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ABSTRACT 
 

Here, we present data supporting low density lipoprotein receptor-related protein-1 (LRP-

1) and urokinase plasminogen activator (uPA) involvment in the suprachiasmatic nucleus 

(SCN), the primary mammalian circadian pacemaker.  Previous work using extracellular 

recordings of SCN neurons in ex vivo hypothalamic slices demonstrated that tissue-type 

plasminogen activator (tPA) gates glutamate-induced phase shifts via plasmin-dependent 

maturation of brain derived neurotrophic factor (BDNF) and subsequent tropomysin 

receptor kinase B (TrkB) receptor activation.  Here, we find first, that tPA knockout mice 

(tPA−/−; B6.129S2-Plattm1Mlg/J) exhibit minimal phase shifting deficits in vivo and in vitro, 

and that uPA compensates for the lack of tPA to enable phase shifts in these mice.  

Intriguingly, the data support tPA, but not uPA, acting via BDNF maturation, suggesting 

functional compensation achieved through differential mechanisms.  Second, we find that 

LRP-1 also regulates SCN phase shifting.  Inhibiting LRP-1 with receptor associated 

protein (RAP) or anti-LRP-1 antibody prevents glutamate-induced phase delays  and 

advances in neuronal activity rhythms in vitro at ZT16 and ZT23, respectively.  We then 

turned our attention to potential interactions between tPA and LRP-1, and through three 

lines of evidence demonstrate that tPA proteolytic activity is not necessary for LRP-1’s 

permissive effect on phase shifting:  1) RAP inhibits phase shifts in tPA-/- SCN, 2) inhibiting 

LRP-1 does not impact BDNF maturation, or 3) Trk receptor phosphorylation on Y680/681. 

Suprisingly, inhibiting LRP-1 with RAP changes N-Methyl_D-aspartic acid receptor 

(NMDAR) phosphorylation patterns in the SCN in vitro, by decreasing phosphorylation on 

S1480 of NR2B subunits.  Finally, we evaluated uPA and tPA expression and proteolytic 

activity across the circadian day, and LRP-1 expression and phosphorylation patterns.   

We find evidence of circadian rhythms in tPA expression but not proteolytic activity, no 

rhythms in uPA expression or proteolytic activity, and potential diurnal variations in αLRP-

1 but not βLRP-1 subunits.  Additionally, uPA activity and βLRP-1 expression exhibit 

changes that correlate with the time slices are maintained in vitro, suggesting that a 

response to slicing injury may occlude an accurate view of expression patterns in the SCN 

in vitro.  Collectively, the data presented here implicate uPA and LRP-1 in the processes 

gating glutamate-induced phase shifts in the SCN.  
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1.1 Circadian Rhythms 

1.1.1 Circadian timekeeping mechanisms and the SCN 

To cope with life on this planet with its 24 hour (h) rotation, organisms have 

developed internal timekeeping mechanisms that allow them to predict and adapt to daily 

changes in the environment. These internal oscillatory systems generate approximately 

24 h (circadian) cycles in behavior, physiology, and metabolism, enabling organisms to 

coordinate their activities with the environment. Nearly all organisms, ranging from single 

celled cyanobacteria to humans, exhibit circadian rhythms.  These rhythms are present in 

a plethora of physiological processes, including metabolism, hormone secretion, and 

sleep-wake cycles. The ability to anticipate and respond to environmental changes, 

notably the light-dark cycle, is thought to confer evolutionary advantages, and disruptions 

of internal timekeeping mechanisms or asynchrony between the internal clock and the 

external environment result in severe health consequences, such as shift work disorder, 

increased risk for metabolic syndrome, and increased risk for certain cancers  (reviewed 

in: (Bass & Takahashi, 2010; Gamble et al., 2014; Silver & Kriegsfeld, 2014; Man et al., 

2016)).  

Three characteristics distinguish circadian rhythms from other biological 

oscillations. First, circadian rhythms cycle endogenously in the absence of environmental 

input.  In constant conditions, they cycle with an approximately 24 h period, a state known 

as free-running.  Second, they are temperature compensated, meaning the period remains 

constant in a variety of physiologically relevant temperatures.  And finally, circadian 

rhythms can synchronize to the environment, a process known as entrainment, by 

responding to environmental stimuli  with a period close to 24 h that act as zeitgebers 

(Aschoff, 1960), or “time-givers.”  Light serves as the dominant zeitgeber for most species, 

providing input that locks the endogenous clock to the daily light/dark cycle (reviewed in 

(Chaix et al., 2016; Hurley et al., 2016; Herzog et al., 2017). 

In mammals, circadian rhythms are governed by a central circadian pacemaker, 

located in the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain (Gamble 

et al., 2014; Silver & Kriegsfeld, 2014; Bass & Lazar, 2016; Cribbet et al., 2016). The SCN 

is a bilateral structure comprised of densely packed neurons and astroglial cells located 

dorsal to the optic chiasm, straddling the third ventricle.  Most SCN neurons release the 
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neurotransmitter gamma-Aminobutyric acid (GABA), but the SCN is quite heterogeneous, 

and can broadly be divided into the retinorecipient gastrin-releasing peptide (GRP) and 

vasoactive intestinal peptide (VIP) expressing ventrolateral core and vasopressin (AVP) 

expressing dorsomedial shell (Hattar et al., 2006; McNeill et al., 2011; Mohawk & 

Takahashi, 2011; Herzog et al., 2017). An elegant series of studies defined the SCN as 

the master circadian pacemaker.  Early work suggested the clock may be found in the 

hypothalamus (Richter, 1965), followed by identifying the SCN as the terminal point for 

the RHT (Hendrickson et al., 1972; Moore & Eichler, 1972; Moore & Lenn, 1972; Moore, 

1973). SCN lesion studies demonstrated that ablation of the SCN eliminates circadian 

rhythms (Moore & Eichler, 1972; Stephan & Zucker, 1972; Rusak, 1979). Metabolic 

imaging and electrophysiology demonstrated that the SCN exhibits circadian rhythms in 

vivo (Inouye & Kawamura, 1979), and 2-deoxyglucose (2-DG) radiolabeled imaging 

(Schwartz & Gainer, 1977) and electrophysiology on SCN brain slices demonstrated that 

the SCN retains this rhythmicity in vitro (Green & Gillette, 1982; Groos & Hendriks, 1982; 

Shibata et al., 1982).  The strongest support of the SCN as the primary pacemaker came 

from studies demonstrating that transplantation of fetal SCN grafts into the brains of SCN 

ablated animals restores circadian rhythms, with a period identical to that of the host 

(Drucker-Colin et al., 1984; Sawaki et al., 1984; DeCoursey & Buggy, 1989).  Finally, SCN 

cell culture studies demonstrated that circadian rhythms are cell autonomous (Welsh et 

al., 1995). 

The current model for the SCN circadian oscillator consists of a cell autonomous 

transcriptional-translational-posttranslational negative feedback loop (TTFL) involving a 

group of clock genes that includes Period (Per) 1 and 2; Cryptochrome (Cry) 1 and 

2, Bmal1, and Clock (Reviews:(Hardin, 2004; Gallego & Virshup, 2007; Buhr & Takahashi, 

2013; Hastings et al., 2014). BMAL1 and CLOCK proteins are transcriptional activators 

that act as a heterodimer to increase transcription of Per and Cry (Vitaterna et al., 1994; 

Reppert & Weaver, 2002).  PER and CRY proteins accumulate in the cytoplasm, until they 

reach a critical level where PER and CRY proteins enter the nucleus, dimerize, and inhibit 

the activity of BMAL1/CLOCK.  This suppresses Per and Cry transcription, and once PER 

and CRY levels decrease the cycle restarts.  Phosphorylation of PER proteins leads 

to their degradation, which slows the rate of accumulation.  Additional regulators of this 

core mechanism, including a redox oscillator and a cell membrane oscillator, are thought 
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to strengthen and stabilize the SCN circadian clock (Gillette & Wang, 2014; Hastings et 

al., 2014; Milev et al., 2015). The TTFL is found in every cell in the body, and it acts as 

the gears of the clock, generating and maintaining a ~24 h cycle.  In the SCN, the rhythms 

of individual cells are coordinated to one another, then entrained to the environment, and 

the phase from the SCN is distributed to the remainder of the body.  

Several stimuli can entrain the clock, creating a period equal to the entraining 

cycle. These include food availability (Edmonds & Adler, 1977), social contact (Mrosovsky, 

1988; Mrosovsky et al., 2005), temperature, moonlight (Neumann, 1989; Fernandez-

Duque & Erkert, 2006), or tides (a unique case allowing 24 h entrainment to an 

approximately 12 h input) (Palmer, 2000).  However, light signals are the dominant 

synchronizing signal (Czeisler, 1995). The SCN receives input from the retina, 

intergeniculate leaflet (IGL), and raphe nuclei, but retinal signals are the primary source 

of photic phase-resetting information.  Light pulses during subjective night or transitions 

from light to dark at subjective dawn or dusk shift the clock phase (Daan, 1977; Johnson, 

1999; Johnson et al., 2003; Roenneberg et al., 2003).  Depending on the time of day, 

phase shifts can either result in a shift forward or a fall back in clock timing.  Light 

stimulates melanopsin containing retinal ganglion cells to release neurotransmitters 

(Johnson et al., 1989; Berson et al., 2002), including glutamate (Ebling, 1996; Hannibal, 

2002), pituitary adenylate cyclase-activating peptide (PACAP) (Hannibal, 2006), and 

substance P onto SCN neurons (Chen et al., 1999; Golombek et al., 2003; Fahrenkrug, 

2006; Hannibal, 2006).  Of these, several lines of evidence support glutamate as the 

primary photic signal (Ding et al., 1994; Golombek & Rosenstein, 2010; Welsh et al., 

2010). The SCN contains α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPAR) and N-Methyl-D-aspartic acid receptors (NMDAR), but only NMDAR 

stimulation replicates phase shifting (Colwell & Menaker, 1992; Vindlacheruvu et al., 1992; 

Gannon & Rea, 1993; Ding et al., 1994; Gannon & Rea, 1994; Shirakawa & Moore, 1994b; 

a).  Blocking NMDARs prevents phase shifts, suggesting that NMDARs are the primary 

source of glutamatergic phase shifting signals in the SCN (Ding et al., 1994).  Activation 

of NMDARs results in a calcium influx (Ding et al., 1998; Obrietan et al., 1998; Colwell, 

2000; 2001), which through the activation of a variety of downstream effectors (discussed 

below) results in a phase shift.  Importantly, phase shifting only occurs when these events 



5 

 

happen during the subjective night-time, and not during the subjective day (Meijer & 

Schwartz, 2003; Cheng & Obrietan, 2006; Colwell, 2011).   

The intracellular molecular mechanisms linking light stimuli to phase shifts are not 

fully elucidated, but several downstream effectors and signaling cascades have been 

demonstrated to play a role.  A variety of kinases are activated following the NMDAR 

calcium influx.  An early effect is activation of Ca2+/calmodulin-dependent protein kinase 

II (CaMKII) by autophosphorylation on Thr286/287 (Fukushima et al., 1997; Yokota et al., 

2001; Golombek et al., 2004).  Increases in p(hosphorylated)CaMKII result in 

phosphorylation of neuronal nitric oxide synthase (nNOS), causing nitric oxide (NO) 

production (Agostino et al., 2004).  Downstream of NO production the process of phase 

shifting bifurcates (Golombek et al., 2004).  In the early night, phase delays require 

calcium-induced calcium release from ryanodine receptors (RyRs) (Ding et al., 1998).  In 

the late night, NO activates guanylate cyclase (GC) and increases cyclic guanosine 

monophosphate (cGMP) (effects that do not happen in the early night), resulting in a 

phase advance (Weber et al., 1995; Ding et al., 1998; Prosser, 1998b; Tischkau et al., 

2003).  The phase delaying and phase advancing pathways re-converge, and there is a 

transient rapid phosphorylation of cAMP response element binding protein (CREB), that 

ultimately causes transcription of Per and other cAMP response element (CRE) regulated 

genes, effectively resetting the clock phase (Ginty et al., 1993; Ding et al., 1997; Gau et 

al., 2002).  Also involved are mitogen-activated protein kinase (MAPK) and protein kinase 

A (PKA), but their link to entrainment isn’t well understood (Obrietan et al., 1998; Tischkau 

et al., 2000; Butcher et al., 2002; Antoun et al., 2012).  Light-induced phase shifts can be 

mimicked in vitro by application of glutamate to SCN brain slices (Golombek & Rosenstein, 

2010; Iyer et al., 2014; Cooper, Submitted).  In vivo phase shifts can be assessed by 

observing behavioral patterns, and in vitro phase shifts can be assessed by observing a 

variety of clock outputs, including rhythmic clock gene expression and neuronal activity 

patterns.  

The intracellular oscillatory mechanisms described above create an elegant 

pacemaker model, but they do not fully account for several important SCN functions 

including synchronization and entrainment.   Accumulating evidence suggests that 

extracellular molecules contribute to these processes.  Intercellular coupling mechanisms 

within the SCN synchronize the individual cell’s rhythms to one another, and recent 
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evidence highlights an important role for astrocytes in maintaining SCN synchrony (Evans, 

2016; Herzog et al., 2017).  A variety of extracellular molecules are implicated in the 

process of phase shifting, including extracellular proteases and cell adhesion molecules 

such as neural cell adhesion molecule (NCAM), L1 cell adhesion molecule (L1-CAM), 

neurexins and neuroligins, Eph-ephrins, and integrins (Prosser et al., 2003; Mou et al., 

2009b; Cooper, Submitted).  Many of these extracellular molecules overlap with 

interactions on the extracellular matrix (ECM), which acts as a critical regulator of synaptic 

connections (Song & Dityatev, 2018).  Many extracellular molecules also have astrocytic 

roles. The precise mechanisms through which all of these molecules work have not been 

fully elucidated yet, but it is apparent that changes in the extracellular space exert dramatic 

influence over the timekeeping mechanisms.   

1.1.2 Neuronal plasticity in the SCN – daily rhythms in neuronal responses to 
glutamate  

One particularly intriguing phenomenon in the SCN is a dramatic duality in 

responses to glutamate over the course of the day. Neuroplasticity refers to the ability of 

stimuli to induce structural and functional changes in neuronal responses.  It is most 

thoroughly studied in terms of long term potentiation (LTP) and long term depression 

(LTD) in the hippocampus, where different patterns of neuronal stimulation induce either 

exaggerated (LTP) or attenuated (LTD) responses to subsequent stimuli (Malenka & Bear, 

2004).  The SCN exhibits a unique case of circadian plasticity where the response to a 

stimulus (light/glutamate), differs depending on the time of day that stimulus is presented 

(Iyer et al., 2014).  As mentioned above, glutamate (or light) induces phase shifts at night, 

but not day, which means there is an endogenous rhythm in the neuronal responsiveness 

in the SCN (Iyer et al., 2014). This is further complicated by the divergent direction of shift 

in the early night vs late night. This suggests that there are persistent changes in synaptic 

connections that occur on a 24 h cycle, allowing for these cycles in neuronal 

responsiveness (Iyer et al., 2014).  While much remains unclear about the mechanisms 

underlying this phenomenon, termed “daily iterative metaplasticity,” it is apparent that the 

mechanisms that influence neuronal plasticity in other systems, particularly the 

hippocampus, often have a conserved function of gating phase shifting in the SCN (Iyer 

et al., 2014). Some events that contribute to this daily plasticity include rhythms in 
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membrane potential, expression of proteins that influence neuroplasticity, and 

expression/functional status of intracellular signaling molecules (Iyer et al., 2014).   

An important mediator of glutamate-induced phases shifts, NMDARs, are 

intricately associated with neuronal plasticity, and changes in their expression patterns, 

subunit composition, cell surface localization, and interacting partners can dramatically 

alter neuronal responses (Hunt & Castillo, 2012).  NMDARs are heteromeric complexes 

containing four subunits generally composed of two obligate NR1 subunits complexed with 

a combination of NR2 (A-D) or NR3 (A-B) subunits (Moriyoshi et al., 1991; Traynelis et al., 

2010; Paoletti et al., 2013; Iacobucci & Popescu, 2017).  NMDAR subunit composition and 

phosphorylation patterns can influence their localization and activity patterns.  NMDARs 

exhibit distinct diurnal rhythms in the SCN, with mRNA of ɛ3 (also known as NR2A) and 

ζ1 (NMDAR1) high during the day and low at night in rats, with anti-phase patterns in their 

respective proteins (Ishida et al., 1994).  Expression of those two NMDARs also increases 

in response to light stimulation in the subjective night (Ishida et al., 1994).  Expression and 

phosphorylation of NR2A and NR2B protein exhibits circadian rhythms in hamster SCN, 

with phosphorylated NR2B peaking in the late night (Wang et al., 2008).  There are also 

endogenous rhythms in magnitude and duration of NMDAR calcium transients in SCN, 

which peak during the night, as does a rhythm in NMDAR-evoked currents (Pennartz et 

al., 2001).  Collectively, these data suggest that NMDAR function peaks at night, which 

could allow increased responsiveness to glutamate.  However, quite a bit remains 

unknown about actions of NMDARs as gating molecules in the SCN, and importantly, 

changes in cell surface localization and potential modulators of NMDAR function remain 

largely un-investigated. 

Growth factors also contribute to the diurnal responses.  Brain-derived 

neurotrophic factor (BDNF) is a secreted neurotrophin that regulates neuronal signaling 

across the central nervous system (CNS), and is important for a variety of neuroplastic 

events (Kowianski et al., 2018).  BDNF exerts its function by binding to neurotrophin 

receptors, p75 and tyrosine kinase B receptors (TrkB) (Reichardt, 2006).  In the nervous 

system, BDNF binding to TrkB is important for many of its effects on neuroplasticity.  BNDF 

binding induces TrkB autophosphorylation, which activates a variety of protein kinases 

(Chao & Hempstead, 1995; Reichardt, 2006).  BDNF is transcribed as an ~32 kDa 

proBDNF that is cleaved into ~14 kDa m(ature) BDNF, which is the form that binds TrkB 
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receptors (Foltran & Diaz, 2016).  In the SCN, BDNF levels are rhythmic – they are high 

at night and low during the day (Liang et al., 1998).  At night, these high levels of BDNF 

enable it to bind TrkB receptor, which in other regions can stimulate concurrent 

phosphorylation of NR1 NMDAR subunits (Slack et al., 2004) and in the SCN enables 

glutamate-induced phase shifts (Liang et al., 2000; Allen et al., 2005; Mou et al., 2009b).  

Inhibiting TrkB receptors or decreasing BDNF expression disrupts SCN responses to 

glutamate (Allen et al., 2005).  Collectively, it seems that BDNF and TrkB receptors are 

key molecules acting to gate phase shifts, but similar to NMDARs, many questions still 

remain.  In particular, we do not fully understand how they are regulated and respond to 

daily changes in the SCN.   

The gating of photic phase resetting also involves intracellular signaling events, 

including the actions of cAMP.  In the rat SCN, there are spontaneous oscillations in cAMP 

levels and cAMP-dependent protein kinase (PKA) activity (Prosser & Gillette, 1991).  

cAMP levels peak at the end of the day and the night, which corresponds to the day/night 

transitions (Prosser & Gillette, 1991).  cAMP levels also increase in response to light or 

glutamate stimulation, but application of cAMP agonists does not mimic the phase shifting 

effects of light or glutamate stimulation (Tischkau et al., 2000). Concurrent activation of 

cAMP/PKA with light or glutamate results in enhanced phase shifts during the early night, 

but diminished phase shifts in the late night (Tischkau et al., 2000).  Thus, the cAMP/PKA 

system may alter the baseline status of cell signaling pathways based on time of activation, 

resulting in opposing responses at different times (Tischkau et al., 2000).  Similar changes 

in other intracellular effectors may also participate in gating photic phase shifts, but the 

molecules controlling their diurnal variations have not been elucidated.   

In general, the circadian oscillator sets the cellular stage such that it is more 

responsive to photic stimuli at night than during the day (Iyer et al., 2014).  As discussed 

above, several signaling molecules are known to be under circadian control, but these 

changes pale when compared to the complex picture of neuronal synaptic plasticity 

generally.  Strengthening and weakening synaptic connections involves growth factors 

and their direct downstream effectors, changes in receptor expression, localization, and 

activation status, differences in astrocytic clearance of neurotransmitters from the 

synapse, adjustments in synaptic morphology, and ECM reorganization.  Importantly, 

there is evidence that similar plasticity events may be happening in the SCN, particularly 
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with response to ECM changes. For example, there is evidence that a variety of ECM-

associated proteins, such as cell adhesion molecules (CAMs) and extracellular proteases, 

are involved in circadian clock phase regulation (Cooper, Submitted).  There are also data 

suggesting that the ECM may be important for daily changes in synaptic ultrastructure, 

which may be important for gating photic signals. There are day/night variations in glial 

and axonal terminal coverage on VIP neurons: during the night glia tightly surround VIP 

dendrites and are retracted from AVP dendrites, while in the day-time they move to cover 

AVP dendrites more closely and retract from VIP dendrites (Becquet et al., 2008; Girardet 

et al., 2010).  Similar changes in other brain regions are restricted by the presence of the 

ECM and enabled following ECM remodeling.  As summarized below, we have started 

identifying a few extracellular modulators of glutamate signals in the SCN, but much 

remains unknown about how the SCN achieves the day-night duality of responses.  

1.2 The Plasminogen Activators 
One particularly interesting group of proteins that modulates neuronal activity are 

extracellular proteases.  A variety of secreted proteases exert dramatic influence over 

neuronal processing by cleaving ECM molecules, cell adhesion molecules, and growth 

factors, as well as through both proteolytic and non-proteolytic interactions with cell 

surface molecules (Salazar et al., 2016).  These actions can facilitate structural changes 

in the extracellular space, change the strength of synapses, have direct effects on 

neurotransmitter receptors, and act as signaling events, all of which serve to mediate 

changes in cellular responses as a consequence of changes in the extracellular space 

(Salazar et al., 2016).  The plasminogen activators, tissue-type plasminogen activator 

(tPA) and urokinase plasminogen activator (uPA), are extracellular proteases that 

modulate a variety of neuronal processes, and with particular relevance to circadian clock 

phase shifting, they have been found to influence glutamatergic signaling.   

tPA and uPA are serine proteases whose primary function is to cleave 

plasminogen into proteolytically active plasmin.  tPA was identified in the vascular system 

for its role in dissolving fibrin blood clots, while uPA was originally found in the urinary 

tract.  The plasminogen activators have overlapping and divergent functions and partners 

(Camiolo et al., 1971; Collen & Lijnen, 1991).  Their activity is modified by inhibitors and 

interacting proteins, and they cleave a variety of downstream targets (Al-Horani, 2014). 
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tPA is secreted in a pro form, which can be cleaved by plasmin into a two-chain form 

(Chevilley et al., 2015).  Both forms of tPA are proteolytically active, but differ in stability 

and targets (Chevilley et al., 2015).  tPA activity is inhibited by two main inhibitors, 

plasminogen activator inhibitor 1 (PAI-1), which requires an interacting partner, vitronectin 

(VN), and neuroserpin, which is the primary inhibitor found in the brain (Al-Horani, 2014).  

tPA also interacts with several membrane-associated proteins, including low density 

lipoprotein-receptor related protein 1 (LRP-1) and annexin II (Archinti et al., 2011; 

Chevilley et al., 2015).  Aside from activating plasminogen, tPA also cleaves ECM 

molecules, matrix metalloproteinases (MMPs), and CAMs (Archinti et al., 2011).  uPA is 

also secreted in a single chain pro-form, but it remains inactive until it is cleaved by plasmin 

into the active two-chain form upon binding to its receptor, uPA receptor (uPAR) (Lijnen 

et al., 1987a).  Similar to tPA, uPA is also inhibited by PAI-1 and neuroserpin, interacts 

with LRP-1 and annexin II, and it’s activity can affect ECM molecules, including MMPs 

and CAMs (Ishida et al., 1994; Archinti et al., 2011; Chevilley et al., 2015).   

