic Bragg peaks with lattice Bragg
peaks is indicative of ferromagnetic long range ordering.
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Figure 4.6: For Ba2La2MnW2O12 sample [55], (a) the Rietveld refinement of the
neutron powder diffraction pattern taken at room temperature on HB-2A neutron powder
diffractometer. (b) The temperature dependence of specific heat measured at zero field. (c)
The inverse DC susceptibility with the solid line representing the Curie-Weiss fitting. (d)
The temperature dependence of χAC under applied DC fields. (e) The DC field dependence
of χAC at various temperatures. Inset: the enlargement of the data around 4 T for clarity. (f)
The derivative of the field dependence of χAC at different temperatures. The local minima
are used to determine transition temperatures.
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as the critical fields at Hc1 = 3.75 T and Hc2 = 11.6 T. Upon increasing temperature, these

valleys become broader and shift to lower fields before disappearing above TN. The transition

temperatures from CP and χAC and the critical field values from χAC are combined to present

the magnetic phase diagram of Ba2La2MnW2O12 shown in Figure 4.7.

4.1.4 Ba3LaCuReWO12

The work by our group in Subsection 4.1.1 shows that in other members of A4B′B2O12, five

cobalt containing compounds show FM behavior with the temperature of behavior ranging

from 0.8-1.3K. Ba2La2NiW2O12 shows FM ordering at 6.2 K, and Ba2La2MnW2O12 shows

AFM ordering at 1.7 K. NPD was performed on Ba2La2NiW2O12 and Ba2La2MnW2O12 and

confirmed the FM ordering and 120 degree AFM ordering respectively. The FM ordering of

the lower spin Co and Ni compounds and AFM ordering of the Mn compound is attributed to

the competition between FM and AFM superexchange pathways. With this in mind, we look

to examine another spin-1/2 isostructural compound to further our understanding of the low

spin triangular lattice. While the Co and Ni compounds showed peaks in AC susceptibility

at the ordering temperature, no such peak has been observed in Ba3LaCuReWO12 by our

group, indicating a lack of long ranged ordering and possible spin liquid behavior. There have

not been any previous reports on the ordering or magnetic structure of Ba3LaCuReWO12.

We carried out the successful synthesis of polycrystalline Ba3LaCuReWO12 by the

standard solid-state reaction method. XRD was performed and shows a single phase of

space group R-3mH with a = 5.6655 Å and c = 27.4685 Å (Figure 4.8 (a)). There was no

resolvable site disorder evident in the XRD refinements. The Cu2+ ions reside on a triangular

lattice that is separated from other Cu2+ layers by two non-magnetic (W6+/Re7+) and one

vacant layer (Figure 4.8 (b)). DC susceptibility was taken down to 2 K and Curie-Weiss

fitting from 200-300 K yields a FM θCW= 28.7 K and µeff=1.58 µB. No transition is

visible down to 2K. Specific heat measurements taken down to 20 mK show a very broad

peak with a slope change around 300 mK (Figure 4.8 (c)). This peak becomes sharper

and occurs at higher temperatures under applied fields. AC susceptibility did not reveal

any peak, unlike in similar Ni-containing compounds. The improved resolution from NPD

is essential for reliable extraction of the bond angles to compare between FM and AFM
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Figure 4.7: Magnetic phase diagram of Ba2La2MnW2O12 [55]. Transition temperatures
were found from the temperature derivative (red solid squares), the field derivative (blue
open squares) of AC, and zero-field CP measurements (green triangle). The 120 degree
ordered ground state, up-up-down state, and fully polarized state are labeled. Lines are
provided as a guide for the eye.
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Figure 4.8: a) X-ray diffraction refinement of Ba3LaCuReWO12. b) Unit cell of
Ba3LaCuReWO12 with Cu2+ (blue) ions residing on staggered triangular lattices. c) Specific
heat showing a very broad peak with a slope change at 300 mK. d) Disk chopper time-of-
flight spectroscopy data of Ba3LaCuReWO12 taken at National Institute of Standards and
Technology using λ = 5.0 Å and subtracting the data with an applied field of 10 T from the
0 T data to isolate the coherent scattering.
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members of the A4B′B2O12 family. Disk chopper time-of-flight spectroscopy (DCS) inelastic

scattering was taken on Ba3LaCuReWO12 on DCS at National Institute of Standards and

Technology, but the overpowering background and strong elastic signal made it impossible

to perform useful simulations with the data (Figure 4.8 (d)). In the triangular compound

Ba8CoNb6O24 (Section 4.2), lacking LRO possessed a similar broad peak in specific heat as

seen in Ba3LaCuReWO12 and revealed the need for 1/S correction to linear spin wave theory

to describe the excitations.

Four days of beam time has been allocated at the cold neutron triple-axis spectrometer

(CTAX) and ORNL. This experiment is vital in answering the following questions: What are

the excitations of Ba3LaCuReWO12? Does it show spin liquid behavior such as fractional

excitations? Is linear spin wave theory sufficient to describe any observed excitations?

4.1.5 Discussion

The spin size of the magnetic B′ ions is a significant factor in the magnetic ground states

of the studied A4B′B2O12 compounds. The low spin Co2+ (S = 1/2) and Ni2+ (S = 1)

containing compounds show FM behavior and ordering respectively, while the Mn2+ (S =

5/2) compound possesses AFM LRO. To explore this alteration of the ground state, we turn

to the superexchange interactions of the B′2+ ions in the structure. Qualitative description of

the superexchange interaction between magnetic cations is determined using the theoretical

framework presented by Anderson, Goodenough, and Kanamori [65, 66, 67, 68]. For magnetic

ions in an octahedral environment, the FM or AFM nature of the superexchange can be

determined from the orbital configurations of the magnetic cations and the nonmagnetic,

bridging anions. For the B′O6 octahedra in A4B′B2O12, corner sharing with BO6 octahedra

via an oxygen allows two pathways for intralayer superexchange, shown in Figure 4.9 (a).

One path utilizing only the adjoining oxygens is B′2+-O2−-O2−-B′2+ while the other path uses

the nonmagnetic B site ions along B′2+-O2−-W6+-O2−-B′2+ or B′2+-O2−-Re7+-O2−-B′2+. The

B′2+-O2−-O2−-B′2+ superexchange interaction is commonly found in other magnetic oxides

where it is AFM.

To understand the superexchange interaction along the B′2+-O2−-B′7+-O2−-B′2+, it is

necessary to look at the nonmagnetic W6+ and Re7+ ions. These B′ ions reside on octahedral
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Figure 4.9: a) Pathways for ferromagnetic B′-O-B-O-B′ (black dashed line) and
antiferromagnetic B′-O-O-B′ (green solid line) superexchange interactions. b) The splitting
of the energy levels of 4f orbitals in cubic symmetry, with the highest energy levels having
the same sign changes under reflection as p orbitals. c) Orbital diagram of ferromagnetic
B′-O-B-O-B′ interaction with the f orbitals represented by symmetrically similar p orbitals
for clarity [55].
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sites where their degenerate 4f orbitals (the filled outermost orbitals) are split by the cubic

crystal field into three groups, seen in Figure 4.9 (b). Due to the overlap of orbitals from

the geometry, the orbitals with t1g symmetry, fx3 , fy3 , and fz3 , are the main contributors to

the superexchange interaction. In Figure 4.9 (c), one configuration for the B′2+-O2−-W6+-

O2−-B′2+ is shown and the case for Re is similar. We assume in this configuration that B′2+,

O2− and W6+ are on the same line and there is a 90 degree bond angle for O2−-W6+-O2−.

Examining the superexchange interaction between the dx2−y2 orbitals of the spins of the B′2+

ions, we consider spin 1 on the left B′2+ ion and spin 2 on the right B′2+ ion from Figure

4.9 (c). Here, spin 1 is transferred to the molecular orbital comprised of the py orbitals of

the O2− 2p orbitals and the fy3 orbitals of the W6+ 4f orbitals. A coinciding transfer of

the spin 2 to the molecular orbital composed of the px orbitals of O2− and the fx3 orbitals

of W6+ ions also occurs. According to Hund’s rules, the two spins residing on the fy3 and

fx3 orbitals must be parallel. After this process, the two spins are transferred back to their

respective B′2+ ion and form an FM superexchange interaction between the B′2+ ions. These

two differing superexchange interactions being present in this system provides support for the

ground state change being due to the competition between these interactions. For the Co-

and Ni-containing (S = 1/2, S = 1 respectively), low spin compounds, the FM interactions

are stronger than the AFM interaction, while for the Mn-containing (S = 3/2), high spin

compound, the AFM interaction is stronger.

In order to further discuss the superexchange processes in the A4B′B2O12 compounds, we

look to compounds with similar symmetries. The t1g symmetry of the 4f orbitals possesses

a similar symmetry to 4p or 3p orbitals, with orientation along the corresponding x, y or z

axis. Both the 4f and 4p or 3p change sign under reflection across the plane perpendicular

to the orientation of the orbital. Thus, it is expected that similar superexchange interactions

for 3d-2p-4p (or 3p)-2p-3d paths will also be FM. A similar competition between FM and

AFM superexchange interactions is observed in Ba3CoNb2O9 [20]. Along a similar path,

there is a superexchange along the Co2+-O2−-Nb5+-O2−-Co2+ superexchange path involving

the Nb5+ 4p orbitals that is FM, while the superexchange interaction along Co2+-O2−-O2−-

Co2+ is AFM. The FM superexchange reduces the AFM interaction, as seen by a low AFM

transition temperature and a low saturation magnetic field. The reverse case is seen in
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AAg2M(VO4)2 (A=Ba, Sr; M=Co, Ni) [27], where the FM superexchange along Co2+-O2−-

V5+-O2−-Co2+ exceeds the AFM superexchange along Co2+-O2−-O2−-Co2+ and results in a

FM transition.

