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ABSTRACT 
 
Intercellular communication is indispensable for development of complex 
multicellular organisms. Cell to cell communication in plants is heavily reliant on 
receptor-like-kinases (RLKs) located on the surface of cells. ERECTA (ER) and 
its two paralogs ERECTA-like 1 (ERL1) and ERL2 are leucine-rich repeats RLKs 
that regulate multiple developmental processes. Ligands of the ERf receptors are 
small secreted peptides known as Epidermal Patterning Factor-Like (EPFL). In 
Arabidopsis, the EPFL family is made of 11 genes, several of which remain to be 
characterized. Results presented in this work include: 
 
 

1) The use of structure function analysis found that juxtamembrane domain 
and kinase activity is essential for ERECTA signaling activity while the 
carboxy-terminal tail is not. Analysis of the activation loop in the kinase 
domain revealed the importance of phosphorylation sites that modulate 
the signaling of ERECTA. Lastly, not all developmental processes 
regulated by the ERECTA family require kinase activity suggesting that 
there are different mechanisms for stomata development and regulation of 
organ growth.  
 

2) Ectopic expression of ERECTA in specified regions of the shoot apical 
meristem (SAM) releveled that central zone expression was sufficient to 
rescue the meristem size and leaf initiation defects of er erl1 erl2 mutant. 
Transcriptional reporter lines identified the putative ER family ligands that 
were expressed near the SAM. A genetics approach reveled EPFL1, 
EPFL2, EPFL4 and EPFL6 to redundantly regulate meristem size and rate 
of leaf initiation. Lastly, ectopic expression of EPFL1 in the peripheral 
zone of the SAM rescued SAM phenotypes of the epfl1 epfl2 epfl4 eplf6 
mutant. These results suggest that the ERECTA family signaling pathway 
mediates communication between the peripheral zone and central zone of 
the SAM. 
 

This work expands our knowledge of ERECTA family signaling and its 
implementation in the role of SAM regulation.  
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General background 

 
The fundamental goal of developmental biology is to understand how a 

single zygotic cell becomes a complex multicellular organism. At the heart of the 

developmental process lies intercellular communication. Cell to cell 

communication allows for coordinated differentiation and thus formation of 

specialized tissues. This communication is of particular importance in plants 

because cells develop in a position dependent manner rather than the lineage 

dependent method seen in animals. Although plants cells are able to 

communicate via channels known as plasmodesmata, they also heavily rely on 

signals sent through the extracellular space. Extracellular signaling has the 

advantage that it covers larger distances at faster rates but requires cell surface 

receptors to perceive the signals. Plants make use of several different types of 

cell surface receptors; the largest and most diverse group of plant receptors is 

the receptor-like kinase (RLKs) family (Shiu and Bleecker 2001).  

With 610 members, the RLK gene family is one of the largest gene 

families in Arabidopsis thaliana, accounting for roughly 2.5% of protein coding 

genes (Shiu and Bleecker 2001). Sharing a common ancestor with animal 

receptor tyrosine kinases (RTKs), plant RLKs diversified to encompass a wide 

array of different functions from hormone perception to recognizing foreign 

proteins such as bacterial pathogens (Shiu and Bleecker 2001). Structurally the 

RLKs are composed of three major parts: an extracellular domain that recognizes 

the signal, a cytoplasmic kinase domain, and a single pass transmembrane 

domain that connects the two together, figure 1.1. Unlike animals, which use 

tyrosine kinases to signal, plants predominantly use serine/threonine kinases. 

The largest subfamily of the RLKs is named after the leucine rich repeats found 

in the extracellular domain of the receptor (LRR-RLK). The Arabidopsis genome 

contains 223 LRR-RLK genes and only 60 have been linked to a biological 

function, but even those are not fully understood and new roles are being 

discovered and further studied (Wu, Xun et al. 2016).  
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Figure 1.1. Cartoon depiction of a generalized Receptor Like Kinase 
heterodimer. Two receptor proteins (one green, the other purple) become 
associated with each other by the signaling molecule (peach). Major domain 
names are labeled on the right and specific components are labeled on the left. 
Regulatory phosphorylation sites are labeled with yellow diamonds. 

 

Studies on the plant LRR-RLKs, BRASSINOSTEROID INSENSITIVE 1 

(BRI1) and BRI1-ASSOCIATED KINASE 1 (BAK1) have found that activation, 

regulation, and signaling occur in a manner similar to mammalian RTKs (Wang, 

Goshe et al. 2005, Wang, Li et al. 2005). BRI1 and BAK1 function as co-

receptors for sensing the plant hormone brassinosteroid, which regulates several 

aspects of plant growth (Belkhadir and Jaillais 2015). Brassinosteroid binds to 

the LRR regions of BRI1 and BAK1 creating a molecular bridge between 

receptors allowing for the formation of a receptor heterodimer (Santiago, Henzler 

et al. 2013, Sun, Han et al. 2013). Ligand induced dimerization brings the kinase 

domains of BRI1 and BAK1 within proximity allowing for sequential 

transphosphorylation of residues in a ping-pong manner that increases kinase 

activity at each step (Wang, Kota et al. 2008). The cytoplasmic domain of LRR-
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RLKs can be further divided into the juxtamembrane domain, kinase domain and 

C-terminal tail, all three of which contain regulatory phosphorylation sites. Kinase 

domain phosphorylation occurs in the activation loop and this is a frequent 

mechanism for kinase activation (Adams 2003). The juxtamembrane domain 

(JMD) and C-terminal tail show little sequence conservation among different 

receptors and thus have different regulatory roles such as kinase inhibition or a 

docking site for phosphorylation substrate (Pawson 2002). The BRI1 receptor 

contains phosphorylation sites in both the juxtamembrane domain and the c-

terminal tail which have a negative impact on kinase activity when 

unphosphorylated (Wang, Kota et al. 2008). Once the BRI1-BAK1 heterodimer 

has been fully activated the kinase of BRI1 initates a signaling cascade that 

ultimately alters gene expression (Belkhadir and Chory 2006). 

ERECTA family receptors  

 
The ERECTA gene family (ERf) is composed of LRR-RLKs that first 

appeared in early land plants (Villagarcia, Morin et al. 2012). The erecta 

phenotype has been known since 1957 when it was isolated from X-ray irradiated 

Arabidopsis seeds giving rise to a short, compact, erect plant known as 

Landsberg erecta, figure 1.2 (Redei 1992). Originally, this gene was linked to 

plant architecture due to the phenotype of compact inflorescences (flower 

clusters), short siliques (seed pods), and short pedicels (organs attaching flowers 

to the main stem), but a more complete picture emerged when the paralogs of 

ERECTA were discovered (Shpak, Berthiaume et al. 2004). All angiosperms that 

have had their genome sequenced contain at least two members in the ERf gene 

family. In Arabidopsis there are three member: ERECTA (ER), ERECTA LIKE 1 

(ERL1) and ERECTA LIKE 2 (ERL2) (Shpak, Berthiaume et al. 2004). erl1 and 

erl2 single mutants along with the erl1 erl2 double mutant lack any noticeable 

phenotype but double mutants of er erl1 and er erl2 display an enhancement of 

the er phenotype (Torii, Mitsukawa et al. 1996, Shpak, Berthiaume et al. 2004). 

The er erl1 erl2 triple mutant displays the strongest phenotype with extreme 
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dwarfism, figure 1.2, which is believed to be caused by ERf receptors influencing 

the length of the cell cycle and thus cell proliferation (Shpak, Berthiaume et al. 

2004, Bundy, Thompson et al. 2012). The most famous phenotype of the er erl1 

erl2 mutant is stomata clustering (Shpak, McAbee et al. 2005). Stomata, located 

on the epidermis, are pores composed of two cells which regulate gas exchange 

and transpiration (Han and Torii 2016). Under normal conditions, stomata only 

form interspersed between two pavement cells, never clustered together. The 

ERf receptors have been found to suppress the asymmetric cell divisions that 

lead to stomata (Han and Torii 2016). The stomata clustering phenotype of the er 

erl1 erl2 mutant has been particularly useful because it is easy to identify and is 

unique to this pathway thus leading to the discovery of many other components 

in the ERf signaling pathway (Tameshige, Ikematsu et al. 2017). The ERf genes 

also play other regulatory roles in reproductive processes such as ovule 

development, early anther development, and floral organ identity that cause the 

er erl1 erl2 triple mutant to be infertile (Pillitteri, Bemis et al. 2007, Hord, Suna et 

al. 2008, Bemis, Lee et al. 2013). Lastly, the most recently discovered regulatory 

role of the ERf genes is in the vegetative shoot apical meristem (SAM) where 

they regulate meristem size, leaf initiation, and phyllotaxy (Chen, Wilson et al. 

2013, Uchida, Shimada et al. 2013, Tameshige, Okamoto et al. 2016).  

Of all the developmental processes that ERf receptors regulate, their role 

in the SAM is least understood. Located at the top of the main stem, the SAM 

houses the stem cells from which all aboveground organs will form, figure 1.3. 

The slowly dividing stem cells are confined in the central zone (CZ) and are 

displaced into surrounding zones, peripheral zone (PZ) or underlying rib zone 

(RZ), where they will differentiate into organs such as leaves, flowers or the stem 

(Poethig 1987). Stem cell homeostasis and differentiation must be concurrently 

regulated to prevent depletion of stem cells that would terminate the SAM or an 

over proliferation of cells that would alter the architecture of the plant. The 

vegetative SAM of the er erl1 erl2 mutant is greatly increased in width, roughly  

erecta 
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A B 

C 

WT er erl1 erl2 

 

Figure 1.2. Major phenotypes of erecta and erecta family mutants. (A) Compact 
inflorescence architecture of erecta single mutant and cartoon cross section 
depiction. Short pedicels of erecta cause the floral buds to cluster closer 
together. (B) Plant height phenotype of erecta and erf mutants, picture taken at 
30 days post germination. (C) Stomata clustering phenotype of erf mutant, in WT 
stomata are interspersed in between puzzle shaped pavement cells, in erf mutant 
stomata form in abnormal clusters, adapted from (Shpak, McAbee et al. 2005). 

 

twice as large as the SAM in wildtype (Chen, Wilson et al. 2013, Uchida, 

Shimada et al. 2013). Increased SAM size can be caused by a number of 

different reasons; one possibility is that stem cells in the CZ are dividing too 

rapidly causing the CZ to swell in size (Reddy and Meyerowitz 2005). Another 

possibility for SAM enlargement is that cells in the PZ are not differentiating and 

exiting the PZ fast enough, causing a buildup of stem cells in the CZ (Reddy and 

Meyerowitz 2005). One group has presented evidence that the ERf receptors 

regulate stem cell homeostasis by modulating cytokinin signaling (Uchida, 

Shimada et al. 2013). The plant hormone cytokinin is known to regulate stem cell 

WT 
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homeostasis in the SAM by influencing the WUSHEL-CLAVATAs (WUS-CLV3) 

signaling pathway (Leibfried, To et al. 2005, Gordon, Chickarmane et al. 2009, 

Chickarmane, Gordon et al. 2012). The SAM of er erl1 erl2 mutant is more 

sensitive to cytokinin and there do exist genetic interactions between the ERf 

genes and both WUS and CLV3 but these interactions fail to address the leaf 

initiation phenotype or explain how intercellular communication is incorporated 

into this mechanism.  

Reduced organ formation and abnormal patterning is another phenotype 

of the er erl1 erl2 mutant (Chen, Wilson et al. 2013). To ensure efficient capture 

of sunlight and to accommodate for environmental conditions herbivory, plants 

regulate the rate of production and patterning of leaves in the PZ of the SAM 

(Reinhardt, Pesce et al. 2003). Leaf initiation is controlled by the plant hormone 

auxin which is transported throughout the outermost layer of the SAM to form 

patterns of gradients and maxima that mark the site of leaf initiation (Bayer, 

Smith et al. 2009, Braybrook and Kuhlemeier 2010). The formation of the auxin 

patterns ensures a strict patterning of leaves around the stem known as 

phyllotaxy (Reinhardt, Pesce et al. 2003). In er erl1 erl2 mutant leaf initiation is 

greatly reduced and the leaves that form do so in a disorganized manner rather 

than the consistent spiral patterning seen in wildtype (Chen, Wilson et al. 2013). 

The organ formation and patterning phenotypes of er erl1 erl2 mutant are linked 

to the mislocalization of the polar auxin transport protein, PIN1 (Chen, Wilson et 

al. 2013). 

ERf signal transduction pathway 

 
The ligands of the ERf receptors are a family of small-secreted cysteine-

rich peptides known as the EPIDERMAL PATTERNING FACTOR - LIKE 

(EPF/EPFL) family which function as agonists or antagonists (Richardson and 

Torii 2013). EPF1, the founding member of the family, was found in a screen 

designed to identify small signaling peptides that would affect stomata  
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Figure 1.3 Cartoon depiction of the vegetative shoot apical meristem zones and 
emerging plant organs. LP, leaf primordia; CZ, central zone; PZ, peripheral zone; 
RZ, rib zone.  

 
development (Hara, Kajita et al. 2007). When overexpressed using the 35S 

promoter EPF1 decreased stomata density. Ten additional paralogues have 

been identified within the Arabidopsis genome (Hara, Kajita et al. 2007, Hara, 

Yokoo et al. 2009). EPF2 was found to be another negative regulator of stomata 

and the phenotype is additive with EPF1 (Hara, Yokoo et al. 2009, Hunt and 

Gray 2009). EPF1 and EPF2 have different roles in regulating stomata 

development; EPF2 controls the initial asymmetric divisions whereas EPF1 

regulates the later asymmetric divisions. Both EPF1 and EPF2 were found to be 

expressed in stomata lineage cells but their temporal regulation is reflective of 

their function (Hara, Yokoo et al. 2009, Hunt and Gray 2009). 

EPFL9/STOMAGEN is an antagonist of the ERf receptors that positively 

regulates stomata density (Hunt, Bailey et al. 2010, Kondo, Kajita et al. 2010). 

Unlike EPF1 and EPF2, EPFL9/STOMAGEN was found to be expressed in the 

mesophyll but functioned in the epidermis demonstrating how tissues such as the 

mesophyll could secrete peptides to regulate stomata development in the 
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epidermis (Sugano, Shimada et al. 2010).  EPFL4/CHALLAH-LIKE-2 (CLL2) and 

EPFL6/CHALLAH (CHAL) have been shown to regulate the compact 

inflorescence phenotype of erecta by regulating vasculature development 

(Abrash, Davies et al. 2011, Uchida, Lee et al. 2012). Most recently, EPFL2 was 

found to regulate a novel phenotype of erecta, which is the development leaf 

serrations (Tameshige, Okamoto et al. 2016, Tameshige, Okamoto et al. 2016). 

The leaf serration phenotype was found to be controlled by the plant hormone 

auxin which upregulated the ERf receptors and downregulated the expression of 

EPFL2 (Tameshige, Okamoto et al. 2016). The EPF/EPFL ligands are expressed 

as propeptides that are cleaved to produce their bioactive form, the evidence for 

this was synthetic versions of EPFL9/STOMAGEN having different levels of 

activity depending on their form (Kondo, Kajita et al. 2010). The components of 

EPF/EPFL processing are largely unknown although one protease has been 

found to cleave the EPF2 propeptide (Engineer, Ghassemian et al. 2014). CO2 

RESPONSE SECRETED PROTEASE (CRSP) has been found to be upregulated 

by CO2 and process EPF2 into its bioactive form thus allowing the plants to 

suppress stomata development in response to CO2 (Engineer, Ghassemian et al. 

2014).  

ERf signal transduction is dependent upon the physical interactions of 

multiple proteins. TOO MANY MOUTHS (TMM) encodes a receptor like protein 

with an LRR extracellular domain and transmembrane domain but lacking the 

intercellular kinase domain therefore requiring a partner receptor to produce a 

signal (Yang and Sack 1995, Nadeau and Sack 2002). The tmm mutant forms 

stomata clusters and is insensitive to EPF2, which suggested it is part of the 

EPF2 sensing array (Hara, Yokoo et al. 2009). TMM was later shown to 

physically interact with the ERf proteins, and recent x-ray crystallography work 

has found that this interaction is a requirement for EPF1 and EPF2 to be able to 

bind with ERL1 (Lee, Kuroha et al. 2012, Lin, Zhang et al. 2017). From 

biochemical experiments we now know EPFL9/STOMAGEN competes against 

EPF1 and EPF2 for interactions with the TMM-ERf complex thus allowing plants 
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to fine tune stomata development (Lee, Hnilova et al. 2015, Lin, Zhang et al. 