1.2.1 tPA regulates glutamate signaling in the brain 

Early work suggested fibrinolytic activity occurs in the brain, and eventually 

supported tPA expression in the central nervous system (Fantl & Fitzpatrick, 1950; 

Takashima et al., 1969; Tovi, 1973; Krystosek & Seeds, 1981; Soreq & Miskin, 1981; 

Basham & Seeds, 2001).  We now know that tPA, uPA, PAI-1, neuroserpin, and 

plasminogen are expressed in the brain and can be found in neurons and astrocytes of 

many regions, including the cortex, limbic system, hypothalamus, and cerebellum 

(Kalderon et al., 1990; Presta et al., 1990; Masos & Miskin, 1996; Lee et al., 2017).  

Subsequent research, discussed below, has demonstrated that the plasminogen 

activators and their interacting partners are potent regulators of neuroplasticity throughout 

the central nervous system.  

tPA has received much attention for its diverse and complex roles in regulating 

neuronal processes.  tPA is abundantly expressed in the brain, and can be found in 

endothelial cells (Sappino et al., 1993), glial cells (Siao et al., 2003), and neurons (Nicole 

et al., 2001; Yepes et al., 2009).  In neurons tPA can be localized to synaptosomes 

(Zisapel et al., 1982).  tPA expression is also inducible in the brain, and it has been 

identified as one of 5 immediate-early genes induced following seizure or high frequency 
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stimulation, suggesting tPA could modulate “structural changes that accompany activity-

dependent plasticity” (Qian et al., 1993).  tPA has been associated with many functions of 

the brain, including cell migration, neurite growth, cell-cell adhesion, synaptic plasticity, 

neurodegeneration, neuroprotection, neurovascular permeability, and Alzheimer’s 

disease (Lee et al., 2015).  The mechanisms through which tPA functions are equally 

diverse.  In some cases, tPA acts through plasmin-dependent functions.  In other cases, 

tPA proteolytic activity that is independent of plasmin generation is important. Additionally, 

tPA can act through non-proteolytic mechanisms that often involve interactions with 

specific receptors, including annexin II, LRP-1, or NMDAR. (Qian et al., 1993; Madani et 

al., 1999; Oray et al., 2004; Yepes et al., 2016).   

Evidence supporting a role for tPA in neuroplasticity comes from studies identifying 

involvement of tPA in LTP and LTD (Baranes et al., 1998; Fiumelli et al., 1999; Pang & 

Lu, 2004; Pang et al., 2004; Salazar et al., 2016; Medcalf, 2017). There are deficits in LTP 

in tPA knockout mice, and increases in LTP when tPA is over-expressed (Baranes et al., 

1998; Pawlak et al., 2002).  tPA enhances hippocampal learning, LTP, and LTP-

associated synapse formation, and these effects are inhibited by PAI-1 (Baranes et al., 

1998).  tPA is also implicated in various non-hippocampal learning and memory paradigms 

(Melchor & Strickland, 2005).  One mechanism through which tPA influences neuronal 

activity is by activating BDNF downstream of plasmin generation (Fiumelli et al., 1999; 

Pang & Lu, 2004; Pang et al., 2004).  As discussed before, BDNF activation 

of TrkB influences neuronal responses to a variety of stimuli, and it also results in an 

increase in tPA expression (Kuzniewska et al., 2013). This creates the potential for a 

positive feed-forward loop that serves to increase tPA-dependent events.  

tPA, plasminogen, and pro-BDNF are co-localized within dense core granules of 

embryonic rat hippocampal neurons, these vesicles are transported preferentially to 

active dendritic spines, and the three proteins are co-secreted in response to LTP-

inducing stimulation (Lochner et al., 2008).  Thus, tPA modulation of BDNF signaling may 

be important for tPA-dependent effects on neuroplasticity throughout the brain.   

Apart from activating BDNF, tPA has additional signaling targets in the brain. For 

example, tPA interacts with NMDAR NR1 and NR2B subunits and influences NMDAR 

signaling through a process that may involve plasmin-independent proteolytic cleavage of 

NR1, as well as through cleaving NR2A subunits via plasmin (Yuan et al., 2009; Ng et al., 
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2012; Obiang et al., 2012).  These actions affect NMDAR signaling, and generally act to 

increase the responsiveness and/or calcium influx in response to glutamate stimulation 

(Pawlak et al., 2005a; Pawlak et al., 2005b; Norris & Strickland, 2007), though tPA has 

been found to decrease responses to low NMDA concentrations in hippocampal neurons 

(Martin et al., 2008).  tPA’s interactions with other receptors, including LRP-1 (discussed 

below), also contribute to hippocampal LTP (Zhuo et al., 2000).  Another tPA-binding 

receptor, annexin II, is widely expressed throughout the brain, particularly in endothelial 

cells, and is thought to increase plasmin generation following tPA treatments (Kang et al., 

1999; Zhao & Lu, 2007).  Binding to these receptors can restrict tPA’s sphere of 

activity and modify its proteolytic activity, potentially serving as a co-receptor to increase 

proteolytic efficiency (Miles & Parmer, 2013; Chevilley et al., 2015).  tPA interactions with 

growth factor pathways, such as interactions with epidermal growth factor receptor 

(EGFR) and platelet-derived growth factor (PDGF) also influence neuronal function (Zhuo 

et al., 2000; Miles & Parmer, 2013; Chevilley et al., 2015; Lemarchand et al., 2016).  

Collectively, through a combination of mechanisms, tPA modulates neuronal responses 

to such an extent that it has been characterized as a neuromodulator and potentially a 

gliotransmitter (Casse et al., 2012b).    

1.2.2 uPA influences neuronal processes 

uPA has not received as much attention as tPA in the central nervous system, but 

it also participates in synaptic remodeling, particularly during development and following 

injury (Merino et al., 2017a). uPA and uPAR are highly expressed in the CNS during 

development, and can be found in neurons, microglia, and astrocytes (Cho et al., 2012; 

Wu et al., 2014; Merino et al., 2017a).  uPA and uPAR levels are very low in the adult 

brain, but they increase following injury (Wu et al., 2014). uPA, uPAR, and LRP-1 are 

rapidly upregulated following spinal cord hemisection, followed by an increase in tPA 

(Seeds et al., 2009).  uPA acting via uPAR is necessary for post-hemisection remodeling 

(Seeds et al., 2009).  Additionally, following ischemic stroke, uPA-uPAR signaling 

enhances dendritic spine recovery in cortical neurons (Wu et al., 2014).  The evidence 

supports a model where neurons release uPA following oxygen glucose deprivation, which 

binds astrocytic uPAR to allow synaptic recovery (Diaz et al., 2017).   In this system, uPA 

may be acting to activate astrocytes, as uPA induces GFAP expression (a marker of 
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astrocytic activation) in wildtype but not uPAR knockout mice (Diaz et al., 2017). uPA has 

also been reported to cleave NR1 and NR2B subunits to alter NMDAR signaling (Ng et 

al., 2012).  uPAR knockout mice exhibit disrupted neuronal networks, with fewer cortical 

GABAergic interneurons, increased seizures, enhanced anxiety, and decreased social 

interactions (Powell et al., 2003; Eagleson et al., 2005; Ndode-Ekane & Pitkanen, 2013; 

Wu et al., 2014; Rantala et al., 2015).  uPAR interacts with cell-surface proteins, including 

LRP-1, integrins, and receptor tyrosine kinases, and these interactions often mediate 

internalization of the receptor-protein-ligand complex (Madsen et al., 2007; Miles & 

Parmer, 2013; Van Gool et al., 2015).  Although uPA has not been investigated as 

extensively as tPA in regards to neuronal processes, it has been well studied in the context 

of cancer, including glioblastoma, and mechanistic insights from pathological situations 

may provide clues to its physiological roles (Mohanam et al., 1994; Rustamzadeh et al., 

2003). It is important to note that while current evidence implicates tPA as a modulator of 

neuroplasticity and focuses on uPA in the context of injury response, we cannot assume 

that they don’t overlap in these functions.  Indeed, one protease may compensate for the 

other in a variety of contexts, and untangling the associations and differences between 

the two will be important to our understanding of the plasminogen activators.  

1.2.3 tPA regulates glutamate-induced phase shifts 

Because of the overlap between tPA’s role in the CNS and processes already 

known to gate glutamate-induced phase shifting, particularly regarding BDNF maturation, 

our lab undertook a study of tPA in the mammalian SCN (Mou et al., 2009b).  We found 

that tPA contributes to the processes regulating glutamate-induced phase shifting of the 

SCN circadian clock in vitro, identifying a new role for plasminogen activators in the brain.  

Members of the plasminogen activating cascade, including PAI-1, VN, tPA, plasminogen, 

plasmin, mBDNF, and proBDNF, are all expressed in the SCN (Mou et al., 2009b).  tPA, 

plasmin, and mBDNF expression exhibit diurnal rhythms, with higher levels at night than 

during the day, while PAI-1 exhibits an inverse rhythm with high daytime expression (Mou, 

2010; Cooper et al., 2017).  Treating SCN slices in vitro with PAI-1 blocks glutamate-

induced phase delays at ZT16 and phase advances at ZT23, indicating that tPA proteolytic 

activity is necessary for these phase shifts (Mou et al., 2009b).  Additional evidence 

supports a role for tPA acting upstream of BDNF to gate clock phase shifts:  inhibiting 
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plasmin with α2-antiplasmin blocks glutamate-induced phase shifts, and co-application of 

plasmin or mBDNF but not plasminogen recover phase shifting (Mou et al., 2009b).   

Vitronectin is also necessary for PAI-1’s actions in the SCN, as PAI-1 does not block phase 

shifts in vitronectin knockout mice (Mou et al., 2009b).  Collectively, this suggests that at 

night, when tPA levels are highest, it converts plasminogen into plasmin, which then 

cleaves proBDNF into mBDNF, which binds to TrkB receptors enabling glutamate-induced 

phase shifts (Mou et al., 2009b).  

Glutamate-induced changes in tPA expression could contribute to tPA’s role in 

phase shifting, and thus Mou and colleagues also investigated changes in protein 

expression following glutamate treatment (Mou, 2010).  Glutamate application to in vitro 

SCN slices increases tPA levels in the early night, but not in the late night or mid-day.  

This glutamate treatment does not alter PAI-1, plasmin, or BDNF levels (Mou, 2010).  

Treating SCN slices with glutamate and PAI-1 concurrently causes a reduction in plasmin, 

while concurrent glutamate and α2-antiplasmin reduces pro- and mBDNF levels (Mou, 

2010).  And finally, mBDNF levels are lower in tPA knockout (tPA-/-) mice when compared 

to wild-type (WT), supporting tPA as a mediator of BDNF maturation (Mou, 2010).  

Collectively these data generally support the model described above.  However, a couple 

of discrepancies suggest that tPA’s role in the SCN may be more complex.  First, the 

glutamate-induced increase in tPA expression in the early night but not in the late night 

are at odds with the finding that PAI-1 prevents phase shifts at both times, which may 

mean there are mechanistic differences between early and late night phase shifts.  

Second, it is interesting that α2-antiplasmin reduces both pro- and mBDNF levels, as this 

suggests it is regulating total BDNF expression rather than just BDNF maturation.  

This work defined a role for tPA acting upstream of mBDNF to gate glutamate 

phase resetting responses in the SCN, but also created a variety of questions.   This study 

did not investigate circadian phase shifting in tPA knockout mice either in vivo or in vitro.  

Whether or not uPA is involved in circadian clock phase regulation also was not 

addressed.  Additionally, tPA does not work in isolation, and some key potential 

contributors to tPA function in the SCN remained uninvestigated.  In particular, LRP-1 

mediates a variety of tPA-dependent functions in the brain and periphery, and therefore 

could be influencing the circadian clock. tPA has also been reported to modulate neuronal 

signaling through direct interactions with NMDARs, and this possibility was not 
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investigated with respect to SCN clock phase regulation. The work presented here 

addresses these knowledge gaps in two ways.  First, we assessed SCN phase shifting in 

tPA-/- mice, and uncovered an unexpected role for uPA in regulating clock phase shifting. 

Second, we investigated LRP-1 as a potential modulator of SCN phase shifts, with a 

specific focus on interactions between LRP-1, tPA, and NMDARs. My aims were twofold: 

first, to increase our understanding of how extracellular molecules influence synaptic 

plasticity in the SCN by continuing our investigation of extracellular proteases; and 

second, to investigate the closely associated membrane receptor, LRP-1, whose activity 

is associated with transducing information regarding the extracellular space and 

responding to changes in ligands by mediating their endocytosis and/or activating signal 

transduction.  Together, this research furthers our understanding of the mechanisms 

gating SCN circadian clock phase shifting, and simultaneously advances our knowledge 

of how this group of extracellular synaptic plasticity modulators functions in the brain.    

1.3 Low-density lipoprotein receptor-related protein-1  

1.3.1  LRP-1 introduction 

LRP-1, a member of the low-density lipoprotein (LDL) receptor family, is a large 

membrane receptor that is widely expressed in many tissues.  LRP-1 is 600 kDa protein 

composed of a 515 kDa extracellular αLRP-1 subunit that is non-covalently associated 

with an 85 kDa transmembrane βLRP-1 subunit (Kerrisk et al., 2014; Ramanathan et al., 

2015).  The αLRP-1 subunit contains cysteine-rich complement-type ligand binding 

repeats, and epidermal growth factor (EGF) repeats and β-propeller domains that function 

in the release of ligands (Lillis et al., 2005).  The βLRP-1 subunit contains a single 

transmembrane domain and cytoplasmic domain, which has two NPxY motifs that can be 

phosphorylated to contribute to endocytosis and signal transduction (Lillis et al., 2005). 

Additionally, the extracellular subunit can be “shed” via metalloproteinase cleavage on the 

β subunit, generating a soluble protein whose function isn’t entirely understood, but may 

serve to sequester and inactivate LRP-1 ligands in the extracellular space (Van Gool et 

al., 2015).   

LRP-1 is a highly efficient transport protein, which binds over 50 different ligands 

extracellularly, and can mediate rapid endocytosis or influence signal transduction 
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following ligand binding (Lillis et al., 2005).  Through these functions, it regulates a variety 

of physiological processes, including lipoprotein metabolism, protease degradation, 

lysosomal enzyme activation, and cellular entry of bacterial toxins and viruses (Lillis et al., 

2008).  LRP-1 ligands are diverse, and include APO-E, tumor growth factor-β, MMP’s, 

neuroserpin, tPA, uPA, and amyloid-β (Lillis et al., 2005).  LRP-1 also interacts with a 

variety of cytoplasmic adaptor proteins in a phosphorylation-specific manner, and can 

modulate activity of transmembrane receptors such as integrins and receptor tyrosine 

kinases (Lillis et al., 2005).  Regulation of signal transduction is often coupled with other 

cell surface receptors such as PDGF receptor (PDGFR) and leptin receptors, and 

mediated via intracellular kinases (Muratoglu et al., 2010; Liu et al., 2011; Strickland et al., 

2014).  Interactions with other receptors, including uPARs and NMDARs have also been 

show to mediate LRP-1 dependent effects (Lillis et al., 2005; Ramanathan et al., 2015; 

Van Gool et al., 2015).  

1.3.2 LRP-1 regulates neuroplasticity throughout the brain 

LRP-1 is abundantly expressed in the central nervous system, where it can be 

found on vascular smooth muscle cells, pericytes, astrocytes, and neurons (Lillis et al., 

2008; Shinohara et al., 2017).  Deletion of the Lrp1 gene is embryonically lethal, indicating 

a critical involvement in development (Lillis et al., 2008; Liu et al., 2010).  Neuronal specific 

deletion of Lrp1 in mice results in severe behavioral and motor abnormalities, including 

hyperactivity, tremor, and dystonia (May et al., 2004).  LRP-1 protein can be expressed in 

the post synapse, where it regulates synaptic integrity, partly through regulating glutamate 

receptors (May et al., 2004).   

tPA is a prominent LRP-1 ligand, and tPA binding to LRP-1 activates LRP-1 

dependent signaling in a variety of contexts (Zhuo et al., 2000; Yepes et al., 2003; Samson 

et al., 2008; Echeverry et al., 2010).  In rat kidney interstitial fibroblasts, tPA acts as a 

cytokine by binding to LRP-1, inducing tyrosine phosphorylation on LRP-1’s intracellular 

domain, and triggering signal transduction that is able to induce specific gene expression, 

including Mmp9 expression (Hu et al., 2006).  In this system, tPA stimulates extracellular 

signal–regulated kinases (ERK1/2) phosphorylation to protect against apoptosis, and 

LRP-1 is required for these events (Hu et al., 2008).  tPA can also stimulate ERK1/2 

activity in hippocampal neuronal cell culture, and LRP-1 is necessary for this event (Martin 
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et al., 2008).  The results of this study support tPA, NMDAR, and LRP-1 acting in complex 

to mediate tPA-dependent effects, and identified the distal NPxY motif on LRP-1 as a key 

mediator of the LRP-1/NMDAR interaction (Martin et al., 2008).  Additionally, LRP-1 

mediates the LTP-enhancing effect of tPA in tPA-/- hippocampal slices (Zhuo et al., 2000).  

LRP-1 is also required for tPA-mediated microglial activation in the central nervous system 

(CNS) following middle cerebral artery occlusion (MCAO; a model of brain 

ischemia/stroke) (Zhang et al., 2009b).  tPA increases MMP-1 expression following 

MCAO, and this also depends on the presence of LRP-1 (Zhang et al., 2009a).  In cultured 

Schwann cells LRP-1 functions as an injury detection receptor by inducing c-Jun 

phosphorylation downstream of tPA binding (Flutsch et al., 2016).  Astrocytic-derived tPA 

induces astrocytic outgrowth via LRP-1-dependent induction of ERK activity (Qian et al., 

2016). tPA and LRP-1 have complementary effects on lipopolysaccharide (LPS)-induced 

inflammation, where tPA inhibits LPS induced inflammation through a pathway that 

involves LRP-1 (Mantuano et al., 2017).   Collectively, these studies are consistent with 

the idea that tPA binding to LRP-1 can initiate a variety of signaling events.  In addition to 

its signaling responses, LRP-1 can mediate the clearance of tPA by transporting tPA 

across the blood-brain barrier (Benchenane et al., 2005).  LRP-1 also contributes to tPA 

recycling in the nervous system (Casse et al., 2012b): glutamate induces LRP-1 

dependent astrocytic endocytosis and recycling of tPA (Casse et al., 2012b).  And finally, 

there is evidence that LRP-1 may act as a co-receptor, increasing tPA proteolytic activity, 

as it does for tPA-mediated cleavage of platelet derived growth factor-CC (PDGFR-CC) 

(Su et al., 2017).  Thus, the interactions between tPA and LRP-1 in the nervous system 

are complex and multifunctional.   

LRP-1 can also modulate neuronal activity through its association with NMDA 

receptors.  LRP-1 physically interacts with NMDAR via binding to postsynaptic density 

protein 95 (PSD95) (May et al., 2004), allowing it to control NMDAR trafficking and 

degradation, and thus NMDAR surface localization (Maier et al., 2013). LRP-1 modulates 

neuronal calcium signaling via NMDAR (Bacskai et al., 2000).  LRP-1’s intracellular 

domain can regulate NMDAR-mediated signaling processes (Nakajima 2013), and LRP-

1 can form complexes with Trk receptors to modulate NMDAR signaling (Mantuano et al., 

2013).  As mentioned above, LRP-1 may also influence NMDAR signaling by regulating 

the activity of tPA (Casse et al., 2012b).  Separately, LRP-1 can influence neuronal 
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plasticity through interactions AMPA receptors.  LRP-1 has been found to influence the 

trafficking, phosphorylation, and turnover of GluA1 subunits of AMPA receptors (Gan et 

al., 2014).  One final association worth mentioning involves interactions between LRP-1 

and amyloid precursor protein (APP). LRP-1 binds and mediates cellular catabolism of 

longer forms of APP (Kounnas et al., 1995), and internalizes transmembrane isoforms of 

APP (Knauer et al., 1996).  LRP-1 mediated internalization of both soluble and membrane 

forms of APP may lead to changes in neuronal activity.  In general, it seems that in addition 

to its endocytic and signaling activities, LRP-1 functions to regulate surface localization of 

a variety of membrane receptors.   

1.3.3 LRP-1 overlaps with mechanisms that gate phase shifts 

LRP-1 acts as a sensor and regulator of the extracellular space, and responds to 

extracellular changes in ways that modulate neuronal responses.  The aforementioned 

functions of LRP-1 all intersect with processes known to gate SCN clock phase shifting, 

and in particular they influence responses to glutamate signals.  LRP-1 regulates and 

responds to extracellular tPA, which is an important gatekeeper for glutamate-induced 

phase shifting.  NMDARs are also important mediators of glutamate signals in the SCN, 

and LRP-1 can influence NMDAR activity. And finally, TrkB receptors act to gate phase 

shifts, and LRP-1-Trk receptor complex formation further strengthens the links between 

LRP-1 and known clock regulators. Given these close associations, I hypothesized that 

LRP-1 contributes to circadian clock phase regulation.  Furthermore, interactions between 

LRP-1 and the plasminogen activating cascade, or interactions with NMDARs may 

underlie LRP-1s role in the clock.  To the best of my knowledge, no studies had assessed 

LRP-1 involvement in circadian clock phase shifting prior to my research.  
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2 UROKINASE-TYPE PLASMINOGEN ACTIVATOR 
MODULATES MAMMALIAN CIRCADIAN CLOCK PHASE 

REGULATION IN TISSUE-TYPE PLASMINOGEN ACTIVATOR 
KNOCKOUT MICE 
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 A version of this chapter was originally published by Joanna M. Cooper, Ashutosh 

Rastogi, Jessica A. Krizo, Eric M. Mintz, and Rebecca A. Prosser: 

 Joanna M. Cooper, Ashutosh Rastogi, Jessica A. Krizo, Eric M. Mintz, and 

Rebecca A. Prosser. “Urokinase-type plasminogen activator modulates mammalian 

circadian clock phase regulation in tissue-type plasminogen activator knockout mice.” 

European Journal of Neuroscience 45 (2017): 805–815 

 

 

This article is presented in its as-published form.  Joanna Cooper was responsible 

for the conceptualization, experiment design, performing the in vitro electrophysiology 

experiments, western blotting, and casein-plasminogen gel zymography experiments, and 

writing.  Ashutosh Rastogi, a postdoctoral fellow in the laboratory of Dr. Eric Mintz at Kent 

State University, performed, analyzed, and wrote the results for the in-vivo experiments 

with the help of Jessica Krizo, a graduate student in the same lab.  