Now we look into the effects of chemical pressure among the Co-containing samples. An

increase in lattice parameters should generically decrease the exchange interactions of the

system and lower the temperature at which FM behavior is seen, TFM. In contrast, there is no

such straightforward relation in this system. What instead occurs is that TFM first increases

under increased lattice parameters from the Sr4 to Sr2La2 and then to the Ba2La2 compound

(Table 4.2). After this, the trend reverses and the expected decrease of TFM is seen in the

Ba3La and subsequently Ba4 compound. It is shown in Figure 4.10 that there is no structural

distortion between the high spin (S = 3/2) and low spin (S = 1/2) states of the Co2+ ion,

indicating that there should be isostructural chemical pressure on A site substitution, even at

low temperatures. Unfortunately, the available XRD resolution is unable to resolve the angle

of the O-B-O bond, a key piece of information in further examination of the superexchange

pathways. Neutron diffraction is the next step to pursue in order to explain the nuanced

behavior of TFM.

To conclude the examination of A4B′B2O12 compounds, we turn to the phase diagram of

Ba2La2MnW2O12. As discussed in Subection 1.3.1, a common ground state of the triangular

lattice antiferromagnets (TLAFs) at zero field is the 120 degree ordered state such as in

Ba3CoSb2O9 [15] and Ba3BNb2O9 (B = Co [20, 69], Ni [21], Mn [22]). Upon application

of a magnetic field, these TLAFs consistently show a progression to a canted 120 degree,

uud, oblique, and polarized phase. For Ba2La2MnW2O12, there is a similar trend to the

magnetic phase diagram and we ascribe the 120 degree zero field ground state progressing

into the canted 120 degree phase below Hc1, up up down phase above Hc1, and then polarized

phase above Hc2. The difference compared to the general phase diagram is a lack of boundary

observed between the uud and polarized phases, where the expected ordering into the oblique

phase is expected. Due to the polycrystalline nature of the Ba2La2MnW2O12 sample, the

AC measurements may lack the resolution necessary to detect this phase boundary.
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Figure 4.10: Temperature dependence of lattice parameters a and c for Ba2La2CoW2O12

[55]. No structural distortion is seen upon the transition from high spin (S = 3/2) to low
spin (S = 1/2) of the Co2+ ions.

63



4.2 Ba8CoNb6O24

Mermin and Wagner demonstrated that thermal fluctuations prevent 2D magnets from

establishing long ranger ordering in their seminal 1966 paper [70], given that the interactions

decay sufficiently with the distance between spins. This is an important result for condensed

matter, as most interactions do decay sufficiently quickly over distance, and the breaking

of the continuous spin-rotation symmetry is the focus of much research. In 1D systems the

role of thermal fluctuations is instead replaced by quantum fluctuations down to T = 0.

The Heisenberg AFM chain is one such case where LRO is instead replaced by quasi-long-

range correlations [71] and fractional spin excitations [50, 72, 73]. Even with increasing

dimensionality to 2D and 3D systems, Mott insulators are expected to have strong quantum

fluctuation effects on the magnetic ground state. This is of particular relevance to the

realization of quantum spin liquids [74, 75], as previously discussed in Subsection 1.3.1.

While the QSL is an extreme case, quantum fluctuations can still have strong modification

from semi-classical behavior in 2D systems that are ordered at T = 0. Evidence for proximity

to a QSL can be seen by the elementary magnon excitations becoming weakly bonded pairs

of fractional excitations. The crossover into a QSL regime is referred to as the quantum

melting point (QMP), and its approach is indicated by such fractional excitations and a

strong suppression of the magnitude of the ordered moment relative to its full moment.

To this end, it is natural to choose a model for studying quantum fluctuations by choosing

a system with a significant reduction in the ordered moment. One such case is in spin-1/2

2D TLAF, where the non-collinear 120 degree ground state has a relative suppression of the

ordered moment of more than 50% [76, 77, 78, 79, 80, 81]. In practice, TLAF materials

often suffer from spin or spatial anisotropies and/or weak interlayer interactions. The lack

of LRO from fluctuations of 2D Heisenberg materials is fragile in that extremely small

perturbations are sufficient to introduce LRO at appreciable Néel temperature TN due to

the logarithmic relation between TN and interlayer-coupling or exchange anisotropy [4, 5,

6, 7, 8]. This has been reported in many transition metal 2D TLAF compounds such as

Cs2CuCl4 (TN =0.62 K [82]), Ba3CoSb2O9 (TN =3.8 K [83]), and the A4B′B2O12 compounds

summarized in Table 4.2. The importance of quantum effects even below TN is evident in
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the one third magnetization plateau of the up-up-down phase under applied magnetic field

[9, 18, 84]. Recent analysis of neutron scattering obtained from Ba3CoSb2O9 [19] shows that

even using sizable perturbations from the pure Heisenberg 2D TLAF [16, 83, 85, 86], the

correct dispersions are not described by linear spin-wave theory (SWT). This suggests the

need for novel theoretical approaches to describe both the QSL state and the qualitative

properties seen in magnets with LRO near the QMP [15, 87].

Following the reasoning put forward in Section 4.1, we again look to the close-packed

perovskite stacking method. The quasi-2D triple perovskite structure magnets of A3B′B2O9

consist of triangular layers of B′ ions separated by two triangular layers of B ions. These two

non-magnetic layers provide a reduction of the interlayer interactions similar to the effect of

the non-magnetic and vacant layers in A4B′B2O12. As a result, compounds of the A3B′B2O9

structure have attracted much attention for their quasi-2D properties and the possibility for

exotic magnetic properties. Of those studied, including Ba3B′Sb2O9 [83, 88, 89, 90, 91, 92]

and Ba3B′Nb2O9 [69, 93, 94, 95] (B′2+ = Co2+, Ni2+, and Mn 2+ with spin number 1/2, 1, and

5/2, respectively), most show the 120 degree non-collinear ordered structure. As discussed

in relation to Ba2La2MnW2O12 in Subsection 4.1.5, under applied magnetic fields the 120-

degree structure undergoes canting, followed by the quantum uud state, the oblique phase,

and finally the fully polarized state. While the Ba3B′Nb2O9 compounds exhibit multiferroic

properties, of particular interest is Ba3CoSb2O9 due to the strong quantum fluctuations

occurring from the effective spin-1/2 Co2+ ions. Despite a large ordering temperature of

TN = 3.8 K [83], quantum effects remain prominent in the ordered state of Ba3CoSb2O9

and produces the one third magnetization plateau of the uud phase by the order by disorder

phenomena [18, 88, 89, 90, 96]. Inelastic neutron scattering (INS) on Ba3CoSb2O9 shows

spin dynamics that are not captured by SWT and suggests the approach of a QMP.

In an attempt to engineer the interactions and tune the QMP present in Ba3CoSb2O9, we

look to introduce further non-magnetic and vacant layers between the layers of S = 1/2 Co2+.

The reduced ordering temperatures in the Co-containing members of A4B′B2O12 (Table 4.2)

relative to Ba3CoSb2O9 lend credence to this approach. To this end, Ba8CoNb6O24 possesses

similar triangular layers of magnetic CoO6 octahedral stacked along the hexagonal c axis yet

have six non-magnetic layers and one vacant layer between Co layers. The structure and
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stacking are shown in Figure 4.11 (a). The intralayer Co–Co distance is 5.86 Å and the

interlayer Co–Co distance is 7.23 Å of Ba3CoSb2O9 [83] and yields an interlayer magnetic

exchange interaction, J ′, that is ∼5% in the intralayer exchange J [16]. In Ba8CoNb6O24

the intralayer Co–Co distance of 5.79 Å and interlayer Co–Co distance of 18.90 Å [97] shows

comparable intralayer Co–Co distance but dramatically increased interlayer Co–Co distances.

While the spin anisotropy is difficult to predict, this structure with a chosen stacking sequence

is expected to enhance the 2D nature of the magnetic properties of Ba8CoNb6O24.

We synthesized polycrystalline samples of Ba8CoNb6O24 via the standard solid state

synthesis method. Stoichiometric amounts of BaCO3, CoCO3, and Nb2O5 were combined

and ground with an agate mortar and pestle, pressed into pellets, and annealed at 1500 C

for 48 hours with one intermediate grinding. NPD measured at T = 0.3 K with λ = 1.54 Å

(Figure 4.11 (b)) was analyzed by Rietveld refinement yielding a = 5.7902(2) Å and c =

18.9026(3) Å, in agreement with previous work [97]. Detailed structural parameters are

summarized and Table 4.4 and show limited disorder (< 2 %) between the Co and Nb

sites, confirming the success of the intercalation approach. There is no significant difference

between NPD patterns taken at T = 0.3 K and 2.0 K, with no additional Bragg peaks or

broadening of or change in intensity of the existing Bragg peaks [98]. This suggests the lack

of any structural transition or LRO down to T = 0.3 K.

Shown in Figure 4.11 (c), measured χDC on Ba8CoNb6O24 shows no significant feature

indicating the onset of LRO nor evidence for spin freezing, such as strong field dependence,

down to T =1.8 K. As in the Co containing A4CoB2O12 compounds, there is a slope change

in 1/χDC indicative of the transition from a high-spin state (S=3/2) to a low-spin state (S=

1/2). This is seen in other compounds containing Co2+ ions in an octahedral environment

such as ACoB3 (A = Cs, Rb, B = Cl, Br) [12]. Linear Curie-Weiss fitting of the high

temperature range from 200 to 350 K yields µeff = 5.01(2) µB and θCW =−25.2(3) K while

fitting of the low temperature range from 1.8 to 30 K yields µeff = 3.89(2) µB and θCW =

−4.23(1) K. DC magnetization taken at T = 1.8 K shows the saturation of the spins above

µ0Hs≈4 T and is presented in Figure 4.11 (d). Linear fitting of the magnetization between

µ0H = 5 T to 7 T to reveals a Van Vleck paramagnetic contribution of 0.023 µB.T−1 per

Co2+ and a saturation magnetization Ms = 1.87 µB. This saturation value is comparable to
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Figure 4.11: (a) The stacked layer structure of Ba8CoNb6O24 with Co2+ ions sitting
on a triangular lattice. (b) Rietveld refinement of the neutron powder diffraction pattern
measured with λ = 1.54 Å at T = 0.3 K at HB-2A. (c) Temperature dependence of the inverse
DC magnetic susceptibility and linear Curie-Weiss fits. (d) DC magnetization measured at
T = 1.8 K. Linear fitting extrapolation of the magnetization above the saturation field to
extrapolate saturation moment (blue solid line) [56].
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Table 4.4: Structural parameters for Ba8CoNb6O24 at 0.3 K [56].