2017). NMR studies have revealed that different interactions comparing the 

positive and negative regulators of stomata are due to a variable loop region 

within the ligands, and swapping the loop of EPFL9/STOMAGEN onto a EPF2 

scaffold swaps their function (Ohki, Takeuchi et al. 2011). EPFL4/CLL2 and 

EPFL6/CHAL also interact with ERf receptors but with no need for the TMM co-

receptor (Lin, Zhang et al. 2017). Another family of receptors, known as the 

SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family, act as co-

receptors for ERf receptors, this  interactions has been shown through co-

immunoprecipitation (Meng, Chen et al. 2015).  In vitro kinase assays 

demonstrated the ability of the receptors to transphosphorylate each other 

(Meng, Chen et al. 2015). Interestingly, serk family mutant produces the same 

compact inflorescence architecture as erecta and also produces stomata clusters 

which are insensitive to EPF1 and EPF2 (Meng, Chen et al. 2015). The 

association of ERf receptors with SERK receptors is of particular interest 

because SERK receptors are also known to act as co-receptors with a number of 

other signaling pathways such as brassinosteroid signaling, bacterial recognition, 

and phytosulfokine signaling (Li, Wen et al. 2002, Sun, Han et al. 2013, Sun, Li et 

al. 2013, Wang, Li et al. 2015). That association of so many different RLK 

receptors associating with each other might suggest they function as a 

multicomponent array of receptors allowing for the plant plasma membrane to 

function as a computer that modulates signals in a cell specific manner. 

Downstream of the ERf receptors and is a Mitogen-Activated-Kinase cascade 

made up of YODA, MAP KINASE KINASE 4/5 and MAP KINASE 3/6 (Bergmann, 

Lukowitz et al. 2004, Wang, Ngwenyama et al. 2007, Lampard, Lukowitz et al. 

2009). For the EPF2-TMM-ER complex, the cascade leads to the destabilization 

of the transcription factor SPEECHLESS, however targets for other complexes or 

the initial cytoplasmic interactions remain unknown (MacAlister, Ohashi-Ito et al. 

2007, Pillitteri, Sloan et al. 2007).  
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Introduction to chapters 

 
 The second chapter seeks to gain a better understanding of how the 

intracellular domains of ERECTA are regulated. Of all components involved in 

ERf signaling, the cytoplasmic kinase and its associated c-terminal tail and 

juxtamembrane domains are the least studied. We performed a structure function 

analysis to probe putative phosphorylation sites and regulatory regions in order 

to understand how they contribute to ERf signaling. Using site directed 

mutagenesis we produced altered versions of ERECTA and introduced them into 

the erecta single mutant and the er erl1 erl2 triple mutant. By analyzing the 

phenotypes of transgenic plants we were able to dissect which regions of the 

cytoplasmic kinase domain have regulatory functions. The results in this chapter 

highlight the importance of ERECTA’s ability to phosphorylate and the 

importance of the juxtamembrane domain for the receptor. Additionally, we found 

the C-terminal tail to be non-essential for signaling. We were able to analyze 

putative phosphorylation sites within the activation loop of the kinase and dissect 

their importance in regulating ERECTA signaling. Our data predicts threonine 

807 to be an activation phosphorylation site and tyrosine 815 and 820 to be 

inhibitory phosphorylation sites. Lastly, we found nonfunctioning versions of 

ERECTA were still able to rescue some phenotypes of the erf mutant suggesting 

that there are multiple molecular mechanisms for ERf signaling to occur.  

 The third chapter further examines the role of ERf signaling in SAM 

development. Using heterologous promoters we were able to ectopically express 

ERECTA to confined regions of the vegetative SAM in the er erl1 erl2 mutant to 

test which regions are affected by ERf signaling output. We found that CZ 

expression of ERECTA was best suited for rescuing the meristem width and leaf 

initiation phenotypes of the er erl1 erl2 mutant. Using transcriptional reporters we 

examined expression patterns of the 11 ERf ligands to find the signaling 

components that control the er erl1 erl2 SAM phenotype. Based on the 

expression patterns, we were able to generate mutant lines of the ERf ligands to 
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test their contributions to the phenotype. We found EPFL1, EPFL2, EPFL4, and 

EPFL6 to be expressed in the meristem, and analysis of the quadruple mutant 

revealed that the four genes redundantly regulate the ERf receptors’ role in the 

SAM. This lead to a model that EPFL ligands signal from the PZ to the ERf 

receptors in the CZ. This model was tested and supported with experiments 

using heterologous promoters to express EPFL1 in different SAM regions. 
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Abstract 

In plants, extracellular signals are primarily sensed by plasma membrane-

localized receptor-like kinases (RLKs). ERECTA is a leucine-rich repeat RLK that 

together with its paralogs ERECTA-like 1 (ERL1) and ERL2 regulates multiple 

aspects of plant development. ERECTA forms complexes with a range of co-

receptors and senses secreted cysteine-rich small proteins from the EPF/EPFL 

family. Currently the mechanism of the cytoplasmic domain activation and 

transmission of the signal by ERECTA is unclear. To gain a better understanding 

we performed a structure–function analysis by introducing altered ERECTA 

genes into erecta and erecta erl1 erl2 mutants. These experiments indicated that 

ERECTA’s ability to phosphorylate is functionally significant, and that while the 

cytoplasmic juxtamembrane domain is important for ERECTA function, the C-

terminal tail is not. An analysis of multiple putative phosphorylation sites 

identified four amino acids in the activation segment of the kinase domain as 

functionally important. Homology of those residues to functionally significant 

amino acids in multiple other plant RLKs emphasizes similarities in RLK function. 

Specifically, our data predicts Thr807 as a primary site of phosphor-activation 

and potential inhibitory phosphorylation of Tyr815 and Tyr820. In addition, our 

experiments suggest that there are differences in the molecular mechanism of 

ERECTA function during regulation of stomata development and in elongation of 

above-ground organs. 

 
 



21 
 

Introduction 

 
Intercellular communications are essential for development of multicellular 

organisms where cell proliferation and differentiation must be cooperative and 

structured to attain a desired shape and function. Plants especially rely on 

intercellular communications as cell behavior is often position-dependent. To 

detect extracellular signals, plant cells have a large group of receptor-like kinases 

(RLKs). These receptors possess a structurally diverse extracellular ligand-

sensing domain, a single-pass transmembrane domain, and a cytoplasmic 

serine/threonine/tyrosine kinase domain. 

The ERECTA family (ERf) RLKs appeared early during land plant 

evolution and are involved in the regulation of multiple developmental processes 

(Villagarcia et al., 2012, Shpak, 2013). During embryogenesis they stimulate 

cotyledon elongation (Chen and Shpak, 2014). Post-embryonically, ERfs 

promote growth of all above-ground organs (Shpak et al., 2004). ERfs have been 

demonstrated to regulate stomata formation, the function of the shoot apical 

meristem (SAM), and the development of flowers (Shpak, 2013). In angiosperms, 

ERf consists of two or more genes, with Arabidopsis having three: ERECTA 

(ER), ERECTA-like 1 (ERL1) and ERECTA-like 2 (ERL2) (Shpak et al., 2004, 

Villagarcia et al., 2012). Although all three genes regulate above-ground organ 

elongation, they exhibit unequal redundancy. While erecta mutants have 

compact inflorescences due to shorter internodes and pedicels, single mutations 

in erl1 and erl2 confer no detectable phenotype (Torii et al., 1996; Shpak et al., 

2004). Loss of all three genes leads to severe dwarfism (Shpak et al., 2004). The 

reduced growth of above-ground plant organs in ERf mutants is associated with 

a decrease in the cell proliferation rate (Shpak et al., 2003, 2004). An analysis of 

pedicel growth suggested that ERECTA accelerates the elongation of cells along 

the proximo-distal axis and shortens the duration of the cell cycle (Bundy et al., 

2012). The asymmetric redundancy of ERf receptors is also evident during 

stomata development. In the initial stage of the stomata development process, 
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ERfs synergistically inhibit differentiation of protodermal cells into meristemoid 

mother cells. ERECTA plays a major role during this process, as an increased 

number of asymmetric cell divisions has been observed only in the erecta single 

mutant (Shpak et al., 2005). Once meristemoids are formed, ERL1 and ERL2 

inhibit their differentiation into guard mother cells (Shpak et al., 2005). In the 

SAM, ERfs seem to be equally redundant; the receptors synergistically inhibit 

meristem enlargement, promote leaf initiation, and contribute to establishment of 

phyllotaxy (Chen et al., 2013; Uchida et al., 2013). Finally, ERfs play an 

important role in the regulation of ovule and early anther development (Pillitteri et 

al., 2007; Hord et al., 2008; Bemis et al., 2013). The er erl1 erl2 mutant is sterile 

with compromised male and female fertility (Shpak et al., 2004). 

ERECTA, ERL1, and ERL2 receptors form homo- and heterodimers (Lee 

et al., 2012). They also make complexes with SOMATIC EMBRYOGENESIS 

RECEPTOR KINASEs (SERKs) and with the transmembrane receptor-like 

protein TOO MANY MOUTHS (TMM) (Lee et al., 2012; Meng et al., 2015). The 

activity of ERf receptors is regulated by a family of secreted cysteine-rich small 

proteins from the EPF/EPFL family, which can function as agonists or 

antagonists (Shimada et al., 2011). A MAP kinase cascade consisting of YODA, 

MKK4, MKK5, MPK3, and MPK6 functions downstream (Bergmann et al., 2004; 

Wang et al., 2007; Meng et al., 2012). Changes in the structure of receptor 

complexes upon ligand binding and the mechanism of signal transmission from 

ERfs to YODA are currently not clear. 

ERf protein structure consists of an extracellular leucine-rich domain 

(LRR), a single-span transmembrane domain, and a cytoplasmic Ser/Thr kinase 

domain flanked by a juxtamembrane domain (JMD) and a C-terminal tail (Figure 

2.1 A). Previously, it was shown that the cytoplasmic segment of ERECTA is 

functionally important as its deletion leads to a dominant negative phenotype 

(Shpak et al., 2003). To gain a better understanding of how ERECTA activates 

downstream signaling, we performed a structure–function analysis of this 

domain. These studies demonstrated that the cytoplasmic JMD is important for 
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ERECTA function, but the C-terminal tail is not. Our experiments further 

confirmed that ERECTA is a functional kinase and suggested that Thr807, 

Thr812, Tyr815, and Tyr820 in the activation segment of the kinase domain are 

functionally important. Based on our results, we hypothesize that phosphorylation 

of ERECTA at Thr812 might have a stimulatory effect on receptor activity, and at 

Tyr815 and Tyr820 an inhibitory effect. Our experiments also indicated that the 

molecular mechanism of ERECTA function is different during regulation of 

stomata development and in elongation of above-ground organs. 

Materials and methods 

Plant material and growth conditions 

The Arabidopsis ecotype Columbia (Col) was used as the wild-type (WT). The er-

105 and er-105 erl1-2 erl2-1 mutants have been described previously (Torii et al., 

1996; Shpak et al., 2004). Plants were grown on a soil mixture of a 1:1 ratio of 

Promix PGX (Premier Horticulture Inc.) and Vermiculite (Pametto Vermiculite 

Co.) and were supplemented with Miracle-Gro (Scotts) and approximately 3.5mg 

cm–3 of Osmocoat 15-9-12 (Scotts). All plants were grown at 20 °C under long-

day conditions (18 h light/6 h dark). 

Generation of transgenic plants 

In all plasmids except pPZK111 the substitutions/deletions were introduced into 

the genomic ERECTA-RLUC sequence by overlap extension PCR using 

pESH427 as a template (Karve et al., 2011). The amplified fragments were 

digested with PstI, inserted into pESH427, and sequenced. The constructs carry 

the endogenous ERECTA promoter and the 35S terminator. The pPZK111 was 

generated by overlap extension PCR using pKUT196 as a template (Godiard et 

al., 2003). The amplified fragment was digested with PstI, inserted into pKUT196, 

and sequenced. This construct carries the endogenous ERECTA promoter and 

terminator. The backbone of all plasmids is the vector pPZP222. The plasmids 

were introduced into Agrobacterium tumefaciens strain GV3101/ /pMP90 by 
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Figure 2.1 Comparison of amino acid sequences of ERECTA family proteins in 
different species. (A) Domain structure of the ERECTA receptor. (B–D) MAFFT 
alignment of the predicted amino acid sequences of ERECTA family genes 
from Arabidopsis thaliana (At), Vitis vinifera (Vv), Solanum 
lycopersicum (Sl), Ricinus communis (Rc), Hordeum vulgare (Hv), Brachypodium 
distachyon (Bd), Nelumbo nucifera (Nn), Amborella trichopoda (Am), 
and Selaginella moellendorffii (Sm). Residues that are identical among the 
sequences are shown with a black background, and those that are similar among 
the sequences are shown with a gray background. (B) The C-terminus. The blue 
residues have been deleted in pPZK110 and in pPZK111. (C) The 
juxtamembrane domain. The red residues have been deleted in pPZK104, the 
blue residues in pPZK105. Threonine in yellow has been substituted with Ala in 
pPZK102. (D) The activation loop. The predicted phosphorylation sites according 
to the Arabidopsis Protein Phosphorylation Site Database (PhosPht) are in 
yellow. 

 
 
 
 
 



25 
 

electroporation, and into Arabidopsis er-105 and er-105 erl1-2/+ erl2-1 plants by 

vacuum infiltration. The transgenic plants were selected based on gentamicin 

resistance and the number of rescued lines has been quantified based on 

general plant morphology (Tables 2.1 and 2.2, located in appendix). The er-105 

erl1-2 erl2-1 mutants were selected based on kanamycin resistance and the 

homozygous status of the erl1-2 mutation was confirmed by PCR with the 

primers erl1g3659 (GAGCTTGGACATATAATC), erl1g4411.rc 

(CCGGAGAGATTGTTGAAGG), and JL202 

(CATTTTATAATAACGCTGCGGACATCTAC). In addition, for transgenic lines 

transformed with pPZK102, pPZK110, and pPZK111 constructs, the homozygous 

status of the erl1-2 mutation was confirmed by analysis of kanamycin resistance 

in the progeny. The quantitative phenotypic analysis of er erl1 erl2 plants 

transformed with the described constructs has been done in T3 generation once 

their genetic status was established. 

Measurement of Renilla luciferase activity 

ERECTA-RLUC protein expression was measured by monitoring Renilla 

luciferase activity with a 20/20n single-tube luminometer in T1 inflorescences or 

in T2 8-d-old seedlings using the Renilla Luciferase Reporter Assay (Promega). 

The protein concentration in each sample was determined using the Bradford 

assay. 

Analysis of mutant phenotypes 

Measurements of stomata index and clustering were done on the abaxial side of 

cotyledons from 17-d-old seedlings using differential interference contrast (DIC) 

microscopy. For DIC, seedlings were incubated in a solution of 9:1 ethanol:acetic 

acid overnight, rehydrated with an ethanol series to 50% (v/v) ethanol, and then 

cleared in a mixture of 8:1:1 chloral hydrate:distilled water:glycerol. 
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Immunoblot analysis 

The crude microsomal proteins were isolated from 11-d-old WT and T2 T807D 

seedlings (~0.4g per sample) using a method described by Zhang et al. (2011). 

The last step of this method, an enrichment for plasma membrane proteins, was 

omitted. Immunoblot analysis was performed as previously described with minor 

modifications (Shpak et al., 2003). Proteins were run on 8% or 10% SDS-PAGE. 

Primary anti-BAK1 polyclonal antibodies (Agrisera) were used at a dilution of 

1:5000 followed by the secondary HRP Conjugated Goat Anti-Rabbit IgG 

antibody (Agrisera) at a dilution of 1:10 000. Primary anti-Rluc monoclonal 

antibodies (Millipore; clone 5B11.2) were used at a dilution of 1:5000 followed by 

the secondary HRP Conjugated Goat Anti-Mouse IgG antibody at a dilution of 

1:7500. The detection of HRP was performed with a SuperSignal West Pico 

Rabbit IgG detection kit (Pierce). 