2.1 Abstract  
Glutamate phase shifts the circadian clock in the mammalian suprachiasmatic 

nucleus (SCN) by activating NMDA receptors. Tissue-type plasminogen activator (tPA) 

gates phase shifts by activating plasmin to generate m(ature) BDNF, which binds TrkB 

receptors allowing clock phase shifts. Here, we investigate phase shifting in tPA knockout 

(tPA−/−; B6.129S2-Plattm1Mlg/J) mice, and identify urokinase-type plasminogen activator 

(uPA) as an additional circadian clock regulator. Behavioral activity rhythms in tPA−/− mice 

entrain to a light-dark (LD) cycle and phase shift in response to nocturnal light pulses with 

no apparent loss in sensitivity. When the LD cycle is inverted, tPA−/− mice take significantly 

longer to entrain than C57BL/6J wild-type (WT) mice. SCN brain slices from tPA−/− mice 

exhibit entrained neuronal activity rhythms and phase shift in response to nocturnal 

glutamate with no change in dose-dependency. Pre-treating slices with the tPA/uPA 

inhibitor, plasminogen activator inhibitor-1 (PAI-1), inhibits glutamate-induced phase 

delays in tPA−/− slices. Selective inhibition of uPA with UK122 prevents glutamate-induced 

phase resetting in tPA−/− but not WT SCN slices. tPA expression is higher at night than the 

day in WT SCN, while uPA expression remains constant in WT and tPA−/− slices. Casein-

plasminogen zymography reveals that neither tPA nor uPA total proteolytic activity is 
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under circadian control in WT or tPA−/− SCN. Finally, tPA−/− SCN tissue has lower mBDNF 

levels than WT tissue, while UK122 does not affect mBDNF levels in either strain. 

Together, these results suggest that either tPA or uPA can support photic/glutamatergic 

phase shifts of the SCN circadian clock, possibly acting through distinct mechanisms. 

2.2 Introduction 
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the 

primary circadian pacemaker, maintaining and synchronizing the daily rhythms of diverse 

physiological and behavioral processes (Moore & Eichler, 1972; Stephan & Zucker, 1972).   

The SCN exhibits self-sustaining oscillations in neuronal activity patterns that synchronize 

to the environment primarily through entrainment to light stimuli, a process known as 

photic entrainment.  Photic entrainment depends on glutamate release onto SCN neurons 

inducing shifts in the phase of the underlying clock (Liou et al., 1986; Ding et al., 1994; 

Porterfield et al., 2007; Porterfield & Mintz, 2009).  

  Glutamate binds to NMDA receptors (NMDAR) to initiate a calcium influx and 

activate nitric oxide synthase. This stimulates protein kinases and transcriptional 

regulators to reset the core clock mechanism by altering the transcription of clock-

associated genes (Ding et al., 1997; Gillette & Tischkau, 1999; Butcher et al., 2003; Pizzio 

et al., 2003; Butcher et al., 2004; Marpegan et al., 2004; Butcher et al., 2005).  Light-

induced phase shifts require concurrent activation of tropomyosin receptor kinase B (TrkB) 

via brain-derived neurotrophic factor (BDNF) binding. TrkB gates phase shifts through 

mechanisms that remain unclear, allowing them to only occur at night (Liang et al., 1998; 

Liang et al., 2000).  The proteolytic conversion of proBDNF to m(ature)BDNF, mediated 

by plasmin, regulates BDNF signaling (Plow et al., 1995; Lee et al., 2001; Mou et al., 

2009b).  

The plasminogen activating system consists of various proteases, their inhibitors, 

and their receptors that collectively control the activation of plasminogen into plasmin 

(Saksela & Rifkin, 1988; Plow et al., 1995; Cesarman-Maus & Hajjar, 2005; Collen & 

Lijnen, 2005). Members of this system, including tissue-type plasminogen activator (tPA), 

urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), 

urokinase plasminogen activator receptor (uPAR), neuroserpin, and plasminogen 

modulate neuronal processes throughout the brain (Samson & Medcalf, 2006).  Of these, 
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tPA has received the most attention within the central nervous system (CNS) and its role 

as a neuromodulator is well established (Soreq & Miskin, 1981; Sappino et al., 1993; 

Fernandez-Monreal et al., 2004; Melchor & Strickland, 2005; Samson & Medcalf, 2006; 

Casse et al., 2012a).  In the hippocampus, tPA proteolytic activity converts plasminogen 

into plasmin, and plasmin can exert downstream effects on synaptic plasticity by 

influencing extracellular matrix remodeling or by proteolytically generating mBDNF from 

proBDNF (Pang & Lu, 2004; Pang et al., 2004; Melchor & Strickland, 2005).  There are 

also BDNF-independent and plasminogen-independent synaptic effects of tPA.  For 

example, tPA can influence neuronal activity by modulating NMDAR activity and through 

interactions with specific receptors including low density lipoprotein receptor-related 

protein 1 (LRP-1) and annexin II (Nicole et al., 2001; Fernandez-Monreal et al., 2004; 

Zhang et al., 2009b; Baron et al., 2010; Jullienne et al., 2011).  tPA’s activity is carefully 

controlled by its inhibitor, PAI-1, and the PAI-1 stabilizing protein vitronectin (Schleef et 

al., 1991; Delegue et al., 1998; Huntington & Carrell, 2001; Minor & Peterson, 2002; 

Mayasundari et al., 2004). 

uPA also converts plasminogen into plasmin, is inhibited by PAI-1, is expressed in 

the CNS,  and influences a variety of neuronal processes including Schwann cell 

migration, nerve regeneration, epilepsy, dendritic spine recovery following stroke, and 

amphetamine and morphine-induced reward (Ploug & Kjeldgaard, 1956; Hayden & Seeds, 

1996; Iyer et al., 2014; Wu et al., 2014; Karagyaur et al., 2015). However, much remains 

unknown about the specific mechanisms of uPA’s involvement in modulating neuronal 

responses (Soleman et al., 2013; Chang et al., 2014; Katic et al., 2014; Lino et al., 2014; 

Wu et al., 2014).  Importantly, little has been done to characterize the interactions between 

tPA and uPA in neuronal systems (Bahi & Dreyer, 2008).  

The plasminogen activating system regulates circadian phase resetting in the SCN 

(Mou et al., 2009b).  Using PAI-1 as a tPA inhibitor, our previous study showed that tPA 

proteolytic activity gates glutamate-induced phase shifting by generating plasmin, which 

cleaves proBDNF into mBDNF, which then binds to the TrkB receptor to allow glutamate 

to induce a phase shift (Mou et al., 2009b).  Here, we investigate phase shifting in tPA-/- 

mice and shift our attention to possible involvement of uPA in circadian clock regulation.  
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2.3 Materials and Methods 

2.3.1 Animals 

All experiments used C57BL/6J wildtype (WT) mice from Harlan Labs or Jackson 

Laboratory, or tPA knockout (B6.129S2-Plattm1Mlg/J; tPA-/-) mice. Male and female tPA-/- 

mice were generated at and purchased from the Jackson Laboratory (Bar Harbor, Maine, 

USA).  The tPA-/- mice were fully backcrossed for at least 8 generations into the same 

background C57BL/6J strain as WT, and the C57BL/6J strain is the recommended control 

for the tPA-/- mice.  WT and tPA-/- mice were bred and group-housed in the Kent State 

University animal facility and the University of Tennessee Knoxville animal facility in a 12h-

light/12h-dark cycle (12L:12D) and fed ad libitum.  Male (in vivo and in vitro experiments) 

and female (in vivo experiments) mice aged 6-12 weeks of age at the beginning of each 

experiment were used, and the animals used for each study were age-matched as closely 

as possible.  Experiments were conducted in accordance with Kent State University 

Institutional Animal Care and Use Committee (in vivo work) and the University of 

Tennessee Knoxville Institutional Animal Care and Use Committee (in vitro work). 

2.3.2 In vivo methods 

Entrainment 
Six tPA-/- and six WT mice were utilized to examine the rate of entrainment to a 

shifted LD cycle.  After at least two weeks of baseline activity measurement, the light cycle 

was inverted (shifted by 12 hrs).  Activity patterns were monitored until all animals showed 

stable entrainment to the shifted LD cycle.  Entrainment was defined as the date when the 

activity onset no longer shifted further on the subsequent day, and when the offset of 

activity was no longer showing further progression towards the time of light onset.  The 

number of days until a stable phase of activity onset was reestablished was measured for 

each animal.  Differences between genotypes were assessed using a two-sample t-test. 

Phase shifting response to light pulses 

Animals were individually housed in constant dark for at least 10 days with free 

access to running wheels and activity was monitored using Clocklab software.  tPA-/- and 

WT mice were given a light pulse of either 300, 50, or 5 lux for 15 min at CT16 or 300 lux 
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at CT22, determined by activity onset defined as CT12 (n=3-6).  Light intensities were 

measured at the cage bottom using a lux meter, and each animal was exposed to only 

one light pulse.  Phase shifts were calculated using ClockLab software.  This software 

utilizes a linear regression method proposed by Daan and Pittendrigh (Daan & Pittendrigh, 

1976).  A line was fit to activity onsets 10 days prior to the light pulse.  A second line was 

fit to activity onsets 4-10 days after light pulse.  Days 1-3 after the light pulse were not 

included in the data analysis.  The phase shift was equal to the difference between the 

two regression lines.    

Free running periods 

Six WT and six tPA-/- mice were housed on a LD cycle, then transferred to DD for 

three weeks, LL for three weeks, and DD for three weeks again.  Free running period was 

assessed in the last 10 days of each condition with Chi-squared periodograms.  

2.3.3 In vitro methods 

Brain slice preparation 

Coronal brain slices (500 μm) containing the SCN were prepared from brains 

dissected following rapid decapitation of unanaesthetized adult male (>8 weeks old) WT 

or tPA-/- mice, housed in a 12:12 LD cycle. Slices were maintained as previously described 

(Prosser et al., 2003; Yamada and Prosser, 2014)  in a Hatton-style brain slice dish, 

perfused constantly with oxygenated Earle’s Balanced Salt Solution (EBSS; Sigma-

Aldrich) supplemented with glucose, bicarbonate, and gentamicin (pH 7.4) at 37˚ C. One 

mouse was used for each experiment and replicate experiments were performed on 

different mice.  

Slice treatments 

Drug treatments were bath applied on the first day in vitro following previously 

established protocols (Prosser et al., 2003; Yamada and Prosser, 2014). At ZT16 or ZT23 

(Where ZT0 = lights-on in the donor animal colony, and ZT12 = lights-off) perfusion was 

stopped and the medium in the slice chamber was replaced with EBSS medium 

supplemented with PAI-1 (5 nM; Molecular Innovations Novi, MI, USA), uPA inhibitor (200 

nM; UK122 from Santa Cruz, Dallas, TX, USA), and/or glutamate (1 μM – 1 mM; Sigma-

Aldrich).  For blocking experiments, slices were pretreated for 30 minutes with inhibitor 
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only (PAI-1 or UK122) starting at ZT15.5 (phase delays) or ZT 22.5 (phase advances), 

followed by 10 min treatment with 1 mM Glutamate + inhibitor. After 10 minutes the 

medium was replaced with normal medium and perfusion was reinstated.  Glutamate 

alone treatments were applied for 10 minutes.  PAI-1 or UK122 alone treatments were 

applied for 40 minutes starting at ZT15.5.  

Single unit activity (SUA) recordings 

Extracellular, single-cell recordings of neuronal activity were made on day 2 in 

vitro, using methods previously described (Prosser et al., 1994a; Prosser et al., 1994c; 

Ding et al., 1997; Prosser, 1998a; Soscia & Harrington, 2004; Tischkau et al., 2004).  A 

glass micropipette containing 3M NaCl was lowered into the SCN until the signal from an 

individual neuron was isolated. The cell’s activity was recorded for 5 minutes, after which 

the electrode was moved to find a new cell.  Data acquisition and analysis were done 

using the computer program DataWave (DataWave Technologies, Loveland, CO, USA). 

Neuronal activity was sampled in this way for 10 hours (h). The firing rates of individual 

cells were then grouped into 2 h running means. Time of peak activity was determined as 

the time of symmetrically highest activity. The difference in time-of-peak of untreated slices 

vs. drug-treated slices was calculated to determine phase shifts. A minimum of 3 biological 

replicates were run for each experimental condition. 

2.3.4 Western blots 

Slices containing the SCN were maintained as described above then collected and 

immediately frozen at ZT6, ZT16, and ZT23.  To control the amount of time slices were 

maintained in vitro, the following slicing and collecting paradigm was used: slices collected 

at ZT6 on day 1 in vitro were made at ZT2 (time in vitro = 4 h); slices collected at ZT16 on 

day 1 in vitro were made at ZT8 (time in vitro = 8 h);  slices collected at ZT23 on day 1 in 

vitro were made at ZT3 (time in vitro = 20 h); and slices collected at ZT6 on day 2 in vitro 

were made at ZT10 (time in vitro = 20 h). SCN of two mice were pooled for each sample.  

For mBDNF experiments, WT and tPA-/- SCN slices were either left untreated or incubated 

with 200 nM UK122 for 40 minutes starting at ZT15.5. Slices were stored at -80˚ C until 

protein extraction.  Samples were sonicated and incubated in RIPA lysis buffer 

supplemented with protease inhibitor cocktail and phosphatase inhibitor.  Equal amounts 

of protein, determined by Bradford assay, were resolved by SDS-PAGE and transferred 
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to PVDF membranes.  Membranes were blocked and proteins were detected with primary 

antibodies.  Membranes were then probed with LI-COR IRDye secondary antibodies, 

which were detected using an Odyssey infrared imaging system (IRDye 800CW Donkey 

anti-Rabbit (926-32213; 1:10,000) and IRDye 680RD Donkey anti-Goat (925-68074; 

1:10,000; LI-COR Biosciences, Lincoln, NE, USA).  The following primary antibodies were 

used in this study:  anti-tPA (ASMTPA-GH; 1:1000) and anti-uPA (ASMUPA-GF-HT; 

1:1000) from Molecular Innovations (Novi, MI, USA), anti-BDNF (SC-546; 1:200) and anti-

actin (SC-1616; 1:2000) from Santa Cruz (Dallas, TX, USA).  Band density was 

determined using Image Studio software.  Results were normalized to actin as a load 

control, and then reported as a ratio to ZT6 (uPA and tPA) or to WT (mBDNF).  Positive 

controls:  purified uPA (MUPA) and tPA (MTPA) from Molecular Innovations (Novi, MI, 

USA).  A minimum of 4 biological replicates were run for each experimental condition. 

2.3.5 Casein-plasminogen gel zymography 

Enzyme activities of uPA and tPA in SCN tissue were examined by casein-

plasminogen gel zymography, which provides a preliminary measure of proteolytic activity 

in the slice.  Slices were collected at ZT6, ZT12, ZT16, and ZT23 using the same protocol 

as for western blots.  SCN from 2 mice were pooled for each sample. Slices collected at 

ZT12 on day 1 in vitro were made at ZT6 (time in vitro = 6 h) and slices collected at ZT12 

on day 2 in vitro were made at ZT6 (time in vitro = 30 h). Slices were homogenized and 

incubated in zymography lysis buffer without protease or phosphatase inhibitors.  Equal 

amounts of protein (by Bradford assay) were resolved by SDS-PAGE using a 10% 

polyacrylamide gel supplemented with 2 mg/mL casein and 4.5 μg/mL human 

plasminogen (HGPG; Molecular Innovations).  After electrophoresis, gels were incubated 

in 2.5% Triton-X 100 for 30 minutes twice, incubated in 100mM Tris buffer, pH8.8 for 3.5 

h at 37 ˚C, and stained with Coomassie brilliant blue (Sigma-Aldrich).  Purified tPA and 

uPA (Molecular Innovations) were used as positive controls, and proteolytic activity was 

observed as a clear region of degradation on a dark background. Gels were imaged using 

an Odyssey infrared imaging system, and band density was determined using Image 

Studio software. In some cases, gels were imaged using a camera system and band 

density was determined using ImageJ.  Results were reported as a ratio to ZT23. A 

minimum of 3 biological replicates were run for each experimental condition. 
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2.3.6 Statistical methods 

All statistical analysis was performed using SigmaPlot. Individual animals were the 

experimental units for the behavioral experiments. Tissue from a single animal (or pooled 

when necessary) were the experimental units for the electrophysiology and 

immunoblotting experiments. For comparisons of means in samples with normal 

distributions and homogeneous variances (as indicated by a Levene’s test), an 

independent-sample t test or ANOVA was used for comparisons between two means or 

two or more means, respectively.  In cases where normality test failed, a Kruskal-Wallis 

One Way Analysis of Variance on Ranks was used in place of the ANOVA.  Significance 

was considered to be P < 0.05.   

2.4 Results 

2.4.1 tPA−/− mice exhibit normally entrained behavioral activity rhythms, a slight 
reduction in the rate of entrainment to new LD, normal phase-shifting 
response to light pulses, and normal free-running periods  

Entrainment 

tPA-/- mice appear to show a normal behavioral pattern when entrained to a LD 

cycle, comparable to that observed in WT mice.  When the light cycle was inverted, tPA-/- 

mice took significantly longer (5.67 ± 0.33 days) than WT mice (3.83 ± 0.40 days) to 

achieve a stable onset of activity at the new time of lights off (t10 = 3.51, P = 0.006).  Visual 

inspection of actograms suggests that the tPA-/- mice also show increased activity during 

the light phase during the transition period to the new dark onset (Figure 2.1). 

Light-induced phase shifts 

In this experiment, the light-induced phase response of mice deficient in tPA was 

evaluated in comparison to wildtype mice.  tPA-/- did not exhibit a significantly different 

light-induced phase response in comparison to WT when given a light pulse at either ZT16 

at 300  (tPA-/- = -2.1 ± 0.39 and WT = -2.5 ± 0.59, t6 = 0.57, P = 0.59; ), 50 (tPA-/- = -1.9 ±  
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Figure 2-1. Entrainment in WT vs tPA-/- mice. 

Representative actograms for (A) a C57BL/6J mouse (WT) and (B) a tPA−/− mouse after 
a 12-h shift in the LD cycle, showing an apparent difference in the time to entrain. Gray 
denotes dark period (C) Mean time to entrain to a 12-h shift in the light-dark cycle. P < 
0.05. n = 6 for each group. 
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0.08 and WT = -1.8 ± 0.27, t9 = 0.21, P = 0.84), or 5 lux (tPA-/-  = -1.4 ± 0.19 and WT = -

1.2 ± 0.27, t10 = 0.61, P = 0.55) or ZT22 at 300 lux (tPA-/- = 0.4 ± 0.02 and WT = 0.5 ± 

0.16, t3 = 0.47, P = 0.67) (Figure 2.2).  

Free running periods 

The free running period was assessed for 6 WT and 6 tPA-/- mice in DD, then LL, 

then a second time in DD.  There were no significant differences in free-running period 

between genotypes in the first DD period (WT: 23.78 ± 0.07 h; KO: 23.80 ± 0.07 h, t10 = 

0.17, P = 0.87), LL (WT: 24.81 ± 0.17; KO: 24.85 ± 0.08, t10 = 0.22, P = 0.83), or the 

second DD period (WT: 23.84 ± 0.05; KO: 23.79 ± 0.09, t10 = 0.52, P = 0.61). 

2.4.2 SCN slices from tPA−/− mice exhibit entrained neuronal activity rhythms that 
phase-shift in response to glutamate 

To further investigate circadian entrainment and phase shifting in tPA-/- mice, we 

recorded neuronal activity from SCN brain slices of tPA-/- mice in control (untreated) 

conditions and following glutamate treatment.  In tPA-/- brain slices, SCN neuronal activity 

recorded on day 2 in vitro exhibited a circadian rhythm with a peak during mid-day (Fig 

3a).  The mean (± SEM) time of peak neuronal activity in control tPA-/- brain slices was at 

ZT6.1 ± 0.5 (n = 4) (Figure 2.3a).   This time of peak is consistent with that of WT mice 

(ZT6), indicating that the circadian clock of tPA-/- mice exhibits normally entrained neuronal 

activity rhythms. These results are also consistent with the normal entrainment of 

behavioral rhythms seen in vivo. Glutamate (1 mM) applied to SCN slices in the early 

subjective night (ZT16) for 10 minutes delayed the time of peak of neuronal activity to  

~ZT9 (Fig 3b), with a mean phase-shift of  -3.1 ± 0.7 hr (n = 4).   Glutamate (1 mM) applied 

to the SCN in the late subjective night (ZT23) advanced the time of peak neuronal activity 

to ~ZT4 (Figure 2.3c).  No significant differences were found between WT and tPA-/- at 

either ZT16 or ZT23.  These data are summarized in Figure 2.3d.  Together, they indicate 

that SCN of tPA-/- mice to phase shift in response to glutamate.   

To more closely examine potential differences between WT and tPA-/-, we 

generated dose response curves for glutamate-induced phase shifts in SCN brain slices 

from WT and tPA-/- mice.  For these experiments, WT and tPA-/- brain slices were treated 

at ZT16 with varying concentrations of glutamate for 10 minutes.  Glutamate induced  
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Figure 2-2.  Light-induced phase shifts in WT vs tPA-/- mice 

Mean phase shift of behavioral activity rhythms of WT and tPA−/− mice in response to a 
15-min light pulse at CT 16 (first three bars) or CT 22 (rightmost pair of bars). n = 3–6 per 
group. X-axis denotes light intensity (lux). No significant differences between pairs at all 
intensities. 
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Figure 2-3.  Glutamate-induced phase shifting in vitro in WT vs tPA-/- SCN. 

SCN from tPA−/− mice exhibit entrained neuronal activity rhythms that phase shift in 
response to glutamate. Shown here are the 2-h means ± SEM of the spontaneous 
neuronal activity recorded in single experiments. (A) Control experiment shows peak 
activity at ZT6. (B) Glutamate (1 mm) treatment at ZT16 induces a ~4-h phase delay. (C) 
Glutamate (1 mm) at ZT23 induces a ~2-h phase advance. Glutamate-induced phase 
shifting tPA−/− SCN is comparable to shifting in WT. (D) Shown are mean ± SEM phase 
shifts induced by 1 mm glutamate. Delays are plotted as negative values. In both WT and 
tPA−/− mice glutamate at ZT16 induces an approximately 3-h phase delay, while glutamate 
at ZT23 induces a phase advances. (E) Varying concentrations of glutamate were applied 
to WT or tPA−/− SCN slices at ZT16 to generate dose–response curves. No significant 
differences were found when comparing WT to tPA−/−, n = 3–4. ZT, Zeitgeber time. 
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similar phase shifts in tPA-/- and WT brain slices at all the concentrations used (Figure 

2.3e).  No significant differences were found in the  magnitude of phase shifts in the WT 

and tPA-/- tissue at all concentrations, although there appears to be a trending difference 

at intermediate glutamate concentrations:  1 µM (tPA-/- = -0.33 ± 0.17 and WT = 0.33 ± 

0.44, t4 = 1.41, P = 0.23), 10 µM (tPA-/- = -1.83 ± 0.73  and WT = -2.42 ± 0.3, t4 = -0.74, P 

= 0.5), 100 µM (tPA-/- = -1.00 ± 0.58  and WT = -2.08 ± 0.17, t4 = -1.86, P = 0.14), or 1 mM 

(tPA-/-  = -3.31 ± 0.47 and WT = -3.08 ± 0.51, t5 = 0.33, P = 0.76).  Collectively, these 

results indicate that tPA-/- circadian clock phase shifts in response to in vitro glutamate in 

a manner that does not differ substantially from WT. Again, these results are consistent 

with our in vivo data showing normal photic phase shifting in tPA-/- mice.  While on the 

surface these data seem at odds with our previous work showing that inhibiting tPA 

prevents glutamate induced phase shifting, alternatively they suggest a potential 

redundant or compensatory mechanism allowing phase shifting in the circadian clock of 

tPA-/- mice (Mou et al., 2009b).  Given that PAI-1 also inhibits the enzymatic activity of 

uPA, uPA was a logical alternative mechanism acting in the absence of tPA. 