Refinement Atom Site x y z Occupancy

λ = 1.5404 Å
RF-factor = 2.44

Bragg R-fct = 3.21
P -3m1

Ba(1) 2c 0 0 0.18771(36) 1/6
Ba(2) 2d 1/3 2/3 0.06126(52) 1/6
Ba(3) 2d 1/3 2/3 0.45478(41) 1/6
Ba(4) 2d 1/3 2/3 0.68149(32) 1/6

Co 1a 0 0 0 0.084(2)
Nb(1) 2c 0 0 0.38677(30) 0.166(1)
Nb(2) 2d 1/3 2/3 0.25272(33) 0.166(1)
Nb(3) 2d 1/3 2/3 0.87707(33) 0.166(1)
O(1) 6i 0.16937(49) 0.30685(19) 0.30685(19) 1/2
O(2) 6i 0.16413(38) 0.83577(38) 0.56995(19) 1/2
O(3) 6i 0.17068(57) 0.82922(57) 0.93424(26) 1/2
O(4) 6i 0.49774(61) 0.50216(61) 0.18738(14) 1/2

a = 5.7902(2) (Å), c = 18.9026(3) (Å)

Overall B-factor = 0.093(8) (Å2)
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that found in Ba3CoSb2O9 and corresponds to a powder-averaged gyromagnetic ratio g =

3.84 for the effective S = 1/2 ground state.

Examination of AC magnetic susceptibility to lower temperatures of T = 0.3 K reveals

no sharp features down to 0.3 K, displayed in Figure 4.12 (b), and similar behavior to χDC.

There is instead a broad peak centered at T = 0.6 K. We ascribe this peak to the onset

of short-ranged magnetic correlations and not LRO. Heat capacity measurements shown in

Figure 4.12 (c) confirm the presence of magnetic correlations below T ≈ 1 K. To isolate

the magnetic contribution, Cm, the lattice contribution , CL, was subtracted using the iso-

structural but non-magnetic compound Ba8ZnTa6O24 [98]. The plot of Cm(T ) reveals a

broad peak centered around T =0.8 K and no sharp feature down to T =0.06 K. The small

increase in Cm at extremely low temperatures is attributed to the nuclear spins. This suggest

there is no magnetic phase transition down to T ≤ 0.06 K. The change in magnetic entropy,

∆Sm = Sm(T ) − Sm(Tmin), was calculated by integrating Cm(T )/T from Tmin = 0.06 K to

T ≤ 8 K [98]. By T = 8 K the release of entropy reaches 5.32 J mol−1 K−1, a value similar

to that expected from a Kramers doublet ground-state, R ln 2 = 5.76 J mol−1 K−1.

Now we look to explain the origin of the broad peak observed in Cm(T ). It is useful to

turn to theoretical modeling of the quasi-2D antiferromagnetic Heisenberg model. Quantum

Monte Carlo studies on the quasi-2D AFM Heisenberg model have shown that small interlayer

exchange interactions, as low as J ′/J = 2×10−4 [99], produce a sharp peak in Cm(T ).

Further reduction in the interlayer coupling causes the sharp peak to disappear, leaving

behind a broad peak as the one observed here in Ba8CoNb6O24. This is indicative of the

practically ideal 2D nature of the magnetism present. Comparing to the previously reported

Ba3CoNb2O9 [69] in Figure 4.13 (b), the increase in separation of the magnetic layers from

two non-magnetic to six non-magnetic and one vacant layer removes the sharp peaks in

Cm(T ). The two sharp peaks in Ba3CoNb2O9 at TN1 = 1.10 K and TN2 = 1.36 K indicate

two subsequent phase transitions resulting from easy-axis anisotropy [69]. At similar energy

scales at ≈ 1 K, there is only the single broad peak in Ba8CoNb6O24 indicating no features

due to interlayer coupling nor anisotropy.
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Figure 4.12: (a) The neutron powder diffraction patterns for Ba8CoNb6O24 taken with λ =
2.4111 Å at 0.3 and 2 K at HB-2A. (b) The magnetic susceptibility for Ba8CoNb6O24. Both
DC and scaled AC data are shown. (c) The specific heat for Ba8CoNb6O24, isostructural yet
non-magnetic Ba8ZnNb6O24, and the difference taken to isolate the magnetic contribution.
(d) The magnetic entropy calculated from integration of the magnetic contribution CP/T
[56].
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Figure 4.13: For Ba8CoNb6O24 [56], (a) the temperature dependence of the magnetic AC
susceptibility and corresponding high-temperature series expansion simulations using the
two-dimensional spin-1/2 triangular-lattice antiferromagnet with XXZ exchange anisotropy.
Anisotropy parameter values of ∆ = 0.9, 1.0, and 1.1 are used and simulations run down to a
temperature of 0.5 K using Padé approximants of order [6,6]. The measurements are obtained
with an AC excitation field of amplitude 0.5 Oe and frequency 300 Hz, and matched to the
DC susceptibility below T = 15 K by an overall T -independent rescaling factor (Figure 4.12
(b)). (b) The temperature dependence of the magnetic contribution to the specific heat and
high-temperature series expansion simulations as described in part (a). Inset: Comparison to
the magnetic specific heat of Ba3CoNb2O9 [69] to indicate lack of similar long-range ordering
behavior.
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4.2.1 High Temperature Series Expansion

In order to probe to lower temperatures than those available by χDC, we turn to AC

susceptibility measurements. Our choice of low frequency and small field values yield the

same temperature trends in χAC as those of χDC. To this end, χAC measurements were

performed using an AC field of 0.5 Oe with frequency 300 Hz to measure down to 0.3

K. A simple scaling factor allowed for easy matching of high temperature χDC data taken

down to 1.8 K with low temperature χAC data as shown in Figure 4.12 (b). As there is

essentially identical behavior seen in the overlap of these data sets, scaled χAC was used in

all simulations and fittings to allow for examinations down to 0.3 K. Scaled χAC was assigned

units of emu/mol as to maintain continuity with χDC.

To examine the magnetic contribution of specific heat in Ba8CoNb6O24, a non-magnetic

lattice standard of Ba8ZnTa6O24 was used to remove the lattice contribution (Figure 4.12

(c)). This is particularly useful as high temperature series expansion (HTSE) only provides

the magnetic contribution of CP. To this end, Cm data with the lattice subtracted is used in

fitting and comparisons. The magnetic entropy calculated by integrating CP/T between 0.06

and 8 K of the magnetic Cm saturates at ∆S = 5.32 J/mol-K. This is close to the expected

value of Rln(2)= 5.76 J/mol-K for a spin-1/2 system.

For 2D Heisenberg triangular lattice antiferromagnets (TLAFs), the temperature de-

pendence of both χ(T ) and Cm(T ) has been well examined using high temperature series

expansion [100, 101, 102, 103] up to 12th order [53]. In order to examine anisotropy in

Ba8CoNb6O24, we look to extend current HTSE work to the XXZ Hamiltonian,

H = J
∑
〈i,j〉

(Sxi S
x
j + Syi S

y
j + ∆Szi S

z
j ), (4.1)

where 〈i, j〉 denotes the nearest-neighbor spins. We have examined HTSE for isotropic

(∆ = 1.0), easy-plane (∆ = 0.9), and easy-axis (∆ = 1.1) models [98]. HTSE was used to

calculate exchange constants and exchange anisotropy for Ba8CoNb6O24. Coefficients an and

cn of the following equations
lnZ

N
=
∑
n=0

anx
n

(4.2)
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kBTχ

(gµB)2
=
∑
n=0

cnx
n

(4.3)

have been previously reported up to 12th order [53] for the spin-1/2 isotropic Heisenberg

TLAF, so we have computed the coefficients for the anisotropic spin-1/2 Heisenberg TLAF

for ∆ = 0.9, 1.1 (see Table 4.5). This allows for the calculation of χ(T ) directly and Cm(T )

from the temperature derivative of the total energy of the system calculated from partition

functon Z. For fitting of CP, the relation was calculated from the T -derivative of the free

energy given in Equation 4.2 while χ was calculated directly from Equation 4.3. As shown

in Figure 4.13, all of these cases were fitted to (a) χ(T ) and (b) Cm(T ). The fitting for the

isotropic case yields the best fit. For both χ(T ) and Cm(T ) below T = 5 K, the fitting yields

J = 0.144 meV for ∆ = 1.0 with a fitting error-bar on J smaller than 10−3 meV. Using a

fixed value of J , the fitting quality deteriorates as ∆ deviates from 1.0. The peak for χ(T )

moves to a higher magnitude while the peak in Cm(T ) moves to a lower magnitude.

Fittings to low temperatures using the bare coefficients an from Equations 4.2 lead to

low-temperature divergence. This can be avoided by using approaches such as the ratio

method, integrated differential approximants, or Padé approximants [99]. For our studies,

we used the Padé approximant approach as originally used by Elstner et al. [53]. Similar

to Elstner et al., we chose order [m = 6, n = 6] as given by Equation 4.4. The reasoning

is two-fold, first using some off-diagonal approximants such as [7, 5] and [5, 7] produces

non-physical divergences at T = J/kB. Second, choosing diagonal orders of [n, n] results

in a low-temperature convergence to a non-zero, finite value. After examining multiple

approximants, Padé approximants of order [6,6] as used by Elster et al. produced the most

physically meaningful results below T = J/kB.