Sequence alignment 

Full-length amino acid sequences of ERECTA family proteins from different 

species were retrieved from the NCBI database and aligned using ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

Results 

The juxtamembrane domain (JMD) is important for ERECTA function, but 

the C-terminal tail is not 

The activity of a RLK’s kinase domain is often modulated by the flanking 

regions: the JMD and the C-terminal tail. In some receptors those regions inhibit 

kinase function, in others they are essential for the enzymatic activity (Wang et 

al., 2005b; Oh et al., 2009b, 2014). Phosphorylation of residues within these 

regions can often alter their function. For example, phosphorylation of Ser and 

Thr residues in the BRI1 C-terminal tail disables its inhibitory role (Wang et al., 

2005b). 
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To examine whether regions flanking the ERECTA kinase domain have 

specific function, we created multiple constructs with modified genomic ERECTA 

sequences under the control of the native promoter (Figure 2.2). With the 

exception of one (pPZK111), all constructs contained Renilla Luciferase (RLUC) 

at the C-terminus of the receptor to monitor the level of protein expression. The 

luciferase assay is a fast, reliable, and relatively cheap method to measure 

protein levels. Most significantly, it reflects the protein concentration in 

Arabidopsis extracts (Ramos et al., 2001; Subramanian et al., 2006). Protein 

titration assays and immunoblot analysis confirmed that RLUC activity reflects 

the level of ERECTA-RLUC accumulation in transgenic seedlings (Figure. 2.12, 

located in chapter 2 appendix). 

 

 
 

Figure 2.2 Schematic diagram of modifications introduced into the ERECTA 
protein. Triangles indicate deletions and lines indicate point mutations. SP, signal 
peptide; TM, transmembrane domain; JMD, juxtamembrane domain; CT, C-
terminal tail; RLuc, Renilla Luciferase. In the constructs the genomic sequence of 
ERECTA is under the control of its native promoter and the 35S terminator. On 
the left are the names of the plasmids. 
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The unmodified ERECTA fused to RLUC (construct pESH 427) was used 

as a positive control. The constructs were transformed into er-105 and into er 

erl1/+ erl2 mutants and multiple independent transgenic lines were analyzed. 

Interestingly, we observed a decreased frequency of complementation in the T1 

generation for constructs containing RLUC (Tables 2.1 and 2.2 appendix). In our 

earlier experiments, the genomic ERECTA (pKUT196) rescued 100% of 

transgenic er-105 plants in the T1 generation (Karve et al., 2011), while this time 

only 27% of T1 plants were rescued by ERECTA-RLUC (pESH427). Similarly, 

ΔE921-E976 ERECTA (pPZK111) rescued 58% of T1 er-105 plants while 

ΔE921-E976 ERECTA-RLUC (pPZK110) rescued only 16% (Table 2.1 

appendix). As a result, the frequency of complementation in the T1 generation 

has not been used as a measure of a construct functionality. Instead, for each 

construct we analyzed multiple T1 plants with the goal of finding three to four 

independent transgenic lines with relatively similar protein expression. While 

analysis of protein expression detected a variation in the amount of ERECTA 

produced in different transgenic lines, the general ability of a construct to rescue 

the ERECTA phenotype did not correlate with the level of protein expression in 

selected lines (Figure 2.3). For example, expression of ERECTA in non-

complemented pPZK101, pPZK104, and pPZK105 transgenic lines is equal to or 

higher than that in complemented pPZK110 lines. Thus, we concluded that the 

inability of constructs to rescue er-105, er erl2, and er erl1/+ erl2 mutants was 

due to modification of ERECTA structure and not to poor expression of the 

protein. 

An analysis of ERf sequences from a broad variety of angiosperms 

suggests low conservation of the C-terminal tail except for a short stretch of 

amino acid residues at the very end (Figure 2.1B). Two constructs (pPZK110 and 

pPZK111) were created to examine the role of the C-terminal tail in ERECTA 

function. In both constructs the last 56 amino acids of ERECTA were deleted; in 
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Figure 2.3 ERECTA-RLUC is expressed in the majority of transgenic lines. The 
level of ERECTA-RLUC expression was determined by measuring luciferase 
activity per milligram of total protein in inflorescences of T1 transgenic plants. 
RLU indicates relative light units. The mean of three biological replicates is 
plotted; error bars represent the SD. Three independent transgenic lines (L1–L3) 
were analyzed. The lines that rescue the er-105 phenotype are in light grey and 
the lines that do not are in dark grey. 

 
pPZK110, ERECTA was fused with RLUC and in pPZK111 it was not (Figure 

2.2). We were concerned that RLUC at the C-terminus might interfere with 

receptor function and that its presence could conceal any possible increased 

activity of ERECTA without the C-terminus tail. However, both constructs 

rescued inflorescence structure and plant height of er-105 and er erl1/+ erl2, 

similar to the positive control pESH427 (Figure 2.4; Figure 2.5A, B; Table 2.1). In 

addition, pPZK110 and pPZK111 fully rescued stomata development, plant 

height, and pedicel length phenotypes of the er erl1 erl2 mutants (Figure. 2.5C–

F). And while the stomatal index in the pPZK110 and pPZK111 er erl1 erl2 lines 

was reduced below wild-type levels, it was not statistically significantly different 

from that in the pESH427 line and therefore this decrease cannot be due to the 

absence of the C-terminus tail (Figure. 2.5D). Thus, the ERECTA C-terminus 

seems to be dispensable for regulation of plant architecture and stomata 

formation. 
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Figure 2.4 Inflorescence architecture reflects functionality of modified ERECTA 
receptors. Representative images of inflorescence apices of the wild-type (wt), er-
105, and selected transgenic lines. All constructs were transformed into er-105. 
Scale bar =3 mm. 

 
The JMD of the ERf receptors is 46–49 amino acids long. Comparison of 

this domain in different species revealed low conservation of the N-terminal half 

and high conservation of the C-terminal half (Figure. 2.1C). Several secondary 

structure prediction programs suggested the presence of a β-sheet and an α-

helix in the conserved region of the JMD (Figure. 2.13, appendix). Two 

constructs were created: one with eight residues deleted in the region of a 

potential β-sheet (pPZK104), and another with five residues deleted in the region 

of a potential α-helix (pPZK105) (Figure. 2.2). While ERECTA containing these 

modifications was expressed, it did not rescue the elongation phenotype of 

above-ground organs in the er-105 mutant (Figure. 2.3, Figure. 2.4). The 

deletions in the JMD also abolished the ability of ERECTA to inhibit stomata 

formation and to regulate stomata spacing (Figure. 2.6A, B). 
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Figure 2.5 Deletion of the C-terminus domain (pPZK110 and pPZK111) or a 
point mutation in the JMD (T645A; pPZK 102) does not alter ERECTA’s ability to 
regulate stomata development or above-ground organ elongation. (A, B) Height 
of mature plants (A, n=11–34; B, n=8–29). (C–F) Constructs were transformed 
into er erl1/+erl2 mutants and transgenic er erl1 erl2 plants were analyzed in the 
T3 generation. In (C) the median is indicated as a thick horizontal line, upper and 
lower quartiles are represented by the top and the bottom of the boxes, and the 
vertical lines designate the maximum and the minimum. Epidermal phenotypes 
were analyzed on the abaxial side of 17-d-old cotyledons (n=8–13). (E.) Height of 
mature plants (n=9–18). (F) Length of mature pedicels on the main stem (n=80; 
eight measurements per stem). In (A, B, D–F) values are means ± SD. 
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Figure 2.6 While substitution of the conserved lysine residue (K676E) in the ATP 
binding site of the ERECTA kinase domain (pPZK101) or deletion of short JMD 
segments (pPZK104 and pPZK105) disrupt ability of ERECTA to rescue stomatal 
phenotypes of er erl1 erl2, those constructs partially rescue elongation of above-
ground organs. Constructs were transformed into er erl1/+ erl2 mutants and two 
independent transgenic lines in the er erl1 erl2 background were analyzed in the 
T3 generation. In (A) the median is indicated as a thick horizontal line, upper and 
lower quartiles are represented by the top and the bottom of the boxes, and the 
vertical lines designate the maximum and the minimum. (A, B) Epidermal 
phenotypes were analyzed on the abaxial side of 17-d-old cotyledons (n=8–16). 
(B–D) Values are means ± SD. (C) Height of mature plants (n=12–21). (D). 
Lengths of mature pedicels on the main stem (n=80; eight measurements per 
stem). (C, D) Values significantly different from er erl1 erl2 (P<0.00001) are 
indicated by asterisks. 
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The phosphorylation and de-phosphorylation of JMD residues often 

regulates activity of RLKs, impinging on their enzymatic function or their ability to 

interact with downstream targets (Aifa et al., 2006; Heiss et al., 2006; Thiel and 

Carpenter, 2007; Chen et al., 2010). In Erf, the JMD contains only one conserved 

Thr (Thr645) and no conserved Ser or Tyr residues (Figure. 1C). This Thr is 

conserved not only in ERf but also in many other PELLE/RLK kinases (Figure. 

2.14. appendix). In Pto and XA21, this Thr plays an important biological function 

and is essential for their autophosphorylation (Sessa et al., 2000a; Chen et al. 

2010). The Arabidopsis thaliana phosphorylation site database PhosPhAt 

predicts phosphorylation of Thr645 (Durek et al., 2010). To test whether Thr645 

is important for ERECTA function, this residue was substituted with Ala in the 

construct pPZK102 (Figure. 2.2). This substitution did not alter ERECTA 

functionality and the construct rescued organ elongation defects in er-105 

(Figure. 2.4, Figure. 2.5A, Table 2.1), er-105 erl1/+ erl2 (Figure. 2.5B), and er-

105 erl1 erl2 (Figure. 2.5E, F, Table 2.1). In addition, the pPZK102 construct fully 

rescued stomata formation defects in the er erl1 erl2 mutant (Figure. 2.5C, D). 

These data suggest that Thr645 is not essential for ERECTA function. While our 

data suggest that the JMD is essential for ERECTA functionality, we were unable 

to identify critical phosphorylation sites in this region. 

Importance of the kinase domain for ERECTA function 

In vitro ERECTA is a weak kinase (Lease et al., 2001, Meng et al., 2015). 

The phenotypes of several mutants with substitutions and deletions in the 

ERECTA kinase domain suggest that the ability to phosphorylate might be 

important for ERECTA function (Lease et al., 2001). Alternatively, these 

mutations might lead to receptor instability or change ERECTA’s capacity to bind 

co-receptors or downstream targets. The mutations are in the different α-helixes 

of the kinase domain and the exact function of those amino acids is not known. 

To further test whether the ability to phosphorylate is important for ERECTA 

function, a conserved lysine in the ATP-binding domain was replaced with a 
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glutamate (K676E; pPZK101; Figure. 2.2). We identified several pPZK101 

transgenic lines in the er-105 background with sufficient expression of ERECTA 

(Figure. 2.3). However, organ elongation defects were not rescued in those lines 

(Figure. 2.4). The pPZK101 construct was also unable to rescue epidermal 

phenotypes in the er-105 erl1 erl2 mutant (Figure. 2.5C, D). Thus, ERECTA is 

likely an active kinase in vivo and its ability to phosphorylate has functional 

significance. 

The PhosPhAt database predicts multiple phosphorylation sites in the 

kinase domains of ERECTA, ERL1, and ERL2. Based on these predictions and 

evolutionary conservation, two residues were selected for alanine substitutions 

preventing phosphorylation: T823, a residue at the end of λEF helix, and T906, a 

residue in the αI helix. T823 of ERECTA is homologous to T872 of the receptor-

like kinase HAESA, a residue phosphorylated in vitro and contributing to 

enzymatic activity of HAESA in vitro (Taylor et al., 2016). However, these 

substitutions did not disrupt functionality of ERECTA (Figure. 2.15 appendix). 

Next, we analyzed multiple Ser/Thr/Tyr in the activation segment by 

substituting them to Ala or as a phosphomimic to Asp. Alanine and aspartate 

substitution of Ser801, Ser803, Ser806, and Tyr808 in the activation loop did not 

have any effect on ERECTA function in control of organ elongation (Figure. 2.7). 

Substitutions of Thr812 to Ala and to Asp slightly, but statistically significantly, 

reduced functionality of ERECTA (Figure. 2.8). ERECTA with these substitutions 

was not able to fully rescue elongation defects of pedicels and stems when 

transformed into the er-105 mutant. These substitutions did not alter the 

expression level of ERECTA (Figure. 2.16 appendix). Interestingly, these two 

substitutions had a very similar negative impact on ERECTA function, and the 

phenotype of plants expressing T812A and T812D did not differ statistically. 

Therefore, phosphorylation of Thr812 is unlikely to play a major role in the 

activation of ERECTA. 
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Figure 2.7 Site-directed mutagenesis of four potential phosphorylation sites in 
the activation loop of ERECTA suggests that these residues are not critical for 
ERECTA function. To determine ERECTA functionality, the constructs were 
transformed into er-105, and the height of mature plants (n=9–18) and the length 
of pedicels on the main stem (n=40; eight measurements per stem) were 
measured. Error bars represent ±SD. Three independent transgenic lines (L1–
L3) were analyzed in the T2 generation. The mutated residues are in blue in the 
sequence at the top. 

 



36 
 

 
 

Figure 2.8 Site-directed mutagenesis of two conserved threonines in the 
activation segment impairs ERECTA function. To determine ERECTA 
functionality, the constructs were transformed into er-105, and the height of 
mature plants (n=9–18) and the length of pedicels on the main stem (n=40; eight 
measurements per stem) were measured. Error bars represent ±SD. Three 
independent transgenic lines (L1–L3) were analyzed in the T2 generation. The 
mutated residues are in blue in the sequence at the top. The transgenic line 
values significantly different from pESH427 (P<0.005) are indicated by asterisks. 
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Another residue that is important for ERECTA function is Thr807. The 

T807A substitution substantially reduced functionality of ERECTA, while organ 

elongation in plants expressing ERECTA with T807D substitution was similar to 

the wild-type or even greater (Figure. 2.8). Based on these data, we speculate 

that phosphorylation of Thr807 might have a positive impact on ERECTA 

function. 

Finally, we observed that two Tyr substitutions had a very strong impact 

on plant growth. Both Y815A and Y820A strongly reduced ERECTA functionality, 

but were statistically different from er-105, suggesting that with those 

substitutions ERECTA retained a very low level of functionality (Figure. 2.9). 

Interestingly, substitutions of these Tyr to Asp resulted in a dominant negative 

phenotype (Figure. 2.9). Plants expressing ERECTA with Y815D or with Y820D 

were statistically shorter compared to er-105. This result suggests that these two 

Tyr are critical for ERECTA functionality and their phosphorylation might have a 

negative impact on ERECTA function. 

Distinct signaling mechanisms of ERECTA in multiple developmental 
pathways 

While deletions in the JMD (pPZK 104 and pPZK 105) or disruption of the 

kinase activity by the K676E substitution (pPZK 101) destroyed ERECTA’s ability 

to regulate stomata development and fertility in er erl1 erl2 or to rescue er, er 

erl2, and er erl1/+ erl2 morphogenetic defects, these constructs were able to 

partially rescue stem and pedicel elongation in the er erl1 erl2 mutant (Figure. 

2.6C, D; Figure. 2.10). In Figure. 2.6C, D the plant height and pedicel length are 

compared in fully mature plants. Because er erl1 erl2 grows slower and for a 

longer period of time, the plants are of different ages. If we compare plants of 

similar age as in Figure. 2.10, the ability of pPZK101, pPZK 104, and pPZK105 to 

partially rescue the er erl1 erl2 mutant becomes even more obvious. We 

speculate that in the er and er erl2 backgrounds the ability of pPZK101, pPZK 

104, and pPZK 105 to alter organ elongation is not evident due to much stronger 

impact of ERL1 and ERL2 on plant growth. Taken together, these results suggest  
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Figure 2.9 Site-directed mutagenesis of two conserved tyrosines in the activation 
segment of ERECTA suggests a negative role of their potential phosphorylation. To 
determine ERECTA functionality, the constructs were transformed into er-105, and 
the height of mature plants (n=9–18) and the length of pedicels on the main stem 
(n=40; eight measurements per stem) were measured. Error bars represent ±SD. 
Three independent transgenic lines (L1–L3) were analyzed in the T2 generation. The 
mutated residues are in red in the sequence at the top. The transgenic line values 
significantly different from er-105(P<0.005) are indicated by asterisks. 
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Figure 2.10 pPZK101, pPZK104, and pPZK105 constructs can partially rescue 
elongation of above-ground organs in the er erl1 erl2 mutant. Representative 6-
week-old plants from left to right: er erl1 erl2; T3 pPZK101, pPZK104, 
and pPZK105 in er erl1erl2 background; er erl2. 

 
that the signal transduction by ERECTA is different in organ elongation versus 

control of stomata formation and development of flower organs. 