2.4.3 tPA and uPA are both expressed in the SCN 

We have previously demonstrated that tPA is expressed in the SCN (Mou et al., 

2009b).  Here we investigated tPA protein expression in SCN brain slices from WT and 

tPA-/- mice across circadian time.  Slices were collected at ZT6, ZT16, and ZT23 on the 

first day in vitro and at ZT6 on the second day in vitro, then subjected to western blotting.  

As shown in Fig 4, in WT SCN we find that tPA expression is higher at night (ZT16 and 

ZT23) than during the day (ZT6), and this rhythm persists into the second day in vitro (one-

way ANOVA: n = 5, F6 = 5.56, P = 0.008).  As expected, no tPA protein was present in 

tPA-/- SCN tissue.  

Next, we used western blotting to assess uPA expression in the SCN of WT and 

tPA-/- mice across the same time-points used above.  Anti-uPA antibody identified an 

approximately 55 kDa band in SCN samples from WT and tPA-/- brain slices, supporting 

uPA protein expression in SCN.  In both WT and tPA-/- SCN uPA expression was constant, 

with no significant differences across any groups (one way ANOVA:  n = 7, H7 = 3.99, P = 

0.78), indicating no circadian rhythm in uPA protein expression (Figure 2.4).  In addition,  
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Figure 2-4.  tPA and uPA expression in SCN of WT and tPA-/- mice.  

tPA expression is circadian in vitro, and uPA expression is constant. Proteins extracted 
from the SCN were subjected to western blotting. (A) Representative images showing tPA 
band at ~70 kDa, and actin load control (~42 kDa). tPA bands are not present in the 
tPA−/−. (B) Histogram showing tPA relative to actin, normalized to ZT6 in WT SCN. One-
way ANOVA P = 0.008, n = 5. (C) Representative images showing uPA band at ~55 kDa, 
and actin load control (~42 kDa). (D) Histogram showing uPA relative to actin, normalized 
to ZT6 in WT and tPA−/− SCN. n = 5–7, no significant differences. 
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there appears to be no compensatory changes in uPA protein expression in SCN tissue 

from tPA-/- mice.  

2.4.4 PAI-1 blocks phase delays in tPA−/− mice 

tPA and uPA have overlapping functions as plasminogen activators, and while the 

kinetics of uPA release in the synapse are different than those of tPA, examples of 

functional redundancy between these proteases have been seen in previous studies 

(Carmeliet et al., 1994; Leonardsson et al., 1995; Bugge et al., 1996).  Therefore, we 

investigated the possibility that uPA can compensate for the lack of tPA to enable phase 

shifting in the tPA-/- mice.  First, we used PAI-1 to inhibit uPA in SCN brain slices from tPA-

/- mice.  PAI-1 inhibits both tPA and uPA and blocks phase shifts in WT SCN brain slices 

with an ED50 of 0.6 nM, which is comparable to its concentration in serum (Mou et al., 

2009b).  Pretreating SCN slices from tPA-/- mice for 30 minutes prior to glutamate 

treatment with 5 nM PAI-1 blocked glutamate-induced phase delays (mean phase-shift = 

-0.8 ± 0.4 h, n = 3; Glutamate vs Glutamate + PAI-1: t5 = -3.38, P = 0.02) (Figure 2.5).  

When applied alone for 40 minutes, 5 nM PAI-1 had no effect on the phase of the neuronal 

activity rhythm.  Thus, inhibiting uPA in tPA-/- brain slices prevents glutamate-induced 

phase delays in neuronal activity rhythms.  Since PAI-1 has no known high-affinity targets 

other than tPA and uPA, this supports the hypothesis that uPA may be compensating for 

the loss of tPA in the tPA-/- mice.   

2.4.5 Selective inhibition of uPA prevents glutamate-induced phase resetting in 
the SCN of tPA−/− but not WT mice 

To directly address the involvement of uPA in circadian clock phase shifting, we 

utilized the uPA specific small molecule inhibitor UK122, which is selective for uPA at low 

concentrations (uPA ED50 = 200nM) (Zhu et al., 2007).  SCN slices from WT and tPA-/- 

mice were treated with 200 nM UK122 for 30 minutes prior to glutamate application at 

ZT16 and ZT23, and then recordings of neuronal activity rhythms were conducted during 

the next day. Treating SCN slices from WT mice with 1 mM glutamate + 200 nM UK122 

at ZT16 results in a phase delay of 2.8 hr, with a mean time of peak occurring at ZT8.8 ± 

0.6 (n = 3, Figure 2.6a).  200 nM UK122 applied alone for 40 minutes at ZT16 had no 

effect (Figure 2.6). These results show that in WT SCN tissue, where tPA is present,  
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Figure 2-5.  PAI-1 inhibits glutamate-induced phase delays in tPA-/- SCN. 

5 nm PAI-1 prevents glutamate-induced phase delays in tPA−/− mice. Shown are mean ± 
SEM phase-shifts induced by treatments indicated applied to SCN slices of tPA−/− mice. 
Phase delays plotted as negative values. *P < 0.05, n = 3. 
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Figure 2-6.  Selective inhibition of uPA prevents glutamate-induced phase resetting 
in the SCN of tPA−/− but not WT mice. 

Selective inhibition of uPA prevents glutamate-induced phase shifts in tPA−/− but not WT 
mice. Shown are representative trace of SUA recordings from a single SCNs treated with 
1 mm glutamate and 200 nm uPA inhibitor (UK122): (A) WT treated at ZT16 shows an 
~2.5 h phase delay; (B) tPA−/− treated at ZT16 shows peak activity at ~ZT6.57; (C) Shown 
are mean ± SEM phase shift induced by treatments indicated at ZT16. *P = 0.02 n = 3; 
(D) WT treated at ZT23 shows an ~3 h phase advance; (E) tPA−/− treated at ZT23 shows 
peak activity at ~ZT6.75; and (F) Mean ± SEM phase shift induced by treatments indicated 
at ZT23. *P = 0.02, n = 3. 
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inhibiting uPA is not sufficient to prevent glutamate-induced phase delays of the SCN 

circadian clock (WT: Glutamate vs Glutamate + UK122 at ZT16: t4 = -0.318, P = 0.77).  

However, when SCN slices from tPA-/- mice were treated at ZT16 with glutamate + UK122, 

the uPA inhibitor prevented glutamate-induced phase delays (mean phase shift = -0.4 ± 

0.3 h, n = 3, Figure 2.6b) (tPA-/-: Glutamate vs Glutamate + UK122 at ZT16: t5 = -3.35, P 

= 0.02).  Again, application of UK122 alone for 40 minutes at ZT16 had no effect on the 

phase of SCN neuronal activity rhythm (Figure 2.6).  At ZT23, treating WT slices with 1 

mM glutamate + 200 nM UK122 resulted in a phase advance of  3.34 ± 0.35 h, while the 

same treatment in tPA-/- SCN slices resulted in no phase shift, with a mean time of peak 

occurring at ZT6  ± 0.58 h (Figure 2.6f). Thus, inhibiting uPA prevents glutamate-induced 

phase advances in tPA-/- SCN but not WT SCN (WT: Glutamate vs Glutamate + UK122 at 

ZT23: t4  -1.80, P = 0.15; tPA-/-: Glutamate vs Glutamate + UK122 at ZT23: t4 = 3.51, P = 

0.03.) Collectively, this suggests that uPA contributes to circadian clock phase shifting in 

tPA-/- mice, further confirming uPA as a mechanism of redundancy within the SCN.   

2.4.6 tPA and uPA enzymatic activity in the SCN 

In addition to assessing their overall expression, it is important to determine the 

proteolytic activity of these proteases.  We used casein-plasminogen gel zymography to 

assess tPA and uPA proteolytic activity in the SCN.  WT and tPA-/- SCN slices were 

collected at ZT6, ZT12, ZT16, and ZT23 on the first day in vitro, and at ZT6 and ZT12 on 

the second day in vitro. Equal amounts of total protein extracted from the SCN in the 

absence of protease inhibitors were subjected to casein-plasminogen gel zymography. 

Two regions of degradation were present in WT SCN: one band at ~70 kDa corresponding 

with the tPA positive control and one band at ~33 kDA corresponding with the uPA positive 

control.  These results confirmed the presence of proteolytically active uPA and tPA in the 

SCN of WT mice.  

We found no significant differences in tPA proteolytic activity in WT SCN across 

all time points (one way ANOVA: n = 3 to 15, H5 = 4.63, P = 0.46; Figure 2.7a-c).  As 

expected, no tPA proteolytic activity was present in the tPA-/- SCN tissue.  uPA proteolytic 

activity in both WT and tPA-/- SCN increased over the first ~24 h that slices were 

maintained in vitro, and then appeared to stabilize at this higher level, but it did not exhibit 

a circadian rhythm (one-way ANOVA: n= 3 to 15, H5 = 40.91, P < 0.001; Fig 7d).  These  
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Figure 2-7.  tPA and uPA activity in WT and tPA-/- SCN.  

tPA proteolytic activity is not circadian in the mouse SCN in vitro. (A) Representative 
casein-plasminogen gel zymograms of protein extracts from SCN of WT and tPA−/− mice 
collected at ZT6, ZT16, ZT23 and a second day in vitro ZT6 and (B) an extended time 
course of protein extracts from WT SCN collected at ZT12, ZT23, and second day in vitro 
ZT6 and ZT12 (all samples are presented in chronological order). tPA (~70 kDa) and uPA 
(~30 kDa) proteolytic activity appears as clear bands of degradation on a dark background 
that are distinguishable based on molecular weight. (C) Shown is tPA proteolytic activity 
in WT SCN normalized to ZT23, no significant differences in One-way ANOVA, n = 3–15. 
tPA proteolytic activity is not present in the tPA−/− SCN. (D) Shown is mean ± SEM relative 
uPA proteolytic activity in WT SCN normalized to ZT23, One-way ANOVA P < 0.001, n = 
3–15. Increase is correlated with increasing time in vitro, not ZT. (E) uPA proteolytic 
activity is not significantly different in tPA−/− mice when compared to WT normalized to 
ZT6. Shown are means ± SEM relative uPA activity from WT and tPA−/− SCN collected 
at the indicated time points. No significant differences when comparing WT and tPA−/− at 
each ZT, n = 7. 
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results suggest that neither tPA nor uPA total proteolytic activity in the SCN are under 

circadian control in vitro.   

When comparing tissue from tPA-/- and WT mice there were no significant 

differences in uPA activity at any time-point (Figure 2.7e).  This indicates that in tPA-/- SCN 

tissue uPA’s involvement in glutamate-induced phase shifting does not involve a 

compensatory change in proteolytic activity. Rather, the data support the hypothesis that 

uPA and tPA exhibit redundancy in function.  

2.4.7 2.4.g BDNF protein expression 

To assess the involvement of BDNF in our experiments, SCN brain slices from 

both WT and tPA-/- mice received no treatment or were treated with 200 nM UK122 at 

ZT16 and relative amounts of mBDNF were assessed via western blotting. We found that 

mBDNF levels relative to actin were significantly lower in tPA-/- SCN tissue vs. WT SCN 

tissue (t14 = 3.38, P = 0.004). Treatment with UK122 did not induce significant changes in 

either WT or tPA-/- tissue (Figure 2.8).   

2.5 Discussion 
Previous research from our lab supports tPA regulation of circadian clock phase 

resetting (Mou et al., 2009b).  PAI-1 blocks glutamate-induced phase shifts of the SCN 

circadian clock in tissue from WT mice but not from mice lacking the PAI-1 stabilizing 

protein, vitronectin (Mou et al., 2009b).  Adding plasmin or mBDNF, but not plasminogen 

or proBDNF, recovers glutamate-induced phase shifting. Furthermore, mBDNF protein 

expression levels are higher in the SCN at night than during the daytime (Liang et al., 

1998).  Together, these data support a model where tPA levels increase at night, allowing 

activation of plasminogen into plasmin to cleave proBDNF into mBDNF. mBDNF activation 

of TrkB receptors concurrent with glutamate activation of NMDAR shifts SCN circadian 

clock phase (Liang et al., 1998; Liang et al., 2000; Michel et al., 2006; Mou et al., 2009b).  

Here, we expanded our investigation of the plasminogen activating system in the 

SCN by assessing circadian function in tPA-/- mice.  Somewhat surprisingly, these mice 

exhibit normal entrainment to 12:12 LD cycles. However, when the light-dark cycle is 

shifted by 12 hours we observe a significant increase in the amount of time needed to 

entrain to the new cycle. This could indicate a deficiency in the ability of these mice to shift  
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Figure 2-8.  BDNF protein expression. 

mBDNF levels are lower in tPA−/− SCN tissue, but are not affected by UK122 (200 nm). 
(A) Shown are representative blots of mBDNF (~17 kDa) and actin load control (~42 kDa) 
from WT and tPA−/− SCN which were treated as indicated. (B) Histogram showing mean 
± SEM mBDNF relative to actin, normalized to the first WT sample on each blot. A 
significant difference was found when comparing untreated WT to tPA−/−. One-way 
ANOVA: n = 4–10; P < 0.05. 
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their clock, which would be consistent with the trend towards smaller glutamate-induced 

phase shifts observed in vitro.  An alternative possibility is that the slower reentrainment 

is related to a decrease in photic masking as increased locomotor activity may reduce the 

phase shifting effects of light.  It should be noted that because of the potential for photic 

masking, we cannot state for certain when an animal is entrained – we can say that the 

animal appears to be entrained based on the behavioral output.  However, the rate of 

apparent reentrainment seen here in WT mice are not inconsistent with other experiments 

using large changes in the LD cycle.  Hannibal et al (2008) reported reentrainment to an 

8-hour shift in two days, and Sellix et al (2012) showed 4 days to reentrain to a 6 hour 

shift.  Time to reentrain may depend on the environment in which the animals were raised, 

light intensity and/or specturm, and other factors that differ between labs.  

Additional experiments demonstrated that the tPA-/- mice exhibit no differences 

from WT mice with respect to their phase shifting responses to light pulses presented at 

CT16 and CT-22, over a wide range of intensities. Moreover, the tPA-/- mice do not differ 

from WT mice in their free running periods in DD or LL. Thus, our initial behavioral 

assessments of these mice indicate a deficiency when exposed to a dramatic inversion of 

LD cycles, but no overt differences from WT in photic responsiveness to light pulses.   

We also find no severe deficiencies in our in vitro assessment of SCN neuronal 

activity in tPA-/- brain slices.  The circadian rhythms in SCN spontaneous neuronal activity 

are not different from WT SCN, indicating the mice entrain to the 12:12 LD cycle. These 

rhythms phase shift in response to glutamate, undergoing phase delays in time-of-peak 

neuronal activity when glutamate is applied at ZT16 and phase advances when glutamate 

is applied at ZT23.  Moreover, glutamate-induced phase shifting in tPA-/- brain slices does 

not differ significantly from WT brain slices with respect to magnitude of shift or in its dose 

dependency.  Given PAI-1’s clear inhibition of glutamate-induced phase shifts in vitro, 

these results suggest differences between the effects of pharmacological inhibition and 

genetic reduction of tPA (Mou et al., 2009b).  Since PAI-1 inhibits both tPA and uPA 

activity, we shifted our attention to uPA.     

uPA is an ideal candidate for functional redundancy/compensation for tPA in the 

SCN because it also cleaves plasminogen to form plasmin. Consistent with this 

hypothesis, we found that uPA is expressed in the SCN.  We assessed potential circadian 

rhythms in tPA and uPA expression, and found that tPA protein levels are higher in the 
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night than during the day in the SCN.   Conversely, there is no apparent circadian rhythm 

in uPA protein expression in WT or tPA-/- SCN tissue. Additionally, uPA protein levels are 

not different between WT and tPA-/- SCN tissue, suggesting that there is no compensatory 

effect on uPA protein expression in the developmental absence of tPA.  These findings 

support the idea that uPA may play a role in phase shifting, but at the same time the 

unique expression patterns of tPA and uPA point to potential differences in their regulatory 

and functional mechanisms.  Importantly, our assessments of tPA and uPA expression do 

not account for potential differences in their release or cell-type specific localization.  

Experiments utilizing in cell culture methods and immunohistochemistry will help clarify 

potential differences in these parameters.   

In assessing uPA function in the SCN, we find that PAI-1 inhibits glutamate-

induced phase delays in tPA-/- mice brain slices.  Moreover, the uPA-specific inhibitor 

UK122 does not prevent glutamate-induced phase delays or advances of neuronal activity 

rhythms in SCN from WT mice, but it does inhibit these phase shifts in SCN from tPA-/- 

mice.  These results are important for two reasons. First, they strengthen the conclusion 

that uPA can support glutamate-induced phase shifts in the absence of tPA. Second, they 

indicate a dynamic interplay between tPA and uPA, suggesting a system where neither 

protease is necessary, but each sufficient to enable phase shifting.  Importantly, it appears 

that at least one plasminogen activator is required for phase shifting to occur.  Experiments 

in uPA knockout mice will be important to further investigate the roles of these proteases 

in circadian clock phase shifting. 

We also investigated tPA and uPA enzymatic activity in the SCN.  tPA proteolytic 

activity does not exhibit a circadian rhythm despite finding higher protein levels at night.  

uPA proteolytic activity also does not show a circadian rhythm in the SCN. However, uPA 

proteolytic activity increases in parallel with the duration of time the brain slices are 

maintained in vitro, despite finding constant protein levels.  uPA is secreted as a 55 kDa 

high molecular weight (HMW) pro-enzyme that is cleaved into a 2-chain HMW enzyme 

that is most active when bound to the uPA receptor (Husain, 1991; Ronne et al., 1991).  

The 2-chain HMW uPA can be further cleaved into 2 individual chains: a ~33 kDa active 

low molecular weight (LMW) uPA and a ~22 kDa non-active amino terminal fragment 

(Lijnen et al., 1987a; Novokhatny et al., 1992).  Because of the different extraction 

procedures, our western blotting results assessed the uncleaved ~55 kDa HMW uPA, 



43 

 

while our zymography results address the ~33 kDa active LMW uPA.  Thus, our data could 

support distinct regulation of the two forms of uPA in the SCN, a possibility that requires 

further exploration.  There are reports of uPA involvement in neuronal repair processes, 

so it is possible that the increased uPA proteolytic activity we observe across time in vitro 

is in response to the tissue injury (Lahtinen et al., 2006; Lahtinen et al., 2010; Lukasiuk et 

al., 2011; Cho et al., 2012; Karagyaur et al., 2015).  Collectively, these results suggest 

that uPA and tPA proteolytic activity are regulated by distinct mechanisms in the SCN.  It 

is also noteworthy that these proteins are regulated through multiple protein interactions 

in the intact system, and these interactions would be disrupted during the tissue extraction 

procedures used here (Collen & Lijnen, 2005; Melchor & Strickland, 2005).  Therefore, it 

is possible that the activity patterns we see in vitro differ from in vivo. Studies utilizing in 

situ zymography and cell culture procedures will enhance characterization of the 

proteases in the SCN.  

Previous studies investigating tPA and uPA redundancy indicate that uPA can 

compensate for the absence of tPA through a mechanism that is not related to increases 

in protein expression (Siconolfi & Seeds, 2001; Bukhari et al., 2011).  Studies assessing 

tPA and uPA as mediators of psychostimulant-induced synaptic plasticity and remodeling 

demonstrated divergent roles for these plasminogen activators (Bahi & Dreyer, 2008; Al 

Maamari et al., 2014).  In the SCN, we find no statistically significant differences in either 

uPA expression or uPA proteolytic activity between WT and tPA-/- tissue.  While noting the 

same caveats with respect to in situ regulation, these results suggest that uPA’s 

involvement in SCN clock phase shifting in tPA-/- mice is not related to compensatory 

differences in either the expression or activity of uPA. However, to verify that there is no 

cross-compensation between these two proteases, it will be important to assess tPA 

expression and activity in the SCN of uPA-/- mice. 

Both tPA and uPA generate plasmin, which can cleave proBDNF into mBDNF.  

BDNF regulates NMDA currents in the SCN (Kim et al., 2006; Michel et al., 2006), and 

therefore mBDNF generation downstream of the plasminogen activators may contribute 

to SCN clock phase shifting.  Distinctions between the two proteases in the degree to 

which they regulate mBDNF production are unclear: there are numerous studies linking 

tPA directly to BDNF maturation, but many fewer demonstrating uPA involvement (Pang 

& Lu, 2004; Pang et al., 2004; Gray & Ellis, 2008; Cunha et al., 2010; Rodier et al., 2014). 
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Our results add to this literature by demonstrating, first, that mBDNF levels are decreased 

by about 50% in tPA-/- SCN tissue relative to WT levels. This is consistent with the effects 

seen in other brain regions (e.g., Pang et al., 2004). This suggests that tPA participates in 

regulating BDNF maturation in the SCN, but that other proteases are able to function in 

this manner as well.  Secondly, the data suggest that uPA does not contribute to BDNF 

cleavage in the SCN.  Thus, the mechanism(s) through which uPA modulates glutamate-

induced phase resetting in the SCN appear to be distinct from those through which tPA 

acts.   

As an additional layer of complexity, BDNF stimulates tPA expression (Fiumelli et 

al 1999), enhances uPA release from microglia (Nakajima 1998, 2005), and increases 

uPA production (Sun et al 2006). Whether BDNF modulates tPA and/or uPA expression 

in the SCN is an interesting question that remains to be determined.  

Although our data show similarities between the actions of tPA and uPA, this does 

not abrogate them each having actions in the SCN not shared by the other, a conclusion 

supported by our mBDNF data; while their proteolytic activities overlap, the two proteins 

also display considerable differences.  tPA’s interactions with several membrane-bound 

receptors, including NMDAR, annexin II, LRP-1, and epidermal growth factor receptor 

(EGFR), can influence neuronal responses (Melchor & Strickland, 2005). Conversely, uPA 

binding to uPA receptor (uPAR) regulates uPA dependent proteolysis, cell adhesion, and 

signaling (Smith and Marshall 2010).  Therefore, tPA’s various receptor interactions and 

uPA’s uPAR-dependent processes represent unexplored avenues that could influence 

SCN circadian clock phase regulation.  Additionally, shared functions of tPA and uPA in 

the SCN could include processes down-stream of plasmin activation that don’t involve 

BDNF.  Plasmin cleaves the extracellular matrix (ECM) to allow cell structure 

reorganization, which could be relevant to clock function as several studies have 

demonstrated circadian rhythms in micro-cellular rearrangements in the SCN (Soleman et 

al., 2013).  Plasmin regulation of matrix metalloproteinase (MMP) activity could also 

influence circadian clock function (Kaur et al., 2004).  MMP’s could provide an additional 

mechanism for ECM rearrangement, may be able to feed back into mBDNF generation, 

and can influence neuronal responses via modulation of NMDAR activity.   

Taken together, these data support a more complex scenario of proteolytic 

involvement in SCN circadian clock phase regulation than originally described. In addition 
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to tPA activating plasmin to generate mBDNF, we now have evidence that uPA can 

support glutamate induced phase resetting, and that uPA acts through distinct 

mechanism(s). Given the paucity of information on uPA’s actions in regulating synaptic 

plasticity together with the known differences in their signaling mechanisms, these results 

create a wonderful opportunity to explore the shared vs. distinct actions of these proteases 

in a well-defined model system of synaptic plasticity – the SCN circadian clock. Moreover, 

further clarifying how these plasminogen activators function in the SCN to modulate photic 

signaling will expand our understanding of circadian clock phase regulation.  