R(x) =

∑m
j=0 ajx

j

1 +
∑n

k=1 akx
k

(4.4)

4.2.2 Inelastic Scattering

Now that we have provided strong evidence for the purely 2D nature and adherence to

the isotropic spin-1/2 Heisenberg model in Ba8CoNb6O24, we examine the fundamental spin
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Table 4.5: High temperature series expansion coefficients for anisotropy coefficients ∆ =
0.9, 1.1 [56]

n ∆ = 0.9 ∆ = 1.1
lnZ χ lnZ χ

0 0.693147180560E+00 0.250000000000E+00 0.693147180560E+00 0.250000000000E+00
1 0.000000000000E+00 -0.135000000000E+01 0.000000000000E+00 -0.165000000000E+01
2 0.421500000000E+01 0.457500000000E+01 0.481500000000E+01 0.757500000000E+01
3 -0.275800000000E+01 -0.928600000000E+01 -0.336200000000E+01 -0.267540000000E+02
4 -0.110157250000E+02 0.735865000000E+01 -0.143937250000E+02 0.833306500000E+02
5 0.227150400000E+02 0.813502200000E+01 0.316609600000E+02 -0.274087222000E+03
6 0.555289564000E+02 -0.432566133333E+01 0.830983377333E+02 0.971839778667E+03
7 -0.230309437387E+03 0.309929443029E+02 -0.367686192480E+03 -0.315219402327E+04
8 -0.251495874650E+03 -0.905870806367E+03 -0.428893232275E+03 0.868118706817E+04
9 0.237935023053E+04 0.359542189692E+04 0.433229044400E+04 -0.243590877456E+05
10 -0.490854208087E+02 -0.374861931449E+02 -0.625397496451E+02 0.877627224099E+05
11 -0.239243887884E+05 -0.309077579057E+05 -0.498804497089E+05 -0.317811658164E+06
12 0.262699694109E+05 0.180327243359E+05 0.582734814011E+05 0.840953315702E+06
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excitations. Inelastic neutron scattering provides a powerful tool to this end, as described

in Section 2.3, due to the ability to probe the momentum transfer Q and energy transfer E

of magnetic correlations. The powder-averaged intensity at T = 0.3 K is presented in Figure

4.14 (a) with additional temperatures of 0.05 K ≤ T ≤ 5 K presented in Figure 4.15. There is

no significant change in the INS upon further cooling below 0.3 K. Looking at the momentum

dependence, strong ridges in intensity appear Q≈0.7 Å−1 with additional, but weaker, ridges

appearing at 1.5 Å−1 and 2.0 Å−1. The low-energy signal at E ≤ 0.1 meV is broader than the

instrumental resolution of the data taken at National Institute of Standards at Technology

using the disk chopper spectrometer (DCS). This suggests the lack of true static order and

that, instead, spin correlations are short-ranged. Turning to energy dependence, the main

signal reveals that the excitations are gapless and extend up to 0.35 meV. A weaker signal

extends up to E = 0.45 meV.

In order to examine the dynamic magnetic correlations, we turn to modeling using SWT

at T =0. The addition of the 1/S correction [104] is shown in 4.14 (b) while the linear spin

wave theory (LSWT) results [105] are shown in 4.14 (c). Based off of the similarities to

Ba3CoNb2O9 and other spin-1/2 TLAF compounds, the ground state at T = 0 is assumed

to be the 120 degree magnetic structure. The E-integrated scans, Figure 4.14 (d), and

Q-integrated scans, Figure 4.14 (e), show good agreement between the INS measurements

and the powder-average of 1/S-SWT predictions. It is clear that SWT with 1/S correction

model provides better agreement with the data than the LSWT model. The most significant

improvement results from the inclusion of longitudinal spin fluctuations using the 1/S

correction. Both a high-energy continuum known as two-magnon scattering and a reduction

in the ordered moment due to quantum fluctuations are reflections of these excitations. The

strong quantum fluctuations are supported by the lack of significant temperature dependence

for the low energy E ≥ 0.1 meV magnetic scattering below T = 0.5 K, as shown in Figure

4.14 (f).

Using the results of the fitting from HTSE presented in Subsection 4.2.1, the nearest

neighbor exchange interaction of J = 0.144 meV was used with the isotropic Hamiltonian

for both SWT with 1/S correction and LWST simulations. The LSWT simulation was

carried out using SpinW program [105]. In order to powder average the resulting spectrum,
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Figure 4.14: For Ba8CoNb6O24 [56], (a) the powder-averaged inelastic neutron scattering
spectra collected at T = 0.3 K. Data collected at T = 10 K was subtracted as background.
Calculated neutron scattering intensity using J = 0.144 meV and (b) nonlinear spin wave
theory with 1/S correction and (c) linear spin wave theory. The calculated intensities were
convoluted by Gaussian profiles using full width at half maximum parameters of E = 0.025
meV and Q = 0.015 Å as an approximation of instrumental resolution. Comparison between
experiment (red dots), 1/S-spin wave theory (solid black line), and linear spin wave theory
(dashed blue line) as (d) energy-integrated (0.05 ≤ E ≤ 0.52 meV) and (e) momentum-
integrated (0.6 ≤ Q ≤ 0.9 Å) cuts. The longitudinal (two-magnon) contribution to the
scattering intensity using nonlinear spin wave theory with 1/S correction is shown in the
shaded (gray) region. The high-energy bump around E = 0.45 meV in (e) is an artifact
of our 1/S approximation [104]. (f) The temperature dependence of the energy-integrated
intensity of (d). The graphs at each temperature have been displaced by an intensity of 0.6
each time for clarity. The error bars correspond to one standard error.
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Figure 4.15: Inelastic neutron scattering spectra for Ba8CoNb6O24 at various temperatures.
The spectra collected at T = 10 K was used as the background and has been subtracted
from each data set to isolate magnetic contributions [98].

77



a simple Monte Carlo integration was employed with sampling size for each Q-E point set

to 105. SWT with 1/S correction was calculated based on the previous work by Mourigal et

al. [104]. All numerical integrations, including the powder average, were carried out using

the adaptive multidimensional integration (cubature) algorithm with the maximum number

of integrated points set to 2 × 103. Results for LWST and SWT with 1/S correction were

both convoluted with the estimated instrumental energy resolution of ∆E = 0.025 meV and

Q resolution of ∆Q = 0.015 Å−1. These resolution parameters were approximated with

a fitting of the nuclear peak widths in the INS data. Additional spline interpolation was

used to reduce the simulated results to the same Q-E grid as the measured spectra. This

allows for easier comparison between the datasets. All LWST and SWT with 1/S correction

simulations presented here were carried out by Luwei Ge.

4.2.3 Discussion

For the practically ideal 2D compound Ba8CoNb6O24, it is beneficial to compare the

excitations present with those in the quasi-2D compound Ba3CoSb2O9 [88, 89, 90]. In

Ba3CoSb2O9, there is a interlayer interaction strength of J ′ = 0.05 J and anisotropy of

∆≈0.9 where ∆ is the anisotropy parameter of the XXZ model described in Equation 4.1. In

both compounds, structurally similar triangular layers of magnetic Co2+ possess comparable

Co–Co bond lengths. However, Ba3CoSb2O9 posseses an ∼ 2.0 meV in-plane excitation

bandwidth that is an order of magnitude larger than that observed in Ba8CoNb6O24 of ∼0.18

meV. Put in units of the interaction strength J , the bandwidths ofW ≈1.18 J andW ≈1.24 J

in Ba3CoSb2O9 and Ba8CoNb6O24 respectively are comparable, as seen in Figure 4.14 (b).

There is significant difference in that Ba3CoSb2O9 possesses LRO below TN = 3.7 K ∼ 0.19J

while Ba8CoNb6O24 shows no magnetic LRO down to T = 0.06 K ∼ 0.04J . The suppression

of TN/J by a factor of at least four between the compounds indicates the reduction of both

inter-plane and anisotropic exchange interactions. This suppression is especially pronounced

due to the logarithmic relation between TN and the magnitude of both J ′ and ∆ [4, 5, 6, 7, 8].

All of the data collected consistently supports that Ba8CoNb6O24 is a practically ideal 2D

isotropic Heisenberg TLAF. This is a unique realization of the lack of ordering predicted by

the Mermin and Wagner theorem for 2D triangular compounds. While recent studies showing
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the non-perturbative effects of quantum fluctuations on magnetic excitations [19], the strong

2D behavior of Ba8CoNb6O24 presents a particularly suited candidate to study these effects.

This allows for the testing of theoretical predictions that can challenge the existing semi-

classical approaches to the dynamic responses in frustrated quantum AFMs. Looking

forward, this successful realization of materials engineering by intercalating non-magnetic

and vacant layers between magnetic layers provides a method for reducing dimensionality.

Further examination of layered systems using a similar approach presents may reveal new

physical phenomena.

4.3 Ba8MnNb6O24

With the success in synthesizing a practically ideal 2D triangular lattice magnet in

Ba8CoNb6O24 via the reduction of both interlayer interaction strength and anisotropy, we

again look to manipulate the spin magnitude on an isostructural triangular lattice compound.

To further examine the behavior of TLMs, we look to recreate the spin substitution that

proved successful in the A4B′B2O12 family. To this end, we replace the effective spin-1/2

Co2+ ions with spin-5/2 Mn2+ ions. This will reduce the roles of quantum fluctuations and

the large spin-5/2 is expected to behave as a classical spin. The triple perovskite structures of

Ba3B′Nb2O9 and Ba3B′Sb2O9 show the flexibility for ion doping with B′2+ = Co, Ni, and Mn

[69, 83, 88, 89, 90, 91, 92, 93, 94, 95]. The majority of these structures possess a 120 degree

ordered ground structure and, under an applied field, change into the uud magnetization

plateau, followed by the oblique phase before full polarization.

We have already seen in Section 4.2 that the addition of four addition non-magnetic and

one vacant layer between the magnetic layers from Ba3CoSb2O9 to Ba8CoNb6O24 reduced

the interlayer interaction J′ from ∼ 5% to a negligible contribution and the anisotropy

from ∆ ∼ 0.9 to the isotropic (∆ = 1) case. This was accompanied by a minor change

in intralayer Co–Co distances from 5.86 Å to 5.79 Å but a much more drastic change

in interlayer Co–Co distances from 7.23 Å to 18.90 Å [83, 97]. For the Mn-containing

compounds, we start with Ba3MnNb2O9. This quasi-2D TLAF possesses weak easy-axis

anisotropy. Upon application of magnetic field, as expected for these triple perovskites,
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Ba3MnNb2O9 undergoes an evolution from the 120 degree ordered ground state into the uud,

oblique, and finally polarized phases. We look to examine the similarities and differences

between the low spin (S-1/2) compounds of Ba3CoSb2O9 and Ba8CoNb6O24 with those of

high spin (S-5/2) compounds of Ba3MnNb2O9 and Ba8CoNb6O24.

We prepared polycrystalline samples of Ba8MnNb6O24 by the standard solid state

reaction method. Stoichiometric amounts of BaCO3, MnO, and Nb2O5 were ground in

agate mortars, pressed into pellets, and annealed for 20 hours at temperatures of 1525 C and

1600 C using an inert argon atmosphere. Intermediate grinding was carried out between the

two annealings.