Discussion 

 
Considerable progress has been made recently in understanding the 

composition of receptor–ligand complexes formed by ERf in the plasma 

membrane (Lee et al. 2012, 2015). However, the mechanism of the cytoplasmic 

domain activation and transmission of the signal by ERf is still unclear. To 

explore the significance of ERECTA’s kinase domain and the mechanism of its 

activation, we used a structure–function approach. 

ERECTA is a RD kinase, which means that it has a conserved arginine 

(R) immediately preceding an aspartate (D) in the catalytic loop. Previous 

research has established that ERECTA is a weak kinase in vitro (Lease et al., 

2001; Meng et al., 2015). Accordingly, we observed that ERECTA with 

substitution of the conserved lysine in the ATP-binding domain is unable to 

rescue the majority of developmental defects in mutants, and therefore the ability 

to phosphorylate is essential for ERECTA function. While inactive kinases adopt 



40 
 

a variety of distinct conformations, their activation often depends on a change in 

the structure of the activation segment, which in the RD kinases is the primary 

site of regulatory phosphorylation (Johnson et al., 1996). The activation segment 

is variable in length and sequence but it is restricted by highly conserved DGF 

and APE motifs, and in Ser/Thr kinases it almost always contains a characteristic 

GlyThr or GlySer dipeptide motif (Figure. 2.11). In Arabidopsis, more than 99% of 

RD LRR RLKs have a Thr or Ser in this motif (Wang et al., 2005a). In the active 

state, the hydroxyl group of the threonine or serine from the GlyThr/Ser motif 

forms hydrogen bonds with the catalytic aspartate of the HRD motif and the 

lysine one nucleotide behind this motif (Nolen et al., 2004). In IRAK4 and many 

other mammalian Ser/Thr kinases this Thr is important for the kinase activity, but 

is not a major phosphorylation site (Wang et al., 2009; Bayliss et al., 2012). 

Alanine or phosphomimetic substitutions of homologous Thr/Ser in plant kinases 

such as SERK1 (T468A, T468E), BRI1 (T1049A), SYMRK (T760A), BAK1 

(T455A, T455D, T455E), BIK1 (T242A), ACR4 (T681A, T681D), HAESA 

(S861A), and PSKR1 (T899A) lead to loss of kinase function (Shah et al., 2001; 

Wang et al., 2005a, 2008; Yoshida and Parniske, 2005; Laluk et al., 2011; Meyer 

et al., 2011; Taylor et al., 2013; Hartmann et al., 2015). In BRI1, FLS2 (T1040A), 

BAK1, BIK1, and HAESA these substitutions were shown to decrease 

functionality of receptors in planta (Wang et al., 2005a, 2008; Robatzek et al., 

2006; Laluk et al., 2011; Taylor et al., 2016). While our work demonstrates that 

both alanine or phosphomimetic substitutions of Thr812 alter functionality of 

ERECTA, the effect is surprisingly small. In this respect ERECTA resembles the 

RD receptor-like kinases PSKR1 and FERONIA where substitution of 

homologous S701 and T899, respectively, does not disrupt receptor function 

(Hartmann et al., 2015; Kessler et al., 2015). 

Thr/Ser residues preceding the GlyThr motif are the primary 

phosphorylation sites that are essential for the activation of mammalian Ser/Thr 

kinases (Nolen et al., 2004; Bayliss et al., 2012). For example, the kinase activity 

of IRAK4 is regulated by the autophosphorylation of three sites, Thr342, Thr345,  
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Figure 2.11 Alignment of the activation segments from plant receptor-like 
kinases ER, BAK1, LYK3, NFR1, BRI1, and PSKR1, plant kinases BIK1 and 
PTO, and human kinase IRAK4. Functionally significant amino acids are in red. 
Amino acids that are phosphorylated (either in vitro or in vivo) and functionally 
significant in planta or essential for the enzymatic activity are in blue. Residues 
that are identical among the sequences are given a black background, and those 
that are similar among the sequences are given a gray background. 

 
and Ser346, located in front of the GlyThr motif (Cheng et al., 2007). Based on 

structural studies, phosphorylation of Thr345 is responsible for the activation of 

IRAK4 kinase while phosphorylation of Thr342 and Ser346 might stabilize the 

activation loop in the active state (Kuglstatter et al., 2007). Current literature 

suggests that residues homologous to Thr345 or Ser346 in IRAK4 are likely to be 

the primary phosphorylation sites in plant Ser/Thr kinases. Thus, Thr237 of BIK1 

is necessary for full kinase activity and is a major phosphorylation site in 

response to flg22 (Lu et al., 2010; Laluk et al., 2011). In LYK3, T475A 

substitution leads to decreased kinase activity (Klaus-Heisen et al., 2011). The 

equivalent Thr233 in Pti1 is the major site of autophosphorylation and 

phosphorylation by Pto kinase (Sessa et al., 2000b). In BAK1, Thr450 is 

phosphorylated and T450A substitution reduces functionality of the receptor 

(Wang et al., 2008). Crystal structure confirmed the significance of T450 

phosphorylation for enzymatic activity of BAK1 (Yan et al., 2012). Ser1044 is 

phosphorylated in BRI1 and, out of all Ser/Thr to Ala substitutions in the 
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activation segment, the S1044A substitution has the most severe negative 

impact on BRI1 functionality (Wang et al., 2005a, 2016). S856 in the activation 

segment of HAESA is a phosphorylation site that positively regulates kinase 

activity and contributes to the functionality of the receptor (Taylor et al., 2016). 

Thr807 of ERECTA is homologous to Ser346 of IRAK4 (Figure. 2.11). Therefore, 

it is not surprising that out of all Ser/Thr substitutions in the activation segment of 

ERECTA only T807A substitution significantly reduces receptor functionality, and 

ERECTA with a T807D substitution is fully functional. Based upon this data, we 

speculate that Thr807 is the primary phosphorylation site in the activation 

segment of ERECTA. Future structural and biochemical studies will be essential 

to confirm this hypothesis. In general, our findings resemble those obtained for 

HAESA where substitutions of only two Ser/The residues in the activation 

segment disrupt receptor function (Taylor et al., 2016). Those residues are 

homologous to Thr807 and Thr812 of ERECTA, although in ERECTA the 

substitution of T812 has a weaker effect on the receptor function. 

Plant receptor-like kinases have dual specificity, phosphorylating both 

Ser/Thr and Tyr residues. Two tyrosine residues in the BRI1 P+1 loop, Tyr1052 

and Tyr1057, have been shown in vivo to play an important role in BR signaling 

and their phosphorylation is predicted to have a negative impact on the kinase 

activity (Oh et al., 2009a, 2009b). Residues homologous to Tyr1057 of BRI1 

have been shown to be critical for the function of other receptor-like kinases. 

Thus, Tyr463 of BAK1 is essential to its catalytic activity (Oh et al., 2010). Tyr250 

in the activation segment of BIK1 can be autophosphorylated or 

transphosphorylated by BAK1 and is important for BIK1 function in plant 

defenses (Lin et al., 2014). Consistent with this, we observed that substitutions of 

homologous Tyr residues in the P+1 loop of ERECTA, Tyr815 and Tyr820, 

drastically reduced functionality of the receptor. As substitutions to Ala were less 

severe than substitutions to Asp, we hypothesize that phosphorylation of those 

residues could lead to inhibition of ERECTA function. 
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Phosphorylation events in the JMD and the C-terminal regions often alter 

activity of receptor-like kinases (Wang et al., 2005b; Oh et al. 2009b, 2014). 

However, this might not be the case for ERECTA: no changes in ERECTA 

functionality were observed after the deletion of the C-terminus. Thr645 is the 

only conserved Thr/Ser/Tyr in the JMD, yet its substitution had no effect on 

ERECTA function. The receptor-like kinase BAK1 associates with multiple 

receptor-like kinases including ERECTA family receptors (Meng et al., 2015). 

When BAK1 associates with BRI1 it increases its activity by phosphorylating the 

JMD and the C-terminus (Wang et al., 2008). The role of BAK1 during interaction 

with ERECTA is likely to be different as phosphorylation of ERECTA kinase’s 

flanking regions is not likely to be significant for its function. 

A majority of the RLK/Pelle kinases have an N-terminal extension in front 

of the N-terminal lobe of the kinase domain (Lei et al., 2005; Wang et al., 2006). 

The N-terminal extension is often an integral part of the overall fold of kinase and 

is essential for its activity. For example, the N-terminal extension is required for 

BRI1 enzymatic activity (Oh et al., 2012). While there is no sequence similarity 

between the N-terminal extensions of various kinases, there is some similarity of 

structure. The crystal structure of IRAK4 revealed a short β strand and an α-helix 

in the N-terminal extension region while those of BRI1 and BAK1 suggested the 

existence of an α-helix (Wang et al., 2006; Yan et al., 2012; Bojar et al., 2014). 

Homology modeling of LYK3 predicted an α helix in the N-terminal extension 

region (Klaus-Heisen et al., 2011). Four different programs (JPRED 4, 

NETSURFP, PSIPRED, and I-TASSER) predicted the existence of a short β 

strand and an α-helix in the N-terminal extension region of ERECTA. While we 

were unable to identify functionally significant putative phosphorylation sites in 

the JMD, our work determined that this domain is significant for ERECTA 

function. Two deletions in that region led to a functionally inactive receptor. This 

may be due to disruption of the N-terminal extension structure and, as a result, 

inactivation of ERECTA’s enzymatic function. 
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Our structure–function analysis indicates that ERECTA function differs in 

the specific developmental processes in which it participates. The kinase function 

is absolutely essential for ERECTA’s ability to regulate stomata formation and 

flower structure. Simultaneously, the kinase-dead ERECTA is able to partially 

rescue stem and pedicel elongation defects in the er erl1 erl2 background. These 

results suggest that there are distinct signaling requirements for ERECTA in 

different developmental processes and imply that ERECTA might transmit the 

signal to downstream targets in different ways. The receptor-like kinases BAK1 

and SCRAMBLED have also been shown to control multiple pathways using 

distinct signaling mechanisms with different requirements for their kinase domain 

function (Oh et al., 2010; Kwak et al., 2014). In addition, we observed that 

kinase-dead ERECTA and ERECTA without the cytoplasmic domain (Δkinase) 

function very differently. The Δkinase ERECTA confers dominant negative 

effects, probably titrating positive regulators of the signaling pathway through the 

extracellular domain (Shpak et al., 2003). The kinase-dead ERECTA is partially 

functional in regulation of organ elongation, which hypothetically could occur 

through titration of negative regulators by the kinase domain. 
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Appendix 

 
 

Figure 2.12 Both the luciferase titration curve and the immunoblot analysis 
confirm that the Renilla luciferase assay is a reliable method to test accumulation 
of RLUC-fused proteins in extracts from Arabidopsis seedlings. A. The 
luminescence signal increases linearly with increasing concentration of total 
protein in extracts from Arabidopsis seedlings expressing ERECTA-RLUC 
(pESH427). B. Immunoblot analysis of protein extracts from wild type seedlings 
and seedlings expressing ERECTA-RLUC (pESH427) and two independent lines 
expressing ERECTA-RLUC with T807D substitution. Accumulation of ERECTA-
RLUC is consistent with the results obtained by the RLUC assay (Figure 2.S5). 
The immunoblot probed with anti-BAK1 antibody reflects uniform loading of 
microsomal proteins. 
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Figure 2.13 The secondary structure of the 49 a.a. long ERECTA JMD as 
predicted by five different programs: JPRED 4, SCRATCH, NETSURFP, 
PSIPRED and I-TASSER. H represents α-Helix, E represents extended strand 
and a hyphen indicates no prediction. 

 

 
 

Figure 2.14 Comparison of amino acid sequences at the N-terminus of the 
kinase domain in the proteins belonging to the PELLE/RLK family of kinases. 
Residues that are identical among the sequences are given a black background, 
and those that are similar among the sequences are given a gray background. 
The Thr residues analogous to Thr645 of ERECTA are labeled with an asterisk. 
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Figure 2.15 Site directed mutagenesis of two potential phosphorylation sites in 
the kinase domain of ERECTA suggests that these residues are not critical for 
ERECTA function. Two amino acids are predicted to be phosphorylated 
according to the Arabidopsis Protein Phosphorylation Site Database (PhosPht) 
and are conserved in ERECTA, ERL1, and ERL2. To determine ERECTA 
functionality the constructs were transformed into er-105, and the height of 
mature plants (n=9-18) and the length of pedicels on the main stem (n=40; eight 
measurements per stem) were measured. Error bars represent one SD. Four 
independent transgenic lines (L1-L4) were analyzed in the T2 generation.  
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Figure 2.16 ERECTA-RLUC is expressed in the majority of transgenic lines. The 
level of ERECTA-RLUC expression was determined by measuring luciferase 
activity per milligram of total protein in 8 day old T2 seedlings. RLU indicates 
relative light units. The mean of three biological replicates is plotted; error bars 
represent one SD. Three to four independent transgenic lines (L1-L4) were 
analyzed. In light grey are lines that rescue the er-105 phenotype and in dark 
grey are lines that do not. WT indicates background RLU/mg of total protein. 
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Table 2.1 Ability of constructs to rescue er and er erl1 erl2 mutant phenotypes. 
Complementation of er and er erl1/+ erl2 is based on visual observation of plant 
height and pedicel length. 

 

Name of 
the 
construct 

Mutation # of fully or partially 
complemented er 
plants/ total T1 
plants analyzed 

# of fully or partially 
complemented er erl1/+ 
erl2 plants/ total T1 plants 
analyzed 

pESH 427 none 13/48  30/44 

pPZK 101 K676E 0/38 0/74 

pPZK 102 T645A 13/50  25/45 

pPZK 104 ΔK625-
N632 

0/27 0/22 

pPZK 105 ΔY638-
M642 

0/27 0/24 

pPZK 110 ΔE921-
E976 

7/43  24/33 

pPZK 111 ΔE921-
E976 

36/62  20/24 
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Table 2.2 Ability of constructs to rescue er mutant phenotypes. Complementation 
of er is based on visual observation of plant height and pedicel length 

Name of 
the 
construct 

Mutation  # of 
complemented 
plants/ total T1 
plants 

pESH601 S801A 11/36 

pESH602 S803A 5/36 

pESH603 S803D 10/18 

pESH604 S806A 6/24 

pESH605 S806D 6/27 

pPZK121 T807A 4/22 

pPZK606 T807D 7/23 

pESH607 T812A 10/54 

pESH608 T812D 13/85  

pPZP122  Y808A 8/17 

pPZK123 Y815A 0/20 

pESH609 Y815D 0/27 

pESH610 Y820A 0/35 

pESH611 Y820D 0/27 

pPZK124 T823A 6/22 

pPZK125 T906A 11/21 
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CHAPTER 3  CELL-CELL COMMUNICATIONS BETWEEN THE 
BOUNDARY REGION AND THE CENTRAL ZONE OF THE SHOOT 
APICAL MERISTEM ENABLED BY EPFL LIGANDS AND ERECTA 
FAMILY RECEPTORS REGULATE MERISTEM STRUCTURE AND 

LEAF INITIATION.  
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writing the manuscript.  
 

Abstract 

 

The shoot apical meristem (SAM) enables the formation of new organs 

throughout the life of a plant. ERECTA family (ERf) receptors restrict SAM size 

and promote initiation of leaves while simultaneously supporting establishment of 

correct phyllotaxy. In the epidermis and during organ elongation ERf activity is 

regulated by a family of Epidermal Patterning Factor-Like (EPFL) secreted 

cysteine-rich small proteins. Here we show that ERfs play a critical role in 

communication between the SAM leaf boundary and the central zone. Ectopic 

expression of ERECTA in the central zone using CLAVATA3 promoter is 

sufficient to restrict meristem size and promote leaf initiation. Genetic analysis 

demonstrated that four putative ligands: EPFL1, EPFL2, EPFL4, and EPFL6 

function redundantly in the SAM. These genes are expressed at the SAM-leaf 

boundary and in the peripheral zone. Previously EPFL4 and EPFL6 have been 

linked with elongation of aboveground organs. Here we demonstrate that EPFL1 

and EPFL2 promote organ elongation as well. In addition, we show that 

expression of ERECTA in the central zone of the SAM has a strong impact on 

elongation of internodes and pedicels and growth of leaves. These results 

suggest that ERfs can stimulate organ growth cell non-autonomously.   
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Introduction 

 
Cell-to-cell communications coordinate numerous processes during plant 

development. As message carriers plant cells use both small organic molecules 

and peptides. Plasma membrane localized receptor-like kinases sense the 

majority of peptides and some organic molecules and then activate appropriate 

developmental programs. The ability of a receptor to sense multiple signals and 

the variety of responses a signal may trigger enable the complexity and plasticity 

of developmental programs.  