In conclusion, our data reinforce the concept that extracellular proteases are 

involved in SCN circadian clock phase regulation.  By demonstrating a critical role for uPA 

and tPA, these results add substantially to those from our previous study with respect to 

our knowledge of plasminogen activators modulating plasticity within the SCN.  The 

possibility that these two proteases may serve functionally redundant roles in the SCN, 

and that neither is itself necessary for normal circadian function, would not be 

unprecedented. Regarding the SCN circadian clock, functional redundancy appears to be 

the norm and these data reinforce this concept (Hastings 2014).  Our in vivo studies on 

tPA-/- mice tell a similar story, with the genetic deletion of tPA causing minimal disruption 

in behavioral entrainment or light-induced phase shifting, although these mice take longer 

to entrain to a 12 h shift in the LD cycle. A full understanding of plasminogen activator 

functions in SCN clock regulation, including potential interactions with uPAR and/or LRP-

1 receptors, and extracellular matrix proteins is clearly warranted. Continued exploration 

of extracellular protease activities in the SCN should provide greater insight into the 

cellular processes modulating circadian clock functioning. 
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3 LOW DENSITY LIPPOPROTEIN RECEPTOR-RELATED 
PROTEIN-1 REGULATES GLUTAMATE-INDUCED PHASE 
SHIFTING IN THE MOUSE SUPRACHIASMATIC NUCLEUS  
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3.1 Abstract 
Glutamate induces phase shifts of the mammalian suprachiasmatic nucleus (SCN) 

circadian pacemaker by activating NMDA receptors (NMDARs).  These phase shifts are 

restricted to the subjective night by rhythmic activities of m(ature) brain derived 

neurotrophic factor (BDNF), TrkB receptors, NMDARs and the plasminogen activators 

(PAs), t(issue-type)PA and u(rokinase)PA.  These phase shift gating proteins are all 

known to interact with low-density lipoprotein receptor-related protein 1 (LRP-1), and here 

we investigate whether LRP-1 is also a regulator of SCN clock function.  We investigated 

LRP-1 expression in the SCN via western blotting, and find that LRP-1 is expressed in the 

SCN and that it exhibits both diurnal and time-in-dish dependent variations in expression 

patterns.  Using electrophysiological recordings of SCN neuronal activity rhythms, we find 

that inhibiting LRP-1 with receptor associated protein (RAP) or an LRP-1 specific antibody 

in SCN brain slices prepared from wild-type (WT; C57BL/6) mice prevents glutamate-

induced phase delays and advances in neuronal activity rhythms at ZT16 and ZT23, 

respectively.  RAP also prevents glutamate-induced phase delays in tPA knockout mouse 

(tPA−/−; B6.129S2-Plattm1Mlg/J) SCN slices.  Treating WT SCN slices with combinations 

of glutamate and RAP does not alter BDNF maturation or TrkB receptor phosphorylation 

on Y680/681.  Treating SCN brain slices with RAP reduces NMDAR NR2B subunit 

phosphorylation on S1480, but does not change phosphorylation on Y1472.  Collectively, 

these results indicate that LRP-1 participates in SCN circadian clock phase regulation, 

and that it acts through mechanism(s) that do not require plasminogen activator activity, 

but may involve changes in NMDAR localization.   

3.2 Introduction 
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus serves as 

the primary circadian pacemaker (Moore & Eichler, 1972; Stephan & Zucker, 1972).  It 

orchestrates daily rhythms in behavior in physiology by generating endogenous 24 h 

cycles, synchronizing them to the environment, and distributing the timing cues to the 

body.  The primary synchronizing signal in the environment is light, which modulates SCN 

clock phase through a process known as photic entrainment.  Photic entrainment relies 

on light stimulating melanopsin-expressing retinal ganglion cells to release glutamate onto 
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SCN neurons (Liou et al., 1986; Ding et al., 1994; Porterfield et al., 2007; Porterfield & 

Mintz, 2009).  Glutamate binds to and activates NMDA receptors (NMDAR), inducing a 

calcium influx that stimulates downstream signaling events, ultimately leading to shifts in 

the timing of the circadian clock (Ding et al., 1997; Gillette & Tischkau, 1999; Butcher et 

al., 2003; Pizzio et al., 2003; Butcher et al., 2004; Marpegan et al., 2004; Butcher et al., 

2005).  The downstream signaling events mediating these phase shifts involve activation 

of CaMKII by autophosphorylation of Thr286/287 (Golombek & Ralph, 1995; Fukushima 

et al., 1997; Yokota et al., 2001), which in turn activates neuronal nitric oxide synthase 

(nNOS) to produce nitric oxide (NO) (Ding et al., 1994; Ding et al., 1997; Melo et al., 1997; 

Agostino et al., 2004). Through distinct intracellular pathways (Weber et al., 1995; Ding et 

al., 1998; Prosser, 1998b; Tischkau et al., 2003), these initial signaling events lead to 

changes in the transcription of core clock genes that can alter the phase of the clock (Ginty 

et al., 1993; Ding et al., 1997; Gau et al., 2002) in a time-dependent manner:  glutamate 

induces phase delays in the early night, phase advances in the late night, and has no 

effect on clock phase in the daytime.  The mechanisms regulating the differential 

responsiveness have not been fully elucidated (Iyer et al., 2014).   

LRP-1 is a large membrane bound endocytic and signaling receptor that modulates 

neuronal activity throughout the central nervous system (CNS) (Lillis et al., 2008), and 

whose function overlaps with processes known to gate phase shifting of the SCN circadian 

clock. LRP-1 is a member of the low-density lipoprotein (LDL) receptor family that binds 

over 50 different ligands extracellularly, and upon ligand binding it mediates rapid 

endocytosis and/or activation of signal transduction cascades (Lillis et al., 2008).  LRP-1 

is composed of a 515 kDa extracellular α subunit that is non-covalently associated with 

an 85 kDa transmembrane β subunit (Kerrisk et al., 2014; Ramanathan et al., 2015).  The 

αLRP-1 subunit contains cysteine-rich complement-type ligand binding repeats, and EGF 

repeats and β-propeller domains that function in the release of ligands (Lillis et al., 2005).  

The βLRP-1 subunit contains a single transmembrane domain and cytoplasmic domain, 

which has two NPxY motifs that can be phosphorylated to contribute to endocytosis and 

signal transduction (Lillis et al., 2005).  LRP-1 is widely expressed throughout the CNS, 

and while deletion of the LRP-1 gene is embryonically lethal, neuronal specific deletion of 

LRP-1 in mice results in severe behavioral and motor abnormalities, including 

hyperactivity, tremor, and dystonia (May et al., 2004; Liu et al., 2010).  LRP-1 can be 
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expressed in the post-synapse, where it regulates synaptic structural and functional 

integrity, partly through regulating glutamate receptors (May et al., 2004; Liu et al., 2010).   

One prominent group of LRP-1 ligands, the plasminogen activators (tissue type 

plasminogen activator; tPA and urokinase type plasminogen activator; uPA), act to gate 

glutamate-induced phase shifts in the SCN (Mou et al., 2009b; Cooper et al., 2017; 

Cooper, Submitted). tPA is a secreted serine protease that is widely expressed in the brain 

and has well-characterized roles as a neuromodulator (Melchor & Strickland, 2005; 

Benarroch, 2007; Medcalf, 2017).  uPA is also expressed in the CNS, and while less is 

known about its neuromodulatory roles, evidence supports its involvement in neuronal 

repair processes (Merino et al., 2017b).  tPA expression is rhythmic in the SCN, with higher 

levels at night, and inhibiting tPA and uPA with plasminogen activator inhibitor-1 (PAI-1) 

prevents in vitro glutamate-induced phase shifts of the mouse SCN circadian clock (Mou 

et al., 2009b; Cooper et al., 2017).  tPA facilitates glutamate-induced phase shifts by acting 

upstream of BDNF, another well-established regulator of glutamate-induced phase shifts 

(Liang et al., 2000; Pang & Lu, 2004; Pang et al., 2004; Michel et al., 2006; Mou et al., 

2009b).  tPA cleaves plasminogen into plasmin, which cleaves proBDNF into mBDNF 

(Pang et al., 2004; Mou et al., 2009b).  BDNF levels are also rhythmic in the SCN, such 

that high night levels of mBDNF bind to TrkB receptors to enable glutamate-induced phase 

shifts (Allen et al., 2005; Mou et al., 2009b).  Surprisingly, tPA knockout mice exhibit no 

severe deficits in phase-shifting in vivo and in vitro, and uPA appears to compensate, 

allowing phase shifting in tPA deficient animals (Cooper et al., 2017).  However, inhibiting 

uPA does not influence BDDF maturation in SCN slices, suggesting that this functional 

compensation may be achieved through BDNF-independent mechanisms (Cooper et al., 

2017).  

The plasminogen activators also have non-proteolytic functions in the brain, and 

one major interaction mediating tPA effects is LRP-1 binding.  Upon binding, tPA can 

activate LRP-1 dependent signaling events (Yepes et al., 2003; Zhang et al., 2009b; 

Mantuano et al., 2013) and LRP-1 endocytic activity can modify tPA proteolytic activity 

(Casse et al., 2012b). In rat Schwann cell primary cultures, LRP-1 induces c-Jun 

phosphorylation downstream of tPA binding, which ultimately allows it to function as an 

injury detection receptor (Flutsch et al., 2016).  tPA binding to LRP-1 activates ERK and 

AKT pathways to promote neurite outgrowth, and tPA induces ERK activation through an 
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LRP-1 dependent pathway to mediate axonal outgrowth (Fuentealba et al., 2009; Shi et 

al., 2009; Qian et al., 2016).  tPA enhances long term potentiation (LTP) in hippocampal 

slices by binding LRP-1 and activating cAMP/PKA pathways (Zhuo et al., 2000).  In other 

cases, tPA-dependent effects may involve interactions with other receptors that depend 

on LRP-1 activity. For example, tPA potentiates NMDAR calcium influx in an LRP-1 

dependent manner (Samson et al., 2008). LRP-1 is also required for tPA-mediated 

microglial activation in the CNS following middle cerebral artery occlusion (MCAO) (Zhang 

et al., 2009a; Zhang et al., 2009b).  In addition to these signaling responses, LRP-1 

contributes to tPA recycling in the nervous system.  Glutamate induces tPA recycling by 

astrocytes via LRP-1 dependent endocytosis and subsequent release of tPA (Casse et 

al., 2012b).  LRP-1 may also act as a co-receptor increasing tPA activity (Su et al., 2017). 

Thus, there is a complex association between tPA and LRP-1 mediated functions in the 

nervous system.  

A second link between LRP-1 and processes gating circadian clock phase shifting 

involves LRP-1 interactions with NMDA receptors.  NMDARs are the primary receptors 

responsible for photic/glutamate phase shift responses, and there is evidence suggesting 

rhythms in the NR2B subunit mRNA and protein expression and phosphorylation patterns 

(Bendova et al., 2012).  LRP-1 interacts with NMDAR via PSD95 (May et al., 2004).  

Inhibiting LRP-1 can decrease NMDAR calcium influx (Bacskai et al., 2000), in part 

through LRP-1 modulation of NMDAR trafficking and degradation, thus controlling 

NMDAR surface localization (Maier et al., 2013).  This pathway is further influenced by 

interactions with Trk receptors:  LRP-1, NMDAR, and Trk receptors act in complex to 

mediate tPA dependent calcium influxes through the NMDAR (Martin et al., 2008), and 

LRP-1 mediates transactivation of Trk receptors by a Src family kinase (SFK) dependent 

pathway (Shi et al., 2009).  LRP-1 may also indirectly influence NMDAR-dependent 

signaling by regulating the activity of tPA.   

Finally, LRP-1 signaling mechanisms also intersect with intracellular signaling 

events associated with glutamate-induced phase shifts.  CaMKII binds LRP-1’s 

intracellular domain on Y4506, found on an intracellular NPxY motif that is associated with 

LRP-1 endocytosis and signaling events, preferentially associating with the 

unphosphorylated form of LRP-1 (Guttman et al., 2009).  NMDAR activation of pCREB in 

primary cortical neuron cell cultures is reduced in LRP-1 deficient neurons (Nakajima et 
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al., 2013).  Finally, as mentioned earlier, LRP-1 rapidly upregulates and activates ERK1/2 

(Campana et al., 2006; Mantuano et al., 2008).  

Since LRP-1 influences several key players in the SCN circadian clock phase 

shifting pathway, including the tPA proteolytic cascade, Trk receptor signaling, and 

NMDAR signals, we hypothesized that LRP-1 contributes to glutamate-induced phase 

shifting in the mouse SCN in vitro.  To address this, we assessed LRP-1 expression in the 

SCN, whether it affects in vitro glutamate-induced phase shifts, and potential cellular 

mechanisms through which it may act in the SCN, with a specific focus on interactions 

with tPA or NMDARs.  Our results demonstrate for the first time that LRP-1 is expressed 

in the SCN and that it modulates glutamate-induced phase resetting.  

3.3 Materials and Methods 

3.3.1 Animals 

All experiments used C57BL/6 wildtype (WT) male mice from Envigo (Indianapolis, 

IN), or tPA knockout (B6.129S2-Plattm1Mlg/J; tPA-/-) male mice.  Male and female tPA-/- 

mice were generated at and purchased from the Jackson Laboratory (Bar Harbor, Maine, 

USA).  The tPA-/- mice were fully backcrossed for at least 8 generations into the same 

background C57BL/6 strain as WT, and the C57BL/6 strain is the recommended control 

for the tPA-/- mice.  tPA-/- mice were bred and group-housed in the University of Tennessee 

Knoxville animal facility in a 12 h-light/12 h-dark cycle (12L:12D) and fed ad libitum.  Male 

mice 6-12 weeks of age at the beginning of each experiment were used, and animals used 

for each study were age-matched as closely as possible.  Experiments were conducted in 

accordance with the University of Tennessee Knoxville Institutional Animal Care And Use 

Committee.  

3.3.2 Brain slice preparation 

Coronal brain slices (500 μm) containing the SCN were prepared from brains 

dissected following rapid decapitation of unanaesthetized WT or tPA-/- mice.  Slices were 

maintained in a Hatton-style brain slice dish, perfused constantly with oxygenated Earle’s 

Balanced Salt Solution (EBSS; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 

glucose, bicarbonate, and gentamicin (pH 7.4) at 37oC, as previously described (Prosser, 
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2003; Yamada & Prosser, 2014).  One mouse was used for each experiment and replicate 

experiments were performed on different mice.   

3.3.3 Slice treatments 

Drug treatments were bath applied on the first day in vitro following previously 

established protocols (Prosser, 2003; Yamada & Prosser, 2014).  At zeitgeber time (ZT)16 

or ZT23 (ZT0 = lights on in the donor animal colony, and ZT12 = lights off) perfusion was 

stopped and the medium in the slice chamber was replaced with EBSS supplemented with 

RAP (50-500 nM, Molecular Innovations Novi, MI, USA), rabbit polyclonal anti-LRP-1 

antibody (75 μg/mL, R2629, a generous gift from Dudley Strickland, University of 

Maryland), and/or glutamate (1 mM; Sigma-Aldrich).  For RAP experiments, slices were 

pretreated with for 5 minutes with RAP only, followed by 10-minute treatment with 1 mM 

glutamate + RAP, and then 5 minutes post-treatment with RAP only.  For R2629 

experiments, slices were pretreated with R2629 only for 20 minutes, then treated for 10 

minutes with 1 mM glutamate + R2629. In both cases, after the final incubation the medium 

was replaced with normal EBSS and perfusion was reinstated. Glutamate alone 

treatments were applied for 10 minutes starting at ZT16 or ZT23.  RAP or R2629 only 

treatments were applied for 20 or 30 minutes, respectively, with a start time corresponding 

to that of the inhibitor + glutamate experiments.  

3.3.4 Single unit activity (SUA) recordings 

On the second day in vitro extracellular single unit recordings of neuronal activity 

were made using methods previously described (Prosser et al., 1994a; Prosser et al., 

1994b; Ding et al., 1997; Prosser, 1998a; Soscia & Harrington, 2004; Tischkau et al., 

2004).  The electrical signal from an individual neuron was isolated using a glass 

micropipette containing 3M NaCl, and the cell’s activity was recorded for 5 minutes. The 

electrode was then moved to record the electrical signal from a new cell.  Sampling started 

in the subjective morning (~ZT3) and neuronal activity was sampled for about 10 hr.  The 

firing rates of individual cells were grouped into 2 h running averages, and the time of peak 

neuronal activity was determined as the time of symmetrically highest activity.  Each phase 

shift was determined by calculating the difference between time-of-peak in untreated 
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slices vs drug-treated slices.  Three to six biological replicates were performed for each 

experimental condition.  

3.3.5 Western blots 

Brain slices (reduced in size from those for electrophysiology experiments) 

containing the SCN and the underlying optic chiasm were prepared and maintained as 

described above. Slices (treated or untreated) were collected at various times and 

immediately frozen for western blotting experiments.  For time-course experiments, 

untreated slices were collected at ZT6, ZT16, and ZT23.  To control the amount of time 

slices were maintained in vitro, the following slicing and collecting paradigm was used:  

slices collected at ZT6 on day 1 in vitro were prepared at ZT2 (time in vitro = 4 h); slices 

collected at ZT16 on day 1 in vitro were prepared at ZT8 (time in vitro = 8 h); slices 

collected at ZT23 on day 1 in vitro were prepared at ZT3 (time in vitro = 20 h); and slices 

collected at ZT6 on day 2 in vitro were prepared at ZT10 (time in vitro = 20 h).  Bath 

application drug treatments for western blotting were performed as follows:  a) 1 mM 

glutamate applied for 10 minutes starting at ZT16, then allowed to recover for 5 minutes 

in normal media before collecting; b) 1 mM glutamate + 100 nM RAP:  Slices were treated 

for 5 minutes with 100 nM RAP, then for 10 minutes with 1 mM glutamate + 100 nM RAP, 

then 5 minutes 100 nM RAP; c) 100 nM RAP:  Slices were treated for 20 minutes with 100 

nM RAP then immediately collected; d) untreated controls were collected at ZT16.   

Slices were sonicated and incubated in RIPA lysis buffer supplemented with 

protease inhibitor cocktail (Thermo Scientific, Waltham, MA) and phosphatase inhibitor 

(Thermo Scientific). Equal amounts of protein, determined by Bradford assay, were 

resolved by SDS-PAGE (LRP-1 resolved on 3-8% Tris-Acetate gel in non-reducing 

conditions; non-covalently connected 515 kDa αLRP-1 and 85 kDa βLRP-1 subunits 

dissociate) and transferred to polyvinylidene fluoride (PVDF) FL immobilon membrane 

(EMD Millipore, Billerica, MA) using the Transblot turbo system (Bio-Rad Laboratories, 

Hercules, CA).  Membranes were blocked and proteins were detected with primary 

antibodies.  Membranes were then probed with LI-COR IRDye secondary antibodies, 

which were detected using an Odyssey infrared imaging system (IRDye 800CW Donkey 

anti-Rabbit (926-32213; 1:10 000) and IRDye 680RD Donkey anti-Goat (925-68074; 1:10 

000; LI-COR Biosciences, Lincoln, NE, USA). The following primary antibodies were used 
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in this study: anti-actin (SC-1616; 1:2000), anti-phospho-Trk Y680/681 (sc-7996-R, 

1:1000, pTrk), anti-phospho-LRP-1 Y4507 (sc-33049, 1:1000, pLRP-1), and anti-BDNF 

(sc-546, 1:200) from Santa Cruz (Dallas, TX, USA); anti-LRP-1 [5A6] (ab28320, 1:1000, 

recognizes βLRP-1), anti-CaMKII (ab22609; 1:1000), and anti-phospho-NMDAR2B 

S1480 (ab73014; 1:1000) from Abcam (Cambridge, MA, USA); anti-phospho-NR2B 

Y1472 (AB5403; 1:1000) from EMD Millipore (Darmstadt, Germany); anti-phospho-

CaMKII Thr286 (p1006-286, 1:1000) from PhosphoSolutions (Auroro, CO, USA) and anti-

LRP-1 (R2629; 1:1000, recognizes αLRP-1) a gift from Dudley Strickland (University of 

Maryland, MD, USA).  Band density was determined using Image Studio software.  

Results were normalized to actin as a load control, then reported as a ratio to ZT6 (time-

courses) or to no treated control (treatment experiments). The SCN of a single mouse was 

used for each sample, and replicate experiments were performed on different mice.  Three 

to nine biological replicates were run for each experimental condition. 

3.3.6 Statistical methods 

All statistical analyses were performed using GraphPad Prism.  Tissue from a 

single animal was the experimental unit for the electrophysiology and immunoblotting 

experiments.  For comparisons of means in samples with normal distributions and 

homogenous variances (as indicated by a Levene’s test), an independent-sample t test or 

ANOVA was used for comparisons between two means or more than two means, 

respectively.  Significance was considered to be p < 0.05.   

3.4 Results 

3.4.1 LRP-1 expression and phosphorylation in the SCN 

LRP-1 is widely expressed throughout the brain, and here we investigated LRP-1 

expression in the mouse SCN in vitro across circadian time.  SCN-containing brain slices 

were collected at ZT6, ZT16, and ZT23 on the first day in vitro and at ZT6 on the second 

day in vitro, and subjected to western blotting analysis. Anti-LRP-1 antibody (R2629) 

identified an approximately 515 kDa band, consistent with the αLRP-1 heavy subunit, and 

the 5A6 anti-LRP-1 antibody detected an approximately 85 kDa band, consistent with 

previous reports of the βLRP-1 light subunit.  Identification of both protein subunits in the 
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tissue samples supports functional LRP-1 expression in SCN.  The relative intensity of the 

αLRP-1 515 kDa band was higher at ZT16 and ZT23 than at ZT6 (one-way ANOVA: n = 

5-6, F(3,16) = 5.697, p = 0.0226), indicating a diurnal variation in LRP-1 expression (Figure 

3.1a).  Interestingly, the 85kDa βLRP-1 did not exhibit the same pattern:  instead, its 

expression decreased in correlation with the time slices were maintained in vitro (one-way 

ANOVA: n = 5, F(3,16) = 0.9386, P = 0.0002) (Figure 3.1b).  We also assessed LRP-1 

phosphorylation on the β subunit using a phospho-specific LRP-1 antibody recognizing 

pY4507.  In vitro LRP-1 phosphorylation at Y4507 did not exhibit a circadian rhythm, and 

also decreased across time in vitro, corresponding with the changes observed for the LRP-

1 85kDa subunit (one-way ANOVA: n = 3, F(3,8) = 0.5285, P = 0.0026) (Figure 3.1c).  

Collectively, these results suggest that LRP-1 expression exhibits both diurnal changes 

and time-in vitro dependent changes in vitro, and that the heavy subunit and light subunit 

have differing expression patterns.   