The polycrystalline sample of Ba8MnNb6O24 was shown to be a single phase of the space

group P-3m1 by Rietveld refinement of the NPD pattern measured at 10 K with a wavelength

of λ = 1.5405 Å, as shown in Figure 4.16 (b). The refined lattice parameters are a = b =

5.8070(1) and c = 18.9465(3) Å. Detailed structural parameters are presented in Table 4.6.

This confirms the isostructural nature of Ba8MnNb6O24 with Ba8CoNb6O24, indicating six

non-magnetic and one vacant layer between each layer of Mn2+ ions, as shown in Figure

4.16 (a). The intralayer Mn–Mn distance of 5.81 Å is comparable to those seen in the

Co containing compounds. The large interlayer distance of 18.91 Å [97] in Ba8MnNb6O24

ensures that the interlayer interactions are negligible.

Magnetic DC susceptibility for Ba8MnNb6O24 is reported in Figure 4.17 and χDC shows

no magnetic ordering down to 1.8 K. Linear Curie-Weiss fitting, shown in Figure 4.16 (a), of

the inverse χDC from 100 - 350 K yields an effective magnetic moment of µeff =6.04 µB and a

Cure-Weiss constant of θCW =−10.7 K. The negative θCW is indicitave of an AFM exchange

interaction and the obtained effective moment agrees well with the theoretically calculated

value for spin-only S-5/2 of 5.93 µB [106]. DC magnetization data collected at T = 0.6 K

and shown in in Figure 4.17 (b) saturates above ∼ µ0Hs≈22.5 T with a saturation moment

of 5.5 µB. There are no obvious valleys or peaks in the first derivative of χDC that would

indicate possible spin state transitions. The saturation moment of 5.5 µB corresponds with

a powder-averaged gyromagnetic ratio g = 2.1.

AC susceptibility for Ba8MnNb6O24 is presented in Figure 4.18 and was used to measure

to lower temperature magnetic properties down to 0.3 K. With no applied DC field, χAC
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Figure 4.16: (a) Stacked layer structure of Ba8MnNb6O24 of space group P-3m1 with
Mn2+ ions sitting on a triangular lattice. (b) Rietveld refinement of the neutron powder
diffraction pattern measured at T = 10 K with λ = 1.54 Å. Red crosses are the measured
intensity, the black line is the calculated intensity, and the blue line is the difference. Bragg
Peak locations are indicated by tick marks with red indicating reflections from the sample
and green indicating aluminum.
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Table 4.6: Structural parameters for Ba8MnNb6O24 at 10K (space group P-3m1 )
determined from refined XRD measurements.

Refinement Atom Site x y z Occupancy

Ba8MnNb6O24

χ2 = 2.21
(a)

Ba1 2c 0 0 0.18732(84) 0.16666
Ba2 2c 1/3 2/3 0.05867(120) 0.16666
Ba3 2c 1/3 2/3 0.44997(89) 0.16666
Ba4 2c 1/3 2/3 0.68171(92) 0.16666
Mn 1a 0 0 0 0.08333
Nb1 2c 0 0 0.38767(61) 0.16667
Nb2 2d 1/3 2/3 0.25790(82) 0.16667
Nb3 2d 1/3 2/3 0.87545(74) 0.16667
O1 6i 0.17214(116) 0.82786(116) 0.30799(46) 0.50
O2 6i 0.16375(92) 0.83615(92) 0.57010(49) 0.50
O3 6i 0.16731(117) 0.83259(117) 0.93445(58) 0.50
O4 6i 0.49493(118) 0.50497(118) 0.18831(31) 0.50

a = b = 5.80701(6) (Å), c = 18.94654(29) (Å)

Overall B-factor = 0.156 (Å2)
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Figure 4.17: (a) DC susceptibility at a field of 0.5 T and Curie-Weiss linear fitting from
100 - 350 K. (b) High field magnetization up to 35 T showing a saturation of moments at
∼22T and saturation moment of 5.60 µB/Mn2+.
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Figure 4.18: AC susceptibility for Ba8MnNb6O24 under (a) low fields from zero to 3.0 T
and (b) high fields of 5.0 - 18.0 T. Fitting of the susceptibility with two Gaussian peaks is
shown with each peak defining a transition temperature. Lines provided to guide the eye.
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has a sharp peak at 1.45 K that is indicative of magnetic LRO. Small DC applied magnetic

field (∼ 0.1 T) causes the peak to broaden such that it can be resolved by two Gaussian

peaks. This shows a splitting of the single step transition at zero field into two transitions,

at TN1 and at higher temperature TN2. Upon increasing the applied DC field, the transition

temperatures diverge with TN1 shifting to lower temperatures while TN2 shifts to higher

temperatures, shown by the dashed arrows in Figure 4.18 (a). Upon increasing the applied

field to 3.0 T and beyond, the low-temperature transition is no longer visible. This is most

likely due to being shifted below 0.3 K, the lower limit of our AC susceptibility measurements.

For applied fields larger than 3.0 T, TN2 reverses the previous trend and actually shifts to

lower temperatures with further increases in DC field. A magnetic phase diagram has been

presented in Figure 4.19 (a) for Ba8MnNb6O24, constructed from the DC saturation field

and the transition temperatures obtained from χAC.

Figure 4.20 presents the specific heat data of Ba8MnNb6O24. Cp measurements were taken

at zero field, 7 T, and 14 T. At zero field, there is a broad peak in Cp but no noticeable feature

around TN = 1.45 K where a peak is observed in χAC. There is also a sharp increase in Cp

below 200 mK, likely due to the nuclear Schottky anomaly arising from the Nb ions. Upon

increasing applied fields, there is a suppression of the broad peak. Magnetic contribution, Cm,

to specific heat was isolated, as in Subsection 4.2.1, by subtracting an lattice contribution

measured from non-magnetic Ba8ZnTa6O24. The change in magnetic entropy, ∆Sm, was

again calculated by integrating Cm/T with a lower bound of 200 mK to avoid the nuclear

Schottky anomaly contribution. The small magnitude of Cp by 200 mK indicates the low-

temperature contribution would be small. For AFM transition with S-1/2 ions, the expected

∆Sm is given by Rln(6) = 14.9 J/mol-K, where R is the gas constant. The obtained value

from the data for all fields is ∼16 J/mol-K, a comparable value. The small discrepancy may

be from the contribution of the nuclear Schottky anomaly persisting above 200 mK. The

magnetic entropy releases at high temperature as 20 K, far above the zero field transition

temperature of TN = 1.45 K.

NPD taken at HB-2A is presented in Figure 4.21 and was measured at 0.3 K using a

wavelength of λ = 2.4127 Å. Rietveld refinement of the magnetic Bragg reflections shows

these reflections occur at at Q = (n1 + 1/3, n2 + 1/3, n3) where ni: integer. The magnetic
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Figure 4.19: The magnetic phase diagram for (a) Ba8MnNb6O24 and (b) Ba3MnNb2O9

from Ref. [22] provided for comparison. The phases of Ba3MnNb2O9 are represented as the
canted 120 degree, uud, and oblique phases.
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Figure 4.20: (a) Specific heat data of Ba8MnNb6O24 under zero field, 7 T, and 14 T (red,
green, and blue respectively) and Ba8ZnTa6O24 (black line) for lattice contribution. (b)
Magnetic entropy calculated from integral of Cp/T with the lattice contribution subtracted
starting from 200 mK.
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Figure 4.21: The Rietveld refinement of the neutron powder diffraction pattern measured
at T = 0.3 K with λ = 2.4127 Å of Ba8MnNb6O24. Black circles are the measured intensity,
the red line is the calculated intensity, and the blue line is the difference. Bragg reflections are
indicated by tick marks and coincide with the lattice, aluminum, and magnetic contributions
from top to bottom. Inset: The difference between diffraction patterns at 0.3 and 10 K is
highlighted to show the magnetic Bragg peak positions.
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Bragg peaks are shown in more detail in the insert of Figure 4.21, where the magnetic

contribution has been isolated by subtracting the 10.0 K pattern from the 0.3 K pattern.

The refined magnetic structure is of the 120 degree structure (Figure 1.4) with the ordering

in the ab-plane that has been observed in the other AFM members of the triangular lattices

described in this Section. Adjacent layers show collinear FM ordering. The refined moment

for each Mn2+ ion is 4.6(1) µB, smaller than the saturation moment of 5.5 µB from DC

magnetization. Due to resolution limitations and exacerbated by the powder nature of the

sample, the Rietveld refinement cannot distinguish between a 120 degree structure with the

spins confined to the ab-plane or if there is canting of the moments along the c-axis, as would

be expected for easy-axis anisotropy. Due to the presence of only a single zero-field magnetic

transition, as revealed by χAC, we ascribe the anisotropy present in Ba8MnNb6O24 to be

easy-plane.

Inelastic neutron scattering for Ba8MnNb6O24 was performed at 10 K, 4.0 K, 1.5 K, 0.4

K and 0.05 K, Figure 4.22 (a-e), respectively. The powder-averaged scattering intensity as a

function of both momentum transfer Q and energy transfer E allows for an examination of

the magnetic correlations upon lowering temperature, as carried out on Ba8CoNb6O24. Even

at the relatively high temperatures of 10 and 4.0 K, some broad features in the Q dependence

of the magnetic signal have already started to form. These features, primarily located around

Q≈ 0.7 Å−1, suggest short-ranged spin correlations have already developed well above the

long-range ordering temperature of TN. Cooling down to T = 1.5 K, strong ridges of intensity

emerge at Q≈ 0.7 Å−1 with further, but less intense, repetitions at 1.5 Å−1 and 2.0 Å−1.

The E dependence of scattering intensity reveals gapless excitations that extend up to 1.0

meV. Further decrease in temperature to 0.4 K and 0.05 K show no significant change in

any of the features, confirming the onset of LRO around 1.5 K.