The ERECTA family (ERf) signaling pathway was initially linked to 

aboveground organ elongation (Torii et al. 1996). Since then it has become clear 

that ERf receptors also regulate numerous other developmental processes such 

as stomata formation, leaf initiation, shoot apical meristem (SAM) structure, and 

flower differentiation (Shpak, 2013). In Arabidopsis the family consist of three 

genes: ERECTA, ERECTA-LIKE 1 (ERL1), and ERL2 (Shpak et al. 2004). The 

contribution of an individual receptor to the regulation of a particular 

developmental response varies. For example, ERECTA is the primary receptor 

regulating organ elongation while ERL1 plays a leading role in the regulation of 

stomata spacing. In the SAM these receptors function redundantly with single 

and double mutants exhibiting extremely weak or no phenotypes (Chen et al. 

2013). The activity of ERf receptors is regulated by a family of eleven secreted 

cysteine-rich small proteins from the EPF/EPFL family (Shimada et al. 2011). 

Three proteins, EPF1, EPF2, and STOMAGEN (EPFL9) regulate stomata 

development (Hara et al. 2007; Hara et al. 2009; Hunt et al. 2009; Hunt et al. 

2010; Sugano et al. 2010). Based on the phenotypes of mutants and on the fact 

that EPF2 is able to induce phosphorylation of downstream signaling 

components, EPF1 and EPF2 are thought to activate the receptors (Hara et al. 

2007; Hara et al. 2009; Hunt et al. 2009; Lee et al. 2015). STOMAGEN competes 

with EPF1 and EPF2 for binding to ERfs but is unable to activate the downstream 

cascade, and thus functions as an antagonist (Ohki et al. 2011; Lee et al. 2015). 
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Two ligands, EPFL4 and EPFL6, stimulate aboveground organ elongation 

(Abrash et al. 2011; Uchida et al. 2012). Another ligand, EPFL2, has been shown 

to regulate the shape of leaf margins (Tameshige et al. 2016). The function of the 

remaining five potential ligands has not been established. Selection of which 

ligands can bind to ERf receptors on a surface of an individual cell depends on 

the presence of the co-receptor TOO MANY MOUTHS (TMM) which promotes 

binding of EPF1, EPF2, and STOMAGEN and inhibits binding of EPFL4 and 

EPFL6 (Lin et al. 2017). The binding of ligands to ERfs or to ERf/TMM 

complexes does not cause significant conformational changes or induce 

homodimerization of ERfs (Lin et al. 2017). Recent work suggests that ERfs 

function in a complex with receptor-like kinases of the SERK family which could 

potentially assist ERfs in activation of downstream targets (Meng et al. 2015). A 

MAP kinase cascade consisting of YODA, MKK4/5/7/9, and MPK3/6 transmits 

the signal downstream of ERfs (Bergmann et al. 2004; Wang et al. 2007; Meng 

et al. 2012; Lampard et al. 2009; Lampard et al. 2014). How the signal is 

transmitted from the receptors to the cascade is not known. 

Here we focus on ERf signaling in the SAM, a small but complex structure 

that must tightly control the proliferation and differentiation of its constituent cells. 

The SAM contains three different regions: the central zone with a pool of 

undifferentiated, slowly dividing cells; the peripheral zone where leaf and flower 

primordia are initiated; and the underlying rib zone that provides cells for 

internodes. As cells are continually transitioned from the central zone into the 

other two, cell-to-cell communications are essential to maintain a relatively 

constant number of stem cells. These communications are achieved through a 

negative feedback loop consisting of the receptor/ligand pair CLAVATA1 

(CLV1)/CLAVATA3 (CLV3) and the transcription factor WUSCHEL (WUS) (Clark, 

2001). Presumably the rate of cell proliferation and differentiation in the 

peripheral zone and the rib zone is also tightly controlled to ensure a consistent 

rate of organ initiation and uniformity of size; however, how this is achieved is not 

known. In addition, leaves and flowers develop in a specific geometric pattern. In 
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Arabidopsis the SAM forms leaves and flowers at 137.50 angles to each other, 

producing a spiral pattern of these organs around the stem. The formation of 

auxin maxima determines the position of organ primordia (Sluis et al. 2015). ERfs 

play a critical role in these processes - the vegetative SAM of er erl1 erl2 is 

dramatically wider and has a much broader central zone exhibiting increased 

expression of WUS (Chen et al. 2013; Uchida et al. 2013). Leaf primordia are 

initiated at a significantly reduced rate with almost random divergence angles 

(Chen et al. 2013). The changes in leaf initiation in er erl1 erl2 correlate with 

abnormal auxin distribution as determined by DR5rev:GFP marker and 

decreased PIN1 expression in the vasculature (Chen et al. 2013). 

 To gain insight into the function of ERfs in the SAM we explored their 

pattern of expression and searched for ligands that are perceived by ERfs. While 

ERfs are expressed throughout the SAM, their expression in the central region by 

the CLV3 promoter is the most efficient in rescuing the meristematic defects of er 

erl1 erl2 compared to expression in the peripheral zone by the KAN promoter. 

Interestingly, ERECTA expression under the CLV3 promotor is also able to 

rescue leaf size and stem elongation phenotypes, suggesting that those 

parameters might be controlled by ERfs indirectly from distant tissues. Based on 

the phenotype of the quadruple mutant, ERfs sense four ligands in the SAM, 

EPFL1, EPFL2, EPFL4, and EPFL6. Two of those ligands (EPFL1 and EPFL2) 

are expressed in the boundary region in the embryo and in the vegetative SAM. 

Their expression on the periphery of the meristem is critical as the epfl1 epfl2 

epfl4 epfl6 mutant can be rescued by EPFL1 expressed under the KAN promoter 

but not CLV3. Our data suggest that ERfs coordinate development of the central 

zone and the peripheral regions of the SAM.  

Materials and methods 

Generation of transgenic plants 

Four different promoters were independently cloned into pPZP222 vectors 

that carried the genomic ERECTA sequence and the endogenous 7.4 kb 
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ERECTA terminator. pSTM:ER (pPZK 311) was generated by amplifying a 4.62 

kb region upstream of the STM start site. A similar 4.5 kb STM promoter region 

has been used and analyzed previously (Verkest et al. 2005). pWUS:ER (pPZK 

310) was created by amplifying a 4.5 kb region upstream of the WUS start site. 

This promoter region has been used previously by (Yadav et al. 2009). pANT:ER 

(pPZK 315) was created by amplifying a 4.3 kb region upstream of the ANT start 

site as in (Grandjean et al. 2004). pKAN:ER (pPZK 312) was generated by 

amplifying a 3.6 kb region upstream of the KANADI start site as in (Wu et al. 

2008). The fifth construct pCLV3:ER (pPZK317) was generated slightly differently 

due to the presence of an enhancer in the terminator of CLV3 (Brand et al. 

2002). The genomic ERECTA sequence was inserted into pPZP222 between the 

1.5 kb sequence upstream of the CLV3 start site and the 1.2 kb sequence 

downstream of the CLV3 stop codon. All created constructs were examined by 

the restriction analysis and sequencing of amplified regions.  

The described plasmids were transformed into an Agrobacterium 

tumefaciens strain GV3101/pMP90 by electroporation and introduced into er 

erl1/+ erl2 plants by the floral dip method. The er-105 erl1-2 erl2-1 mutant has 

been described elsewhere (Shpak et al. 2004). The T1 transgenic plants were 

selected based on gentamicin resistance. Kanamycin resistance was used to 

identify erl1-/+ or erl1-/- lines in the T2 generation. In the T3 or T4 generation we 

selected lines that are homozygous for the transgene based on gentamycin 

resistance.  

To generate pEPFL1:EGFP-GUS, a 1.5 kb fragment upstream of the 

EPFL1 start site was PCR amplified and inserted into p-ENTR/topo (Invitrogen) 

and recombined using LR recombinase (Invitrogen) into pKGWFS7 (Karimi et al. 

2005). To clone the promoters of EPF1 (2.7kb), EPF2 (2.7kb), EPFL2 (3kb), 

EPFL3 (2.9kb), EPFL7 (1.5kb), EPFL8 (2.4kb) and EPFL9 (2kb) in front of 

EGFP-GUS a modified version of the Rapid one-step recombinational cloning 

method was used (Fu et al. 2008). The promoter regions were amplified by PCR 

using gene-specific primers that also contained shortened AttL1 or AttL2 
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sequences. Each fragment was extended using attL1-T2.1 and attL2-T2.1 

primers to produce complete AttL sequences on both sides of each fragment. 

The generated fragments were recombined into pKGWFS7 using LR 

recombinase (Invitrogen). Primer sequences can be found in Table 3.1. (Located 

in chapter 3 appendix). The generated pEPFL:EGFP-GUS plasmids were 

introduced into wild type plants as described above. The transgenic plants were 

selected based on kanamycin resistance. pEPFL4:GUS, pEPFL5:GUS and 

pEPFL6:GUS transgenic plants were described previously (Abrash et al. 2010), 

(Abrash et al. 2011). 

To generate pEPFL1:EPFL1 a 3.3kb fragment encompassing a 2kb region 

upstream of the EPFL1 start site and 0.8kb downstream of the stop codon was 

amplified and cloned into pPZP222. pEPFL2:EPFL2 was generated by amplifying 

a 4.2 kb fragment including 2.5kb upstream of the EPFL2 start codon and 1kb 

downstream of the stop codon. In pKAN:EPFL1 and pCLV3:EPFL1 constructs 

we used the same promoter regions as in pKAN:ER and pCLV3:ER and the 

EPFL1 sequence that included introns. The pKAN:EPFL1 construct contains the 

endogenous 0.8kb EPFL1 terminator while pCLV3:EPFL1 contains the 1.2 kb 

sequence downstream of the CLV3 stop codon.  

In situ analysis   

In situ hybridization was performed as described previously (Hejatko et al. 

2006) using 3-day old (post germination) T3 and T4 transgenic or WT seedlings. 

One kb cDNA region of ERECTA between the SacI and XhoI restriction sites was 

cloned into pBluescript II and used as the template for in vitro transcription with 

T3 (Promega) and T7 (Invitrogen) RNA polymerases to make the sense and 

antisense probes, respectively. To generate EPFL probes their full-length coding 

DNA sequences were amplified using WT cDNA and primers that contained the 

T7 promoter sequence near either the start or the stop codons. All probes were 

hydrolyzed to produce fragments of average length of about 0.3 Kb. 

Representative images were taken using DIC microscopy.  
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Analysis of mutant phenotypes 

For measurements of leaf number and SAM size by DIC microscopy 

seedlings were grown on plates containing modified Murashige and Skoog 

supplemented with 13 Gamborg B5 vitamins and 1% (w/v) Sucrose. Selected 3- 

and 5-day old (post germination) seedlings were incubated in a solution of 9:1 

ethanol: acetic acid overnight, rehydrated using an ethanol series (90%, 80%, 

70%, and 50%) and cleared in a chloral hydrate solution (chloral 

hydrate:water:glycerol 8:1:1). The pSTM:ER transgenic lines were analyzed in 

the T4 or T5 generations, as they were homozygous for the transgene and the 

erl1 mutation. The pWUS:ER, pKAN:ER, pANT:ER and pCLV3:ERECTA 

transgenic lines were analyzed in the T3 generation. These were homozygous 

for the transgene but were segregated for erl1. The er erl1 erl2 plants used for 

analyses were identified based on the presence of stomata clusters in 

cotyledons. Microscopic observations were done using a Nikon Eclipse 80i 

microscope with differential interference contrast (DIC) optics and NIS-Elements 

BR imaging software (Nikon) was used for measurements. For measurement of 

plant height and pedicel length and to observe leaf growth plants were grown as 

described previously (Kosentka et al. 2017). 

Generation of the epfl double, triple, and quadruple mutants  

The epfl1-1 (CS104435) transposon-insertion mutant (Col background) 

was obtained from the Arabidopsis Biological Resource Center. epfl2-1 

(CSHL_ET5721) transposon-insertion mutant (Ler background) was received 

from Cold Spring Harbor Laboratory and outcrossed three times to epfl1-1 to 

obtain epfl1-1 epfl2-1 in Columbia background. The absence of the er-1 mutation 

in epfl1-1 epfl2-1 was confirmed by sequencing. The epfl1 epfl2 double mutant 

was crossed with epfl4 epfl6 /cll2-1 chal-2 (Abrash et al. 2011) to obtain new 

combinations of mutations. epfl double, triple and quadruple mutants were 

identified by genotyping with epfl1-1 and epfl2-1 primers from Table 3.2 

(appendix) and with epfl4/cll2-1 and epfl6/chal-2 specific primers described 

previously (Abrash et al. 2011). We used a three-primer PCR for genotyping of 
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epfl1-1 and epfl2-1. During genotyping of epfl1-1 the primers epfl1.436.rev and 

3dspm were used to amplify a ~ 200 bp fragment and the primers epfl1.436.rev 

and epfl1.74 were used to amplify a 387 bp fragment. During genotyping of epfl2-

1 the primers epfl2.1 and gus.43.rc were used to amplify a ~700 bp fragment and 

the primers epfl2.1 and epfl2.540.rev were used to amplify a 575 bp fragment. 

Because the epfl1 epfl2 epfl4 epfl6 mutant is infertile, for the morphological 

analysis we obtained it from the progeny of epfl1/+ epfl2 epfl4 epfl6 plants.  

The GUS reporter gene and assay and microscopy  

GUS staining was performed as described previously (Sessions et al. 

1999) using 5-days post germination T2 or T3 transgenic seedlings. Multiple 

independent transgenic lines were analyzed for each construct to find a 

consistent pattern of expression. Depending of the level of the signal the 

concentration of ferricyanide and ferrocyanide in the staining buffer varied 

between 0.25mM and 2 mM. After staining, the samples were dehydrated with a 

graded series to 50% ethanol, fixed in FAA solution for 30 min, dehydrated with a 

graded series of ethanol to 100% ethanol, infiltrated with polymethacryl resin 

Technovit 7100 resin and then embedded and polymerized in Technovit 7100 

(Heraeus Kulzer, Wehrheim, Germany). Eight-micrometer sections were 

prepared using a Leica RM-2255 microtome (Wetzlar, Germany). Pictures were 

obtained using a Nikon Eclipse 80i microscope and a 12 megapixel cooled color 

DXM-1200c (Nikon) camera. A C-FL B-2A (Nikon) filter cube was used to 

observe the GFP signal. 

Reverse Transcription-PCR 

Total RNA was isolated from 5 DPG seedlings and from fully expanded 

leaves using a Spectrum Plant Total RNA Kit (Sigma). RNA was treated with 

RQ1 DNase (Promega) and first-strand cDNA was synthesized using 150 ng of 

RNA with a ProtoScript II RT-PCR Kit (New England Biolabs) according to the 

manufacturer’s instructions. Quantitative PCR was performed using the CFX96 

Real Time System (BioRad) with Sso Evagreen Supermix reagent (BioRad). 
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Each experiment used three technical replicates and three biological replicates to 

calculate relative fold difference of ERECTA to ACTIN-2 expression. Bio-Rad 

CFX Manager was used to calculate cycle threshold values and the fold 

difference in gene expression was calculated using the delta-delta-Ct algorithm 

(2-ΔΔCt). Primers and annealing temperatures are listed in Table 3.3 (appendix). 

Results 

Expression of ERECTA in the central zone is most efficient in regulating 
the SAM size.  