3.4.2 Inhibiting LRP-1 prevents glutamate induced phase shifts in vitro  

To investigate the role of LRP-1 in circadian clock phase shifting, we assessed the 

effect of inhibiting LRP-1 on glutamate-induced phase shifts of neuronal activity recorded 

in mouse SCN slices.  First, we treated SCN slices with 1 mM glutamate +/- RAP, then 

conducted extracellular recordings of neuronal activity on the second day in vitro to 

determine the time of peak firing rate, which reflects the phase of the underlying circadian 

clock. RAP is a potent inhibitor of the LDL receptor family that is commonly used to assess 

LRP-1 function (Prasad et al 2015).  Consistent with previous reports, 1 mM glutamate 

applied for 10 minutes at ZT16 induced a phase delay in SCN peak neuronal activity, with 

a mean phase shift of  -3.08 +/- 0.51 h; n = 3 (Figure 3.2a).  Applying 500 nM RAP 

concurrently with glutamate prevented these glutamate-induced phase delays, with a 

mean phase shift of -0.56 +/- 0.26 h, n = 4 (t-test glutamate vs glutamate + RAP: n = 3 to 

4, t3 = 4.826, p = 0.0048) (Figure 3.2b).  Additionally, RAP inhibition of glutamate-induced 

phase delays was dose dependent, and 100 nM was sufficient to prevent phase delays 

(one-way ANOVA: n = 3 to 4, F(3,9) = 0.1851, p = 0.0027) (Figure 3.2g).  500 nM RAP 

applied alone for 20 minutes at ZT16 had no effect on mean time of peak neuronal activity 

(one sample t-test of 500 nM RAP vs 0:  n = 3, t(2)=1.155, p = 0.3675). 
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Figure 3-1.  LRP-1 expression and phosphorylation in SCN in vitro.  

LRP-1 is expressed in mouse SCN in vitro, and the α and β subunits are expressed 
differentially.  Proteins extracted from the SCN were subjected to western blotting 
analysis.  (A) Representative images showing αLRP-1 band at ~515 kDa, and actin load 
control (~42 kDa), and corresponding histogram showing αLRP-1 relative to actin, 
normalized to ZT6 in WT SCN.  One-way ANOVA p = 0.0485, n = 6. (B) Representative 
images and corresponding histogram showing βLRP-1 (~85 kDa) and actin.  One-way 
ANOVA p = 0.0002, n = 5.  (C)  Representative images and corresponding histogram for 
pLRP-1 Y4507 (~85 kDa) and actin.  One-way ANOVA  p = 0.0026, n = 3-6.   

 
  



57 

 

Figure 3-2.  Inhibiting LRP-1 prevents glutamate-induced phase shifts at ZT16 and 
ZT23. 

Inhibiting LRP-1 prevents glutamate-induced phase shifts at ZT16 and ZT23.  Shown here 
are the 2-hr means +/- SEM of the spontaneous neuronal activity recorded in single 
experiments, double bar denotes time of treatment, dashed bar indicates time of peak in 
neuronal activity rhythm in non-treated control. (A) Glutamate (1 mM) treatment at ZT16 
induced a -3.08 +/- 0.51 h phase delay.  (B) 100 nM RAP prevented glutamate-induced 
phase delays.  (C) Shown are mean +/- SEM phase shift induced by treatments at ZT16.  
* p < 0.05 (D) Glutamate (1 mM) treatment at ZT23 induced a +2.66 +/- 0.21 h phase 
advance.  (E) 500 nM RAP prevented glutamate-induced phase advances. (F) Shown are 
mean +/- SEM phase shift induced by treatments at ZT23.  * p < 0.05 (G) ZT16 RAP dose 
response curve.  (H) ZT23 RAP dose response curve..   
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Figure 3-2 continued  
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Because RAP can inhibit multiple members of the LDL receptor family, we 

addressed LRP-1 specifically by repeating the experiment using the anti-LRP-1 antibody 

R2629 antibody, which selectively inhibits LRP-1 (Mikhailenko et al., 2001).  Concurrent 

application of 75 μg/mL R2629 with 1 mM glutamate resulted in a mean phase shift of 0.17 

+/- 0.17 h, n = 3, indicating that selective inhibition of LRP-1 prevented glutamate-induced 

phase delays (t-test comparing glutamate vs glutamate + R2629: n = 3, t(4)=6.091, p = 

0.0037) (Figure 3.2c).  Again, 75 μg/mL R2629 applied alone for 40 minutes at ZT16 had 

no effect on the mean time-of-peak neuronal activity (one sample t-test compared to 0: n 

= 3, t(2)=0.4804, p = 0.6784) (Figure 3.2c).   

We repeated this series of treatments at ZT23 to address whether LRP-1 also 

influences phase advances.  As previously reported, 1 mM glutamate treatment resulted 

in a phase advance of neuronal activity rhythms, with a mean shift of 2.66 +/- 0.21 h, n = 

4 (Figure 3.2d).  Concurrent application of 500 nM RAP with 1 mM glutamate blocked 

these phase advances, with a mean phase shift of 0.67 +/- 0.3 h, n = 3 (t-test comparing 

glutamate vs glutamate + RAP:  n = 3, t5 = 5.601, p = 0.0025) (Figure 3.2e).  RAP inhibited 

glutamate-induced phase advances at ZT23 in a dose dependent manner, and 500 nM 

RAP was necessary to block phase advances (Figure 3.2g) (one-way ANOVA: n = 3 to 4, 

F(3,9) = 10.04, P = 0.0031). Selectively inhibiting LRP-1 with 75 μg/mL R2629 during 1 mM 

glutamate treatment also prevented phase advances, with a mean phase shift of 0.67 +/- 

0.33 h, n = 3 (t-test comparing glutamate vs glutamate + R2629: n = 3 to 4, t(5) = 5.304, p 

= 0.0032)  (Figure 3.2f).  Neither RAP nor R2629 applied alone at ZT23 had any effect on 

mean time-of-peak (Figure 3.2f).  Collectively, these results demonstrate that LRP-1 is 

required for glutamate-induced circadian clock phase shifting in mouse SCN in vitro.   

3.4.3 RAP prevents glutamate-induced phase delays in tPA-/- mouse SCN tissue 

Given LRP-1’s promiscuity, a variety of mechanisms could be responsible for its role in 

circadian clock phase shifting.  LRP-1’s interactions with the plasminogen activating 

system were a likely candidate for LRP-1 involvement in the SCN.  We assessed whether 

or not tPA is required for LRP-1’s role in phase shifting by repeating the RAP inhibition 

experiments in SCN slices from tPA-/- mice.  As above, SCN containing brain slices were 

treated concurrently with 1 mM glutamate +/- 500 nM RAP and neuronal activity was 

recorded the following day.  As previously reported (Cooper et al., 2017), 1 mM glutamate 
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applied at ZT16 induced a -3.13 +/- 0.65 h (n=4) phase shift in tPA-/- SCN brain slices 

(Figure 3.3). Concurrent application of 500 nM RAP with 1 mM glutamate blocked these  

phase delays, with a mean phase shift of a -0.58 +/- 0.35 h (n=6) (t-test comparing 

glutamate vs glutamate + RAP: t(8) = 3.761, p = 0.0055), while 500 nM RAP applied alone 

had no effect (mean phase shift = -0.167 +/- 0.167, n = 3).  These results suggest that the 

inhibition of glutamate-induced phase shifts by RAP does not involve preventing a tPA-

LRP-1 interaction.  

3.4.4 RAP treatment does not influence maturation of BDNF  

To address the involvement of the tPA-BDNF-TrkB signaling cascade in another 

way, we used western blotting to assess the effects of glutamate and RAP on BDNF 

maturation in SCN tissue.  Brain slices containing the SCN were treated with 1 mM 

glutamate, 1 mM glutamate + 100 nM RAP, or 100 nM RAP.  They were collected after a 

5 min recovery period in normal EBSS and compared to no treatment controls collected 

at the same time. There were no significant differences in total proBDNF (one-way 

ANOVA: n = 6 to 10, F(3,27) = 1.524, p = 0.6566), total mBDNF (one-way ANOVA:  n = 6 to 

10, F(3,27) = 0.1511, p = 0.9132), or the mBDNF/proBDNF ratio (one-way ANOVA: n = 6 to 

10, F(3,27) = 0.2497, p = 0.9838) across any of the treatments (Figure 3.4).  Collectively, 

these results suggest that not only does RAP not acutely change BDNF maturation 

independently, but also that there are no acute changes in BDNF maturation following 

glutamate treatment that require LRP-1.   

3.4.5 RAP treatment does not change TrkB receptor phosphorylation on Y680 

As a final way to assess the tPA-BDNF-TrkB signaling cascade, we used western 

blotting to assess whether RAP treatment influences Trk receptor phosphorylation on 

Y680/681, which also recognized the homologous residues Y706/707 on TrkB, as an 

indicator of Trk receptor activation (Huang & Reichardt, 2003; Reichardt, 2006)(Wong et 

al 2008.  As before, SCN slices treated with 1 mM glutamate, 1 mM glutamate + 100 nM 

RAP, or 100 nM RAP were compared to untreated control slices at ZT16. Once again, we 

found no significant differences across any treatments (One-way ANOVA: n = 3, F(3,8) = 

0.6715, p = 0.864) (Figure 3.5).  These results suggest that inhibiting LRP-1 does not 

influence TrkB receptor activation, and thus they reinforce the conclusion that the tPA- 
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Figure 3-3.  RAP blocks phase shift in tPA-/- SCN brain slices. 

100 nM RAP prevents glutamate-induced phase delays in brain slices prepared 
from tPA-/- mice.  Shown are mean +/- SEM phase shifts induced by treatments 
indicated applied to SCN slices prepared from tPA-/- mice.  Phase delays plotted 
as negative values.  * p = 0.0055, n = 3 to 6.   
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Figure 3-4. RAP treatment does not influence TrkB receptor phosphorylation. 

TrkB receptor phosphorylation on Y680/681 does not change with 1 mM 
glutamate, 1 mM glutamate + 100 nM RAP, or 100 nM RAP treatment at ZT16.  
(A). Shown are representative blots of pTrkB (~140 kDa) and actin load control 
(~41 kDa).  (B). Mean +/- SEM pTrk(680/681) relative to actin, normalized to 
control.  No significant differences in one-way ANOVA, n = 3.  
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Figure 3-5.  RAP treatment does not influence BDNF maturation in SCN. 

BDNF maturation does not change with 1 mM glutamate, 1 mM glutamate + 100 
nM RAP, or 100 nM RAP treatment at ZT16. (A) Shown are representative blots 
of proBDNF (~32 kDa), mBDNF (~14 kDa), and actin load control ( ~42 kDa) from 
WT SCN which were treated as indicated.  (B) Histogram showing proBDNF as a 
ratio to actin, normalized to control.  (C) Histogram showing mBDNF as a ratio to 
proBDNF, normalized to control.   (D) Histogram showing mBDNF as a ratio to 
actin, normalized to control.  No significant differences in one-way ANOVA: n = 6 
to 9.    
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BDNF-TrkB cascade is not the primary mechanism through which LRP-1 influences phase 

regulation of the SCN circadian clock.  

3.4.6 RAP treatment influences NR2B phosphorylation in SCN 

Having eliminated the tPA-BDNF-TrkB cascade as the primary mechanism of LRP-

1 action in SCN clock phase shifting, we turned our focus to more direct interactions with 

NMDAR.   LRP-1 influences glutamate signaling partially by controlling NMDAR surface 

localization (Maier et al., 2013), and therefore this could underlie LRP-1 functions in the 

SCN.   We investigated whether RAP influences NR2B phosphorylation at Y1472 and 

S1480, which are residues that influence NMDAR surface localization (Lim et al., 2002; 

Prybylowski et al., 2005; Sanz-Clemente et al., 2013).  Phosphorylation on Y1472 is 

associated with increased localization of NMDARs to the cell membrane, and 

phosphorylation on NMDAR S1480 is associated with increased internalization of 

NMDARs. SCN slices treated with 100 nM RAP for 20 minutes at ZT16 were compared to 

no-treatment controls via western blotting using phospho-specific antibodies for NR2B 

Y1472 and S1480.  100 nM RAP treatment resulted in a decrease in NR2B S1480 

phosphorylation (t-test control vs 100 nM RAP: n = 4, t(6) = 8.15, p = 0.002), and no 

significant change in NR2B Y1472 phosphorylation (t-test control vs 100 nM RAP: n = 4, 

t(5) = 0.3814, p = 0.7186) (Figure 3.6). Thus, these data suggest that inhibiting LRP-1 

decreases NR2B phosphorylation on S1480.   

3.4.7 Assessing effects of inhibiting LRP-1 on pCaMKII 

To further explore whether LRP-1 modulates glutamate-induced phase shifts by 

influencing NMDAR signaling, we investigated activation of CaMKII, an important early 

step in the glutamate phase shifting cascade, by assessing glutamate-induced 

phosphorylation of CaMKII T286 (Giese et al., 1998; Fukunaga et al., 2002). Initially we 

compared untreated SCN brain slices with brain slices treated with 1 mM glutamate at 

ZT16.  Subsequently, we ran a more comprehensive set of experiments that included 

treating SCN-containing brain slices at ZT 16 with 1 mM glutamate, 1 mM glutamate + 100 

nM RAP, 100 nM RAP, or no treatment. In both cases we collected the tissue 5 minutes 

after treatment, and conducted western blotting assays.  Consistent with previous reports 

(Yokota et al., 2001), our initial experiments confirmed that glutamate (1 mM) increases  



65 

 

 

Figure 3-6.  RAP treatment changes NMDAR phosphorylation patterns in mouse 
SCN in vitro. 

RAP treatment reduces phosphorylation of NR2B subunits at S1480, and does not change 
phosphorylation on NR2B Y1472.  (A)  Shown are representative blots of pY1472 (~180 
kDa) and load control actin (~42 kDa). (B) Histogram showing mean +/- SEM 
pY1472/actin, normalized to first control on each blot.  No significant differences in t-test, 
n = 3 to 4.  (C) Representative blots of pS1480 (~180 kDa) and load control actin.  (D) 
Mean +/- pS1480/actin, normalized to control on each blot. * p = 0.002, n = 4. 
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pCaMKII T286 in the SCN (t-test: n = 3, t(4) = 4.716, p = 0.0092,) (Figure 3.7a-b).  However, 

in subsequent experiments comparing all 4 experimental conditions the relative 

expression of pCaMKII was highly variable, so we found no significant differences across 

treatments (One-way ANOVA:  n = 5 to 6, F(3,19)
 = 0.3477, p = 0.8412, F3 = 0.2771) (Figure 

3.7c-d).   

3.5 Conclusion 
Here, we present evidence that LRP-1 is expressed in the SCN, and that it is 

necessary for glutamate-induced phase resetting of the circadian clock in the mouse SCN 

in vitro.  Additionally, we investigated several prominent LRP-1 interacting partners as 

potential mediators of LRP-1 effects, with a specific focus on the plasminogen activating 

cascade and intracellular signaling molecules downstream of NMDAR activation. We find 

that LRP-1’s role in the SCN is independent of tPA, acute changes in BDNF maturation, 

and TrkB receptor phosphorylation, effectively eliminating tPA proteolytic activity as a 

central mediator of LRP-1 effects on phase shifting the circadian clock.  We find that 

inhibiting LRP-1 influences NMDAR phosphorylation patterns by reducing phosphorylation 

on NR2B S1480, but we were unable to determine whether inhibiting LRP-1 influences 

pCaMKII phosphorylation patterns.   

  LRP-1 is widely expressed throughout the central nervous system, but a direct 

assessment of its expression patterns in the SCN had not previously been conducted 

(Lillis et al., 2005).  Western blotting shows LRP-1 expression in the SCN, as evidenced 

by the presence of both the 515 kDa αLRP-1 and 85 kDa βLRP-1 subunits.  Surprisingly, 

we find differential expression patterns for the two subunits of LRP-1.  Expression of the 

extracellular αLRP-1 is higher at night than during the day, a pattern that persists to the 

second day in vitro.  Meanwhile, expression of the membrane-spanning βLRP-1 subunit 

decreases in correlation with the time SCN brain slices are maintained in vitro.  It is unclear 

at this point how this is achieved and what physiological relevance it would have in vivo.  

LRP-1 is transcribed as a full-length 600 kDa protein and then cleaved in the endoplasmic 

reticulum into a 515 kDa αLRP-1 and 85 kDa βLRP-1, which remain non-covalently 

associated on the cell surface (Lillis et al., 2005).  The decrease in βLRP-1 over time in 

vitro could be a response to tissue slicing injury. There is evidence that LRP-1 responds 

to crush-injured rat sciatic nerves in the peripheral nervous system (Flutsch et al., 2016).   
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Figure 3-7.  Glutamate increases CaMKII phosphorylation at T286 in SCN. 

 (A). Representative images of pCaMKII and actin bands from control and glutamate 
treated SCN slices, demonstrating glutamate-induced increase in CaMKII 
phosphorylation.  (B) Mean +/- SEM pCaMKII/actin normalized to control. *p = 0.0092, n 
= 3.  (C) & (D):  Representative images of pCaMKII, total CaMKII, and actin bands from 
SCN slices left untreated (C), or treated with 1 mM glutamate (G), 1 mM glutamate + 100 
nM RAP (GR), or 100 nM RAP demonstrating variability in pCaMKII levels.  (E). Mean +/- 
SEM pCaMKII/actin normalized to no-treated control.  No significant differences in One-
way ANOVA.   
  



68 

 

Additionally, this response to injury could lead to increased internalization of the β subunit, 

as LRP-1 could be serving a scavenging role in response to released proteins in the 

extracellular space.   This is reminiscent of the time-in vitro dependent increases in uPA 

enzymatic activity observed previously in our lab (Cooper et al., 2017). These results 

underscore the importance of controlling for multiple timing variables in circadian studies, 

while further implicating the plasminogen activating cascade in a group of regulated 

neuronal responses to injury (Mori et al., 2001; Flutsch et al., 2016; Diaz et al., 2017).  

In contrast, the rhythm in αLRP-1 expression suggests there may be a circadian 

influence on LRP-1 in the SCN.  This is a first report of diurnal variations in LRP-1 

expression, but interestingly Lrp-1 was identified as a circadian oscillating gene in liver 

(Yan et al., 2008).  αLRP-1 can exist in the extracellular space as “shed” LRP-1, which is 

generated by proteolytic cleavage from the membrane-bound β subunit (Quinn et al., 

1997; Etique et al., 2013).  The precise function of shed LRP-1 remains elusive, but it may 

serve to sequester LRP-1 ligands in the extracellular space, thus controlling their activity 

(Etique et al., 2013).  It is somewhat perplexing that αLRP-1 expression increases during 

the subjective night while βLRP-1 expression decreases. One possible explanation for 

these results is that there are circadian changes in proteolytic cleavage of the extracellular 

domain, allowing αLRP-1 to accumulate extracellularly while βLRP-1 is 

internalized/degraded (Figure 3.8). LRP-1 shedding can be mediated directly or indirectly 

by a variety of extracellular proteases, and at least on protease associated with increased 

LRP-1 shedding, tPA, is known to have higher activity in the SCN at night than during the 

day (Mou et al., 2009b; Etique et al., 2013; Cooper et al., 2017).  Although LRP-1 has 

been shown to recycle with near 100% efficiency (Van Leuven et al., 1980; Willingham et 

al., 1980; Dickson et al., 1981), it is possible that following injury a different scenario exists.  

A second possibility is that our data reflect changes in LRP-1 localization to lipid rafts 

(Figure 3.8).  LRP-1 localization on the cell surface is dynamic, and it can localize 

differentially to lipid rafts or clatharin coated pits depending on ligand or receptor 

interactions (Wu & Gonias, 2005).  Association in lipid rafts could influence LRP-1 

solubilization during protein extraction, which would mean our blots would reflect different 

amounts of LRP-1 solubilized rather than a difference in expression.  Although the source 

of the differences in patterns of expression in the αLRP-1 vs βLRP1 are unclear, these 

results suggest both diurnal regulation and injury regulation of LRP-1 expression in the 
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Figure 3-8.  Potential models underlying differential α and β LRP-1 expression 
patterns.   

Option 1:  1) SCN slices are made in the morning, interrupting normal expression patterns 
in the SCN with a slicing injury.  2) An increase in LRP-1 expression combined with an 
increase in proteolytic activity as the SCN transitions into subjective night results in an 
increase of shed αLRP-1 in the extracellular space.  3)  A concurrent (or slightly delayed) 
increase in LRP-1 internalization results in increased degradation of LRP-1, effectively 
reducing the amount of βLRP-1 detected.  This decrease persists into the second day in 
vitro.  Option 2:  1) In the subjective day, LRP-1 could localize outside of lipid rafts.  2)  As 
the SCN transitions to subjective night, and perhaps in response to slicing injury, there is 
an increase in extracellular domain shedding combined with (3) a localization of LRP-1 to 
lipid rafts.  The result of this is more αLRP-1 detected on western blots, and a reduction 
in the ability to solubilize βLRP-1 from the lipid rafts, resulting in reduced βLRP-1 in protein 
extracts. The purpose of these two models is not to provide definitive answers for what is 
happening in the SCN, but rather to provide possible explanations for the seemingly 
impossible finding of differential patterns of immunolabeling in the LRP-1 subunits.  To 
fully understand LRP-1 expression in the SCN, it will be important to complete experiments 
without the complication of slicing injury. 
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SCN, and thus further investigation into LRP-1 expression patterns is warranted.   

Importantly, there is a large amount of time between ZT6 (4 h in vitro) and ZT16 (6 h in 

vitro) that is unaccounted for, and in which there could be changes that set the stage for 

the differential expression patterns we observed here.  

Along with assessing total LRP-1 expression, we also assessed LRP-1 

phosphorylation on Y4507 using a phospho-specific antibody.  Phosphorylation on this 

residue is correlated with changes in LRP-1 endocytosis and signaling events, and thus 

could be indicative of changes in LRP-1 activity rather than expression (Betts et al., 2008; 

Guttman et al., 2009).  We observe no circadian rhythm in LRP-1 Y4507 phosphorylation 

and decreases that correlate with time in vivo, which is consistent with our observations 

for βLRP-1, suggesting no differential phosphorylation in our system.   

In an assessment of LRP-1 function in the SCN, we find that LRP-1 is required for 

glutamate-induced phase shifting.  We used two methods of inhibition to assess LRP-1:  

non-selective inhibition with RAP and selective inhibition with antiLRP-1 antibody (R2629), 

and both completely abrogate both early night glutamate-induced phase delays and late 

night phase advances.  While our data support LRP-1 involvement, RAP inhibits multiple 

members of the LDLR family, and therefore it would be interesting to see if additional 

LDLR family receptors are also involved in phase shifting.  At both ZT16 and ZT23, the 

inhibition by RAP is dose-dependent, although ~ 100nM RAP fully inhibits the phase 

delays while >300nM RAP is needed to inhibit the phase advances. Phase delays and 

phase advance involve different signaling mechanisms, and differential expression of 

LRP-1 interacting proteins between early and late night could contribute to the differences 

in dose responsiveness.   

A plethora of evidence linking LRP-1 to the plasminogen activating system and Trk 

receptors, and evidence supporting a critical role for the plasminogen activators in SCN 

circadian clock phase shifting led us to hypothesize that LRP-1 modulation of circadian 

clock phase shifting involves interactions with this pathway.  We addressed this possibility 

in three ways.  First, we used tPA-/- mice to investigate whether tPA is necessary for RAP 

to inhibit glutamate-induced phase shifting, and found that in tPA-/- mouse SCN brain slices 

RAP is still able to block these phase shifts.  This indicates that LRP-1 modulation of the 

SCN circadian clock does not depend on interactions with tPA, although it doesn’t exclude 

the possibility that tPA and LRP-1 interact in the SCN and have other effects relevant to 
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the circadian clock.  It appears that compensatory changes occur in tPA-/- mice in response 

to the absence of tPA:  despite tPA’s critical role in blood clotting, tPA-/- mice exhibit no 

severe clotting phenotype (Carmeliet et al., 1994). In regards to the SCN circadian clock, 

tPA-/- mice have minimal circadian phenotypic deficits, and uPA appears to serve a 

compensatory role enabling glutamate-induced phase shifts (Cooper et al., 2017; Krizo et 

al., 2018).  It is possible that similar compensation masks our ability to detect a role for 

the tPA/LRP-1 interaction in these animals.  And finally, the tPA-/- mice used in this study 

still express a portion of the tPA gene, thus non-proteolytic tPA effects cannot be excluded 

(Carmeliet et al., 1994).   