4.3.1 Discussion

Luwei Ge performed the modeling presented here to examine the dynamic magnetic

correlations of the ordered state. For the large, classical spins of Mn2+, linear spin-wave

theory is used at T = 0 [105]. Here we stay with the nearest-neighbor Heisenberg AFM

Hamiltonian of H = 1/2J
∑

<i,j>Si·Sj and the established 120 degree structure. Exchange
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Figure 4.22: (a-e) The powder averaged inelastic neutron scattering spectra of
Ba8MnNb6O24 measured at 10 K, 4 K, 1.5 K, 0.4 K, and 0.05 K, respectively. (f) The
neutron scattering intensity calculated for J = 0.11 meV using linear spin wave theory.
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anisotropy is not considered here due to the powder averaging, as a contribution would

be relatively small and cannot be accurately extracted from the INS data. As there is no

indication for strong anisotropy, we stay with the isotropic model as in with Ba8CoNb6O24.

The best match between the INS spectrum measured at T = 0.05 K and the simulation was

found using a nearest-neighbor exchange interaction of J=0.11 meV (or 1.28 K), as shown in

Figure 4.22 (e),(f). This value is consistent with the exchange interaction strength calculated

from the Curie-Weiss temperature above, J = 1.22 K. The calculated spectrum, Figure 4.22

(f), reproduces the main features seen in the experimental data. Both the zone centers

and bandwidths are properly reproduced. To further investigate Q-dependent features, the

experimental and simulated data is shown in Figure 4.23 (a) and E-dependence is further

investigated in the Q-integrated (Figure 4.23 (b)) cuts.

As noted previously, there is no feature in Cp that is indicative of LRO. However, there is

a broad peak center around 4 K. As discussed in Section 4.2, small interlayer exchange

interactions down to J ′/J = 2×10−4 produce a sharp peak in Cp coinciding with the

onset of LRO [99]. Further reduction of the interlayer exchange interaction resulted in

the disappearance of the sharp peak in Cp leaving only the broad peak, similar to what is

seen in the experimental data. This is strong confirmation of the practically ideal 2D nature

of the magnetism in Ba8MnNb6O24. This is a second case of reduction of the interlayer

interactions by intercalating non-magnetic and vacant layers between the magnetic layers,

also shown in Ba8CoNb6O24. The broad peak at 4 K could indicate the onset of short ranged

correlations above the onset of LRO. The INS spectra showed the onset of broad magnetic

signals as high as 10 K, supporting the formation of short ranged correlations above TN.

The suppression of the broad peak under applied field is supportive of this, as applied fields

polarize the short-ranged spins.

Despite the successful suppression of the interlayer interaction in Ba8MnNb6O24 via

materials engineering, there is still LRO into the 120 degree phase at an appreciable

temperature of TN = 1.45 K. This was confirmed by both χAC and NPD measurements.

The logarithmic relation between TN and either interlayer interaction or in the exchange

anisotropy [4, 5, 6, 7, 8] indicates the likely presence of small anisotropy, as Cp shows

no indication for interlayer interactions. For TLAFs possessing anisotropy, a two-stepped
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Figure 4.23: Comparisons between experiment (dots)and linear spin wave theory (black
line) for Ba8MnNb6O24 as energy-integrated (0.3 ≤ E ≤ 1.1 meV) and momentum-integrated
(0.25 ≤ Q ≤ 2Å−1) cuts, respectively.
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transition is predicted for easy-axis anisotropy while a single-stepped transition is predicted

for easy-plane anisotropy. Thus we attribute the anisotropy to be of the easy-plane nature.

To further explore the implications for the practically ideal 2D nature of Ba8MnNb6O24,

we compare to the quasi-2D compound of Ba3MnNb2O9. To facilitate the discussion, the

magnetic phase diagram of Ba3MnNb2O9 as reported in Reference [22] is replotted in Figure

4.19 (b). There are three primary differences between the magnetic phase diagram. First, in

Ba8MnNb6O24 there is only a single-stepped instead of two-stepped transition at zero field.

Secondly, there is no indication of the uud phase in Ba8MnNb6O24. Thirdly, Ba8MnNb6O24

evolves from the canted 120 degree structure at much lower fields than in Ba3MnNb2O9.

For the zero field case, there is a two-stepped transition in Ba3MnNb2O9 with TN1 =

3.0 K and TN2 = 3.4 K. This is indicative of the easy-axis anisotropy present that is the

usual case for Mn2+ ions in an octahedral environment, as seen in other compounds such as

Rb4Mn(MoO4)3 [107]. However, this is not present in Ba8MnNb6O24. For special cases, Mn2+

ions can display easy-plane anisotropy such as in Ba2La2MnW2O12 (see Subsection 4.1.3),

which also possesses only a single-stepped transition. In that case, the competition between

AFM Mn-O-O-Mn and FM Mn-O-W-O-Mn is a possible cause for this peculiar behavior.

The main difference in Ba8MnNb6O24 from Ba3MnNb2O9 is the reduction of dimensionality

and this may be the driving force behind the change in anisotropy. For the lack of evidence

for uud phase, the exact nature of which requires further examination. While it is expected

for the classical spins to not show a magnetization plateau at 1/3 magnetization in the uud

phase, there is such a phase in Ba3MnNb2O9. Whether this is due to reduced dimensionality

or not is tricky, as the powder nature of the samples cannot be ignored as the powder average

can sometimes smear phase boundaries. Single crystal studies are needed to determine if

this is an intrinsic effect from reduced dimensionality or extrinsic from the polycrystalline

nature. Additionally, we comment on the low magnetic field value at the boundary of the

canted 120 degree in Ba8MnNb6O24 compared to Ba3MnNb2O9. At 1.0 K, a field of 1 T is

sufficient to drive Ba8MnNb6O24 out of the canted 120 degree phase while a field of 6 T is

required to do the same in Ba3MnNb2O9. This can be attributed to the reduced strength

in nearest-neighbor exchange interaction J . The calculated J = 1.22 K for Ba8MnNb6O24

from Curie-Weiss temperature is around 43.5% of the J = 2.8 K for Ba3MnNb2O9.
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Finally, we examine the effect of the increased spin of S = 5/2 in Ba8MnNb6O24 from S

= 1/2 in Ba8CoNb6O24 and the reduction of the impact of quantum fluctuations. The two

obvious differences are the onset of LRO in Ba8MnNb6O24 observed at TN = 1.45 K and

the lack of high energy continuum in the INS spectrum. The lack of LRO in Ba8CoNb6O24

is attributed to the strong quantum fluctuations and their role in the reduction of the spin

anisotropy to approach a true 2D Heisenberg antiferromagnet. This results in only short-

ranged magnetic ground state. The lack of high energy continuum shows a reduction in

two-magnon scattering. The possible easy-plane anisotropy present in Ba8MnNb6O24 is

sufficient to drive the LRO seen in Ba8MnNb6O24.

4.4 Discussion

The 2D triangular lattice magnets with close-packed perovskite stacking have shown the

ability to host a multitude of magnetic ground states that can be examined via processes such

as changing spin size, applying chemical pressure, and reducing dimensionality. For Co- and

Ni-containing compounds of the A4B′B2O12, the competition between the FM superexchange

path along Co/Ni-O-W/Re-O-Co/Ni is sufficient to overcome the AFM superexchange path

along Co/Ni-O-O-Co/Ni. This results in the onset of FM behavior in the Co compounds and

an FM long-range ordered ground state in the Ni compound. For increasing the spin size

to Mn in the A4B′B2O12 family, the ground state becomes AFM in the 120 degree structure

and is attributed to the AFM superexchange interaction exceeding the FM superexchange

interaction. The Cu containing member shows no evidence for LRO, but further studies

are required to reveal the nature of this lack of ordering and possible spin liquid behavior.

Chemical pressure applied on the Co-containing members did not provide any simple relation,

but the onset of FM behavior did shift in a non-trivial way under the application of chemical

pressure.

Reduction of dimensionality for the S-1/2 Co triangular lattice via Ba8CoNb6O24

suppresses the onset of LRO down below 60 mK. This is the realization of a practically ideal

2D isotropic Heisenberg TLM and allows for the exploration of the role of the strong quantum

fluctuations in the dynamic magnetic correlations. This is useful in examining the need for
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additional theoretical models such as SWT with 1/S correction as LSWT is insufficient to

describe the two-magnon scattering observed in this material. The increased spin of S-5/2

coinciding with the reduction in dimensionality is realized in Ba8MnNb6O24. The interlayer

exchange interaction is suppressed to the zero limit, but weak easy-plane anisotropy is still

sufficient to induce LRO into the 120 degree ground state. We have successfully demonstrated

the strong effects from quasi-2D behavior and quantum fluctuations in low-spin frustrated

systems.
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Chapter 5

3d-Transition Metal Pnictide Double

Helical Magnetic Structures

Determination of magnetic structures is ideally suited for neutron diffraction measure-

ments as discussed in Chapter 2. One family of interest that would benefit from an in-depth

study involving neutron scattering is the family of FeP, MnP, and CoP. These members are

isostructural 3d-transition metal pnictides (3dTMPs) with MnP attracting the most previous

research due to the presence of a superconducting phase under applied pressure [108]. MnP

possesses two magnetic transitions, a high-temperature transition into an FM phase and

a low-temperature transition into a double helical magnetic ground state. FeP has been

previously studied by neutron diffraction and Mössbauer spectroscopy with differing results.

A neutron diffraction experiment by Felcher et al. [109] revealed a double helical magnetic

structure with two distinct sized magnetic moments while a Mössbauer study undertaken by

Häggström and Narayanasamy proposes a bunched helical structure with possible modulation

along the ab plane [36]. The magnetic ground state of CoP has not been previously reported.

Thus, we examined the family of Fe1−xMnxP using a combination of neutron diffraction, χDC,

and resistivity to explore the magnetic phases of this family of 3dTMPs. The results in this

chapter are in pre-publication and I would like to acknowledge the contributions by Clarina

dela Cruz, Qing Huang, Keith Taddei, Huibo Cao, Haidong Zhou, and Randy S. Fishman.
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5.1 FeP, MnP, and CoP

Compounds of the manganese monophosphide (MnP) structure, Figure 5.1 (a), (belong-

ing to the Pnma space group) have long attracted interest for their magnetic properties.

MnP exhibits a ground state with a double helical magnetic structure [37, 110], where

the spins rotate about the c axis over a period of 5 unit cells. The ground state of iron

monophosphide (FeP) is a similar magnetic structure [109], however with different phase

angles [109, 111]. Susceptibility measurements on single crystal samples show that FeP has

one antiferromagnetic (AFM) transition at 119 K while MnP shows both an AFM transition

at 62 K and a ferromagnetic (FM) transition at 296 K. Below the AFM transition, both FeP

and MnP adopt a double helical structure with phase angles of 169° [109] and 16° [37, 110],

respectively.