Based on an in situ analysis and a reporter gene assay ERfs are 

expressed broadly in the vegetative SAM and throughout forming leaf primordia 

(Yokoyama et al. 1998; Shpak et al. 2005; Uchida et al. 2013). A gene 

expression profile of the inflorescence SAM suggests similar expression of ERfs 

in the central zone, the peripheral zone, and in the organizing center with only 

ERL1 being upregulated in the central zone (Yadav et al. 2009). In that 

experiment the zones were defined by CLAVATA3 (CLV3), FILAMENTOUS 

FLOWER (FIL), and WUSCHEL (WUS) expression, respectively. We were 

interested in how the meristematic expression of ERfs affects plant morphology 

and whether ERECTA expression in a specific zone is sufficient to rescue 

defects observed in the er erl1 erl2 mutant. With this goal in mind five different 

promoters were chosen. The SHOOTMERISTEMLESS (STM) promoter was 

used to express the gene throughout the SAM (Long et al. 1996). The CLV3 and 

WUS promoters were used to drive ERECTA expression in the central zone and 

in the organization center, respectively (Fletcher et al. 1999; Mayer et al. 1998). 

The AINTEGUMENATA (ANT) promoter was used to induce ERECTA 

expression in the peripheral zone and broadly in the forming leaf primordia (Elliott 

et al. 1996). We expected the KANADI (KAN) promoter to express ERECTA at 

the outer edges of the peripheral zone and on the abaxial side of leaf primordia 

(Kerstetter et al. 2001; Yadav et al. 2014).  

To examine ERECTA expression in the generated transgenic lines we 

performed in situ hybridization on three-day old seedlings (Figure 3.1A). In the 
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wild type ERECTA was detected throughout the SAM and in leaf primordia, 

although the signal was very weak. In the pCLV3:ER and pWUS:ER transgenic 

plants ERECTA was expressed as expected in the central zone and the 

organizing center, respectively. Based on both in situ and qRT-PCR ERECTA 

expression was considerably lower in the pWUS:ER lines compared to all other 

transgenic lines (Figure. 3.1). Most importantly, neither in pCLV3:ER nor in 

pWUS:ER transgenic lines was ERECTA detected outside of the SAM. In 

pSTM:ER transgenic lines a signal was observed throughout the SAM and 

sometimes on the abaxial side of leaf primordia. The strength of the in situ signal 

and its appearance outside of the meristem varied greatly, consistent with 

variable expression of ERECTA in those lines as determined by qRT-PCR 

(Figure. 3.1B). In the pANT:ER transgenic plants in situ analysis detected 

ERECTA in the L1 layer of the SAM and throughout young organ primordia. A 

similar pattern including expression in the L1 layer of the SAM was observed 

previously when 6.5 kb ANT promoter was used to drive β-glucuronidase (GUS) 

expression (An et al. 2004). In the pKAN:ER transgenic plants the majority of the 

signal was detected in the peripheral zone with very low expression in leaf 

primordia. Thus, only the CLV3 and WUS promoters drove expression of ER as 

expected, with STM, ANT, and KAN expressing ERECTA in slightly different 

patterns, suggesting that expression of genes under exogenous promoters 

should always be coupled with analysis of their expression.  

To understand how zone-specific expression of ERECTA affects the SAM 

size we analyzed transgenic seedlings 3 and 5 days post germination (Figure 

3.2). In all cases there was very little variation in the SAM size between these 

two time samples, suggesting that all lines can maintain a specific meristem size. 

The size of the meristem in lines expressing ERECTA throughout the meristem 

(under the STM promoter) or in the central zone (under the CLV3 promoter) was 

rescued more efficiently compared to the other transgenic lines (Figure 3.2A). On 

average, the width of the SAM in the pCLV3:ER transgenic lines is 1.14±0.03  
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Figure 3.1 Ectopic expression of ERECTA in the SAM using heterologous 
promoters. A. Representative DIC images of in situ hybridization with a sense 
and an antisense probe for ERECTA using 3-day old T3 or T4 transgenic 
seedlings. B. Real time RT-PCR analysis of ER in 5-day old seedlings of wt and 
transgenic plants. The average of three biological replicates is presented. Error 
bars represent SE.   

 
 

 

 

 

 

Se
n

se
 E

R
 

Se
n

se
 E

R
 

A
n

ti
se

n
se

 E
R
 

A
n

ti
se

n
se

 
ER

 

0

1

2

3

4

WT L1 L3 L2 L3 L1 L3

0

1

2

3

4

5

6

7

WT L1 L3 L2 L3

0

50

100

150

200

WT L1

R
el

at
iv

e 
fo

ld
 d

if
fe

re
n

ce
  

R
el

at
iv

e 
fo

ld
 d

if
fe

re
n

ce
  

A B 



69 
 

and in pSTM:ER is 1.13±0.03 times larger than the wild type while in the er erl1 

erl2 mutant it is 1.99±0.02 (± standard error). The expression of ERECTA in the 

organizing center under the WUS promoter was less efficient in rescuing the 

meristem size (Figure 3.2B) with an average width being 1.36±0.03 of the wild 

type. This is probably only partially due to the low expression of ERECTA in 

those lines as low expression of ERECTA in pCLV3:ER line #3 and pSTM:ER 

lines #3 is sufficient to rescue the SAM size (Figure 3.1B and Figure 3.2A). The 

pANT:ER construct was the least efficient in controlling meristem size with the 

average meristem width being 1.43±0.03 of the wild type and in this case it is not 

clear whether this poor rescue is related to low level of ERECTA expression in 

the L1 layer of the meristem or due to its expression in the leaf primordia (Figure 

3.2B). The expression of ERECTA in the peripheral zone under the KAN 

promoter also led to a relatively inefficient rescue with the average meristem 

width being 1.34±0.04 of the wild type. This result cannot be attributed to the low 

expression of ERECTA in pANT:ER and pKAN:ER lines (Figure 3.1B). These 

data suggest that ERECTA can affect the meristem size when expressed in a 

variety of tissues but it is most efficient when expressed in the central zone.  

Expression of ERECTA in the central zone of the SAM is most efficient in 
regulating leaf initiation  

ERfs promote leaf initiation (Chen et al. 2013). At 3 and 5 days post 

germination the er erl1 erl2 mutant forms on average 0.33± 0.03 and 0.42± 0.03 

times as many leaves compared to the wild type. Out of the five promoters used, 

CLV3 and STM were the most efficient in rescuing leaf initiation defects (Figure 

3.3A). Plants expressing the pCLV3:ER and pSTM:ER constructs in the er erl1 

erl2 background formed on average 0.89±0.05 and 0.91±0.05 times as many 

leaves versus wild type at 3 days post germination and 0.92± 0.05 and 0.89± 

0.05 times as many leaves at 5 days post germination, respectively. Expression 

of ERECTA in the peripheral zone using the KAN promoter was the least efficient 

in the enhancement of leaf initiation (Figure 3.3B) with those transgenic plants 

having on average 0.69±0.05 and 0.71± 0.04 times as many leaves than the wild  
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Figure 3.2 Expression of ERECTA in the central zone or broadly in the meristem 
rescues SAM size defects more efficiently (A) compared to when ERECTA is 
expressed in the leaf primordia, the peripheral zone, or in the organizing center 
(B). SAM size measurements were performed by DIC microscopy using 3 DPG 
(solid bars) and 5 DPG (dotted bars) seedlings. L1, L2, L3 are three genetically 
independent transgenic lines. N=7-11 Error bars represent SE. 

 
type at 3 and 5 days post germination, respectively. The pANT:ER transgenic 

plants had on average 0.85±0.05 and 0.80±0.06 times as many at 3 days and 5 

days, respectively. It is not clear whether expression in the leaf primordia or in 

the L1 layer of the meristem is responsible for this phenotype. The pWUS:ER 

transgenic plants had on average 0.79±0.07 and 0.72±0.05 times as many 

leaves than the wild type at 3 days and 5 days, respectively. It is interesting to 

note that expression of ERECTA in the organizing center has an effect at all on 

leaf initiation in the peripheral zone, suggesting that at least to some extent ERfs 

regulate leaf initiation indirectly. Based on the phenotypes of pCLV3:ER, 
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pKAN:ER, and pWUS:ER transgenic plants we conclude that ERfs can regulate 

leaf initiation indirectly and they do so the most efficiently when expressed in the 

central zone of the meristem.  

ERECTA expression in the SAM can alter leaf expansion and stem 
elongation.  

In addition to SAM size and leaf initiation, the expression of ERECTA 

under the utilized promoters altered other aspects of plant development. Two out 

of the five constructs, pSTM:ER and pANT:ER, were able to rescue infertility of 

er erl1 erl2 (Figure. 3.10, located in chapter 3 appendix) consistent with their 

broad expression in developing flowers (Elliott et al. 1996), (Long et al. 1996). 

The expression of CLV3 and WUS is much more restricted during flower 

development (Fletcher et al. 1999), (Mayer et al. 1998) and thus it is not 

surprising that ERECTA expressed under promoters of those genes cannot 

rescue fertility defects. While the KAN promoter is active on the abaxial side of 

initiating floral organs and in the tissue that gives rise to ovules (Kerstetter et al. 

2001), that expression was not sufficient to rescue infertility of er erl1 erl2 

(Figure. 3.10 appendix).  

The ERf genes are not only important for leaf initiation but also for leaf 

expansion (Shpak et al. 2004). In the three independent transgenic lines 

analyzed the STM promoter led to very different levels of ERECTA transcription 

from ~100-150 times more than in the wild type in L1 to ~5 times less in L3 

(Figure 3.1B). The expression was observed in both young primordia (Figure 

3.1A) and in mature leaves (Figure 3.4B). The different levels of ERECTA 

expression were reflected in the size and shape of leaves with fully rescued leaf 

expansion in L1 and a minor increase in leaf expansion in L3 (Figure 3.10 

appendix). Two pCLV3:ER lines also varied in the levels of ERECTA expression. 

The pCLV3:ER L1 line expressed ~1.5 more ERECTA compared to the wild type 

and L3 about six times less (Figure 3.1B). This difference of expression again 

was reflected in different leaf sizes (Figure 3.10 appendix). Comparison of L3 
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Figure 3.3 Expression of ERECTA in the central zone or broadly in the meristem 
rescues leaf initiation more efficiently (A) compared to when ERECTA is 
expressed in leaf primordia, in the peripheral zone, or in the organizing center 
(B). The number of leaf primordia formed was measured by DIC microscopy 
using 3 DPG (solid bars) and 5 DPG (dotted bars) seedlings. L1, L2, L3 are three 
genetically independent transgenic lines. N=7-11 Error bars represent SE. 

 

pSTM:ER and L3 pCLV3:ER, which on the level of the whole seedling express 

similar amounts of ERECTA, suggests that expression under the CLV3 promoter 

is more efficient in promoting leaf expansion (Figure 3.1B and Figure 3.10B). 

Interestingly, ERECTA expression directly in leaves using the KAN and ANT 

promoters only weakly altered leaf size (Figure 3.4). The leaf size in pKAN:ER L2 

that had twice as much ERECTA in mature leaves compared to the wild type was 

very similar to the size of leaves in pWUS:ER L3 where ERECTA was barely 

detectable if even present. The most revealing line is pANT:ER L1, which 

expressed relatively high levels of ERECTA throughout both young primordia and 
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Figure 3.4 Expression of ERECTA using the CLV3 or STM promoters most 
efficiently rescues leaf shape defects of the er erl1 erl2 mutant. A. 20-day old 
plants, bar=1 cm. B. Real time RT-PCR analysis of ER in leaves of wt and T3-T6 
transgenic plants. The average of three biological replicates is presented. Error 
bars represent SE.   
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older leaves but only partially rescued leaf size. Taken together, these data 

suggest that to induce leaf expansion either ERfs have to be expressed in a very 

specific pattern in a leaf which we inadvertently achieved with the STM and CLV3 

promoters or ERfs regulate leaf size indirectly from the SAM.  

To further explore how ectopic expression of ERECTA affects plant growth 

we analyzed plant height and pedicel lengths. Previously it was shown that 

ERECTA expression in the phloem using the SUC2 promoter was able to rescue 

height and pedicel length in the erecta mutant (Uchida et al. 2012). Here we 

show that expression in a variety of tissues rescues elongation defects of er erl1 

erl2 (Figure 3.5). ERECTA most efficiently stimulated stem growth when 

expressed under CLV3 and STM promoters, which is most noticeable when one 

observes younger plants (Figure 3.10C appendix). Given enough time ERECTA 

under the control of four promoters, CLV3, STM, ANT and KAN, fully rescued 

final plant height (Figure 3.5A). ERECTA under the same four promoters also 

stimulated pedicel elongation in er erl1 erl2 (Figure 3.5B), with pCLV3:ER and 

pKAN:ER being the least efficient. This may be at least partially related to their 

inability to rescue fertility, since we previously demonstrated that pedicels 

attached to unfertilized siliques are approximately 2 mm shorter compared to 

those attached to fertilized siliques (Bundy et al. 2012). Unexpectedly, even low 

expression of ERECTA in the organizing center of the SAM using the WUS 

promoter had a small but statistically significant effect on both stem and pedicel 

elongation (Figure 3.5 and Figure 3.S1C). These results are inconsistent with 

ERf function in the phloem and indicate that further analysis is necessary to 

understand the role of ERECTA in organ elongation.  

Expression pattern of EPFL1, EPFL2, EPFL4, and EPFL6 near the SAM.  

The activity of ERf receptors is regulated by a group of secreted small proteins 

from the EPF/EPFL family (Shimada et al. 2011). To narrow down the group of 

ligands that might be perceived by ERfs in the SAM we investigated EPF/EPFL 

expression patterns using the GUS and GFP transcriptional reporter assay. 
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Analysis of whole mount seedlings using GUS assay suggested that EPF1, 

EPF2, and EPFL8 are expressed in epidermis and specifically in developing 

stomata but not in the shoot apical meristem (Figure 3.11). The expression of 

other genes near the meristematic region was further examined by sectioning 

(Figure 3.6A). Three genes, EPFL3, EPFL5/CLL1, and EPFL7, were expressed 

in different regions of leaf primordia: EPFL3 on the adaxial side of leaves at 

some distance from the SAM; EPFL5 at the bases of leaf primordia, especially on 

the abaxial size; and EPFL7 in the internal tissues at the base of leaf primordia. 

Five genes were expressed near the meristematic region: EPFL1, EPFL2, 

EPFL4/CLL2, EPFL6/CHAL, and EPFL9/STOMAGEN. Both EPFL4 and EPFL6 

were expressed throughout the meristem albeit at a very low level. EPFL9 was 

expressed in the rib zone of the meristem. Because EPFL9 is an antagonist of 

ERfs (Lee et al. 2015) and currently mutants in that gene are unavailable, we did 

not investigate it any further. We observed expression of EPFL1 at the boundary 

of the SAM, and on the adaxial side of forming leaf primordia. There was also low 

level of expression in the rib zone. EPFL2 was expressed at the boundary and in 

the peripheral zone of the meristem. Next we used epifluorescence microscopy 

to analyze GFP expression. Unfortunately, we could not detect the EGFP signal 

in the vegetative meristem presumably due to the low level of expression and 

high background autofluorescence. But we were able to analyze expression of all 

genes during embryogenesis. Out of 11 genes only EPFL1 and EPFL2 were 

expressed in the developing embryos. Both genes were expressed very highly in 

the peripheral regions of the embryonic SAM where two margins of cotyledons 

meet (Figure 3.6B). EPFL1 was also expressed in the epidermis of hypocotyl and 

in the root apical meristem. 

EPFL1, EPFL2, EPFL4, and EPFL6 partially redundantly regulate elongation 
of plant organs.  

Due to their expression near the meristematic region we investigated the 

function of EPFL1, EPFL2, EPFL4, and EPFL6 in plant development. The 

epfl4/cll2-1 and epfl6/chal-2 single mutants are null alleles carrying T-DNA 
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Figure 3.5 Expression of ERECTA under a variety of promoters can fully or 
partially rescue elongation of stem and pedicels in the er erl1 erl2 mutant.  Plant 
height (A) and pedicel length (B) were measured in mature 2 month old plants. 
Two independent transgenic lines were analyzed. N=10-30 for heights and n=64 
for pedicel length. Error bars represent SD. 
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insertions with no visible phenotype (Abrash et al. 2010; Abrash et al. 2011; 

Uchida et al. 2012). The epfl2-1 is a null allele carrying a transposon insertion 

which exhibits diminished leaf tooth growth (Tameshige et al. 2016). The epfl1-1 

is a null allele carrying a transposon insertion with no visible phenotype (Figure 

3.12 and 3.13 appendix). To understand the function of these genes we created 

all possible combinations of double and triple mutants. The epfl4 epfl6 plants are 

shorter in stature compared to the wild type but are slightly taller compared to er-

105 (Abrash et al. 2011; Uchida et al. 2012) and Figure 3.7A-B). None of the 

other double mutants displayed a significant reduction in elongation of stems or 

pedicels (Figure 3.7A-B). Addition of the epfl1 mutation to epfl4 epfl6 did not 

change stem and pedicel elongation while the presence of epfl2 in the epfl4 epfl6 

background slightly reduced elongation of pedicels leading to formation of more 

compact inflorescence (Figure 3.7B and E). The epfl1 epfl2 epfl4 epfl6 mutant 

reached a final height comparable to that of the erecta single mutant; however, it 

grew drastically slower and took an additional four weeks to achieve maturity 

compared to erecta (Figure 3.7A and D). In this respect epfl1 epfl2 epfl4 epfl6 is 

similar to er erl1 erl2 which is also characterized by an extended period of growth 

and a longer lifespan (Kosentka et al. 2017). We observed that the extended life 

span of epfl1 epfl2 epfl4 epfl6 leads to increased number of siliques formed on 

the main stem (Figure 3.7C). Taken together these data suggest that while 

EPFL4 and EPFL6 play the primary role in stimulation of stem and pedicel 

elongation, EPFL1 and EPFL2 also contribute to this process. 