Second, to more directly assess the influence of LRP-1 on the tPA-dependent 

proteolytic cascade, we assessed the effects of inhibiting LRP-1 on BDNF maturation.  In 

the SCN, BDNF acts to gate glutamate induced phase shifts downstream of tPA proteolytic 

activity (Liang et al., 1998; Liang et al., 2000; Mou et al., 2009b).  Thus, if LRP-1 acts 

through modulating tPA proteolytic activity in the SCN, we would expect to see acute 

changes in mBDNF generation following LRP-1 inhibition.  Instead, we find no changes in 

the relative amount of mBDNF, proBDNF, or the mBDNF/proBDNF ratio, indicating that 

inhibiting LRP-1 does not influence BDNF maturation in the SCN in vitro.   

Lastly, we investigated the effects of inhibiting LRP-1 on Trk receptor 

phosphorylation as a marker of TrkB receptor activation. BDNF binding to TrkB receptor 

causes it to dimerize and autophosphorylate several sites, including Y705Y706 (which is 

homologous to Y680/680 on TrkA receptors), Y515, and Y816 (Poo, 2001; Huang & 

Reichardt, 2003; Reichardt, 2006).  This leads to signal transduction and activation of two 

signaling cascades (MAPK/pCREB, and hosphatidylinositide 3-kinases (PI3K)/protein 

kinase B (AKT)) (Cardenas-Aguayo Mdel et al., 2013).  In the SCN, TrkB acts to gate 

glutamate induced phase shifting following mBDNF binding (Allen et al., 2005).  We find 

that inhibiting LRP-1 using RAP does not change Trk receptor phosphorylation on 

Y680/681.  Thus, by assessing phase shifting in tPA-/- mice, BDNF maturation, and TrkB 

receptor phosphorylation following RAP treatment we have convincingly demonstrated 

that the tPA-BDNF-TrkB receptor cascade is not primarily responsible for RAP’s ability to 

inhibit glutamate-induced phase shifting.  That said, these data do not rule out the 

possibility that interactions between these proteins in the SCN mediate other clock 

functions. 
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A second prominent mechanism through which LRP-1 modulates glutamate 

responses in other systems, particularly Schwann cells, is by controlling NMDAR surface 

localization, as evidenced by aberrant NMDAR localization patterns in LRP-1 NPxY 

mutant cell lines (Maier et al., 2013).   Regulation of NMDAR localization is complex and 

mediated by a variety of events, but a major contributor is phosphorylation on two NR2B 

residues, Y1472 and S1480.  Phosphorylation on NR2B Y1472 disrupts interactions with 

clatharin coated pits (Prybylowski et al., 2005; Chen & Roche, 2007) and is associated 

with increased membrane localization of NR2B containing NMDARs, while 

phosphorylation on S1480 disrupts interactions with PSD95, thus increasing NMDAR 

internalization (Chung et al., 2004).  We assessed the influence of inhibiting LRP-1 on 

phosphorylation of both residues in SCN brain slices. We find that RAP treatment does 

not change phosphorylation on Y1472, but decreases phosphorylation on S1480.  Given 

the model above, these changes could suggest an increase of NMDAR on the cell surface 

and thus enhanced rather than decreased NMDAR signaling. However, it is important to 

note that NMDAR localization can be controlled independently of these phosphorylation 

patterns.  For example, NR2B phosphorylation patterns in Schwann cells are inconsistent 

with observed changes in NMDAR localization, and suggested that the increases in NR2B 

at the cell surface could be a direct effect of reduced LRP-1 internalization rate (Maier et 

al., 2013).  Regardless, these results suggest LRP-1 influences NMDAR localization 

and/or other signaling properties in the SCN.   It will be important to assess changes in 

NMDAR and LRP-1 surface localization in the future.   

Finally, we assessed the influence of LRP-1 on CaMKII phosphorylation, which is 

a key mediator of glutamate signaling downstream of NMDAR activation.  Glutamate 

induces CaMKII phosphorylation acutely in the SCN, and inhibiting CaMKII activation 

prevents circadian clock phase shifts (Fukushima et al., 1997; Yokota et al., 2001; 

Agostino et al., 2004).  CaMKII interacts with the intracellular domain of LRP-1, and is a 

key mediator of LRP-1 effects on axon guidance in the peripheral nerve growth cone and 

thus it could be a key mediator of LRP-1 function in the SCN (Guttman et al., 2009; 

Landowski et al., 2016). We found that treating SCN slices with 1 mM glutamate increased 

CaMKII phosphorylation on T286, but in subsequent experiments to assess changes 

following RAP inhibition we were unable to detect any significant changes, which may be 

due to high variability in pCaMKII across samples.  Across independent experiments, the 
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patterns of phosphorylation were completely opposite of one another.  The SCN is a 

heterogeneous structure, and thus regional differences may be a source of this variability.  

Assessing CaMKII activation using immunohistochemistry could provide more conclusive 

answers.  

The involvement of LRP-1 and potential rhythms in expression may provide some 

clarity to some of our previous data.  In investigating tPA and uPA expression and activity 

in the SCN, we found different patterns for both proteases (Cooper et al., 2017).  tPA 

protein expression was rhythmic in the SCN, but we found no changes in tPA total 

proteolytic activity.  A rhythm in αLRP-1 could provide a mechanistic explanation for this.  

It is possible that increased night-time αLRP-1 binds to tPA, which could serve either to 

sequester tPA reducing its activity, or to act as a co-receptor increasing its activity.  

Regardless of the function outcome, these findings were generated from the non-

reducing/non-denaturing conditions of gel zymography, meaning that tPA complexed to 

αLRP-1 may not dissociate on the gels. For uPA, we found its protein expression to be 

constant, but its proteolytic activity increased during the time the tissue was maintained in 

vitro. This correlates with the decrease we see in LRP-1 β subunit, suggesting that both 

changes are a response to tissue injury, with related or independent of each other. 

Teasing out these injury response mechanisms would be an interesting question, but is 

beyond the scope of this research.  Additionally, LRP-1 expression in the SCN may be 

better assessed in a system without the consequence of injury.   

Collectively, the data presented here demonstrate that LRP-1 is necessary for 

glutamate-induced phase-shifting of the SCN circadian clock, and suggest that it may be 

a mediator of daily iterative metaplasticity in the SCN.  This study adds to accumulating 

evidence that changes in the extracellular space are important for circadian clock 

regulation.  Through its endocytic and signaling activities, LRP-1 acts as a sensor and 

regulator of the extracellular space.  It communicates changes in the extracellular 

environment via signal transduction, and can regulate the concentrations of its ligands in 

the extracellular space through endocytic functions.  More research is necessary to 

determine the mechanisms underlying LRP-1 function in the SCN, but given its large and 

diverse group of ligands and complex endocytic and intracellular responses, it is likely that 

multiple interacting partners will be involved.  Underscoring LRP-1’s complexity, we found 

evidence excluding many of the canonical pathways central to both SCN function and 
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LRP-1 mechanisms.  The primary connections we found are, first, that RAP prevents a 

glutamate response in the SCN that relies largely on NMDAR activity, and second RAP 

induces a decrease in NR2B S1480 phosphorylation.  It seems most likely that LRP-1 may 

be attenuating the NMDAR signals, and it has been found that LRP-1 influences other 

calcium channels, such as AMPARs and N-type calcium channels as well (Kadurin 2017, 

Gan 2014).  Addressing whether this is happening in the SCN will be an important next 

step, and addressing the mechanisms through which LRP-1 can control calcium channels 

is another salient question. An important next step will be to assess what ligands are 

important for LRP-1 function in the SCN.  Additionally, it will also be important to tease 

apart the contributions of LRP-1 endocytosis vs signaling events in the mediation of 

glutamate responses in the SCN.  Use of neuronal specific LRP-1 knockout and LRP-1 

NPxY mutant mice may assist in answering some of these questions.  

 

 
  



75 

 

4 CONCLUSION:  AT THE INTERSECTION OF LRP-1 AND 
PLASMINOGEN ACTIVATORS - POTENTIAL MECHANISMS 
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4.1 uPA and LRP-1:  Contributions to SCN circadian clock 
phase regulation 

Herein, we have expanded on the knowledge of proteins related to the 

plasminogen activating cascade and how they participate in the process of phase shifting 

the mammalian circadian clock in the SCN.  Although plasminogen activation was 

originally studied for its role in the vascular system, many studies have identified its 

members, including tPA, uPA, and LRP-1, as neuromodulators within the brain  

(Fernandez-Monreal et al., 2004; Jeanneret & Yepes, 2017). Evidence demonstrating the 

involvement of tPA in SCN circadian clock phase shifting has defined a role for this 

pathway in modulating neuronal plasticity in the SCN and suggested that tPA-interacting 

partners could also influence SCN neuronal activity (Mou et al., 2009a).  The results 

presented here are the first linking both uPA and LRP-1 to the SCN circadian clock.   

Initially, we found that although inhibiting tPA with PAI-1 prevents glutamate-

induced phase shifts in vitro, tPA-/- mice exhibit no severe circadian deficits.  They exhibit 

entrained behavioral activity rhythms in vivo and neuronal activity rhythms in vitro that 

phase shift in response to light and glutamate pulses, respectively.  The only phase 

shifting deficit we observed is an increase in the time needed to entrain to a reversed light 

dark cycle in the tPA-/- mice. The tPA-/- mice also exhibit a decrease in nocturnal wheel-

running activity, changes in activity patterns with food entrainment, and an increase it time 

needed to entrain to a 6 hr advancement of LD cycle in vivo (Krizo et al., 2018).  We 

present evidence that uPA compensates for the loss of tPA in tPA-/- mice, enabling 

glutamate-induced phase shifts in neuronal activity rhythms in vitro.  Interestingly, this 

functional compensation involves distinct cellular signaling mechanisms, as evidence 

supports tPA but not uPA acting through a plasmin-BDNF dependent mechanism. Thus, 

the processes underlying uPA’s compensatory processes remain unclear.   

Second, we found that LRP-1 is necessary for glutamate-induced phase shifts of 

the mouse SCN circadian clock in vitro.   Because tPA and LRP-1 act in concert to 

influence neuronal plasticity in other regions, we hypothesized that these interactions 

would be important for LRP-1’s role in phase shifting (Martin et al., 2008).  However, we 

find that tPA is not necessary for LRP-1’s permissive actions in glutamate-induced phase 

shifting.  Since NMDARs are a central mediator of glutamate-induced phase shifting in the 
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SCN, and LRP-1 can modulate NMDAR activity, we also focused our attention on the 

intersection between LRP-1 and NMDAR (Ebling, 1996).  We find that inhibiting LRP-1 

influences NMDAR phosphorylation patterns, which implicates changes in NMDAR cell-

surface localization.  Finally, we assessed CaMKII phosphorylation as a marker of 

signaling events downstream of NMDAR activity in the SCN, but we were unable to 

determine if inhibiting LRP-1 influences CaMKII activation.  Collectively, these data 

implicate LRP-1 as an important regulator of clock phase shifting, but as with uPA, the 

mechanism(s) remain elusive.   

In this research we also evaluated uPA and tPA expression and proteolytic activity 

in the SCN across the circadian day, and LRP-1 expression and phosphorylation patterns.   

We find evidence of circadian rhythms in tPA expression but not proteolytic activity, no 

rhythms in uPA expression or proteolytic activity, and potential diurnal variations in αLRP-

1 but not βLRP-1 subunits.  Additionally, uPA activity and βLRP-1 expression exhibit 

changes that correlate with the time slices are maintained in vitro, suggesting that a 

response to tissue injury may occlude an accurate view of in vivo expression patterns in 

the SCN.  Importantly, these results demonstrate roles for both uPA and LRP-1 in the SCN 

phase regulation, but both halves of the story leave open major questions regarding the 

underlying mechanisms.  In this chapter, I discuss potential overlap between these two 

seemingly independent studies, and incorporate them into a model linking extracellular 

events to the more extensively studied intracellular circadian clock mechanisms.  And 

finally, I highlight ways the plasminogen activators and LRP-1 may act together to 

influence neuroplasticity in the SCN. 

4.2 Bridging the gap – common signaling mechanisms of tPA, 
uPA, and LRP-1 

tPA, uPA, and LRP-1 all modulate neuronal activity, and can do so both 

independently and through intersecting processes that aren’t fully understood and that are 

likely both cell type and brain region specific.  Points of overlap include regulation of the 

extracellular matrix (ECM), influence on other extracellular proteases such as MMPs, 

interactions with NMDARs, interactions with integrins, associations with uPAR, and 

activation intracellular signaling pathways. Of particular importance to these studies are 
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interactions between LRP-1 and uPA: uPA can bind to LRP-1 both alone and when bound 

by PAI-1, and one intersection between LRP-1 and uPA are their interactions with uPAR.   

4.2.1 Extracellular matrix plasticity in the brain 

The ECM is an important modulator of neuronal activity and a source of overlap 

for many tPA, uPA, and LRP-1 dependent functions.  The ECM is a network of secreted 

molecules interacting through protein-protein and protein-carbohydrate binding in the 

extracellular space (Senkov et al., 2014; Jayakumar et al., 2017).  ECM components 

include chondroitin sulfate proteoglycans, heparin sulfate proteoglycans, collage, elastin, 

laminin, fibronectin, and hyaluronic acid (Senkov et al., 2014; Jayakumar et al., 2017).  

Additional secreted proteins, including growth factors, proteases, thrombospondins, 

tenascin C and R, reelin, vitronectin, PAI-1, and chemokines can bind and modify the ECM 

(Senkov et al., 2014; Jayakumar et al., 2017).  Cell surface proteins and receptors, 

including integrins, syndecans, agrin, lipoprotein receptors, and tetraspanins, also interact 

with the ECM (Kerrisk et al., 2014). The ECM is considered a 4th component of a 

tetrapartate synapse model, which consists of pre- and post-synaptic neuronal terminals 

surrounded by a network of astrocytes and ECM molecules (Dityatev & Rusakov, 2011; 

Smith et al., 2015).  During development, the ECM acts to guide neuronal migration and 

synapse formation, while in adulthood it is thought to stabilize and strengthen connections 

(Pavlov et al., 2004).  Moreover, remodeling of the ECM in adulthood can contribute to the 

structural rearrangements necessary to change synaptic strength associated with long 

term potentiation and long term depression (Senkov et al., 2014; Cooper, Submitted).  

ECM remodeling is largely mediated by proteolytic cleavage, and can occur in both 

physiological and pathological contexts (Lu et al., 2012).  

Several lines of evidence support the concept that the ECM is an important part of 

SCN plasticity.  One intriguing finding is that there are daily rhythms in the ultrastructure 

of the SCN; in particular astrocytic processes invade and retract from synapses on a 24 

hr cycle (Becquet et al., 2008).  This suggests that structural changes, which depend 

heavily on ECM remodeling in other brain regions, are an important component of SCN 

daily plasticity. Additional support for ECM involvement comes from the identification of 

several ECM-interacting proteins in clock function. One class of ECM-interacting proteins 

that has been investigated in the SCN are cell adhesion molecules (CAMs), which are 
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membrane associated proteins that form adhesions with binding partners on adjacent 

cells, or with the ECM itself (Thalhammer & Cingolani, 2014).   Cell adhesion molecules 

that have been implicated in SCN clock function include neural cell adhesion molecules 

(NCAMs), neurexins, neuroligins, ephrins, Eph receptors, and cadherins (Cooper, 

Submitted). As we will discuss below, the investigation of extracellular proteases including 

tPA, uPA, and MMPs, as well as our data demonstrating a role for LRP-1, adds to the 

evidence supporting a role for the ECM in the SCN. 

4.2.2 Extracellular protease regulation of ECM: tPA, uPA, and MMPs 

Many proteolytic enzymes cleave ECM macromolecules, including tPA, uPA, 

(Andreasen et al., 2000) and MMPs (Murphy & Nagase, 2008).  Through their proteolytic 

activity, extracellular proteases influence the structure of the ECM, which in turn can 

influence the strength of synaptic connections and modify neuronal responses.  One way 

tPA and uPA can influence ECM molecules is through plasmin-dependent functions (Ho-

Tin-Noe et al., 2009).  Plasmin degrades many ECM macromolecules, including laminin, 

fibronectin, and proteoglycans. Plasmin can also activate MMP’s, and indirectly affect 

additional ECM molecules in this way (Mignatti & Rifkin, 1996; Legrand et al., 2001).  

MMPs are a large family of zinc-dependent endopeptidases that can be secreted or 

membrane-bound, and can degrade a variety of ECM molecules, including collagen, 

gelatin, laminin, and fibronectin. tPA and uPA also influence the ECM by activating or 

releasing growth factors such as latent-transforming growth factor β and vascular 

endothelial growth factor from the ECM.   

Our evidence demonstrating that plasminogen activation is important for SCN 

clock phase regulation also implicates ECM remodeling as a component of circadian 

timekeeping mechanisms.  While the initial data supports a model whereby tPA acts via 

BDNF signaling to enable phase shifts, uPA appears to be acting through BDNF-

independent mechanisms (Mou et al., 2009a; Cooper et al., 2017). Additionally, uPA 

compensation is not complete, as there are deficits in the ability of tPA-/- mice to re-entrain 

to an inverted light cycle, and a reduction in ability to phase advance in vivo (Krizo et al., 

2018).  Both of these findings raise the possibility that plasminogen activators act through 

multiple pathways to influence the SCN circadian clock.  This type of redundancy in SCN 

in timekeeping mechanisms may have been evolutionarily selected for because problems 
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with circadian rhythms are maladaptive.  Additional evidence supporting ECM involvement 

in the clock comes from research on MMPs in the SCN, which has found that inhibiting 

MMP2/9 induces night-time phase shifts.  The mechanisms through which the MMPs 

modulate the SCN circadian clock appear to be complex, in that some of the inhibitor-

induced phase shifts are independent of the plasminogen activating cascade, while others 

require plasmin.  Additionally, there may be diurnal variations in MMP9 proteolytic activity 

in mouse and hamster SCN (Agostino et al., 2002; Abrahamsson, Submitted).  

Collectively, tPA, uPA, and MMP2/9 involvement in circadian clock phase shifts support 

the idea that extracellular proteases have diverse functions in the SCN, and ECM 

modification may be a source of overlap. Rhythms in protease expression or activity could 

correlate with rhythmic structural remodeling of ECM components, enabling the extension 

and retraction of astrocytic processes, thus adjusting synaptic connections on a 24 hr 

cycle. 

4.2.3 Protease Inhibitors – unexplored partners 

The activity of extracellular proteases can be regulated in two ways:  by 

endogenous inhibitors and by receptor-mediated endocytosis to clear them from the 

extracellular space (discussed below).   The plasminogen activators are inhibited by 

serpins (serine proteinase inhibitors), including plasminogen activator inhibitors (PAI)-1 

and -2, neurosperin, and protease nexin-1 (PN-1) (Huntington, 2011).  PAI-1 is the main 

inhibitor of plasminogen activators in the vascular space, but is weakly expressed in the 

brain (Sawdey & Loskutoff, 1991; Masos & Miskin, 1997).  PN-1 and neuroserpin are 

expressed throughout the brain, and neuroserpin is considered the predominant PA 

inhibitor in the nervous system (Osterwalder et al., 1996; Hastings et al., 1997; Krueger et 

al., 1997; Kvajo et al., 2004; Samson et al., 2008).  MMPs are inhibited by tissue inhibitors 

of metalloproteinases (TIMPs) and adamalysins (a disintegrin and metalloproteinases, 

ADAMs) (Wojtowicz-Praga et al., 1997).  α2-macroglobulin is another protease inhibitor 

that can act on many proteolytic enzymes, including tPA, uPA, plasmin, and MMPs 

(Rehman et al., 2013). Many of these protease inhibitors have been found to influence 

neuronal activity, which could involve protease inhibition or protease independent 

interactions with receptors (Lee et al., 2008).  Additionally, some of these (including 

PAI1/2, TIMPs, α2-macroglobulin, and neuroserpin) bind to LRP-1, either independently 
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or in complex with their target, and can be endocytosed or stimulate signaling pathways 

(Lillis et al., 2008).   

Although we have used these inhibitors to investigate tPA and uPA function in the 

SCN, we have not yet investigated the endogenous roles these inhibitors may be playing.  

Interestingly, PAI-1 mRNA and protein expression is rhythmic in the SCN in antiphase with 

tPA rhythms, with high expression in the day and low expression at night (Menger et al., 

2005; Mou et al., 2009a).  This suggests that PAI-1 may inhibit tPA activity during the day.  

Additionally, vitronectin, which stabilizes PAI-1 in its active conformation, is necessary for 

PAI-1’s inhibitory action on phase shifting, as PAI-1 doesn’t inhibit phase shifts in 

vitronectin knockout mice (VN-/-) (Mou et al., 2009a).  Interestingly, expression of PAI-1 

also exhibits circadian rhythms in the periphery, and is thought to be regulated by the 

TTFL, as CLOCK:BMAL heterodimers upregulate PAI-1 gene expression (Oishi et al., 

2007).  These rhythms in PAI-1 contribute to hypo-fibrinolysis during the early morning 

(Oishi et al., 2007).  There is also preliminary data supporting neuroserpin expression and 

function in the SCN (Conner and Prosser, unpublished).  Much more work is needed to 

elucidate the roles these protease inhibitors play in the SCN, and to what extent they 

contribute to circadian clock phase regulation.  

4.2.4 LRP-1 regulation of extracellular proteases  

LRP-1 regulates extracellular signaling through several mechanisms, including 

endocytic regulation of protease activity and interactions with ECM-associated proteins 

(Etique et al., 2013).   First, through its endocytic activity it internalizes proteases, including 

uPA, tPA, MMP9 (Bu et al., 1992; Kounnas et al., 1993; Hahn-Dantona et al., 2001), 

MMP2, and MMP13 (Barmina et al., 1999; Yang et al., 2001).  LRP-1 can internalize these 

proteins either before or after their inhibition by serpins or α2-macroglobulin (Strickland et 

al., 2002).  This internalization can serve to regulate their proteolytic activity in the 

extracellular space.  For example, astrocytes can internalize tPA in an LRP-1 dependent 

manner, and then recycle tPA back to the extracellular space through subsequent release 

(Casse et al., 2012b).  The internalization of tPA is inhibited by glutamate (Casse et al., 

2012b).  Collectively, the cycle suggests that astrocytes control the amount of tPA in the 

extracellular space through an LRP-1 dependent mechanism (Casse et al., 2012b).   
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Although our data suggest that tPA is not required for LRP-1’s role in phase 

shifting, it does not preclude the possibility that tPA and LRP-1 interact when tPA is 

present, particularly given the many ways tPA and LRP-1 can interact. Given the diurnal 

variations we see in αLRP-1, the increase in αLRP-1 at night could influence tPA activity 

in a variety of ways (Figure 4.1).  First, it could allow LRP-1 to clear tPA from the 

extracellular space, either before or after it is complexed with an inhibitor. LRP-1 recycling 

of tPA could control amounts of tPA in the extracellular space in the SCN, thus controlling 

its proteolytic activity.  Alternatively, LRP-1 may enhance tPA’s proteolytic activity by 

acting as a co-receptor.  One study found that LRP-1 acts as a co-receptor to enhance 

tPA cleavage of platelet derived growth factor-CC (PDGF-CC) in primary cultured cortical 

microglia (Su et al., 2017).  LRP-1 could use similar processes to regulate uPA or MMP 

activity in the SCN, as it binds and endocytoses them as well.  Regardless of the specifics, 

LRP-1 dependent regulation of extracellular proteolytic activity could align nicely with our 

studies on LRP-1 and the plasminogen activators in the SCN.  