Double helical spin structures have often manifested large magneto-elastic coupling, with

structural distortions in CrAs and MnAs [112] and novel pressure induced phases, including

superconducting, in MnP [108]. However, there has not been any reported evidence for

such strong coupling in FeP, nor is there any reported evidence for a structural distortion.

Differing magnetic behaviors above the transition temperature are seen between these

compounds, with CrAs being paramagnetic [38], MnP being ferromagnetic [37], and FeP

being paramagnetic [109].

5.1.1 Single Crystal Diffraction

Single crystal neutron diffraction on FeP reveals a single domain crystal. Refinement

of the nuclear peak intensities confirms that the crystal is of the space group Pnma. For

refinement of magnetic peaks as performed by Felcher et al. [109], the Fe atoms were split

into pairs of equivalent sites 1 and 3 and pairs of equivalent sites 2 and 4 (Figure 5.1 (a)).

In this approach, equivalent sites were refined together, with the real and imaginary parts

of the magnetic moment and the real and imaginary phase angles being refined. Sites 2

and 4 were allowed to rotate from sites 1 and 3. X-ray diffraction was used to examine

the temperature dependence of the lattice constants. Results show an increase along the
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Figure 5.1: a) Crystalline structure of metal atoms of FeP, MnP, and CoP with the space
group Pnma. Metal atoms are labeled for magnetic description. b) Rietveld refinement of
single crystal FeP to show pure phase.
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c parameter upon cooling below 125 K (Figure 5.2). This is evidence for the presence of

magneto-elastic coupling in FeP.

Refinement of the magnetic peaks did not provide satisfactory fits using a simple double

helical structure in the ab plane as proposed by Felcher et al. [109]. A Mössbauer study

undertaken by Häggström and Narayanasamy proposes a bunched helical structure with

possible modulation along the ab plane [36]. Our refinement provided a best fit using a

modified elliptical helix with elongation along the b-axis and a maximum magnetic moment

of 0.717 µB and a minimum of 0.245 µB, fitting results shown in Figure 5.3. Using separate

magnetic moments for the differing Fe sites did not improve the fitting. The phase angle

between adjacent Fe spins from site one to two is 173°, in near agreement with 168.8° from

Felcher et al.’s neutron study. Our results did not indicate any bunching along the a axis,

such as the presence of Bragg reflection of the third satellites, as reported by Häggström and

Narayanasamy. Variations on the simple double-helical structure are shown in Figure 5.4.

The order parameter scan of the [0, 0, 4] peak is presented in Figure 5.5. It shows

no nuclear contribution above 120 K, and below TN shows a smooth increase without fully

saturating down to 6 K. This confirms the onset of AFM LRO as only magnetic contributions

are seen at [0, 0, 4]. The smooth nature of the order parameter indicates a second-order

transition.

5.1.2 DC Susceptibility and Resistivity

DC susceptibility (χDC) measurements using an applied field of 1000 Oe, shown in Figure

5.6, upon a single crystal show a kink at 119 K both parallel and perpendicular to the a

axis, but there is an additional feature at 61 K in χDC along the a axis. Resistance R

measurements performed on single crystal FeP is presented in Figure 5.7 and shows a kink

in R at 120 K.

χDC reveals different behavior along the a axis and bc plane. Along the bc-plane, there

is one kink coinciding with the FM transition at 119 K. Along the a axis, there is a kink at

119 K as well as another feature at 59 K. The transition temperature coincides with a peak

in dχDC/dT , while the extra feature along the a axis is seen as a minimum in dχDC/dT .
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Figure 5.2: Temperature dependence of lattice parameters for single crystal FeP. There is
a smooth decrease in the a and b parameters while there is an increase in the c parameter
below 125 K. This increase in the c parameter is attributed to magneto-elastic coupling.
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Figure 5.3: Fitting of our magnetic refinement using a non-collinear spin density wave
structure in the ab plane. Maximum magnetic moments are 0.717 µB and minimum magnetic
moments are 0.245 µB. The phase angle between adjacent (Sites 1 and 2 or 3 and 4) is 173°.
The magnetic structure is plotted on the right and occurs over 5 nuclear cells.
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Figure 5.4: (a) Helical model with separate magnetic moments, as used by Felcher et al
[109], fit to single crystal diffraction data with the moments confined to the ab plane and
the propagation vector is k-vector of (0, 0, 0.2). One full magnetic cell (five nuclear unit
cells) are displayed to show periodicity. (b) Linear spin density wave model fit to single
crystal neutron scattering data. (c) Nonlinear spin density wave used to fit single crystal
neutron diffraction, similar to the structure found in FeAs [39] using polarized neutrons. This
provides the quantitatively and qualitatively best fit of our data. The maximum magnetic
moment is 0.72±0.1µB and the minimum moment is 0.245±0.06µB. The phase angle between
adjacent (Sites 1 and 2 or 3 and 4) ions is 173°. (d) Projection of magnetic moments on the
ab plane for both helical and non-collinear spin density wave magnetic structures.
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Figure 5.5: Order parameter scan of the [0, 0, 4] peak showing no nuclear contribution and
a second order phase change below TN = 119 K.
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Figure 5.6: DC Susceptibility χDC for SC FeP along the a axis (red open boxes) and bc
plane (black filled boxes). Both show a kink at TN = 119 K and χDC along the a axis also
shows an additional feature at T = 59 K due to the presence of oxygen trapped in the
sample.
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Figure 5.7: (a) Resistance of FeP and MnP single crystal samples, scaled to the resistance
at T = 300K. (b) Derivative of resistance of FeP single crystal under varying pressures. Data
sets are offset vertically for clarity.
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The extra feature is attributed to the presence of trapped oxygen and has been noted in

other measurements using the same instrument. Resistance R also shows a kink at 120 K,

coinciding with the feature in χDC. Both of these features coincide with TN and the onset of

AFM order.

5.2 Fe1−xMnxP

As discussed in Section 5.1, there is magneto-elastic coupling found in many double

helical spin structure materials such as structural distortions in CrAs and MnAs [112] and

the pressure induced superconducting phase in MnP [108]. With evidence for the presence of

magneto-elastic coupling seen in the increase in c axis parameter upon lowering temperature

below 125 K as seen in Figure 5.2. Following up on this, it is natural to examine the

evolution of the magnetic structure between FeP and MnP using chemical pressure, creating

the Fe1−xMnxP family. The radius of the magnetic ions will provide the chemical pressure

between the isostructural end members, with the larger Mn2+ possessing the appropriately

larger lattice constants. The evolution of the magnetic structure between FeP and MnP has

not been previously investigated. Here, we look to examine the disappearance of the FM

transition seen in MnP, as well as the evolution of the double helical magnetic ground state

seen in both FeP and MnP.

5.2.1 X-ray Diffraction

XRD of the complete family of Fe1−xMnxP at room temperature shows single phase of the

spacegroup Pnma for all samples. Polycrystalline FeP has lattice parameters of a= 5.1888(6)

Å, b = 3.0976(5) Å, and c = 5.7888(6) Å with increasing parameters under doping to MnP

with a = 5.2543(4) Å, b = 3.1702(3) Å, and c = 5.9147(5) Å (Figure 5.8). No structural

distortions are apparent. Lattice parameters are reported in Table 5.1. Refinements using

two separate phases for FeP and MnP mixing did not improve the fittings. This further

supports a single phase sample.

XRD measurements of the family of Fe1−xMnxP shows a smooth, nearly linear expansion

of lattice parameters upon increasing x values (Figure 5.8). All refinements showing a single
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Figure 5.8: Lattice parameters of Fe1−xMnxP as a function of x. Upon replacing Fe with
Mn, there is a smooth increase in all lattice parameters. This reinforces that all samples are
isostructural with minimal impurities.
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Table 5.1: Lattice parameters for polycrystalline Fe1−xMnxP at room temperature (space
group R-3mH ) determined from refined XRD measurements.

Composition χ2 a (Å) b (Å) c (Å)
FeP 2.66 5.18884(19) 3.09763(13) 5.78883(23)

Fe0.9Mn0.1P 1.17 5.19129(22) 3.10407(16) 5.79358(27)
Fe0.8Mn0.2P 1.85 5.20441(17) 3.11642(12) 5.81374(20)
Fe0.7Mn0.3P 4.19 5.20912(32) 3.12538(22) 5.82594(37)
Fe0.6Mn0.4P 1.64 5.21633(19) 3.13471(14) 5.84078(23)
Fe0.5Mn0.5P 4.99 5.22322(29) 3.13890(21) 5.85388(35)
Fe0.4Mn0.6P 1.93 5.22962(15) 3.14581(11) 5.86684(18)
Fe0.3Mn0.7P 7.32 5.23743(29) 3.14890(22) 5.88139(36)
Fe0.2Mn0.8P 4.14 5.24408(23) 3.15525(17) 5.89466(28)
Fe0.1Mn0.9P 1.30 5.25529(16) 3.16527(12) 5.91157(20)

MnP 9.34 5.25227(27) 3.16875(18) 5.91271(31)
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phase of spacegroup Pnma and the smooth increase in lattice parameters on increasing x

indicate that the doping does not produce any structural anomalies and that all members of

the family are isostructural. This indicates that the doping provides chemical pressure that

may affect the ground state.

5.2.2 DC Susceptibility and Resistivity

Resistivity (ρ) measurements were performed on all doped members of Fe1−xMnxP using

pressed pellets cut into slabs of 3 × 8 × 1 mm and are shown in Figure 5.9. While the

magnitude of the resistivity is not easily described by doping concentration, all samples show

at least one kink in ρ. χDC was performed on each sample and is reported in Figure 5.9.

The magnitude of χDC increases significantly with Mn doping x. Two transitions are clearly

apparent in MnP while only one is present in FeP. Further examination of the transitions

under doping is covered below in Subsection 5.2.4.