In addition to changes in elongation of aboveground organs we also 

observed changes in silique growth, fertility, and apical dominance (Figure 3.13 

appendix) Of all double mutants, epfl1 epfl6 formed the shortest siliques 

suggesting that the primary role for these two genes is in fruit development 

(Figure 3.13B appendix). Fertility was reduced in the epfl1 epfl2 epfl6 and epfl1 

epfl4 epfl6 mutants, and epfl1 epfl2 epfl4 epfl6 plants are infertile (Figure 3.13A 

appendix). In addition, all four genes contribute partially redundantly to 

establishment of apical dominance (Figure 3.13C appendix). No obvious 
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Figure 3.6 A reporter gene assay of the EPF/EPFL gene family in the SAM 
demonstrates distinct patterns of expression. A. Longitudinal sections of shoot 
apices of T2 7 or 10-day old wild type seedlings expressing indicated 
pEPFL:EGFP-GUS constructs. The dotted line in the EPFL6 insert emphasizes 
the L1 layer of the SAM. B. Epi-fluorescence microscopy of plants expressing 
pEPFL1:EGFP-GUS and pEPFL2:EGFP-GUS in torpedo embryos. For each 
construct the same embryo is represented from two different perspectives. 
 

 

 

 

 

A 

B 

EPFL1 EPFL2 EPFL4 EPFL3 

EPFL5 EPFL6 EPFL7 EPFL9 
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changes in the formation of stomata were observed (Figure 3.14 appendix).  

EPFL1, EPFL2, EPFL4, and EPFL6 redundantly regulate SAM size and leaf 
initiation.  

Analysis of triple epfl mutants demonstrated a slight but statistically 

significant increase of meristem size in epfl1 epfl2 epfl4, epfl 1 epfl2 epfl6, and 

epfl1 epfl4 epfl 6 (Figure 3.8A). There were no significant changes in the rate of 

leaf initiation (Figure 3.8B). Since the epfl1 epfl2 epfl4 epfl6 mutant is infertile and 

the epidermal phenotype cannot be used to identify it in the progeny of erfl1/+ 

epfl2 epfl4 epfl6 plants, 30 seedlings with slightly shorter petioles of cotyledons  

 

Figure 3.7 EPFL1, EPFL2, EPFL4, and EPFL6 synergistically regulate stem and 
pedicel elongation with EPFL4 and EPFL6 playing the key role. (A) Height of fully 
grown plants (n=27-46 except er erl1erl2 n=12). (B) Lengths of mature pedicels 
on the main stem (n=100-120). (C) Number of siliques on the main stem (n=10). 
A-C. Bars represent the average; Error bars represent SD. Values significantly 
different from er-105 when not obvious are indicated by asterisks (P < 0.001). (D) 
Six-week-old plants of er-105, epfl1-1 epfl2-1 epfl4 epfl6 and er-105 erl1-2 erl2-1. 
Scale bar: 1 cm. (E) Inflorescence apices from the wild type, er, er erl1 erl2 and 
various combinations of epfl mutants.  Bar=25 mm. 
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were genotyped for epfl1-1 prior to fixation for DIC microscopy. This allowed us 

to identify ten epfl1 epfl2 epfl4 epfl6 mutants. The following analysis 

demonstrated that in terms of the meristem size and the leaf initiation rate epfl1 

epfl2 epfl4 epfl6 is indistinguishable from er erl1 erl2 (Figure 3.8), suggesting that 

EPFL1, EPFL2, EPFL4 and EPFL6 are the ligands that are sensed by ERfs in 

the meristem. To confirm that the phenotype is due to mutations in the EPFL 

genes and not to some other overlooked mutations we independently expressed 

EPFL1 and EPFL2 under their endogenous promoters in epfl1 epfl2 epfl4 epfl6. 

Both constructs rescued meristematic defects in multiple independent transgenic 

lines (Figure 3.9). To test whether ligands have to be co-expressed with ERfs in 

the central zone or if they function from the peripheral zone EPFL1 was 

expressed in epfl1 epfl2 epfl4 epfl6 under CLV3 and KAN promoters. The 

expression under KAN fully rescued both meristem size and leaf initiation while 

expression under CLV3 had no effect on the meristem size and only partially 

rescued leaf initiation (Figure 3.9). Taken together these data suggest that four 

EPFL genes, EPFL1, EPFL2, EPFL4, and EPFL6, redundantly regulate 

maintenance of meristem size and promote leaf initiation with expression in the 

peripheral zone being sufficient for their function. 

Discussion  

The first indication that ERECTA signaling might contribute to regulation of SAM 

structure came from the analysis of higher order mutants. It was observed that 

the er mutation enhances meristematic defects of CLV pathway mutants and 

suppresses those of the uni-1D/+ mutant (Dievart et al. 2003; Durbak et al. 2011; 

Uchida et al. 2011). Later, analysis of the er erl1 erl2 mutant demonstrated that 

ERfs synergistically inhibit expansion of the vegetative meristem and promote 

leaf initiation (Chen et al. 2013; Uchida et al. 2013). While the CLAVATA 

pathway regulates meristem height ERECTA signaling restricts the meristem 

width and functions independently of CLAVATA (Mandel et al. 2014; Mandel et 

al. 2016). Understanding a signaling pathway depends on knowing the identity of 
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cells involved in sending and receiving the signal. ERf receptors are expressed 

throughout the SAM and in forming leaf primordia (Yokoyama et al. 1998; Uchida 

et al. 2013) but that does not mean that their expression in all those areas is 

necessary for regulation of meristem expansion and/or leaf initiation. To uncover 

the regions where ERfs are critical for meristem maintenance and organ initiation 

we expressed ERECTA under a range of promoters in the er erl1 erl2 mutant. 

Unexpectedly, expression of ERECTA under all 5 promoters, STM, CLV3, KAN, 

ANT, and WUS, in different and in some cases non-overlapping areas of the 

meristem reduced meristem size and promoted leaf initiation, suggesting that 

ERfs can have an impact on meristem function when expressed in variety of 

locations. Simultaneously, expression of ERECTA throughout the meristem 

under the STM promoter or in the central zone under the CLV3 promoter had the 

strongest impact on the meristem width and organ initiation, implying that the 

function of ERfs in the central zone is paramount. It is interesting to note that 

expression of ER under the WUS promoter elements is insufficient to fully rescue 

meristematic defects of er erl1 erl2 while expression of CLV1 under the same 

promoter elements fully rescues the clv1 mutant (Nimchuk et al. 2015) which 

reinforces the distinctiveness of these two signaling pathways.  

The next question is: what signals are perceived by ERfs in the SAM? 

There are eleven EPF/EPFLs in Arabidopsis. Analysis of mutants suggests that 

four genes, EPFL1, EPFL2, EPFL4, and EPFL6, contribute to meristem size 

establishment and promotion of leaf initiation. These genes function redundantly 

with triple mutants exhibiting no or very weak meristematic phenotypes. EPFL1, 

EPFL2 and EPFL4, EPFL6 belong to two closely related clades with stomata-

regulating EPF1, EPF2, and EPFL9 genes being more distantly related (Takata 

et al. 2013). Both clades have one additional gene, EPFL3 and EPFL8, that are 

neither expressed near the meristematic region nor seem to be essential for SAM 

regulation. EPFL4 and EPFL6 are verified ERf ligands as they bind directly to 

ERfs (Lee et al. 2012; Lin et al. 2017). EPFL2 has been shown to bind to ERf 

containing complexes which suggests that genes belonging to that clade are  
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Figure 3.8 EPFL1, EPFL2, EPFL4, and EPFL6 redundantly regulate the size of 
the shoot apical meristem and the rate of leaf initiation. Comparison of the SAM 
width (A) and the number of formed leaf primordia (B) in the wild type, er erl1 
erl2, and epfl family  mutants determined by DIC microscopy at 3 (solid bars) and 
5 days post germination (dotted bars). Bars represent the average; Error bars 
represent SD. N=10-11. Values significantly different from the wild type are 
indicated by asterisks (P< 0.006). C. DIC images of meristematic regions in the 
wild type (wt), er erl1 erl2, and epfl1,2,4,6 at 3 DPG. The meristem width is 
displayed with an arrow.   
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Figure 3.9 The meristematic phenotype of epfl1,2,4,6 can be fully rescued by 
expression of EPFL1 or EPFL2 under endogenous promoters or by expression of 
EPFL1 under KANADI promoter but not CLV3. Comparison of the SAM width (A) 
and the number of formed leaf primordia (B) in the wild type, selected mutants as 
indicated and in independent transgenic lines expressing indicated constructs in 
epfl1,2,4,6 background as determined by DIC microscopy in 5-day post 
germination seedlings. Bars represent the average; Error bars represent SD. 
N=7-14 Values significantly different from epfl1,2,4,6 are indicated by asterisks 
(P<0.05).    

 
likely to encode ERf ligands (Tameshige et al. 2016). Since all four genes have 

the potential to suppress stomata development when expressed in the epidermal 

tissue layer they are likely to be agonists of ERf receptors (Abrash et al. 2011). 

The expression patterns of EPFL1, EPFL2 and EPFL4, EPFL6 differ. EPFL1 and 

EPFL2 are expressed during embryogenesis in the boundary region between two 

cotyledons at the periphery of the shoot apical meristem. After germination they 

are expressed in the analogous region at the border of the meristem and already 

formed leaf primordia. Expression of EPFL1 in the border zone is consistent with 

the gene expression profiling of the inflorescence SAM which indicated 
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upregulated EPFL1 expression at the periphery of the SAM (Yadav et al. 2009) 

and with the previously published pattern of its expression in the vegetative SAM 

(Kimura et al. 2018). EPFL2 has been classified as a boundary enriched gene in 

a TRAP-seq experiment that was done using seven-day old seedlings (Tian et al. 

2014). The boundary zone with a low rate of cell divisions, low auxin 

accumulation, and high expression of CUC genes is similar to another location 

where EPFL2 is expressed – the sinus of leaf teeth (Wang et al. 2016; 

Tameshige et al. 2016). EPFL4 and EPFL6 are not expressed during 

embryogenesis. After germination EPFL4 and EPFL6 are expressed weakly 

throughout the entire SAM. 

ERf expression in the central zone and the expression of EPFLs at the 

periphery of the meristem or at the bases of the leaf primordia suggests that the 

ERf signaling pathway enables communications between the border region and 

the central zone. This conclusion is also supported by the ability of EPFL1 to 

rescue the quadruple mutant phenotype when expressed under the KAN but not 

the CLV3 promoter. Taken together, our data suggest that EPFLs diffuse from 

the borders and activate ERfs at the outer boundary of the central zone of the 

meristem, restricting SAM width and promoting leaf initiation.  

Recently it has been proposed that ERfs function in the L1 layer of the 

meristem where they sense signals coming from internal layers of the SAM 

(Kimura et al. 2018). Our data is not consistent with this conclusion. Kimura et al. 

utilized only two promoters to interrogate the function of ERfs and did not 

measure the meristematic parameters at multiple developmental points using 

numerous samples to obtain statistically significant data. Since the expression of 

ERECTA in many different regions of the meristem alters behavior of 

meristematic cells it is important to obtain quantitative measurements for precise 

comparisons. Moreover, it is necessary to take into account the differences in the 

expression levels of ERECTA. For example, while ERECTA expressed under the 

ANT, KAN and WUS promoters rescues meristem defects in a similar manner, 

the first two promoters drive ERECTA expression at much higher level 
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suggesting that the SAM is much more sensitive to ERECTA that is localized in 

the organizing center. In addition, our data suggests that the ligands are 

endogenously expressed at the boundary of the meristem and not in the internal 

layers. Their expression in the internal layers by CLV3 cannot efficiently rescue 

the meristematic defects of epfl1 epfl2 epfl4 epfl6 mutant. While Kimura and 

colleagues state that EPFLs are secreted by in the internal layers of the SAM 

data supporting that conclusion is not provided.  

Expression of a gene under an exogenous promoter is a popular approach 

to interrogate gene function in a specific tissue. This approach has been effective 

in revealing the function of ERfs. Here, we would like to emphasize some issues 

associated with this approach. First, to prove that a gene controls a particular 

process from a specific tissue it is necessary to use a sizable range of 

exogenous promoters. Because expression of ERECTA in a variety of non-

overlapping tissues has an effect on meristematic processes and elongation of 

organs, the use of a limited number of promoters we believe has been 

misleading (Kimura et al. 2018). Second, the expression pattern of a gene under 

an exogenous promoter can differ from what is expected and it is essential to 

evaluate the actual expression pattern. For example, while in situ data suggest 

that ANT is expressed in leaf and flower primordia (Elliott et al. 1996; Long et al. 

2000), the commonly used 6.5k promoter of that gene drives expression in the L1 

layer of the meristem as well (An et al. 2004). Finally some promoters can lead to 

variety of expression levels and expression patterns. An example is the STM 

promoter. In situ data indicates that STM is expressed throughout the SAM and 

is downregulated in the forming organ primordia (Long et al. 1996; Long et al. 

2000). However, in transcriptional reporter assays the STM promoter induced 

diversity of expression patterns that differed from endogenous: the reporters 

were expressed underneath the shoot apical meristem in the cells of the 

hypocotyl, in the vascular cells of the leaf primordia, preferentially at the 

boundary of SAM, or in the peripheral region but not the central region of the 

SAM (Verkest et al. 2005; Landrein et al. 2015; Kim et al. 2003). Similarly in our 
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experiments we observed STM expression underneath the SAM and in leaf 

primordia. Moreover expression levels between created transgenic lines varied 

more than 500 times. Hypothetically these differences in expression could be due 

to inconsistent epigenetic regulation of the STM promoter in new locations (Katz 

et al. 2004).  

 By expressing ERECTA in different regions of the SAM we anticipated to 

rescue meristematic phenotypes. What we did not expect is to rescue the 

elongation of aboveground organs. ERf genes promote elongation of internodes, 

pedicels, petioles, siliques, leaves, and flower organs. Single er mutants have 

compact inflorescences as a result of shorter internodes and pedicels (Torii et al. 

1996). The erl1 and erl2 mutations enhance organ elongation defect of er and 

the loss of all three genes results in severe dwarfism (Shpak et al. 2004). 

Previously it has been proposed that ERfs promote internode and pedicel growth 

by enabling cell-to-cell communication between the endodermis and phloem 

(Uchida et al. 2012). Our data suggests that ERECTA can promote organ 

elongation while expressed in a variety of locations including the central zone of 

the SAM. Most significantly our data suggest that expression in the phloem is not 

essential for ERfs to promote elongation of organs. Does ERfs regulate organ 

elongation from the SAM? We can envision several mechanisms that would allow 

this. Internodes are initially formed through activity of the peripheral zone that 

generates progenitor cells for epidermis and cortex and the rib zone that supplies 

cells for the central cylinder. As observed above the activity of ERECTA in the 

central zone promotes initiation of leaves in the peripheral zone. Thus it is not a 

big stretch to imagine that ERfs promote proliferation of cells surrounding forming 

leaf primordia. Alternatively ERfs might regulate growth of internodes indirectly, 

for example through controlling homeostasis of hormones such as auxin and 

gibberellin. This later possibility can account for the ERfs ability to regulate organ 

growth when expressed in a variety of tissues including from the phloem and the 

SAM. Our data indicates that understanding of the ERfs role in organ elongation 

is incomplete and requires further investigation.  
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The phenotype of epfl1 epfl2 epfl4 epfl6 mutant suggests that in addition 

to regulation of meristem structure all four genes promote elongation of 

internodes and pedicels with EPFL4 and EPFL6 playing the major role in this 

process. The expression pattern of EPFL1 and EPFL2 in internodes and pedicels 

and their precise role in organ elongation is yet to be established. While 

quadruple mutant grows much slower compared to epfl4 epfl6 its final size only 

slightly below er mutant and considerably bigger compared to er erl1 erl2. This 

result suggests that either other ligands contribute to regulation of organ 

elongation or perhaps ERf also can regulate organ elongation independently of 

ligands binding. Previously we demonstrated that the kinase dead ERECTA 

promotes organ elongation when expressed in er erl1 erl2 (Kosentka et al. 2017). 