4.2.5 LRP-1 influences expression and function of ECM-interacting proteins 

A second way LRP-1 influences ECM composition is by regulating ECM-interacting 

proteins.  Cell-associated proteins that can be regulated by LRP-1 include integrins and 

uPAR, which may have both independent and overlapping roles.  Interactions with these 

two molecules are points of overlap between LRP-1 and uPA that will also be highlighted 

here.  

uPAR  

uPAR is a GPI-anchored membrane receptor that is important for many uPA 

functions.  uPA binding to uPAR allows plasmin to cleave uPA into its active form, thus 

increasing uPA proteolytic activity (Lijnen et al., 1987a; Lijnen et al., 1987b). Additionally, 

uPAR can mediate signaling events through co-receptors (Lino et al., 2014).  LRP-1 and 

β1-integrin are two co-receptors that enable uPAR signaling events in neuronal systems, 

particularly in promoting axonal recovery following a CNS injury (Merino et al., 2017a). 

LRP-1’s interactions with uPAR are complex. In some contexts, LRP-1 modulates uPAR 

surface localization by endocytosing uPA-serpin complexes that are simultaneously 

bound to uPAR and LRP-1 (Conese et al., 1995).  This can serve to control uPA and uPAR  
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Figure 4-1.  Model depicting extracellular protease interactions. 

During the day, when lower levels of αLRP-1 are detected, LRP-1 may serve to 
endocytose extracellular tPA.  At night, when levels of αLRP-1 are high, it may also 
endocytose tPA, but there could be increased recycling back to cell surface.   tPA levels 
are higher at night, and this could stimulate LRP-1 endocytic activity, shedding, or 
signaling events.  Additionally, LRP-1 may act as a co-receptor increasing tPA proteolytic 
activity at night.   
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activity, as discussed above. LRP-1 can also mediate cell signaling through uPAR.  In 

other contexts uPA binding to uPAR doesn’t result in LRP-1 mediated endocytosis of the 

complex, but rather initiates LRP-1 dependent recruitment of β1-integrin to the neuronal 

membrane (Merino et al., 2017a).  The uPA-uPAR-LRP-1-integrin complex then mediates 

Rac1 activation, which can influence axonal regeneration (Merino et al., 2017b).  

Separately, binding of uPA to uPAR increases their affinity of uPAR for vitronectin and 

integrins, which promotes cell adhesion (Kanse et al., 1996; Etique et al., 2013).   

Interactions via uPAR could serve as a link between uPA and LRP-1 in the SCN.  

First, involvement of uPAR may underlie uPAs compensatory action on circadian clock 

phase shifting, which remains elusive.  We have preliminary data suggesting uPAR is 

expressed in the SCN, and that its expression levels do not exhibit circadian rhythms.  

However, a functional assessment of uPAR in the SCN has yet to be completed.  Future 

experiments could address uPAR involvement in circadian clock phase shifting, 

investigate interactions between uPAR and LRP-1 proteins, and determine if inhibiting 

LRP-1 influences uPAR expression in the SCN.  

Integrins 

LRP-1 and uPA function are also linked through interactions with integrins.  Not 

only do they work in concert with uPAR to influence integrin trafficking, as discussed 

above, but they also each influence integrin function in other ways. Integrins are 

heterodimeric transmembrane receptors that mediate cell-cell and cell-ECM adhesions.  

Integrins are expressed in mature synapses, where they coordinate synapse structure and 

function in response to changes in the extracellular environment. Integrins regulate 

synaptic transmission by affecting synaptic strength and neuronal excitability (Park & 

Goda, 2016).   For example, they can control the number and composition of AMPA 

receptors (Pozo et al., 2012), and can enhance NMDAR activity by regulating 

phosphorylation of GluN2A and GluN2B NMDAR subunits (Chavis & Westbrook, 2001; 

Shi & Ethell, 2006).  Changes in integrin binding also leads to changes in dendritic spine 

shape (Park & Goda, 2016).   Additionally, they are necessary for MMP9 to increase lateral 

diffusion of GluN1 subunits between synaptic and extrasynaptic sites, which influences 

NMDAR responses to glutamate (Michaluk et al., 2009). Collectively, integrins seem to be 

a crucial member of the extracellular milieu that influences neuronal plasticity. 
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uPAR interacts with various integrin subunits, including β1, β3, and β6, and these 

interactions can mediate some of uPARs neuronal functions (Eden et al., 2011).  β1 

integrin is a receptor for fibronectin, which is required for uPA/uPAR functions such as 

promoting axonal regeneration (Diaz et al., 2017).  uPA induces recruitment of β1 integrin 

to the plasma membrane in cerebral cortical neurons, and β1 integrin neutralizing 

antibodies block effects of uPA-uPAR binding on axonal repair (Merino et al., 2017a).  So, 

interactions between β1 integrin and fibronectin mediate uPA-induced neurorepair.  

  LRP-1 also associates with integrins, and this interaction can modify integrin 

activation, trafficking, degradation, and downstream signaling (Wujak et al., 2017).  LRP-

1 mediates integrin activity by mediating their internalization or influencing their maturation 

and localization to the cell surface (Lillis et al., 2008; Wujak et al., 2017).  In some cases, 

this involves interactions with uPAR (Czekay & Loskutoff, 2009).  In other cases, it is a 

direct association, such as when LRP-1 associates with β2-integrins on leukocytes; this 

interaction is thought to regulate integrin recycling during macrophage migration (Cao et 

al., 2006).  LRP-1 can also play a role in delivery of integrins to the cell surface (Theret et 

al., 2017).  Loss of LRP-1 correlates with reduced cell-surface expression of β1-integrin, 

but not total β1 integrin (Salicioni et al., 2004; Spijkers et al., 2005; Cao et al., 2006).  

Interestingly, RAP does not affect integrin maturation, suggesting that LRP-1’s regulation 

of integrin maturation does not require ligand binding or endocytosis (Salicioni et al., 

2004).  LRP-1 could associate with chaperones or adaptor proteins to mediate this effect, 

because LRP-1 is not co-immunoprecipitated with β1 integrin. Chaperones or adaptor 

proteins such as hsp90, Fe65, or ICAP-1 might act as a bridge between LRP-1 and integrin 

(Salicioni et al., 2004), and LRP-1’s effects sometimes depend on other molecules such 

as thrombospondin, tPA.  Integrins have not yet been assessed in the SCN.  However, 

given their ability to modulate neuroplasticity, the involvement of other cell adhesion 

molecules (CAMs) in the SCN, and their close associations with proteins in this research, 

an investigation of integrins in the SCN seems warranted.  

4.3 To shift or not to shift – decision making in the SCN 
One key question remaining regarding SCN timekeeping is how it generates such 

dramatically different responses to stimuli over the course of the day.  The same stimulus 

(light or glutamate) induces phase advances and delays when applied at night, but not 
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during the day, indicating that there are 24 hr cycles in neuronal responsiveness in the 

SCN.  The current models explaining this plasticity focus on several proteins, including 

BDNF, TrkB, NMDARs, and various intracellular effectors. However, many modulators of 

neuroplasticity identified in other regions remain uninvestigated in the SCN.  The ECM-

associated processes and astroglial rhythms discussed above likely contribute to the daily 

plasticity in the SCN.  Additionally, our finding that inhibiting LRP-1 prevents glutamate-

induced phase delays suggests that the ECM  may contribute to this decision making 

process in the clock.  Because of LRP-1’s complexity, it implicates many molecules as 

potential regulators of this function. Above, I discussed ECM associations as a potential 

mechanisms underlying LRP-1s role in phase shifting, and here I will focus on receptor 

interactions that could enable these phase shifting decisions. In particular, LRP-1 may act 

by modulating NMDAR calcium signaling in the SCN.   

4.3.1 LRP-1 and NMDAR  

NMDARs modulate neuroplasticity throughout the CNS, and in the SCN clock 

phase shifting relies heavily on NMDAR signaling.  NMDAR-based calcium-influx is 

required for glutamate-induced phase shifting, as inhibiting NMDARs prevents these 

phase shifts and NMDA administration induces night-time phase shifts (Colwell, 2001).  

While there are data supporting rhythms in NMDAR expression patterns and 

phosphorylation in the SCN (Bendova et al., 2012), many questions remain unanswered 

regarding how NMDARs are regulated in the SCN, and thus how they contribute to daily 

iterative changes in neuronal responsiveness.   

We have found that inhibiting LRP-1 prevents glutamate induced phase shifts, 

which means that we are preventing a process that depends on NMDAR signaling.  

Inhibiting LRP-1 attenuates NMDAR calcium influx in other systems (Mantuano et al., 

2013).  Thus, the mechanism through which LRP-1 is acting may involve changes in 

NMDAR responses, which could be achieved through several mechanisms.  A first set of 

possibilities relates to a direct influence of LRP-1 on NMDAR localization (Figure 4.2).  

LRP-1 can physically connect to NMDAR via PSD95 (May et al., 2004).  LRP-1 can 

regulate the surface distribution and internalization of NR2B-containing NMDAR 

receptors, which may be the source of its permissive role in phase shifting (Maier et al., 

2013).  One possible model is that LRP-1 increases the amount of NR2B-containing  
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Figure 4-2.  LRP-1 NMDAR interactions  

Models demonstrating ways that LRP-1 could influence NMDAR signaling.  Synaptic 
localization:  During the day, LRP-1 may mediate internalization of NMDARs or lateral 
diffusion away from the synapse, thus preventing phase shifts to glutamate. LRP-1 may 
recruit NMDARs to the synapse during the night, enabling shifts.  Co-receptor recruitment:  
During the day, LRP-1, NMDAR, and TrkB function independently.  At night, increased 
tPA stimulates LRP-1 recruitment of NMDAR via interactions with PSD-95, and 
transactivates TrkB receptors, enabling phase shifting responses to glutamate.  
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NMDARs on the cell surface during the night, placing them in a prime location to be 

activated by glutamate and thus allow phase shifts to occur.  During the daytime LRP-1 

may mediate the internalization of NMDARs, thus attenuating glutamate-induced 

responses.  Our finding that inhibiting LRP-1 with RAP changes NR2B subunit 

phosphorylation patterns supports the idea that LRP-1 influences NMDAR surface 

localization. However, our data are slightly counter-intuitive.  We find a decrease in 

phosphorylation on S1480 when we inhibited LRP-1 with RAP, which has been found to 

correlate with increased rather than decreased NMDAR cell surface localization. The 

original study assessing LRP-1 influence on NMDAR localization also found patterns of 

NMDAR phosphorylation that did not align with their receptor localization data 

demonstrating a reduction in NMDARs on the cell surface (Maier et al., 2013).  Regulation 

of NMDAR localization is complex, and it is possible that LRP-1 circumvents classical 

surface localization mechanisms by physically pulling NMDARs into the cell during their 

endocytic activities.  A second possibility relates to the finding that LRP-1 can localize both 

in lipid rafts and in clathrin coated pits, and can move laterally in and out of the synaptic 

regions (Laudati et al., 2016).  Thus, instead of internalizing NMDARs, LRP-1 could also 

change their synaptic vs. extrasynaptic localization, and these changes may regulate 

glutamate phase shifting responses across the day.  Synaptic vs extrasynaptic localization 

is an additional mechanism that influences glutamate signaling responses (Sanz-

Clemente et al., 2013).  Directly assessing cell surface dynamics of NMDARs and LRP-1 

over the course of the day and/or in response to RAP treatment could provide some insight 

into these scenarios in the SCN.   

Finally, although it has not been investigated with respect to LRP-1 activity, 

another key regulator of NMDAR signaling properties is NMDAR subunit composition.  

NMDAR subunit composition varies throughout the CNS and changes depending on 

neuronal activity.  NMDARs consist of GluN1 subunits paired with one of four GluN2 

subunits (GluN2A-D).  The four GluN2 subunits are largely responsible for functional 

heterogeneity.  GluN2A and GluN2B are thought to have central roles in synaptic plasticity 

(Paoletti et al., 2013). NMDAR subunit composition also varies according to cellular 

localization. Generally, synaptic NMDARs contain GluN1/GluN2A, and heterotrimeric 

GluN1/GluN2A/GluN2B receptors, while extrasynaptic NMDARs contain a higher 

proportion of GluN2B subunits, although this is a drastic oversimplification. NMDARs are 
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mobile, and lateral diffusion can contribute to changes in NMDAR activities (Paoletti et al., 

2013).  NMDAR subunit composition is highly plastic, and changes in subunit composition 

is an additional mechanism fine-tuning NMDAR responses (Paoletti et al., 2013).   

Individual NMDAR subunits exhibit rhythmic patterns of expression in the SCN.  In 

particular, total NMDAR and NR2A subunit expression is higher at night, and in general 

NMDAR activity is higher at night than in the day in the SCN (Bendova et al., 2009).    

Given the ability of LRP-1 to affect so many other NMDAR functions, it is possible that it 

contributes to the recruitment of specific NMDAR subunits – a concept that has yet to be 

explored.  

4.3.2 LRP-1 – NMDAR – Trk receptor complexes and their relevance to clock phase 
shifts 

In addition to influencing NMDAR localization, LRP-1 acts in conjunction with 

NMDARs and Trk receptors as co-receptors to induce signaling events in response to 

extracellular ligands (Mantuano et al., 2013). For example, NMDAR can function as an 

LRP-1 coreceptor to promote Schwann cell survival and migration (Mantuano et al., 2015).  

LRP-1, NMDAR, and Trk receptors assemble to form a unique co-receptor system that 

integrates signaling events in response to LRP-1 ligands (Mantuano et al., 2013).  LRP-1 

cell signaling is ligand dependent, and this may be in part because different ligands induce 

different receptor co-recruitment (Mantuano et al., 2013).   

Another important LRP-1:Trk ligand is a2-macroglobulin. The ability of a2-

macroglobulin to promote neurite outgrowth on PC12 cells, N2a cells, and cerebellar 

granule neurons requires both LRP-1 binding and Trk receptor transactivation via SFKs 

(Shi et al., 2009).  a2-macroglobulin binding to LRP-1 induces Trk phosphorylation in an 

SFK dependent manner.  SFK antagonism or Trk receptor inhibition prevents the 

responses mediated by a2-macroglobulin and tPA, which includes ERK1/2 activation and 

neurite outgrowth.  So, a2-macroglobulin stimulated LRP-1-dependend Trk transactivation 

may be a distinct pathway influencing cell signaling without NMDARs (Rebeck, 2009). In 

PC12 and N2a neuron-like cell culture tPA induces ERK1/2 activation in two phases, one 

that is LRP-1 dependent and rapid, and a slower one that is independent of LRP-1 

(Mantuano et al., 2013).  The LRP-1 dependent phase involves both NMDAR and Trk 

receptors, which function as a single signaling system (Mantuano et al., 2013).  Inhibiting 
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either NMDAR with MK801 prevents tERK1/2 activation, and it prevents tPA or a2-

macroglobulin induced phosphorylation of Trk receptors (Mantuano et al., 2013).  So the 

data support a model where some LRP-1 ligands (but not all), recruit NMDARs as a 

coreceptor to stimulate transactivation of Trk receptors, with the conclusion being that all 

three work in conjunction to mediate ERK1/2 activation (Mantuano et al., 2013).  It is also 

interesting to note that PSD-95 is recruited to LRP-1 following tPA or α2-macroglobulin 

treatment.  While this was demonstrated with TrkA receptors in neuron-like cells, it is 

plausible that a similar receptor platform involving TrkB receptors mediates signaling in 

the SCN.  Each of these proteins is implicated independently in gating phase shifting:  tPA 

levels increase at night and this is necessary for glutamate-induced phase shifts in vitro, 

NMDARs are the primary receptor mediating photic/glutamate phase shifts, TrkB 

receptors are necessary for glutamate phase shifts, and here we have demonstrated that 

LRP-1 is also required for phase shifting.  A possible model is that high night-time tPA 

expression allows it to bind to LRP-1, mediating signaling events that require both NMDAR 

and TrkB receptors, that ultimately lead to downstream signaling events (Figure 4.2).  The 

recruitment of this complex could also serve to increase neuronal responses to glutamate. 

As with the other possibilities described, this model could overlap with additional models 

(Figure 4.3).   

4.3.3 LRP-1 and AMPA 

Finally, it is worth mentioning that LRP-1 can also interact with AMPA receptors.  

AMPARs are also important for LTP and LTD and are regulated largely through 

phosphorylation and de-phosphorylation of their c-terminal domain (Lee et al., 2000).  

AMPA receptors traffic rapidly, moving through endocytic pathways, sorting to degradation 

pathways or being recycled back to the plasma membrane (Huganir & Nicoll, 2013), where 

they influence dendrite and spine motility and contribute to synaptic plasticity.  AMPA 

receptors participate in photic phase shifts by acting upstream of NMDAR, probably by 

removing a magnesium block (Mintz et al., 1999; Mizoro et al., 2010).  Conditional 

neuronal knockout of the Lrp1 gene decreases level of GluA1 mRNA and protein in the 

brain (Liu et al., 2010).   LRP-1 can also influence the cellular distribution, turnover and 

phosphorylation of GluA1, and this influences calcium influx, neurite outgrowth, and 

filipodia formation in neurons (Gan et al., 2014).  GluA1, LRP-1 and PSD95 form  



91 

 

 

Figure 4-3.  Model of LRP-1 and plasminogen activator interactions in the SCN. 

LRP-1, tPA, and uPA interact in a variety of ways to mediate glutamate-induced phase 
shifting in the mammalian SCN.  Known interactions include tPA or uPA plasmin-
dependent generation of mBDNF, activating TrkB receptors, and enabling NMDAR-
dependent glutamate-induced phase shifts.  LRP-1 is also required for phase shifting in 
vitro, but the mechanism is unclear.  Potential interactions relevant to SCN clock function 
include associations with NMDARs via PSD95 and transactivation of Trk receptors.  
Ligand binding to LRP-1 may result in a variety of consequences, including ligand 
endocytosis, recycling, degradation, and/or activation of intracellular signaling.  Shed LRP-
1 in the extracellular space may also impact LRP-1 ligand function.  Interactions with uPAR 
or integrins could also regulate phase shifts, and their role could involve interactions with 
the ECM. Much more work is necessary to fully understand how these proteins act in 
concert to coordinate phase shifting responses in the SCN.  
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complexes, similar to those seen with NMDARs, and these could influence AMPA receptor 

recycling (Gan et al., 2014).  Whether or not LRP-1 is influencing AMPARs in the SCN is 

another question that remains to be explored.   

4.3.4 Global considerations for LRP-1 

Although our study of LRP-1 focuses on SCN timekeeping mechanisms, a more 

global role for LRP-1 in daily rhythmicity throughout the body should not be ignored.  LRP-

1 responses are largely context dependent, and circadian rhythms in cellular signaling 

seem to be the norm, not an exception.  With that in mind, understanding how LRP-1 

functions across the day may be important to understand its physiological influence.  

Additionally, our data indicate LRP-1 does not simply respond passively to extracellular 

changes, but serves to regulate time-keeping decisions.  If we are to extrapolate this 

finding to the remainder of the body, it will be important to understand how circadian timing 

influences LRP-1 effects, and LRP-1 influences the timing of physiology.  With that in 

mind, there are several tantalizing connections for which LRP-1 and an understanding of 

LRP-1 in clocks could have translational benefits. 

4.3.5 Metabolic syndrome  

First, disruptions in both LRP-1 and circadian rhythms are associated with 

development of metabolic syndrome, which is a series of physiological, metabolic, and 

biochemical risk factors for type 2 diabetes and cardiovascular disease (Au et al., 2017). 

LRP-1 is involved in insulin signaling and glucose homeostasis, both of which are 

massively disrupted in metabolic syndrome and associated pathologies (Au et al., 2017).  

Shift work disorder (a case of chronic circadian disruption) is also associated with an 

increased prevalence of metabolic syndrome (Tarquini & Mazzoccoli, 2017). Glucose 

homeostasis also contributes to SCN clock function, and in turn the clock regulates daily 

timing of glucose metabolism (Ruiter et al., 2006; Dibner & Schibler, 2015). Much more 

work needs to be done to fully connect the pieces of this enormous puzzle, but our data 

demonstrating a role for LRP-1 in circadian rhythms suggest that it could be a prime 

candidate linking the processes.     
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4.3.6 Alzheimer’s disease 

LRP-1 and circadian rhythms also overlap in the context of Alzheimer’s disease 

development and progression.  LRP-1 regulates the metabolism of amyloid-β, and 

preclinical studies suggest that LRP-1 plays a role in regulating apolipoprotein-E (APO-E) 

pathogenesis, though the precise roles of LRP-1 remain elusive in this context as well 

(Shinohara et al., 2017).   Circadian disruptions, notably changes in the sleep-wake cycle, 

are also associated with neurodegenerative disorders such as Alzheimer’s disease; 

though the jury is still out regarding which component is the causative agent (Musiek & 

Holtzman, 2016). Given that LRP-1 is being proposed as a therapeutic target for AD, and 

that the roles of LRP-1 are context dependent (Shinohara et al., 2017), the circadian 

contributions to LRP-1 function, both in the brain and throughout the periphery may be 

important to untangle for optimal therapeutic benefit.  With the intriguing proposal that 

Alzheimer’s disease can be characterized as type 3 diabetes because of insulin 

dysregulation in the brain, the associations  between LRP-1, circadian rhythms metabolic 

disorders and dementia increase (de la Monte & Wands, 2008).   

4.4 Final conclusions 
In conclusion, here we have presented two independent studies, one finding that 

uPA can compensate to allow phase shifting in tPA-/- mice, and the other showing that 

LRP-1 is necessary for glutamate induced phase shifts of SCN neuronal activity rhythms 

in vitro.  While the plasminogen activators and LRP-1 overlap in some functions, they also 

have distinct effects on neuronal systems, and it will be important to untangle the 

mechanisms underlying the roles of each in the SCN.  While uPA expression is low in the 

brain, the finding that uPA is required for a normal neuronal response in tPA-/- mice 

suggests that a closer look at uPA’s physiological role, in addition to its pathological roles, 

may be warranted.   

On a different note, our finding that LRP-1 is involved in circadian clock phase 

shifting the first indication of a protein with its capabilities involved in timekeeping 

mechanisms.  LRP-1 (and other LDL receptors) are unique in their endocytic and signaling 

capabilities.  LRP-1 binds a large and diverse range of ligands, and mediates a complex 

array of events following ligand binding, including endocytosis, signal transduction, and 

co-receptor recruitment.  LRP-1 functions are context dependent, and in the SCN context 
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changes dramatically over the course of 24 hours.  LRP-1 could be simply responding to 

the changing extracellular environment of the SCN, nonselectively binding ligands based 

on what is most available in the ECM.  However, such a passive role doesn’t explain why 

blocking ligand binding prevents phase shifts.  This result suggests that somehow LRP-1 

is communicating information to make a decision on whether or not to shift.  Understanding 

what ligands and what intracellular effectors are involved will be important to fully 

understand LRP-1’s role in the clock, where  LRP-1 may serve as both a surveyor and 

regulator of extracellular space in the SCN.  
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