Resistivity measurements were performed on all doped members of Fe1−xMnxP. The

magnitude of ρ under doping does not follow a simple pattern but is smallest for Fe0.6Mn0.4P

and largest for Fe0.7Mn0.3P. Each sample shows at least one kink in ρ that is sharp for

large x and smooths out for smaller x. There is also a flattening of the resistivity at low

temperatures for all samples, with some showing a minor increase at very low temperatures.

This feature is inherent in the samples, and not related to the magnetic ordering.

The DC susceptibility measurements, shown in Figure 5.10 reveal one clear transition for

FeP and two clear transitions for MnP. The first derivative dχDC/dT shows a sharp local

maximum at the AFM transition for both FeP and MnP and a sharp local minimum at

the FM transition of MnP. The sharp local maximum present in FeP continues up to x =

0.9, generally increasing in temperature with Mn doping. The low-temperature maximum

from MnP decreases in both magnitude and temperature with lowering x and disappears

for x < 0.7. The high-temperature local minimum from MnP is also present in x = 0.9

but disappears for x ≤ 0.8. An additional local minimum occurs at x = 0.9 and survives

down to x = 0.5. Whether this indicates another transition remains to be resolved with

neutron studies. Additionally, there is a local maximum in dχDC/dT for x = 0.5 that is not
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Figure 5.9: Resisitivity ρ of Fe1−xMnxP. The magnitude is not controlled simply by doping
x. Each sample shows one kink in ρ indicative of a magnetic transition.
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Figure 5.10: χDC measurements of Fe1−xMnxP measured at 1000 Oe. The magnitude of
χDC increases with increasing x.
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attributed to either the FeP or MnP transition. Whether this indicates multiple steps in the

ordering remains to be resolved.

5.2.3 Neutron Powder Diffraction

Neutron powder diffraction was measured on Fe0.1Mn0.9P at temperatures of 5, 30, 100,

200, 270, and 300 K, reported in Figure 5.11. The difference in the diffraction patterns of

270 and 300 K reveals FM ordering of Fe0.1Mn0.9P, while the difference between 200 and

270K reveals FM ordering along differing peaks of Fe0.1Mn0.9P. Upon further cooling to

100 K, incommensurate AFM LRO develops centered at 2θ = 2.45°. Cooling to 30 K is

accompanied by an increase in intensity in the incommensurate peak and the increased is

centered on 2θ = 2.35° as well as the development of another incommensurate peak centered

at 2θ = 3.20°. Cooling to 5K reveals increases in the incommensurate signal centered at 2θ

= 2.75° and 3.55° as well as a distinct magnetic Bragg peak at 2θ = 23.9°. This reveals a

complicated ordering process involving both FM and AFM transitions as seen in MnP, as

well as further ordering steps not present in either end member. There are two separate

incommensurate magnetic peaks that develop in Fe0.1Mn0.9P with one centered near 2θ =

2.6 that develops upon cooling to 100 K, while further cooling below 50 K reveals another

peak centered at 2θ = 3.3. The presence of two independent incommensurate peaks is

consistent with a double helical model, with the onset of each helix occurring at a distinct

temperature. More detailed neutron diffraction measurements have recently been taken at

HB-2A on samples of Fe0.2Mn0.8P and Fe0.3Mn0.7P. The data is still being analyzed, but

there is a single k-vector AFM transition seen in Fe0.2Mn0.8P under cooling while there is

a similar two k-vector magnetic structure seen in Fe0.3Mn0.7P as Fe0.1Mn0.9P. The lack of a

second k-vector in Fe0.2Mn0.8P is possibly due to the high k-vector occurring at k ∼ (0, 0,

0.11) so a lower ordering occurring at lower q-space (as seen in the other powder samples)

may be outside of the q-range of HB-2A. The powder nature of the samples measured here

cannot be discounted, as there is no multiple k-vector ordering reported in single crystal

samples of MnP. Modeling this complex ordering behavior with doping is beyond the scope

of my work and is something to be examined more thoroughly in the future. Smaller doping
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Figure 5.11: Neutron powder diffraction for Fe0.1Mn0.9P taken at 5 and 270K. The
difference shows LRO under cooling, indicating the feature in dχDC/dT indeed indicates
AFM ordering. The incommensurate nature of the ordering is apparent from the extremely
low Q values of the magnetic peaks.
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steps are imperative to provide a more detailed description of magnetic behavior that would

allow for a more nuanced conversation about the ordering processes.

5.2.4 Magnetic Phase Diagram

Using resistivity and χDC measurements, we propose a phase diagram for Fe1−xMnxP.

The kinks in ρ and local maxima and minima in dχDC/dT are used to define boundary

temperatures, as shown in Figure 5.12 (a). For FeP single crystal (Figure 5.7 (b)) and MnP

single crystal resistance, the kinks in resistance coincide with the onset of AFM and FM long-

range ordering, respectively. In χDC, for both SC FeP and MnP there is a sharp maximum in

dχDC/dT at the onset of AFM ordering while in MnP there is also a sharp minimum at the

onset of AFM ordering. The overlap of transition temperatures found in ρ and χDC further

supports the validity of the transition temperatures in the doped samples. For samples with

x ≤ 0.8, the kink in ρ coincides with a sharp peak in dχDC/dT associated with the FeP

AFM ordering. For x = 0.9, the kink in resistivity moves up to a local minima in dχDC/dT .

However, these local minima appear lower in temperature and in addition to the MnP FM

ordering transition. The results are summarized in Figure 5.12 (b). The complex nature of

the magnetic phase diagram with high Mn doping points towards an accordingly complex

model. The evolution of the singular k-vector, double helical AFM transition in FeP appears

to split into separate helices with distinct k-vectors at high Mn doping. However, there is

no evidence for this second k-vector helix in single crystal measurements. As a result, the

polycrystalline nature of the sample needs examination. The exact disappearance of the FM

transition seen in MnP also remains unclear. Further neutron diffraction measurements with

smaller doping steps are needed to address these remaining challenges.
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Figure 5.12: (a) Resistivity ρ and dχDC/dT of Fe0.3Mn0.7P to show transitions. Transitions
are determined by kinks in ρ (arrow) and sharp local maxima and minima of dχDC/dT . (b)
Magnetic phase diagram of Fe1−xMnxP determined from resistivity and dχDC/dT .
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Chapter 6

Conclusion and Outlook

This dissertation focused on the material engineering of non-collinear magnetic structures.

Neutron scattering techniques were used to reveal the magnetic ground structures of

geometrically frustrated triangular magnets and 3d-transition metal pnictide double helical

structures. Neutron scattering is an essential part of condensed matter physics due to their

unique properties and availability of extreme sample environments. Results revealed by

neutron scattering include a transition to an FM ground state in frustrated triangular systems

induced by manipulating the spin size, reduction of interplane interactions by intercalation

of non-magnetic layers, true-2D behavior in Ba8CoNb6O24, a non-collinear spin density wave

or bunched helical structure in SC FeP, and mutltiple k-vector ordering in doped double

helical structure compounds.

An extensive look at geometrically frustrated triangular magnets of Sr4CoRe2O12,

Sr2La2CoW2O12, Ba2La2CoW2O12, Ba3LaCoReWO12, Ba4CoRe2O12, Ba2La2NiW2O12,

Ba2La2MnW2O12, Ba3CoNb2O6, and Ba8CoNb6O24 was carried out to examine the effects

of spin size, chemical pressure, and interlayer interactions on the magnetic ground states.

Comparison of Ba8CoNb6O24 to Ba3CoNb2O6 reasserts the role in interlayer interactions

in stabilizing the 120 degree coplanar structure. By reducing to the interplane interactions

to negligible values by introduction of four additional non magnetic and one vacant layer

between each triangular layer of magnetic ions, Ba8CoNb6O24 shows no ordering down to 60

mK and instead obeys an isotropic Heisenberg Hamiltonian. Comparison of the members of

the A4B′B2O12 family show that spin size plays an integral role in magnetic ground state.
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Spin-3/2 compound Ba2La2MnW2O12 orders into the 120deg ground state while spin-1

Ba2La2NiW2O12 shows long ranged FM order and spin-1/2 cobalt containing members show

FM behavior. Further neutron scattering to provide more precise atomic positions of the

oxygen ions would provide superexchange pathway angles that may also modify the ground

state.

The double helical magnetic structures of the 3d-transition metal pnictides FeP, MnP,

CoP, and the family Fe1−xMnxP were thoroughly examined using neutron scattering and

supplementary techniques. The double helical structure was shown to be robust under

chemical substitution, but the ordering process evolved in a complex manner. MnP shows

a single FM and single AFM transition, but under small Fe doping (x = 0.8, 0.9) shows

a two-stepped AFM transition with an additional FM transition for x = 0.9. This extra

AFM transition step corresponds to a distinct k-vector indicating that the two helixes have

different periodicities. This complex behavior is similar to what is seen in axial-next-nearest-

neighbor-Ising models and further study is required to determine the driving interactions of

this unique ordering.

Looking forward, there is much that can be done both experimentally and theoretically

to expand upon the research contained in this dissertation. From a materials synthesis

side, triangular lattice magnets with tunable spin sizes and chemical pressure provide ideal

frameworks for tuning near the quantum critical point. The crossover from AFM transitions

at high spin to FM transitions at low spin indicate a proximity to such a critical point.

Additionally, tuning of interlayer strengths by intercalating with nonmagnetic layers holds

promise for bulk growths of samples with nearly ideal two-dimensional behaviors. For double

helical structures, the presence of superconductivity in MnP crystals under pressure and

contracting lattice constants under iron doping may still hold promise. A more thorough

examination of doping with smaller step sizes near the suppression of one of the k-vectors for

AFM ordering may reveal quantum criticality. Theoretically, the ideal isotropic Heisenberg

Hamiltonian behavior of Ba8CoNb6O24 revealed the need for nonlinear spin wave terms to

describe the magnetic excitations. Further experimental data for two-dimensional quantum

materials is needed to verify the theoretical modeling and predictions for frustrated systems.
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In the double helical structures, much is left to be done to describe the driving interactions

of the non-collinear ordering.

Neutron scattering techniques are vital and central to the understanding of new magnetic

properties of emergent materials. The materials engineering of non-collinear magnetic

structures reveals complex magnetic behavior ideally suited to neutron measurements and

opens the opportunity for examining quantum critical points via chemical doping. We hope

that this work can provide a basis for further experimentation and theoretical modeling on

these promising materials.
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