If the main outcome of EPF/EPFL binding is the activation of the ERf’s kinase 

domain then it is consequent that the phenotype of epfl1 epfl2 epfl4 epfl6 will 

resemble that of the kinase dead receptor.   
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Appendix 

Table 3.1 Primers used for cloning. 

WUS.PRO.for  ccGGATCCGTATGATCTCTGTTGTACTCAC 

WUS.PRO.rev.  GGCTCCATGGGTGTTTGATTCG 

KAN.PRO.for  AAGGATCCAAGACCAACACAAACAAATTACC 

KAN.PRO.rev.  GGCCATGGAATTAAAGAAACCTTTCTCTTG 

STM.pro.for.v2  CCGGATCCTACAATTTCTCTAGCCTCCGTTTAATTT 

STM.Pro.Rev.v3.  ATATCTCTAAACAGAGCCATCTTCTCTTTCTCTCACTAG 

ER.pSTM.OH.for  CTAGTGAGAGAAAGAGAAGATG GCTCTGTTTAGAGATAT 

ER.1100.xbal.rev.  ACATATGAAGTCTAGAAGCAGAATAACT 

ANT.ER.OH.rev  ATATCTCTAAACAGAGCCATGGTTTCTTTTTTTGGTTTCT 

ANT.PRO.for CCGGATCCTATTATTGTGTTTCTCCTTTCTCT 

ER.ANT.OH.for  AGAAACCAAAAAAAGAAACCATGGCTCTGTTTAGAGATAT 

CLV3.Pro.for  CCGGATCC ATAAAATTAATCGAATTCCGG 

CLV3.Pro.rev  ATATCTCTAAACAGAGCCATTTTTAGAGAGAAAG 

ER.pCLV3.OH.for  CTTTCTCTCTAAAAATG GCTCTGTTTAGAGATAT 

ER.tCLV3.OH.rev  AGCAACAAGAGATTAGGCTACTCACTGTTCTGAGAA 

CLV3.ter.for  TTCTCAGAACAGTGAGTAG CCTAATCTCTTGTTGCT 

CLV3.ter.rev  GG CTGCAGTCGAC ATTAAAAATAATACATTTATAATCAA 

EPFL1-1 CACCTCTGTTCTCCCTGAGGAAA 

EPFL1-2 TTTTGAGTTGGATTCAAGAATTACTACTATAA 

attL1-T2.1 ccccTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTaagctt 

attL2-T2.1 ggggTCTTATAATGCCAACTTTGTACAAGAAAGCTGGGTggatcc 

Q.EPF1-1 AAAAAAGCAGGCTaagctt ACGACGATGTCCTCTTTTGTC 

Q.EPF1-2 AAGAAAGCTGGGTggatcc GATATATTATCGCAAGTG 

EPF2-2b GTTTATAATCTTTTTTTTTAACAAGAAGAAAC 

Q.EPF2-1 AAAAAAGCAGGCTaagctt TGGTCTAGAGAACAAGTGAAG 

Q.EPF2-2 AAGAAAGCTGGGTggatcc GTTTATAATCTTTTTTTTT 

Q.EPFL2-1 AAAAAAGCAGGCTaagctt GACATTTGTAGTACAACC 

Q.EPFL2-2 AAGAAAGCTGGGTggatcc TTTCAGACACGAGATCGG 

Q.EPFL3-1 AAAAAAGCAGGCTaagctt CGATTCATGGGTAGGTCCAT 

Q.EPFL3-2 AAGAAAGCTGGGTggatcc TTTCTATGATTCTTTTTACT 

Q.EPFL7-1 AAAAAAGCAGGCTaagctt TAAAATTGGATAATTGTGGGG 

Q.EPFL7-2 AAGAAAGCTGGGTggatcc CTCTCTCTTTTCAAAGGCTT 

Q.EPFL8-1 AAAAAAGCAGGCTaagctt TTTGGAGCTTCCCTTACAAGC 

Q.EPFL8-2 AAGAAAGCTGGGTggatcc ATCATCACAATTTTCTCAAA 

Q.EPFL9-1 AAAAAAGCAGGCTaagctt CTTGGAATTCAGTCGTCTAAC 

Q.EPFL9-2 AAGAAAGCTGGGTggatcc TCTCTACTTCTTCTTCTTCT 

Epfl1.us.bam ACGGATCCTTAAGTCATGGTTATATAC 

Epfl1.ds.pst1.rev ACATAGAACTGCAGTTCAAAATTTAAG 

Epfl2.us.bam TTTGGATCCCTAAATCGCTCTAGAC 

Epfl2.ds.Pst1.rev CACACTCTGCAGTTTTCTTTATG 

Epfl1.nco ATCCAACTCAACCATGGTTGCTATATAC 

Epfl1.clv3.ter CCACTTTTATAATCCTTAACCTAATCTCTTGTTG 

Clv3.ter.epfl1.rev CAACAAGAGATTAGGTTAAGGATTATAAAAGTGG 

Clv3.pro.epfl1 CTTTCTCTCTAAAAATGTTTGCTATATACAAATC 

Epfl1.clv3.pro.rev GATTTGTATATAGCAAACATTTTTAGAGAGAAAG 
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Table 3.2 Primers used for genotyping epfl1-1 and epfl2-1. 

Primer name sequence purpose 

3’ dSpm TACGAATAAGAGCGTCCA TTTTAGAGTGA Genotyping epfl1 

epfl1.74 ATCCTTTCTTCAACCTATCCAACCTCCT 

epfl1.436.rev TTAAGGATTATAAAAGTGGCCATTGCA 

epfl2.1 ATGGTGTGGAGCAGCAACATGTCAAGC Genotyping epfl2 

epfl2.540.rev TCAAGGGTTGTAGATAGAGTTACCA 

GUS.43.rc GTTTTTTGATTTCACGGG 

 

Table 3.3 Primers used for RT-PCR 

 
Primer name sequence Annealing temperature 

Act2-1 GCCATCCAAGCTGTTCTCTC 51.9°C 

Act2-2 GCTCGTAGTCAACAGCAACAA 

qPCR ERF TGAATGTGGCCAACAATGATCTGG 61.9 °C 

qPCR ERR TTTTGAAATGCTCGGGGTATAGTGC 

epfl1.1 ATGTTTGCTATATACAAATCAACCCTTCTTC 
52 °C 

epfl1.436.rev TTAAGGATTATAAAAGTGGCCATTGCA 
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Figure 3.10. The effect of ERECTA expression under different promoters on 
plant morphology. A. Expression of ERECTA under STM and ANT promoters 
rescues infertility of er erl1 erl2. B. 20 days old plants, bar=1 cm. C. The plant 
height was measured in 5 week old plants. N=5-16 for heights. 
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Figure 3.11 The GUS reporter gene assay of the EPF/EPFL gene family in the 
SAM demonstrates distinct patterns of expression in seedlings (A) and shows an 
absence of expression in the SAM for EPF1, EPF2, and EPFL8 (B). Seedlings 
are 5 days post germination. In B are magnified images of the SAM region from 
seedlings depicted in A.  

 
Figure 3.12 epfl1-1 is a null mutant with a transposon insertion in the second 
exon. A. Schematic of the gene structure and insertion sites for mutants used in 
this study. Lines indicate introns or UTR regions, bars indicate exons, triangles 
indicate T-DNA insert position for epfl4 and epfl6 or transposon site for epfl1-1 
and epfl2-1. B. RT-PCR analysis of epfl1-1 
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Figure 3.13. EPFL1, EPFL2, EPFL4, and EPFL6 partially redundantly regulate 
flower development and apical dominance. (A) The wild type, er-105 and epfl 
family mutant inflorescence stems. Scale bar=15 mm (B) Length of mature 
siliques on the main inflorescence stem (n=78-158; 7-8 measurements per stem). 
(C) The number of rosette branches is increased in some of epfl family mutants 
and in the er erl1 erl2 mutant (n=6-9). B and C. Bars represent the average; Error 
bars represent S.D.  

 
Figure 3.14. The epfl1, 2, 4, 6 mutant does not exhibit obvious stomata 
patterning defects. The scale bar=100µm. The abaxial epidermis of cotyledons 
from 12 days post germination seedlings.  
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CHAPTER 4 CONCLUSION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



100 
 

Central to understanding the development of multicellular organisms is 

understanding how cells are able to communicate with one another. The 

ERECTA family signaling pathway is of particular importance in plant 

development due to the wide range of developmental processes it is involved in. 

The works presented in this dissertation have provided novel biological 

information about how the ERECTA receptor functions and how its use is 

integrated into regulating the SAM. Understanding how signaling pathways 

function opens the door for engineering improved crop plants that are better 

suited for harsh environments and increased yields.  

In Chapter 2, a structure function analysis of ERECTA’s cytoplasmic 

domain was presented. This is the first study that specifically examines the 

cytoplasmic kinase of ERECTA to understand how it is regulated. This work 

highlighted the importance of the juxtamembrane domain and kinase activity for 

ERECTA signaling. Analysis of putative phosphorylation sites in the activation 

loop of the kinase reveled that that threonine 807 phosphorylation could be a 

means to activate and increase kinase signaling. Additionally, tyrosine residues 

815 and 820 showed a dominant negative response when mutated to aspartate 

which suggests their role as inhibitory phosphorylation sites of ERECTA 

signaling. Lastly, this chapter showed that nonfunctional versions of ERECTA 

were still able to partially rescue organ elongation in er erl1 erl2 mutants 

suggesting that there are multiple molecular mechanisms that control different 

aspects of ERECTA family signaling.  

Additional work related to chapter 2 should include an analysis of how the 

juxtamembrane domain and kinase activation loop interact with other cytoplasmic 

components of ERECTA signaling. There are several possibilities for how the 

juxtamembrane domain (JMD) contributes to signaling: as a docking site for 

phosphorylation of downstream components, a pivot arm that positions the two 

receptor kinase domains into an active conformation, or the JMD could serve as 

a regulatory region for the ERECTA kinase (Jura, Endres et al. 2009, Sengupta, 

Bosis et al. 2009, Oh, Clouse et al. 2012). Creating a chimeric version of 
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ERECTA where the JMD is swapped with one from another plant RLK would 

help in understanding if its role is specific to ERECTA signaling or a general 

feature that other receptors share. Unfortunately, no direct downstream targets of 

ERECTA are currently known, therefore JMD function as a docking site cannot 

be studied. The cytosolic kinase of the receptor-like kinase SOMATIC 

EMBRYOGENESIS RECEPTOR KINASE (SERK)3 has been shown to 

phosphorylate the kinase domain of ERECTA in vitro (Meng, Chen et al. 2015). A 

biochemical approach to examine which residues are phosphorylated by SERK3 

and whether the JMD contributes to this would provide insight into how the two 

receptors function in terms of regulating each other. Lastly, the fact that inactive 

kinase versions of ERECTA were able to rescue some of the ERf related 

phenotypes should be re-examined to understand what portions of the receptor 

contribute to this role.  

In Chapter 3, an analysis of ERECTA family signaling components in the 

SAM was presented. It was shown that ectopically expressing the ERECTA 

receptor in the CZ restores meristem phenotypes in the er erl1 erl2 mutant. 

Expression analysis of the 11 member ligand family revealed that EPFL1, 

EPFL2, EPFL4 and EPFL6 were endogenously expressed near the SAM. 

Analysis of the epfl1 epfl2 epfl4 eplf6 mutant revealed that it shares the same 

meristematic phenotype as er erl1 erl2 mutant with regards to SAM width and 

leaf initiation. Lastly, expressing EPFL1 in the peripheral zone restored SAM 

function which led to the model that ERECTA ligands in the peripheral zone 

signal to the receptor in the central zone, thus allowing for communication 

between the two zones in the SAM. 

Additional work related to the ectopic expression of ERECTA part of 

chapter 3 should address the non-cell autonomous function of ERECTA 

expression in the central zone. The result of CZ expression of the receptor 

rescuing the rate of leaf initiation was exciting because organ generation is 

believed to be controlled in the PZ. One explanation for ERECTA’s non-cell 

autonomous action is through the plant hormone auxin which marks the sites and 
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regulates organ initiation (Reinhardt, Pesce et al. 2003). The er erl1 erl2 mutant 

has been shown to over accumulate auxin in the outermost layer of the SAM, 

presumably preventing auxin sequestration and not allowing leaves to form 

(Chen, Wilson et al. 2013). Examining auxin distribution using auxin reporters in 

lines where ERECTA is expressed in the CZ would address if this phenotype is 

rescued through auxin sequestration in the CZ. Auxin distribution could also be 

an explanation for the partial complementation of SAM phenotypes in other lines 

ectopically expressing ERECTA. Another possibility for how ERECTA regulates 

leaf initiation from the CZ is through regulating the differentiation of stem cells. As 

stem cells become displaced away from the CZ they undergo differentiation and 

eventually become the cells that make up organs. If the differentiation step is 

blocked then the PZ would be made up of stem cells that are unable to become 

leaves. A major challenge in examining the cell identity in the SAM is that the 

lack of a true stem cell marker. Historically, the stem cells in the SAM have been 

defined by CLAVATA3 expression but recent examination of cell division rates 

has revealed that slowly dividing cells make up a much smaller portion of cells 

than previously thought (Fletcher, Brand et al. 1999, Burian, Barbier de Reuille et 

al. 2016). Investigating the chromatin states of cells in the SAM could lead to an 

improved stem cell marker and aid in understanding the phenotype of the er erl1 

erl2 mutant. 

Additional work related to the EPFL ligands regulating SAM functions 

should be aimed to examine how the ligands are regulated and whether there are 

differences in receptor activation. One study examining the role of EPFL2 on leaf 

serrations found the ligand to form a negative feedback loop between auxin 

response and EPFL2 which would allow for a highly localized response 

(Tameshige, Okamoto et al. 2016). Understanding how EPFL1, EPFL2, EPFL4 

and EPFL6 are regulated in terms of expression patterns would help in 

understanding their exact role in SAM regulation. Another interesting feature of 

the four SAM related ligands is their redundancy in function even though they 

greatly differ in peptide sequence. EPFL1 and EPFL2 contain roughly 20 
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additional amino acids in their loop region when compared to the other 9 

EPF/EPFL ligands (Ohki, Takeuchi et al. 2011). The loop region has been shown 

to control specificity of the ligands; swapping the loop from a positive regulator of 

stomata (EPFL9) onto a scaffold of a negative regulator of stomata (EPF2) 

reverses their function (Ohki, Takeuchi et al. 2011). Further dissecting the 

differences between EPFL1/EPFL2 and EPFL4/EPFL6 would help in 

understanding the specificities of the ligand family. 

The findings presented in this work have the potential to impact the 

engineering of agriculturally relevant plants. Reducing water loss from 

transpiration and optimizing crop yield are two major targets that ERf signaling 

could contribute to in engineering improved crop varieties. Using the results from 

chapter 2, the signaling output of ERf receptors could be increased which should 

decrease stomata density. This method of water loss has already been shown 

through EPF2 overexpression but modifying the kinase could have the benefits of 

fine tuning the signaling output (Franks, T et al. 2015). Using the results from 

chapter 3, crop yield could be optimized by decreasing EPFL signaling in the 

SAM to increase its size. The components that regulate WUS/CLV3 signaling 

and impact SAM size have already been shown to have a dramatic impact on 

crop yield in both tomato and maize (Xu, Liberatore et al. 2015, Je, Gruel et al. 

2016). Both methods of modifying ERf signaling to engineer improved crop 

varieties require a better understanding of the mechanisms in the less 

agriculturally relevant species, Arabidopsis thaliana.  
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